WO2005112016A1 - Composite optical element, optical integrated unit and optical pickup - Google Patents

Composite optical element, optical integrated unit and optical pickup Download PDF

Info

Publication number
WO2005112016A1
WO2005112016A1 PCT/JP2005/008339 JP2005008339W WO2005112016A1 WO 2005112016 A1 WO2005112016 A1 WO 2005112016A1 JP 2005008339 W JP2005008339 W JP 2005008339W WO 2005112016 A1 WO2005112016 A1 WO 2005112016A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
opening
optical
optical element
section
Prior art date
Application number
PCT/JP2005/008339
Other languages
French (fr)
Japanese (ja)
Inventor
Masaru Ogawa
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Publication of WO2005112016A1 publication Critical patent/WO2005112016A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1353Diffractive elements, e.g. holograms or gratings
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/123Integrated head arrangements, e.g. with source and detectors mounted on the same substrate
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/126Circuits, methods or arrangements for laser control or stabilisation
    • G11B7/1263Power control during transducing, e.g. by monitoring

Definitions

  • the present invention relates to a composite optical element, an optical integrated unit, and an optical pickup device, and more specifically, to a composite optical element for controlling light, an optical integrated unit, and an optical pickup device.
  • Patent Document 1 JP-A-2001-110085, JP-A-2003-85807, and JP-A-2002-124727
  • FIG. 11 is a schematic configuration diagram showing a schematic configuration of a conventional optical pickup device 100 used for an optical disk device or the like.
  • a conventional optical pickup device 100 detects an information signal of an optical disk 103, and includes a hologram laser unit (optical integrated unit) 101 and an objective lens 102.
  • the hologram laser unit 101 is a light receiving / emitting unit in which a semiconductor laser element 104 serving as a light source and a photodetector 105 that receives light reflected from the optical disk 103 are integrally formed.
  • the semiconductor laser element 104 and the photodetector 105 are housed inside a sealing can (outer container) 106.
  • a hologram element 108 is provided on the sealing can 106. Hologram element 108
  • a hologram pattern 109 is formed on the opposite surface of the plate glass from the semiconductor laser element 104 and the photodetector 105 side.
  • the laser beam 110 emitted from the semiconductor laser element 104 passes through the opening 1 of the sealing can 106.
  • the light passes through the hologram pattern 109 of the hologram element 108 in order, is incident on the objective lens 102, and is condensed at a predetermined position on the optical disc 103.
  • the reflected laser beam reflected by the optical disc 103 is reflected by the objective lens 102 at a predetermined position. Convergence is provided.
  • the light is diffracted in a predetermined direction by the hologram pattern (diffraction pattern) 109 of the hologram element 108 and is incident on the photodetector 105 as a diffracted light beam 111.
  • a part of the laser beam 110 directed to the objective lens 102 for example, the laser beam reaching the objective lens 102 through the emission path 112 is reflected by the surface of the objective lens 102, and is reflected by the reflection path 113 to the hologram unit 101.
  • This reflected light is called stray light, and when it enters the photodetector 105, it becomes a factor of deteriorating the SZN (Signal to Noise) ratio of regular signal light.
  • the hologram unit 101 shown in FIG. Provide a mask 114!
  • the light-shielding mask 114 covers almost the entire area of the sealing can 106 and the hologram element 108, and has only an opening 115 large enough to allow the passage of the laser beam 110 from the semiconductor laser element 104 to the objective lens 102. Have.
  • the light-shielding mask 114 reaches the surface of the objective lens 102 through the stray light emission path 112, and is reflected by the surface of the objective lens 102, and is other than the reflected laser beam incident on the photodetector 105 through the stray light reflection path 113.
  • the reflected laser beam can be shielded from the reflected laser beam through the various optical paths.
  • An inner surface of the light-shielding mask 114 is coated with an anti-reflection film 114e that absorbs light having a wavelength of the laser beam 110. Accordingly, it is possible to prevent the generation of stray light that is reflected on the inner surface of the light shielding mask 114 and enters the light detector 105.
  • Patent Document 2 The conventional integrated unit described in Japanese Patent Application Laid-Open No. 2003-85807 (Patent Document 2) has a light emitting unit that emits a laser beam, and irradiates the disk with the laser beam to generate a reflected light from the disk.
  • a hologram that is diffracted and guided to the light receiving section, and a light receiving section that receives the light diffracted by the hologram are provided, and the transmittance of a portion other than the hologram on the hologram element that transmits the reflected light from the disk is substantially reduced. It is characterized by being set to zero.
  • Patent Document 3 The conventional semiconductor laser unit described in Japanese Patent Application Laid-Open No. 2002-124727 (Patent Document 3) emits a laser beam having the power of a semiconductor laser through a hologram element and incident light to the hologram element. Is guided to the light receiving element and the semiconductor laser power is also emitted.
  • a divergent light blocking means is provided for blocking divergent light of which intensity is smaller than the peak value of lZe 2 among the light.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2001-110085
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2003-85807
  • Patent Document 3 JP-A-2002-124727
  • an optical pickup device when condensing light from a light source power on an optical disk via an objective lens or the like, it is necessary to perform a focus pull-in operation by swinging the objective lens in the optical axis direction. is there.
  • the focus pull-in operation for example, the objective lens is moved from the near (far) side to the far (far) side of the optical disc by rocking, and the objective lens is held at a position where the focal point is located therebetween.
  • FIG. 12 is a diagram showing a curve of a general force error signal in the focus pull-in operation of the optical pickup device.
  • the objective lens when the objective lens enters the focus pull-in range FCR while moving from the near side to the far side, the objective lens is pulled into the focal point FP.
  • the swing range of the objective lens slightly varies depending on the optical disk system, but is generally required to be about ⁇ 500 m from the focal point. Therefore, when the optical pickup device starts the focus pull-in operation, the objective lens is swung by about 500 ⁇ m in the optical axis direction by the actuator.
  • Such a swinging operation of the objective lens is one of the causes of causing stray light other than desired light to enter the photodetector.
  • Japanese Patent Application Laid-Open No. 2001-110085 by covering almost the entire area of the sealing can 106 and the hologram element 108 with the light shielding mask 114, only the desired reflected laser beam enters the sealing can 106. Like that.
  • an object of the present invention is to provide a composite optical element, an optical integrated unit, and an optical pickup device in which a light path is not unnecessarily limited in a cross section different from a predetermined cross section in a light traveling direction. That is.
  • the present invention is a composite optical element for controlling light, comprising a support plate having an opening through which light passes, wherein the opening has a cross section defined by a light traveling direction and a predetermined direction.
  • one opening width and the other opening width of the opening are different from each other in a cross section defined by a light traveling direction and a predetermined direction.
  • the width of one of the openings is smaller than the width of the other opening!
  • a straight line connecting one opening and the other opening of the opening is inclined with respect to the light traveling direction in a cross section defined by the light traveling direction and a predetermined direction.
  • the opening has a protrusion inside the end face of one of the openings in a cross section defined by a light traveling direction and a predetermined direction.
  • one and the other of the openings in a cross section different from the cross section defined by the light traveling direction and the predetermined direction have an opening width in the cross section determined by the light traveling direction and the predetermined direction. It is larger than the opening width of one and the other of the part.
  • the composite optical element is a composite optical element included in an optical integrated unit that outputs outgoing light to a recording medium and receives reflected light from the recording medium, wherein the optical integrated unit is
  • a light emitting unit is provided, and the opening has a structure for preventing reflected light from entering the monitoring light receiving element in a cross section defined by a direction of the reflected light and a direction connecting the light source and the monitoring light receiving element.
  • a light condensing means provided between the optical integrated unit and the recording medium, for condensing the emitted light on the recording medium, and the opening is provided in a direction of the reflected light.
  • a direction connecting the light source and the monitoring light receiving element a straight line connecting the opening on the light source side and the opening on the recording medium side is an angle along the numerical aperture on the light source side of the condensing unit. It is inclined.
  • the apparatus further includes a first optical substrate fixed to the surface of the support plate on the light source side, and a second optical substrate fixed to the surface of the support plate on the recording medium side.
  • the two optical substrates each have an optical element that changes the emitted light or the reflected light.
  • the optical element is a polarization-separating optical element.
  • an optical integrated unit that outputs outgoing light to a recording medium and receives reflected light from the recording medium.
  • a light receiving / emitting unit including a monitoring light receiving element for receiving the light, and a composite optical element including a support plate having an opening through which the emitted light and the reflected light of the recording medium force by the emitted light pass.
  • the opening has a structure for preventing light from passing through the opening in a cross section defined by a light traveling direction and a predetermined direction.
  • the opening has a structure for preventing the reflected light from entering the monitoring light receiving element in a cross section defined by the direction of the reflected light and the direction connecting the light source and the monitoring light receiving element.
  • the light emitting / receiving unit further includes a rising mirror that transmits a part of the emitted light.
  • the monitor light receiving element receives light transmitted through the rising mirror.
  • the light receiving / emitting unit further includes a light receiving element that detects reflected light.
  • an optical pickup device for optically recording or reproducing information on or from a recording medium, comprising: a light source for outputting emitted light; A light receiving / emitting unit including a monitoring light receiving element, and a composite optical element having a support plate having an opening through which emitted light and reflected light of the emitted light from a recording medium pass. And an optical integrated unit including the optical integrated unit, and a condensing unit that condenses the emitted light on a recording medium.
  • the opening has a structure for preventing light from passing through the opening in a cross section defined by a light traveling direction and a predetermined direction.
  • the opening has a structure for preventing reflected light from entering the monitor light receiving element in a cross section defined by the direction of the reflected light and the direction connecting the light source and the monitor light receiving element.
  • the light path is not unnecessarily limited in a cross section different from the predetermined cross section in the light traveling direction.
  • FIG. 1 is a schematic configuration diagram showing a schematic configuration of an optical pickup device 200 as a background explaining an embodiment of the present invention.
  • FIG. 2 is a schematic configuration diagram showing a schematic configuration of another optical pickup device 300 as a background explaining an embodiment of the present invention.
  • FIG. 3 is a side sectional view showing a configuration of the optical pickup device 20 according to the embodiment of the present invention as viewed from a side section.
  • FIG. 4 is a plan sectional view showing a configuration of the optical pickup device 20 according to the embodiment of the present invention as viewed from a plan section.
  • FIG. 5 is a diagram showing a physical configuration of a composite optical element 55 according to an embodiment of the present invention.
  • FIG. 6 is a diagram showing a case where substantially parallel light is incident on the composite optical element 55 according to the embodiment of the present invention.
  • FIG. 7 is a diagram illustrating a case where divergent light is incident on the composite optical element 55 according to the embodiment of the present invention.
  • FIG. 8 is a diagram showing a physical configuration of a composite optical element 55A according to the embodiment of the present invention.
  • FIG. 9 is a diagram showing a state when the objective lens 8 is on the outer side in the optical pickup device 20 according to the embodiment of the present invention.
  • FIG. 10 is a diagram showing a state when the objective lens 8 is on the far side in the optical pickup device 20 according to the embodiment of the present invention.
  • FIG. 11 is a schematic configuration diagram showing a schematic configuration of a conventional optical pickup device 100 used for an optical disk device or the like.
  • FIG. 12 is a diagram illustrating a curve of a general focus error signal in a focus pull-in operation of the optical pickup device.
  • FIG. 1 is a schematic configuration diagram showing a schematic configuration of an optical pickup device 200 as a background explaining an embodiment of the present invention.
  • an optical pickup device 200 detects an information signal of a magneto-optical recording medium 230, and includes a knockout 210, an objective lens 213, and a base material 241.
  • the package 210 includes a semiconductor laser 211, a first polarization separation unit 212, a second polarization separation unit 214 having a reflection unit 205, a photodetector 215, a grating 216, and a monitor light receiving element 204. This is an integrated optical unit.
  • the grating 216 controls the light emitted from the semiconductor laser 211 for tracking. Divide into three beams (not explicitly shown in Figure 1).
  • the objective lens 213 focuses the light emitted from the semiconductor laser 211 on the recording surface of the magneto-optical recording medium 230.
  • the base material 241 is made of, for example, glass and is arranged between the semiconductor laser 211 and the objective lens 213.
  • the first polarization separation means 212 is provided on the surface of the base material 241 on the side of the magneto-optical recording medium 230, and reflects reflected light from the magneto-optical recording medium 230 through the objective lens 213 to the magneto-optical recording medium 230. Separates in the radial direction (X direction).
  • the second polarized light separating means 214 is provided on the surface of the substrate 241 on the side of the package 210, and further separates the reflected light separated by the first polarized light separating means 212.
  • the photodetector 215 receives each beam (not explicitly shown in FIG. 1) separated by the second polarization separation means 214.
  • the first polarization separation means 212 is arranged as a means for having a function of increasing the Kerr rotation angle of the reflected light from the magneto-optical recording medium 230.
  • the second polarization separation means 214 is used for differential operation of a magneto-optical signal, detection of a servo signal, and the like.
  • the high output light is set to a predetermined output in a range of about 30 mW to 100 mW.
  • the light receiving element for monitoring 204 is arranged so that the optical path force of the light emitted from the semiconductor laser 211 to the magneto-optical recording medium 230 is deviated.
  • the monitoring light-receiving element 204 detects light 240 of a portion of the light emitted from the front surface of the semiconductor laser 211 that does not reach the magneto-optical recording medium 230.
  • the control circuit (not shown) feeds back the detected fluctuation of the optical output to keep the optical output emitted from the semiconductor laser 211 constant.
  • FIG. 2 is a schematic configuration diagram showing a schematic configuration of another optical pickup device 300 as a background explaining an embodiment of the present invention.
  • optical pickup device 300 differs from optical pickup device 200 of FIG. 1 only in that package 210 is replaced with package 310. Therefore, description of overlapping parts will not be repeated here.
  • the knockage 310 has a configuration in which a startup mirror 206 is added to the knockage 210.
  • the rising mirror 206 is disposed between the semiconductor laser 211 and the monitoring light receiving element 204, and transmits a part of the light emitted from the semiconductor laser 211 in the X direction and guides the light to the monitoring light receiving element 204.
  • reflected light 217 from magneto-optical recording medium 230 via objective lens 213 shows a case where objective lens 213 is on the negative side (denoted by a dotted line).
  • the reflected light 218 from the magneto-optical recording medium 230 via the objective lens 213 indicates a case where the objective lens 213 is on the far side (denoted by a dotted line). Both of the reflected lights 217 and 218 pass through the base material 241 and enter the monitoring light receiving element 204.
  • the monitoring light receiving element 204 shown in FIGS. 1 and 2 may detect light other than the light emitted from the front surface of the semiconductor laser 211 which should be originally detected.
  • the optical output monitor during the focus pull-in operation becomes unstable.
  • the focus error signal level becomes unstable and an accurate focus pull-in operation becomes difficult.
  • a composite optical element, an optical integrated unit, and an optical pickup device that solve such a problem will be described in detail.
  • an optical pickup device for magneto-optical recording will be described as an example.
  • the composite optical element, optical integrated unit, and optical pickup device according to the present invention are only used for magneto-optical recording. Not limited to
  • FIG. 3 is a side sectional view showing a configuration of the optical pickup device 20 according to the embodiment of the present invention as viewed from a side section.
  • an optical pickup device 20 detects an information signal of a magneto-optical disk 10, and forms an optical integrated unit 15, an objective lens 8, a collimating lens 7, Is provided.
  • the optical integrated unit 15 includes the composite optical element 5 and the node / cage 14.
  • optical substrates 2 and 3 are fixed to the upper surface and the lower surface of the support plate 12, respectively.
  • the support plate 12 has an opening 11 which is hollowed out at the center for light transmission.
  • the composite optical element 5 is installed on the package 14 with the optical substrate 3 inserted in the package 14.
  • the package 14 includes at least the semiconductor laser 1, a submount 41, a start-up mirror block 40, and the monitoring light-receiving element 4 when viewed from a side cross section.
  • the knockout 14 is a light receiving / emitting unit including the semiconductor laser 1 and the monitoring light receiving element 4.
  • the “side cross section” means a cross section in a direction connecting the semiconductor laser 1 and the monitoring light receiving element 4.
  • the composite optical element 5 viewed from the side cross section is configured such that the opening width (or opening diameter) force of the opening 11 is different between the lower side section 11a and the upper side section l ib. I have.
  • the opening 11 is formed to be inclined at an angle substantially along NA (Numerical Aperture) on the light source side of the collimating lens 7, for example.
  • NA Numerical Aperture
  • the optical system of the optical pickup device is a finite system, that is, one objective lens, as in the optical pickup devices 200 and 300 shown in FIGS. 1 and 2, the NA on the light source side of the objective lens is approximately. It is also possible to configure the opening to be inclined at an angle along it.
  • the semiconductor laser 1 is mounted on a submount 41.
  • the light (P-polarized light) emitted from the front surface of the semiconductor laser 1 travels to a start-up mirror 40a having a reflectance of about 90% and a transmittance of about 5%.
  • the rising mirror 40a is formed by forming an optical film or the like on the 45-degree surface of the rising mirror block 40 that also has the strength of optical glass.
  • the light reflected by the rising mirror 40a is incident on a grating 35 formed on the optical substrate 3 for generating a tracking beam.
  • the light transmitted through the rising mirror 40 a further passes through the rising mirror block 40 and enters the monitoring light receiving element 4.
  • the monitoring light-receiving element 4 detects light emitted from the front surface of the semiconductor laser 1.
  • the control circuit (not shown) keeps the light output emitted from the semiconductor laser 1 constant by feeding back the detected fluctuation of the output light amount.
  • the light passing through the grating 35 passes through the optical substrate 2 and the collimating lens 7, and is condensed on the recording surface of the magneto-optical disk 10 by the objective lens 8.
  • the reflected light from the magneto-optical disk 10 has a slight S-polarized component because the plane of polarization rotates Kerr based on the recorded information according to the principle of the optical power effect.
  • the reflected light from the magneto-optical disk 10 enters a polarization hologram 32 formed on the optical substrate 2.
  • the polarization hologram 32 has a 0-order diffraction efficiency of 77% for P-polarized light, 11% for ⁇ 1st-order diffraction efficiency, and a 0% -order diffraction efficiency for S-polarized light and 44% for ⁇ 1st-order diffraction efficiency. Is configured to.
  • the polarization hologram 32 has a function of apparently multiplying the Kerr rotation angle of the reflected light from the magneto-optical disk 10.
  • FIG. 4 is a plan sectional view showing a configuration of the optical pickup device 20 according to the embodiment of the present invention as viewed from a plan section.
  • the optical pickup device 20 shown in FIG. 4 the appearance of the optical integrated unit 14 is different because the side sectional view has been changed to the plan sectional view.
  • the “planar section” means a section perpendicular to the “side section” in FIG.
  • the package 14 includes at least the semiconductor laser 1, a submount 41, a start-up mirror 40a, and photodetectors 37a and 37b when viewed from a plan section.
  • the “planar section” means a section perpendicular to the direction connecting the semiconductor laser 1 and the monitor light-receiving element 4.
  • the width of the lower section 11c and the upper section lid of the opening 11 is formed larger than the width of the lower section 11a and the upper section lib of FIG.
  • the width of the lower side section 11a and the upper side section ib of the opening 11 is formed slightly larger than the diameter of the light beam passing therethrough in consideration of tolerance.
  • the width of the lower section 11c and the upper section lid of the flat section are configured to be the same, for example, in consideration of the addition point and the like.
  • the opening 11 of the support plate 12 in the plane cross section is formed parallel to the optical axis direction.
  • phase difference plates 39b and 39a for giving an appropriate phase difference, it is possible to correct the phase difference generated in the + 1st-order diffracted light 32b and the -first-order diffracted light 32a.
  • the + first-order diffracted light 32b and the first-order diffracted light 32a respectively enter the polarization holograms 34b and 34a formed on the optical substrate 3 and are separated in predetermined directions. Is detected.
  • the polarization hologram 34b is a light separating means for detecting a magneto-optical signal and a servo signal
  • the polarizing hologram 34a is a light separating means for detecting a magneto-optical signal.
  • the composite optical element 5 of the optical pickup device 20 has a cross section in the direction connecting the semiconductor laser 1 and the monitoring light receiving element 4.
  • the opening width of the opening 11 is the lower side section 11a and the upper side section l ib.
  • the composite optical element 5 has a flat cross section lower portion 11c and a flat cross section upper lid of the opening 11 having a width. It is formed larger than the width of the lower side section 11a and the upper side section lib of FIG.
  • the composite optical element 5 By configuring the composite optical element 5 in this way, it is possible to make the desired light incident on the monitoring light receiving element 4 and to unnecessarily restrict the path of the light incident on the optical integrated unit 15. Thereby, components and the like in the optical integrated unit 15 can be flexibly arranged.
  • the composite optical element 5 is a versatile element, and can be used for various purposes other than the optical pickup device 20 shown in FIGS. Therefore, the following FIGS. 5 to 8 will be described using reference numerals different from those in FIGS.
  • FIG. 5 is a diagram showing a physical configuration of the composite optical element 55 according to the embodiment of the present invention.
  • optical substrates 52 and 53 are aligned with one surface 56b and the other surface 56a of support plate 50, respectively. Fixed.
  • the support plate 50 has an opening 51 at the center, and light can pass through the opening 51 in one direction or two directions.
  • the composite optical element 55 is arranged, for example, at the portion of the base material 241 in FIGS.
  • optical elements 62 and 63 that perform control such as separation, division, diffraction, polarization, stop, filtering, and phase control of light passing through opening 51 of support plate 50 are provided. Each is formed. Examples of the optical elements 62 and 63 include a hologram element, a diffraction grating, a liquid crystal element, and an optical crystal.
  • the support plate 50 and the optical substrates 52 and 53 are integrated to form a composite optical element 55 as a whole.
  • the width of the lower side section 51a of the opening 51 is smaller than the width of the upper side section 51b.
  • the width of the lower side section 51a and the upper side section 51b of the opening 51 is preferably formed slightly larger than the diameter of the light beam passing therethrough in consideration of tolerance.
  • the composite optical element 55 By configuring the composite optical element 55 as described above, it is possible to prevent the light 58A from directly entering the component 54 installed below the composite optical element 55.
  • the component 54 include a sensor such as a photodetector, and a component that, when exposed to light, causes a temperature rise or the like to cause a malfunction.
  • the support plate 50 needs to be made of an opaque material so that the direct light 58A does not pass through the support plate 50.
  • FIG. 6 is a diagram illustrating a case where substantially parallel light is incident on the composite optical element 55 according to the embodiment of the present invention.
  • the parallel light 57B that passes through the opening 51 and exits to the optical substrate 53 side does not It is restricted as follows. Therefore, even in the case of parallel light, it is possible to prevent the light 58B from directly entering the component 54 installed below the composite optical element 55.
  • FIG. 7 is a diagram showing a case where divergent light is incident on composite optical element 55 according to the embodiment of the present invention.
  • the divergent light 57C that passes through the opening 51 and is emitted toward the optical substrate 53 is the same as in FIG. It is restricted as follows. Therefore, even in the case of divergent light, it is possible to prevent the light 58C from directly entering the component 54 installed below the composite optical element 55.
  • FIG. 8 is a diagram showing a physical configuration of a composite optical element 55A according to the embodiment of the present invention.
  • the shape of opening 51A is different from that of openings 51 in FIGS. Specifically, the opening 51A is formed in parallel with the optical axis direction, and the projections 43 are provided on both side surfaces of the lower side section 51a. Even with such a configuration, it is possible to prevent light from directly entering the component 54 installed below the composite optical element 55A.
  • FIGS. 9 and 10 are arbitrary for convenience of description, and the composite optical element 5 and the optical integrated
  • the scale is not based on the dimensions of the knit 15, the objective lens 8, the collimating lens 7, etc.
  • the scale is not based on the relative dimensions of the objective lens 8, the collimating lens 7, etc. taking into account the focal length.
  • FIG. 9 is a diagram showing a state (dashed line) when the objective lens 8 is on the negative side in the optical pickup device 20 according to the embodiment of the present invention.
  • the optical path shown by the solid line indicates a state where the objective lens 8 is at the focal point.
  • objective lens 8 indicated by a broken line is in a state where it is rocked by about 500 m in a direction approaching magneto-optical disk 10 (your side) by an actuator (not shown). Indicates that it is located.
  • the certain state refers to a state in which the beam diameter of the reflected light from the magneto-optical disk 10 expands inside the package 14 (than the beam diameter at the time of focusing) at the time of focusing pulling to the near side.
  • the reflected light 21 from the magneto-optical disk 10 generally enters the package 14 along the opening 11 of the support plate 12 and is monitored. Does not directly enter the light receiving element 4 for use. Thereby, even during the focus pull-in operation, the light output emitted from the front surface of the semiconductor laser 1 can be kept constant. As a result, the level of the focus error signal is stabilized, and an accurate focus pull-in operation can be performed.
  • FIG. 10 is a diagram showing a state (broken line) when the objective lens 8 is on the S-far side in the optical pickup device 20 according to the embodiment of the present invention.
  • the optical path shown by the solid line indicates a state where the objective lens 8 is at the focal point.
  • objective lens 8 indicated by a broken line is swung by an actuator (not shown) by about 500 m in a direction (far side) away from magneto-optical disk 10.
  • the certain state refers to a state in which the beam diameter of the reflected light from the magneto-optical disk 10 expands inside the package 14 (than the beam diameter at the time of focusing) at the time of focusing on the fur side.
  • the reflected light 22 from the magneto-optical disk 10 is once collected at the upper Za from the emission point of the semiconductor laser 1. After that, the reflected light 22 from the magneto-optical disk 10 enters the optical integrated unit 15 with a narrow beam diameter. The beam diameter diverges inside the knock 14.
  • the reflected light 22 a from the magneto-optical disk 10 that enters the inside of the knock 14 is limited by the width of the lower part 11 a of the support plate 12 in the side section of the opening 11.
  • the width of the lower portion 11a of the side section is configured so that the reflected light 22 does not directly enter the monitor light receiving element 4. Therefore, even during the focus pull-in operation, the reflected light 22a from the magneto-optical disk 10 does not enter the motor light receiving element.
  • the optical output emitted from the semiconductor laser 1 can be kept constant. As a result, the level of the focus error signal is stabilized, and an accurate focus pull-in operation becomes possible.
  • the shape of the opening 11 of the support plate 12 is not limited to the shape shown in FIGS. 9 and 10.
  • a projection 43 is provided below the opening 51. May be adopted.
  • the composite optical element according to the embodiment of the present invention has, in a cross section in the direction connecting the light source and the monitoring light receiving element, an opening having a structure in which reflected light does not enter the monitoring light receiving element. .
  • This makes it possible to prevent the light that has entered the one-way force and exited through the opening from directly entering another component arranged.
  • the composite optical element in an optical integrated unit or the like constituting an optical pickup device, it is possible to prevent reflected light of the optical recording medium from being directly incident on a light receiving element for monitoring an optical output of a semiconductor laser. it can.
  • the optical integrated unit according to the embodiment of the present invention is used in combination with the light condensing means for condensing light on the optical recording medium, so that the reflected light of the optical recording medium can be monitored even during the focus pull-in operation. Light can be prevented from directly entering the light receiving element for use. As a result, since the level of the focus error signal is stabilized, an accurate focus pull-in operation can be performed by using the focus error signal together with a light focusing means for focusing the light on the optical recording medium.
  • the optical pickup device can prevent the reflected light of the optical recording medium from directly entering the monitor light receiving element even during the focus pull-in operation. As a result, the level of the focus error signal is stabilized, so that an accurate focus pull-in operation can be performed.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Head (AREA)

Abstract

In a composite optical element (5), on a cross section (side cross section) in a direction connecting a semiconductor laser (1) with a monitor light receiving element (4), an opening width of an opening part (11) is different at a side cross section lower part (11a) and a side cross section upper part (11b). Thus the composite optical element (5) is constituted, a path of light entering an optical integrated unit (15) is not required to be limited more than necessary, while having desired light incident on the monitor light receiving element (4). A component and the like in the optical integrated unit (15) can be flexibly arranged.

Description

明 細 書  Specification
複合光学素子、光集積ユニットおよび光ピックアップ装置  Composite optical element, optical integrated unit, and optical pickup device
技術分野  Technical field
[0001] この発明は、複合光学素子、光集積ユニットおよび光ピックアップ装置に関し、より 特定的には、光を制御するための複合光学素子、光集積ユニットおよび光ピックアツ プ装置に関する。  The present invention relates to a composite optical element, an optical integrated unit, and an optical pickup device, and more specifically, to a composite optical element for controlling light, an optical integrated unit, and an optical pickup device.
背景技術  Background art
[0002] 近年、光ディスクなどの情報記録媒体に対して情報を光学的に記録または再生す る技術に関する研究開発が進められている。以下では、特開 2001— 110085号公 報、特開 2003— 85807号公報および特開 2002— 124727号公報(特許文献 1〜 3)に記載された従来技術について説明する。特に、特開 2001— 110085号公報( 特許文献 1)については、図 11を参照して詳しく説明する。  In recent years, research and development on technology for optically recording or reproducing information on an information recording medium such as an optical disk have been promoted. Hereinafter, conventional techniques described in JP-A-2001-110085, JP-A-2003-85807, and JP-A-2002-124727 (Patent Documents 1 to 3) will be described. In particular, JP-A-2001-110085 (Patent Document 1) will be described in detail with reference to FIG.
[0003] 図 11は、光ディスク装置等に用いられる従来の光ピックアップ装置 100の概略的な 構成を示した概略構成図である。  [0003] FIG. 11 is a schematic configuration diagram showing a schematic configuration of a conventional optical pickup device 100 used for an optical disk device or the like.
[0004] 図 11を参照して、従来の光ピックアップ装置 100は、光ディスク 103の情報信号を 検出し、ホログラムレーザユニット(光集積ユニット) 101と、対物レンズ 102とを備える 。ホログラムレーザユニット 101は、光源となる半導体レーザ素子 104と、光ディスク 1 03からの反射光を受光する光検出器 105とが一体に形成された受発光ユニットであ る。半導体レーザ素子 104および光検出器 105は、封止カン (外装容器) 106の内部 に収容されている。  With reference to FIG. 11, a conventional optical pickup device 100 detects an information signal of an optical disk 103, and includes a hologram laser unit (optical integrated unit) 101 and an objective lens 102. The hologram laser unit 101 is a light receiving / emitting unit in which a semiconductor laser element 104 serving as a light source and a photodetector 105 that receives light reflected from the optical disk 103 are integrally formed. The semiconductor laser element 104 and the photodetector 105 are housed inside a sealing can (outer container) 106.
[0005] 封止カン 106上には、ホログラム素子 108が設けられている。ホログラム素子 108は [0005] On the sealing can 106, a hologram element 108 is provided. Hologram element 108
、板状ガラスであって、半導体レーザ素子 104および光検出器 105側の反対面にホ ログラムパターン 109が形成されて!、る。 A hologram pattern 109 is formed on the opposite surface of the plate glass from the semiconductor laser element 104 and the photodetector 105 side.
[0006] 半導体レーザ素子 104から出射されたレーザビーム 110は、封止カン 106の開口 1[0006] The laser beam 110 emitted from the semiconductor laser element 104 passes through the opening 1 of the sealing can 106.
07、ホログラム素子 108のホログラムパターン 109を順に通って対物レンズ 102に入 射され、光ディスク 103の所定の位置に集光される。 07, the light passes through the hologram pattern 109 of the hologram element 108 in order, is incident on the objective lens 102, and is condensed at a predetermined position on the optical disc 103.
[0007] 光ディスク 103で反射された反射レーザビームは、対物レンズ 102によって所定の 集束性が与えられる。当該集束性が与えられた反射レーザビームは、ホログラム素子[0007] The reflected laser beam reflected by the optical disc 103 is reflected by the objective lens 102 at a predetermined position. Convergence is provided. The focused laser beam given the hologram element
108のホログラム素子のホログラムパターン(回折パターン) 109により所定の方向に 回折され、回折光束 111として光検出器 105に入射される。 The light is diffracted in a predetermined direction by the hologram pattern (diffraction pattern) 109 of the hologram element 108 and is incident on the photodetector 105 as a diffracted light beam 111.
[0008] 対物レンズ 102に向かうレーザビーム 110の一部、たとえば出射経路 112を通って 対物レンズ 102に到達したレーザビームは、対物レンズ 102の表面で反射されて、反 射経路 113よりホログラムユニット 101の光検出器 105に向けられる。この反射光は、 迷光と呼ばれるもので、光検出器 105に入射した場合には、正規の信号光の SZN ( Signal to Noise)比を悪化させる要因となる。  [0008] A part of the laser beam 110 directed to the objective lens 102, for example, the laser beam reaching the objective lens 102 through the emission path 112 is reflected by the surface of the objective lens 102, and is reflected by the reflection path 113 to the hologram unit 101. To the photodetector 105. This reflected light is called stray light, and when it enters the photodetector 105, it becomes a factor of deteriorating the SZN (Signal to Noise) ratio of regular signal light.
[0009] この迷光(対物レンズ 102の表面で反射されたレーザビーム)が光検出器 105に到 達することを阻止するため、図 11のホログラムユニット 101では、ホログラム素子 108 のホログラムパターン 109を覆う遮光マスク 114を設けて!/、る。  In order to prevent this stray light (the laser beam reflected by the surface of the objective lens 102) from reaching the photodetector 105, the hologram unit 101 shown in FIG. Provide a mask 114!
[0010] 遮光マスク 114は、封止カン 106およびホログラム素子 108のほぼ全域を覆ってお り、半導体レーザ素子 104から対物レンズ 102へ向かうレーザビーム 110が通過可 能な大きさの開口 115のみを有している。遮光マスク 114は、迷光の出射経路 112を 通って対物レンズ 102の表面に達し、対物レンズ 102の表面で反射されて迷光の反 射経路 113を通って光検出器 105に入射する反射レーザビーム以外の様々な光路 で光検出器 105に向力 反射レーザビームを遮光することができる。  [0010] The light-shielding mask 114 covers almost the entire area of the sealing can 106 and the hologram element 108, and has only an opening 115 large enough to allow the passage of the laser beam 110 from the semiconductor laser element 104 to the objective lens 102. Have. The light-shielding mask 114 reaches the surface of the objective lens 102 through the stray light emission path 112, and is reflected by the surface of the objective lens 102, and is other than the reflected laser beam incident on the photodetector 105 through the stray light reflection path 113. The reflected laser beam can be shielded from the reflected laser beam through the various optical paths.
[0011] 遮光マスク 114の内面には、レーザビーム 110の波長の光を吸収する反射防止膜 114eがコーティングされている。これにより、遮光マスク 114の内面で反射して光検 出器 105に入射する迷光が生じるのも防ぐことができる。  An inner surface of the light-shielding mask 114 is coated with an anti-reflection film 114e that absorbs light having a wavelength of the laser beam 110. Accordingly, it is possible to prevent the generation of stray light that is reflected on the inner surface of the light shielding mask 114 and enters the light detector 105.
[0012] 特開 2003— 85807号公報 (特許文献 2)に記載された従来の集積ィ匕ユニットは、 レーザ光を出射する発光部と、レーザ光をディスクに照射してディスクからの反射光 を回折させて受光部へ導くホログラムと、当該ホログラムで回折された光を受光する 受光部とを備えており、ディスクからの反射光を通過させるホログラム素子上のホログ ラム以外の部分における透過率をほぼ零とすることを特徴とする。  [0012] The conventional integrated unit described in Japanese Patent Application Laid-Open No. 2003-85807 (Patent Document 2) has a light emitting unit that emits a laser beam, and irradiates the disk with the laser beam to generate a reflected light from the disk. A hologram that is diffracted and guided to the light receiving section, and a light receiving section that receives the light diffracted by the hologram are provided, and the transmittance of a portion other than the hologram on the hologram element that transmits the reflected light from the disk is substantially reduced. It is characterized by being set to zero.
[0013] 特開 2002— 124727号公報 (特許文献 3)に記載された従来の半導体レーザュニ ットは、半導体レーザ力ものレーザ光をホログラム素子を介して出射すると共に、当該 ホログラム素子への入射光を受光素子に導き、半導体レーザ力も出射されるレーザ 光のうち、強度がピーク値の lZe2より小さい発散光を遮光する発散光遮光手段を備 える。 [0013] The conventional semiconductor laser unit described in Japanese Patent Application Laid-Open No. 2002-124727 (Patent Document 3) emits a laser beam having the power of a semiconductor laser through a hologram element and incident light to the hologram element. Is guided to the light receiving element and the semiconductor laser power is also emitted. A divergent light blocking means is provided for blocking divergent light of which intensity is smaller than the peak value of lZe 2 among the light.
特許文献 1:特開 2001— 110085号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2001-110085
特許文献 2:特開 2003— 85807号公報  Patent Document 2: Japanese Patent Application Laid-Open No. 2003-85807
特許文献 3:特開 2002— 124727号公報  Patent Document 3: JP-A-2002-124727
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0014] 一般に、光ピックアップ装置では、光源力ゝらの光を対物レンズ等を介して光ディスク 上に集光する際、対物レンズを光軸方向に揺動することによってフォーカス引き込み 動作を行なう必要がある。フォーカス引き込み動作では、揺動によって、たとえば対 物レンズを光ディスクに近 ヽ(二ァ)側から遠!ヽ (ファー)側に移動し、その間の合焦点 となる位置で対物レンズを保持する。  In general, in an optical pickup device, when condensing light from a light source power on an optical disk via an objective lens or the like, it is necessary to perform a focus pull-in operation by swinging the objective lens in the optical axis direction. is there. In the focus pull-in operation, for example, the objective lens is moved from the near (far) side to the far (far) side of the optical disc by rocking, and the objective lens is held at a position where the focal point is located therebetween.
[0015] 図 12は、光ピックアップ装置のフォーカス引き込み動作における一般的なフォー力 ス誤差信号の曲線を表わした図である。  FIG. 12 is a diagram showing a curve of a general force error signal in the focus pull-in operation of the optical pickup device.
[0016] 図 12に示すように、対物レンズがニァ側からファー側に移動する途中でフォーカス 引き込み範囲 FCRに入ると、対物レンズが合焦点 FPに引き込まれる。フォーカス引 き込み動作において、対物レンズの揺動の範囲は、光ディスクのシステムによって多 少異なるものの、一般に合焦点から ± 500 m程度必要とされる。このため、光ピック アップ装置がフォーカス引き込み動作を開始すると、対物レンズはァクチユエータに よって光軸方向に士 500 μ m程度揺動される。  As shown in FIG. 12, when the objective lens enters the focus pull-in range FCR while moving from the near side to the far side, the objective lens is pulled into the focal point FP. In the focus pull-in operation, the swing range of the objective lens slightly varies depending on the optical disk system, but is generally required to be about ± 500 m from the focal point. Therefore, when the optical pickup device starts the focus pull-in operation, the objective lens is swung by about 500 μm in the optical axis direction by the actuator.
[0017] このような対物レンズの揺動動作は、光検出器に所望の光以外の迷光を入射させ る原因の一つとなっている。これに対して、特開 2001 - 110085号公報では、遮光 マスク 114によって封止カン 106およびホログラム素子 108のほぼ全域を覆うことによ り、所望の反射レーザビームのみが封止カン 106に入射するようにしている。  [0017] Such a swinging operation of the objective lens is one of the causes of causing stray light other than desired light to enter the photodetector. On the other hand, in Japanese Patent Application Laid-Open No. 2001-110085, by covering almost the entire area of the sealing can 106 and the hologram element 108 with the light shielding mask 114, only the desired reflected laser beam enters the sealing can 106. Like that.
[0018] しかしながら、特開 2001— 110085号公報の光ピックアップ装置 100では、所望の 反射レーザビームのみを封止カン 106に入射させるために、光軸方向に垂直な平面 の全方向に対して封止カン 106に入射する反射レーザビームの経路を制限している 。そのため、封止カン 106内の部品等の配置が制約されるなどの問題点があった。 [0019] また、特開 2003— 85807号公報では、ディスクからの反射光を通過させるホロダラ ム素子上のホログラム以外の部分における透過率をほぼ零としており、特開 2002— 124727号公報では、半導体レーザから出射されるレーザ光のうち、強度がピーク値 の lZe2より小さい発散光を遮光している。しかしながら、これら場合にも、光軸方向 に垂直な平面の全方向に対して集積ィ匕ユニット(半導体レーザユニット)に入射する 反射レーザビームの経路を制限しており、集積ィヒユニット内の部品等の配置が制約 されるなどの問題点があった。 However, in the optical pickup device 100 disclosed in Japanese Patent Application Laid-Open No. 2001-110085, in order to allow only a desired reflected laser beam to enter the sealing can 106, sealing is performed in all directions on a plane perpendicular to the optical axis direction. The path of the reflected laser beam incident on the stop 106 is restricted. Therefore, there is a problem that the arrangement of components and the like in the sealing can 106 is restricted. In Japanese Patent Application Laid-Open No. 2003-85807, the transmittance of a portion other than a hologram on a holo-drama element that allows reflected light from a disk to pass is made substantially zero, and in Japanese Patent Application Laid-Open No. 2002-124727, Of the laser light emitted from the laser, divergent light whose intensity is smaller than the peak value of lZe 2 is blocked. However, also in these cases, the path of the reflected laser beam incident on the integrated laser unit (semiconductor laser unit) is limited in all directions on a plane perpendicular to the optical axis direction, and the components and the like in the integrated laser unit are not controlled. There were problems such as restrictions on placement.
[0020] それゆえに、この発明の目的は、光の進行方向における所定の断面と異なる断面 において、光の経路が必要以上に制限されない複合光学素子、光集積ユニットおよ び光ピックアップ装置を提供することである。  [0020] Therefore, an object of the present invention is to provide a composite optical element, an optical integrated unit, and an optical pickup device in which a light path is not unnecessarily limited in a cross section different from a predetermined cross section in a light traveling direction. That is.
課題を解決するための手段  Means for solving the problem
[0021] この発明は、光の制御を行なう複合光学素子であって、光が通過する開口部を有 する支持板を備え、開口部は、光の進行方向と所定の方向とで定まる断面においてThe present invention is a composite optical element for controlling light, comprising a support plate having an opening through which light passes, wherein the opening has a cross section defined by a light traveling direction and a predetermined direction.
、光が開口部を通過するのを防ぐ構造を有する。 And a structure for preventing light from passing through the opening.
[0022] 好ましくは、開口部は、光の進行方向と所定の方向とで定まる断面において、開口 部の一方の開口幅と他方の開口幅とが異なる。 [0022] Preferably, in the cross section of the opening, one opening width and the other opening width of the opening are different from each other in a cross section defined by a light traveling direction and a predetermined direction.
[0023] 好ましくは、開口部は、光の進行方向と所定の方向とで定まる断面において、開口 部の一方の開口幅が他方の開口幅より小さ!/、。 [0023] Preferably, in the cross section defined by the light traveling direction and a predetermined direction, the width of one of the openings is smaller than the width of the other opening!
[0024] 好ましくは、開口部は、光の進行方向と所定の方向とで定まる断面において、開口 部の一方の開口と他方の開口とを結ぶ直線が光の進行方向に対して傾斜している。 Preferably, in the opening, a straight line connecting one opening and the other opening of the opening is inclined with respect to the light traveling direction in a cross section defined by the light traveling direction and a predetermined direction. .
[0025] 好ましくは、開口部は、光の進行方向と所定の方向とで定まる断面において、開口 部の一方の開口の端面から内側に突起部を有する。 [0025] Preferably, the opening has a protrusion inside the end face of one of the openings in a cross section defined by a light traveling direction and a predetermined direction.
[0026] 好ましくは、光の進行方向と所定の方向とで定まる断面と異なる断面における開口 部の一方および他方の開口幅は、いずれも、光の進行方向と所定の方向とで定まる 断面における開口部の一方および他方の開口幅より大きい。 Preferably, one and the other of the openings in a cross section different from the cross section defined by the light traveling direction and the predetermined direction have an opening width in the cross section determined by the light traveling direction and the predetermined direction. It is larger than the opening width of one and the other of the part.
[0027] 好ましくは、複合光学素子は、記録媒体に対して出射光を出力し、記録媒体からの 反射光を受ける光集積ユニットに含まれる複合光学素子であって、光集積ユニットは[0027] Preferably, the composite optical element is a composite optical element included in an optical integrated unit that outputs outgoing light to a recording medium and receives reflected light from the recording medium, wherein the optical integrated unit is
、出射光を出力する光源と、出射光の一部を受光するモニタ用受光素子とを含む受 発光ユニットを備えており、開口部は、反射光の方向と光源とモニタ用受光素子とを 結ぶ方向とで定まる断面において、反射光がモニタ用受光素子に入射するのを防ぐ 構造を有する。 , A light source for outputting the emitted light, and a monitor light receiving element for receiving a part of the emitted light. A light emitting unit is provided, and the opening has a structure for preventing reflected light from entering the monitoring light receiving element in a cross section defined by a direction of the reflected light and a direction connecting the light source and the monitoring light receiving element.
[0028] 好ましくは、前記光集積ユニットと前記記録媒体との間に設けられ、前記出射光を 前記記録媒体に集光する集光手段をさらに備え、前記開口部は、前記反射光の方 向と前記光源と前記モニタ用受光素子とを結ぶ方向とで定まる断面において、前記 光源側の開口と前記記録媒体側の開口とを結ぶ直線が前記集光手段の前記光源 側の開口数に沿う角度で傾斜している。  [0028] Preferably, there is further provided a light condensing means provided between the optical integrated unit and the recording medium, for condensing the emitted light on the recording medium, and the opening is provided in a direction of the reflected light. And a direction connecting the light source and the monitoring light receiving element, a straight line connecting the opening on the light source side and the opening on the recording medium side is an angle along the numerical aperture on the light source side of the condensing unit. It is inclined.
[0029] 好ましくは、支持板の光源側の面に固定された第 1の光学基板と、支持板の記録媒 体側の面に固定された第 2の光学基板とをさらに備え、第 1および第 2の光学基板は 、出射光または反射光に対して変化を与える光学素子をそれぞれ有する。  [0029] Preferably, the apparatus further includes a first optical substrate fixed to the surface of the support plate on the light source side, and a second optical substrate fixed to the surface of the support plate on the recording medium side. The two optical substrates each have an optical element that changes the emitted light or the reflected light.
[0030] 好ましくは、光学素子は、偏光分離性の光学素子である。  [0030] Preferably, the optical element is a polarization-separating optical element.
[0031] この発明の他の局面によれば、記録媒体に対して出射光を出力し、記録媒体から の反射光を受ける光集積ユニットであって、出射光を出力する光源と出射光の一部 を受光するモニタ用受光素子とを含む受発光ユニットと、出射光とその出射光による 記録媒体力 の反射光とが通過する開口部を有する支持板を含む複合光学素子と を備える。開口部は、光の進行方向と所定の方向とで定まる断面において、光が開 口部を通過するのを防ぐ構造を有する。  [0031] According to another aspect of the present invention, there is provided an optical integrated unit that outputs outgoing light to a recording medium and receives reflected light from the recording medium. A light receiving / emitting unit including a monitoring light receiving element for receiving the light, and a composite optical element including a support plate having an opening through which the emitted light and the reflected light of the recording medium force by the emitted light pass. The opening has a structure for preventing light from passing through the opening in a cross section defined by a light traveling direction and a predetermined direction.
[0032] 好ましくは、開口部は、反射光の方向と光源とモニタ用受光素子とを結ぶ方向とで 定まる断面において、反射光がモニタ用受光素子に入射するのを防ぐ構造を有する  [0032] Preferably, the opening has a structure for preventing the reflected light from entering the monitoring light receiving element in a cross section defined by the direction of the reflected light and the direction connecting the light source and the monitoring light receiving element.
[0033] 好ましくは、受発光ユニットは、出射光の一部を透過する立上げミラーをさらに含み[0033] Preferably, the light emitting / receiving unit further includes a rising mirror that transmits a part of the emitted light.
、モニタ用受光素子は、立上げミラーを透過する光を受光する。 The monitor light receiving element receives light transmitted through the rising mirror.
[0034] 好ましくは、受発光ユニットは、反射光を検出する受光素子をさらに含む。 [0034] Preferably, the light receiving / emitting unit further includes a light receiving element that detects reflected light.
[0035] この発明のさらに他の局面によれば、記録媒体に対して情報を光学的に記録また は再生する光ピックアップ装置であって、出射光を出力する光源と出射光の一部を 受光するモニタ用受光素子とを含む受発光ユニットと、出射光とその出射光による記 録媒体からの反射光とが通過する開口部を有する支持板を有する複合光学素子とを 含む光集積ユニットと、出射光を記録媒体に集光する集光手段とを備える。開口部 は、光の進行方向と所定の方向とで定まる断面において、光が開口部を通過するの を防ぐ構造を有する。 According to still another aspect of the present invention, there is provided an optical pickup device for optically recording or reproducing information on or from a recording medium, comprising: a light source for outputting emitted light; A light receiving / emitting unit including a monitoring light receiving element, and a composite optical element having a support plate having an opening through which emitted light and reflected light of the emitted light from a recording medium pass. And an optical integrated unit including the optical integrated unit, and a condensing unit that condenses the emitted light on a recording medium. The opening has a structure for preventing light from passing through the opening in a cross section defined by a light traveling direction and a predetermined direction.
[0036] 好ましくは、開口部は、反射光の方向と光源とモニタ用受光素子とを結ぶ方向とで 定まる断面において、反射光がモニタ用受光素子に入射するのを防ぐ構造を有する 発明の効果  [0036] Preferably, the opening has a structure for preventing reflected light from entering the monitor light receiving element in a cross section defined by the direction of the reflected light and the direction connecting the light source and the monitor light receiving element.
[0037] この発明によれば、光の進行方向における所定の断面と異なる断面において、光 の経路が必要以上に制限されない。  According to the present invention, the light path is not unnecessarily limited in a cross section different from the predetermined cross section in the light traveling direction.
図面の簡単な説明  Brief Description of Drawings
[0038] [図 1]この発明の実施の形態を説明する背景としての光ピックアップ装置 200の概略 的な構成を示した概略構成図である。  FIG. 1 is a schematic configuration diagram showing a schematic configuration of an optical pickup device 200 as a background explaining an embodiment of the present invention.
[図 2]この発明の実施の形態を説明する背景としての他の光ピックアップ装置 300の 概略的な構成を示した概略構成図である。  FIG. 2 is a schematic configuration diagram showing a schematic configuration of another optical pickup device 300 as a background explaining an embodiment of the present invention.
[図 3]この発明の実施の形態による光ピックアップ装置 20の側断面から見た構成を示 した側断面図である。  FIG. 3 is a side sectional view showing a configuration of the optical pickup device 20 according to the embodiment of the present invention as viewed from a side section.
[図 4]この発明の実施の形態による光ピックアップ装置 20の平断面から見た構成を示 した平断面図である。  FIG. 4 is a plan sectional view showing a configuration of the optical pickup device 20 according to the embodiment of the present invention as viewed from a plan section.
[図 5]この発明の実施の形態による複合光学素子 55の物理的な構成について示した 図である。  FIG. 5 is a diagram showing a physical configuration of a composite optical element 55 according to an embodiment of the present invention.
[図 6]この発明の実施の形態による複合光学素子 55にほぼ平行光が入射した場合 について示した図である。  FIG. 6 is a diagram showing a case where substantially parallel light is incident on the composite optical element 55 according to the embodiment of the present invention.
[図 7]この発明の実施の形態による複合光学素子 55に発散光が入射した場合につ いて示した図である。  FIG. 7 is a diagram illustrating a case where divergent light is incident on the composite optical element 55 according to the embodiment of the present invention.
[図 8]この発明の実施の形態による複合光学素子 55Aの物理的な構成を示した図で ある。  FIG. 8 is a diagram showing a physical configuration of a composite optical element 55A according to the embodiment of the present invention.
[図 9]この発明の実施の形態による光ピックアップ装置 20において対物レンズ 8が- ァ側にあるときの状態を示した図である。 [図 10]この発明の実施の形態による光ピックアップ装置 20において対物レンズ 8がフ ァー側にあるときの状態を示した図である。 FIG. 9 is a diagram showing a state when the objective lens 8 is on the outer side in the optical pickup device 20 according to the embodiment of the present invention. FIG. 10 is a diagram showing a state when the objective lens 8 is on the far side in the optical pickup device 20 according to the embodiment of the present invention.
[図 11]光ディスク装置等に用いられる従来の光ピックアップ装置 100の概略的な構成 を示した概略構成図である。  FIG. 11 is a schematic configuration diagram showing a schematic configuration of a conventional optical pickup device 100 used for an optical disk device or the like.
[図 12]光ピックアップ装置のフォーカス引き込み動作における一般的なフォーカス誤 差信号の曲線を表わした図である。  FIG. 12 is a diagram illustrating a curve of a general focus error signal in a focus pull-in operation of the optical pickup device.
符号の説明  Explanation of symbols
[0039] 1, 211 半導体レーザ、 2, 3, 52, 53 光学基板、 4, 204 モニタ用受光素子、 5 , 55, 55A 複合光学素子、 7 コリメートレンズ、 8, 102, 213 対物レンズ、 10 光 磁気ディスク、 11, 51, 51A 開口部、 11a 側断面下部、 l ib 側断面上部、 11c 平断面下部、 l id 平断面上部、 12, 50, 50A 支持板、 14, 210 パッケージ、 15 光集積ユニット、 20, 100, 200 光ピックアップ装置、 32, 34a, 34b 偏光ホログ ラム、 35, 216 グレーティング、 37a, 37b, 105, 215 光検出器、 40 立上げミラ 一ブロック、 40a, 206 立上げミラー、 41 サブマウント、 43 突起部、 54 部品、 62 , 63 光学素子、 101 ホログラムレーザユニット、 103 光ディスク、 104 半導体レ 一ザ素子、 106 封止カン、 205 反射部、 212 第 1の偏光分離手段、 214 第 2の 偏光分離手段、 230 光磁気記録媒体、 241 基材。  [0039] 1, 211 semiconductor laser, 2, 3, 52, 53 optical substrate, 4, 204 monitor light receiving element, 5, 55, 55A composite optical element, 7 collimating lens, 8, 102, 213 objective lens, 10 light Magnetic disk, 11, 51, 51A opening, 11a side cross section lower, lib side cross section upper, 11c flat cross section lower, lid flat cross section upper, 12, 50, 50A support plate, 14, 210 package, 15 optical integrated unit , 20, 100, 200 optical pickup device, 32, 34a, 34b polarization hologram, 35, 216 grating, 37a, 37b, 105, 215 photodetector, 40 start-up mirror one block, 40a, 206 start-up mirror, 41 Submount, 43 protrusion, 54 parts, 62, 63 optical element, 101 hologram laser unit, 103 optical disk, 104 semiconductor laser element, 106 sealing can, 205 reflecting part, 212 first polarization separation means, 214 2. Polarization separation means, 230 magneto-optical recording medium, 241 substrate.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0040] 以下、この発明の実施の形態について図面を参照して詳しく説明する。なお、図中 同一または相当部分には同一符号を付してその説明は繰り返さない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding portions have the same reference characters allotted, and description thereof will not be repeated.
[0041] 図 1は、この発明の実施の形態を説明する背景としての光ピックアップ装置 200の 概略的な構成を示した概略構成図である。 FIG. 1 is a schematic configuration diagram showing a schematic configuration of an optical pickup device 200 as a background explaining an embodiment of the present invention.
[0042] 図 1を参照して、光ピックアップ装置 200は、光磁気記録媒体 230の情報信号を検 出し、ノ ッケージ 210と、対物レンズ 213と、基材 241とを備える。パッケージ 210は、 半導体レーザ 211と、第 1の偏光分離手段 212と、反射部 205を有する第 2の偏光分 離手段 214と、光検出器 215と、グレーティング 216と、モニタ用受光素子 204とが一 体に形成された光集積ユニットである。 Referring to FIG. 1, an optical pickup device 200 detects an information signal of a magneto-optical recording medium 230, and includes a knockout 210, an objective lens 213, and a base material 241. The package 210 includes a semiconductor laser 211, a first polarization separation unit 212, a second polarization separation unit 214 having a reflection unit 205, a photodetector 215, a grating 216, and a monitor light receiving element 204. This is an integrated optical unit.
[0043] グレーティング 216は、半導体レーザ 211から出射される光をトラッキングのための 3ビーム(図 1では明示せず)に分割する。対物レンズ 213は、半導体レーザ 211から 出射される光を光磁気記録媒体 230の記録面上に合焦する。基材 241は、たとえば ガラス製であって、半導体レーザ 211と対物レンズ 213との間に配置される。 [0043] The grating 216 controls the light emitted from the semiconductor laser 211 for tracking. Divide into three beams (not explicitly shown in Figure 1). The objective lens 213 focuses the light emitted from the semiconductor laser 211 on the recording surface of the magneto-optical recording medium 230. The base material 241 is made of, for example, glass and is arranged between the semiconductor laser 211 and the objective lens 213.
[0044] 第 1の偏光分離手段 212は、基材 241の光磁気記録媒体 230側の面に設けられ、 対物レンズ 213を介した光磁気記録媒体 230からの反射光を光磁気記録媒体 230 の半径方向 (X方向)に分離する。第 2の偏光分離手段 214は、基材 241のノ^ケ一 ジ 210側の面に設けられ、第 1の偏光分離手段 212によって分離された反射光をさら に分離する。光検出器 215は、第 2の偏光分離手段 214によって分離された各ビー ム(図 1では明示せず)を受光する。  The first polarization separation means 212 is provided on the surface of the base material 241 on the side of the magneto-optical recording medium 230, and reflects reflected light from the magneto-optical recording medium 230 through the objective lens 213 to the magneto-optical recording medium 230. Separates in the radial direction (X direction). The second polarized light separating means 214 is provided on the surface of the substrate 241 on the side of the package 210, and further separates the reflected light separated by the first polarized light separating means 212. The photodetector 215 receives each beam (not explicitly shown in FIG. 1) separated by the second polarization separation means 214.
[0045] 第 1の偏光分離手段 212は、光磁気記録媒体 230からの反射光のカー回転角を増 倍するェンノ、ンス機能を有するための手段として配置されている。第 2の偏光分離手 段 214は、光磁気信号の差動動作およびサーボ信号検出等に用いられる。  The first polarization separation means 212 is arranged as a means for having a function of increasing the Kerr rotation angle of the reflected light from the magneto-optical recording medium 230. The second polarization separation means 214 is used for differential operation of a magneto-optical signal, detection of a servo signal, and the like.
[0046] 光ピックアップ装置 200を用いて光磁気記録媒体 230に情報を記録する場合、半 導体レーザ 211から高出力光を安定して出射する必要がある。なお、当該高出力光 は、約 30mWから lOOmWの範囲の所定の出力に設定される。  When recording information on the magneto-optical recording medium 230 using the optical pickup device 200, it is necessary to stably emit high output light from the semiconductor laser 211. The high output light is set to a predetermined output in a range of about 30 mW to 100 mW.
[0047] モニタ用受光素子 204は、半導体レーザ 211から光磁気記録媒体 230へ出射され る光の光路力も外れて配置されている。モニタ用受光素子 204は、半導体レーザ 21 1の前面から出射される光のうち、光磁気記録媒体 230に到達しない部分の光 240 を検出する。図示しない制御回路は、検出された光出力の変動をフィードバックする ことにより、半導体レーザ 211から出射される光出力を一定に保つ。  The light receiving element for monitoring 204 is arranged so that the optical path force of the light emitted from the semiconductor laser 211 to the magneto-optical recording medium 230 is deviated. The monitoring light-receiving element 204 detects light 240 of a portion of the light emitted from the front surface of the semiconductor laser 211 that does not reach the magneto-optical recording medium 230. The control circuit (not shown) feeds back the detected fluctuation of the optical output to keep the optical output emitted from the semiconductor laser 211 constant.
[0048] 図 2は、この発明の実施の形態を説明する背景としての他の光ピックアップ装置 30 0の概略的な構成を示した概略構成図である。  FIG. 2 is a schematic configuration diagram showing a schematic configuration of another optical pickup device 300 as a background explaining an embodiment of the present invention.
[0049] 図 2を参照して、光ピックアップ装置 300は、パッケージ 210がパッケージ 310に置 き換えられた点においてのみ、図 1の光ピックアップ装置 200と異なる。したがって、 重複する部分の説明は、ここでは繰り返さない。ノ ッケージ 310は、ノ ッケージ 210 に立上げミラー 206が付加された構成となっている。立上げミラー 206は、半導体レ 一ザ 211とモニタ用受光素子 204との間に配置され、半導体レーザ 211から X方向 に出射される光の一部を透過して、モニタ用受光素子 204に導く。 [0050] ここで、図 1を参照して、対物レンズ 213を介した光磁気記録媒体 230からの反射 光 217は、対物レンズ 213が-ァ側にある場合 (点線で記載)を示す。また、図 2を参 照して、対物レンズ 213を介した光磁気記録媒体 230からの反射光 218は、対物レ ンズ 213がファー側にある場合 (点線で記載)を示す。反射光 217, 218は、いずれ も基材 241を通過し、モニタ用受光素子 204に入射する。 Referring to FIG. 2, optical pickup device 300 differs from optical pickup device 200 of FIG. 1 only in that package 210 is replaced with package 310. Therefore, description of overlapping parts will not be repeated here. The knockage 310 has a configuration in which a startup mirror 206 is added to the knockage 210. The rising mirror 206 is disposed between the semiconductor laser 211 and the monitoring light receiving element 204, and transmits a part of the light emitted from the semiconductor laser 211 in the X direction and guides the light to the monitoring light receiving element 204. . Here, with reference to FIG. 1, reflected light 217 from magneto-optical recording medium 230 via objective lens 213 shows a case where objective lens 213 is on the negative side (denoted by a dotted line). 2, the reflected light 218 from the magneto-optical recording medium 230 via the objective lens 213 indicates a case where the objective lens 213 is on the far side (denoted by a dotted line). Both of the reflected lights 217 and 218 pass through the base material 241 and enter the monitoring light receiving element 204.
[0051] このように、図 1, 2に示したモニタ用受光素子 204は、本来検出すべき半導体レー ザ 211の前面からの出射光以外の光を検出してしまう可能性がある。これにより、たと えば、フォーカス引き込み動作時の光出力モニタが不安定になる。この結果、フォー カス誤差信号レベルが不安定となり、正確なフォーカス引き込み動作が困難になると いう問題があった。以下では、このような問題点を解決する複合光学素子、光集積ュ ニットおよび光ピックアップ装置について詳述する。  As described above, there is a possibility that the monitoring light receiving element 204 shown in FIGS. 1 and 2 may detect light other than the light emitted from the front surface of the semiconductor laser 211 which should be originally detected. As a result, for example, the optical output monitor during the focus pull-in operation becomes unstable. As a result, there is a problem that the focus error signal level becomes unstable and an accurate focus pull-in operation becomes difficult. Hereinafter, a composite optical element, an optical integrated unit, and an optical pickup device that solve such a problem will be described in detail.
[0052] なお、以下に示す実施の形態では、光磁気記録用の光ピックアップ装置を例に説 明するが、この発明による複合光学素子、光集積ユニットおよび光ピックアップ装置 は、光磁気記録用だけには限られない。  In the following embodiments, an optical pickup device for magneto-optical recording will be described as an example. However, the composite optical element, optical integrated unit, and optical pickup device according to the present invention are only used for magneto-optical recording. Not limited to
[0053] 図 3は、この発明の実施の形態による光ピックアップ装置 20の側断面から見た構成 を示した側断面図である。  FIG. 3 is a side sectional view showing a configuration of the optical pickup device 20 according to the embodiment of the present invention as viewed from a side section.
[0054] 図 3を参照して、この発明の実施の形態による光ピックアップ装置 20は、光磁気デ イスク 10の情報信号を検出し、光集積ユニット 15と、対物レンズ 8と、コリメートレンズ 7とを備える。  Referring to FIG. 3, an optical pickup device 20 according to an embodiment of the present invention detects an information signal of a magneto-optical disk 10, and forms an optical integrated unit 15, an objective lens 8, a collimating lens 7, Is provided.
[0055] 光集積ユニット 15は、複合光学素子 5と、ノ¾ /ケージ 14とを含む。複合光学素子 5 は、支持板 12の上面および下面に光学基板 2, 3がそれぞれ位置合わせして固定さ れている。支持板 12は、中央部を光通過のためにくり貫いた開口部 11を有する。複 合光学素子 5は、光学基板 3をパッケージ 14内に入れ込んだ状態で、パッケージ 14 上に設置されている。  The optical integrated unit 15 includes the composite optical element 5 and the node / cage 14. In the composite optical element 5, optical substrates 2 and 3 are fixed to the upper surface and the lower surface of the support plate 12, respectively. The support plate 12 has an opening 11 which is hollowed out at the center for light transmission. The composite optical element 5 is installed on the package 14 with the optical substrate 3 inserted in the package 14.
[0056] パッケージ 14は、側断面から見て、半導体レーザ 1と、サブマウント 41と、立上げミ ラーブロック 40と、モニタ用受光素子 4とを少なくとも含む。ノ ッケージ 14は、半導体 レーザ 1と、モニタ用受光素子 4とを有する受発光ユニットである。ここで「側断面」とは 、半導体レーザ 1とモニタ用受光素子 4とを結ぶ方向の断面を意味する。 [0057] 図 3に示すように、側断面から見た複合光学素子 5は、開口部 11の開口幅 (または 開口径)力 側断面下部 11aと側断面上部 l ibとで異なって構成されている。好まし くは、開口部 11はたとえばコリメートレンズ 7の光源側の NA (Numerical Aperture)に おおむね沿う角度で傾斜して構成されている。また、図 1, 2に示した光ピックアップ 装置 200, 300のように、光ピックアップ装置の光学系を有限系、すなわち 1つの対 物レンズで構成した場合は、対物レンズの光源側の NAにおおむね沿う角度で開口 部を傾斜して構成することも可能である。 The package 14 includes at least the semiconductor laser 1, a submount 41, a start-up mirror block 40, and the monitoring light-receiving element 4 when viewed from a side cross section. The knockout 14 is a light receiving / emitting unit including the semiconductor laser 1 and the monitoring light receiving element 4. Here, the “side cross section” means a cross section in a direction connecting the semiconductor laser 1 and the monitoring light receiving element 4. As shown in FIG. 3, the composite optical element 5 viewed from the side cross section is configured such that the opening width (or opening diameter) force of the opening 11 is different between the lower side section 11a and the upper side section l ib. I have. Preferably, the opening 11 is formed to be inclined at an angle substantially along NA (Numerical Aperture) on the light source side of the collimating lens 7, for example. When the optical system of the optical pickup device is a finite system, that is, one objective lens, as in the optical pickup devices 200 and 300 shown in FIGS. 1 and 2, the NA on the light source side of the objective lens is approximately. It is also possible to configure the opening to be inclined at an angle along it.
[0058] 半導体レーザ 1は、サブマウント 41上に設置されている。半導体レーザ 1の前面か ら出射された光 (P偏光)は、反射率 90%、透過率 5%程度に構成された立上げミラ 一 40aに向かう。立上げミラー 40aは、光学ガラス等力もなる立上げミラーブロック 40 の 45度面に光学膜等を形成することにより構成されて 、る。立上げミラー 40aで反射 された光は、光学基板 3に形成されたトラッキング用ビーム生成のためのグレーティン グ 35に入射する。  The semiconductor laser 1 is mounted on a submount 41. The light (P-polarized light) emitted from the front surface of the semiconductor laser 1 travels to a start-up mirror 40a having a reflectance of about 90% and a transmittance of about 5%. The rising mirror 40a is formed by forming an optical film or the like on the 45-degree surface of the rising mirror block 40 that also has the strength of optical glass. The light reflected by the rising mirror 40a is incident on a grating 35 formed on the optical substrate 3 for generating a tracking beam.
[0059] 一方、立上げミラー 40aを透過した光は、立上げミラーブロック 40をさらに通過し、 モニタ用受光素子 4に入射する。モニタ用受光素子 4は、半導体レーザ 1の前面から の出射光を検出する。図示しない制御回路は、検出された出力光量の変動をフィー ドバックすることにより、半導体レーザ 1から出射される光出力を一定に保つ。  On the other hand, the light transmitted through the rising mirror 40 a further passes through the rising mirror block 40 and enters the monitoring light receiving element 4. The monitoring light-receiving element 4 detects light emitted from the front surface of the semiconductor laser 1. The control circuit (not shown) keeps the light output emitted from the semiconductor laser 1 constant by feeding back the detected fluctuation of the output light amount.
[0060] グレーティング 35を通過した光は、光学基板 2およびコリメートレンズ 7を通過し、対 物レンズ 8によって光磁気ディスク 10の記録面上に集光される。光磁気ディスク 10か らの反射光は、光力一効果の原理により、記録された情報に基づき偏光面がカー回 転するため、わずかに S偏光成分を有している。光磁気ディスク 10からの反射光は、 光学基板 2に形成された偏光ホログラム 32に入射する。  The light passing through the grating 35 passes through the optical substrate 2 and the collimating lens 7, and is condensed on the recording surface of the magneto-optical disk 10 by the objective lens 8. The reflected light from the magneto-optical disk 10 has a slight S-polarized component because the plane of polarization rotates Kerr based on the recorded information according to the principle of the optical power effect. The reflected light from the magneto-optical disk 10 enters a polarization hologram 32 formed on the optical substrate 2.
[0061] 偏光ホログラム 32は、 P偏光の 0次回折効率が 77%、 ± 1次回折効率がともに 11 %で、 S偏光の 0次回折効率が 0%、 ± 1次回折効率がともに 44%に構成されている 。偏光ホログラム 32は、光磁気ディスク 10からの反射光のカー回転角を見かけ上増 倍する機能を有する。  The polarization hologram 32 has a 0-order diffraction efficiency of 77% for P-polarized light, 11% for ± 1st-order diffraction efficiency, and a 0% -order diffraction efficiency for S-polarized light and 44% for ± 1st-order diffraction efficiency. Is configured to. The polarization hologram 32 has a function of apparently multiplying the Kerr rotation angle of the reflected light from the magneto-optical disk 10.
[0062] 図 4は、この発明の実施の形態による光ピックアップ装置 20の平断面から見た構成 を示した平断面図である。 [0063] 図 4に示した光ピックアップ装置 20は、側断面図が平断面図に変わったことにより、 光集積ユニット 14の見え方が異なっている。以下では、図 3と異なる点について、主 に説明する。なお、ここで「平断面」とは、図 3の「側断面」に垂直な断面のことを意味 する。 FIG. 4 is a plan sectional view showing a configuration of the optical pickup device 20 according to the embodiment of the present invention as viewed from a plan section. In the optical pickup device 20 shown in FIG. 4, the appearance of the optical integrated unit 14 is different because the side sectional view has been changed to the plan sectional view. In the following, differences from FIG. 3 will be mainly described. Here, the “planar section” means a section perpendicular to the “side section” in FIG.
[0064] パッケージ 14は、平断面から見て、半導体レーザ 1と、サブマウント 41と、立上げミ ラー 40aと、光検出器 37a, 37bとを少なくとも含む。ここで「平断面」とは、半導体レ 一ザ 1とモニタ用受光素子 4とを結ぶ方向に垂直な断面を意味する。  The package 14 includes at least the semiconductor laser 1, a submount 41, a start-up mirror 40a, and photodetectors 37a and 37b when viewed from a plan section. Here, the “planar section” means a section perpendicular to the direction connecting the semiconductor laser 1 and the monitor light-receiving element 4.
[0065] 図 4に示すように、平断面から見た複合光学素子 5は、偏光ホログラム 32による回 折光 32a, 32bが X方向に生じる。そのため、開口部 11の平断面下部 11cおよび平 断面上部 l idの幅は、図 3の側断面下部 11aおよび側断面上部 l ibの幅より大きく 形成されている。  As shown in FIG. 4, in the composite optical element 5 viewed from a plane cross section, the diffraction lights 32 a and 32 b by the polarization hologram 32 are generated in the X direction. Therefore, the width of the lower section 11c and the upper section lid of the opening 11 is formed larger than the width of the lower section 11a and the upper section lib of FIG.
[0066] 好ましくは、開口部 11の側断面下部 11aおよび側断面上部 l ibの幅は、公差を考 慮して、その部分を通過する光束の直径よりわずかに大きく形成されている。また、加 ェの点などを考慮して、平断面下部 11cおよび平断面上部 l idの幅は、たとえば同 一となるように構成される。この場合、平断面における支持板 12の開口部 11は、光 軸方向に対して平行に形成されることになる。  [0066] Preferably, the width of the lower side section 11a and the upper side section ib of the opening 11 is formed slightly larger than the diameter of the light beam passing therethrough in consideration of tolerance. In addition, the width of the lower section 11c and the upper section lid of the flat section are configured to be the same, for example, in consideration of the addition point and the like. In this case, the opening 11 of the support plate 12 in the plane cross section is formed parallel to the optical axis direction.
[0067] 光磁気ディスク 10からの反射光が偏光ホログラム 32を通過することにより、反射光 の P偏光と S偏光とに数十度程度の位相差が発生する場合がある。この場合、適当な 位相差を与える位相差板 39b, 39aを配置することにより、 + 1次回折光 32bおよび — 1次回折光 32aに生じた位相差を補正することができる。  When the reflected light from the magneto-optical disk 10 passes through the polarization hologram 32, a phase difference of about several tens degrees may occur between the P-polarized light and the S-polarized light of the reflected light. In this case, by arranging the phase difference plates 39b and 39a for giving an appropriate phase difference, it is possible to correct the phase difference generated in the + 1st-order diffracted light 32b and the -first-order diffracted light 32a.
[0068] + 1次回折光 32bおよび 1次回折光 32aは、光学基板 3に形成された偏光ホログ ラム 34b, 34aにそれぞれ入射し、所定の方向に分離された後、光検出器 37b, 37a においてそれぞれ検出される。ここで、偏光ホログラム 34bは光磁気信号検出および サーボ信号検出のための光分離手段であり、偏光ホログラム 34aは光磁気信号検出 のための光分離手段である。  [0068] The + first-order diffracted light 32b and the first-order diffracted light 32a respectively enter the polarization holograms 34b and 34a formed on the optical substrate 3 and are separated in predetermined directions. Is detected. Here, the polarization hologram 34b is a light separating means for detecting a magneto-optical signal and a servo signal, and the polarizing hologram 34a is a light separating means for detecting a magneto-optical signal.
[0069] 以上、図 3, 4を用いて説明したように、この発明の実施の形態による光ピックアップ 装置 20の複合光学素子 5は、半導体レーザ 1とモニタ用受光素子 4とを結ぶ方向の 断面 (側断面)において、開口部 11の開口幅が側断面下部 11aと側断面上部 l ibと で異なって構成されている。一方、半導体レーザ 1とモニタ用受光素子 4とを結ぶ方 向に垂直な断面(平断面)では、複合光学素子 5は、開口部 11の平断面下部 11cお よび平断面上部 l idの幅は、図 3の側断面下部 11aおよび側断面上部 l ibの幅より 大きく形成されている。 As described above with reference to FIGS. 3 and 4, the composite optical element 5 of the optical pickup device 20 according to the embodiment of the present invention has a cross section in the direction connecting the semiconductor laser 1 and the monitoring light receiving element 4. In the (side section), the opening width of the opening 11 is the lower side section 11a and the upper side section l ib. Are configured differently. On the other hand, in a cross section (planar cross section) perpendicular to the direction connecting the semiconductor laser 1 and the monitor light receiving element 4, the composite optical element 5 has a flat cross section lower portion 11c and a flat cross section upper lid of the opening 11 having a width. It is formed larger than the width of the lower side section 11a and the upper side section lib of FIG.
[0070] このように複合光学素子 5を構成することによって、モニタ用受光素子 4に所望の光 を入射させつつ、光集積ユニット 15に入射する光の経路を必要以上に制限せずに 済む。これにより、光集積ユニット 15内の部品等を柔軟に配置することができる。  By configuring the composite optical element 5 in this way, it is possible to make the desired light incident on the monitoring light receiving element 4 and to unnecessarily restrict the path of the light incident on the optical integrated unit 15. Thereby, components and the like in the optical integrated unit 15 can be flexibly arranged.
[0071] 以下では、側断面から見た複合光学素子 5の具体的な構成について、図 5〜8を参 照して詳しく説明する。なお、複合光学素子 5は、汎用性のある素子であって、図 3, 4の光ピックアップ装置 20以外にも様々な用途に用いることが可能である。そのため 、以下の図 5〜8では、図 3, 4とは異なる参照番号を用いて説明する。  Hereinafter, a specific configuration of the composite optical element 5 viewed from a side cross section will be described in detail with reference to FIGS. The composite optical element 5 is a versatile element, and can be used for various purposes other than the optical pickup device 20 shown in FIGS. Therefore, the following FIGS. 5 to 8 will be described using reference numerals different from those in FIGS.
[0072] 図 5は、この発明の実施の形態による複合光学素子 55の物理的な構成について示 した図である。  FIG. 5 is a diagram showing a physical configuration of the composite optical element 55 according to the embodiment of the present invention.
[0073] 図 5を参照して、この発明の実施の形態による複合光学素子 55は、支持板 50の一 方の面 56bおよび他方の面 56aに、光学基板 52, 53がそれぞれ位置合わせして固 定されている。支持板 50は、中央に開口部 51を有し、開口部 51を通って一方向ま たは双方向に光通過が可能である。複合光学素子 55は、たとえば、図 1, 2の基材 2 41の部分に配置される。  Referring to FIG. 5, in composite optical element 55 according to the embodiment of the present invention, optical substrates 52 and 53 are aligned with one surface 56b and the other surface 56a of support plate 50, respectively. Fixed. The support plate 50 has an opening 51 at the center, and light can pass through the opening 51 in one direction or two directions. The composite optical element 55 is arranged, for example, at the portion of the base material 241 in FIGS.
[0074] 光学基板 52, 53上には、支持板 50の開口部 51を通過する光を分離、分割、回折 、偏光、絞り、フィルタリング、位相制御等の制御を行なう光学素子 62, 63がそれぞ れ形成されている。光学素子 62, 63としては、たとえば、ホログラム素子、回折格子、 液晶素子、光学結晶等がある。支持板 50および光学基板 52, 53は一体化され、全 体として複合光学素子 55を形成して ヽる。  [0074] On optical substrates 52 and 53, optical elements 62 and 63 that perform control such as separation, division, diffraction, polarization, stop, filtering, and phase control of light passing through opening 51 of support plate 50 are provided. Each is formed. Examples of the optical elements 62 and 63 include a hologram element, a diffraction grating, a liquid crystal element, and an optical crystal. The support plate 50 and the optical substrates 52 and 53 are integrated to form a composite optical element 55 as a whole.
[0075] 図 5に示すように、開口部 51の側断面下部 51aの幅は、側断面上部 51bの幅より 絞られている。開口部 51の側断面下部 51aおよび側断面上部 51bの幅は、公差を 考慮して、その部分を通過する光束の直径よりわずかに大きく形成されていることが 好ましい。複合光学素子 55の上部から集束光 57Aが入射する場合、開口部 51が図 5のように絞られているため、開口部 51を通過して光学基板 53側に出射される集束 光 57Aは、図 5のように制限される。 As shown in FIG. 5, the width of the lower side section 51a of the opening 51 is smaller than the width of the upper side section 51b. The width of the lower side section 51a and the upper side section 51b of the opening 51 is preferably formed slightly larger than the diameter of the light beam passing therethrough in consideration of tolerance. When the converging light 57A is incident from the upper part of the composite optical element 55, since the aperture 51 is narrowed as shown in FIG. Light 57A is restricted as shown in FIG.
[0076] 複合光学素子 55を上記のような構成とすることにより、複合光学素子 55の下部に 設置された部品 54へ直接光 58Aが入射するのを避けることができる。部品 54として は、たとえば、光検出器等のセンサ、光が当たると温度上昇等が起こり誤動作を起こ すような部品などが挙げられる。支持板 50は、直接光 58Aが支持板 50を通過しない ように、不透明な素材で構成される必要がある。 [0076] By configuring the composite optical element 55 as described above, it is possible to prevent the light 58A from directly entering the component 54 installed below the composite optical element 55. Examples of the component 54 include a sensor such as a photodetector, and a component that, when exposed to light, causes a temperature rise or the like to cause a malfunction. The support plate 50 needs to be made of an opaque material so that the direct light 58A does not pass through the support plate 50.
[0077] 図 6は、この発明の実施の形態による複合光学素子 55にほぼ平行光が入射した場 合にっ 、て示した図である。 FIG. 6 is a diagram illustrating a case where substantially parallel light is incident on the composite optical element 55 according to the embodiment of the present invention.
[0078] 図 6に示すように、複合光学素子 55に平行光 57Bが入射した場合であっても、開 口部 51を通過して光学基板 53側に出射される平行光 57Bは、図 6のように制限され る。したがって、平行光の場合であっても、複合光学素子 55の下部に設置された部 品 54へ直接光 58Bが入射するのを防ぐことができる。 As shown in FIG. 6, even when the parallel light 57B is incident on the composite optical element 55, the parallel light 57B that passes through the opening 51 and exits to the optical substrate 53 side does not It is restricted as follows. Therefore, even in the case of parallel light, it is possible to prevent the light 58B from directly entering the component 54 installed below the composite optical element 55.
[0079] 図 7は、この発明の実施の形態による複合光学素子 55に発散光が入射した場合に ついて示した図である。 FIG. 7 is a diagram showing a case where divergent light is incident on composite optical element 55 according to the embodiment of the present invention.
[0080] 図 7に示すように、複合光学素子 55に発散光 57Cが入射した場合であっても、開 口部 51を通過して光学基板 53側に出射される発散光 57Cは、図 7のように制限され る。したがって、発散光の場合であっても、複合光学素子 55の下部に設置された部 品 54へ直接光 58Cが入射するのを防ぐことができる。 As shown in FIG. 7, even when the divergent light 57C is incident on the composite optical element 55, the divergent light 57C that passes through the opening 51 and is emitted toward the optical substrate 53 is the same as in FIG. It is restricted as follows. Therefore, even in the case of divergent light, it is possible to prevent the light 58C from directly entering the component 54 installed below the composite optical element 55.
[0081] 図 8は、この発明の実施の形態による複合光学素子 55Aの物理的な構成を示した 図である。 FIG. 8 is a diagram showing a physical configuration of a composite optical element 55A according to the embodiment of the present invention.
[0082] 図 8を参照して、複合光学素子 55Aは、開口部 51Aの形状が図 4〜7の開口部 51 と異なっている。具体的には、開口部 51Aは、光軸方向と平行に形成されており、側 断面下部 51aの両側面に突起部 43を設けている。このような構成であっても、複合 光学素子 55Aの下部に設置された部品 54へ直接光が入射するのを防ぐことができ る。  Referring to FIG. 8, in composite optical element 55A, the shape of opening 51A is different from that of openings 51 in FIGS. Specifically, the opening 51A is formed in parallel with the optical axis direction, and the projections 43 are provided on both side surfaces of the lower side section 51a. Even with such a configuration, it is possible to prevent light from directly entering the component 54 installed below the composite optical element 55A.
[0083] 次に、この発明の実施の形態による光ピックアップ装置 20の側断面から見たときの 動作について、図 9, 10を用いて説明する。なお、図 9, 10の縮尺については、記載 の都合上任意であり、光ピックアップ装置 20を構成する複合光学素子 5、光集積ュ ニット 15、対物レンズ 8、コリメートレンズ 7等の寸法に基づいた縮尺ではなぐまた、 対物レンズ 8およびコリメートレンズ 7などの焦点距離を考慮した相対的な寸法に基 づいた縮尺でもない。 Next, an operation of the optical pickup device 20 according to the embodiment of the present invention as viewed from a side cross section will be described with reference to FIGS. Note that the scale of FIGS. 9 and 10 is arbitrary for convenience of description, and the composite optical element 5 and the optical integrated The scale is not based on the dimensions of the knit 15, the objective lens 8, the collimating lens 7, etc. The scale is not based on the relative dimensions of the objective lens 8, the collimating lens 7, etc. taking into account the focal length.
[0084] 図 9は、この発明の実施の形態による光ピックアップ装置 20において対物レンズ 8 が-ァ側にあるときの状態 (破線)を示した図である。なお、実線で示した光路は、対 物レンズ 8が合焦点位置にある状態を示す。  FIG. 9 is a diagram showing a state (dashed line) when the objective lens 8 is on the negative side in the optical pickup device 20 according to the embodiment of the present invention. The optical path shown by the solid line indicates a state where the objective lens 8 is at the focal point.
[0085] 図 9を参照して、破線で示した対物レンズ 8は、ァクチユエータ(図示せず)によって 光磁気ディスク 10に近づく方向(ユア側)に 500 m程度揺動される間のある状態に 位置していることを示す。ここで、ある状態とは、ユア側へのフォーカス引き込み時に おいて、光磁気ディスク 10からの反射光のビーム径がパッケージ 14の内部で (合焦 時のビーム径より)拡大する状態を指す。  Referring to FIG. 9, objective lens 8 indicated by a broken line is in a state where it is rocked by about 500 m in a direction approaching magneto-optical disk 10 (your side) by an actuator (not shown). Indicates that it is located. Here, the certain state refers to a state in which the beam diameter of the reflected light from the magneto-optical disk 10 expands inside the package 14 (than the beam diameter at the time of focusing) at the time of focusing pulling to the near side.
[0086] 図 9に示すように、対物レンズが-ァ側にある場合、光磁気ディスク 10からの反射 光 21は、おおむね支持板 12の開口部 11に沿ってパッケージ 14内に入射し、モニタ 用受光素子 4には直接入射しない。これにより、フォーカス引き込み動作時において も、半導体レーザ 1の前面から出射される光出力を一定に保つことができる。この結 果、フォーカス誤差信号のレベルが安定し、正確なフォーカス引き込み動作が可能と なる。  [0086] As shown in Fig. 9, when the objective lens is on the negative side, the reflected light 21 from the magneto-optical disk 10 generally enters the package 14 along the opening 11 of the support plate 12 and is monitored. Does not directly enter the light receiving element 4 for use. Thereby, even during the focus pull-in operation, the light output emitted from the front surface of the semiconductor laser 1 can be kept constant. As a result, the level of the focus error signal is stabilized, and an accurate focus pull-in operation can be performed.
[0087] 図 10は、この発明の実施の形態による光ピックアップ装置 20において対物レンズ 8 力 Sファー側にあるときの状態 (破線)を示した図である。なお、実線で示した光路は、 対物レンズ 8が合焦点位置にある状態を示す。  FIG. 10 is a diagram showing a state (broken line) when the objective lens 8 is on the S-far side in the optical pickup device 20 according to the embodiment of the present invention. The optical path shown by the solid line indicates a state where the objective lens 8 is at the focal point.
[0088] 図 10を参照して、破線で示した対物レンズ 8は、ァクチユエータ(図示せず)によつ て光磁気ディスク 10から遠ざ力る方向(ファー側)に 500 m程度揺動される間のあ る状態に位置していることを示す。ここで、ある状態とは、ファー側へのフォーカス引き 込み時において、光磁気ディスク 10からの反射光のビーム径がパッケージ 14の内部 で (合焦時のビーム径より)拡大する状態を指す。  Referring to FIG. 10, objective lens 8 indicated by a broken line is swung by an actuator (not shown) by about 500 m in a direction (far side) away from magneto-optical disk 10. Indicates that the vehicle is in a certain state for a while. Here, the certain state refers to a state in which the beam diameter of the reflected light from the magneto-optical disk 10 expands inside the package 14 (than the beam diameter at the time of focusing) at the time of focusing on the fur side.
[0089] 図 10に示すように、対物レンズがファー側にある場合、光磁気ディスク 10からの反 射光 22は、半導体レーザ 1の発光点より上部 Zaで一旦集光する。その後、光磁気デ イスク 10からの反射光 22は、ビーム径が細くなつた状態で光集積ユニット 15へ入射 し、ノ ッケージ 14の内部でビーム径が発散する。 As shown in FIG. 10, when the objective lens is on the far side, the reflected light 22 from the magneto-optical disk 10 is once collected at the upper Za from the emission point of the semiconductor laser 1. After that, the reflected light 22 from the magneto-optical disk 10 enters the optical integrated unit 15 with a narrow beam diameter. The beam diameter diverges inside the knock 14.
[0090] ここで、ノ ッケージ 14の内部に入射する光磁気ディスク 10からの反射光 22aは、支 持板 12の開口部 11の側断面下部 11aの幅で制限される。側断面下部 11aの幅は、 モニタ用受光素子 4に反射光 22が直接入射しない範囲で構成されている。そのため 、フォーカス引き込み動作時においても、光磁気ディスク 10からの反射光 22aがモ- タ用受光素子に入射しない。これにより、半導体レーザ 1から出射される光出力を一 定に保つことができる。この結果、フォーカス誤差信号のレベルが安定し、正確なフ オーカス引き込み動作が可能となる。  Here, the reflected light 22 a from the magneto-optical disk 10 that enters the inside of the knock 14 is limited by the width of the lower part 11 a of the support plate 12 in the side section of the opening 11. The width of the lower portion 11a of the side section is configured so that the reflected light 22 does not directly enter the monitor light receiving element 4. Therefore, even during the focus pull-in operation, the reflected light 22a from the magneto-optical disk 10 does not enter the motor light receiving element. As a result, the optical output emitted from the semiconductor laser 1 can be kept constant. As a result, the level of the focus error signal is stabilized, and an accurate focus pull-in operation becomes possible.
[0091] なお、支持板 12の開口部 11の形状は、図 9, 10に示した形状に限るものではなく 、たとえば、図 8に示すように、開口部 51の下部に突起部 43を設けた構成であっても よい。  The shape of the opening 11 of the support plate 12 is not limited to the shape shown in FIGS. 9 and 10. For example, as shown in FIG. 8, a projection 43 is provided below the opening 51. May be adopted.
[0092] 以上のように、この発明の実施の形態による複合光学素子は、光源とモニタ用受光 素子とを結ぶ方向の断面において、反射光がモニタ用受光素子に入射しない構造 の開口部を有する。これにより、一方向力 入射し、開口部を通過して出射した光が 、配置された別の部品へ直接入射するのを防ぐことが可能となる。光ピックアップ装 置を構成する光集積ユニット等に当該複合光学素子を用いることにより、半導体レー ザの光出力モニタ用の受光素子に光記録媒体力 の反射光が直接入射することを 防止することができる。  As described above, the composite optical element according to the embodiment of the present invention has, in a cross section in the direction connecting the light source and the monitoring light receiving element, an opening having a structure in which reflected light does not enter the monitoring light receiving element. . This makes it possible to prevent the light that has entered the one-way force and exited through the opening from directly entering another component arranged. By using the composite optical element in an optical integrated unit or the like constituting an optical pickup device, it is possible to prevent reflected light of the optical recording medium from being directly incident on a light receiving element for monitoring an optical output of a semiconductor laser. it can.
[0093] また、この発明の実施の形態による光集積ユニットは、光記録媒体に集光する集光 手段と併せて用いることにより、フォーカス引き込み動作時においても、光記録媒体 力もの反射光がモニタ用受光素子に直接入射しな 、ようにすることができる。これに より、フォーカス誤差信号のレベルが安定するため、光記録媒体に集光する集光手 段と併せて用いることにより、正確なフォーカス引き込み動作が可能となる。  [0093] Further, the optical integrated unit according to the embodiment of the present invention is used in combination with the light condensing means for condensing light on the optical recording medium, so that the reflected light of the optical recording medium can be monitored even during the focus pull-in operation. Light can be prevented from directly entering the light receiving element for use. As a result, since the level of the focus error signal is stabilized, an accurate focus pull-in operation can be performed by using the focus error signal together with a light focusing means for focusing the light on the optical recording medium.
[0094] また、この発明の実施の形態による光ピックアップ装置は、フォーカス引き込み動作 時においても、光記録媒体力 の反射光がモニタ用受光素子に直接入射しないよう にすることができる。これにより、フォーカス誤差信号のレベルが安定するため、正確 なフォーカス引き込み動作が可能となる。  [0094] Further, the optical pickup device according to the embodiment of the present invention can prevent the reflected light of the optical recording medium from directly entering the monitor light receiving element even during the focus pull-in operation. As a result, the level of the focus error signal is stabilized, so that an accurate focus pull-in operation can be performed.
[0095] 今回開示された実施の形態はすべての点で例示であって制限的なものではないと 考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって 示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが 意図される。 [0095] The embodiments disclosed this time are examples in all respects and are not restrictive. Should be considered. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

Claims

請求の範囲 The scope of the claims
[1] 光の制御を行なう複合光学素子(5, 55, 55A)であって、  [1] A composite optical element (5, 55, 55A) for controlling light,
前記光が通過する開口部(11, 51, 51A)を有する支持板(12, 50, 50A)を備え 前記開口部(11, 51, 51A)は、前記光の進行方向と所定の方向とで定まる断面 において、前記光が前記開口部(11, 51, 51A)を通過するのを防ぐ構造を有する、 複合光学素子。  A support plate (12, 50, 50A) having an opening (11, 51, 51A) through which the light passes, wherein the opening (11, 51, 51A) is provided in a direction in which the light travels and in a predetermined direction. A composite optical element having a structure for preventing the light from passing through the openings (11, 51, 51A) in a determined cross section.
[2] 前記開口部(51)は、前記光の進行方向と所定の方向とで定まる断面において、前 記開口部(51)の一方の開口幅と他方の開口幅とが異なる、請求の範囲第 1項に記 載の複合光学素子。  [2] The opening (51) is characterized in that one opening width and the other opening width of the opening (51) are different from each other in a cross section defined by a traveling direction of the light and a predetermined direction. The composite optical element described in paragraph 1.
[3] 前記開口部(51)は、前記光の進行方向と所定の方向とで定まる断面において、前 記開口部(51)の一方の開口幅が他方の開口幅より小さい、請求の範囲第 2項に記 載の複合光学素子。  [3] The opening (51) is characterized in that, in a cross section defined by a traveling direction of the light and a predetermined direction, one opening width of the opening (51) is smaller than the other opening width. The composite optical element described in section 2.
[4] 前記開口部(51)は、前記光の進行方向と所定の方向とで定まる断面において、前 記開口部(51)の一方の開口と他方の開口とを結ぶ直線が前記光の進行方向に対 して傾斜している、請求の範囲第 2項に記載の複合光学素子。  [4] The opening (51) has a cross section defined by a traveling direction of the light and a predetermined direction, and a straight line connecting one opening and the other opening of the opening (51) is formed by a light traveling direction. 3. The composite optical element according to claim 2, wherein the composite optical element is inclined with respect to a direction.
[5] 前記開口部(51A)は、前記光の進行方向と所定の方向とで定まる断面において、 前記開口部(51A)の一方の開口の端面から内側に突起部 (43)を有する、請求の 範囲第 1項に記載の複合光学素子。  [5] The opening (51A) has a projection (43) inside from an end face of one opening of the opening (51A) in a cross section defined by a traveling direction of the light and a predetermined direction. 2. The composite optical element according to item 1, wherein
[6] 前記光の進行方向と所定の方向とで定まる断面と異なる断面における前記開口部  [6] The opening in a cross section different from a cross section determined by a traveling direction of the light and a predetermined direction
(11)の一方および他方の開口幅は、いずれも、前記光の進行方向と所定の方向と で定まる断面における前記開口部(11)の一方および他方の開口幅より大きい、請 求の範囲第 1項に記載の複合光学素子。  The width of one of the openings (11) and the width of the other of the openings (11) are larger than the width of one of the openings (11) and the other of the openings (11) in a cross section defined by the traveling direction of the light and a predetermined direction. 2. The composite optical element according to item 1.
[7] 前記複合光学素子 (5)は、記録媒体(10)に対して出射光を出力し、該記録媒体( 10)力 の反射光を受ける光集積ユニット(15)に含まれる複合光学素子(5)であつ て、該光集積ユニット(15)は、前記出射光を出力する光源(1)と、該出射光の一部 を受光するモニタ用受光素子 (4)とを含む受発光ユニット(14)を備えており、 前記開口部(11)は、前記反射光の方向と前記光源(1)と前記モニタ用受光素子( 4)とを結ぶ方向とで定まる断面において、前記反射光が前記モニタ用受光素子 (4) に入射するのを防ぐ構造を有する、請求の範囲第 1項に記載の複合光学素子。 [7] The composite optical element (5) is a composite optical element included in the optical integrated unit (15) that outputs emitted light to the recording medium (10) and receives reflected light of the recording medium (10). (5) The optical integrated unit (15) is a light receiving / emitting unit including a light source (1) for outputting the emitted light and a monitoring light receiving element (4) for receiving a part of the emitted light. (14), the opening (11), the direction of the reflected light, the light source (1) and the monitor light receiving element ( 2. The composite optical element according to claim 1, wherein the composite optical element has a structure that prevents the reflected light from being incident on the monitor light receiving element (4) in a cross section determined by a direction connecting the light receiving element and the light receiving element.
[8] 前記光集積ユニット(15)と前記記録媒体 (10)との間に設けられ、前記出射光を前 記記録媒体 (10)に集光する集光手段 (7, 8)をさらに備え、  [8] Light-collecting means (7, 8) provided between the optical integrated unit (15) and the recording medium (10), for condensing the emitted light on the recording medium (10) is further provided. ,
前記開口部(11)は、前記反射光の方向と前記光源(1)と前記モニタ用受光素子( 4)とを結ぶ方向とで定まる断面にぉ 、て、前記光源(1)側の開口と前記記録媒体(1 0)側の開口とを結ぶ直線が前記集光手段(7)の前記光源(1)側の開口数に沿う角 度で傾斜している、請求の範囲第 7項に記載の複合光学素子。  The opening (11) has a section defined by a direction of the reflected light and a direction connecting the light source (1) and the light receiving element for monitoring (4), and has an opening on the light source (1) side. 8. The method according to claim 7, wherein a straight line connecting to the opening on the recording medium (10) side is inclined at an angle along the numerical aperture on the light source (1) side of the condensing means (7). Composite optical element.
[9] 前記支持板(12)の前記光源(1)側の面に固定された第 1の光学基板 (3)と、 前記支持板(12)の前記記録媒体(10)側の面に固定された第 2の光学基板 (2)と をさらに備え、  [9] A first optical substrate (3) fixed to the surface of the support plate (12) on the light source (1) side, and fixed to a surface of the support plate (12) on the recording medium (10) side. And a second optical substrate (2),
前記第 1および第 2の光学基板(2, 3)は、前記出射光または前記反射光に対して 変化を与える光学素子(32, 34a, 34b, 35)をそれぞれ有する、請求の範囲第 7項 に記載の複合光学素子。  The claim 7, wherein the first and second optical substrates (2, 3) respectively have optical elements (32, 34a, 34b, 35) that change the outgoing light or the reflected light. 3. The composite optical element according to item 1.
[10] 前記光学素子(32, 34a, 34b)は、偏光分離性の光学素子である、請求の範囲第[10] The optical device according to claim 1, wherein the optical element (32, 34a, 34b) is a polarization-separating optical element.
9項に記載の複合光学素子。 Item 10. The composite optical element according to item 9.
[11] 記録媒体(10)に対して出射光を出力し、該記録媒体(10)力 の反射光を受ける 光集積ユニット( 15)であって、 [11] An optical integrated unit (15) which outputs emitted light to a recording medium (10) and receives reflected light of the recording medium (10),
前記出射光を出力する光源(1)と、前記出射光の一部を受光するモニタ用受光素 子 (4)とを含む受発光ユニット(14)と、  A light receiving / emitting unit (14) including a light source (1) for outputting the emitted light, and a monitoring light receiving element (4) for receiving a part of the emitted light;
前記出射光と該出射光による前記記録媒体からの反射光とが通過する開口部(11 , 51, 51A)を有する支持板(12, 50, 50A)を含む複合光学素子(5, 55, 55A)と を備え、  A composite optical element (5, 55, 55A) including a support plate (12, 50, 50A) having openings (11, 51, 51A) through which the emitted light and reflected light from the recording medium by the emitted light pass. ) And
前記開口部(11, 51, 51A)は、前記光の進行方向と所定の方向とで定まる断面 において、前記光が前記開口部(11, 51, 51A)を通過するのを防ぐ構造を有する、 光集積ユニット。  The opening (11, 51, 51A) has a structure for preventing the light from passing through the opening (11, 51, 51A) in a cross section defined by a traveling direction of the light and a predetermined direction. Optical integrated unit.
[12] 前記受発光ユニット(14)は、 [12] The light emitting / receiving unit (14)
前記出射光の一部を透過する立上げミラー (40)をさらに含み、 前記モニタ用受光素子 (4)は、前記立上げミラー (40)を透過する光を受光する、 請求の範囲第 11項に記載の光集積ユニット。 Further comprising a rising mirror (40) that transmits a part of the emitted light, The optical integrated unit according to claim 11, wherein the monitor light receiving element (4) receives light transmitted through the rising mirror (40).
[13] 前記受発光ユニット(14)は、前記反射光を検出する受光素子(37a, 37b)をさらに 含む、請求の範囲第 11項に記載の光集積ユニット。 13. The optical integrated unit according to claim 11, wherein said light emitting / receiving unit (14) further includes a light receiving element (37a, 37b) for detecting said reflected light.
[14] 記録媒体(10)に対して情報を光学的に記録または再生する光ピックアップ装置(2[14] An optical pickup device (2) for optically recording or reproducing information on a recording medium (10)
0)であって、 0)
前記出射光を出力する光源(1)と、前記出射光の一部を受光するモニタ用受光素 子 (4)とを含む受発光ユニット(14)と、前記出射光と該出射光による前記記録媒体 力もの反射光とが通過する開口部(11, 51, 51A)を有する支持板(12, 50, 50A) を含む複合光学素子 (5, 55, 55A)とを備える光集積ユニット(15)と、  A light receiving / emitting unit (14) including a light source (1) for outputting the emitted light and a monitoring light receiving element (4) for receiving a part of the emitted light; and the recording by the emitted light and the emitted light. An optical integrated unit (15) including a composite optical element (5, 55, 55A) including a support plate (12, 50, 50A) having an opening (11, 51, 51A) through which reflected light passes. When,
前記出射光を前記記録媒体 (10)に集光する集光手段 (7, 8)とを備え、 前記開口部(11, 51, 51A)は、前記光の進行方向と所定の方向とで定まる断面 において、前記光が前記開口部(11, 51, 51A)を通過するのを防ぐ構造を有する、 光ピックアップ装置。  Light-collecting means (7, 8) for condensing the emitted light on the recording medium (10), wherein the openings (11, 51, 51A) are determined by a traveling direction of the light and a predetermined direction. An optical pickup device, having a structure in a cross section, for preventing the light from passing through the openings (11, 51, 51A).
PCT/JP2005/008339 2004-05-13 2005-05-06 Composite optical element, optical integrated unit and optical pickup WO2005112016A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004143625A JP2005327363A (en) 2004-05-13 2004-05-13 Compound optical element, optical integrated unit, and optical pickup apparatus
JP2004-143625 2004-05-13

Publications (1)

Publication Number Publication Date
WO2005112016A1 true WO2005112016A1 (en) 2005-11-24

Family

ID=35394390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/008339 WO2005112016A1 (en) 2004-05-13 2005-05-06 Composite optical element, optical integrated unit and optical pickup

Country Status (2)

Country Link
JP (1) JP2005327363A (en)
WO (1) WO2005112016A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63118259U (en) * 1987-01-24 1988-07-30
JPH01287832A (en) * 1988-05-16 1989-11-20 Pioneer Electron Corp Optical information reproducing device
JPH0495233A (en) * 1990-08-10 1992-03-27 Sharp Corp Optical pickup device
JPH0836797A (en) * 1994-05-19 1996-02-06 Sanyo Electric Co Ltd Optical pickup
JPH1125496A (en) * 1997-07-02 1999-01-29 Matsushita Electric Ind Co Ltd Optical head
JP2001110085A (en) * 1999-10-08 2001-04-20 Toshiba Corp Light emitting-receiving integrated element and optical pickup using the element
JP2004087816A (en) * 2002-08-27 2004-03-18 Dainippon Screen Mfg Co Ltd Light source apparatus and image recording apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63118259U (en) * 1987-01-24 1988-07-30
JPH01287832A (en) * 1988-05-16 1989-11-20 Pioneer Electron Corp Optical information reproducing device
JPH0495233A (en) * 1990-08-10 1992-03-27 Sharp Corp Optical pickup device
JPH0836797A (en) * 1994-05-19 1996-02-06 Sanyo Electric Co Ltd Optical pickup
JPH1125496A (en) * 1997-07-02 1999-01-29 Matsushita Electric Ind Co Ltd Optical head
JP2001110085A (en) * 1999-10-08 2001-04-20 Toshiba Corp Light emitting-receiving integrated element and optical pickup using the element
JP2004087816A (en) * 2002-08-27 2004-03-18 Dainippon Screen Mfg Co Ltd Light source apparatus and image recording apparatus

Also Published As

Publication number Publication date
JP2005327363A (en) 2005-11-24

Similar Documents

Publication Publication Date Title
US5066138A (en) Optical head apparatus
JP2005063595A (en) Optical pickup and disk drive device
JPH11273119A (en) Optical pickup device
US7064900B2 (en) Optical pickup device and optical disk device and optical device and composite optical element
JPH0487042A (en) Optical pickup device
KR20020059666A (en) Photoelectronic device
US7345982B2 (en) Optical pickup device, optical disk drive, optical device and composite optical element
WO2005112016A1 (en) Composite optical element, optical integrated unit and optical pickup
WO2007094288A1 (en) Optical head, optical head control method and optical information processor
JPH04162222A (en) Optical pick-up head
JP3122346B2 (en) Optical pickup device
JPS5977637A (en) Optical reader
JPH0675300B2 (en) Optical head device
JPH10320810A (en) Semiconductor laser device and optical pickup device
JP2002319699A (en) Optical device
JP2001110082A (en) Optical pickup and optical disk device
JPH06162527A (en) Optical head and optical information device using it
KR100415609B1 (en) Optical pickup device with light intensity control
JP2001184709A (en) Optical pickup device
JP3577162B2 (en) Optical information recording / reproducing device
JP3401288B2 (en) Light detection unit
JP2010146621A (en) Optical pickup device
JP2005071573A (en) Laser module, optical pickup device and optical disk device
JP2009070499A (en) Optical pickup
JPH05128577A (en) Optical pickup

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase