WO2005108638A1 - Substrate dome - Google Patents

Substrate dome Download PDF

Info

Publication number
WO2005108638A1
WO2005108638A1 PCT/JP2005/000848 JP2005000848W WO2005108638A1 WO 2005108638 A1 WO2005108638 A1 WO 2005108638A1 JP 2005000848 W JP2005000848 W JP 2005000848W WO 2005108638 A1 WO2005108638 A1 WO 2005108638A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
dome
film
vacuum
substrate dome
Prior art date
Application number
PCT/JP2005/000848
Other languages
French (fr)
Japanese (ja)
Inventor
Masayuki Takimoto
Hiroyuki Komuro
Tatsumi Abe
Yutaka Fuse
Kazuhito Aonahata
Original Assignee
Showa Shinku Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Shinku Co., Ltd. filed Critical Showa Shinku Co., Ltd.
Publication of WO2005108638A1 publication Critical patent/WO2005108638A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • C23C14/505Substrate holders for rotation of the substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • C23C14/044Coating on selected surface areas, e.g. using masks using masks using masks to redistribute rather than totally prevent coating, e.g. producing thickness gradient
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate

Definitions

  • the present invention relates to prevention of deformation of a substrate dome when a substrate is placed on the substrate dome and a film is formed.
  • a substrate dome on which a substrate is mounted has a dome shape because it is designed so that a film having the same thickness is deposited at all positions where the substrate is arranged. Further, when depositing the film forming material, the substrate dome is rotated in order to make the film thickness distribution in the circumferential direction inside the substrate dome uniform.
  • the present invention relates to a structure necessary for suppressing a decrease in accuracy of film thickness distribution on a substrate disposed on a substrate dome due to a centrifugal force due to thermal expansion and rotation during film formation on the substrate dome. It is.
  • FIG. 2 shows a vapor deposition apparatus for forming an optical thin film, and an outline of thin film formation by the same method will be described below.
  • a vapor deposition material 29 is placed in a bottom plate of a vacuum chamber 30 having an exhaust system (not shown), a crucible 28, an electron gun 27 for heating the vapor deposition material 29 to an evaporation temperature, and a shutter 26 for closing when the vapor deposition is completed.
  • a substrate dome 20 on which a substrate 21 is disposed on a top plate, and a bearing 22 for rotating the substrate dome, a dome side gear 23, a motor side gear 24, and a motor 25 are arranged.
  • a heater 31 for heating the substrate 21 is provided to improve the packing density of a film deposited on the substrate, and the manner of evaporation differs depending on the type of evaporation material.
  • a film thickness correction plate 32 for correcting the film thickness distribution generated in the direction is provided.
  • a substrate 21 to be vapor-deposited is placed on a substrate dome 20, and the substrate dome 20 is placed in a vacuum chamber, or the substrate dome 20 is placed in a vacuum chamber. After that, the substrate 21 is set on the substrate dome 20. Then, the evaporation material 29 is put into the crucible 28.
  • the inside of the vacuum chamber is evacuated to maintain a vacuum state, the substrate dome 20 is rotated, and the substrate 21 is heated by the heater 31.
  • the electron gun 27 The beam is irradiated to the evaporation material 29 and heated to the evaporation temperature.
  • an automatic tilting type or fixed type film thickness correction plate 32 is arranged between the evaporation source and the substrate 21 to correct the film thickness distribution in the substrate dome 20.
  • the shutter 26 is opened, the vapor deposition material 29 scatters, and the vapor deposition material 29 is deposited on the substrate 21.
  • the shutter 26 is closed, the heater 31, the electron gun 27, and the substrate rotation motor 25 are stopped. After cooling, the atmosphere is introduced into the vacuum chamber.
  • Fig. 3 shows a conventional substrate dome 20 used in the above-described vapor deposition apparatus, and a dome shape is generally formed by subjecting stainless steel or aluminum or the like to drawing according to the application.
  • a hole 41 for a film thickness measuring device is formed in the center of the substrate dome 20.
  • the thickness of the substrate dome 20 varies depending on the dome diameter, the thickness of the substrate dome 20 of ⁇ 800 mm- ⁇ 1200 is about 2 mm and 4 mm.
  • the substrate temperature varies depending on the intended use of the film to be formed, the film-forming material, and the like, and the substrate temperature varies from a temperature close to room temperature to a temperature heated to about 300 ° C.
  • the evaporation temperature and the thermal conductivity differ depending on the type of the film forming material
  • the amount of radiant heat emitted from the evaporation source differs depending on the film forming material. Therefore, the amount of radiant heat transmitted to the substrate during multilayer film formation is constantly changing.
  • the temperature of the substrate during film formation changes at least about 30 ° C, and the change in heat changes the amount of thermal expansion of the substrate dome, making it difficult to maintain a constant distance between the substrate and the evaporation source. I got it.
  • the deposition conditions and the film thickness correction plate depend on the type of the film to be formed. There is a problem that must be used properly.
  • Two types of film formation certain film forming material A and film forming material B
  • the substrate temperature is set to 300 ° C.
  • the substrate temperature is set to 100 ° C.
  • the substrate temperature is greatly different, so the amount of thermal expansion of the dome is different, resulting in a difference in the distance between the substrate and the evaporation source. Therefore, the film thickness compensating plate used for film forming material B in multilayer film forming (1) cannot be used for film forming material B in multilayer film forming (2), and film forming for multilayer film forming (2) A film thickness compensator for Material B must be manufactured separately.
  • FIG. 4 shows the calculated values of the films deposited on the substrate 21 when the substrate dome 20 is not deformed in the apparatus shown in FIGS.
  • the distance from the center point of the evaporation material 29, which is the evaporation source, to each substrate is Dl, D2, D3, D4, and the horizontal distance from the center of the substrate dome 20 is XI, X2, X3, X4.
  • the angles between the line connecting the center of the substrate dome 20 and the center of the vapor deposition material 29 and Dl, D2, D3, and D4 are ⁇ 1, ⁇ 2, and ⁇ . 3, ⁇ 4.
  • the film thickness deposited on each substrate is generally dl, d2, d3, and d4, and the amount of the evaporation material 29 evaporated from the evaporation source is k.
  • FIG. 5 shows the force applied to an arbitrary point A on the substrate dome 20 during vapor deposition. Since the dome is rotating, a centrifugal force S is applied to point A, so a force extending in the direction of i is applied. At point A, a gravitational force S is applied, so a force that extends in the direction of h is also applied. The sum of these two forces is j. The same applies to j since i and h are both proportional to the temperature, coefficient of thermal expansion and weight of the substrate dome 20.
  • Fig. 6 shows the calculated elongation of a stainless steel substrate dome 20 having a radius of curvature of 900mm and a substrate dome diameter of 1100mm due to thermal expansion.
  • room temperature 25 ° C
  • 300 ° C 300 ° C.
  • the distance of the arc of the dome cross section increases by 118.88 mm to 5.63 mm.
  • a substrate holder is formed of titanium or a titanium alloy so that a substrate holder to be detached is not plastically deformed even in a heated atmosphere.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 4-325679
  • FIG. 7 shows a structure in which the rotation mechanism of the substrate dome 20 is arranged not at the center as in FIG.
  • the weight of the substrate dome 20 is about 83%, and there is no solution other than reducing the weight of the substrate dome 20 to reduce the load on the bearing 22 and extend the maintenance cycle.
  • the total weight of the substrate 21 and the substrate dome 20 is at least about 16 kg. Since it is heavy, it is difficult to attach and detach it to and from the device, and deformation may occur due to weight during storage. In addition, as described above, the larger the weight, the greater the centrifugal force and gravity applied to the substrate dome 20 during vapor deposition, thereby promoting deformation.
  • the present invention has been made in order to solve the above problems, and provides a substrate dome and a film forming method having the following aspects.
  • a first aspect of the present invention is directed to a vacuum apparatus including a vacuum chamber and a substrate dome on which a film-forming substrate is mounted and which is opposed to the bottom of the vacuum chamber, and has a thermal expansion coefficient of 17.3 ⁇ 10 6.
  • the substrate dome is formed by using a material having a size less than or equal to.
  • a vacuum apparatus comprising a vacuum chamber and a substrate dome on which a film-forming substrate is mounted and which is opposed to the bottom of the vacuum chamber, and has a longitudinal elastic modulus of 19.7 ⁇ 10 3.
  • the substrate dome was formed using a material having a size less than that of the substrate dome.
  • a third aspect of the present invention is directed to a vacuum apparatus including a vacuum chamber and a substrate dome on which a film formation substrate is mounted and opposed to the bottom of the vacuum chamber, wherein a material having a specific gravity of less than 7.93 is used. It was used to form a substrate dome.
  • a vacuum apparatus comprising a vacuum chamber and a substrate dome on which a film-forming substrate is mounted and disposed opposite to the bottom of the vacuum chamber, wherein the substrate dome is formed using a material made of titanium or a titanium alloy. It was formed. The substrate dome was formed by drawing.
  • a vacuum chamber comprising a vacuum chamber, a crucible for placing a film-forming material disposed at the bottom of the vacuum chamber, and a substrate dome on which a film-forming substrate is mounted and which is arranged to face the film-forming material
  • a deformation due to a centrifugal force applied to the substrate dome, or its own weight or thermal expansion is adjusted.
  • the distance between the substrate and the film formation substrate was kept constant to improve the film thickness distribution accuracy.
  • At least a substrate dome, an evaporation source, and a substrate heating means are provided inside the vacuum chamber, and the film deposition substrate is attached to the substrate dome and rotated, and an electron beam is irradiated to the evaporation source arranged opposite to the film deposition substrate to form a film.
  • the substrate dome is made of titanium or a titanium alloy.
  • FIG. 1 is a diagram showing a pure titanium substrate dome of the present invention.
  • FIG. 2 is a schematic view of a vacuum evaporation apparatus.
  • FIG. 3 is a view showing a conventional substrate dome.
  • FIG. 4 is a view for explaining the effect of the distance and angle between the substrate and the evaporation source on the film thickness.
  • FIG. 5 is a view for explaining a force applied to a substrate dome during vapor deposition.
  • FIG. 6 is a view for explaining an amount of expansion due to substrate heating.
  • FIG. 7 is a schematic view of a vacuum evaporation apparatus.
  • FIG. 1 shows a plan view and a cross-sectional view illustrating an embodiment of the substrate dome of the present invention.
  • the substrate dome 1 according to the present invention is mounted on a vacuum device similar to the device shown in FIGS. 2 and 7 except for the substrate dome 20. It is not limited to this.
  • the shape and dimensions of the substrate dome 1 are equal to those of the conventional substrate dome 20, and the drawing method is the same as the conventional method.
  • the material is pure titanium instead of the conventional stainless steel or aluminum of the substrate dome 20.
  • the material of the substrate dome in which the present invention can be implemented may be any material as long as it has a small coefficient of thermal expansion, a coefficient of longitudinal elasticity, and a small specific gravity. Pure titanium has the ability to ensure more desirable performance For example, it is possible to improve performance by using a titanium alloy.
  • substrate dome 1 is made of pure titanium or a titanium alloy
  • titanium Since the coefficient of expansion is low, it is possible to control the amount of thermal expansion due to temperature changes during substrate heating and vapor deposition. As a result, the change in the mounting position of the substrate 21 becomes smaller than that of a conventional stainless steel dome or the like, so that the reproducibility and distribution of the film deposited on the substrate are close to the calculated values, and the productivity is remarkably improved. Further, since titanium has a very low specific gravity as compared with stainless steel, the weight of the substrate dome is reduced, and the load on the bearing 22 is also reduced.
  • the maintenance cycle is extended and the influence of the centrifugal force and the gravity applied to the substrate dome during vapor deposition is reduced by the reduced weight, so that the deformation of the substrate dome 1 can be further suppressed. Further, since the weight is reduced, the detachability of the substrate dome 1 is improved, and deformation due to the weight during storage is suppressed.
  • the thickness of the film deposited on the substrate 21 is inversely proportional to the square of the distance between the substrate 21 and the evaporation source. % Or less.
  • the load on the substrate rotating mechanism will be compared.
  • the conventional substrate dome 20 made of stainless steel weighs about 13.2 kg and has 110 glass substrates. The total weight was 15.9 kg.
  • the substrate dome 1 is made of pure titanium, the specific gravity is 4.51 and the weight of the substrate dome is about 7.6 kg.
  • the total weight is 10.3 kg, compared to the conventional board dome 20, the weight of the board dome alone is reduced by about 42%, and the total weight is reduced by about 35% .
  • the load on the bearing 22 is greatly reduced, so that the maintenance cycle can be significantly extended.
  • the reduced weight also reduces the centrifugal force and gravity applied to the substrate dome itself, so that deformation can be greatly suppressed.
  • the temperature change and rotation during substrate heating and vapor deposition are compared with the case where the conventional substrate dome 20 is used.
  • Deformation due to the influence of driving is suppressed, and changes in the substrate mounting position are suppressed as much as possible, so that the reproducibility of film formation is significantly improved.
  • the reduced weight reduces the load on the bearing 22, etc., improving maintainability and improving detachability.
  • deformation due to external forces such as falling during transportation is small, so it is possible to maintain high productivity continuously.
  • the film formation using the vapor deposition method has been described.
  • the film formation method capable of implementing the apparatus and method of the present invention is not limited to the vapor deposition method, but includes the sputtering method and the ion plating method. And many others.

Abstract

Substrate domes capable of suppressing the lowering of the accuracy of film thickness distribution on substrates disposed thereon by a thermal expansion and centrifugal force by the rotation of the substrate dome during film formation in the substrate dome. A vacuum device comprises a vacuum chamber and the substrate domes on which the film formation substrates are mounted and which are oppositely disposed at the bottom of the vacuum chamber. The substrate domes formed of titan or a titan alloy is formed in the vacuum device.

Description

明 細 書  Specification
基板ドーム  Board dome
技術分野  Technical field
[0001] 本発明は、基板ドームに基板を配置して成膜を行なう際の基板ドームの変形防止 に関するものである。  The present invention relates to prevention of deformation of a substrate dome when a substrate is placed on the substrate dome and a film is formed.
背景技術  Background art
[0002] 一般に基板を搭載する基板ドームは基板を配置する位置すべてに同じ厚みの膜 が堆積するように設計するためドーム形状となる。また、成膜材料を堆積する際に、 基板ドーム内の円周方向の膜厚分布を均一にするために基板ドームを回転させる。  [0002] In general, a substrate dome on which a substrate is mounted has a dome shape because it is designed so that a film having the same thickness is deposited at all positions where the substrate is arranged. Further, when depositing the film forming material, the substrate dome is rotated in order to make the film thickness distribution in the circumferential direction inside the substrate dome uniform.
[0003] 本発明は、基板ドームにおける成膜中の熱膨張及び回転による遠心力により、基 板ドームに配置された基板上の膜厚分布精度が低下することを抑えるために必要な 構造に関するものである。  [0003] The present invention relates to a structure necessary for suppressing a decrease in accuracy of film thickness distribution on a substrate disposed on a substrate dome due to a centrifugal force due to thermal expansion and rotation during film formation on the substrate dome. It is.
[0004] 図 2は光学薄膜成膜用の蒸着装置であり、以下同様による薄膜形成の概要を説明 する。  FIG. 2 shows a vapor deposition apparatus for forming an optical thin film, and an outline of thin film formation by the same method will be described below.
[0005] 図 2の装置は図示しない排気系を持つ真空槽 30の底板に、蒸着材料 29を入れる 坩堝 28、蒸着材料 29を蒸発温度まで加熱する電子銃 27、蒸着完了時に閉するシャ ッター 26を配置し、天板に基板 21を配置する基板ドーム 20、またこれを回転させる ためのベアリング 22、ドーム側歯車 23、モーター側歯車 24、モーター 25を配置した 構造をしている。また、基板に堆積する膜の充填密度などを向上させるために基板 2 1を加熱するためのヒーター 31が配置され、蒸着材料の種類によって蒸発の仕方が 異なるので、これにより発生する基板ドーム内半径方向に生じる膜厚分布を補正する ための膜厚補正板 32が配置されている。  [0005] In the apparatus shown in Fig. 2, a vapor deposition material 29 is placed in a bottom plate of a vacuum chamber 30 having an exhaust system (not shown), a crucible 28, an electron gun 27 for heating the vapor deposition material 29 to an evaporation temperature, and a shutter 26 for closing when the vapor deposition is completed. And a substrate dome 20 on which a substrate 21 is disposed on a top plate, and a bearing 22 for rotating the substrate dome, a dome side gear 23, a motor side gear 24, and a motor 25 are arranged. In addition, a heater 31 for heating the substrate 21 is provided to improve the packing density of a film deposited on the substrate, and the manner of evaporation differs depending on the type of evaporation material. A film thickness correction plate 32 for correcting the film thickness distribution generated in the direction is provided.
[0006] この装置により蒸着を行なう場合は、まず基板ドーム 20に蒸着を行なう基板 21を設 置し、基板ドーム 20を真空槽内に設置し、又は、基板ドーム 20を真空槽内に設置し た後に基板 21を基板ドーム 20に設置する。そして蒸着材料 29を坩堝 28に入れる。 真空槽内を真空に排気して真空状態を保持させたら基板ドーム 20を回転させ、ヒー ター 31で基板 21を加熱する。基板温度が目的の温度に達したら電子銃 27から電子 ビームを蒸着材料 29へ照射し、蒸発温度まで加熱する。蒸着材料の種類によっては 自動可倒式又は固定式の膜厚補正板 32を蒸発源と基板 21との間に配置して基板ド ーム 20内の膜厚分布を補正する。シャッター 26を開けると蒸着材料 29が飛散し、基 板 21に蒸着材料 29が堆積する。蒸着が完了したらシャッター 26を閉じ、ヒーター 31 、電子銃 27、基板回転用モーター 25を停止させ、冷却後真空槽内に大気を導入す る。 [0006] When vapor deposition is performed by this apparatus, first, a substrate 21 to be vapor-deposited is placed on a substrate dome 20, and the substrate dome 20 is placed in a vacuum chamber, or the substrate dome 20 is placed in a vacuum chamber. After that, the substrate 21 is set on the substrate dome 20. Then, the evaporation material 29 is put into the crucible 28. When the inside of the vacuum chamber is evacuated to maintain a vacuum state, the substrate dome 20 is rotated, and the substrate 21 is heated by the heater 31. When the substrate temperature reaches the target temperature, the electron gun 27 The beam is irradiated to the evaporation material 29 and heated to the evaporation temperature. Depending on the type of the vapor deposition material, an automatic tilting type or fixed type film thickness correction plate 32 is arranged between the evaporation source and the substrate 21 to correct the film thickness distribution in the substrate dome 20. When the shutter 26 is opened, the vapor deposition material 29 scatters, and the vapor deposition material 29 is deposited on the substrate 21. When the deposition is completed, the shutter 26 is closed, the heater 31, the electron gun 27, and the substrate rotation motor 25 are stopped. After cooling, the atmosphere is introduced into the vacuum chamber.
[0007] 図 3は前記のような蒸着装置に使用されている従来の基板ドーム 20を示しており、 用途に応じ一般にステンレスやアルミなどに絞り加工を施すことでドーム形状を成型 する。基板ドーム 20内には基板 21の形状に合わせた基板配置用穴 40が等高線上 に配置されている。また、基板ドーム 20中心部には膜厚計測器用穴 41が空いている ものもある。基板ドーム 20の厚みはドーム径により異なるが、 φ 800mm- φ 1200の 基板ドーム 20の場合は 2mm 4mm程度である。  [0007] Fig. 3 shows a conventional substrate dome 20 used in the above-described vapor deposition apparatus, and a dome shape is generally formed by subjecting stainless steel or aluminum or the like to drawing according to the application. Inside the substrate dome 20, holes 40 for arranging the substrates that match the shape of the substrate 21 are arranged on the contour lines. In some cases, a hole 41 for a film thickness measuring device is formed in the center of the substrate dome 20. Although the thickness of the substrate dome 20 varies depending on the dome diameter, the thickness of the substrate dome 20 of φ800 mm-φ1200 is about 2 mm and 4 mm.
[0008] 現在、薄膜形成には、非常に厳しい精度規格と高い生産効率が同時に要求されて いる。生産効率を上げるためには、薄膜の膜厚の再現性及び膜厚分布をできる限り 高める必要がある。これを実現するには成膜材料と基板との距離が常に一定に保た れる必要がある。距離を一定に保つには基板ドームの熱などによる変形を極力抑え なければならない。  [0008] At present, very strict accuracy standards and high production efficiency are simultaneously required for thin film formation. In order to increase production efficiency, it is necessary to increase the reproducibility of the film thickness and the film thickness distribution as much as possible. To achieve this, the distance between the film-forming material and the substrate must always be kept constant. In order to keep the distance constant, deformation of the substrate dome due to heat or the like must be minimized.
[0009] また、形成する膜の使用用途や成膜材料などによって基板温度は異なり、基板温 度は常温に限りなく近いものから 300°C程度まで加熱するものまで多種多様である。 さらに、上記どちらの場合においても成膜材料の種類によって蒸発温度や熱伝導率 が異なるため、蒸発源から放出される輻射熱量は成膜材料によって異なる。よって、 多層成膜にぉレ、ては基板へ伝わる輻射熱量は常に変化することとなる。これにより成 膜中の基板温度は少なくとも 30°C程度の変化を持っておりこの熱の変化により基板 ドームの熱膨張量が変化するので基板と蒸発源との距離を一定に保つことは難しか つた。  [0009] Further, the substrate temperature varies depending on the intended use of the film to be formed, the film-forming material, and the like, and the substrate temperature varies from a temperature close to room temperature to a temperature heated to about 300 ° C. Further, in both cases, since the evaporation temperature and the thermal conductivity differ depending on the type of the film forming material, the amount of radiant heat emitted from the evaporation source differs depending on the film forming material. Therefore, the amount of radiant heat transmitted to the substrate during multilayer film formation is constantly changing. As a result, the temperature of the substrate during film formation changes at least about 30 ° C, and the change in heat changes the amount of thermal expansion of the substrate dome, making it difficult to maintain a constant distance between the substrate and the evaporation source. I got it.
[0010] 上述したように成膜中の基板ドームの熱膨張による変形が基板と蒸発源との距離を 変化させてしまう問題の他に成膜する膜の種類によって蒸着条件や膜厚補正板を使 い分けなければならない問題がある。ある成膜材料 Aと成膜材料 Bとの 2種類の成膜 材料からなる多層成膜 (1)を行なう際は基板温度を 300°Cとしたとする。また、ある成 膜材料 Bと成膜材料 Cとの 2種類の成膜材料力 なる多層成膜 (2)を行なう際は基板 温度を 100°Cとしたとする。この 2種類の多層成膜を比較した場合、基板温度が大き く異なるのでドームの熱膨張量が異なり、基板と蒸発源との距離に差が生じてしまう。 よって多層成膜 (1)の成膜材料 B用として使用していた膜厚補正板は多層成膜 (2)の 成膜材料 B用としては使用不能となり、多層成膜 (2)の成膜材料 B用の膜厚補正板を 別に製作しなければならなレ、。 [0010] As described above, in addition to the problem that the deformation due to the thermal expansion of the substrate dome during the film formation changes the distance between the substrate and the evaporation source, the deposition conditions and the film thickness correction plate depend on the type of the film to be formed. There is a problem that must be used properly. Two types of film formation: certain film forming material A and film forming material B When performing multi-layer deposition of materials (1), the substrate temperature is set to 300 ° C. In addition, when performing multi-layer film formation (2) with two kinds of film formation materials B and C, the substrate temperature is set to 100 ° C. When comparing these two types of multilayer film formation, the substrate temperature is greatly different, so the amount of thermal expansion of the dome is different, resulting in a difference in the distance between the substrate and the evaporation source. Therefore, the film thickness compensating plate used for film forming material B in multilayer film forming (1) cannot be used for film forming material B in multilayer film forming (2), and film forming for multilayer film forming (2) A film thickness compensator for Material B must be manufactured separately.
図 4は図 2および図 3に示す装置において基板ドーム 20の変形がない場合に基板 21に堆積する膜を計算したものである。蒸発源となる蒸着材料 29の中心点から各基 板までの距離を Dl、 D2、 D3、 D4とし、基板ドーム 20の中心から各水平方向の距離 を XI、 X2、 X3、 X4とし、各基板から垂直方向の距離を Yl、 Υ2、 Υ3、 Υ4とし、基板 ドーム 20の中心と蒸着材料 29の中心とを結んだ線と Dl、 D2、 D3、 D4との角度を Θ 1、 Θ 2、 Θ 3、 Θ 4とする。このとき、一般に各基板に堆積する膜厚は、各基板に堆 積する膜厚を dl、 d2、 d3、 d4とし、蒸発源から蒸発する蒸着材料 29の量を kとすると  FIG. 4 shows the calculated values of the films deposited on the substrate 21 when the substrate dome 20 is not deformed in the apparatus shown in FIGS. The distance from the center point of the evaporation material 29, which is the evaporation source, to each substrate is Dl, D2, D3, D4, and the horizontal distance from the center of the substrate dome 20 is XI, X2, X3, X4. , And the angles between the line connecting the center of the substrate dome 20 and the center of the vapor deposition material 29 and Dl, D2, D3, and D4 are Θ1, Θ2, and 角度. 3, Θ4. At this time, the film thickness deposited on each substrate is generally dl, d2, d3, and d4, and the amount of the evaporation material 29 evaporated from the evaporation source is k.
cos cos
d, = k 1 + 1  d, = k 1 + 1
ひ,2 Hubby, 2
cosS2 cosS 2
X2 + 2 ) X 2 + 2)
C J C J
= Χ3 + Υ3 )= Χ 3 + Υ3)
Figure imgf000005_0001
Figure imgf000005_0001
COS 04 COS 0 4
= χι + y ) で表される。  = χι + y).
基板ドームの変形がない場合においては XI =Χ2、 Υ1 =Υ2、 θ 1 = θ 2であるの で dl = d2となる。これを dl 2とする。また、 Χ3 =Χ4、 Υ3 =Υ4、 θ 3 = θ 4であるので d3 = d4となる。これを d34とする。よって基板ドーム 20の曲率は dl 2 = d34となるよう に設計する。 [数 1]に示す kは蒸着材料により異なる固有の値であるため、蒸着材料 29の種類によって dl2 = d34となる場合は膜厚補正板 32を使用して dl 2 = d34とな るようにする。 When there is no deformation of the substrate dome, dl = d2 because XI = Χ2, Υ1 = Υ2, and θ1 = θ2. Let this be dl 2. Also, since Χ3 = Χ4, Υ3 = Υ4, and θ3 = θ4, d3 = d4. This is d34. Therefore, the curvature of the substrate dome 20 is designed so that dl 2 = d34. Since k shown in [Equation 1] is a unique value that differs depending on the deposition material, If dl2 = d34 depending on the type of 29, dl2 = d34 using the thickness correction plate 32.
[0012] 図 5は蒸着中に基板ドーム 20上の任意の点 Aにかかる力を示している。ドームは回 転しているので点 Aには遠心力力 Sかかるので iの方向に伸びる力が加わる。また、点 A には重力力 Sかかるので hの方向にも伸びる力が加わる。この 2つの力を加算したもの が jとなる。 i及び hは共に基板ドーム 20の温度、熱膨張率及び重量に比例するので j においても同様である。  FIG. 5 shows the force applied to an arbitrary point A on the substrate dome 20 during vapor deposition. Since the dome is rotating, a centrifugal force S is applied to point A, so a force extending in the direction of i is applied. At point A, a gravitational force S is applied, so a force that extends in the direction of h is also applied. The sum of these two forces is j. The same applies to j since i and h are both proportional to the temperature, coefficient of thermal expansion and weight of the substrate dome 20.
[0013] 図 6は曲率半径 900mm、基板ドーム径 φ 1100mmのステンレス製基板ドーム 20の 熱膨張による伸びを計算したものである。ここでは常温時(25°C)と 300°C時との比較 を行なう。基板ドーム 20の断面の円弧の長さは 1182.8mmであるのでこれに温度変 ィ匕量及びステンレスの熱 S彭張ィ系数 17.3 X 10— 6を力けると 1182.8mm X 17. 3 X 10— 6 X (300°C-25°C) = 5. 63mmとなる。すなわち基板ドームが常温から 300°Cに昇温 すると、ドーム断面の円弧の距離 1182· 8mmが 5· 63mm伸びることとなる。 [0013] Fig. 6 shows the calculated elongation of a stainless steel substrate dome 20 having a radius of curvature of 900mm and a substrate dome diameter of 1100mm due to thermal expansion. Here, a comparison is made between room temperature (25 ° C) and 300 ° C. The length of the arc cross-section of the substrate dome 20 takes the force of heat S彭張I system number 17.3 X 10- 6 temperature variations I匕量and stainless thereto since it is 1182.8Mm the 1182.8mm X 17. 3 X 10- 6 X (300 ° C-25 ° C) = 5.63mm. In other words, when the temperature of the substrate dome rises from room temperature to 300 ° C, the distance of the arc of the dome cross section increases by 118.88 mm to 5.63 mm.
[0014] ここで、例えば、インライン式スパッタリング装置では、着脱される基板ホルダが加熱 雰囲気内でも塑性変形することがないように基板ホルダをチタン又はチタン合金で形 成するものが提案されている。  Here, for example, in an in-line type sputtering apparatus, there has been proposed an apparatus in which a substrate holder is formed of titanium or a titanium alloy so that a substrate holder to be detached is not plastically deformed even in a heated atmosphere.
特許文献 1:特開平 4 - 325679号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 4-325679
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0015] 上記のように基板ドーム 20の断面の円弧の距離が伸びた場合は図 4の Xや Y及び  [0015] As described above, when the distance of the arc of the cross section of the substrate dome 20 increases, X and Y in FIG.
Θが変化するので dl 2≠d34となってしまう。これにより膜厚補正板 32を温度によつ て使い分ける必要が出てきてしまう。また、蒸着中の基板ドーム 20の温度変化によつ て dl2と d34の比が変化してしまうので膜厚補正板を温度によって使い分けても蒸着 中の膜厚分布の変化を補正しきれなくなってしまう問題がある。  Since Θ changes, it becomes dl 2 ≠ d34. As a result, it becomes necessary to use the film thickness correction plate 32 properly depending on the temperature. In addition, the ratio of dl2 to d34 changes due to the temperature change of the substrate dome 20 during vapor deposition, so that even if the film thickness compensator is properly used depending on the temperature, the change in the film thickness distribution during vapor deposition cannot be corrected. There is a problem.
[0016] 図 7は基板ドーム 20の回転機構を図 2のような中心ではなく下部に配置したもので ある。このように回転機構の上に外周リング 42を配置し、基板ドーム 20を設置した場 合、基板ドーム 20が外周方向に伸びるのをある程度抑えることができるが、基板ドー ム 20の中心部は上方に伸びてしまう。よってこの方法を用いても基板ドーム 20の熱 膨張を抑えなければ問題を根本的に解決することはできない。 FIG. 7 shows a structure in which the rotation mechanism of the substrate dome 20 is arranged not at the center as in FIG. When the outer peripheral ring 42 is arranged on the rotating mechanism and the substrate dome 20 is installed, the extension of the substrate dome 20 in the outer peripheral direction can be suppressed to some extent. It will grow. Therefore, even if this method is used, the heat of the substrate dome 20 The problem cannot be solved fundamentally unless expansion is suppressed.
[0017] 前述に加え、基板回転機構への負荷の問題もある。図 2の場合においても図 7の場 合にぉレ、ても基板ドーム 20の重量が多ければ多いほどベアリング 22への負担は増 カロする。 (i> 1100mm、曲率半径 900mmの基板 Kーム 20に 70mm X 70mm X t2の ガラス基板を設置する場合、その枚数は少なくとも 110枚程になる。ガラスの比重は 2 . 5であるので 1枚あたりの重量は糸勺 24. 5gとなり、合計で 110枚とすると 24. 5g X l 10 = 2. 7kg程度となる。この基板ドームの重さはステンレス製の場合においては基 板の穴を 110枚分空けて比重 7. 93で計算すると約 13. 2kgとなる。よってベアリング 22へは少ヽなくとも合計 13. 2kg+2. 7kg= 15. 9kgの重量負荷力 ¾ 力、る。糸忿重量のう ち基板ドーム 20の重量が約 83%となり、ベアリング 22への負荷を減らし、メンテナン スサイクルを延ばすには基板ドーム 20の重量を下げる以外に解決手段はない。  [0017] In addition to the above, there is also a problem of a load on the substrate rotating mechanism. Even in the case of FIG. 2, even in the case of FIG. 7, the load on the bearing 22 increases as the weight of the substrate dome 20 increases. (I> When installing 70mm x 70mm x t2 glass substrates on a substrate 20 with a substrate radius of 1100mm and a radius of curvature of 900mm, the number of glass substrates will be at least about 110. Since the specific gravity of glass is 2.5, 1 glass The weight per thread is 24.5 g, which is about 24.5 g X l 10 = 2.7 kg when 110 pieces are in total.The weight of this substrate dome is 110 holes in the case of stainless steel. Approximately 13.2 kg when calculated with a specific gravity of 7.93 after leaving space for each sheet, so a total weight of at least 13.2 kg + 2.7 kg = 15.9 kg is applied to the bearing 22. Of the weight, the weight of the substrate dome 20 is about 83%, and there is no solution other than reducing the weight of the substrate dome 20 to reduce the load on the bearing 22 and extend the maintenance cycle.
[0018] 上記で説明したように基板 21と基板ドーム 20との総重量は少なくとも 16kg程度に なる。このように重量物であるが故、装置との着脱は困難であり保管時にも重みによる 変形などが発生することがある。また、前述したように重量が多ければ多いほど蒸着 時に基板ドーム 20自身にかかる遠心力、重力が大きくなるので変形を助長してしまう 課題を解決するための手段  As described above, the total weight of the substrate 21 and the substrate dome 20 is at least about 16 kg. Since it is heavy, it is difficult to attach and detach it to and from the device, and deformation may occur due to weight during storage. In addition, as described above, the larger the weight, the greater the centrifugal force and gravity applied to the substrate dome 20 during vapor deposition, thereby promoting deformation.
[0019] 本発明は上記問題を解決するためになされたもので、以下の側面を持つ基板ドー ム及び成膜方法を提供するものである。 The present invention has been made in order to solve the above problems, and provides a substrate dome and a film forming method having the following aspects.
[0020] 本発明の第 1の側面は、真空槽、及び、成膜基板が搭載され真空槽底部に対向配 置される基板ドームからなる真空装置において、熱膨張係数が 17. 3 X 10_6未満で ある材質を用いて基板ドームを形成するようにした。 A first aspect of the present invention is directed to a vacuum apparatus including a vacuum chamber and a substrate dome on which a film-forming substrate is mounted and which is opposed to the bottom of the vacuum chamber, and has a thermal expansion coefficient of 17.3 × 10 6. The substrate dome is formed by using a material having a size less than or equal to.
[0021] 本発明の第 2の側面は、真空槽、及び、成膜基板が搭載され真空槽底部に対向配 置される基板ドームからなる真空装置において、縦弾性係数が 19. 7 X 103未満であ る材質を用いて基板ドームを形成するようにした。 According to a second aspect of the present invention, there is provided a vacuum apparatus comprising a vacuum chamber and a substrate dome on which a film-forming substrate is mounted and which is opposed to the bottom of the vacuum chamber, and has a longitudinal elastic modulus of 19.7 × 10 3. The substrate dome was formed using a material having a size less than that of the substrate dome.
[0022] 本発明の第 3の側面は、真空槽、及び、成膜基板が搭載され真空槽底部に対向配 置される基板ドームからなる真空装置において、比重が 7. 93未満である材質を用い て基板ドームを形成するようにした。 [0023] 本発明の第 4の側面は、真空槽、成膜基板が搭載され真空槽底部に対向配置され る基板ドームからなる真空装置において、チタン又はチタン合金からなる材質を用い て基板ドームを形成するようにした。また、基板ドームは絞り加工により成型されるよう にした。 A third aspect of the present invention is directed to a vacuum apparatus including a vacuum chamber and a substrate dome on which a film formation substrate is mounted and opposed to the bottom of the vacuum chamber, wherein a material having a specific gravity of less than 7.93 is used. It was used to form a substrate dome. According to a fourth aspect of the present invention, there is provided a vacuum apparatus comprising a vacuum chamber and a substrate dome on which a film-forming substrate is mounted and disposed opposite to the bottom of the vacuum chamber, wherein the substrate dome is formed using a material made of titanium or a titanium alloy. It was formed. The substrate dome was formed by drawing.
[0024] 本発明の第 5の側面は、真空槽、真空槽底部に配置された成膜材料を乗せる坩堝 、及び、成膜基板が搭載され成膜材料に対向配置される基板ドームからなる真空装 置において、基板ドームを回転させた状態で成膜基板に成膜材料を堆積させる成膜 方法において、基板ドームに加わる遠心力または自重または熱膨張による変形を調 整して、該成膜材料と該成膜基板との距離を一定に保ち膜厚分布精度の向上を図 るようにした。  According to a fifth aspect of the present invention, there is provided a vacuum chamber comprising a vacuum chamber, a crucible for placing a film-forming material disposed at the bottom of the vacuum chamber, and a substrate dome on which a film-forming substrate is mounted and which is arranged to face the film-forming material In the apparatus, in a film forming method of depositing a film forming material on a film forming substrate while rotating a substrate dome, a deformation due to a centrifugal force applied to the substrate dome, or its own weight or thermal expansion is adjusted. The distance between the substrate and the film formation substrate was kept constant to improve the film thickness distribution accuracy.
[0025] 真空槽内部に少なくとも基板ドーム、蒸発源及び基板加熱手段を備え、基板ドーム に成膜基板を取り付けて回転させ、成膜基板に対向配置した蒸発源に電子ビームを 照射し、成膜基板に蒸発物質を堆積させる光学薄膜形成用装置において、基板ド ームがチタン又はチタン合金で成型されるようにした。  [0025] At least a substrate dome, an evaporation source, and a substrate heating means are provided inside the vacuum chamber, and the film deposition substrate is attached to the substrate dome and rotated, and an electron beam is irradiated to the evaporation source arranged opposite to the film deposition substrate to form a film. In an optical thin film forming apparatus for depositing an evaporating substance on a substrate, the substrate dome is made of titanium or a titanium alloy.
発明の効果  The invention's effect
[0026] 本発明により成膜時における基板ドームの変形を抑えることで、成膜材料と成膜基 板との距離等を一定に保ち、膜厚分布精度及び成膜の再現性を著しく向上させるこ とが可能となる。  [0026] By suppressing deformation of the substrate dome during film formation according to the present invention, the distance between the film formation material and the film formation substrate is kept constant, and the film thickness distribution accuracy and film formation reproducibility are significantly improved. This is possible.
図面の簡単な説明  Brief Description of Drawings
[0027] [図 1]本発明の純チタン製基板ドームを示す図である。  FIG. 1 is a diagram showing a pure titanium substrate dome of the present invention.
[図 2]真空蒸着装置の概略図である。  FIG. 2 is a schematic view of a vacuum evaporation apparatus.
[図 3]従来の基板ドームを示す図である。  FIG. 3 is a view showing a conventional substrate dome.
[図 4]基板と蒸発源との距離及び角度による膜厚への影響を説明する図である。  FIG. 4 is a view for explaining the effect of the distance and angle between the substrate and the evaporation source on the film thickness.
[図 5]蒸着中に基板ドームにかかる力を説明する図である。  FIG. 5 is a view for explaining a force applied to a substrate dome during vapor deposition.
[図 6]基板加熱により膨張する量を説明する図である。  FIG. 6 is a view for explaining an amount of expansion due to substrate heating.
[図 7]真空蒸着装置の概略図である。  FIG. 7 is a schematic view of a vacuum evaporation apparatus.
符号の説明  Explanation of symbols
[0028] 1 本発明の純チタン製基板ドーム 20 従来のステンレス製基板ドーム [0028] 1 Pure titanium substrate dome of the present invention 20 Conventional stainless steel substrate dome
21 基板  21 substrate
22 ベアリング  22 Bearing
23 ドーム側歯車  23 Dome side gear
24 モーター側歯車  24 Motor side gear
25 モーター  25 motor
26 シャッター  26 Shutter
27 電子銃  27 electron gun
28 坩堝  28 crucible
29 蒸着材料  29 Evaporation material
30 真空槽  30 vacuum chamber
31 ヒーター  31 heater
32 膜厚補正板  32 Film thickness compensator
40 基板配置用穴  40 Board placement hole
41 膜厚計測器用穴  41 Thickness measurement hole
42 外周リング  42 Outer ring
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0029] 図 1に本発明基板ドームの実施例を説明する平面図及び断面図を示す。  FIG. 1 shows a plan view and a cross-sectional view illustrating an embodiment of the substrate dome of the present invention.
以下、本発明に係る基板ドーム 1は、基板ドーム 20を除いて図 2及び図 7に示され る装置と同様の真空装置に搭載されるものとするが、本発明を実施可能な真空装置 はこれに限られるものではない。  Hereinafter, it is assumed that the substrate dome 1 according to the present invention is mounted on a vacuum device similar to the device shown in FIGS. 2 and 7 except for the substrate dome 20. It is not limited to this.
基板ドーム 1の形状や寸法は従来の基板ドーム 20と等しぐ成型方法も従来同様 絞り加工とする。材質は従来の基板ドーム 20のステンレスやアルミなどではなく純チ タンを使用する。本発明を実施可能な基板ドームの材質は、熱膨張係数、縦弾性係 数及び比重の小さい材質であればよぐ材質の選択は適宜行なえばよい。純チタン のほうがより望ましい性能が確保できる力 例えばチタン合金を使用しても性能の向 上が可能である。  The shape and dimensions of the substrate dome 1 are equal to those of the conventional substrate dome 20, and the drawing method is the same as the conventional method. The material is pure titanium instead of the conventional stainless steel or aluminum of the substrate dome 20. The material of the substrate dome in which the present invention can be implemented may be any material as long as it has a small coefficient of thermal expansion, a coefficient of longitudinal elasticity, and a small specific gravity. Pure titanium has the ability to ensure more desirable performance For example, it is possible to improve performance by using a titanium alloy.
[0030] 基板ドーム 1を純チタンもしくはチタン合金を材料として製作した場合、チタンは熱 膨張係数が低いので、基板加熱時及び蒸着時の温度変化による熱膨張の量を抑え ること力 Sできる。これにより基板 21の搭載位置の変化が従来のステンレス製ドームな どと比較して小さくなるので基板上に堆積する膜の再現性、分布が計算値に近くなり 、生産性が著しく向上する。また、チタンは比重がステンレスと比較して非常に低いの で基板ドームの重量が小さくなり、ベアリング 22への負荷も小さくなる。これによりメン テナンスサイクルが延びる上、重量が小さくなつた分、蒸着時に基板ドーム自身にか かる遠心力、重力の影響も小さくなるのでさらに基板ドーム 1の変形を抑制することが 可能である。また、重量が小さくなつたので基板ドーム 1の着脱性も向上し、保管時の 重量による変形も抑制される。 [0030] When substrate dome 1 is made of pure titanium or a titanium alloy, titanium Since the coefficient of expansion is low, it is possible to control the amount of thermal expansion due to temperature changes during substrate heating and vapor deposition. As a result, the change in the mounting position of the substrate 21 becomes smaller than that of a conventional stainless steel dome or the like, so that the reproducibility and distribution of the film deposited on the substrate are close to the calculated values, and the productivity is remarkably improved. Further, since titanium has a very low specific gravity as compared with stainless steel, the weight of the substrate dome is reduced, and the load on the bearing 22 is also reduced. As a result, the maintenance cycle is extended and the influence of the centrifugal force and the gravity applied to the substrate dome during vapor deposition is reduced by the reduced weight, so that the deformation of the substrate dome 1 can be further suppressed. Further, since the weight is reduced, the detachability of the substrate dome 1 is improved, and deformation due to the weight during storage is suppressed.
[0031] そこで具体的に本発明の基板ドーム 1と従来の基板ドーム 20との比較を行なう。純 チタンの熱膨張係数は 8. 8 X 10— 6であるので、これを図 6の場合と同様に膨張量を 計算すると 1182. 8mm X 8. 8 X 10— 6 X (300°C-25°C) = 2. 86mmとなりステンレ ス製ドームと比較して膨張量は約 50%に抑えられる。図 4で説明したとおり、基板 21 に堆積する膜厚は基板 21と蒸発源との距離の 2乗に反比例するので、純チタンの基 板ドーム 1内の膜厚分布は従来に比較して 50%以下にすることが可能である。 Therefore, a concrete comparison between the substrate dome 1 of the present invention and the conventional substrate dome 20 will be made. Since the thermal expansion coefficient of pure titanium is a 8. 8 X 10- 6, 1182. 8mm X 8. 8 X 10- 6 X (300 ° C-25 and which calculates the amount of expansion as in the case of FIG. 6 ° C) = 2.86mm, which is about 50% less in expansion than stainless dome. As described with reference to FIG. 4, the thickness of the film deposited on the substrate 21 is inversely proportional to the square of the distance between the substrate 21 and the evaporation source. % Or less.
[0032] 次に、基板回転機構への負荷について比較する。 φ 1100mm,曲率半径 900m mの基板ドームに 70mm X 70mm X t2のガラス基板を 110枚設置する場合、ステン レスで製作した従来の基板ドーム 20の重量は約 13. 2kg、ガラス 110枚を搭載した 総重量は 15. 9kgであった。基板ドーム 1を純チタンで製作した場合、比重が 4. 51 であるので基板ドームの重量は約 7. 6kgとなる。これに同様に基板 110枚の重さを 加えると、総重量は 10. 3kgとなり従来の基板ドーム 20から、基板ドームのみでは約 42%の重量減少、総重量では約 35%の重量減少となる。よってベアリング 22への 負荷が大幅に低減されるのでメンテナンスサイクルを著しく延ばすことができる。また 、熱膨張係数が低いことに加え、重量が減少したことで基板ドーム自身にかかる遠心 力及び重力も減少するので変形を大幅に抑えることができる。  Next, the load on the substrate rotating mechanism will be compared. When 110 glass substrates of 70 mm x 70 mm x t2 are installed on a substrate dome with a diameter of 1100 mm and a radius of curvature of 900 mm, the conventional substrate dome 20 made of stainless steel weighs about 13.2 kg and has 110 glass substrates. The total weight was 15.9 kg. When the substrate dome 1 is made of pure titanium, the specific gravity is 4.51 and the weight of the substrate dome is about 7.6 kg. Similarly, if 110 boards are added in weight, the total weight is 10.3 kg, compared to the conventional board dome 20, the weight of the board dome alone is reduced by about 42%, and the total weight is reduced by about 35% . Therefore, the load on the bearing 22 is greatly reduced, so that the maintenance cycle can be significantly extended. In addition to the low coefficient of thermal expansion, the reduced weight also reduces the centrifugal force and gravity applied to the substrate dome itself, so that deformation can be greatly suppressed.
[0033] 上記のように総重量が約 35%減少したことで、装置との着脱性も向上し、保管時の 重量による変形も抑えること力 Sできる。また、ステンレスの縦弾性係数 19. 7 X 103と比 較して純チタンの縦弾性係数は 11. 6 X 103と約半分であるので運搬時に基板ドー ムを落下させてしまった場合などにおいても外力による変形が小さい。 [0033] As described above, since the total weight is reduced by about 35%, the detachability with the apparatus is improved, and the deformation S due to the weight during storage can be suppressed. The substrate dough during transportation because the modulus of longitudinal elasticity 19. 7 X 10 3 and compared to the longitudinal elastic coefficient of the pure titanium stainless steel is approximately half as 11. 6 X 10 3 Deformation due to external force is small even when the robot is dropped.
[0034] よって前述より従来の基板ドーム 20を使用した場合に比較して本発明の純チタンも しくはチタン合金の基板ドーム 1を使用した場合は、基板加熱時及び蒸着時の温度 変化及び回転駆動の影響による変形が抑えられ、基板搭載位置の変化が極力抑え られるので成膜の再現性が著しく向上する。また、重量が小さくなつたことでべアリン グ 22などへの負荷も抑えられ、メンテナンス性が向上し、かつ着脱性も向上する。カロ えて運搬時の落下などの外力による変形も小さレ、ので継続して生産性を高く保つこと が可能である。  [0034] Therefore, as described above, when the substrate dome 1 of pure titanium or a titanium alloy of the present invention is used, the temperature change and rotation during substrate heating and vapor deposition are compared with the case where the conventional substrate dome 20 is used. Deformation due to the influence of driving is suppressed, and changes in the substrate mounting position are suppressed as much as possible, so that the reproducibility of film formation is significantly improved. In addition, the reduced weight reduces the load on the bearing 22, etc., improving maintainability and improving detachability. In addition, deformation due to external forces such as falling during transportation is small, so it is possible to maintain high productivity continuously.
[0035] 上記実施例では蒸着法を用レ、た成膜について説明したが、本発明装置および方 法を実施可能な成膜方法は蒸着法に限られるものではなぐスパッタリング法、イオン プレーティング法等多数あげられる。  [0035] In the above-described embodiment, the film formation using the vapor deposition method has been described. However, the film formation method capable of implementing the apparatus and method of the present invention is not limited to the vapor deposition method, but includes the sputtering method and the ion plating method. And many others.

Claims

請求の範囲 The scope of the claims
[1] 真空槽、及び、成膜基板が搭載され該真空槽底部に対向配置される基板ドームか らなる真空装置であって、  [1] A vacuum apparatus comprising: a vacuum chamber; and a substrate dome on which a film forming substrate is mounted and opposed to a bottom of the vacuum chamber,
該基板ドームを形成する材質の熱膨張係数が 17. 3 X 10_6未満であることを特徴と する真空装置。 Vacuum and wherein the thermal expansion coefficient of the material forming the substrate dome 17. less than 3 X 10_ 6.
[2] 真空槽、成膜基板が搭載され該真空槽底部に対向配置される基板ドームからなる 真空装置であって、  [2] A vacuum apparatus comprising a vacuum chamber and a substrate dome on which a film forming substrate is mounted and opposed to the bottom of the vacuum chamber,
該基板ドームを形成する材質の縦弾性係数が 19. 7 X 103未満であることを特徴と する真空装置。 A vacuum device characterized in that the material forming the substrate dome has a modulus of longitudinal elasticity of less than 19.7 × 10 3 .
[3] 真空槽、成膜基板が搭載され該真空槽底部に対向配置される基板ドームからなる 真空装置であって、  [3] A vacuum apparatus comprising a vacuum chamber and a substrate dome on which a film forming substrate is mounted and opposed to the bottom of the vacuum chamber,
該基板ドームを形成する材質の比重が 7. 93未満であることを特徴とする真空装置  A vacuum device characterized in that the specific gravity of the material forming the substrate dome is less than 7.93.
[4] 真空槽、成膜基板が搭載され該真空槽底部に対向配置される基板ドームからなる 真空装置であって、 [4] A vacuum apparatus comprising a vacuum chamber, a substrate dome on which a film forming substrate is mounted, and a substrate dome opposed to the bottom of the vacuum chamber,
該基板ドームを形成する材質がチタン又はチタン合金力 なる真空装置。  A vacuum device in which the material forming the substrate dome is titanium or titanium alloy.
[5] 請求項 4記載の真空装置であって、該基板ドームの形状がチタン又はチタン合金 の絞り加工で成型された真空装置。 5. The vacuum device according to claim 4, wherein the shape of the substrate dome is formed by drawing titanium or a titanium alloy.
[6] 真空槽、該真空槽底部に配置された成膜材料を乗せる坩堝、及び、成膜基板が搭 載され該成膜材料に対向配置される基板ドームからなる真空装置において、該基板 ドームを回転させた状態で該成膜基板に該成膜材料を堆積させる成膜方法であって 基板ドームに加わる遠心力または自重または熱膨張による変形を調整して、該成 膜材料と該成膜基板との距離を一定に保ち膜厚分布精度の向上を図ることを特徴と する成膜方法。 [6] In a vacuum apparatus comprising a vacuum tank, a crucible on which a film-forming material placed on the bottom of the vacuum tank is placed, and a substrate dome on which a film-forming substrate is mounted and opposed to the film-forming material, the substrate dome A film forming method for depositing the film forming material on the film forming substrate in a state in which the film forming material is rotated. The film forming material and the film forming method are adjusted by controlling deformation due to centrifugal force or own weight or thermal expansion applied to the substrate dome. A film forming method characterized by maintaining a constant distance from a substrate and improving the film thickness distribution accuracy.
[7] 真空槽内部に少なくとも基板ドーム、蒸発源及び基板加熱手段を備え、該基板ド 一ムに成膜基板を取り付けて回転させ、該成膜基板に対向配置した該蒸発源に電 子ビームを照射し、該成膜基板に蒸発物質を堆積させる光学薄膜形成用装置にお いて、 [7] At least a substrate dome, an evaporation source, and a substrate heating means are provided inside the vacuum chamber, and a film formation substrate is mounted on the substrate dome and rotated, and an electron beam is applied to the evaporation source arranged opposite to the film formation substrate. And an optical thin film forming apparatus for depositing a vaporized substance on the film forming substrate. And
該基板ドームがチタン又はチタン合金で成型されることを特徴とする光学薄膜形成 用装置。  An apparatus for forming an optical thin film, wherein the substrate dome is formed of titanium or a titanium alloy.
PCT/JP2005/000848 2004-05-11 2005-01-24 Substrate dome WO2005108638A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-141101 2004-05-11
JP2004141101A JP3966869B2 (en) 2004-05-11 2004-05-11 Board dome

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/403,037 Continuation US20060184183A1 (en) 2004-05-11 2006-04-12 Surgical instrument

Publications (1)

Publication Number Publication Date
WO2005108638A1 true WO2005108638A1 (en) 2005-11-17

Family

ID=35320249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/000848 WO2005108638A1 (en) 2004-05-11 2005-01-24 Substrate dome

Country Status (4)

Country Link
JP (1) JP3966869B2 (en)
KR (1) KR20070010153A (en)
CN (1) CN1977066A (en)
WO (1) WO2005108638A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8367191B2 (en) 2007-06-05 2013-02-05 Nihon Dempa Kogyo Co., Ltd. Optical thin-films and optical elements comprising same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2929319A4 (en) 2013-12-31 2016-12-21 Halliburton Energy Services Inc Fabrication of integrated computational elements using substrate support shaped to match spatial profile of deposition plume
EP3296423B1 (en) * 2016-09-16 2019-01-30 Satisloh AG Vacuum coating apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01137527U (en) * 1988-03-15 1989-09-20
JPH0649626A (en) * 1992-04-21 1994-02-22 Ulvac Japan Ltd Parts for film forming device and reproduction method therefor
JP2002305080A (en) * 2001-01-31 2002-10-18 Toray Ind Inc Integrated mask, and manufacturing method of organic el element using integrated mask, and its manufacturing equipment
JP2004091899A (en) * 2002-09-03 2004-03-25 Victor Co Of Japan Ltd Deposition system and deposition method for antireflection film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01137527U (en) * 1988-03-15 1989-09-20
JPH0649626A (en) * 1992-04-21 1994-02-22 Ulvac Japan Ltd Parts for film forming device and reproduction method therefor
JP2002305080A (en) * 2001-01-31 2002-10-18 Toray Ind Inc Integrated mask, and manufacturing method of organic el element using integrated mask, and its manufacturing equipment
JP2004091899A (en) * 2002-09-03 2004-03-25 Victor Co Of Japan Ltd Deposition system and deposition method for antireflection film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8367191B2 (en) 2007-06-05 2013-02-05 Nihon Dempa Kogyo Co., Ltd. Optical thin-films and optical elements comprising same

Also Published As

Publication number Publication date
JP3966869B2 (en) 2007-08-29
CN1977066A (en) 2007-06-06
KR20070010153A (en) 2007-01-22
JP2005320605A (en) 2005-11-17

Similar Documents

Publication Publication Date Title
US10689746B2 (en) Thin film deposition apparatus
JP5197663B2 (en) Vapor deposition equipment
TWI570835B (en) Two piece shutter disk assembly for a substrate process chamber
US20080014825A1 (en) Deposition apparatus
JP7262212B2 (en) Film forming apparatus, film forming method, and method for manufacturing electronic device
KR20060098755A (en) Vacuum deposition apparatus and method of organic light emitting diode
TWI470111B (en) Filming apparatus and filming method
KR100637896B1 (en) Vacuum deposition apparatus of organic substances
US8807075B2 (en) Shutter disk having a tuned coefficient of thermal expansion
TWI437111B (en) Evaporation apparatus, thin film depositing apparatus and method for feeding source material of the same
WO2002099159A1 (en) Method and device for forming film
WO2005108638A1 (en) Substrate dome
CN105154831B (en) A kind of vacuum evaporation source apparatus and vacuum evaporation equipment
JP2016509985A (en) Substrate carrier
WO2015172835A1 (en) Apparatus and method for coating a substrate by rotary target assemblies in two coating regions
US20050016834A1 (en) Method of forming film by sputtering, optical member, and sputtering apparatus
US10014433B2 (en) Device for heating a substrate
JP2004111386A5 (en) Manufacturing apparatus and method for producing layer containing organic compound
JP2009174060A (en) Substrate tray of film deposition apparatus
TWI576450B (en) Coating apparatus
KR100637127B1 (en) Method of vacuum evaporation and apparatus the same
KR20170081680A (en) Cost effective monolithic rotary target
KR20050051138A (en) Method of vacuum evaporation and apparatus the same
EP4270444A1 (en) Magnetron sputtering system with tubular sputter cathode and method for controlling a layer thickness
CN215163072U (en) Deposition apparatus and deposition system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067022168

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580013199.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 1020067022168

Country of ref document: KR

122 Ep: pct application non-entry in european phase