JPH05128577A - Optical pickup - Google Patents

Optical pickup

Info

Publication number
JPH05128577A
JPH05128577A JP3287952A JP28795291A JPH05128577A JP H05128577 A JPH05128577 A JP H05128577A JP 3287952 A JP3287952 A JP 3287952A JP 28795291 A JP28795291 A JP 28795291A JP H05128577 A JPH05128577 A JP H05128577A
Authority
JP
Japan
Prior art keywords
recording medium
light
optical element
beams
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3287952A
Other languages
Japanese (ja)
Inventor
Takeshi Yamazaki
健 山崎
Hiroshi Ezawa
寛 江澤
Tetsuo Ikegame
哲夫 池亀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP3287952A priority Critical patent/JPH05128577A/en
Publication of JPH05128577A publication Critical patent/JPH05128577A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide an optical pickup for three beams which can be thin with a small number of parts and inexpensive. CONSTITUTION:The light emitted from a light source 22 is separated to one main beam and two sub beams by a grating 26a of an optical element 26. The beams are reflected in a direction approximately parallel to a recording medium 29 by a reflecting surface 26c of the optical element 26. Thereafter, the beams are reflected approximately in a direction of normal line of the recording medium 29 by a reflecting member 27 and condensed on the recording medium 29 by a converging optical system 28. The returning light reflected by the recording medium 29 is, through the converging optical system 28 and the reflecting member 27, diffracted by a hologram surface 26b formed in the optical element 26. The + or - first-order diffracted light is detected by photodetecting parts 23, 24 on a same substrate 21 as the light source 22 through the reflecting surface 26c of the optical element 26.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、光ディスク等の光情
報記録媒体に対して情報の記録、再生を行う記録/再生
装置に用いる光ピックアップに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical pickup used in a recording / reproducing apparatus for recording / reproducing information on / from an optical information recording medium such as an optical disc.

【0002】[0002]

【従来の技術】従来の光ピックアップとして、例えば特
開平2−141936号公報に、図4に示すようなもの
が提案されている。この光ピックアップは、半導体レー
ザおよび光検出器を有する発光受光複合素子1をマウン
トしたパッケージ2をレンズボビン3上に設け、その半
導体レーザからの光ビームをレンズボビン3に設けた第
1,第2のミラー4,5を経て、レンズボビン3に保持
した対物レンズ6により光ディスク7に照射し、その反
射光を対物レンズ6、第2,第1のミラー5,4を経て
発光受光複合素子1の光検出器で受光することにより、
一本の光ビームで情報信号、フォーカスエラー信号およ
びトラッキングエラー信号を得るようにしている。
2. Description of the Related Art As a conventional optical pickup, for example, the one shown in FIG. 4 has been proposed in Japanese Patent Application Laid-Open No. 2-141936. In this optical pickup, a package 2 on which a light emitting and receiving composite element 1 having a semiconductor laser and a photodetector is mounted is provided on a lens bobbin 3, and a light beam from the semiconductor laser is provided on the lens bobbin 3. The optical disk 7 is irradiated with the objective lens 6 held by the lens bobbin 3 through the mirrors 4 and 5 of the optical axis, and the reflected light thereof passes through the objective lens 6, the second and first mirrors 5 and 4 and By receiving light with a photodetector,
An information signal, a focus error signal, and a tracking error signal are obtained with one light beam.

【0003】図4に示す光ピックアップにおいては、発
光受光複合素子1を光ディスク7とほぼ平行な面に配置
し、この発光受光複合素子1と対物レンズ6との間を第
1,第2のミラー4,5を介して光学的に結合している
ので、全体を薄型にできるという利点がある。
In the optical pickup shown in FIG. 4, the light emitting and receiving composite element 1 is arranged on a surface substantially parallel to the optical disk 7, and the first and second mirrors are provided between the light emitting and receiving composite element 1 and the objective lens 6. Since they are optically coupled via 4 and 5, there is an advantage that the entire structure can be made thin.

【0004】[0004]

【発明が解決しようとする課題】一方、本願人は、特願
平3−21492号において、図5に示すような3ビー
ムを用いる光ピックアップを提案している。この光ピッ
クアップにおいては、図6AおよびBに平面図および断
面図をも示すように、半導体基板11に半導体レーザ1
2をマウントすると共に、この半導体レーザ12からの
出射光の光路を境とする両側に光検出部13および14
を形成している。半導体レーザ12からは、基板11と
平行な方向に光を出射させ、これを基板11に設けた立
ち上げミラー15で反射させた後、ホログラム素子16
および対物レンズ17を経て記録媒体18に照射し、そ
の反射光(戻り光)を、対物レンズ17を経てホログラ
ム素子16に入射させて、互いに逆方向のパワーを生じ
る±1次回折光を発生させ、これら±1次回折光を光検
出部13,14で受光する。
On the other hand, the present applicant has proposed an optical pickup using three beams as shown in FIG. 5 in Japanese Patent Application No. 3-21492. In this optical pickup, as shown in the plan view and the sectional view in FIGS. 6A and 6B, the semiconductor laser 1 is mounted on the semiconductor substrate 11.
2 is mounted, and the photodetectors 13 and 14 are provided on both sides of the optical path of the emitted light from the semiconductor laser 12 as a boundary.
Is formed. Light is emitted from the semiconductor laser 12 in a direction parallel to the substrate 11, and is reflected by a rising mirror 15 provided on the substrate 11, and then a hologram element 16 is provided.
And irradiate the recording medium 18 through the objective lens 17, and the reflected light (return light) is made incident on the hologram element 16 through the objective lens 17 to generate ± first-order diffracted lights that generate powers in opposite directions, These ± first-order diffracted lights are received by the photodetectors 13 and 14.

【0005】ホログラム素子16には、その半導体基板
11に面する表面にグレーテングを形成し、他方の表面
にはホログラムを形成して、半導体レーザ12から出射
され、立ち上げミラー15を経てホログラム素子16に
入射する光を、グレーテングによって1本のメインビー
ムと、トラッキングエラー検出用の2本のサブビームと
の3本のビームに分離し、これら3ビームのうちホログ
ラムを0次光で透過する3ビームを対物レンズ17によ
り記録媒体18に投射する。また、記録媒体18からの
戻り光のうち、ホログラムに入射する3ビームは、ここ
で互いに逆方向のパワーを生じる±1次回折光を発生さ
せ、それらの+1次回折光を光検出部13で、−1次回
折光を光検出部14でそれぞれ受光する。
In the hologram element 16, a grating is formed on the surface facing the semiconductor substrate 11, and a hologram is formed on the other surface. The hologram element 16 is emitted from the semiconductor laser 12, passes through the raising mirror 15, and is a hologram element. The light incident on 16 is separated into three beams of one main beam and two sub-beams for tracking error detection by the grating, and the hologram of these three beams is transmitted as 0th-order light. The beam is projected onto the recording medium 18 by the objective lens 17. Of the return light from the recording medium 18, the three beams incident on the hologram generate ± first-order diffracted lights that generate powers in mutually opposite directions, and the + first-order diffracted lights thereof are Each of the first-order diffracted lights is received by the photodetector 14.

【0006】光検出部13は、3ビームの各+1次回折
光を受光するように3つの光検出器13a,13b,1
3cをもって構成すると共に、中央のメインビームを受
光する光検出器13bは、ホログラム素子16での回折
方向に分割線を有する3分割した受光領域13d,13
e,13fをもって構成する。同様に、光検出部14
は、3ビームの各−1次回折光を受光するように3つの
光検出器14a,14b,14cをもって構成すると共
に、中央のメインビームを受光する光検出器14bは、
ホログラム素子16での回折方向に分割線を有する3分
割した受光領域14d,14e,14fをもって構成す
る。
The photo-detecting section 13 has three photo-detectors 13a, 13b, 1 so as to receive the + first-order diffracted light of the three beams.
The photodetector 13b configured to have the main beam in the center is constituted by 3c, and the photodetector 13b is divided into three light receiving regions 13d, 13 having a dividing line in the diffraction direction of the hologram element 16.
e, 13f. Similarly, the light detector 14
Is composed of three photodetectors 14a, 14b, and 14c so as to receive each -1st-order diffracted light of three beams, and the photodetector 14b which receives the central main beam is
The hologram element 16 is composed of three divided light receiving regions 14d, 14e and 14f having a dividing line in the diffraction direction.

【0007】このようにして、メインビームの+1次回
折光を受光する光検出器13bの受光領域13d,13
e,13fの出力と、−1次回折光を受光する光検出器
14bの受光領域14d,14e,14fの出力とに基
づいて、ビームサイズ法によりフォーカスエラー信号を
検出し、また2本のサブビームの+1次回折光を受光す
る光検出器13a,13cの出力と、−1次回折光を受
光する光検出器14a,14cの出力とに基づいて、ト
ラッキングエラー信号を得る。
In this way, the light receiving regions 13d, 13 of the photodetector 13b for receiving the + 1st order diffracted light of the main beam.
The focus error signal is detected by the beam size method based on the outputs of e and 13f and the outputs of the light receiving regions 14d, 14e, and 14f of the photodetector 14b that receives the −1st-order diffracted light. A tracking error signal is obtained based on the outputs of the photodetectors 13a and 13c that receive the + 1st-order diffracted light and the outputs of the photodetectors 14a and 14c that receive the -1st-order diffracted light.

【0008】かかる光ピックアップによれば、半導体レ
ーザ12から放射される光の波長が変化すると、ホログ
ラムパターン領域16bでの±1次回折光の回折角が変
化して、光検出器13b,14b上のスポットが移動す
るが、その移動方向は光検出器13b,14bの分割線
と平行となるので、フォーカスエラー信号は波長変化の
影響を受けにくくなる。また、部品加工誤差や組み立て
誤差等で光検出器13b,14b上のスポットがずれた
としても、±1次回折光で同じずれかたをするので、光
検出器13bから得られる+1次回折光のフォーカスエ
ラー信号と、光検出器14bから得られる−1次回折光
のフォーカスエラー信号との差を取ることで、それぞれ
のフォーカスエラー信号のオフセットをキャンセルで
き、正確なフォーカスエラー信号を得ることができると
いう利点がある。
According to such an optical pickup, when the wavelength of the light emitted from the semiconductor laser 12 changes, the diffraction angle of the ± first-order diffracted light in the hologram pattern region 16b changes, and the light on the photodetectors 13b and 14b is changed. Although the spot moves, its moving direction is parallel to the dividing line of the photodetectors 13b and 14b, so that the focus error signal is less susceptible to the wavelength change. Further, even if the spots on the photodetectors 13b and 14b are deviated due to component processing error or assembly error, etc., the ± 1st order diffracted light causes the same deviation, so that the + 1st order diffracted light obtained from the photodetector 13b is focused. By taking the difference between the error signal and the focus error signal of the −first-order diffracted light obtained from the photodetector 14b, the offset of each focus error signal can be canceled, and an accurate focus error signal can be obtained. There is.

【0009】しかし、図5に示すように、基板11を記
録媒体18と平行に配置して、レーザ光をホログラム素
子16および対物レンズ17を経て記録媒体18に照射
する構成にあっては、光ピックアップを薄型にできな
い。これを薄型にするには、図7に示すように、半導体
基板11を対物レンズ17の光軸と平行な面(x−y平
面)に配置して、半導体レーザ12からの光ビームを立
ち上げミラー15により水平方向(z方向)に反射させ
ると共に、ホログラム素子16と対物レンズ17との間
に折り返しミラー19を配置し、これにより光ビームを
x方向に反射させて対物レンズ17を経て記録媒体18
に投射する構成が考えられる。
However, as shown in FIG. 5, in the structure in which the substrate 11 is arranged in parallel with the recording medium 18 and the laser beam is applied to the recording medium 18 through the hologram element 16 and the objective lens 17, the optical The pickup cannot be thin. In order to make this thin, as shown in FIG. 7, the semiconductor substrate 11 is arranged on a plane (xy plane) parallel to the optical axis of the objective lens 17, and the light beam from the semiconductor laser 12 is launched. The mirror 15 reflects the light in the horizontal direction (z direction), and the folding mirror 19 is arranged between the hologram element 16 and the objective lens 17, whereby the light beam is reflected in the x direction and passes through the objective lens 17 and the recording medium. 18
It is conceivable to have a configuration of projecting on.

【0010】しかしながら、この光ピックアップにおい
ては、フォーカスエラー信号検出用に4本、トラッキン
グエラー信号検出用に2本、半導体レーザ12の駆動用
に3本の合計9本の配線を要するため、それらのランド
部を基板11に形成する必要がある。このため、ランド
部等の占める面積が大きくなって、基板11がxおよび
y方向に大きくなり、光ピックアップの薄型化および小
型化が妨げられるという問題がある。
However, in this optical pickup, four wires for detecting the focus error signal, two wires for detecting the tracking error signal, and three wires for driving the semiconductor laser 12 are required for a total of nine wires. It is necessary to form the land portion on the substrate 11. Therefore, there is a problem that the area occupied by the land and the like becomes large and the substrate 11 becomes large in the x and y directions, which hinders the thinning and downsizing of the optical pickup.

【0011】この問題を解決する方法として、図4と同
様に、基板11を記録媒体18とほぼ平行な面に配置
し、この基板11および対物レンズ17間を二つの折り
返しミラーを介して光学的に結合すると共に、基板11
と対物レンズ17との間の光路中にホログラム素子16
を配置する構成が考えられる。しかし、このように構成
すると、基板11と対物レンズ17との間に、二つの折
り返しミラーとホログラム素子16とが配置されるた
め、部品点数が増え、高価になるという問題が生じると
共に、ホログラム素子16を基板11と最初の折り返し
ミラーとの間に配置した場合には、両者が干渉して薄型
化の効果が得られないという問題が生じることになる。
As a method for solving this problem, as in FIG. 4, the substrate 11 is arranged on a plane substantially parallel to the recording medium 18, and the substrate 11 and the objective lens 17 are optically coupled via two folding mirrors. Coupled to the substrate 11
In the optical path between the objective lens 17 and the hologram element 16
It is conceivable that the arrangement of However, with such a configuration, since the two folding mirrors and the hologram element 16 are arranged between the substrate 11 and the objective lens 17, the number of parts increases and the cost increases, and the hologram element also occurs. When 16 is arranged between the substrate 11 and the first folding mirror, there arises a problem that the two interfere with each other and the effect of thinning cannot be obtained.

【0012】この発明は、上述した種々の問題点に着目
してなされたもので、薄型で部品点数が少なく、安価に
できるよう適切に構成した3ビーム用の光ピックアップ
を提供することを目的とする。
The present invention has been made in view of the above-mentioned various problems, and an object thereof is to provide an optical pickup for three beams which is thin, has a small number of parts, and is appropriately configured so as to be inexpensive. To do.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するた
め、この発明では、光源および光検出部を有し、記録媒
体とほぼ平行な面に配置した基板と、前記光源からの光
を、記録媒体の情報を読み取るための一本のメインビー
ムおよび、記録媒体のトラックずれを検出するための二
本のサブビームに分離するグレーティングを有する光学
素子と、この光学素子に形成され、前記グレーティング
で分離された三本のビームを記録媒体とほぼ平行な方向
に反射させる反射面と、この反射面で反射されたビーム
を記録媒体のほぼ法線方向に反射させる反射部材と、こ
の反射部材で反射されたビームを記録媒体上に集光する
収束光学系と、前記光学素子に形成され、前記収束光学
系および反射部材を経て入射する記録媒体からの戻り光
を回折させて、その±1次回折光を前記反射面を経て前
記光検出部に入射させるホログラム面とを設ける。
In order to achieve the above object, according to the present invention, a substrate having a light source and a light detecting portion and arranged on a plane substantially parallel to a recording medium, and the light from the light source are recorded. An optical element having a grating for separating one main beam for reading information on the medium and two sub-beams for detecting a track deviation of the recording medium, and an optical element formed on this optical element and separated by the grating. A reflecting surface that reflects the three beams in a direction substantially parallel to the recording medium, a reflecting member that reflects the beam reflected by the reflecting surface in a direction substantially normal to the recording medium, and a reflecting member that reflects the beam. A converging optical system that condenses a beam on a recording medium, and diffracts return light from the recording medium that is formed on the optical element and that enters through the converging optical system and a reflecting member, and 1 next time diffracted light through the reflecting surface provided with the hologram surface to be incident on the light detecting unit.

【0014】[0014]

【作用】上記構成において、光源から射出された光は、
光学素子のグレーティングで一本のメインビームと二本
のサブビームとに分離された後、該光学素子に形成した
反射面で記録媒体とほぼ平行な方向に反射される。その
後、反射部材で記録媒体のほぼ法線方向に反射され、収
束光学系により記録媒体上に集光される。また、記録媒
体で反射される戻り光は、収束光学系および反射部材を
経て、光学素子に形成したホログラム面で回折され、そ
の±1次回折光が該光学素子に形成された反射面を経
て、光源と同一基板上の光検出部で受光される。
In the above structure, the light emitted from the light source is
After being separated into one main beam and two sub beams by the grating of the optical element, the light is reflected in a direction substantially parallel to the recording medium by the reflecting surface formed on the optical element. After that, the light is reflected by the reflecting member substantially in the normal direction of the recording medium, and is converged on the recording medium by the converging optical system. Further, the return light reflected by the recording medium passes through the converging optical system and the reflecting member, is diffracted by the hologram surface formed on the optical element, and the ± first-order diffracted light passes through the reflecting surface formed on the optical element, The light is received by the photodetector on the same substrate as the light source.

【0015】[0015]

【実施例】図1はこの発明の一実施例を示すものであ
る。この実施例では、半導体基板21に、図2Aおよび
Bに平面図および横断面図を示すように、半導体レーザ
22をマウントすると共に、半導体レーザ22からの出
射光の光路を境とする両側に光検出部23および24を
形成し、半導体レーザ22から基板21と平行な方向に
出射される光を、基板21に設けた立ち上げミラー25
で反射させた後、図1に示すように光学素子26、折り
返しミラー27および対物レンズ28を経て記録媒体2
9に投射する。また、記録媒体29での反射光は、対物
レンズ28および折り返しミラー27を経て光学素子2
6に入射させ、ここで互いに逆方向のパワーを生じる±
1次回折光を発生させて、これら±1次回折光を光検出
部23,24で受光する。
1 shows an embodiment of the present invention. In this embodiment, a semiconductor laser 22 is mounted on a semiconductor substrate 21 as shown in a plan view and a cross-sectional view in FIGS. 2A and 2B, and light is emitted on both sides of an optical path of light emitted from the semiconductor laser 22 as a boundary. A rising mirror 25 provided on the substrate 21 for forming the detectors 23 and 24 and emitting light emitted from the semiconductor laser 22 in a direction parallel to the substrate 21.
After being reflected by the recording medium 2 through the optical element 26, the folding mirror 27 and the objective lens 28 as shown in FIG.
Project to 9. Further, the reflected light from the recording medium 29 passes through the objective lens 28 and the folding mirror 27, and the optical element 2
6 and make the powers in the opposite directions ±
First-order diffracted light is generated, and the ± first-order diffracted lights are received by the photodetectors 23 and 24.

【0016】半導体基板21は、記録媒体29とほぼ平
行なピックアップの平面に取り付け、半導体レーザ22
からの出射光を、立ち上げミラー25で記録媒体29の
ほぼ法線方向に反射させて、光学素子26に入射させ
る。光学素子26には、半導体基板21側に、図3Aに
示すようにグレーテング26aを、折り返しミラー27
側に、図3Bに示すようにホログラムパターン領域26
bをそれぞれ形成すると共に、グレーテング26aとホ
ログラムパターン領域26bとの間にミラー面26cを
形成する。
The semiconductor substrate 21 is mounted on the plane of the pickup that is substantially parallel to the recording medium 29, and the semiconductor laser 22 is attached.
The emitted light from the mirror is reflected by the rising mirror 25 in a direction substantially normal to the recording medium 29 and is incident on the optical element 26. As shown in FIG. 3A, the optical element 26 has a grating 26 a on the semiconductor substrate 21 side and a folding mirror 27.
On the side, as shown in FIG. 3B, the hologram pattern area 26
b is formed respectively, and a mirror surface 26c is formed between the grating 26a and the hologram pattern area 26b.

【0017】このようにして、半導体レーザ22から出
射され、立ち上げミラー25を経て光学素子26に入射
する光を、グレーテング26aによって記録/再生およ
び焦点検出用の1本のメインビームと、トラッキングエ
ラー検出用の2本のサブビームとの3本のビームに分離
し、これら3ビームをミラー面26cで記録媒体29と
ほぼ平行な方向に反射させてホログラムパターン領域2
6bに入射させ、該ホログラムパターン領域26bを0
次光で透過する3ビームを、折り返しミラー27で記録
媒体29のほぼ法線方向に反射させて、対物レンズ28
を経て記録媒体29に投射する。また、記録媒体29で
反射され、対物レンズ28および折り返しミラー27を
経て光学素子26に入射する3ビームの戻り光は、ホロ
グラムパターン領域26bで互いに逆方向のパワーを有
する±1次回折光を発生させ、それらをミラー面26c
を経て、+1次回折光を光検出部23で、−1次回折光
を光検出部24でそれぞれ受光する。
In this way, the light emitted from the semiconductor laser 22, incident on the optical element 26 through the raising mirror 25, is recorded by the grating 26a as one main beam for recording / reproducing and focus detection and tracking. It is separated into three beams of two sub beams for error detection, and these three beams are reflected by the mirror surface 26c in a direction substantially parallel to the recording medium 29 so that the hologram pattern region 2
6b to make the hologram pattern region 26b 0.
The three beams transmitted as the next light are reflected by the folding mirror 27 in a direction substantially normal to the recording medium 29, and the objective lens 28
And then projected onto the recording medium 29. Further, the three beams of return light reflected by the recording medium 29 and incident on the optical element 26 via the objective lens 28 and the folding mirror 27 generate ± first-order diffracted lights having mutually opposite powers in the hologram pattern region 26b. , Mirror them 26c
After that, the + 1st-order diffracted light is received by the photodetector 23, and the -1st-order diffracted light is received by the photodetector 24.

【0018】なお、図2Aに示すように、光検出部23
は、3ビームのホログラムパターン領域26bによる各
+1次回折光を受光するように3つの光検出器23a,
23b,23cをもって構成すると共に、中央のメイン
ビームを受光する光検出器23bは、ホログラムパター
ン領域26bでの回折方向に分割線を有する3分割した
受光領域23d,23e,23fをもって構成する。同
様に、光検出部24は、3ビームのホログラムパターン
領域26bによる各−1次回折光を受光するように3つ
の光検出器24a,24b,24cをもって構成すると
共に、中央のメインビームを受光する光検出器24b
は、ホログラムパターン領域26bでの回折方向に分割
線を有する3分割した受光領域24d,24e,24f
をもって構成する。
As shown in FIG. 2A, the photodetector 23
Are three photodetectors 23a, so as to receive each + first-order diffracted light by the three-beam hologram pattern area 26b.
The photodetector 23b for receiving the central main beam is constituted by three light receiving regions 23d, 23e, 23f having a dividing line in the diffraction direction in the hologram pattern region 26b. Similarly, the photodetection section 24 is configured with three photodetectors 24a, 24b, and 24c so as to receive each −1st-order diffracted light by the three-beam hologram pattern area 26b, and at the same time, the light that receives the central main beam is received. Detector 24b
Is a light receiving region 24d, 24e, 24f divided into three having a dividing line in the diffraction direction in the hologram pattern region 26b.
Configure with.

【0019】このようにして、この実施例では、メイン
ビームの+1次回折光を受光する光検出器23bの受光
領域23d,23e,23fの出力をA1,A2,A
3、−1次回折光を受光する光検出器24bの受光領域
24d,24e,24fの出力をA4,A5,A6とす
るとき、フォーカスエラー信号FEを、
In this way, in this embodiment, the outputs of the light receiving regions 23d, 23e, 23f of the photodetector 23b for receiving the + 1st order diffracted light of the main beam are set to A1, A2, A.
When the outputs of the light receiving regions 24d, 24e, and 24f of the photodetector 24b receiving the 3rd and -1st order diffracted light are A4, A5, and A6, the focus error signal FE is

【数1】 FE=(A1+A3+A5)−(A2+A4+A6) により検出する。また、記録媒体29のトラックに対す
る照射ビームのトラッキングエラー信号TEは、2本の
サブビームの+1次回折光を受光する光検出器23a,
23cの出力をB1,B2、−1次回折光を受光する光
検出器24a,24cの出力をB3,B4とすると、
## EQU1 ## FE = (A1 + A3 + A5)-(A2 + A4 + A6) In addition, the tracking error signal TE of the irradiation beam with respect to the track of the recording medium 29 is the photodetector 23a that receives the + 1st order diffracted light of the two sub-beams.
Let B1 and B2 be the outputs of 23c and B3 and B4 be the outputs of photodetectors 24a and 24c that receive the −1st order diffracted light.

【数2】TE=(B1+B3)−(B2+B4) により検出する。[Equation 2] TE = (B1 + B3) − (B2 + B4)

【0020】なお、上述した実施例では、半導体基板2
1と光学素子26とを別体に設けたが、これらをスペー
サを介して一体的に設けることもできる。
In the above embodiment, the semiconductor substrate 2
Although 1 and the optical element 26 are provided separately, they may be provided integrally via a spacer.

【0021】[0021]

【発明の効果】以上のように、この発明によれば、収束
光学系の下に配置される反射部材に加え、グレーティン
グ、ホログラム面およびこれら間に形成した反射面を有
する光学素子を用いてピックアップを構成したので、部
品点数が少なく、安価で薄型な光ピックアップを得るこ
とができる。
As described above, according to the present invention, in addition to the reflecting member disposed under the converging optical system, the optical element having the grating, the hologram surface and the reflecting surface formed between them is used for the pickup. Since this is configured, an inexpensive and thin optical pickup having a small number of parts can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例を示す図である。FIG. 1 is a diagram showing an embodiment of the present invention.

【図2】図1に示す半導体レーザおよび光検出器の配置
を示す図である。
FIG. 2 is a diagram showing an arrangement of the semiconductor laser and a photodetector shown in FIG.

【図3】同じく図1に示す光学素子のグレーティングお
よびホログラムパターン領域の構成を示す図である。
3 is a diagram showing a structure of a grating and a hologram pattern region of the optical element shown in FIG.

【図4】従来の技術を説明するための図である。FIG. 4 is a diagram for explaining a conventional technique.

【図5】本願人が先に開発した光ピックアップの構成を
示す図である。
FIG. 5 is a diagram showing a configuration of an optical pickup previously developed by the present applicant.

【図6】図5に示す半導体レーザおよび光検出器の配置
を示す図である。
FIG. 6 is a diagram showing the arrangement of the semiconductor laser and photodetector shown in FIG.

【図7】図5に示す光ピックアップを薄型化する場合の
構成例を示す図である。
FIG. 7 is a diagram showing a configuration example when the optical pickup shown in FIG. 5 is thinned.

【符号の説明】[Explanation of symbols]

21 半導体基板 22 半導体レーザ 23,24 光検出部 23a,23b,23c,24a,24b,24c 光
検出器 23d,23e,23f,24d,24e,24f 受
光領域 25 立ち上げミラー 26 光学素子 26a グレーテング 26b ホログラムパターン領域 26c ミラー面 27 折り返しミラー 28 対物レンズ 29 記録媒体
21 Semiconductor Substrate 22 Semiconductor Laser 23, 24 Photodetector 23a, 23b, 23c, 24a, 24b, 24c Photodetector 23d, 23e, 23f, 24d, 24e, 24f Photoreceptive Area 25 Raising Mirror 26 Optical Element 26a Grating 26b Hologram pattern area 26c Mirror surface 27 Folding mirror 28 Objective lens 29 Recording medium

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 光源および光検出部を有し、記録媒体と
ほぼ平行な面に配置した基板と、前記光源からの光を、
記録媒体の情報を読み取るための一本のメインビームお
よび、記録媒体のトラックずれを検出するための二本の
サブビームに分離するグレーティングを有する光学素子
と、この光学素子に形成され、前記グレーティングで分
離された三本のビームを記録媒体とほぼ平行な方向に反
射させる反射面と、この反射面で反射されたビームを記
録媒体のほぼ法線方向に反射させる反射部材と、この反
射部材で反射されたビームを記録媒体上に集光する収束
光学系と、前記光学素子に形成され、前記収束光学系お
よび反射部材を経て入射する記録媒体からの戻り光を回
折させて、その±1次回折光を前記反射面を経て前記光
検出部に入射させるホログラム面とを具えることを特徴
とする光ピックアップ。
1. A substrate having a light source and a light detection unit and arranged on a surface substantially parallel to a recording medium, and light from the light source,
An optical element having a grating for separating one main beam for reading information on the recording medium and two sub-beams for detecting track deviation of the recording medium, and an optical element formed on this optical element and separated by the grating A reflecting surface that reflects the three reflected beams in a direction substantially parallel to the recording medium, a reflecting member that reflects the beam reflected by the reflecting surface in a direction substantially normal to the recording medium, and a reflecting member that reflects the beam. A convergent optical system for converging the beam on a recording medium and the return light from the recording medium which is formed in the optical element and which enters through the converging optical system and the reflecting member, and diffracts the ± first-order diffracted light. An optical pickup comprising: a hologram surface that is incident on the photodetection unit via the reflection surface.
JP3287952A 1991-11-01 1991-11-01 Optical pickup Pending JPH05128577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3287952A JPH05128577A (en) 1991-11-01 1991-11-01 Optical pickup

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3287952A JPH05128577A (en) 1991-11-01 1991-11-01 Optical pickup

Publications (1)

Publication Number Publication Date
JPH05128577A true JPH05128577A (en) 1993-05-25

Family

ID=17723867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3287952A Pending JPH05128577A (en) 1991-11-01 1991-11-01 Optical pickup

Country Status (1)

Country Link
JP (1) JPH05128577A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR980004433A (en) * 1996-06-12 1998-03-30 구자홍 Thin Optical Pickup Device
KR100373801B1 (en) * 1994-07-29 2003-05-09 산요 덴키 가부시키가이샤 Semiconductor Laser Apparatus and Optical Pickup Apparatus Using the Same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100373801B1 (en) * 1994-07-29 2003-05-09 산요 덴키 가부시키가이샤 Semiconductor Laser Apparatus and Optical Pickup Apparatus Using the Same
KR980004433A (en) * 1996-06-12 1998-03-30 구자홍 Thin Optical Pickup Device

Similar Documents

Publication Publication Date Title
JPH0743834B2 (en) Optical scanning device
EP0463295B1 (en) Optical pickup head
JPH07129980A (en) Optical pickup
US6192020B1 (en) Semiconductor laser device
WO2001035400A1 (en) Photoelectronic device
JPH05298721A (en) Optical head
JPH05128577A (en) Optical pickup
JPH07192281A (en) Optical pickup device
JPH11185285A (en) Optical pickup and optical disk device
JPH07107742B2 (en) Optical disc head focus shift detector
JPH0529969B2 (en)
US6614743B1 (en) Semiconductor laser device
JPH0520711A (en) Optical pickup
JP2763174B2 (en) Optical pickup device
JPH06168462A (en) Optical head
JPH0675300B2 (en) Optical head device
JPH05144031A (en) Optical information reproducing device
JPH0264917A (en) Optical head structure for magneto-optical recorder
JP3335212B2 (en) Light head
JP3401288B2 (en) Light detection unit
JPH04339330A (en) Optical head
JPH11110782A (en) Semiconductor laser device
JPH05144032A (en) Optical information reproducing device
JPH0677335B2 (en) Optical pickup device
JPH03122853A (en) Optical head device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000307