WO2005112691A2 - Multilayered composite material - Google Patents

Multilayered composite material Download PDF

Info

Publication number
WO2005112691A2
WO2005112691A2 PCT/EP2005/003152 EP2005003152W WO2005112691A2 WO 2005112691 A2 WO2005112691 A2 WO 2005112691A2 EP 2005003152 W EP2005003152 W EP 2005003152W WO 2005112691 A2 WO2005112691 A2 WO 2005112691A2
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
film
layer
material according
moisture
Prior art date
Application number
PCT/EP2005/003152
Other languages
German (de)
French (fr)
Other versions
WO2005112691B1 (en
WO2005112691A3 (en
Inventor
Jörg Fischer
Original Assignee
Fischer Joerg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fischer Joerg filed Critical Fischer Joerg
Priority to EP05716357A priority Critical patent/EP1746914A2/en
Publication of WO2005112691A2 publication Critical patent/WO2005112691A2/en
Publication of WO2005112691A3 publication Critical patent/WO2005112691A3/en
Publication of WO2005112691B1 publication Critical patent/WO2005112691B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/16Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer formed of particles, e.g. chips, powder or granules
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/66Sealings
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/82Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
    • E04B1/84Sound-absorbing elements
    • E04B1/8409Sound-absorbing elements sheet-shaped
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/88Insulating elements for both heat and sound
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7246Water vapor barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • B32B2307/7265Non-permeable

Definitions

  • the invention relates to a multilayer composite material with at least one layer formed by a film or film and at least one textile layer made of fibers.
  • Multilayer composite materials of the type mentioned at the outset are known and are used for simultaneous heat and / or sound insulation by means of a textile layer of fibers and at the same time sealing against moisture by means of a layer formed by a film or film.
  • a disadvantage of the known multilayer composite materials is that if the layer formed by a film or film is damaged, for example in the event of improper assembly or other mechanical influences, moisture can penetrate and this moisture penetrates the textile layer of fibers and in the long term leads to damage and Impairments such as rotting and / or frost damage.
  • a further disadvantage is that, depending on the amount of liquid that has entered, it passes through the textile layer, so that moisture protection is no longer guaranteed if the layer formed by a film or film is damaged.
  • the object of the invention is to improve a multilayer composite material of the type mentioned in such a way that, if the layer formed by a film or film is damaged, for example in the form of a Hole or a crack in this layer reliably prevents moisture from penetrating through the composite material.
  • This object is achieved according to the invention in that a multilayer composite material with at least one layer formed by a film or film and at least one textile layer made of fibers is further developed such that absorption particles are deposited and / or in the textile layer between and / or on the textile fibers are stored.
  • absorption particles are deposited and / or embedded between and / or on the textile fibers, the moisture entering the layer formed by a film or film is absorbed without the moisture entering it being able to wet the textile layer. This reliably prevents moisture from passing through the textile layer.
  • the absorptive particles attached or incorporated are preferably so-called superabsorbers, in particular polymers made of hydrophilic polymer chains. These have the property of binding liquid as a gel and can store many times their own mass of water. The water stored in the absorption particles is released back into the environment at a correspondingly low vapor pressure. The absorption and dispensing of liquid by the absorption particles is a reversible process.
  • the superabsorbent can store 30 times its own volume of liquid, or even 500 times for demineralized water.
  • the absorption particles can be in powder form, in particle form, in fiber form or as a mixture thereof.
  • the term absorption particle encompasses all different possible manifestations.
  • the textile layer (s) is a nonwoven, spunbond or fine fiber spunbond (meltblown) or a combination thereof.
  • the textile layer in particular meltblown, serves as a buffer due to its softness and flexibility.
  • the number of absorption particles per unit volume of the textile layer is constant. This uniform distribution of the absorption particles in the textile layer ensures constant material properties with regard to the ability to absorb and store moisture.
  • the number of absorption particles per unit volume of the textile layer increases in the direction of the film. This makes it possible to determine the material properties, i.e. the ability of the textile layer to absorb and store moisture in such a way that the ability to absorb and store moisture is greatest where the risk of moisture entry increases as a result of damage to the film.
  • At least one film of the multilayer composite material is preferably liquid-tight.
  • At least one film of the multilayer composite material is preferably vapor-tight.
  • At least one film of the multilayer composite material is vapor-permeable. This makes it possible to adapt the multilayer composite material as required to the fields of application and requirements, for example by providing a liquid-tight film to prevent the ingress of liquid, but on the other hand allowing vapor diffusion, which is essential for regulating the moisture content of the air.
  • ceramic particles and / or flying dust are applied to the outside of at least one film or film.
  • Ceramic particles can be applied as so-called ceramic bubbles, that is, vacuumized hollow spheres.
  • Airborne dust is a waste product from coal-fired power plants, and there are two types of airborne dust. On the one hand, fly dust from power plants with dry combustion using of lignite, producing glass spheres that are enriched with up to 50% carbon. These are solid spheres with a particle size of up to one millimeter, predominantly in the range 0.2 to 0.3 mm and the melting point is 1600 degrees Celsius. There is also flying dust from coal-fired power plants with smelting furnaces. This type of firing primarily burns hard coal.
  • Almost pure glass ball dust is produced in the form of hollow spheres (silicates, alkali silicates). Its grain size is much finer compared to the first-mentioned fly dust from power plants with dry combustion with a particle size of up to 20 micrometers. The melting point is also around 1600 degrees Celsius.
  • glass ball dust from the production of glass wool can be applied on the outside to at least one film or film. By applying these substances, depending on the spherical shape, different properties of the multilayer composite material are made possible.
  • a variable water vapor permeability can be achieved, ie the water vapor permeability can vary by a factor of 2 to 4 depending on the prevailing humidity climate.
  • a solar reflection of the multilayer composite material can be achieved with a high reflectance, in particular a reflectance of up to 0.84.
  • the application of ceramic particles and / or flying dust and / or glass ball dust can improve the UV resistance, the abrasion and the fire behavior.
  • the absorption particles preferably increase their volume with increasingly embedded moisture.
  • the leak is automatically sealed by the fact that the absorption particles in the immediate vicinity of the damage increase their volume in such a way that they damage the Close the area and prevent further moisture penetration.
  • the softness and flexibility of the textile layer in which the absorption particles are embedded or is ensured that the fiber composite of the textile layer and the layer composite of the different layers is not damaged by an increase in volume of the absorption particles as a result of moisture absorption, since this Changes in volume of stored absorption particles can be compensated for by the textile layer.
  • the textile layer in particular fine fiber spunbond layer (meltblown), is preferably hydrophilic and thereby ensures good and balanced moisture transfer or moisture distribution in the textile layer.
  • Figure 1 A sectional view through a first embodiment of the multilayer composite material according to the invention.
  • Figure 2 A sectional view through a second embodiment of the multilayer composite material according to the invention.
  • Figure 3 A sectional view through a third embodiment of the multilayer composite material according to the invention.
  • Figure 4 A sectional view through a fourth embodiment of the multilayer composite material according to the invention.
  • FIG. 1 shows a sectional view through a first embodiment of the multilayer composite material according to the invention, which is formed by several layers.
  • a Grundviies 1 i.e. A textile layer made of fibers is applied with a second textile layer made of fibers in the form of a fine fiber spunbond layer 2 (meltblown).
  • a layer 3 formed by a film 3 for sealing against moisture is applied to the outside of the fine fiber spunbonded nonwoven layer 2.
  • Absorbed particles 4 are embedded in the fine fiber spinning vias 2, with an even distribution, ie the number of absorbent particles 4 per Volume unit of the fine fiber spunbond layer 2 is constant. With this uniform distribution of the absorption particles 4 in the layer 2, constant material properties with regard to the ability to absorb and store moisture are ensured.
  • the representation is not to scale.
  • the absorption particles are actually powdery particles.
  • the absorption particles 4 are so-called super absorbers in the form of polymers in the form of hydrophilic polymer chains.
  • Ceramic particles 5 are applied to the outside of the film 3 in the form of so-called ceramic bubbles, i.e. in the form of vacuumized hollow spheres. This representation is also not to scale. These ceramic particles 5 increase the solar reflectance of the multilayer composite material when solar radiation is incident, indicated by the arrows 6A, 6B.
  • this damage 7 causes moisture to enter the multilayer composite material along the arrow 8.
  • This moisture which is introduced into the fine fiber spunbond layer 2 by the damage 7 in the film 3, is absorbed by the absorption particles 4 in the fine fiber spunbond layer 2, the absorption particles 4 changing their volume when absorbing moisture, indicated by the absorption particles 4A shown enlarged. Due to the increase in volume of the absorption particles 4 when absorbing moisture, the damaged area 7 of the film 3 is automatically sealed against the ingress of further moisture from below, by means of the increase in the volume of the absorption particles 4A.
  • FIG. 2 shows a sectional view through a second embodiment of the multilayer composite material according to the invention.
  • the multi-layer composite material is constructed by a cover fleece 21 and a microfiber fleece layer 22 applied thereon.
  • Absorption particles (not shown) are embedded in the microfiber fleece layer 22.
  • a film 3, which serves in particular as a moisture barrier, is applied to the microfiber nonwoven layer 22.
  • Ceramic particles 5 are attached to the outside and embedded in the film 3, which serve to reflect the heat radiation, indicated by the arrows 9A, 9B, in order to thus contribute to an increase in the heat insulation capacity of the multilayer composite material.
  • the absorption particles (not shown) embedded in the microfiber nonwoven layer 22 have the same properties and have the same behavior when moisture is introduced, as in the exemplary embodiment according to FIG. 1 shown above.
  • FIG. 3 shows a third embodiment of the multilayer composite material according to the invention, which is formed in this exemplary embodiment by a base nonwoven 31, a microfiber nonwoven 32, a cover nonwoven 33 and a layer, not shown, of film which seals against moisture. Absorbed in the microfiber nonwoven layer 32 are absorption particles 4, which absorb moisture when there is a moisture input along the arrow 8 and increase their volume as a result of the moisture absorption, indicated by the absorption particles 4A after absorption of moisture.
  • FIG. 4 shows a sectional view through a fourth embodiment of the multilayer composite material according to the invention with a spunbond layer 41, as well as a fine fiber spunbond layer 42 (meltblown) and a layer 43 formed thereon and formed by a film.
  • the layer 43 formed by a film contains or carries flying dust 45, which serves to increase the solar reflectance of the multilayer composite material, indicated by the arrows 6A, 6B, which indicate the reflection of solar radiation.
  • Absorbed particles 4 which are suitable for absorbing moisture and thereby increasing their volume, are embedded in the fine fiber spunbonded nonwoven layer 42, indicated by an enlarged representation of the absorbent particles 4A.
  • An entry of moisture is indicated by the arrow 8.
  • the absorption particles 4A increase their volume due to the moisture absorption, so that the damaged area is indicated by the enlarged absorption particle 4A is automatically sealed against the further entry of moisture.
  • the multilayer composite material according to the invention can be constructed by any sequence of layers and film layers formed from different types of nonwoven in order to adapt the multilayer composite material according to the invention to a wide variety of applications and requirements.
  • FIGS. 1 to 4 are schematic diagrams of various embodiments of the multilayer composite material according to the invention and are not reproductions to scale.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Laminated Bodies (AREA)

Abstract

The invention relates to a multilayered composite material with at least one layer, which is formed by a foil or film, and with at least one textile layer comprised of fibers. In the textile layer, absorption particles are attached and/or embedded between and/or on the textile fibers.

Description

Mehrschichtiges VerbundmaterialMulti-layer composite material
Die Erfindung betrifft ein mehrschichtiges Verbundmaterial mit zumindest einer durch eine Folie oder Film gebildeten Schicht und zumindest einer textilen Schicht aus Fasern.The invention relates to a multilayer composite material with at least one layer formed by a film or film and at least one textile layer made of fibers.
Mehrschichtige Verbundmaterialien der eingangs genannten Art sind bekannt und dienen der gleichzeitigen Wärme- und/oder Schalldämmung durch eine textile Schicht aus Fasern und gleichzeitig einer Abdichtung gegen Feuchtigkeit durch eine durch eine Folie oder Film gebildeten Schicht. Nachteilig bei den bekannten mehrschichtigen Verbundmaterialien ist dabei, dass bei einer Beschädigung der durch eine Folie oder Film gebildeten Schicht, beispielsweise bei unsachgemäßer Montage oder durch sonstige mechanische Einwirkung, Feuchtigkeit eindringen kann und diese Feuchtigkeit die textile Schicht aus Fasern durchsetzt und hierbei langfristig zu Beschädigungen und Beeinträchtigungen beispielsweise durch Fäulnis und/oder Frostschäden führt. Weiterhin nachteilig ist, dass je nach Menge der eingetretenen Flüssigkeit diese durch die textile Schicht hindurch tritt, so dass ein Feuchtigkeitsschutz nicht mehr gewährleistet ist bei einer Beschädigung der durch eine Folie oder Film gebildeten Schicht.Multilayer composite materials of the type mentioned at the outset are known and are used for simultaneous heat and / or sound insulation by means of a textile layer of fibers and at the same time sealing against moisture by means of a layer formed by a film or film. A disadvantage of the known multilayer composite materials is that if the layer formed by a film or film is damaged, for example in the event of improper assembly or other mechanical influences, moisture can penetrate and this moisture penetrates the textile layer of fibers and in the long term leads to damage and Impairments such as rotting and / or frost damage. A further disadvantage is that, depending on the amount of liquid that has entered, it passes through the textile layer, so that moisture protection is no longer guaranteed if the layer formed by a film or film is damaged.
Aufgabe der Erfindung ist es, ein mehrschichtiges Verbundmaterial der eingangs genannten Art derart zu verbessern, dass bei einer Beschädigung der durch eine Folie oder Film gebildeten Schicht beispielsweise in Form eines Lochs oder eines Risses in dieser Schicht ein Durchtreten von Feuchtigkeit durch das Verbund material zuverlässig verhindert wird. Diese Aufgabe wird erfindungsgemäß dadurch gelöst, dass ein mehrschichtiges Verbundmaterial mit zumindest einer durch eine Folie oder Film gebildeten Schicht und zumindest einer textilen Schicht aus Fasern derart weitergebildet wird, dass in der textilen Schicht zwischen und/oder an den textilen Fasern Absorptionspartikel angelagert und/oder eingelagert sind.The object of the invention is to improve a multilayer composite material of the type mentioned in such a way that, if the layer formed by a film or film is damaged, for example in the form of a Hole or a crack in this layer reliably prevents moisture from penetrating through the composite material. This object is achieved according to the invention in that a multilayer composite material with at least one layer formed by a film or film and at least one textile layer made of fibers is further developed such that absorption particles are deposited and / or in the textile layer between and / or on the textile fibers are stored.
Dadurch das zwischen und/oder an den textilen Fasern Absorptionspartikel angelagert und/oder eingelagert sind, wird bei einer Beschädigung der durch eine Folie oder Film gebildeten Schicht eintretende Feuchtigkeit absorbiert, ohne dass die eintretende Feuchtigkeit die textile Schicht durchfeuchten kann. Somit wird auch ein Durchtritt von Feuchtigkeit durch die textile Schicht zuverlässig verhindert. Bei den an- oder eingelagerten Absorptionspartikeln handelt es sich vorzugsweise um sogenannte Superabsorber, insbesondere um Polymere aus hydrophilen Polymerketten. Diese haben die Eigenschaft Flüssigkeit als Gel zu binden und können ein vielfaches ihrer eigenen Masse an Wasser speichern. Das in den Absorptionspartikeln gespeicherte Wasser wird bei entsprechend niedrigem Dampfdruck wieder an die Umgebung abgegeben. Bei der Speicherung und Abgabe von Flüssigkeit durch die Absorptionspartikel handelt es sich um einen reversiblen Vorgang. Je nach Flüssigkeit kann der Superabsorber das 30-fache, bei entsalztem Wasser sogar das 500-fache, seines eigenen Volumens an Flüssigkeit speichern. Die Absorptionspartikel können dabei in pulveriger Form, in Partikelform, in Faserform oder als Gemisch daraus vorliegen. Der Begriff Absorptionspartikel umfaßt dabei alle verschiedenen möglichen Erscheinungsformen.As a result of the fact that absorption particles are deposited and / or embedded between and / or on the textile fibers, the moisture entering the layer formed by a film or film is absorbed without the moisture entering it being able to wet the textile layer. This reliably prevents moisture from passing through the textile layer. The absorptive particles attached or incorporated are preferably so-called superabsorbers, in particular polymers made of hydrophilic polymer chains. These have the property of binding liquid as a gel and can store many times their own mass of water. The water stored in the absorption particles is released back into the environment at a correspondingly low vapor pressure. The absorption and dispensing of liquid by the absorption particles is a reversible process. Depending on the liquid, the superabsorbent can store 30 times its own volume of liquid, or even 500 times for demineralized water. The absorption particles can be in powder form, in particle form, in fiber form or as a mixture thereof. The term absorption particle encompasses all different possible manifestations.
In einer bevorzugten Ausführungsform handelt es sich bei der/den textilen Schichten um ein Vlies, Spinnvlies oder Feinfaser-Spinnvlies (Meltblown) oder eine Kombination daraus. Dadurch ist es möglich, das erfindungsgemäße mehrschichtige Verbundmaterial unterschiedlichsten Anwendungs- und Einsatzbereichen anzupassen. Insbesondere dient die textile Schicht, insbesondere Meltblown, aufgrund der Weichheit und Flexibiltät als Puffer. In einer bevorzugten Ausführungsform ist die Anzahl der Absorptionspartikel pro Volumeneinheit der textilen Schicht konstant. Mit dieser gleichmäßigen Verteilung der Absorptionspartikel in der textilen Schicht sind gleichbleibende Materialeigenschaften bezüglich der Fähigkeit, Feuchtigkeit aufzunehmen und zu speichern, gewährleistet.In a preferred embodiment, the textile layer (s) is a nonwoven, spunbond or fine fiber spunbond (meltblown) or a combination thereof. This makes it possible to adapt the multi-layer composite material according to the invention to a wide variety of applications. In particular, the textile layer, in particular meltblown, serves as a buffer due to its softness and flexibility. In a preferred embodiment, the number of absorption particles per unit volume of the textile layer is constant. This uniform distribution of the absorption particles in the textile layer ensures constant material properties with regard to the ability to absorb and store moisture.
In einer besonders bevorzugten Ausführungsform nimmt die Anzahl der Absorptionspartikel pro Volumeneinheit der textilen Schicht in Richtung auf die Folie zu. Hierdurch ist es möglich, die Materialeigenschaften, d.h. die Fähigkeit der textilen Schicht, Feuchtigkeit aufzunehmen und zu speichern, so auszurichten, das die Fähigkeit Feuchtigkeit zu absorbieren und zu speichern dort am größten ist, wo die Gefahr eines Feuchtigkeitseintrags in Folge einer Beschädigung der Folie zunimmt.In a particularly preferred embodiment, the number of absorption particles per unit volume of the textile layer increases in the direction of the film. This makes it possible to determine the material properties, i.e. the ability of the textile layer to absorb and store moisture in such a way that the ability to absorb and store moisture is greatest where the risk of moisture entry increases as a result of damage to the film.
Bevorzugt ist zumindest eine Folie des mehrschichtigen Verbundmaterials flüssigkeitsdicht.At least one film of the multilayer composite material is preferably liquid-tight.
Vorzugsweise ist zumindest eine Folie des mehrschichtigen Verbundmaterials dampfdicht.At least one film of the multilayer composite material is preferably vapor-tight.
In einer weiteren bevorzugten Ausführungsform ist zumindest eine Folie des mehrschichtigen Verbund materials dampfdurchlässig. Hierdurch ist es möglich, das mehrschichtige Verbundmaterial beliebig den Einsatzfeldern und Anforderungen anzupassen, dadurch dass beispielsweise eine Flüssigkeitsdichte Folie gegen den Eintrag von Flüssigkeit vorgesehen ist, andererseits aber eine Dampfdiffusion möglich ist, die zur Regulierung des Feuchtegehalts der Luft unerlässlich ist.In a further preferred embodiment, at least one film of the multilayer composite material is vapor-permeable. This makes it possible to adapt the multilayer composite material as required to the fields of application and requirements, for example by providing a liquid-tight film to prevent the ingress of liquid, but on the other hand allowing vapor diffusion, which is essential for regulating the moisture content of the air.
In einer besonders bevorzugten Ausführungsform sind auf zumindest einer Folie oder Film außenseitig Keramikpartikel und/oder Flugstaub aufgebracht. Keramikpartikel können als sogenannte Keramik-Bubbles, d.h. vakuumisierte Hohlkugeln aufgebracht werden. Bei Flugstaub handelt es sich um ein Abfallprodukt aus Kohlekraftwerken, wobei es zwei Arten von Flugstaub gibt. Zum einen Flugstaub von Kraftwerken mit Trockenfeuerung unter Verwendung von Braunkohle, wobei Glaskugeln entstehen, die mit bis zu 50 % Kohlenstoff angereichert sind. Dabei handelt es sich um Vollkugeln mit einer Teilchengröße bis zu einem Millimeter, überwiegend im Bereich 0,2 bis 0,3 mm und wobei der Schmelzpunkt bei 1600 Grad Celsius liegt. Weiterhin gibt es Flugstaub aus Kohlekraftwerken mit Schmelzfeuerung. Bei dieser Art der Feuerung wird primär Steinkohle verbrannt. Es entsteht fast reiner Glaskugelstaub in Form von Hohlkugeln (Silikate, Alkali-Silikate) seine Körnung ist im Vergleich zum erst genannten Flugstaub aus Kraftwerken mit Trockenfeuerung wesentlich feiner mit einer Teilchengröße bis 20 Mykrometer. Der Schmelzpunkt liegt ebenfalls bei ca. 1600 Grad Celsius. Alternativ kann Glaskugelstaub aus der Produktion von Glaswolle auf zumindest einer Folie oder Film außenseitig aufgebracht sein. Durch das Aufbringen dieser Stoffe werden je nach Kugelform verschiedene Eigenschaften des mehrschichtigen Verbundmaterials ermöglicht. Es kann erreicht werden eine variable Wasserdampfdurchlässigkeit, d.h. je nach anliegendem Feuchteklima kann die Wasserdampfdurchlässigkeit um den Faktor 2 bis 4 variieren. Des weiteren ist erreichbar eine solare Reflexion des mehrschichtigen Verbundmaterials mit einem hohen Reflexionsgrad insbesondere einem Reflexionsgrad von bis zu 0,84. Weiterhin kann durch das Aufbringen von Keramikpartikeln und/oder Flugstaub und/oder Glaskugelstaub die UV-Beständigkeit, der Abrieb und das Brandverhalten verbessert werden.In a particularly preferred embodiment, ceramic particles and / or flying dust are applied to the outside of at least one film or film. Ceramic particles can be applied as so-called ceramic bubbles, that is, vacuumized hollow spheres. Airborne dust is a waste product from coal-fired power plants, and there are two types of airborne dust. On the one hand, fly dust from power plants with dry combustion using of lignite, producing glass spheres that are enriched with up to 50% carbon. These are solid spheres with a particle size of up to one millimeter, predominantly in the range 0.2 to 0.3 mm and the melting point is 1600 degrees Celsius. There is also flying dust from coal-fired power plants with smelting furnaces. This type of firing primarily burns hard coal. Almost pure glass ball dust is produced in the form of hollow spheres (silicates, alkali silicates). Its grain size is much finer compared to the first-mentioned fly dust from power plants with dry combustion with a particle size of up to 20 micrometers. The melting point is also around 1600 degrees Celsius. Alternatively, glass ball dust from the production of glass wool can be applied on the outside to at least one film or film. By applying these substances, depending on the spherical shape, different properties of the multilayer composite material are made possible. A variable water vapor permeability can be achieved, ie the water vapor permeability can vary by a factor of 2 to 4 depending on the prevailing humidity climate. Furthermore, a solar reflection of the multilayer composite material can be achieved with a high reflectance, in particular a reflectance of up to 0.84. Furthermore, the application of ceramic particles and / or flying dust and / or glass ball dust can improve the UV resistance, the abrasion and the fire behavior.
Vorzugsweise vergrößern die Absorptionspartikel mit zunehmend eingelagerter Feuchtigkeit ihr Volumen. Dies hat zur Folge, das bei einem Eintrag von Feuchtigkeit durch eine Beschädigung in der durch eine Folie oder Film gebildeten Schicht eine automatische Abdichtung der Undichtigkeit dadurch erfolgt, dass die in unmittelbarer Nähe zu der Beschädigung befindlichen Absorptionspartikel ihr Volumen derart vergrößern, dass sie die beschädigte Stelle verschließen und somit ein weiteres Eindringen von Feuchtigkeit verhindert wird. Die Weichheit und Flexibilität der textilen Schicht, in der die Absorptionspartikel eingelagert oder angelagert sind, ist gewährleistet, dass der Faserverbund der textilen Schicht und der Schichtenverbund der verschiedenen Schichten nicht durch eine Volumenvergrößerung der Absorptionspartikel infolge einer Feuchtigkeitsabsorption geschädigt wird, da diese Volumenveränderungen eingelagerter Absorptionspartikel durch die textile Schicht ausgeglichen werden.The absorption particles preferably increase their volume with increasingly embedded moisture. As a result, when moisture is introduced through damage in the layer formed by a film or film, the leak is automatically sealed by the fact that the absorption particles in the immediate vicinity of the damage increase their volume in such a way that they damage the Close the area and prevent further moisture penetration. The softness and flexibility of the textile layer in which the absorption particles are embedded or is ensured that the fiber composite of the textile layer and the layer composite of the different layers is not damaged by an increase in volume of the absorption particles as a result of moisture absorption, since this Changes in volume of stored absorption particles can be compensated for by the textile layer.
Bevorzugt ist die textile Schicht, insbesondere Feinfaser-Spinnvlies-Schicht (Meltblown) hydrophil und gewährleistet dadurch einen guten und ausgeglichenen Feuchtigkeitstransfer bzw. Feuchtigkeitsverteilung in der textilen Schicht.The textile layer, in particular fine fiber spunbond layer (meltblown), is preferably hydrophilic and thereby ensures good and balanced moisture transfer or moisture distribution in the textile layer.
Ausführungsbeispiele des erfindungsgemäßen mehrschichtigen Verbundmaterials sind in den Figuren dargestellt und werden nachfolgend erläutert. Es zeigen:Exemplary embodiments of the multilayer composite material according to the invention are shown in the figures and are explained below. Show it:
Figur 1 : Eine Schnittansicht durch eine erste Ausführungsform des erfindungsgemäßen mehrschichtigen Verbundmaterials.Figure 1: A sectional view through a first embodiment of the multilayer composite material according to the invention.
Figur 2: Eine Schnittansicht durch eine zweite Ausführungsform des erfindungsgemäßen mehrschichtigen Verbundmaterials.Figure 2: A sectional view through a second embodiment of the multilayer composite material according to the invention.
Figur 3: Eine Schnittansicht durch eine dritte Ausführungsform des erfindungsgemäßen mehrschichtigen Verbundmaterials.Figure 3: A sectional view through a third embodiment of the multilayer composite material according to the invention.
Figur 4: Eine Schnittansicht durch eine vierte Ausführungsform des erfindungsgemäßen mehrschichtigen Verbundmaterials.Figure 4: A sectional view through a fourth embodiment of the multilayer composite material according to the invention.
Figur 1 zeigt eine Schnittansicht durch eine erste Ausführungsform des erfindungsgemäßen mehrschichtigen Verbundmaterials, welches durch mehrere Lagen gebildet ist. Auf einem Grundviies 1 , d.h. einer textilen Schicht aus Fasern ist eine zweite textile Schicht aus Fasern in Form einer Feinfaser- Spinnvliesschicht 2 (Meltblown) aufgebracht. Auf der Feinfaser- Spinnvliesschicht 2 an der Außenseite aufgebracht ist eine durch eine Folie 3 gebildete Schicht zur Abdichtung gegen Feuchtigkeit.FIG. 1 shows a sectional view through a first embodiment of the multilayer composite material according to the invention, which is formed by several layers. On a Grundviies 1, i.e. A textile layer made of fibers is applied with a second textile layer made of fibers in the form of a fine fiber spunbond layer 2 (meltblown). A layer 3 formed by a film 3 for sealing against moisture is applied to the outside of the fine fiber spunbonded nonwoven layer 2.
In dem Feinfaser-Spinnviies 2 eingelagert sind Absorptionspartikel 4, mit einer gleichmäßigen Verteilung, d.h. das die Anzahl der Absorptionspartikel 4 pro Volumeneinheit der Feinfaser-Spinnvliesschicht 2 konstant ist. Mit dieser gleichmäßigen Verteilung der Absorptionspartikel 4 in der Schicht 2 sind gleichbleibende Materialeigenschaften bezüglich der Fähigkeit, Feuchtigkeit aufzunehmen und zu speichern gewährleistet. Die Darstellung ist nicht maßstabsgerecht. Bei den Absorptionspartikeln handelt es sich tatsächlich um pulverförmige Partikel. Bei den Absorptionspartikeln 4 handelt es sich um sogenannte Super-Absorber in Form von Polymeren in Form von hydrophilen Polymerketten.Absorbed particles 4 are embedded in the fine fiber spinning vias 2, with an even distribution, ie the number of absorbent particles 4 per Volume unit of the fine fiber spunbond layer 2 is constant. With this uniform distribution of the absorption particles 4 in the layer 2, constant material properties with regard to the ability to absorb and store moisture are ensured. The representation is not to scale. The absorption particles are actually powdery particles. The absorption particles 4 are so-called super absorbers in the form of polymers in the form of hydrophilic polymer chains.
Auf der Außenseite der Folie 3 sind aufgebracht Keramikpartikel 5 in Form sogenannter Keramik-Bubbles, d.h. in Form vakuumisierter Hohlkugeln. Auch diese Darstellung ist nicht maßstabsgerecht. Diese Keramikpartikel 5 erhöhen den solaren Reflexionsgrad des mehrschichtigen Verbundmaterials beim Einfall von Sonnenstrahlung, angedeutet durch die Pfeile 6A, 6B.Ceramic particles 5 are applied to the outside of the film 3 in the form of so-called ceramic bubbles, i.e. in the form of vacuumized hollow spheres. This representation is also not to scale. These ceramic particles 5 increase the solar reflectance of the multilayer composite material when solar radiation is incident, indicated by the arrows 6A, 6B.
Bei einer Beschädigung 7 der Folie 3 beispielsweise durch mechanische Einwirkung tritt durch diese Beschädigung 7 entlang des Pfeiles 8 Feuchtigkeit in das mehrschichtige Verbundmaterial ein. Diese Feuchtigkeit, die durch die Beschädigung 7 in der Folie 3 in die Feinfaser-Spinnvliesschicht 2 eingetragen wird, wird durch die Absorptionspartikel 4 in der Feinfaser-Spinnvliesschicht 2 absorbiert, wobei die Absorptionspartikel 4 bei der Absorption von Feuchtigkeit ihr Volumen verändern, angedeutet durch die vergrößert dargestellten Absorptionspartikel 4A. Durch die Volumenvergrößerung der Absorptionspartikel 4 bei der Absorption von Feuchtigkeit wird die beschädigte Stelle 7 der Folie 3 automatisch gegen den Eintritt weiterer Feuchtigkeit von unten abgedichtet, durch die in ihrem Volumen vergrößerten Absorptionspartikel 4A.If the film 3 is damaged 7, for example by mechanical action, this damage 7 causes moisture to enter the multilayer composite material along the arrow 8. This moisture, which is introduced into the fine fiber spunbond layer 2 by the damage 7 in the film 3, is absorbed by the absorption particles 4 in the fine fiber spunbond layer 2, the absorption particles 4 changing their volume when absorbing moisture, indicated by the absorption particles 4A shown enlarged. Due to the increase in volume of the absorption particles 4 when absorbing moisture, the damaged area 7 of the film 3 is automatically sealed against the ingress of further moisture from below, by means of the increase in the volume of the absorption particles 4A.
Figur 2 zeigt eine Schnittansicht durch eine zweite Ausführungsform des erfindungsgemäßen mehrschichtigen Verbundmaterials.FIG. 2 shows a sectional view through a second embodiment of the multilayer composite material according to the invention.
Das mehrschichtige Verbundmaterial ist aufgebaut durch ein Deckvlies 21 und eine darauf aufgebrachte Mikrofaservliesschicht 22. In der Mikrofaservliesschicht 22 eingelagert sind nicht dargestellte Absorptionspartikel. Aufgebracht auf die Mikrofaservliesschicht 22 ist eine Folie 3, die insbesondere als Feuchtigkeitssperre dient. Außenseitig und eingelagert an der Folie 3 sind Keramikpartikel 5 angebracht, die einer Reflexion der Wärmestrahlung, angedeutet durch die Pfeile 9A, 9B dienen, um somit zu einer Erhöhung der Wärmeisolationsfähigkeit des mehrschichtigen Verbundmaterials beizutragen. Die in der Mikrofaservliesschicht 22 eingelagerten nicht dargestellten Absorptionspartikel haben die selben Eigenschaften und weisen das selbe Verhalten bei einem Eintrag von Feuchtigkeit auf, wie in dem zuvor dargestellten Ausführungsbeispiel nach Figur 1.The multi-layer composite material is constructed by a cover fleece 21 and a microfiber fleece layer 22 applied thereon. Absorption particles (not shown) are embedded in the microfiber fleece layer 22. A film 3, which serves in particular as a moisture barrier, is applied to the microfiber nonwoven layer 22. Ceramic particles 5 are attached to the outside and embedded in the film 3, which serve to reflect the heat radiation, indicated by the arrows 9A, 9B, in order to thus contribute to an increase in the heat insulation capacity of the multilayer composite material. The absorption particles (not shown) embedded in the microfiber nonwoven layer 22 have the same properties and have the same behavior when moisture is introduced, as in the exemplary embodiment according to FIG. 1 shown above.
Figur 3 zeigt eine dritte Ausführungsform des erfindungsgemäßen mehrschichtigen Verbundmaterials das in diesem Ausführungsbeispiel gebildet wird durch ein Grundviies 31 , ein Mikrofaservlies 32, ein Deckvlies 33 und eine nicht dargestellte Schicht aus Folie, die gegen Feuchtigkeit abdichtet. In der Mikrofaservliesschicht 32 eingelagert sind Absorptionspartikel 4, die bei einem Feuchtigkeitseintrag entlang des Pfeiles 8 Feuchtigkeit absorbieren und infolge der Feuchtigkeitsabsorption ihr Volumen vergrößern, angedeutet durch die Absorptionspartikel 4A nach Aufnahme von Feuchtigkeit.FIG. 3 shows a third embodiment of the multilayer composite material according to the invention, which is formed in this exemplary embodiment by a base nonwoven 31, a microfiber nonwoven 32, a cover nonwoven 33 and a layer, not shown, of film which seals against moisture. Absorbed in the microfiber nonwoven layer 32 are absorption particles 4, which absorb moisture when there is a moisture input along the arrow 8 and increase their volume as a result of the moisture absorption, indicated by the absorption particles 4A after absorption of moisture.
In Figur 4 dargestellt ist eine Schnittansicht durch eine vierte Ausführungsform des erfindungsgemäßen mehrschichtigen Verbundmaterials mit einer Spinnvliesschicht 41 , sowie einer darauf aufgebrachten Feinfaser- Spinnvliesschicht 42 (Meltblown) und einer darauf aufgebrachten, durch einen Film gebildeten Schicht 43. Die durch einen Film gebildete Schicht 43 beinhaltet bzw. trägt Flugstaub 45, der der Erhöhung des solaren Reflexionsgrades des mehrschichtigen Verbundmaterials dient, angedeutet durch die Pfeile 6A, 6B, die die Reflexion von Solarstrahlung andeuten.FIG. 4 shows a sectional view through a fourth embodiment of the multilayer composite material according to the invention with a spunbond layer 41, as well as a fine fiber spunbond layer 42 (meltblown) and a layer 43 formed thereon and formed by a film. The layer 43 formed by a film contains or carries flying dust 45, which serves to increase the solar reflectance of the multilayer composite material, indicated by the arrows 6A, 6B, which indicate the reflection of solar radiation.
In der Feinfaser-Spinnvliesschicht 42 eingelagert sind Absorptionspartikel 4, die geeignet sind, Feuchtigkeit zu absorbieren und dabei ihr Volumen zu vergrößern, angedeutet durch eine vergrößerte Darstellung der Absorptionspartikel 4A. Ein Eintrag von Feuchtigkeit ist angedeutet durch den Pfeil 8. An der Stelle entlang des Pfeiles 8, an der der Eintrag von Feuchtigkeit erfolgt, vergrößern die Absorptionspartikel 4A infolge der Feuchtigkeitsabsorption ihr Volumen, so dass die schadhafte Stelle durch die vergrößerten Absorptionspartikel 4A automatisch gegen den weiteren Eintrag von Feuchtigkeit abgedichtet wird.Absorbed particles 4, which are suitable for absorbing moisture and thereby increasing their volume, are embedded in the fine fiber spunbonded nonwoven layer 42, indicated by an enlarged representation of the absorbent particles 4A. An entry of moisture is indicated by the arrow 8. At the point along the arrow 8 where the entry of moisture takes place, the absorption particles 4A increase their volume due to the moisture absorption, so that the damaged area is indicated by the enlarged absorption particle 4A is automatically sealed against the further entry of moisture.
Alternativ zu den dargestellten Ausführungsformen nach den Figuren 1 bis 4 kann das erfindungsgemäße mehrschichtige Verbund material durch eine beliebige Folge von aus unterschiedlichen Vliesarten gebildeten Schichten und Folienschichten aufgebaut sein, um das erfindungsgemäße mehrschichtige Verbundmaterial verschiedensten Anwendungen und Anforderungen anzupassen.As an alternative to the illustrated embodiments according to FIGS. 1 to 4, the multilayer composite material according to the invention can be constructed by any sequence of layers and film layers formed from different types of nonwoven in order to adapt the multilayer composite material according to the invention to a wide variety of applications and requirements.
Bei den Darstellungen nach den Figuren 1 bis 4 handelt es sich um Prinzipskizzen verschiedener Ausführungsformen des erfindungsgemäßen mehrschichtigen Verbundmaterials und nicht um maßstabsgerechte Wiedergaben. The representations according to FIGS. 1 to 4 are schematic diagrams of various embodiments of the multilayer composite material according to the invention and are not reproductions to scale.

Claims

Ansprüche Expectations
1. Mehrschichtiges Verbund material mit zumindest einer durch eine Folie (3, 33, 43) oder Film gebildeten Schicht und zumindest einer textilen Schicht (1 ,1. Multi-layer composite material with at least one layer formed by a film (3, 33, 43) or film and at least one textile layer (1,
2, 21 , 22, 31 , 32) aus Fasern, dadurch gekennzeichnet, dass in der textilen Schicht (1, 2, 11, 12, 31 , 32, 41 , 42) zwischen und/oder an den textilen Fasern Absorptionspartikel (4) angelagert und/oder eingelagert sind.2, 21, 22, 31, 32) made of fibers, characterized in that in the textile layer (1, 2, 11, 12, 31, 32, 41, 42) between and / or on the textile fibers absorption particles (4) are attached and / or stored.
2. Verbundmaterial nach Anspruch 1 , dadurch gekennzeichnet, dass die textile/n Schicht/en (1 , 2, 21 , 22, 31 , 32, 41 , 42) ein Vlies, Spinnvlies oder Feinfaser-Spinnviies (Meltblown) oder eine Kombination daraus ist.2. Composite material according to claim 1, characterized in that the textile layer (s) (1, 2, 21, 22, 31, 32, 41, 42) is a nonwoven, spunbonded or fine fiber spunbond (meltblown) or a combination thereof is.
3. Verbundmaterial nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Anzahl der Absorptionspartikel (4) pro Volumeneinheit der textilen Schicht (1 , 2, 21 , 22, 31 , 32, 41 , 42) konstant ist.3. Composite material according to claim 1 or 2, characterized in that the number of absorption particles (4) per unit volume of the textile layer (1, 2, 21, 22, 31, 32, 41, 42) is constant.
4. Verbundmaterial nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Anzahl der Absorptionspartikel (4) pro Volumeneinheit der textilen Schicht (1 , 2, 21 , 22, 31 , 32, 41 , 42) in Richtung auf die Folie (3, 33, 43) zunimmt.4. Composite material according to claim 1 or 2, characterized in that the number of absorption particles (4) per unit volume of the textile layer (1, 2, 21, 22, 31, 32, 41, 42) in the direction of the film (3, 33, 43) increases.
5. Verbundmaterial nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass zumindest eine Folie (3 ,33, 43) flüssigkeitsdicht ist.5. Composite material according to one of the preceding claims, characterized in that at least one film (3, 33, 43) is liquid-tight.
6. Verbundmaterial nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass zumindest eine Folie (3, 33, 43) dampfdicht ist. 6. Composite material according to one of the preceding claims, characterized in that at least one film (3, 33, 43) is vapor-tight.
7. Verbund material nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass zumindest eine Folie (3 ,33, 43) dampfdurchlässig ist.7. Composite material according to one of the preceding claims, characterized in that at least one film (3, 33, 43) is vapor-permeable.
8. Verbundmaterial nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass auf zumindest einer Folie (3 ,33, 43) oder Film außenseitig Keramikpartikel (5) und/oder Flugstaub (45) aufgebracht ist.8. Composite material according to one of the preceding claims, characterized in that on at least one film (3, 33, 43) or film on the outside ceramic particles (5) and / or flying dust (45) is applied.
9. Verbundmaterial nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Absorptionspartikel (4) Feuchtigkeit absorbieren und einlagern.9. Composite material according to one of the preceding claims, characterized in that the absorption particles (4) absorb and store moisture.
10. Verbund material nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Absorptionspartikel (4) mit zunehmend eingelagerter Feuchtigkeit ihr Volumen vergrößern. 10. Composite material according to one of the preceding claims, characterized in that the absorption particles (4) increase their volume with increasingly embedded moisture.
PCT/EP2005/003152 2004-05-21 2005-03-24 Multilayered composite material WO2005112691A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP05716357A EP1746914A2 (en) 2004-05-21 2005-03-24 Multilayered composite material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004025499A DE102004025499A1 (en) 2004-05-21 2004-05-21 Multilayer composite material
DE102004025499.0 2004-05-21

Publications (3)

Publication Number Publication Date
WO2005112691A2 true WO2005112691A2 (en) 2005-12-01
WO2005112691A3 WO2005112691A3 (en) 2006-05-04
WO2005112691B1 WO2005112691B1 (en) 2006-06-01

Family

ID=35404389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/003152 WO2005112691A2 (en) 2004-05-21 2005-03-24 Multilayered composite material

Country Status (3)

Country Link
EP (1) EP1746914A2 (en)
DE (1) DE102004025499A1 (en)
WO (1) WO2005112691A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1624120A2 (en) * 2004-08-05 2006-02-08 SILCART S.r.l. Multilayer sheath particularly for insulating walls and lofts of buildings
WO2011124367A3 (en) * 2010-04-07 2012-12-06 Ewald Dörken Ag Sheet, in particular for use in the building sector

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3524580C1 (en) * 1985-07-10 1990-01-25 Deutag Mischwerke Gmbh Sealing and covering material
US4940621A (en) * 1988-09-19 1990-07-10 Clean-Pak, Inc. Absorbent pad and method for constructing same
DE3902995C1 (en) * 1989-02-02 1990-08-09 Hochtief Ag Vorm. Gebr. Helfmann, 4300 Essen, De Apparatus and process for drying the surface layer of a concrete structure
FR2778579A1 (en) * 1998-05-14 1999-11-19 Schoeller Et Hoesch Sarl Multilayer mat protecting ground against hydrocarbons and industrial solvents
EP0999858A1 (en) * 1997-07-31 2000-05-17 Bristol-Myers Squibb Company Improved wound dressing
US20020095127A1 (en) * 2000-12-28 2002-07-18 Kimberly-Clark Worldwide, Inc. Controlled delamination of laminate structures having enclosed discrete regions of a material
US20030194558A1 (en) * 2002-04-11 2003-10-16 Anderson Stewart C. Superabsorbent water sensitive multilayer construction

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19936154C2 (en) * 1999-07-31 2003-08-07 Deotexis Inc Flat flexible layer composite
AU2001271967A1 (en) * 2000-07-24 2002-02-05 Interface, Inc. Temperature moderating cover for a building roof
DE10057149A1 (en) * 2000-11-17 2002-05-23 Kloeber Johannes Diffusion-open roofing membrane
JP2002275760A (en) * 2001-03-21 2002-09-25 Mitsubishi Chemicals Corp Method for producing water absorbent composite
US6832905B2 (en) * 2002-01-16 2004-12-21 Paragon Trade Brands, Inc. System and method for dry forming absorbent cores

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3524580C1 (en) * 1985-07-10 1990-01-25 Deutag Mischwerke Gmbh Sealing and covering material
US4940621A (en) * 1988-09-19 1990-07-10 Clean-Pak, Inc. Absorbent pad and method for constructing same
DE3902995C1 (en) * 1989-02-02 1990-08-09 Hochtief Ag Vorm. Gebr. Helfmann, 4300 Essen, De Apparatus and process for drying the surface layer of a concrete structure
EP0999858A1 (en) * 1997-07-31 2000-05-17 Bristol-Myers Squibb Company Improved wound dressing
FR2778579A1 (en) * 1998-05-14 1999-11-19 Schoeller Et Hoesch Sarl Multilayer mat protecting ground against hydrocarbons and industrial solvents
US20020095127A1 (en) * 2000-12-28 2002-07-18 Kimberly-Clark Worldwide, Inc. Controlled delamination of laminate structures having enclosed discrete regions of a material
US20030194558A1 (en) * 2002-04-11 2003-10-16 Anderson Stewart C. Superabsorbent water sensitive multilayer construction

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1624120A2 (en) * 2004-08-05 2006-02-08 SILCART S.r.l. Multilayer sheath particularly for insulating walls and lofts of buildings
EP1624120A3 (en) * 2004-08-05 2008-04-23 SILCART S.r.l. Multilayer sheath particularly for insulating walls and lofts of buildings
WO2011124367A3 (en) * 2010-04-07 2012-12-06 Ewald Dörken Ag Sheet, in particular for use in the building sector
EP2902558A1 (en) * 2010-04-07 2015-08-05 Ewald Dörken Ag Web, particularly for use in construction
US9267279B2 (en) 2010-04-07 2016-02-23 Ewald Dörken Ag Sheet, in particular for use in the building sector
EA033847B1 (en) * 2010-04-07 2019-12-02 Эвальд Дёркен Аг Multilayer sheet, in particular for use in the building sector

Also Published As

Publication number Publication date
WO2005112691B1 (en) 2006-06-01
EP1746914A2 (en) 2007-01-31
WO2005112691A3 (en) 2006-05-04
DE102004025499A1 (en) 2005-12-15

Similar Documents

Publication Publication Date Title
EP1468732B1 (en) Adsorbing filter material with high adsorption capacity and low breakthrough property
DE2804154C2 (en) Filter material and method and device for its manufacture
DE102004024075B4 (en) Adsorption filter material, its use and protective materials
DE69734624T2 (en) air filter
DE19926379A1 (en) Composite material
DE2502096B2 (en) Filter fleece
EP1531929B1 (en) Adsorbing material and use thereof
DE112010001912T5 (en) Multi-layered nanofiber filter
DE3200959A1 (en) Textile two-dimensional filter
DE2927287B2 (en) Multi-layer filter material with at least one layer of open-cell foam
WO2013027114A1 (en) Ballistic multilayer arrangement
DE102012015219A1 (en) Interim storage mat
EP0778791B1 (en) Fibre-coated filter element
WO2005112691A2 (en) Multilayered composite material
AT509505B1 (en) FIRE-RESISTANT MATERIAL FOR VEHICLE SEATS
DE69611264T3 (en) Permeable substances
DE10146174A1 (en) Heat insulating plate used in the building industry consists of a heat insulating layer on an outer wall with a specified water vapor diffusion resistance, and a mineral layer fixed to the room side
EP2269477B1 (en) Waterproof and water vapour-porous membrane
DE102014107970A1 (en) Vacuum insulation panel with needle felt core
WO2003052188A2 (en) Flexible fluid-tight web
EP1522800B1 (en) Air conditioning and ventilation duct
EP2606169A2 (en) Textile substrate with water and water vapour draining properties
DE2853154A1 (en) Armour plating for vehicle walls or bulletproof vests - using metal plates with stamped profiled holes to absorb energy in bullets etc.
EP0073948A2 (en) Water-impermeable humidity conductive textile material
DE102008046894A1 (en) Ventilation insert with statistically random cell distribution

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
B Later publication of amended claims

Effective date: 20060215

WWE Wipo information: entry into national phase

Ref document number: 2005716357

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005716357

Country of ref document: EP