JP2009257794A - Rotary eddy current flaw detection probe - Google Patents

Rotary eddy current flaw detection probe Download PDF

Info

Publication number
JP2009257794A
JP2009257794A JP2008104145A JP2008104145A JP2009257794A JP 2009257794 A JP2009257794 A JP 2009257794A JP 2008104145 A JP2008104145 A JP 2008104145A JP 2008104145 A JP2008104145 A JP 2008104145A JP 2009257794 A JP2009257794 A JP 2009257794A
Authority
JP
Japan
Prior art keywords
coil
exciting
excitation
coils
eddy current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008104145A
Other languages
Japanese (ja)
Other versions
JP5140214B2 (en
Inventor
Hiroshi Hoshikawa
洋 星川
Kiyoshi Koyama
潔 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon University
Original Assignee
Nihon University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon University filed Critical Nihon University
Priority to JP2008104145A priority Critical patent/JP5140214B2/en
Publication of JP2009257794A publication Critical patent/JP2009257794A/en
Application granted granted Critical
Publication of JP5140214B2 publication Critical patent/JP5140214B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotary eddy current flaw detection probe capable of detecting the flaw in the whole direction of the deep layer part of a thin-walled metal by one scanning. <P>SOLUTION: A first exciting coil group is formed of a pair of exciting coils 31a and 31b and a pair of other exciting coils 32a and 32b while a second exciting coil group is formed of a pair of exciting coils 33a and 33b and a pair of other exciting coils 34a and 34b. The respective pairs of two exciting coils produce magnetic fields in opposite directions. The exciting current of the first exciting coil group and the exciting current of the second exciting coil group are different by 90° in phase. The exciting coils of the first exciting coil group and the second exciting coil group produce rotary eddy currents in an inspection target M2 and the eddy currents in the vicinity of the surface of the inspection target M2 are set off to be reduced. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本願発明は、回転磁界を用いた回転渦電流探傷プローブに関する。   The present invention relates to a rotating eddy current flaw detection probe using a rotating magnetic field.

従来の渦電流探傷プローブは、比較的肉厚の薄い鋼板等の金属の探傷に適しているが、厚い金属の深層部の探傷は困難であった。そこで肉厚の厚い金属の内部も探傷できる渦電流探傷プローブが提案されている(特許文献1参照)。
図7は、従来の肉厚の厚い金属の探傷に適した渦電流探傷プローブの構成を示す。図7(a)は、平面図、図7(b)は、図7(a)のX1部分の矢印方向の断面図、図7(c)は、図7(a)のX2方向のコイルの側面図である。
金属の被検査体M1の検査面に円形(パンケーキ状)の検出コイル13をそのコイル面が検査面と平行になるように配置し、検出コイル13の両側にコイル面が四角形の励磁コイル11a,11bと12a,12bを、夫々コイル面が検査面に垂直になるように配置してある。
励磁コイル11a,11bには、逆方向の励磁電流を流し、励磁コイル12a,12bにも逆方向の励磁電流を流す。そして励磁コイル11b,12bには、同方向の励磁電流を流し、励磁コイル11a,12aにも同方向の励磁電流を流す。
The conventional eddy current flaw detection probe is suitable for flaw detection of a metal such as a relatively thin steel plate, but it is difficult to flaw a deep portion of a thick metal. Therefore, an eddy current flaw detection probe capable of flaw detection inside a thick metal has been proposed (see Patent Document 1).
FIG. 7 shows a configuration of a conventional eddy current flaw detection probe suitable for flaw detection of a thick metal. 7 (a) is a plan view, FIG. 7 (b) is a cross-sectional view of the X1 portion of FIG. 7 (a) in the direction of the arrow, and FIG. 7 (c) is the X2 direction coil of FIG. 7 (a). It is a side view.
A circular (pancake-shaped) detection coil 13 is arranged on the inspection surface of the metal object M1 so that the coil surface is parallel to the inspection surface, and the excitation coil 11a has a rectangular coil surface on both sides of the detection coil 13. 11b and 12a, 12b are arranged so that the coil surfaces are perpendicular to the inspection surface.
An exciting current in the reverse direction is supplied to the exciting coils 11a and 11b, and an exciting current in the opposite direction is supplied to the exciting coils 12a and 12b. An exciting current in the same direction is supplied to the exciting coils 11b and 12b, and an exciting current in the same direction is supplied to the exciting coils 11a and 12a.

4個の励磁コイル11a〜12bを前記のように励磁すると、4個の励磁コイルにより被検査体M1の表面に誘導する渦電流は、相殺されて低減するため、検出コイル13は、表面の強い渦電流の影響を受けずに被検査体M1の深層部の渦電流を検出することができる。
しかし図7の渦電流探傷プローブは、キズの方向がプローブの走査方向と垂直になる場合、検出が困難であった。
When the four exciting coils 11a to 12b are excited as described above, eddy currents induced on the surface of the inspection object M1 by the four exciting coils are canceled out and reduced, so that the detection coil 13 has a strong surface. It is possible to detect the eddy current in the deep portion of the object M1 without being affected by the eddy current.
However, the eddy current flaw detection probe of FIG. 7 is difficult to detect when the direction of the flaw is perpendicular to the scanning direction of the probe.

一方キズの方向に関係なく1回の渦電流探傷プローブの走査で全方向のキズを検出できるプローブも提案されている(特許文献2参照)。
図8により全方向のキズを検出できる渦電流探傷プローブを説明する。図8(a)は、平面図、図8(b)は、図8(a)のX1部分の矢印方向の断面図、図8(c)は、図8(a)のX2部分の矢印方向の断面図であり、図8(d)は、回転磁界を説明する図である。
励磁コイル21bは、励磁コイル21a内に挿入してあり、両励磁コイルのコイル面は、直交し、被検査体(図示せず)の検査面に垂直になるように配置してある。励磁コイル21a、励磁コイル21bと検査面の間には、円形(パンケーキ状)の検出コイル22を、コイル面が検査面と平行になるように配置してある。そして励磁コイル21aと励磁コイル21bには、位相が90度異なる励磁電流を流す。検査面に発生する渦電流の方向は、図8(d)のように一周期Tの間に順次方向が変化して360度変わるから、渦電流探傷プローブの一回の走査により全方向のキズを検出することができる。
図8の渦電流探傷プローブは、被検査体の表面の全方向のキズを探傷できるが、深層部のキズの探傷は、困難である。
On the other hand, a probe has also been proposed that can detect scratches in all directions by one scan of the eddy current flaw detection probe regardless of the direction of the scratch (see Patent Document 2).
An eddy current flaw detection probe capable of detecting scratches in all directions will be described with reference to FIG. 8A is a plan view, FIG. 8B is a cross-sectional view of the X1 portion of FIG. 8A in the arrow direction, and FIG. 8C is the arrow direction of the X2 portion of FIG. 8A. FIG. 8D is a diagram for explaining the rotating magnetic field.
The exciting coil 21b is inserted into the exciting coil 21a, and the coil surfaces of both exciting coils are orthogonal to each other and are arranged to be perpendicular to the inspection surface of an object to be inspected (not shown). Between the excitation coil 21a and the excitation coil 21b and the inspection surface, a circular (pancake-shaped) detection coil 22 is arranged so that the coil surface is parallel to the inspection surface. Excitation currents that are 90 degrees out of phase flow through the excitation coil 21a and the excitation coil 21b. As shown in FIG. 8D, the direction of the eddy current generated on the inspection surface changes 360 degrees during one period T and changes 360 degrees. Can be detected.
The eddy current flaw detection probe shown in FIG. 8 can detect flaws in all directions on the surface of the object to be inspected, but flaw detection in the deep layer is difficult.

特開2006−10665号公報JP 2006-10665 A 特開2002−131285号公報JP 2002-131285 A

本願発明は、前記従来の渦電流探傷プローブの問題点に鑑み、被検査体に回転渦電流を発生(誘導)して全方向のキズを探傷する渦電流探傷プローブにおいて、肉厚の被検査体の深層部のキズを探傷できる回転渦電流探傷プローを提供することを目的とする。   In view of the problems of the conventional eddy current flaw detection probe, the present invention provides an eddy current flaw detection probe that generates (induces) a rotating eddy current in a test object to detect flaws in all directions. An object of the present invention is to provide a rotating eddy current flaw detection probe capable of flawing flaws in the deep layer.

本願発明は、その目的を達成するため、請求項1に記載の回転渦電流探傷プローブは、2対の励磁コイルのコイル軸が一致しコイル面が被検査体の検査面に垂直な励磁コイル群をN(2以上の整数)群とコイル面が被検査体の検査面に平行な検出コイルを備え、各励磁コイル群の2対の励磁コイルは夫々検出コイルの両側に配置し、各励磁コイル群のコイル軸は検出コイルの中心において交差し「2π/2N」度間隔で配置してあり、各励磁コイル群の各対の2個の励磁コイルは逆方向の磁界を発生し、励磁電流は位相が励磁コイル群毎に「2π/2N」度相違していることを特徴とする。
請求項2に記載の回転渦電流探傷プローブは、請求項1に記載の回転渦電流探傷プローブにおいて、前記Nは2であることを特徴とする。
請求項3に記載の回転渦電流探傷プローブは、請求項1に記載の回転渦電流探傷プローブにおいて、前記Nは3であることを特徴とする。
In order to achieve the object of the present invention, the rotating eddy current flaw detection probe according to claim 1 is a group of exciting coils in which the coil axes of two pairs of exciting coils coincide and the coil surfaces are perpendicular to the inspection surface of the object to be inspected. N (an integer of 2 or more) group and a detection coil whose coil surface is parallel to the inspection surface of the object to be inspected, and two excitation coils in each excitation coil group are arranged on both sides of the detection coil, respectively. The coil axes of the groups intersect at the center of the detection coil and are arranged at intervals of “2π / 2N” degrees, the two excitation coils of each pair of each excitation coil group generate a magnetic field in the opposite direction, and the excitation current is The phase is different by “2π / 2N” degrees for each excitation coil group.
The rotating eddy current flaw detection probe according to claim 2 is characterized in that the N is 2 in the rotating eddy current flaw detection probe according to claim 1.
The rotating eddy current flaw detection probe according to claim 3 is the rotating eddy current flaw detection probe according to claim 1, wherein the N is 3.

本願発明の回転渦電流探傷プローブは、プローブの1回の走査で被検査体の深層部の全方向のキズを検出することができ、かつキズの深さや方向も判別ができるから、肉厚の被検査体のキズを短時間で検出でき、かつ検出精度を高くすることができる。
本願発明の回転渦電流探傷プローブは、励磁コイル群が3群の場合には、励磁コイル群と励磁コイル群の中間部分においてもキズの検出感度が低下することはない。
The rotating eddy current flaw detection probe of the present invention can detect flaws in all directions of the deep layer portion of the object to be inspected by one scanning of the probe and can also determine the depth and direction of the flaws. It is possible to detect a scratch on the object to be inspected in a short time and to increase the detection accuracy.
In the rotating eddy current flaw detection probe according to the present invention, when the number of exciting coil groups is three, the detection sensitivity of a flaw does not decrease even in an intermediate portion between the exciting coil group and the exciting coil group.

図1〜図6により本願発明の実施例を説明する。   An embodiment of the present invention will be described with reference to FIGS.

図1は、回転渦電流探傷プローブの構成を示す。図1(a)は、回転渦電流探傷プローブを金属の被検査体の検査面に配置したときの平面図、図1(b)は、図1(a)のY1部分の矢印方向の断面図、図1(c)は、図1(b)においてコイル支持部材41を省略した図である。
励磁コイル部は、一対の四角形の励磁コイル31a,31bと他の一対の四角形の励磁コイル32a,32bからなる第1励磁コイル群と、一対の四角形の励磁コイル33a,33bと他の一対の四角形の励磁コイル34a,34bからなる第2励磁コイル群とからなる。励磁コイル31a,31b,32a,32bの4個のコイルは、コイル軸(中心軸)Z1が一致し、コイル面(巻き線に囲まれコイル軸と直交する面)が金属の被検査体M2の検査面と垂直になるように配置してある(コイル軸は検査面と平行になる)。同様に励磁コイル33a,33b,34a,34bの4個のコイルも、コイル軸Z2が一致し、コイル面が金属の被検査体M2の検査面と垂直になるように配置してある。そして第1励磁コイル群と第2励磁コイル群は、コイル軸Z1とコイル軸Z2が直交するように配置してある。
円形(パンケーキ状)の検出コイル37は、コイル軸が被検査体M2の検査面と垂直になり(コイル面は平行になる)、コイル軸Z1とコイル軸Z2の交点と一致するように配置してある。即ち検出コイル37は、コイル面の中心がコイル軸Z1とコイル軸Z2の交点になるように配置してある。
第1励磁コイル群と第2励磁コイル群の各励磁コイル及び検出コイル37は、支持部材41に取り付けてある。
FIG. 1 shows the configuration of a rotating eddy current flaw detection probe. FIG. 1A is a plan view when a rotating eddy current flaw detection probe is arranged on the inspection surface of a metal object to be inspected, and FIG. 1B is a cross-sectional view of the Y1 portion of FIG. FIG.1 (c) is the figure which abbreviate | omitted the coil support member 41 in FIG.1 (b).
The excitation coil section includes a first excitation coil group including a pair of square excitation coils 31a and 31b and another pair of square excitation coils 32a and 32b, a pair of square excitation coils 33a and 33b, and another pair of squares. And a second exciting coil group consisting of the exciting coils 34a and 34b. The four coils of the excitation coils 31a, 31b, 32a, and 32b have the same coil axis (center axis) Z1, and the coil surface (the surface surrounded by the windings and perpendicular to the coil axis) is the metal MUT. They are arranged so as to be perpendicular to the inspection surface (the coil axis is parallel to the inspection surface). Similarly, the four coils of the exciting coils 33a, 33b, 34a, and 34b are also arranged so that the coil axis Z2 coincides and the coil surface is perpendicular to the inspection surface of the metal object M2. The first excitation coil group and the second excitation coil group are arranged so that the coil axis Z1 and the coil axis Z2 are orthogonal to each other.
The circular (pancake-shaped) detection coil 37 is arranged so that the coil axis is perpendicular to the inspection surface of the object M2 to be inspected (the coil surface is parallel) and coincides with the intersection of the coil axis Z1 and the coil axis Z2. It is. That is, the detection coil 37 is arranged such that the center of the coil surface is the intersection of the coil axis Z1 and the coil axis Z2.
Each excitation coil and detection coil 37 of the first excitation coil group and the second excitation coil group are attached to the support member 41.

次に第1励磁コイル群と第2励磁コイル群の各励磁コイルに流す励磁電流について説明する。
まず第1励磁コイル群の場合、一対の励磁コイル31a,31bには、両励磁コイルの発生する磁界が逆方向(逆極性)となるように励磁電流を流す。他の一対の励磁コイル32a,32bも同様に、両励磁コイルの発生する磁界が逆方向(逆極性)となるように励磁電流を流す。そしてその場合、両対の検出コイル37に近い側(内側)の励磁コイル31b,32bは、同方向の磁界を発生し、両対の検出37に遠い側(外側)の励磁コイル31a,32aも同方向の磁界を発生する。
第2励磁コイル群の場合も同様に、一対の励磁コイル33a,33bには、両励磁コイルの発生する磁界が逆方向となり、他の一対の励磁コイル34a,34bにも、両励磁コイルの発生する磁界が逆方向となるように励磁電流を流す。そしてその場合、両対の検出コイル37に近い側(内側)の励磁コイル33b,34bは、同方向の磁界を発生し、両対の検出37に遠い側(外側)の励磁コイル33a,34aも同方向の磁界を発生する。
Next, the excitation current that flows through each excitation coil of the first excitation coil group and the second excitation coil group will be described.
First, in the case of the first excitation coil group, an excitation current is passed through the pair of excitation coils 31a and 31b so that the magnetic fields generated by both excitation coils are in opposite directions (reverse polarity). Similarly, the other pair of exciting coils 32a and 32b also pass an exciting current so that the magnetic fields generated by both exciting coils are in opposite directions (reverse polarity). In that case, the excitation coils 31b and 32b on the side (inner side) close to the two pairs of detection coils 37 generate magnetic fields in the same direction, and the excitation coils 31a and 32a on the side (outer side) far from the two pairs of detection coils 37 also. Generate a magnetic field in the same direction.
Similarly, in the case of the second exciting coil group, the magnetic fields generated by the two exciting coils are reversed in the pair of exciting coils 33a and 33b, and the two exciting coils are also generated in the other pair of exciting coils 34a and 34b. An exciting current is passed so that the magnetic field to be reversed is in the opposite direction. In this case, the excitation coils 33b and 34b on the side (inner side) close to the two pairs of detection coils 37 generate a magnetic field in the same direction, and the excitation coils 33a and 34a on the side farther (outer side) of the two pairs of detection coils 37 also. Generate a magnetic field in the same direction.

また第1励磁コイル群の励磁電流と第2励磁コイル群の励磁電流は、位相が90度相違している。例えば第1励磁コイル群の励磁コイル31aと第2励磁コイル群の励磁コイル33aは、励磁電流の位相が90度相違し、励磁コイル31bと励磁コイル33bも、励磁電流の位相が90度相違する。他の励磁コイルも同様である。
以上のように第1、第2励磁コイル群の各対の2個の励磁コイルは、逆方向の磁界を発生する。また第1励磁コイル群の励磁電流と第2励磁コイル群の励磁電流は、位相が90度相違している
The excitation current of the first excitation coil group and the excitation current of the second excitation coil group are 90 degrees out of phase. For example, the excitation coil 31a of the first excitation coil group and the excitation coil 33a of the second excitation coil group have an excitation current phase difference of 90 degrees, and the excitation coil 31b and the excitation coil 33b also have an excitation current phase difference of 90 degrees. . The same applies to the other exciting coils.
As described above, the two excitation coils in each pair of the first and second excitation coil groups generate magnetic fields in opposite directions. The excitation current of the first excitation coil group and the excitation current of the second excitation coil group are 90 degrees out of phase.

図1の回転渦電流探傷プローブは、第1励磁コイル群の各対の励磁コイルにより被検査体M2に発生する渦電流は、方向が逆になるから表面近くでは相殺されて低減する。同様に第2励磁コイル群の各対の励磁コイルにより被検査体M2に発生する渦電流も、表面近くでは相殺されて低減する。一方第1励磁コイル群の励磁電流と第2励磁コイル群の励磁電流は、位相が90度相違するから、被検査体M2に発生する渦電流は、回転渦電流になる。
したがって図1の回転渦電流探傷プローブは、被検査体M2に回転渦電流を発生するから、プローブの1回の走査で全方向のキズを検出することができる。また被検査体の表面近くの渦電流は相殺されるから、表面近くの大きい渦電流の影響を受けずに被検査体の深層部のキズを探傷することができる。
In the rotating eddy current flaw detection probe shown in FIG. 1, the eddy currents generated in the inspection object M2 by each pair of excitation coils of the first excitation coil group are reversed in direction and are canceled near the surface. Similarly, eddy currents generated in the inspected object M2 by each pair of exciting coils of the second exciting coil group are canceled and reduced near the surface. On the other hand, since the excitation current of the first excitation coil group and the excitation current of the second excitation coil group are 90 degrees out of phase, the eddy current generated in the object M2 is a rotating eddy current.
Therefore, the rotating eddy current flaw detection probe shown in FIG. 1 generates a rotating eddy current in the inspection object M2, so that it is possible to detect scratches in all directions by one scan of the probe. Further, since the eddy current near the surface of the object to be inspected is canceled, it is possible to detect a flaw in the deep layer portion of the object to be inspected without being affected by a large eddy current near the surface.

なお各励磁コイル群の各対の2個の励磁コイル、例えば第1励磁コイル群の励磁コイル31a,31bに逆方向の磁界を発生させるには、両励磁コイルに巻線方向が同じものを用い、両励磁コイルに位相が逆の(180度異なる)電源を別々に接続してもよいし、巻線方向が逆のコイルを用い、両励磁コイルに同じ電源を接続してもよい。その他通常用いられている2個のコイルに逆方向の磁界を発生する方法を使用することができる。   In order to generate a reverse magnetic field in the two excitation coils of each pair of each excitation coil group, for example, the excitation coils 31a and 31b of the first excitation coil group, those having the same winding direction are used for both excitation coils. In addition, power sources having opposite phases (180 degrees different) may be connected to both excitation coils separately, or coils having opposite winding directions may be used, and the same power source may be connected to both excitation coils. In addition, it is possible to use a method of generating a magnetic field in the reverse direction in two commonly used coils.

図2は、回転渦電流探傷プローブの複数の励磁コイル群の配置例を示す。
図2(a)は、2組の励磁コイル群を配置した回転渦電流探傷プローブの例である(図1の回転渦電流探傷プローブと同じ)。
図2(a)の回転渦電流探傷プローブは、一対の励磁コイル31と他の一対の励磁コイル32からなる第1励磁コイル群と、一対の励磁コイル33と他の一対の励磁コイル34からなる第2励磁コイル群を配置してある。両励磁コイル群は、コイル軸Z1,Z2が直交するように配置してある。したがって図2(a)の場合には、第1励磁コイル群の一対の励磁コイル31と第2励磁コイル群の一対の励磁コイル33は、コイル面も直交している。同様に第1励磁コイル群の他の一対の励磁コイル32と第2励磁コイル群の他の一対の励磁コイル34も、コイル面が直交している。
各励磁コイル群の各対の2個の励磁コイルは、逆方向(逆極性)の磁界を発生するように励磁する。また第1励磁コイル群と第2励磁コイル群の励磁電流は、位相が90度相違している。
FIG. 2 shows an arrangement example of a plurality of exciting coil groups of the rotating eddy current flaw detection probe.
FIG. 2A is an example of a rotating eddy current flaw probe having two sets of exciting coil groups (same as the rotating eddy current flaw probe in FIG. 1).
The rotating eddy current flaw detection probe shown in FIG. 2A includes a first excitation coil group including a pair of excitation coils 31 and another pair of excitation coils 32, a pair of excitation coils 33, and another pair of excitation coils 34. A second exciting coil group is arranged. Both excitation coil groups are arranged so that the coil axes Z1 and Z2 are orthogonal to each other. Therefore, in the case of FIG. 2A, the pair of exciting coils 31 of the first exciting coil group and the pair of exciting coils 33 of the second exciting coil group are also orthogonal to each other. Similarly, the coil surfaces of the other pair of exciting coils 32 of the first exciting coil group and the other pair of exciting coils 34 of the second exciting coil group are orthogonal to each other.
The two excitation coils in each pair of each excitation coil group are excited so as to generate magnetic fields in opposite directions (reverse polarity). The excitation currents of the first excitation coil group and the second excitation coil group are 90 degrees out of phase.

図2(b)は、3組の励磁コイル群を配置した回転渦電流探傷プローブの例である。
図2(b)は、図2(a)の回転渦電流探傷プローブにコイル軸Z3の第3励磁コイル群を付加してある。第3励磁コイル群は、一対の励磁コイル35と他の一対の励磁コイル36からなり、第1,2励磁コイル群と同じ構成のものである。コイル軸Z1,Z2,Z3は、角度60度で交差している。そして、第1,2,3励磁コイル群の励磁電流は、夫々位相が60度相違している。
図2(a)の回転渦電流探傷プローブは、コイル軸Z1,Z2の中間部分(45度付近)に発生する渦電流が小さいため、その部分のキズの検出感度が低くなる。しかし図2(b)の回転渦電流探傷プローブは、第3励磁コイル群を付加したことにより図2(a)の回転渦電流探傷プローブの検出感度の低下をなくすことができる。
以上励磁コイル群が、2群(組)、3群(組)の例について説明したが、コイル群がN(2以上)群の場合には、コイル軸を、「360度(2π)/2N」の間隔で配置し、各励磁コイル群の励磁電流の位相を、「360度(2π)/2N」ずつ相違させる。
FIG. 2B is an example of a rotating eddy current flaw detection probe in which three sets of exciting coil groups are arranged.
In FIG. 2B, a third exciting coil group having a coil axis Z3 is added to the rotating eddy current flaw detection probe shown in FIG. The third excitation coil group includes a pair of excitation coils 35 and another pair of excitation coils 36, and has the same configuration as the first and second excitation coil groups. The coil axes Z1, Z2, and Z3 intersect at an angle of 60 degrees. The excitation currents of the first, second, and third excitation coil groups are 60 degrees out of phase with each other.
In the rotating eddy current flaw detection probe shown in FIG. 2A, since the eddy current generated in the middle part (near 45 degrees) of the coil axes Z1 and Z2 is small, the detection sensitivity of the scratches at that part is low. However, the rotating eddy current flaw detection probe of FIG. 2B can eliminate the decrease in detection sensitivity of the rotating eddy current flaw detection probe of FIG. 2A by adding the third exciting coil group.
The example in which the exciting coil groups are 2 groups (groups) and 3 groups (groups) has been described. However, when the coil groups are N (2 or more) groups, the coil axis is set to “360 degrees (2π) / 2N. And the phase of the excitation current of each excitation coil group is different by “360 degrees (2π) / 2N”.

次に図3〜6により、図1の回転渦電流探傷プローブを用いて行った探傷試験について説明する。
探傷試験には、被検査体として肉厚25mmのSUS316Lを用い、その被検査体に幅0.5mm、長さ40mmで、深さ10,12,15,20mmのキズを放電加工したものを用いた。
回転渦電流探傷プローブの1個の励磁コイルの寸法は、長さ10mm、幅30mm、高さ30mm、検出コイルの寸法は、直径6mm、巻線断面積1mm2である。試験周波数は、10kHzに設定した。
試験は、回転渦電流探傷プローブをキズの方向にキズの中央に沿って走査し、またキズと直交する方向にキズの両端部を走査して行った。
Next, a flaw detection test performed using the rotating eddy current flaw detection probe of FIG. 1 will be described with reference to FIGS.
In the flaw detection test, SUS316L with a wall thickness of 25 mm was used as an object to be inspected, and the object to be inspected was subjected to electric discharge machining of scratches having a width of 0.5 mm, a length of 40 mm and a depth of 10, 12, 15, 20 mm It was.
The dimensions of one excitation coil of the rotating eddy current flaw detection probe are 10 mm in length, 30 mm in width, 30 mm in height, and the dimensions of the detection coil are 6 mm in diameter and 1 mm 2 in winding cross-sectional area. The test frequency was set to 10 kHz.
The test was performed by scanning the rotating eddy current flaw detection probe along the center of the scratch in the direction of the scratch, and scanning both ends of the scratch in a direction perpendicular to the scratch.

図3は、回転渦電流探傷プローブをキズの方向に(走査方向に対してキズの角度は0度)走査したときのキズ信号の0相成分と90度進相成分の振幅特性を示す。なお図は、正規化振幅を示す。
図3(a)は、図1の回転渦電流探傷プローブにおいて、4対の夫々2個の励磁コイル(例えば励磁コイル31a,31b)の発生する磁界が同方向となるように励磁した場合を示し、図3(b)は、その磁界が逆方向となるように励磁した場合を示す。
FIG. 3 shows the amplitude characteristics of the zero-phase component and the 90-degree phase advance component of the scratch signal when the rotating eddy current flaw detection probe is scanned in the scratch direction (the scratch angle is 0 degrees with respect to the scanning direction). The figure shows the normalized amplitude.
FIG. 3A shows a case where the rotating eddy current flaw detection probe of FIG. 1 is excited so that the magnetic fields generated by two pairs of two exciting coils (for example, the exciting coils 31a and 31b) are in the same direction. FIG. 3B shows a case where excitation is performed so that the magnetic field is in the opposite direction.

図3(a)、図3(b)において、イは、キズの深さ10mm、ロは、キズの深さ15mm、ハは、キズの深さ20mmの場合である。
図3(a)の場合、キズ信号(検出コイル37の出力)の振幅及び位相は、キズの深さが変わっても大きな違いはない。一方図3(b)の場合、キズ信号の振幅は、キズの深さに対応して変わり、キズ信号の位相は、キズが深くなるほど遅くなる。したがって図3(b)の場合、図1の回転渦電流探傷プローブを、4対の夫々2個の励磁コイルの発生する磁界が逆方向となるように励磁した場合には、キズ信号の振幅及び位相は、キズの深さに対応していることが分かる。
In FIGS. 3A and 3B, “a” indicates a case where the depth of the scratch is 10 mm, “b” indicates a case where the depth of the scratch is 15 mm, and “c” indicates a case where the depth of the scratch is 20 mm.
In the case of FIG. 3A, the amplitude and phase of the scratch signal (output of the detection coil 37) are not significantly different even if the depth of the scratch is changed. On the other hand, in the case of FIG. 3B, the amplitude of the scratch signal changes corresponding to the depth of the scratch, and the phase of the scratch signal becomes slower as the scratch becomes deeper. Therefore, in the case of FIG. 3B, when the rotating eddy current flaw detection probe of FIG. 1 is excited so that the magnetic fields generated by the two excitation coils of each of the four pairs are in opposite directions, the amplitude of the scratch signal and It can be seen that the phase corresponds to the depth of the scratch.

図4は、回転渦電流探傷プローブをキズと直交する方向に(走査方向に対してキズの角度は90度)走査したときのキズ信号の0相成分と90度進相成分の振幅特性を示す。なお図は、正規化振幅を示す。
図4(a)は、図1の回転渦電流探傷プローブにおいて、4対の夫々2個の励磁コイル(例えば励磁コイル31a,31b)の発生する磁界が同方向となるように励磁した場合を示し、図4(b)は、その磁界が逆方向となるように励磁した場合を示す。
図4(a)、図4(b)において、イは、キズの深さ10mm、ロは、キズの深さ15mm、ハは、キズの深さ20mmの場合である。
FIG. 4 shows the amplitude characteristics of the zero-phase component and the 90-degree phase advance component of the scratch signal when the rotating eddy current flaw detection probe is scanned in the direction perpendicular to the scratch (the scratch angle is 90 degrees with respect to the scanning direction). . The figure shows the normalized amplitude.
FIG. 4A shows a case where the rotating eddy current flaw detection probe of FIG. 1 is excited so that the magnetic fields generated by two pairs of two exciting coils (for example, the exciting coils 31a and 31b) are in the same direction. FIG. 4B shows a case where excitation is performed so that the magnetic field is in the opposite direction.
In FIGS. 4A and 4B, “a” indicates a case where the depth of the scratch is 10 mm, “b” indicates a case where the depth of the scratch is 15 mm, and “c” indicates a case where the depth of the scratch is 20 mm.

図4(a)の場合、キズ信号の振幅及び位相は、キズの深さが変わっても大きな違いはない。一方
図4(b)の場合、キズ信号の振幅は、キズの深さに対応して変わり、キズ信号の位相は、キズが深くなるほど遅くなる。したがって図4(b)の場合、図1の回転渦電流探傷プローブを、4対の夫々2個の励磁コイルの発生する磁界が逆方向となるように励磁した場合には、キズ信号の振幅及び位相は、キズの深さに対応していることが分かる。
In the case of FIG. 4A, the amplitude and phase of the scratch signal are not significantly different even if the depth of the scratch is changed. On the other hand, in the case of FIG. 4B, the amplitude of the scratch signal changes corresponding to the depth of the scratch, and the phase of the scratch signal becomes slower as the scratch becomes deeper. Therefore, in the case of FIG. 4B, when the rotating eddy current flaw detection probe of FIG. 1 is excited so that the magnetic fields generated by the two pairs of two exciting coils are in opposite directions, the amplitude of the scratch signal and It can be seen that the phase corresponds to the depth of the scratch.

図5は、回転渦電流探傷プローブをキズの方向に(走査方向に対してキズの角度は0度)走査したときのキズの深さとキズ信号の振幅特性(図5(a))、キズの深さと位相特性(図5(b))を示す。なお図は、正規化振幅と位相を示す。
図において、黒丸は、図1の回転渦電流探傷プローブにおいて、4対の夫々2個の励磁コイル(例えば励磁コイル31a,31b)の発生する磁界が同方向となるように励磁した場合を示し、白丸は、その磁界が逆方向となるように励磁した場合を示す。
FIG. 5 shows the depth of the scratch and the amplitude characteristic of the scratch signal (FIG. 5A) when the rotating eddy current flaw detection probe is scanned in the scratch direction (the scratch angle is 0 degrees with respect to the scanning direction). Depth and phase characteristics (FIG. 5B) are shown. The figure shows the normalized amplitude and phase.
In the figure, black circles indicate the case where the rotating eddy current flaw detection probe of FIG. 1 is excited so that the magnetic fields generated by two pairs of two exciting coils (for example, the exciting coils 31a and 31b) are in the same direction. A white circle indicates a case where excitation is performed so that the magnetic field is in the opposite direction.

図5(a)の振幅特性についてみると、キズの深さの変化に対する振幅の変化は、2個の励磁コイルの磁界が同方向の場合よりも磁界が逆方向の場合の方が大きくなる。例えば、キズの深さが20mmと10mmの振幅の差は、磁界が同方向の場合約1.25倍であるのに対して磁界が逆方向の場合には、約2倍になる。したがって2個の励磁コイルの磁界が逆方向の場合には、キズ信号の振幅は、キズの深さに対応している。
また図5(b)の位相特性についてみると、2個の励磁コイルの磁界が同方向の場合には、キズの深さが変わってもキズ信号の位相はほとんど変わらないが、その磁界が逆方向の場合には、キズの深さが変わるとキズ信号の位相も大きく変わる。したがって2個の励磁コイルの磁界が逆方向の場合、キズ信号の位相は、キズの深さに対応している。
5A, the change in the amplitude with respect to the change in the depth of the scratch is greater when the magnetic fields of the two exciting coils are in the opposite direction than when the magnetic fields of the two exciting coils are in the same direction. For example, the difference in amplitude between the scratch depth of 20 mm and 10 mm is about 1.25 times when the magnetic field is in the same direction, and is about twice when the magnetic field is in the reverse direction. Therefore, when the magnetic fields of the two exciting coils are in opposite directions, the amplitude of the scratch signal corresponds to the depth of the scratch.
5B, when the magnetic fields of the two exciting coils are in the same direction, the phase of the scratch signal hardly changes even if the scratch depth changes, but the magnetic field is reversed. In the case of the direction, if the depth of the scratch changes, the phase of the scratch signal also changes greatly. Therefore, when the magnetic fields of the two exciting coils are in opposite directions, the phase of the scratch signal corresponds to the depth of the scratch.

図6は、回転渦電流探傷プローブをキズと直交する方向に(走査方向に対してキズの角度は90度)走査したときのキズの深さとキズ信号の振幅特性(図6(a))、キズの深さと位相特性(図6(b))を示す。なお図は、正規化振幅と位相を示す。
図において、黒丸は、図1の回転渦電流探傷プローブにおいて、4対の夫々2個の励磁コイル(例えば励磁コイル31a,31b)の発生する磁界が同方向となるように励磁した場合を示し、白丸は、その磁界が逆方向となるように励磁した場合を示す。
FIG. 6 shows a flaw depth and a flaw signal amplitude characteristic (FIG. 6A) when a rotating eddy current flaw detection probe is scanned in a direction orthogonal to the flaw (the flaw angle is 90 degrees with respect to the scanning direction). Scratch depth and phase characteristics (FIG. 6B) are shown. The figure shows the normalized amplitude and phase.
In the figure, black circles indicate the case where the rotating eddy current flaw detection probe of FIG. 1 is excited so that the magnetic fields generated by two pairs of two exciting coils (for example, the exciting coils 31a and 31b) are in the same direction. A white circle indicates a case where excitation is performed so that the magnetic field is in the opposite direction.

図6(a)の振幅特性についてみると、キズの深さの変化に対する振幅の変化は、2個の励磁コイルの磁界が同方向の場合よりも磁界が逆方向の場合の方が大きくなる。例えば、キズの深さが20mmと10mmの振幅の差は、磁界が同方向の場合約1.25倍であるのに対して磁界が逆方向の場合には、約2倍になる。したがって2個の励磁コイルの磁界が逆方向の場合には、キズ信号の振幅は、キズの深さに対応している。
また図6(b)の位相特性についてみると、2個の励磁コイルの磁界が同方向の場合には、キズの深さが変わってもキズ信号の位相はほとんど変わらないが、その磁界が逆方向の場合には、キズの深さが変わるとキズ信号の位相も大きく変わる。したがって2個の励磁コイルの磁界が逆方向の場合、キズ信号の位相は、キズの深さに対応している。
Looking at the amplitude characteristics of FIG. 6A, the change in amplitude with respect to the change in the depth of the scratch is greater when the magnetic fields of the two exciting coils are in the opposite direction than when the magnetic fields of the two exciting coils are in the same direction. For example, the difference in amplitude between the scratch depth of 20 mm and 10 mm is about 1.25 times when the magnetic field is in the same direction, and is about twice when the magnetic field is in the reverse direction. Therefore, when the magnetic fields of the two exciting coils are in opposite directions, the amplitude of the scratch signal corresponds to the depth of the scratch.
6B, when the magnetic fields of the two exciting coils are in the same direction, the phase of the scratch signal hardly changes even if the depth of the scratch changes, but the magnetic field is reversed. In the case of the direction, if the depth of the scratch changes, the phase of the scratch signal also changes greatly. Therefore, when the magnetic fields of the two exciting coils are in opposite directions, the phase of the scratch signal corresponds to the depth of the scratch.

図5と図6のキズ信号の振幅特性と位相特性から、図1の回転渦電流探傷プローブは、プローブの1回の走査で被検査体の深層部の全方向のキズを検出することができ、かつキズの深さや方向も判別できる、ことが分かる。   From the amplitude characteristics and phase characteristics of the flaw signal shown in FIGS. 5 and 6, the rotating eddy current flaw detection probe shown in FIG. 1 can detect flaws in all directions in the deep layer of the object to be inspected by one scan of the probe. It can also be seen that the depth and direction of the scratch can also be determined.

本願発明の実施例に係る回転渦電流探傷プローブの平面図、断面図である。It is the top view and sectional drawing of the rotation eddy current flaw detection probe which concern on the Example of this invention. 本願発明の実施例に係る回転渦電流探傷プローブの励磁コイルの位置関係を説明する図である。It is a figure explaining the positional relationship of the exciting coil of the rotating eddy current flaw detection probe which concerns on the Example of this invention. 図1の回転渦電流探傷プローブをキズの方向に(キズの角度が走査方向に対して0度)走査したときのキズ信号の振幅特性を示す。FIG. 3 shows the amplitude characteristic of a scratch signal when the rotating eddy current flaw detection probe of FIG. 1 is scanned in the scratch direction (the scratch angle is 0 degree with respect to the scanning direction). 図1の回転渦電流探傷プローブをキズと90度の方向に(キズの角度が走査方向に対して90度)走査したときのキズ信号の振幅特性を示す。FIG. 3 shows the amplitude characteristic of a scratch signal when the rotating eddy current flaw detection probe of FIG. 1 is scanned in the direction of 90 degrees with a scratch (the scratch angle is 90 degrees with respect to the scanning direction). 図1の回転渦電流探傷プローブをキズの方向に(キズの角度が走査方向に対して0度)走査したときのキズの深さとキズ信号の振幅特性、位相特性を示す。FIG. 2 shows the depth of the scratch, the amplitude characteristic and the phase characteristic of the scratch signal when the rotating eddy current flaw detection probe of FIG. 1 is scanned in the scratch direction (the scratch angle is 0 degree with respect to the scanning direction). 図1の回転渦電流探傷プローブをキズと90度の方向に(キズの角度が走査方向に対して90度)走査したときのキズの深さとキズ信号の振幅特性、位相特性を示す。FIG. 2 shows the depth of the scratch, the amplitude characteristic and the phase characteristic of the scratch signal when the rotating eddy current flaw detection probe of FIG. 1 is scanned in the direction of 90 degrees with the scratch (the scratch angle is 90 degrees with respect to the scanning direction). 従来の深層部のキズを検出する渦電流探傷プローブの平面図、断面図である。It is the top view and sectional drawing of the conventional eddy current flaw detection probe which detects the crack of the deep layer part. 従来の回転渦電流探傷プローブの平面図、断面図である。It is the top view and sectional drawing of the conventional rotating eddy current flaw detection probe.

符号の説明Explanation of symbols

31a〜36a 励磁コイル
31b〜36b 励磁コイル
37 検出コイル
M2 被検査体
Z1〜Z3 コイル軸
31a to 36a Excitation coils 31b to 36b Excitation coil 37 Detection coil M2 Inspected objects Z1 to Z3 Coil shaft

Claims (3)

2対の励磁コイルのコイル軸が一致しコイル面が被検査体の検査面に垂直な励磁コイル群をN(2以上の整数)群とコイル面が被検査体の検査面に平行な検出コイルを備え、各励磁コイル群の2対の励磁コイルは夫々検出コイルの両側に配置し、各励磁コイル群のコイル軸は検出コイルの中心において交差し「2π/2N」度間隔で配置してあり、各励磁コイル群の各対の2個の励磁コイルは逆方向の磁界を発生し、励磁電流は位相が励磁コイル群毎に「2π/2N」度相違していることを特徴とする回転渦電流探傷プローブ。   An excitation coil group in which the coil axes of two pairs of excitation coils coincide and the coil surface is perpendicular to the inspection surface of the object to be inspected is an N (an integer of 2 or more) group, and the detection coil whose coil surface is parallel to the inspection surface of the object The two pairs of exciting coils of each exciting coil group are arranged on both sides of the detecting coil, and the coil axes of each exciting coil group intersect at the center of the detecting coil and are arranged at intervals of “2π / 2N” degrees. The two excitation coils in each pair of each excitation coil group generate magnetic fields in opposite directions, and the excitation current has a phase difference of “2π / 2N” for each excitation coil group. Current testing probe. 請求項1に記載の回転渦電流探傷プローブにおいて、前記Nは2であることを特徴とする回転渦電流探傷プローブ。   2. The rotating eddy current flaw detection probe according to claim 1, wherein the N is 2. 請求項1に記載の回転渦電流探傷プローブにおいて、前記Nは3であることを特徴とする回転渦電流探傷プローブ。   2. The rotating eddy current flaw detection probe according to claim 1, wherein said N is three.
JP2008104145A 2008-04-11 2008-04-11 Rotating eddy current flaw detection probe Expired - Fee Related JP5140214B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008104145A JP5140214B2 (en) 2008-04-11 2008-04-11 Rotating eddy current flaw detection probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008104145A JP5140214B2 (en) 2008-04-11 2008-04-11 Rotating eddy current flaw detection probe

Publications (2)

Publication Number Publication Date
JP2009257794A true JP2009257794A (en) 2009-11-05
JP5140214B2 JP5140214B2 (en) 2013-02-06

Family

ID=41385413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008104145A Expired - Fee Related JP5140214B2 (en) 2008-04-11 2008-04-11 Rotating eddy current flaw detection probe

Country Status (1)

Country Link
JP (1) JP5140214B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011145176A (en) * 2010-01-14 2011-07-28 Toyota Motor Corp Eddy current measuring sensor, and inspection method using the same
EP2642282A1 (en) * 2012-03-19 2013-09-25 Hitachi Ltd. Device and method for eddy current inspection
JP2013242205A (en) * 2012-05-18 2013-12-05 Toshiba Corp Method and device for eddy current flaw detection
WO2017154141A1 (en) * 2016-03-09 2017-09-14 三菱電機株式会社 Device for detecting flaw in floor slab

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5288392A (en) * 1976-01-19 1977-07-23 Sumitomo Metal Ind Device for measuring defective form of magnetic metal body
JPS61155761U (en) * 1985-03-19 1986-09-27
JPH0732565U (en) * 1993-11-15 1995-06-16 三菱重工業株式会社 Eddy current flaw detector
JP2002131285A (en) * 2000-10-26 2002-05-09 Univ Nihon Weld line, detection probe of position and direction of welding butt section, detection device, and detection method
JP2006010665A (en) * 2004-06-23 2006-01-12 International Institute Of Universality Eddy current flaw detecting method and eddy current flaw detecting probe for realizing deep penetration of eddy current

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5288392A (en) * 1976-01-19 1977-07-23 Sumitomo Metal Ind Device for measuring defective form of magnetic metal body
JPS61155761U (en) * 1985-03-19 1986-09-27
JPH0732565U (en) * 1993-11-15 1995-06-16 三菱重工業株式会社 Eddy current flaw detector
JP2002131285A (en) * 2000-10-26 2002-05-09 Univ Nihon Weld line, detection probe of position and direction of welding butt section, detection device, and detection method
JP2006010665A (en) * 2004-06-23 2006-01-12 International Institute Of Universality Eddy current flaw detecting method and eddy current flaw detecting probe for realizing deep penetration of eddy current

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011145176A (en) * 2010-01-14 2011-07-28 Toyota Motor Corp Eddy current measuring sensor, and inspection method using the same
EP2642282A1 (en) * 2012-03-19 2013-09-25 Hitachi Ltd. Device and method for eddy current inspection
JP2013195202A (en) * 2012-03-19 2013-09-30 Hitachi Ltd Eddy current inspection device, eddy current inspection probe, and eddy current inspection method
US9274085B2 (en) 2012-03-19 2016-03-01 Hitachi, Ltd. Eddy current inspection device, eddy current inspection probe, and eddy current inspection method
JP2013242205A (en) * 2012-05-18 2013-12-05 Toshiba Corp Method and device for eddy current flaw detection
WO2017154141A1 (en) * 2016-03-09 2017-09-14 三菱電機株式会社 Device for detecting flaw in floor slab
JPWO2017154141A1 (en) * 2016-03-09 2018-08-02 三菱電機株式会社 Floor slab flaw detector

Also Published As

Publication number Publication date
JP5140214B2 (en) 2013-02-06

Similar Documents

Publication Publication Date Title
JP4905560B2 (en) Eddy current measurement sensor and inspection method using eddy current measurement sensor
JP5153274B2 (en) Inspection equipment for inspection objects
WO2010073926A1 (en) Eddy-current testing method and eddy-current testing device
JP5201495B2 (en) Magnetic flaw detection method and magnetic flaw detection apparatus
JP4998821B2 (en) Eddy current inspection method and eddy current inspection apparatus for implementing the eddy current inspection method
JP2010197174A (en) Sensor for eddy current measurement and inspection method by the same
JPH02147950A (en) Ac leakage magnetic flux detector for plane flaw
JP2003215107A (en) Eddy current flaw detection probe
JP2011007780A (en) Rotating eddy current flaw detection probe
CN104880508A (en) Orthogonal rotation exciting field eddy current transducer
JP5140214B2 (en) Rotating eddy current flaw detection probe
US9417212B2 (en) Defect inspection device of steel plate
JP2008241285A (en) Eddy current flaw detection method and eddy current flaw detection device
JP5851783B2 (en) Eddy current testing probe
CN110646508A (en) Enhanced magnetic field type non-directional orthogonal weld eddy current detection sensor and detection method
JP2008032575A (en) Eddy current measuring probe and flaw detection device using it
JP6334267B2 (en) Eddy current flaw detection apparatus and method
JP2008039394A (en) Electromagnetic-induction sensor for metal detector
JP6062158B2 (en) Eddy current flaw detection apparatus and method
JP2004205212A (en) Eddy current flaw detecting probe for magnetic material and eddy current flaw detector
JP3981965B2 (en) Eddy current flaw detection probe and eddy current flaw detection device using the probe
JP2002214202A (en) Eddy current flaw detection probe
JP2009287981A (en) Eddy-current flaw detector and eddy-current flaw detecting method
JP2014066688A (en) Eddy current flaw detection probe, and eddy current flaw detection device
JP2015078942A (en) Leakage magnetic flux flaw detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees