WO2005104318A1 - Semiconductor light-emitting device - Google Patents

Semiconductor light-emitting device Download PDF

Info

Publication number
WO2005104318A1
WO2005104318A1 PCT/JP2005/008327 JP2005008327W WO2005104318A1 WO 2005104318 A1 WO2005104318 A1 WO 2005104318A1 JP 2005008327 W JP2005008327 W JP 2005008327W WO 2005104318 A1 WO2005104318 A1 WO 2005104318A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
type
emitting device
light emitting
ridge
Prior art date
Application number
PCT/JP2005/008327
Other languages
French (fr)
Japanese (ja)
Inventor
Kenji Shimoyama
Takashi Fukada
Yoji Tokumitsu
Nobuhiro Arai
Kaori Kurihara
Original Assignee
Mitsubishi Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corporation filed Critical Mitsubishi Chemical Corporation
Publication of WO2005104318A1 publication Critical patent/WO2005104318A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2231Buried stripe structure with inner confining structure only between the active layer and the upper electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • H01L33/145Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure with a current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3211Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities
    • H01S5/3213Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities asymmetric clading layers

Definitions

  • the present invention relates to a semiconductor light emitting device useful as a semiconductor laser or the like, and more particularly to a semiconductor light emitting device having a low element resistance and capable of high output operation.
  • semiconductor light emitting devices include semiconductor laser devices capable of self-sustained pulsation.
  • LD laser diodes
  • III-V group semiconductor materials have been actively developed as light sources for information processing devices such as compact disks and optical disks.
  • a conventional LD using an III-V compound semiconductor material there is an LD made of an A1GaInP-based compound semiconductor having a structure schematically shown in FIG.
  • 401 is an n-type substrate
  • 402 is an n-type first cladding layer
  • 403 is an active layer
  • 404 is a p-type second cladding layer
  • 405 is a p-type etching stop.
  • 406 is a p-type third cladding layer with a ridge structure
  • 407 is an n-type current blocking layer
  • 408 is a p-type contact layer
  • 409 is a p-side electrode
  • 410 is an n-side Electrodes.
  • the p-type third cladding layer 406 is sandwiched between the current blocking layers 407.
  • the p-type third cladding layer 406 has a structure in which the current is confined at the ridge portion, and thus generally has high pass resistance, thermal resistance, and element resistance.
  • problems such as an increase in the amount of heat generated, a decrease in optical output due to thermal saturation, an increase in operating current when operated at a temperature higher than room temperature, and a difficulty in applying high frequency superposition.
  • Zinc has a property of being easily diffused in the A1GaInP crystal, and therefore, zinc in the p-type cladding layer during repeated epitaxial growth. It often occurred that lead diffused into the active layer. When the sub-layers and diffuse into the active layer in this manner, the crystallinity of the active layer deteriorates and the life is shortened. On the other hand, if the zinc concentration is reduced to prevent diffusion, the operating voltage increases and laser oscillation becomes difficult.
  • the n-type cladding layer and the p-type cladding layer have a double heterostructure with a larger A1 composition than the active layer in order to confine the emitted light in the active layer.
  • the amount of A1 in the P-type cladding layer is increased to enhance light confinement, for example, the carrier concentration decreases, and as a result, the device resistance increases and the driving current increases. there were.
  • the amount of A 1 in the p-type cladding layer is reduced in order to lower the drive current, light confinement and carrier confinement are weakened, and the luminous efficiency is degraded.
  • Japanese Unexamined Patent Application Publication No. 7-2974833 discloses a semiconductor laser having a highly doped p-type second cladding layer (ridge: current constriction portion) in order to reduce device resistance.
  • ridge current constriction portion
  • a P-type dopant such as zinc diffuses into the active layer during epitaxy growth or during energization, leading to deterioration of device characteristics and reliability.
  • H11-26880 discloses that a p-type second cladding layer (ridge: current constriction part) and an active layer are formed in order to prevent diffusion of a p-type dopant into the active layer.
  • a semiconductor laser device provided with a carrier diffusion suppressing layer.
  • the carrier diffusion suppressing layer described in the publication cannot sufficiently cope with a change in the diffusion state of the P-type dopant due to the growth temperature, crystallinity, etc., and further has a variation in element characteristics and a problem in reproducibility of reliability. was there.
  • 11-878332 discloses that a p-type cladding layer and an active layer are provided between a p-type cladding layer and an active layer in order to prevent diffusion of a p-type dopant into the active layer.
  • a semiconductor laser having a layer with a pan gap between the layer and the layer is described.
  • the etching process of the ridge portion is complicated, and the etching is difficult.
  • it is more difficult to form a stable ridge shape for example, a depression is formed on the upper side of the ridge portion.
  • the hereditary LD normally controls the fundamental transverse mode by forming a stripe-shaped ridge in the [—110] direction (Fujii et al., Electronics Letters Vol. 23, No. 18). No. 938-9339).
  • the stripe direction of the ridge in the [111] direction the luminous efficiency of the active layer composed of A1GaInP ordered crystal is improved compared to the [110] direction, and the threshold current density is increased. This is because it can be reduced.
  • a semiconductor laser formed in the [110] direction has been developed so far (Japanese Patent Laid-Open No. 7-193313).
  • the ridge structure described in this publication has an inverted mesa shape, and it is necessary to perform high-temperature growth (700 to 850 ° C.) in a disordered state in order to form the inverted mesa-shaped p-type third cladding layer. is there. If grown at a high temperature in order to bring the disorder, the p-type dopant diffuses into the active layer during the growth process, and the crystallinity of the active layer deteriorates, the life is shortened, and the reliability is reduced. .
  • a conventional technology relating to a semiconductor laser device capable of self-sustained pulsation is described below.
  • -A self-sustained pulsation type semiconductor laser (wavelength multimode) that is resistant to optical noise from the optical disk is suitable as a light source for reading the optical disk.
  • a self-pulsation type semiconductor laser an inner stripe type laser using a semiconductor current block layer as shown in FIGS. 8 (a) and 8 (b) has been used.
  • Structure without light absorption layer In the structure, self-sustained pulsation is usually achieved by forming a saturable absorption region inside the active layer.
  • the saturable absorption region can be formed on both sides immediately below the ridge or group as shown in FIGS. 8 (a) and 8 (b) by expanding the light distribution more than the current injection region.
  • the generation (emission) of carriers and the extinction (extinction) of carriers are repeated in a short time cycle, so that the vertical mode becomes multi (wavelength multimode), and low noise can be realized.
  • a method of performing longitudinal multi-mode oscillation using the self-excited oscillation phenomenon of the semiconductor laser has been developed.
  • Japanese Patent Application Laid-Open No. 63-202083 discloses the details. Is described.
  • reference numeral 601 denotes an n-type GaAs substrate; 602, a cladding layer made of n-type A1GaInP formed on the substrate 601; 603, an active layer made of A1GaInP.
  • Reference numeral 604 denotes a cladding layer made of p-type A1GaInP, 605 denotes a current blocking (blocking) layer made of n-type GaAs, and 606 denotes a contact layer.
  • the mixed crystal ratio is set so that the energy gap of the A1GaInP active layer 603 is smaller than the energy gap of the A1GaInP clad layers 602 and 604. It has a hetero structure.
  • the current blocking layer 605 is provided for the purpose of performing a so-called current confinement in order to obtain a current density required for laser oscillation.
  • the current blocking layer 605 is formed by selectively etching the layer 604 to form a ridge and then selectively growing it using an amorphous film such as SiNX.
  • an A1GaInP-based self-excited oscillation laser provided with a saturable absorption layer having a band gap similar to that of oscillation light outside the active layer is disclosed in Japanese Patent Application Laid-Open No. 7-26363.
  • self-oscillation is 60. It has been confirmed up to the high temperature of C.
  • a steep transition of the optical output is observed at the rise of oscillation as shown in Fig. 11.
  • the p-type third cladding layer 906 is composed of the current blocking layer 906. 7, and has a structure in which the current is confined at the ridge portion of the P-type third cladding layer 906, and thus generally has high passing resistance, thermal resistance, and element resistance. Therefore, in the conventional LD, the amount of heat generated by the element at the time of high power injection increases, the temperature of the active layer rises, and self-sustained pulsation becomes difficult to occur. There were problems such as difficulty.
  • zinc is used as a p-type impurity in the p-type cladding layers 904 and 906. Since zinc is easily diffused in AlGaInP crystals, zinc in the p-type cladding layer diffuses into the active layer during repeated epitaxial growth. Often occurs. When zinc diffuses into the active layer in this manner, the crystallinity of the active layer is deteriorated and the life is shortened. On the other hand, if the zinc concentration is reduced to prevent diffusion, the »working voltage increases and laser oscillation becomes difficult.
  • the n-type cladding layer and the p-type cladding layer have a double hetero structure in which the A1 composition is larger than that of the active layer in order to confine the emitted light in the active layer.
  • the amount of A1 in the P-type cladding layer is increased to enhance light confinement, for example, the carrier concentration decreases, and as a result, the device resistance increases and the driving current increases. there were.
  • the amount of A 1 in the p-type cladding layer is reduced in order to lower the drive current, light confinement and carrier confinement are weakened, and the luminous efficiency is degraded.
  • Japanese Unexamined Patent Application Publication No. 7-294784 discloses a semiconductor laser having a highly doped P-type second cladding layer (ridge: current confinement portion) in order to reduce device resistance.
  • ridge current confinement portion
  • p-type dopants such as zinc diffuse into the active layer during the current application, resulting in a deterioration in device characteristics and a decrease in reliability.
  • 11-260880 discloses that a p-type second cladding layer (ridge: current constriction portion) and a p-type second cladding layer are used to prevent diffusion of a p-type dopant into an active layer.
  • a semiconductor laser device provided with a carrier diffusion suppressing layer between the layers is described.
  • the carrier diffusion suppression layer described here cannot sufficiently cope with changes in the diffusion state of the p-type dopant due to growth temperature, crystallinity, etc., and further has variations in element characteristics, which causes a problem in reproducibility of reliability. there were.
  • 11-878332 discloses that a p-type cladding layer and an active layer are provided between a p-type cladding layer and an active layer in order to prevent diffusion of a p-type dopant into the active layer.
  • a semiconductor laser having a layer with a pan gap between the layer and the layer is described.
  • this semiconductor laser has drawbacks in that the etching process of the ridge portion is complicated, and it is difficult to form a stable ridge shape, for example, a depression is formed on the upper side surface of the ridge portion by etching. Was. .
  • conventional LDs usually control the fundamental transverse mode by forming stripe-shaped ridges in the [111] direction (Fujii et al., Electronics Letters Vol. 23, Vol. 1). No. 8, 938-9339).
  • the ridge stripe direction in the [111] direction the luminous efficiency of the active layer composed of A1GaInP ordered crystal is improved compared to the [110] direction, and the threshold voltage is increased. This is because the current density can be reduced.
  • a semiconductor laser having a stripe-shaped ridge formed in the [110] direction has been developed (Japanese Patent Application Laid-Open No. 7-193313).
  • the ridge structure described here has an inverted mesa shape.
  • the present invention has been made in view of the above-mentioned problems of the related art, and an object of the present invention is to provide a low output element, a low thermal resistance, a low through current, and a high operating current. It is to provide a simple semiconductor light emitting device. Another object of the present invention is to provide a semiconductor laser device having these characteristics and capable of self-sustained pulsation.
  • the present inventor has conducted intensive studies on the structure of a semiconductor device having a ridge structure in order to solve the above-described problems of the related art, and as a result, by configuring the ridge structure so as to satisfy a specific condition, the operation is improved.
  • the inventors have found that a semiconductor light emitting device which can greatly reduce the current, can operate at high temperature, and can operate at high power can be obtained, and have completed the present invention.
  • the object of the present invention is achieved by a semiconductor light emitting device having the following configuration.
  • a substrate a first conductivity type quad layer formed of at least one layer formed on the substrate, an active layer formed on the first conductivity type clad layer, and a substrate formed on the active layer.
  • First cladding of the second conductivity type so as to sandwich both sides of the ridge of the cladding layer.
  • a semiconductor light emitting device having a trapezoidal configuration, wherein a cross section orthogonal to a stripe longitudinal direction of the ridge structure satisfies the following expression.
  • h is the height of the cross section
  • a is the upper bottom of the cross section
  • b is the lower bottom of the cross section.
  • a substrate a first-conductivity-type cladding layer formed on the substrate, comprising at least one layer, an active layer formed on the first-conductivity-type cladding layer, and formed on the active layer.
  • a current blocking layer formed on the second conductive type first cladding layer so as to sandwich both side surfaces of the ridge of the second cladding layer; and a current blocking layer formed on and near the ridge of the second conductive type second cladding layer.
  • a second conductive type third cladding layer formed on the current blocking layer, and having a maximum light output of 8 OmW or more in single transverse mode oscillation in pulse driving at 25 ° C. Light emitting device.
  • a substrate a first conductivity type clad layer comprising at least one layer formed on the substrate, an active layer formed on the first conductivity type clad layer, and A second conductive type first clad layer formed on the second conductive type first clad layer, a second conductive type second clad layer having a stripe-shaped ridge structure formed on the second conductive type first clad layer, and the second conductive type second clad layer.
  • a current blocking layer formed on the second conductive type first cladding layer so as to sandwich both sides of the ridge of the second conductive type cladding layer; and on a ridge of the second conductive type second cladding layer.
  • a third cladding layer of the second conductivity type formed on the current blocking layer in the vicinity of the ridge, and has a maximum light output of 5 mW or more in single transverse mode oscillation in DC driving at 25 ° C.
  • a semiconductor light emitting device which is a self-pulsation type semiconductor laser device.
  • a substrate a first-conductivity-type clad layer formed of at least one layer formed on the substrate, an active layer formed on the first-conductivity-type clad layer, and A second conductive type first clad layer formed, a second conductive type second clad layer having a stripe-shaped ridge structure formed on the second conductive type first clad layer, and a second conductive type second clad layer;
  • a current blocking layer formed on the first cladding layer of the second conductivity type so as to sandwich both sides of the ridge of the second cladding layer; and a ridge on the second cladding layer of the second conductivity type.
  • the device is a semiconductor light emitting device.
  • the thickness of the current blocking layer is smaller than that of the second cladding layer of the second conductivity type.
  • the semiconductor light emitting device according to any one of [1] to [16].
  • the current blocking layer is made of a kind selected from the group consisting of A1GaInP, A1InP, A1GaAs and A1GaAsP. [1] to [18] The semiconductor light emitting device according to any one of claims 1 to 7.
  • the current blocking layer is composed of A 1 G a As or A 1 G a As P
  • the third cladding layer of the second conductivity type is made of AlGaAs or AlGaAsP.
  • the semiconductor light emitting device according to any one of [1] to [26], which is configured.
  • a substrate a first-conductivity-type clad layer comprising at least one layer formed on the substrate, an active layer formed on the first-conductivity-type clad layer, and formed on the active layer
  • a second conductive type second clad layer formed on the second conductive type first clad layer, and a second conductive type second clad layer formed on the second conductive type first clad layer.
  • the current blocking layer is formed so as to sandwich both sides of the ridge of the second conductive type second clad layer, and the protective layer is removed.
  • a current blocking layer having a real guide structure is formed on both sides of a second conductive second cladding layer having a ridge structure whose cross-sectional structure is designed to satisfy a specific condition, Further, a second conductive third clad layer for confining light is provided on the ridge structure.
  • FIG. 1 is a schematic sectional view of a semiconductor light emitting device having a configuration from the substrate of the present invention to the second conductive type third clad layer.
  • FIG. 2 is a schematic sectional view of a semiconductor laser according to a preferred embodiment of the present invention.
  • FIG. 3 is a schematic explanatory view for explaining a state in a manufacturing process of the semiconductor laser used in the preferred embodiment of the present invention.
  • FIG. 4 is a schematic explanatory view for explaining a state in a manufacturing process of the semiconductor laser used in Examples 3 to 6 of the present invention.
  • FIG. 5 is a graph showing the relationship between the operating current and the optical output of the semiconductor laser manufactured according to the preferred embodiment of the present invention.
  • FIG. 6 is a graph showing the oscillation spectrum (a) and the visibility (b) of the semiconductor laser manufactured in Example 3 of the present invention.
  • -FIG. 7 is a schematic explanatory view of a semiconductor laser using a conventional A1GaInP-based semiconductor material.
  • FIG. 8 is a schematic explanatory view of a conventional semiconductor laser using an A1GaInP-based semiconductor material.
  • FIG. 9 is a schematic explanatory view of a conventional semiconductor laser using an A1GaInP-based semiconductor material.
  • FIG. 10 is a schematic explanatory view of a conventional semiconductor laser using an A1GaInP-based semiconductor material.
  • FIG. 11 is a graph showing current-light output characteristics of a semiconductor laser using a conventional A 1 G a In P semiconductor material.
  • FIG. 12 is a schematic explanatory view of a semiconductor laser using a conventional A1GaInP-based semiconductor material.
  • FIG. 13 is a graph showing the oscillation spectrum (a) and the visibility (b) of the semiconductor laser manufactured in Example 5 of the present invention.
  • FIG. 14 is a diagram showing a state of achievement of self-sustained pulsation of each semiconductor laser manufactured in Example 6 of the present invention.
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit and an upper limit.
  • FIG. 1 is a schematic cross-sectional view of a semiconductor light emitting device having a configuration from the substrate of the present invention to the second conductive type third clad layer.
  • the semiconductor light emitting device of the present invention comprises a substrate 101, a first conductive type clad layer 102, and an active layer 106 formed on the first conductive type clad layer 102.
  • FIG. 2 is a schematic sectional view of a semiconductor laser according to a preferred embodiment of the present invention.
  • the semiconductor laser according to the embodiment shown in FIG. 1 includes a substrate 201, a buffer layer 202 formed on the substrate 201, and a first conductivity type first cladding layer 203 formed on the buffer layer.
  • a first conductive type second clad layer 204 formed on the first conductive type first clad layer 203, and an active layer 20 formed on the first conductive type second clad layer 204.
  • a second conductivity type first cladding layer 206 formed on the active layer 205, and an etching stop layer 207 formed on the second conductivity type first cladding layer.
  • the expression “the B layer formed on the A layer” means that the B layer is formed such that the bottom surface of the B layer is in contact with the upper surface of the A layer, and that one or more layers are formed on the upper surface of the A layer. This includes both the case where the layer is formed and the layer B is formed on the layer. The above expression also includes the case where the upper surface of the A layer and the bottom surface of the B layer are partially in contact with each other, and in other portions, one or more layers exist between the A layer and the B layer. Specific aspects are apparent from the following description of each layer and specific examples of the examples.
  • the conductivity and material of the substrates 101 and 201 are not particularly limited as long as a crystal having a double hetero structure can be grown thereon.
  • it is a semiconductor substrate having conductivity.
  • G a A s, I n P, G a P, Z n S e, Z n O, S i, A 1 2 0 3 or the like crystal substrate suitable for crystal thin film growth on the substrate In particular, it is preferable to use a crystal substrate having a zinc blende structure.
  • the substrate crystal growth surface is preferably a low-order surface or a surface crystallographically equivalent to it. In particular, the (100) plane is most preferred.
  • the (100) plane does not necessarily have to be strictly a (100) plane, but includes a plane equivalent to the (100) plane, that is, a plane having an off-angle of about 30 ° at the maximum. I do.
  • the upper limit of the off-angle is preferably 30 ° or less, more preferably 14 ° or less.
  • the lower limit of the off angle is preferably at least 0.5 °, more preferably at least 2 °, further preferably at least 6 °, most preferably at least 10 °.
  • the direction of the off-angle of the substrates 101 and 201 is within ⁇ 30 ° from the direction perpendicular to the direction in which the stripes constituting the ridge structure of the second conductive type second cladding layers 108 and 208 described later extend.
  • directions within 7 ° of soil are more preferred, and directions within ⁇ 2 ° are most preferred.
  • the stripe direction of the ridge structure is preferably [0-11] or a direction equivalent thereto, and the off-angle direction is the [011] direction or the like.
  • the direction is preferably within ⁇ 30 °, more preferably within 7 °, and most preferably within ⁇ 2 ° from the costly direction.
  • the [01-1] direction refers to a general III-V or II-VI semiconductor that exists between the (100) plane and the [01-1] plane.
  • Define the [0 1-1] direction so that the [1-1] plane is the plane where the group V or group VI element appears, respectively.
  • the substrate 101, 201 may be a substrate of hexagonal type, for example, may be used a substrate made of A 1 2 0 3, 6 H -S i C , and the like.
  • the same material as the substrate is used for the material of the buffer layer, for example, the first conductivity type of GaAs, GaP, InP, GaN, GaN, GInP, GInAs , G a InN, ZnS e, ZnSS e, ZnO, etc. are preferred. Good.
  • a compound semiconductor layer including the active layers 106 and 205 is formed on the substrates 101 and 201.
  • the compound semiconductor layer includes layers above and below the active layers 106 and 205 that have a lower refractive index than the active layer, of which the layer on the substrate side is the first conductivity type cladding layer (preferably the n-type cladding layer),
  • the layers on the epitaxial side each function as a second conductivity type cladding layer (preferably a p-type cladding layer).
  • the magnitude relationship between the refractive indices can be adjusted by appropriately selecting the material composition of each layer according to a method known to those skilled in the art.
  • Active layer Contact Yopi cladding layers for example, A 1 x Ga x As, ( A 1 X G a ⁇ _ ⁇ ) y I n! _ Y P, to changing the A 1 composition such as A 1 X G a
  • the refractive index can be adjusted.
  • the first conductivity type clad layer 102 when the first conductivity type clad layer is a single layer, the first conductivity type clad layer 102 can be formed of a material having a lower refractive index than the active layer 106.
  • the refractive index of the first conductivity type cladding layer 102 must be larger than the refractive index of the second conductivity type first cladding layer, the second conductivity type second cladding layer, and the second conductivity type third cladding layer, which will be described later. Is preferred.
  • the first conductivity type cladding layer 102 is made of, for example, AlGaInP, A1InP, AlGaAs, AlGaAsP, A1GaInAs, GaInAsP, A It can be formed using a general III-V group or II-VI group semiconductor material such as 1GaInN, BeMgZnSe, MgZnSSe, and CdZnSeTe.
  • Carrier concentration of the first conductivity type cladding layer 102 is preferably lower limit is 1 X 10 16 cm one 3 or more, more preferably 5 X 10 16 cm one 3 or more, IX 10 17 cm- 3 or more Is most preferred.
  • the upper limit of the carrier concentration is 5 X 10 19 cm one 3 or less, 5 XI 0 18 more preferably cm at one 3 or less, and most preferably 2X 10 18 cm one 3 below.
  • the thickness is preferably about 0.5 to 4 jum, and more preferably about 1 to 3.
  • the carrier concentration of the first conductivity type second cladding layer 204 on the active layer 205 side is the first conductivity type second cladding layer on the substrate 201 side. 1 It is preferable that the carrier concentration is lower than that of the cladding layer 203. Kiyaria concentration of the first conductivity type first cladding layer 203 of the substrate 201 side, that the range of 1 X 10 16 ⁇ 3 X 10 18 cm- 3 is preferably, 5 X 10 16 ⁇ 2X 10 18 c m_ 3 I like it.
  • the thickness of the first conductive type second cladding layer 204 on the active layer 205 side be smaller than the thickness of the first conductive type first cladding layer 203.
  • the lower limit of the thickness of the first conductivity type second cladding layer 204 is preferably 0.01 m or more, more preferably 0.03. ⁇ or more, and the upper limit is preferably 1 m or less. More preferably, it is 0.7 ⁇ or less.
  • Examples of the case where the first conductivity type clad layer is formed of a plurality of layers having different compositions include, for example, a first conductive layer made of A1GaAs or A1GaAsP on the substrate 201 side.
  • the active layer 106 and 205 constituting the semiconductor light emitting device of the present invention is not particularly limited.
  • the active layer 106 has a multiple quantum well (MQW) structure.
  • the multiple quantum well structure includes an optical confinement layer (non-doped) 103, a quantum well layer (non-doped) 104, a barrier layer (non-doped) 105, a quantum well layer (non-doped) 104, and a confinement layer (non-doped) 103 Are sequentially stacked.
  • the active layer has a multi-quantum structure having three or more quantum well layers, a barrier layer sandwiched between them, and an optical confinement layer stacked above the uppermost quantum well layer and below the lowermost quantum well layer.
  • a single quantum well structure comprising a quantum well layer and optical confinement layers sandwiching the quantum well layer from above and below
  • a double quantum well structure DQW
  • the active layer a quantum well structure
  • the number of wells can be made smaller than that of a normal non-self-pulsation single-mode laser in order to form a saturable absorber having a volume necessary for self-pulsation in the active layer. It is valid.
  • Examples of the material of the active layers 106 and 205 in the semiconductor light emitting device of the present invention include GaInP, AlGaInP, GaInAs, AlGaInAs, GaInAsP, and A1GaInN. Examples can be given.
  • a material containing Ga and In or A1 and In as constituent elements a natural superlattice is easily formed, so that the effect of suppressing the natural superlattice by using an off-substrate increases.
  • the active layers at both ends of the optical waveguide preferably have a band gap that is transparent to light generated in the active layer in the current injection region at the center of the optical waveguide.
  • the lower limit of the total thickness of the active layer is preferably 2 nm or more, more preferably 25 nm or more, still more preferably 30 nm or more, and most preferably 35 nm or more.
  • the upper limit of the total thickness of the active layer is preferably equal to or less than the thickness at which the quantum effect functions when the active layer has no strain. That is, the upper limit of the total thickness of the active layer is preferably 100 nm or less, more preferably 80 nm or less, and even more preferably 70 nm or less.
  • the thickness is preferably not more than the critical thickness. That is, the upper limit of the total thickness of the active layer is preferably 8 O nm or less, more preferably 60 nm or less, and even more preferably 5 O nm or less.
  • the preferred number of quantum wells is 1 to 5, preferably 1 to 4, more preferably 2 to 3, and most preferably 2 if the oscillation wavelength of a 600 nm red laser at room temperature (25 ° C) is 630 to 670 nm.
  • the oscillation wavelength near room temperature is 670 ⁇ 700 ⁇ In the case of m, it is 1-5, preferably 1-4, more preferably 2-3, most preferably 2.
  • the thickness of the quantum well is preferably 4, 3 to 7 nm, and more preferably 4 to 6 nm when the oscillation wavelength near room temperature (25 ° C.) is 630 to 670 nm.
  • the oscillation wavelength near room temperature (25 ° C.) is 670 to 700 nm
  • 6 to 10 nm is preferable
  • 7 to 9 nm is more preferable.
  • a single layer active layer may be used, but a shorter wavelength (630 nm to 665 (nm)
  • a multiple quantum well (MQW) structure composed of a quantum well layer and a barrier layer sandwiching the quantum well layer and / or a confinement layer is more preferable.
  • compressed into the quantum well layer G a x I n _ X P, x! ⁇ 0. 52
  • pulling Gax I i ⁇ - xP x > 0. 52
  • the total thickness of the active layer is determined by the following equation.
  • the lower limit is preferably 5 nm or more, more preferably 10 nm or more, still more preferably 15 nm or more, and most preferably 25 nm.
  • the upper limit is preferably 200 nm or less, more preferably 15 nm or less, still more preferably 100 nm or less, and most preferably 50 nm or less.
  • the thickness of each layer of the active layer is, as a lower limit, preferably 2 nm or more, more preferably 3 nm or more, still more preferably 4 nm or more. Most preferably nm or more.
  • the upper limit is preferably 20 nm or less, more preferably 15 nra or less, still more preferably 9 nm or less, and most preferably 7 nm or less.
  • the total thickness of the active layer (the sum of the thicknesses of all the quantum well layers in the active layer) should be at least a certain level for the ease of self-oscillation and the range in which self-oscillation can be sustained (temperature and optical output).
  • the lower limit of the total thickness of the active layer is preferably 25 nm or more, more preferably 30 nm or more, and even more preferably 35 nm or more.
  • the upper limit of the total thickness of the active layer is preferably equal to or less than the thickness at which the quantum effect functions when the active layer has no strain.
  • the upper limit of the total thickness of the active layer is preferably 100 nm or less, more preferably 80 nm or less, and even more preferably 70 nm or less.
  • the thickness is preferably not more than the critical thickness. That is, the upper limit of the total active layer thickness is preferably 80 nm or less, more preferably 60 nm or less, and even more preferably 50 nm or less.
  • the preferable number of quantum wells is 4 to 10, preferably 4 to 9, more preferably 7 to 9, when the oscillation wavelength of a 600 nm red laser at room temperature (25 ° C) is 630 to 67 Onm.
  • it is 7-8, most preferably 8, while when the oscillation wavelength near room temperature is 670-700 nm, it is 3-9, preferably 5-8, more preferably 6-8, and even more preferably 6-7, most preferably 7.
  • the thickness of the quantum well is preferably 3 to 7 nm, more preferably 4 to 6 nm.
  • the optical confinement layer is effective from the viewpoints of increasing the confinement efficiency in the quantum well layer and preventing contamination (diffusion) of impurities such as Zn into the quantum well layer.
  • the thickness of the confinement layer is preferably 0.01 im or more, more preferably 0.
  • the upper limit is preferably 0.5 ⁇ or less, more preferably 0.3 or less, and even more preferably 0.15 ⁇ or less. And 0.1 ⁇ or less is most preferable.
  • the lower limit of the thickness of the light confinement layer is preferably 5 Onm or more, more preferably 6 Onm or more.
  • the upper limit is preferably 20 Onm or less, more preferably 10 Onm or less.
  • the lower limit is preferably 40 nm or more, more preferably 50 nm or more.
  • the upper limit is preferably 150 nm or less, more preferably 100 nm or less.
  • the carrier concentration in the active '1' active layer is not particularly limited, but the quantum well layer and the barrier layer are not undoped without any particular impurity doping. be 10 17 cm one 3 or less) and have) reached the first or second conductivity type, and more preferred from the viewpoint of improving and stabilizing the performance of the device. in addition, at least close to the quantum well layer is also light confinement layer Preferably, the portion is undoped.
  • a second conductivity type cladding layer is formed on the active layers 106 and 205.
  • an etching stop layer is formed, at least three cladding layers of the second conductivity type are formed.
  • the second conductive type first clad layers 107 and 206, the second conductive type second clad layers 108 and 208, and the second conductive type third clad layer 110 , 212 will be described as an example.
  • the etching stop layer is not formed, at least two second conductivity type cladding layers are formed.
  • the second conductivity type first cladding layers 107 and 206 can be made of a material having a lower refractive index than the active layers 106 and 205 in order to confine light in the active layer.
  • the second conductivity type first cladding layers 107 and 206 are formed of the second conductivity type A 1 Ga InP, A 1 InP, Al GaAs, Al GaAs P, Al Ga InAs, Ga InAs P, A 1 G a I nN,: one of B eMg ZnS e, MgZnSS e, CdZnS e Te, etc.
  • General III-V and II-VI semiconductors can be used.
  • the first cladding layers 107 and 206 of the second conductivity type are made of a III-V compound semiconductor containing A1, substantially the entire surface on which they can be grown is GaAs, GaAsP, or GalnAs. It is preferable to cover with a group III-V compound semiconductor that does not contain A1, such as GaInP and GalInN, since surface oxidation can be prevented.
  • Kiyaria concentration of the second conductivity type first cladding layer 107, 206 the lower limit is preferably at 2X 10 17 cm one 3 or more, it is laid more preferred is a 3X 10 17 cm one 3, 5X 10 17 CM_ 3 Is most preferred.
  • the upper limit of the Kiyaria concentration is preferably from 5 X 10 18 cm- 3, more preferably from 4X 10 18 cm- 3, and most preferably 2 X 10 18 cm_ 3.
  • the lower limit of the thickness of the second conductive type first cladding layers 107 and 206 is preferably set to 0.03 ⁇ or more, more preferably 0.05 ⁇ or more, and 0.07 ⁇ m or more. It is most preferable to set the above.
  • the upper limit is preferably 0.5 or less, more preferably 0.3 / zm or less, and most preferably 0.2 ⁇ or less.
  • the refractive index of the second conductive type first cladding layers 107 and 206 may be smaller than the refractive index of the first conductive type cladding layer 102. In this way, it is possible to control the light distribution (near-field image) so that light can effectively seep from the active layer to the light guide layer side. In addition, since the optical waveguide loss from the active region (the portion where the active layer exists) to the zinc diffusion region can be reduced, laser characteristics and reliability in high-power operation can be improved.
  • Etching stop layer 207 can be formed for the purpose of preventing erosion of second conductive type first cladding layer 206 by the etching reagent at the time.
  • the presence of the etching stop layer 207 makes it easy to prevent the formation of a high-resistance layer that increases the passage resistance at the regrowth interface at least when the second cladding layer 208 of the second conductivity type having the ridge structure is regrown. Will be able to
  • the material of the etching stop layer 207 is not particularly limited as long as it has resistance to the etching reagent during the etching process, that is, does not corrode. Further, the material of the etching stop layer 207 may have not only an erosion preventing function but also an oxidation preventing function. Specifically, A 1 X G a X A s (0 ⁇ 1), 1 n y G a!
  • the thickness of the etching stop 207 is generally selected such that the band gap is larger than that of the material of the active layer 205, and the upper limit is preferably 20 nm 'or less, more preferably 10 nm or less, More preferably, it is 6 nm or less.
  • the lower limit is preferably at least 1 nm, more preferably at least 1.5 nm, even more preferably at least 2 nm.
  • the conductivity type of the etching stop layer 207 is not particularly limited when it is removed by etching, but is preferably the second conductivity type. Further, it is preferable that the etching stop layer 207 is lattice-matched to the substrate 201 as much as possible. Further, from the viewpoint of reducing the operating current, it is preferable that the light from the active layer 205 is not absorbed by appropriately selecting the material and the thickness. .
  • a semiconductor layer having a stripe-shaped ridge structure is formed on the second conductivity type first cladding layer 107 or the etching stop layer 207.
  • the semiconductor layer having the ridge structure includes at least the second conductive type second cladding layers 108 and 208, and may include other semiconductor layers such as the oxidation suppression layer 210.
  • the second conductive type third cladding layers 110 and 212 for confining light are provided on the bridge.
  • the thickness of the second conductive type second cladding layer 108, 208 and the thickness of the second conductive type third cladding layer 110, 212 are determined so that the desired cladding layer thickness can be realized.
  • the thickness of the second conductive type second cladding layers 108 and 208 can be reduced, that is, the height of the ridge can be reduced.
  • the passage resistance can be reduced, the influence of ridge asymmetry can be reduced, and a high kink level can be achieved.
  • the height of the ridge (the thickness of the second conductive type second cladding layers 108 and 208) is preferably low from the viewpoint of reducing the passage resistance as much as possible, but if the ridge height becomes too low.
  • the current blocking layers 109 and 209 are formed, overgrowth on the selective growth mask is likely to occur.
  • A1 is contained in the ridge portion, particularly in the second conductivity type second cladding layers 108 and 208, the resistivity tends to increase, and when A1 and In are contained, the resistivity further increases. This increase in resistivity is more pronounced for p-type.
  • the ridge cross section orthogonal to the longitudinal direction of the ridge has a forward mesa shape, the passage resistance is more likely to increase than in the case of an inverted mesa shape.
  • the ridge has a trapezoidal cross section satisfying the following expression.
  • h is the height of the cross section
  • a is the upper bottom of the cross section
  • b is the lower bottom of the cross section.
  • the range of h / [(a + b) / 2] is preferably from 0.07 to 0.45, more preferably from 0.1 to 0.35, and from 0.12 to 0. More preferably, it is from 3 to 15, most preferably from 0.15 to 0.25.
  • the upper limit of the height of the ridge is preferably 1.5 / zm or less, more preferably 1.0 ⁇ or less, and 0.8 or less. More preferably, it is most preferably 0.55 jm or less. That's right.
  • the lower limit of the height of the ridge is preferably 0.1 m or more, more preferably 0.2 ⁇ or more, still more preferably 0.3 ⁇ or more, and 0.35 ⁇ or more. It is most preferred that the value is not less than ⁇ .
  • the upper limit of the width of the ridge bottom (the length of the bottom of the trapezoid) of the second conductivity type second cladding layer 108, 208 should be 5.0 m or less. Is preferably 4.0 ⁇ or less, more preferably 3.5 ⁇ or less, and most preferably 3.0 ⁇ or less. Further, the lower limit of the width of the bottom of the lid is preferably 0.5 ⁇ or more, more preferably 1.3 ⁇ or more, still more preferably 1.3 ⁇ or more, and 1.5 tm. It is most preferred that this is the case.
  • the current blocking layers 109 and 209 have a lower refractive index than the second conductive type second cladding layers 108 and 208, that is, in the case of a real refractive index waveguide structure (real guide structure)
  • the current blocking layers 109 and 209 It is necessary to make the width of the bottom of the bridge narrower than in the case of the structure that absorbs the light generated by the active layers 106 and 205 (loss guide structure). This leads to a significant increase in passage resistance.
  • the upper limit of the width of the ridge bottom is preferably 4.0 m or less, more preferably 3.5 ⁇ or less, and 3.0 ⁇ or less.
  • the lower limit of the width of the ridge bottom is preferably 0.5 / zm or more, more preferably 1.3 ⁇ or more, still more preferably 1.3 jum or more, and 1.5 jm or more. Is most preferred. If the width of the ridge bottom is Wa and the width of the ridge top is Wb, the upper limit of the average value (Wa + Wb) 2 in the actual refractive index waveguide structure is preferably 4.5 ⁇ or less, and 4 ⁇ . The following is more preferable, and 3.5 m or less is further preferable.
  • the lower limit is preferably 1.8 ⁇ or more, more preferably 2 ⁇ or more, and even more preferably 2.2 ⁇ m or more.
  • the cross-sectional shape of the ridge structure is generally left-right asymmetric.
  • the second conductive type third cladding layers 110 and 212 as light confinement layers are separately formed on the ridges (second conductive type second cladding layers 108 and 208), thereby reducing the ridge height. can do.
  • the influence of the ridge asymmetry can be reduced, and as a result, a high Kinkle level can be achieved.
  • the lower limit of I (one base angle) -one (the other base angle) I which is the absolute value of the difference between one base angle and the other base angle, is preferably 2 ° or more. , 11 ° or more, and most preferably 15 ° or more.
  • the upper limit is preferably 35 ° or less, more preferably 30 ° or less, and most preferably 25 ° or less.
  • the direction in which the stripe region of the ridge structure extends is preferably, for example, [11-20] or [1-100] on the (0001) plane.
  • HVPE Hydrogen Vapor Phase Epitaxy
  • MOVPE Metal Organic Chemical Vapor Phase Epitaxy
  • the material of the second conductive type second clad layers 108 and 208 is the same as that of the second conductive type first clad layers 107 and 206 described above, and is of the second conductive type A 1 G a InP, A 1 InP, A l General III-V, II-VI semiconductors such as GaAs, Al GaAs P, Al Ga InAs, Ga InAs P, A1GaInN, BeMg ZnS e, Mg ZnSS e, CdZnS eTe Can be used.
  • the III-V group and the II-V group composed of at least three types of elements are used.
  • a group VI semiconductor more preferably containing A1, more preferably containing A1 and In, most preferably A1GaInP or A1InP.
  • Carrier concentration in the ridge (second conductive second cladding layer 108, 208) is preferably a lower limit is 1 X 10 17 cm_ 3 or more, more preferably 3 X 10 17 cm_ 3 or more, 5 X 10 Most preferably, it is 17 cm or more than 3 cm.
  • the upper limit of the or carrier concentration is preferably 2 X 10 19 cm one 3 or less, more preferably 5 X 1 0 18 cm- 3 or less, that is 3 X 10 18 cm one 3 or less Most preferred.
  • Both side surfaces of the ridge structure of the second conductive type second cladding layers 108 and 208 having a ridge structure are sandwiched between current blocking layers 109 and 209. At this time, the entire side surfaces of the ridge structure of the second conductivity type second cladding layers 108 and 208 may not be entirely sandwiched by the current blocking layers 109 and 209 from the upper end to the lower end. May be sandwiched between the current blocking layers 109 and 209. Since the current flows through the second conductive type second cladding layers 108 and 208 in a state where the current is confined by the current blocking layers 109 and 209, the passing resistance of the element is equal to the second conductive type second cladding layers 108 and 208. It largely depends on resistance.
  • the effect of reducing the passing resistance of the present invention obtained by adjusting the thickness and the width of the second conductive type second cladding layers 108 and 109 having the ridge structure of the present invention is particularly the second conductive type second cladding layer.
  • the conductivity types of 108 and 208 are p-type.
  • the p-type has lower mobility and higher resistivity than the n-type, and the p-type is easier to diffuse dopant impurities (for example, zinc (Zn) and n-type Uses silicon (Si) as a dopant, but the p-type is easier to diffuse), and the p-type is more susceptible to the absorption of light emitted by the active layer.
  • dopant impurities for example, zinc (Zn) and n-type Uses silicon (Si) as a dopant, but the p-type is easier to diffuse
  • the p-type is more susceptible to the absorption of light emitted by the active layer.
  • an etching stop layer may be formed between the second conductive type second clad layers 108 and 208 and the second conductive type third clad layers 109 and 209.
  • the controllability of the ridge shape, particularly the width of the ridge bottom, of the second conductivity type second cladding layers 108 and 208 can be improved.
  • an oxidation suppression layer 210 of the second conductivity type can be formed on the second cladding layer 208 of the second conductivity type.
  • the A1 composition of the oxidation suppressing layer 210 is the second conductivity type second cladding layer 2108. It is preferably smaller than the A1 composition of 08.
  • the material of the oxidation suppressing layer 210 is not particularly limited as long as it is hardly oxidized or a material that is easy to clean even if oxidized.
  • an III-V compound semiconductor layer having a low content of an easily oxidizable element such as A1 can be given.
  • the content of A1 is preferably 0.3 or less, more preferably 0.25 or less, and most preferably 0.15 or less.
  • AlGaInP or GaInP is preferred.
  • the material be transparent to light generated in the active layer 205.
  • the material of the oxidation suppression layer 210 is generally selected from materials having a larger band gap than the material of the active layer 205. However, even if the material of the band gap is smaller, the thickness of the oxidation suppression layer 210 is small. When the thickness is 30 nm or less, preferably 20 nm or less, and more preferably 10 nm or less, light absorption can be substantially negligible to some extent and thus can be used.
  • the current blocking layers 109 and 209 are formed on the second conductive type first clad layer 107 or the etching stop layer 2 7, and the second conductive type second clad layers 108 and 2. 08 are formed so as to sandwich both side surfaces.
  • the current blocking layers 109 and 209 have a function of constricting the current so as to flow through the second conductive type second cladding layers 108 and 208.
  • the material of the current blocking layers 109 and 209 may be a semiconductor or a dielectric. Semiconductors and dielectrics each have advantages and disadvantages as described below. Therefore, it is preferable to appropriately determine the material of the current blocking layer in consideration of these advantages and disadvantages.
  • the heat conductivity is higher because of the higher thermal conductivity compared to the dielectric film, the cleavage is better, and the junction is down because it is easier to flatten.
  • advantages such as easy assembly and easy formation of the contact layer over the entire surface, which makes it easy to lower the contact resistance.
  • semiconductors have drawbacks such as the need to take measures such as surface oxidation when using high-A1 compounds such as A1GaAs and A1InP to reduce the refractive index. is there.
  • A1GaInP or A1InP has poorer thermal conductivity than A1GaAs or A1GaAsP, changes in refractive index due to formation of a natural superlattice, selective growth ( Since the In composition on the ridge side wall and bottom surface is unstable, if it is possible to prevent the deposition of poly on the protective film during selective growth (selective growth with the addition of HC1), A 10 & 8 3 or 8 1 It is more preferable to select GaAsP. However, in the case of Al GaAs or A 1 Ga As P, since A 1 As and A 1 P show deliquescence, the upper limit of the A 1 composition is preferably 0.97 or less, more preferably 0.95 or less. , 0.93 or less is most preferred. Since it is necessary to have a lower refractive index than the second conductivity type second cladding layers 108 and 208, the lower limit of the A1 composition is preferably 0.3 or more, more preferably 0.35 or more, and 0.4 or more. Most preferred.
  • the refractive index of the current blocking layers 109 and 209 is sandwiched between the current blocking layers 109 and 209.
  • the refractive index of the second cladding layers 108 and 208 of the second conductivity type is made lower (real refractive index waveguide structure). By controlling such a refractive index, it becomes possible to reduce the operating current as compared with the conventional loss guide structure.
  • the lower limit of the refractive index difference between the current blocking layers 109 and 209 and the second conductivity type second cladding layers 108 and 208 is 0.001 or more when the current blocking layers 109 and 209 are formed of a compound semiconductor. It is more preferably 0.003 or more, and most preferably 0.007 or more.
  • the upper limit of the difference in the refractive index is preferably 1.0 or less, more preferably 0.5 or less, and most preferably 0.1 or less.
  • the lower limit is preferably 0.1 or more, more preferably 0.3 or more, and more preferably 0.7 or more. Is most preferred.
  • the upper limit of the refractive index difference is preferably 3.0 or less, more preferably 2.5 or less, and most preferably 1.8 or less.
  • the conductivity type of the current blocking layers 109 and 209 may be either the first conductivity type or a high resistance (undoped or doped with deep-forming impurities (0, Cr, Fe, etc.)), or a combination of the two. Or a plurality of layers having different conductivity types or different compositions.
  • a current blocking layer formed in the order of the second conductive type or high resistance semiconductor layer and the first conductive type semiconductor layer from the side close to the active layers 106 and 205 can be preferably used.
  • the conductivity type of the current blocking layers 109 and 209 is preferably the first conductivity type.
  • the lower limit of the carrier concentration of the current blocking layer from these viewpoints is preferably at 1 X 10 16 cm one 3 or more, more preferably 1 X 10 17 cm one 3 or more, 3 X 10 17 cm one 3 It is most preferred that this is the case.
  • the upper limit of the Kiyari ⁇ concentration is preferably 2 X 10 19 cm_ 3 or less, more preferably 5 X 10 18 cm one 3 or less, and most not more 3 X 10 18 cm one 3 or less preferable.
  • the lower limit of the thickness of the current blocking layers 109 and 209 made of a semiconductor at the flat portion beside the ridge is preferably 0.03 / zm or more, more preferably 0.1 ⁇ or more, and 0.2 m or more. The above is the most preferable.
  • the upper limit of the thickness (d) of the current blocking layer at the flat portion beside the ridge is preferably h + 0.2 ⁇ or less, based on the height (h) of the ridge, and is preferably h or less. Is more preferable, and h ⁇ 0.05 m or less is most preferable.
  • the material of the current blocking layers 109 and 209 is preferably formed of A 1 GaAs from the viewpoint of overgrowth in the selective growth protective film. That is, when the current blocking layers 109 and 209 are formed of A1GaInP or A1InP, the problem that overgrowth is likely to occur in the selective growth protective film and the composition differs between the ridge side and the flat portion There is a problem. On the other hand, when the current blocking layers 109 and 209 are formed of AlGaAs, overgrowth is relatively unlikely to occur, and the composition is uniform between the ridge and the flat portion. For this reason, the current blocking layers 109 and 209 are preferably formed of A1GaAs.
  • the current blocking layers 109 and 209 are two or more layers having different refractive indices, carrier concentrations or conductivity types for controlling light distribution (particularly lateral light distribution) and improving current blocking function. May be formed. -As shown in FIG. 2, a surface protection layer 211 may be formed on the current blocking layer 209. By forming the surface protective layer 211, surface oxidation of the current blocking layer 209 can be suppressed, and the current blocking layer is prevented from being damaged or etched when the selective growth protective film is removed. And increase during regrowth The surface of the current blocking layer can be prevented from being roughened at the temperature stage, and the surface morphology and the crystallinity of the regrown layer can be improved.
  • the surface protection layer 211 is also transparent to the light generated in the active layer 205, that is, the surface protection layer 211 is more transparent than the material of the active layer 205.
  • the bandgap is formed of a large material.
  • the current blocking layer is made of a dielectric material and is particularly a real refractive index guide, it is preferable to adopt such a form as compared with a loss guide.
  • the thickness is 3 Onm or less, preferably 20 nm or less, and more preferably 10 nm or less, light absorption can be practically neglected to some extent.
  • the A1 composition of the surface protective layer 211 is preferably smaller than the A1 composition of the current blocking layer 209.
  • Various materials can be used as the material of the surface protective layer 211, but the surface morphology of the regrowth due to the surface roughness of the underlayer due to the substitution of the group V element at the temperature rise stage during the regrowth ⁇ prevents a decrease in crystallinity Therefore, it is preferable that the material is the same as that of the upper surface of the lid, that is, the second conductive type second cladding layers 108 and 208 or the antioxidant layer 210, and in particular, it is A 1 Ga InP or Ga InP. Is preferred.
  • the conductivity type of the surface protective layer 211 is not particularly limited, the current blocking function can be improved by using the second conductivity type.
  • Third conductive type third cladding layers 110 and 212 are formed on the ridges of the second conductive type second cladding layers 108 and 208 and on the current blocking layers 109 and 209 near the ridges.
  • the third cladding layers 110 and 212 of the second conductivity type may cover all over the current blocking layers 109 and 209, or may cover only the vicinity of the ridge.
  • the second conductive type third cladding layers 110 and 212 are formed of a material having a lower refractive index than the active layers 106 and 205.
  • second conductivity type Al Ga I nP, A 1 I nP, A 1 G a A s N Al GaAs P, Al Ga I nAs, G a I n A s P, Al Ga I nN, B eMgZnS e, General III-V and II-VI semiconductors such as MgZnSSe and CdZnSeTe can be used.
  • the thickness of the second conductive type third cladding layer 110, 212 is too small, light confinement will occur. As a result, the light absorption becomes remarkable in the contact layer 213, and the threshold current and the operating current increase. On the other hand, if the thickness is too large, the passage resistance increases, and this increase in the passage resistance becomes a serious problem in a material having a high resistivity such as p-type AlGaInP. Therefore, it is preferable to use A 1 Ga As or A 1 Ga As P as the material of the third cladding layer of the second conductivity type, and to set the lower limit of the thickness of the third cladding layers 110 and 212 of the second conductivity type to 0.
  • the upper limit of the thickness of the second conductive type third cladding layers 110 and 212 is preferably 3 ⁇ or less, more preferably 2.5 m or less, and 2 ⁇ or less. More preferably, it is most preferably 1.6 ⁇ or less.
  • the lower limit of the thickness of the second conductive type third cladding layers 110 and 212 is preferably 0.1 zm or more, more preferably 0. It is more preferably at least 3 ⁇ , most preferably at least 0.4 ⁇ .
  • the upper limit of the thickness of the second conductive type third cladding layers 110 and 212 is preferably 2 m or less, more preferably 1.5 m or less, and more preferably 1 m or less. More preferably, it is most preferably 0.8 ⁇ or less.
  • the lower limit of the carrier concentration of the second conductivity type third cladding layer 1 10, 212 is preferably at 1 X 10 17 CMT "3 or more, more preferably 3 X 10 17 cm one 3 or more, 5 X and most preferably 10 17 CM_ is 3 or more.
  • the upper limit of the carrier concentration is preferably 2 X 10 19 cm- 3 or less, more preferably 5 X 10 18 cm- 3 hereinafter, 3 most preferably X 10 18 cm is one 3.
  • the refractive index of the second conductive type third clad layer 1 10, 212 is smaller than the refractive index of the second conductive type second clad layer 108, 208 Thereby, light leakage to the contact layer side of the second conductivity type can be reduced, the threshold current can be reduced, and the thickness of the third cladding layer of the second conductivity type can be reduced.
  • the upper limit of the refractive index difference is preferably 0.1 or less. Ma It is more preferably 0.07 or less, and further preferably 0.05 or less.
  • the lower limit of the difference in refractive index is preferably 0.001 or more, more preferably 0.002 or more, and even more preferably 0.003 or more.
  • the material of the third cladding layers 110 and 212 of the second conductivity type is A 1 Ga As, A 1 Ga As P from the viewpoint of lowering the resistivity or thermal resistance than the second cladding layers 108 and 208 of the second conductivity type.
  • the lower limit of the A1 composition is preferably 0.67 or more, more preferably 0.72 or more, and 0.76 or more. The above is most preferred.
  • the upper limit of the A1 composition is preferably 0.97 or less, more preferably 0.93 or less, and most preferably 0.79 or less. However, in the case of a self-pulsation type semiconductor laser, the value is most preferably 0.89 or less.
  • a (second conductivity type) contact having a low resistance (high carrier concentration) is used on the third cladding layers 110 and 212 of the second conductivity type.
  • layer 213 is formed on the entire surface of the uppermost layer (the second conductive type third cladding layer 212) on which the electrode is to be formed.
  • the material of the contact layer 213 is usually selected from a material having a band gap smaller than that of the cladding layer, and more preferably a material having a smaller band gap than that of the active layer.
  • GaAs, GaAsP, GaInAs, GaInP, GaIn It is preferable to use a group III-V compound semiconductor that does not contain A1, such as InN, because surface oxidation can be prevented.
  • the contact layer 213 preferably has a low resistance and an appropriate carrier density in order to obtain ohmicity with the metal electrode.
  • the lower limit of the carrier density of the contact layer 213 is preferably at 1 X 10 18 cm- 3 or more, more preferably 3X 10 18 cm- 3 or more, and most not more 5X 10 18 cm one 3 or more I like it.
  • the upper limit of the Kiyaria concentration is preferably 2 X 10 20 cm one 3 or less, more preferably 5 X 10 19 cm one 3 or less, most 3 X 10 18 cm one 3 below der Rukoto preferable.
  • the thickness of the contact layer 213 is from 0 to ⁇ . ⁇ !!! It is more preferably 0.2 to 7 m, and most preferably 1 to 5 ⁇ .
  • an intermediate band gap layer of the second conductivity type may be formed between the second conductive third clad layer 212 and the contact layer 213.
  • the lower limit of Kiyaria density of the intermediate Bandogiyappu layer is preferably 1 X 1 0 17 cm one 3 or more, Ri preferably good is at 5 X 10 17 cm one 3 or more, 1 X 10 18 cm one 3 or more Is most preferred.
  • the upper limit of the carrier density of the intermediate bandgap is, 5 X 10 19 It is rather preferable cm_ is 3 or less, more preferably 1 X 10 19 cm one 3 or less, 5 X 10 18 cm- 3 or less Is most preferred. Further, the thickness of the intermediate band gap layer is preferably 0.01 to 0.5 ⁇ , more preferably 0.02 to 0.3 ⁇ , and 0.03 to 0.2 m. Most preferably.
  • the thickness of the active layer and the composition of the cladding layer are determined to obtain a desired vertical divergence angle.
  • the vertical divergence angle when high output operation is required, the vertical divergence angle is set to be relatively narrow, but the lower limit of the vertical divergence angle is determined by the oscillation threshold current due to the reduction of optical confinement in the active layer.
  • the suppression of deterioration of the temperature characteristics due to the overflow of the carrier preferably 12 ° or more, more preferably 14 ° or more, and most preferably 15 ° or more. Is also preferred.
  • the upper limit of the vertical divergence angle is preferably 30 ° or less, more preferably 25 ° or less, and most preferably 22 ° or less.
  • the vertical spread angle is set relatively large.
  • the vertical spread angle is large Too much combusting will reduce the optical damage (COD) level of the emission end face and the light receiving efficiency of the optical system detector. Conversely, if too small, the supersaturated absorption region will be small, and self-pulsation will occur. It becomes difficult.
  • the lower limit of the vertical divergence angle is preferably 24 ° or more, more preferably 27 ° or more, even more preferably 29 ° or more, and 32.
  • the above is most preferred.
  • the upper limit of the vertical spread angle is preferably 42 ° or less, more preferably 40 ° or less, even more preferably 38 ° or more, and most preferably 36 ° or less.
  • the structural parameters that largely govern the high output characteristics of the semiconductor light emitting device of the present invention are the distance (dp) between the active layers 106 and 205 and the current blocking layers 109 and 209 and the ridge. It is the stripe width (Wb) at the bottom (hereinafter referred to as the “stripe width”).
  • Wb stripe width
  • the second conductivity type first cladding layers 107 and 206 are present between the active layers 106 and 205 and the current blocking layers 109 and 209, in which case, dp is the second conductivity type first cladding layer.
  • the thickness of layers 107 and 206 is obtained.
  • dp the smaller the dp, the smaller the lateral current leakage to both sides of the ridge, and the more it becomes possible to form a saturable absorption region in the active layer sufficient for self-pulsation even at high temperatures. It is. Therefore, in order to achieve self-sustained pulsation, it is necessary to control the above dp and W within an appropriate range with good controllability. That is, for dp, 0.003 to 0.5 m is preferable, and 0.04 to 0.25 / ⁇ m is more preferable. 0.05 to 0.19 ⁇ is more preferred, and 0.06 to 0.15 ⁇ is particularly preferred.
  • W 1-4 ⁇ is preferred, 1.2-3.5 / zm is more preferred, 1.6-2.9 jLtm is more preferred, and 1.9-2.5 / xm is particularly preferred. preferable.
  • the optimum range will shift slightly. It should also be noted that this optimum range affects each of the above structural parameters.
  • the effective lateral refractive index step inside the active layer is 2 ⁇ 7 X 10_ 3 about, it is necessary to set the light oozing ratio ⁇ & c t. out of the ridge both sides to about 10 to about 40%.
  • the resonator length also needs to be optimized.
  • the lower limit of the length of the resonator is preferably 150 ⁇ or more, more preferably 200 ⁇ or more, further preferably 250 ⁇ or more, and most preferably 270 m or more.
  • the upper limit is preferably 600 m or less, more preferably 500 ⁇ or less, further preferably 450 ⁇ or less, and most preferably 370 ⁇ or less.
  • the method for manufacturing the semiconductor light emitting device of the present invention is not particularly limited. What is manufactured by any method is within the scope of the present invention as long as it satisfies the above requirements of the present invention.
  • a conventionally used method can be appropriately selected and used.
  • the method of growing the crystal is not particularly limited.
  • MOCVD method metal organic chemical vapor deposition method
  • ⁇ method molecular beam epitaxy method
  • Known growth methods such as hydride or halide vapor phase epitaxy (VPE) and liquid phase epitaxy (LPE) can be appropriately selected and used.
  • a method for manufacturing a semiconductor light emitting device of the present invention first, a step of forming a first conductive type first clad layer on a substrate and a step of forming an active layer on the first conductive type clad layer Forming a second conductivity type first cladding layer on the active layer; and forming a second conductivity type second cladding layer having a stripe-shaped ridge structure on the second conductivity type first cladding layer. Forming a current blocking layer on both sides of the second conductive type second cladding layer on the second conductive type first cladding layer; and forming a current blocking layer on the second conductive type second cladding layer.
  • the step of forming the second conductivity type third cladding layer on the ridge and at least on a part of the current blocking layer can be exemplified.
  • a step of forming a buffer layer on the substrate, a step of forming an etching stop layer on the first cladding layer of the second conductivity type, and a step of forming an acid suppression layer on the second cladding layer of the second conductivity type And forming a surface protective layer on the current blocking layer, and forming a contact layer on the second conductive type third cladding layer.
  • each layer vary depending on the composition of the layer, the growth method, the shape of the device, etc.
  • the current blocking layer formed by selective growth using a protective film contains Al, such as A1GaAs and A1GaInP
  • a small amount of HC1 gas is introduced during growth to mask Very preferred, as it prevents the deposition of poly on top. If the composition of A1 is higher, or the mask width or mask area ratio is larger, and other growth conditions are constant, poly deposition is prevented and selective growth is performed only on the exposed surface of the semiconductor (selective Mode)), the amount of HC1 introduced required increases. On the other hand, if the introduction amount of HC 1 gas is too large, the growth of the A 1 Ga As layer does not occur, and the semiconductor layer is etched instead. (Etching mode) Force The other growth conditions become more constant as the A 1 composition increases.
  • the optimal amount of HC1 introduced is trimethylaluminum It greatly depends on the number of moles of group III raw material including A1 such as rubber.
  • the lower limit of the ratio of the number of moles of HC1 supplied and the number of moles of group III material containing A1 (HC1 / III group) is preferably 0.01 or more, more preferably 0.05 or more. Is more preferable, and most preferably 0.1 or more.
  • the upper limit is preferably 50 or less, more preferably 10 or less, and most preferably 5 or less.
  • the compound semiconductor layer containing In is selectively grown (in particular, HC1 is introduced)
  • a protective film When performing ridge formation or selective growth, a protective film can be used.
  • the protective film is a dielectric, specifically, S iN x film, S i 0 2 film, S i ON film, A l 2_Rei_3 film, Zetaitaomikuron film, S i C film Contact Yopi amorphous S selected from the group consisting of i.
  • the protective film is used when the ridge is formed by selective regrowth using MOCVD or the like as a mask.
  • the semiconductor laser may be a light source for information processing (usually an A1GaAs system (wavelength around 780 nm), an A1GaInP system (wavelength 600 nm).
  • the output in the single transverse mode is preferably 8 OmW or more, more preferably 10 OmW or more, and more preferably 12 OmW or more.
  • the semiconductor laser of the present invention preferably has a low pass resistance when driven, preferably 8 ⁇ or less, more preferably 7 ⁇ or less, and more preferably 6 ⁇ or less. Most preferred.
  • the maximum light output in the single transverse mode is preferably 5 m or more, more preferably 7 mW or more, and even more preferably 1 OmW or more.
  • the optical power density is preferably at 4 mW / m 2 or more, more preferably SMW / jum 2 than on, still more preferably les it is 8 mWZiU m 2 or more.
  • the self-pulsation type semiconductor laser preferably has a low passing resistance when driven, preferably 8 ⁇ or less, more preferably 7 ⁇ or less, and more preferably 6 ⁇ or less. Most preferably.
  • a typical self-sustained pulsation semiconductor laser of the present invention oscillates at 75 ° C with an output of 5 mW or more. If a specific example is shown in relation to the temperature, a typical self-pulsation type semiconductor laser of the present invention oscillates with a power of 5 mW at 70 ° C. and 5 mW at 75 ° C. Self-oscillates at output, self-oscillates at 1 OmW output at 70 ° C, and self-oscillates at 1 OmW output at 75 ° C. Further, the oscillation threshold current at 25 ° C. in direct current (DC) driving is, for example, 45 mA or less, preferably 4 OmA or less, and more preferably 35 mA or less.
  • DC direct current
  • the semiconductor laser of the present invention is also effective as a communication laser in that a nearly circular laser increases the coupling efficiency with the fiber.
  • a laser having a single far-field image can be used as a laser suitable for a wide range of uses such as information processing and optical communication.
  • the structure of the present invention can be applied to a light emitting diode (LED) of an edge emitting type or the like other than the semiconductor laser.
  • N-type G a A s (n 1 X 10) with a thickness of 350 and off from (100) plane by 10 ° in [011] direction 18 cm- 3) on the substrate 301 by MOCVD, n-type thickness 2.
  • ⁇ (A 1 0. 7 Ga 0. 3) o. 5 I n 0. 5 P (n 8 X 10 17 cm - 3, refractive index 3.2454)
  • clad layer 302 (.... a 1 o 5 G a 0 J 0 5 I n 0 5 P light confining layer (non-doped) 321, thickness 5 nm of G a. . 5 I n ..
  • 5 P strained quantum well layer (undoped) 322 a thickness of 5 nm (a 1 0. 5 Ga 0. 5) 0. 5 I n 0. 5 P Paglia layer (non-doped) 323, thickness is 0 and 0 of 511111.
  • 5 I n .. 5 P strained quantum well layer (non-doped) 324 a thickness of 5 nm of (a 1. ⁇ 5 Ga 5) 0. 5 I ⁇ 0 ⁇ 5 P Roh Li a layer ( doped) 325, 0 a 0. 5 I n 0 thick five hundred and eleven thousand one hundred eleven.
  • 5 P light confining layer ( doped) 327 sequentially stacked three comprising quantum well the (TQW) active layer 303, a thickness of 0. 15 p-type ⁇ (a 10. 7 G a 0. 3) o.5 I n 0. 5 P ( p l x 10 18 cm— 3 , refractive index 3.2454)
  • p -type etching stop layer 305 made of, thickness 0. . of 5 ⁇ (. a 10. 7 Ga 0 3) 0.
  • a large number of striped SiO x protective films 351 were formed by photolithography using the [01-1] direction (the direction perpendicular to the off direction of the substrate) as a longitudinal direction (Fig. 3 (b )).
  • the surface of the etching stop layer 305 was subjected to wet etching by using the striped SiN x protective film 351 so that the stripe width at the bottom of the ridge was 2.5 ⁇ .
  • the width of the upper part of the ridge is 1.7 ⁇ , and the ridge shape is asymmetric, and the sum of the two base angles is 105 ° (the base angle of one side is 62 ° and the base angle of the other is 43 °) Met. (Fig. 3 (c)).
  • a hydrochloric acid-based mixed solution or a sulfuric acid-based mixed solution was used as an etching solution for wet etching.
  • the striped SiN x protective film 351 is removed by hot etching using a buffered hydrofluoric acid solution or dry etching using a gas such as SF 6 or CF 4 (FIG. 3 (e)).
  • a p-side electrode 313 was deposited and the substrate was thinned to 100 ⁇ , and then an ⁇ -side electrode 314 was deposited and alloyed (FIG. 3 (f)).
  • the wafer thus fabricated was cleaved and cut into chip pars so as to form a laser light emitting end face (primary cleavage).
  • the resonator length at this time was 1000 ⁇ m.
  • a semiconductor laser device was obtained by assembling the separated chips by junction down.
  • trimethyl gallium ( ⁇ MG), trimethyl indium (TMI) and trimethyl aluminum (TMA) were used as Group III raw materials.
  • Arsine phosphine as a group V raw material
  • hydrogen as a carrier gas.
  • Dimethyl zinc (DMZ) was used as the p-type dopant
  • disilane was used as the n-type dopant.
  • n-type A 1 Q. 9 G a During the growth of the s layer (ANDOP) 308, the HC 1 gas was converted to a HC 1/1 group molar ratio of 0.2 to suppress the deposition of poly on the SiN x protective film. In particular, it was introduced so that the molar ratio of HC 1 / TMA was 0.22.
  • the fabricated semiconductor laser device was intermittently energized (CW) at 25 ° C to perform high-speed pulse measurement ( The current-light output and current-voltage characteristics obtained with a pulse width of 100 nsec and a duty of 50% were measured.
  • Fig. 5 shows the results.
  • the semiconductor laser device manufactured according to this example in high-speed pulse measurement, the optical output increased with an increase in operating current, and no kink was generated up to 20 OmW, and high output characteristics were obtained.
  • the semiconductor laser device of this example exhibited excellent characteristics with an oscillation wavelength of 667 nm on average, a threshold current of 37 mA, and a slope efficiency of 0.95 mW / mA on average.
  • the semiconductor laser of the present invention has an average vertical divergence angle of 19 ° and a horizontal divergence angle of 8 °, and keeps the device resistance at about 5.5 ⁇ despite the thick p-side cladding layer. I was able to.
  • the semiconductor laser device of this embodiment can reduce the heat generation of the device due to the small passing resistance, and can perform stable operation for a long time at high temperature and high output (for example, 70 ° C, CW7 OmW). It is possible enough.
  • a semiconductor laser device was fabricated by the same method as in Example 1 except for the current, light output, and current obtained by high-speed pulse measurement. The current-voltage characteristics were measured. The threshold current was as high as 75mA, and the slope efficiency was as low as 0.35mWZmA.
  • the reason for the poor laser characteristics is that the leakage of light to the p-type contact layer has increased and the light loss has increased, that is, the waveguide loss has increased significantly.
  • Example 2 (Comparative Example 2)-Without forming the p-type third cladding layer (thickness: 1.2 Am), the thickness of the p-type second cladding layer was set to 1.7 ⁇ ni to compensate for the thickness, and the bottom of the ridge was formed.
  • the semiconductor laser device was fabricated in the same manner as in Example 1 except that the width of the laser was 3 m (0.5 ⁇ wider than Example 1), and the current-light output and light output obtained by high-speed pulse measurement were Electric current Pressure characteristics were measured. No laser oscillation occurred in the obtained semiconductor laser device.
  • the width of the top of the ridge was considerably narrowed down to 0.2 m, and the device resistance was considerably high (more than 20 ⁇ ) due to side etching under the striped SiN x protective film. Is thought to be the cause.
  • a semiconductor light emitting device was manufactured in the same manner as in Example 1 except for the change.
  • Example 3 The initial characteristics were almost the same as in Example 1, but the element resistance was 8 ⁇ , which was slightly higher than in Example 1. The reason is, (A 10. 75 Ga .. 25 ) 0. 5 I n 0. 5 P resistivities believed et al is due to greater than the resistivity of the p-type A 10. 8 Ga 0. 2 As . (Example 3)
  • a self-pulsation type semiconductor laser device having the structure shown in FIG. 4 was manufactured.
  • ⁇ 5 I ⁇ . ⁇ 5 P (n 8 X 10 17 cm one 3, refractive index 3.2454) cladding layer 302, (A 1 0, 5 G a 0. 5) 0. 5 I n 0. 5 P light confining layer (non-doped ) 321, 0 a 0 thickness 511 «1.
  • the [01-1] direction (the direction perpendicular to the off direction of the substrate) was changed by photolithography.
  • a large number of SiNx protective films 351 having a stripe shape in the longitudinal direction were formed (FIG. 4B).
  • the surface of the etching stop layer 305 was wet-etched using the striped SiNx protective film 351 so that the stripe width at the bottom of the ridge was 2.2.
  • the width of the upper part of the ridge is 1.4 jum
  • the ridge shape is asymmetric
  • the sum of the two base angles is 105 ° (one base angle is 62 °, the other base angle is 43 °) Met. (Fig. 4 (c)).
  • a hydrochloric acid-based mixed solution and a sulfuric acid-based mixed solution were used as the wet-etching solution.
  • the striped SiNx protective film 351 is removed by a wet etching using a buffered hydrofluoric acid solution or a dry etching using a gas such as SF 6 or CF 4 (FIG. 4 (e)).
  • p-type thickness 0. 5 m by MOCVD a 1 0. 8 G a 0 . 2
  • 35 Ga 0. 65 a s intermediate Pando gap layer (p 1. 5X 10 18 cm- 3) 311 and the thickness 3.
  • p-type 5 m G a a s contactors coat layer ( p 7 ⁇ 10 18 cm — 3 ) 312 was grown.
  • the electrode 313 on the P side is deposited, and the substrate is thinned to 100 ⁇ .
  • the side electrode 314 was deposited and alloyed (FIG. 4 (f)).
  • the wafer thus fabricated was cleaved and cut into chip bars so as to form a laser light emitting end face (primary cleavage).
  • the resonator length at this time was 300 ⁇ .
  • the chip was separated by secondary cleavage. The separated chips were assembled at the junction down to obtain a semiconductor laser device.
  • trimethyl gallium ( ⁇ MG) and trimethyl indium (TMI) and trimethyl aluminum (TMA) are used as group III materials, arsine and phosphine are used as group V materials, and hydrogen is used as a carrier gas.
  • DMZ Dimethyl zinc
  • disilane was used as the n-type dopant.
  • moles of HC 1 gas HC 1 III Group The introduction was carried out so that the ratio was 0.2, especially the molar ratio of HC 1 ZTMA was 0.22.
  • the semiconductor laser device of this example oscillates in vertical multimode as shown in FIG. 6 (a), and the visibility indicating coherence with return light is 0.25. It was found that low noise operation was possible without a high-frequency superimposing circuit.
  • the lasing wavelength was 656 nm on average
  • the threshold current was 27 mA
  • the operating current at 5 mW output was 31 mA, demonstrating excellent characteristics of low threshold and low operating current.
  • the vertical divergence angle of the semiconductor laser of the present invention is 37.5 ° on average and the horizontal divergence angle is 10.6 °
  • the device resistance is 10 ⁇ despite the thick p-side cladding layer. It was able to be kept small.
  • the semiconductor laser device of the present embodiment can reduce the heat generation of the element due to the small passage resistance, and can realize a stable self-pulsation operation even at a high temperature of 75 ° C. or more.
  • the cause of the deterioration of the laser characteristics in this way is that light leakage into the p-type contact layer is increased and light loss is increased, that is, waveguide loss is significantly increased.
  • Example 4 The same method as in Example 3 except that the thickness of the ⁇ -type second cladding layer was set to 1 ⁇ to capture the P-type third cladding layer (thickness 0.5 ⁇ ) without affecting the thickness.
  • the semiconductor laser device was manufactured by the method described above, and the current-light output characteristics and the current-voltage characteristics were measured. Laser oscillation did not occur in the obtained semiconductor laser device. The reason for this is that the width of the top of the ridge was considerably narrowed to 0.2 ⁇ m due to side etching under the striped Si Nx protective film, and the device resistance was considerably high (more than 20 ⁇ ). It is thought that there is. (Example 4)
  • a self-sustained pulsation type semiconductor laser device was manufactured in the same manner as in Example 3 except that the configuration was changed to.
  • Example 5 The initial characteristics were almost the same as in Example 3, but the element resistance was 15 ⁇ , which was slightly higher than in Example 3, and no self-excited oscillation at 70 ° C was obtained.
  • the cause is, (A l 0. 75 Ga 0. 25) 0. 5 I n 0. 5 p -type A 1 0 is the resistivity and the thermal resistance of the P. 8 G a 0. 2 As the resistivity and thermal This is considered to be because the heat generation of the element, that is, the temperature of the active layer was increased due to being larger than the resistance. (Example 5)
  • the SiNx protective film 351 in the form of stripes was a wet etching performed to the surface of the etching stop layer 305 so that the stripe width at the bottom of the ridge became 2.6 ⁇ .
  • the width of the upper part of the ridge is 1.7 ⁇ , and the ridge shape is asymmetric, and the sum of the two base angles is 100 ° (the base angle of one side is 60 °, the base angle of the other side is 40 °) Met. (Fig. 4 (c)).
  • the wet etching solution used was a hydrochloric acid-based mixed solution or a sulfuric acid-based mixed solution.
  • the portion removed by the etching for forming the ridge using the above-mentioned striped SiNx protective film 351 is selectively grown using the M.OCVD method to form an n-type A1 layer having a thickness of 0.4 jum. . ⁇ 85 Ga 0. 15
  • the striped SiNx protective film 351 is removed by a wet etching using a buffered hydrofluoric acid solution or a dry etching using a gas such as SF 6 or CF 4 (FIG. 4 (e)).
  • p-type a 1 0 thickness 0. 5 m by MOCVD 78 G a 0 22 a s the third cladding layer..
  • X 10 18 cm— 3 ) 312 was grown. Thereafter, a p-side electrode 313 was deposited and the substrate was thinned to 100 ⁇ , and then an n-side electrode 1114 was deposited and alloyed (FIG. 4 (f)).
  • the wafer fabricated in this manner was cleaved and cut into chippers so as to form a laser light emitting end face (primary cleavage).
  • the resonator length at this time was 300 ⁇ m.
  • chips were separated by secondary cleavage. The separated chips were assembled in a junction down to obtain a semiconductor laser device.
  • trimethylgallium (TMG), trimethylindium (TMI) and trimethylaluminum (TMA) are used as group III materials, arsine and phosphine are used as group V materials, and hydrogen is used as a carrier gas.
  • DMZ Dimethyl zinc
  • disilane was used as the n-type dopant.
  • HC 1 gas was introduced to suppress poly deposition on the Si Nx protective film.
  • the semiconductor laser device of this example oscillates vertically in multimode even at 75 ° C and 10 mW (peak wavelength 676.3 nm), showing a visibility that shows coherence with the return light. Is low at 0.34, which indicates that low-noise operation is possible without high-frequency superimposing circuits up to high temperatures (75 ° C or higher) and high outputs (1 OmW or higher).
  • a plurality of self-pulsation type semiconductor laser devices having different total active layer thicknesses were manufactured.
  • 5 P (n 8 ⁇ 10 17 cm— 3 ) cladding layer 302, al 0. 5 Ga 0. 5 ) 0. 5 I n 0. 5 P light confinement Me layer (non-doped) 321, Ga 0. 5 I n 0. 5 P strained quantum well layer (undoped) 3 22, the thickness of 5 nm (a 1 0. 5 Ga 0. 5) 0. 5 I n 0. 5 P Roh rear layer (non-doped) 323 consisting Tajuuko well (MQW) active layer 303, a thickness of 0. l / zm p type (a 10. 7 Ga 0. 3 ) 0. 5 I n 0.
  • MQW Tinuuko well
  • the surface of the etching stop layer 1305 was subjected to wet etching, so that the stripe width at the bottom of the ridge was 2.6 ⁇ . At this time, the width of the upper part of the ridge was 1.7 m. (Fig. 4 (c)). At this time, a hydrochloric acid-based mixed solution or a sulfuric acid-based mixed solution was used as an etchant for wet etching.
  • a p-side electrode 313 was deposited and the substrate was thinned to 100 ⁇ , and then an ⁇ -side electrode 314 was deposited and alloyed (FIG. 4 (f)).
  • the wafer thus fabricated was cleaved and cut into chip bars so as to form a laser light emitting end face (primary cleavage).
  • the resonator length at this time was 300 ⁇ m.
  • the chips were separated by secondary cleavage. The separated chips were assembled at the junction down to obtain a semiconductor laser device.
  • TMG trimethylgallium
  • TMI trimethylindium
  • TMA trimethylaluminum
  • DMZ Dimethyl zinc
  • the current-optical output characteristics and the current-voltage characteristics were measured by continuously energizing (CW) the fabricated semiconductor laser device.
  • CW continuously energizing
  • the range of self-sustained pulsation was too small for the number of Ido layers. It turned out to be strongly dependent on the total thickness of the active layer (the sum of the thicknesses of all the quantum well layers in the active layer).
  • self-oscillation at 25 ° C and 5 mW is possible when the total active layer thickness is '25 nm or more, and self-oscillation at 70 ° C and 5 mW when the active layer thickness is 30 nm or more. It became.
  • the lower limit of the total thickness of the active layer is preferably 25 nm or more, more preferably 30 nm or more, and even more preferably 35 nm or more.
  • the thickness is preferably not more than the critical thickness. That is, the upper limit of the total thickness of the active layer is preferably 80 nm or less, more preferably 60 nm or less, and even more preferably 50 nm or less.
  • the upper limit of the total thickness of the active layer is preferably equal to or less than the thickness at which the quantum effect functions when the active layer has no strain. That is, the upper limit of the total active layer thickness is preferably 100 nm or less, more preferably 80 nm or less, and even more preferably 70 nm or less.
  • the semiconductor light emitting device of the present invention can be suitably used as a semiconductor laser having a low element resistance, a low pass resistance and a low thermal resistance and capable of high output operation.
  • LEDs light emitting diodes
  • a semiconductor laser device which has a small element resistance, a passing resistance, a thermal resistance and an operating current, and is capable of self-excited oscillation up to a high temperature.
  • This self-pulsation type semiconductor laser device is resistant to the return light noise from the optical disk, so that a high-frequency superimposing circuit is not required in the device for reading the return optical disk, and it is possible to reduce the number of components and cost. It becomes. Further, it can be suitably used even when a light source having low coherence is required, such as for distance measurement.

Abstract

A semiconductor light-emitting device having a low element resistance, a low thermal resistance, a low passage resistance and a small operating current and capable of high output operation is characterized in that it comprises a substrate, a first-conductivity-type clad layer, an active layer, a second-conductivity-type first clad layer, a second-conductivity-type second clad layer having a stripe ridge structure, a current block layer so formed on the second-conductivity-type first clad layer as to sandwich the ridge, and a second-conductivity-type third clad layer formed on the ridge of the second-conductivity-type second clad layer and the current block layer in the vicinity of the ridge, all formed sequentially on the substrate and in that the cross section of the ridge perpendicular to the longitudinal direction of the stripe of the ridge structure is a trapezoid satisfying the following relation. 0.05<h/[(a+b)/2]<0.5 (h is the height of the cross section, a is the upper base of the cross section, and b is the lower base of the cross section).

Description

明 細 書  Specification
半導体発光装置  Semiconductor light emitting device
技術分野 . Technical field .
本発明は、 半導体レーザ等として有用な半導体発光装置に関し、 特に素子抵抗 が低く、 高出力動作が可能な半導体発光装置に関する。 そのような半導体発光装 置の中には、 自励発振が可能な半導体レーザ装置が含まれる。 背景技術  The present invention relates to a semiconductor light emitting device useful as a semiconductor laser or the like, and more particularly to a semiconductor light emitting device having a low element resistance and capable of high output operation. Such semiconductor light emitting devices include semiconductor laser devices capable of self-sustained pulsation. Background art
( 1 ) 半導体発光装置に関する従来技術  (1) Conventional technology for semiconductor light emitting devices
近年、 コンパクトディスクや光ディスク等の情報処理機器の光源として I I I 一 V族ィヒ合物半導体材料を用いたレーザダイオード (L D) の開発が盛んに行わ れている。 I I I一 V族化合物半導体材料を用いた従来の L Dの一例として、 図 7に模式的に示すような構造の A 1 G a I n P系化合物半導体からなる L Dが 挙げられる。 図 7において、 4 0 1は n型基板、 4 0 2は n型第 1クラッド層、 4 0 3は活性層、 4 0 4は p型第 2クラッド層、 4 0 5は p型エッチングストツ プ層、 4 0 6はリッジ構造からな p型第 3クラッド層、 4 0 7は n型電流阻止 層、 4 0 8は p型コンタクト層、 4 0 9は p側電極、 4 1 0は n側電極である。 図 7に示す従来の A 1 G a I n P系半導体材料を用いた L D (以下 「従来型し DJ という) は、 p型第 3クラッド層 4 0 6が電流阻止層 4 0 7で挟まれ、 p型 第 3クラッド層 4 0 6のリッジ部分で電流が狭窄される構造を有するため、一般 に通過抵抗、 熱抵抗および素子抵抗が高い。 そのため、 従来型 L Dは、 高電流注 入時に素子の発熱量が増加し、熱飽和により光出力が下がる、 室温よりも高い温 度で動作させた場合に動作電流が多くなる、 および高周波重畳がかかり難くなる 等の問題があった。  2. Description of the Related Art In recent years, laser diodes (LD) using III-V group semiconductor materials have been actively developed as light sources for information processing devices such as compact disks and optical disks. As an example of a conventional LD using an III-V compound semiconductor material, there is an LD made of an A1GaInP-based compound semiconductor having a structure schematically shown in FIG. In FIG. 7, 401 is an n-type substrate, 402 is an n-type first cladding layer, 403 is an active layer, 404 is a p-type second cladding layer, and 405 is a p-type etching stop. Layer, 406 is a p-type third cladding layer with a ridge structure, 407 is an n-type current blocking layer, 408 is a p-type contact layer, 409 is a p-side electrode, and 410 is an n-side Electrodes. In the LD using the conventional A1GaInP-based semiconductor material shown in Fig. 7 (hereinafter referred to as "conventional type DJ"), the p-type third cladding layer 406 is sandwiched between the current blocking layers 407. The p-type third cladding layer 406 has a structure in which the current is confined at the ridge portion, and thus generally has high pass resistance, thermal resistance, and element resistance. However, there have been problems such as an increase in the amount of heat generated, a decrease in optical output due to thermal saturation, an increase in operating current when operated at a temperature higher than room temperature, and a difficulty in applying high frequency superposition.
また従来型 L Dは、 p型クラッド層 4 0 4、 4 0 6において、 p型不純物とし て亜鉛が用いられていた。 亜鉛は A 1 G a I n P結晶中で拡散し易い性質を有し ているため、 ェピタキシャル成長を繰り返している間に、 p型クラッド層中の亜 鉛が活性層に拡散してしまうことがしばしば発生した。 このように活性層に亜ロ、 が拡散してしまうと、 活性層の結晶性が劣悪化し、 寿命が短くなる。 一方、 拡散 を防ぐた に亜鉛濃度を低くすると、 動作電圧が高くなり、 レーザ発振が困難に なる。 In the conventional LD, zinc was used as a p-type impurity in the p-type cladding layers 404 and 406. Zinc has a property of being easily diffused in the A1GaInP crystal, and therefore, zinc in the p-type cladding layer during repeated epitaxial growth. It often occurred that lead diffused into the active layer. When the sub-layers and diffuse into the active layer in this manner, the crystallinity of the active layer deteriorates and the life is shortened. On the other hand, if the zinc concentration is reduced to prevent diffusion, the operating voltage increases and laser oscillation becomes difficult.
さらに、 従来型 L Dにおいて、 n型クラッド層おょぴ p型クラッド層は、 発光 する光を活性層内に閉じ込めるために、活性層よりも A 1組成を大きくしたダブ ルヘテロ構造がとられている。 しかるに、 光の閉じ込めを強くするために、 例え ば P型クラッド層の A 1量を大きくすると、 キャリア濃度が下がってしまい、 そ の結果、 素子抵抗が高くなり、 駆動電流が高くなるという問題があった。 一方、 逆に駆動電流を低くするために、 p型クラッド層内の A 1量を少なくすると、 光 閉じ込めやキヤリア閉じ込めが弱くなり、発光効率が悪くなるという問題があつ た。  Furthermore, in conventional LDs, the n-type cladding layer and the p-type cladding layer have a double heterostructure with a larger A1 composition than the active layer in order to confine the emitted light in the active layer. . However, if the amount of A1 in the P-type cladding layer is increased to enhance light confinement, for example, the carrier concentration decreases, and as a result, the device resistance increases and the driving current increases. there were. On the other hand, if the amount of A 1 in the p-type cladding layer is reduced in order to lower the drive current, light confinement and carrier confinement are weakened, and the luminous efficiency is degraded.
上記問題を解決するために、 これまでにいくつかの半導体発光装置が開発され ている。 例えば、 特開平 7— 2 9 7 4 8 3号公報には、 素子抵抗を低減させるた めに、 高濃度にドーピングした p型第 2クラッド層 (リッジ:電流狭窄部) を有 する半導体レーザが記載されている。 し力 し、 ェピタキシャノレ成長の間や通電中 に亜鉛などの P型ドーパントが活性層に拡散し、素子特性の劣化や信頼性の低下 を招くという欠点がある。 一方、 特開平 1 1— 2 6 8 8 0号公報には、 p型ドー パントの活性層への拡散を防止するために、 p型第 2クラッド層 (リッジ:電流 狭窄部) と活性層との間にキヤリァ拡散抑制層を設けた半導体レーザ装置が記載 されている。 しかるに、 該公報に記載のキャリア拡散抑制層は、 成長温度、 結晶 性などによる P型ドーパントの拡散状態の変化により十分対応できず、 さらに素 子特性にパラツキがあり、 信頼性の再現性に問題があった。 さらに、 特開平 1 1 - 8 7 8 3 2号公報には、 p型ドーパントの活性層への拡散を防止するために、 p型クラッド層と活性層との間に、 p型クラッド層と活性層との中間のパンドギ ヤップを有する層を形成した半導体レーザが記載されている。 しかし、 この半導 体レーザは、 リッジ部分のエッチングプロセスが複雑であり、 かつエッチングに よりリッジ部の側面上部に窪みが発生するなど安定したリッジ形状を形成する ことが困難であるという欠点があつた。 Several semiconductor light emitting devices have been developed to solve the above problem. For example, Japanese Unexamined Patent Application Publication No. 7-2974833 discloses a semiconductor laser having a highly doped p-type second cladding layer (ridge: current constriction portion) in order to reduce device resistance. Has been described. However, there is a disadvantage in that a P-type dopant such as zinc diffuses into the active layer during epitaxy growth or during energization, leading to deterioration of device characteristics and reliability. On the other hand, Japanese Patent Application Laid-Open No. H11-26880 discloses that a p-type second cladding layer (ridge: current constriction part) and an active layer are formed in order to prevent diffusion of a p-type dopant into the active layer. Discloses a semiconductor laser device provided with a carrier diffusion suppressing layer. However, the carrier diffusion suppressing layer described in the publication cannot sufficiently cope with a change in the diffusion state of the P-type dopant due to the growth temperature, crystallinity, etc., and further has a variation in element characteristics and a problem in reproducibility of reliability. was there. Furthermore, Japanese Patent Application Laid-Open No. 11-878332 discloses that a p-type cladding layer and an active layer are provided between a p-type cladding layer and an active layer in order to prevent diffusion of a p-type dopant into the active layer. A semiconductor laser having a layer with a pan gap between the layer and the layer is described. However, in this semiconductor laser, the etching process of the ridge portion is complicated, and the etching is difficult. There is a drawback that it is more difficult to form a stable ridge shape, for example, a depression is formed on the upper side of the ridge portion.
一方、 徒来型 LDは、 通常、 [— 1 1 0] 方向にストライプ状のリッジを形成 することにより基本横モードを制御している (藤井他、 エレクトロニクスレター ズ誌第 23巻、 第 1 8号、 9 3 8— 9 3 9頁)。 リッジのストライプ方向を [一 1 1 0] 方向に選ぶことにより、 [1 1 0] 方向と比べて A 1 G a I n P秩序結 晶からなる活性層の発光効率が向上し、 閾値電流密度が低下できるためである。 し力 し、 より高出力で基本横モードを行うために、 リッジ幅をより狭く、 かつリ ッジ高さをより高くする必要があり、 [一 1 1 0] 方向ではリッジ内に大きなジ ユール熱が発生するという問題があった。  On the other hand, the hereditary LD normally controls the fundamental transverse mode by forming a stripe-shaped ridge in the [—110] direction (Fujii et al., Electronics Letters Vol. 23, No. 18). No. 938-9339). By selecting the stripe direction of the ridge in the [111] direction, the luminous efficiency of the active layer composed of A1GaInP ordered crystal is improved compared to the [110] direction, and the threshold current density is increased. This is because it can be reduced. In order to perform the basic transverse mode with higher power, it is necessary to make the ridge width narrower and the height of the ridge higher, and in the [110] direction, a large ridge inside the ridge is required. There was a problem that heat was generated.
リッジ形成方向における上記問題を解決するために、 ストライプ状リッジを In order to solve the above problem in the ridge formation direction,
[1 1 0] 方向に形成した半導体レーザがこれまでに開発されている (特開平 7 - 1 9 3 3 1 3号公報)。 しかるに、 該公報に記載のリッジ構造は、 逆メサ形状 であり、 この逆メサ形状の p型第 3クラッド層を形成するために、 無秩序状態で 高温成長 (700〜8 50°C) させる必要がある。 無秩序状態にするために高温 で成長させると、 その成長過程に p型ドーパントが活性層に拡散し、 活性層の結 晶性が劣悪化し、 寿命が短くなり、 信頼性の低下を招くため好ましくない。 A semiconductor laser formed in the [110] direction has been developed so far (Japanese Patent Laid-Open No. 7-193313). However, the ridge structure described in this publication has an inverted mesa shape, and it is necessary to perform high-temperature growth (700 to 850 ° C.) in a disordered state in order to form the inverted mesa-shaped p-type third cladding layer. is there. If grown at a high temperature in order to bring the disorder, the p-type dopant diffuses into the active layer during the growth process, and the crystallinity of the active layer deteriorates, the life is shortened, and the reliability is reduced. .
以上の従来技術の課題を解決して、 素子抵抗、 熱抵抗、 通過抵抗および動作電 流がいずれも低く、 かつ高出力動作が可能な半導体発光装置を提供することが望 まれるが、 そのような半導体努光装置はこれまで提供されるに至っていない。 (2) 自励発振が可能な半導体レーザ装置に関する従来技術  It is desired to solve the above-mentioned problems of the prior art and to provide a semiconductor light emitting device capable of operating at a high output with low element resistance, thermal resistance, passing resistance, and operating current. No semiconductor light emitting device has been provided so far. (2) Conventional technology for semiconductor laser devices capable of self-pulsation
半導体発光装置の中でも、特に自励発振が可能な半導体レーザ装置に関する従 来技術について以下に記載する。 - 光ディスクの読み取り用光源としては、光ディスクからの戻り光ノイズに強い 自励発振型半導体レーザ (波長マルチモード) が好適である。 自励発振型半導体 レーザとしては、 従来、 図 8 (a)、 (b) に示すような半導体電流プロック層を 用いたインナーストライプ型レーザが用いられていた。 光吸収層が存在しない構 造では、 自励発振は、 通常、 活性層の内部に過飽和吸収域を形成することにより 達成される。 過飽和吸収域は、 電流注入領域よりも光分布を広げることにより、 図 8 (a)、'(b) に示すようにリッジ又はグループ直下の両脇の部分に形成する ことができる。 この過飽和吸収域では、 キャリアの発生 (発光) とキャリアの消 失 (消光) が短時間サイクルで繰り返されるために、 縦モードがマルチ (波長マ ルチモード) になり、 低ノイズィ匕が実現できる。 この半導体レーザ装置の戻り光 ノィズを低減させるために、半導体レーザの自励発振現象を利用して縦マルチモ ード発振させる方法が開発されており、例えば特開昭 63-202083号公報 にその詳細が記載されている。 Among the semiconductor light emitting devices, a conventional technology relating to a semiconductor laser device capable of self-sustained pulsation is described below. -A self-sustained pulsation type semiconductor laser (wavelength multimode) that is resistant to optical noise from the optical disk is suitable as a light source for reading the optical disk. Conventionally, as a self-pulsation type semiconductor laser, an inner stripe type laser using a semiconductor current block layer as shown in FIGS. 8 (a) and 8 (b) has been used. Structure without light absorption layer In the structure, self-sustained pulsation is usually achieved by forming a saturable absorption region inside the active layer. The saturable absorption region can be formed on both sides immediately below the ridge or group as shown in FIGS. 8 (a) and 8 (b) by expanding the light distribution more than the current injection region. In this supersaturated absorption region, the generation (emission) of carriers and the extinction (extinction) of carriers are repeated in a short time cycle, so that the vertical mode becomes multi (wavelength multimode), and low noise can be realized. In order to reduce the return light noise of this semiconductor laser device, a method of performing longitudinal multi-mode oscillation using the self-excited oscillation phenomenon of the semiconductor laser has been developed. For example, Japanese Patent Application Laid-Open No. 63-202083 discloses the details. Is described.
最近、 ディジタルビデオディスクを中心とする記録密度向上のために、 情報処 理用光源として従来の A 1 Ga As (波長 780 nm近傍) に代わって、 A 1 G a I nP系を用いた可視 (通常 630〜69 Onm帯) レーザが実用化され始め ている。 A 1 G a I n P系半導体材料を用いた従来の半導体レーザダイォード (LD) —例としては、 図 9に模型的に示す構造を有するものがある。  Recently, in order to improve the recording density mainly for digital video discs, instead of the conventional A 1 Ga As (wavelength around 780 nm) as a light source for information processing, the visible ( (Usually in the 630 to 69 Onm band) Lasers have begun to be put into practical use. A conventional semiconductor laser diode (LD) using an A 1 G a In P semiconductor material—for example, one having a structure schematically shown in FIG.
図 9において、 601は n型 Ga As基板、 602は基板 601上に形成され た n型 A 1 G a I n Pからなるクラッド層、, 603は A 1 G a I n Pからなる活 性層、 604は p型 A 1 Ga I n Pからなるクラッド層、 605は n型 GaAs からなる電流阻止 (ブロック) 層、 606はコンタクト層である。 ここでは、 A 1 G a I n P活性層 603のエネルギーギヤップが、 A 1 G a I n Pクラッド層 602及ぴ 604のエネルギーギャップより小さくなるように混晶比が設定さ れており、 ダブルへテロ構造をなしている。 電流阻止層 605は、 レーザ発振に 必要な電流密度を得るために、 いわゆる電流狭窄を行う目的で設けられる。 電流 阻止層 605は、 層 604を選択ェツチングしてリッジを形成した後、 S i N X などのアモルファス膜を用いて選択成長させることによって形成する。  In FIG. 9, reference numeral 601 denotes an n-type GaAs substrate; 602, a cladding layer made of n-type A1GaInP formed on the substrate 601; 603, an active layer made of A1GaInP. Reference numeral 604 denotes a cladding layer made of p-type A1GaInP, 605 denotes a current blocking (blocking) layer made of n-type GaAs, and 606 denotes a contact layer. Here, the mixed crystal ratio is set so that the energy gap of the A1GaInP active layer 603 is smaller than the energy gap of the A1GaInP clad layers 602 and 604. It has a hetero structure. The current blocking layer 605 is provided for the purpose of performing a so-called current confinement in order to obtain a current density required for laser oscillation. The current blocking layer 605 is formed by selectively etching the layer 604 to form a ridge and then selectively growing it using an amorphous film such as SiNX.
従来の A 1 GaAs系 (波長 78 Onm近傍) のレーザにおいては、 C S P構 造、 V— S I S構造、 S AS構造等により低ノイズィ匕が実現されている。例えば、 東芝レビュー 40卷 7号、 第 576〜 578項では、 電流狭窄によって活性層に 電流注入のストライプを形成し、活性層においてそのストライプの两側に過飽和 吸収体領域が生じるようにしている。 これによつて、 活性層中にて光とキャリア の相互作用による発光部の屈折率の振動によってレーザ発振の開始と停止の繰 り返し、 すなわち自励発振を起こさせている。 In conventional A 1 GaAs-based lasers (wavelength around 78 Onm), low noise is realized by the CSP structure, V-SIS structure, SAS structure, and the like. For example, in Toshiba Review Vol. 40, No. 7, Paragraphs 576-578, the current constriction causes A stripe for current injection is formed, and a saturable absorber region is formed on the 層 side of the stripe in the active layer. As a result, laser oscillation starts and stops repeatedly, that is, self-excited oscillation is caused by the oscillation of the refractive index of the light emitting portion due to the interaction between light and carriers in the active layer.
ところが、活性層中に過飽和吸収体を形成する方法を図 9に示すような従来の A 1 G a I n P系を用いた可視 (通常 6 3 0〜6 9 0 n m帯) レーザに適用する と、電流プロック層直下での pクラッド層領域での電流拡がりが増加することに よって、 過度のキヤリァ注入により過飽和吸収体としての機能が低下し、 高温領 域まで安定に自励発振を実現することが困難であること 1 平成 6年秋期応用物 理学会学術講演会予稿集 2 0 p _ S— 1 5、平成 7年春期応用物理学関係連合講 演会予稿集 2 8 a— Z G _ 9において報告されている。 そこで、 図 1 0に示すよ うに活性層外部に発振光と同程度のバンドギヤップを有する過飽和吸収層を備 えた A 1 G a I n P系自励発振レーザが、特開平 7— 2 6 3 7 9 4号公報等に開 示 れており、 H. Adachi,et al. Self-sustained pulsation in 650nm - band AlGalnP visible laser diode with highly doped suturable absorbing layer, IEEE Photon. Technol. Lett. 7, pl406 (1995)において、 自励発振が 6 0.。Cの高温ま で確認されている。 し力 しながら、 過飽和吸収層を挿入する方法では、 図 1 1に 示すように発振立ち上がりに光出力の急峻な遷移が観 されている。 このため、 光ディスクドライブ装置に組み込んでレーザ出力を一定になるように制御する ときに、 自動パワー制御 (A P C) を低出力の領域で使用すると A P C回路が発 振してしまい、パワー制御ができなくなるという問題が発生してしまう可能性が ある。 さらに、 過飽和吸収層を採用することにより、 過飽和吸収域でのロスのた めに発振しきレ、値電流を大幅に上昇させてしまったり、過飽和吸収層のパンドギ ャップを変化させてしまったり、過飽和吸収層と活性層との間の距離に大きく依 存するために厳しく再現性や均一性などが要求されるために歩留まりが低くな りやすくなってしまう等の問題も生じていた。  However, the method of forming a saturable absorber in the active layer is applied to a visible (usually 60-690 nm band) laser using a conventional A1GaInP system as shown in FIG. Current spread in the p-cladding layer region immediately below the current block layer increases the function as a saturable absorber due to excessive carrier injection, and realizes stable self-sustained pulsation up to the high-temperature region. 1 Difficulties 1 In the autumn of 1994, Japan Society of Applied Physics Academic Lectures 20 0 p _ S—15, in the Spring of 1995 Joint Lectures on Applied Physics, 2 8 a— ZG _ 9 It has been reported. Thus, as shown in FIG. 10, an A1GaInP-based self-excited oscillation laser provided with a saturable absorption layer having a band gap similar to that of oscillation light outside the active layer is disclosed in Japanese Patent Application Laid-Open No. 7-26363. H. Adachi, et al. Self-sustained pulsation in 650 nm-band AlGalnP visible laser diode with highly doped suturable absorbing layer, IEEE Photon. Technol. Lett. 7, pl406 1995), self-oscillation is 60. It has been confirmed up to the high temperature of C. However, in the method of inserting a saturable absorption layer, a steep transition of the optical output is observed at the rise of oscillation as shown in Fig. 11. For this reason, when controlling the laser output to be constant by incorporating it into an optical disk drive device, if automatic power control (APC) is used in a low output area, the APC circuit will oscillate and power control will not be possible Problem may occur. Furthermore, by using a saturable absorption layer, oscillation in the saturable absorption region may be lost, and the value current may be significantly increased. Since the thickness largely depends on the distance between the absorption layer and the active layer, reproducibility and uniformity are strictly required, and the yield tends to be low.
上記の過飽和吸収層を備えた A 1 G a I n P系を用いた可視光 (通常 6 3 0〜 6 9 0 n m) 自励発振型レーザの実用上の大きな問題を解決するには、 従来の A 1 G a A s系 (波長 7 8 0 n m近傍) のレーザと同様に、 活性層中に過飽和吸収 体を安定に开成する方法により、 高温領域まで安定に自励発振を実現することが 望ましいと考えられる。 Visible light using an A 1 G a In P system with a saturable absorption layer (normally To overcome the practical problem of self-pulsation lasers, supersaturation in the active layer is the same as in the case of conventional A1GaAs-based lasers (wavelength around 780 nm). It is considered desirable to realize stable self-sustained pulsation up to the high-temperature region by a method of stably forming the absorber.
ところが、 図 1 2に示す従来の A l G a I n P系半導体材料を用いた L D (以 下 「従来型 L D」 という) は、 p型第 3クラッド層 9 0 6が電流阻止層 9 0 7で 挟まれ、 P型第 3クラッド層 9 0 6のリッジ部分で電流が狭窄される構造を有す るため、 一般に通過抵抗、 熱抵抗および素子抵抗が高い。 そのため、 従来型 L D は、 高電锍注入時に素子の発熱量が増加し、 活性層の温度が上昇し、 自励発振が 起こりにくくなり、 特に高温まで安定に自励発振動作を行なうのは非常に困難と なる等の問題があった。  However, in the LD using the conventional AlGaInP semiconductor material (hereinafter referred to as “conventional LD”) shown in FIG. 12, the p-type third cladding layer 906 is composed of the current blocking layer 906. 7, and has a structure in which the current is confined at the ridge portion of the P-type third cladding layer 906, and thus generally has high passing resistance, thermal resistance, and element resistance. Therefore, in the conventional LD, the amount of heat generated by the element at the time of high power injection increases, the temperature of the active layer rises, and self-sustained pulsation becomes difficult to occur. There were problems such as difficulty.
また従来型 L Dは、 p型クラッド層 9 0 4、 9 0 6において、 p型不純物とし て亜鉛が用いられている。 亜鉛は A l G a I n P結晶中で拡散し易い性質を有し ているため、 ェピタキシャル成長を繰り返している間に、 p型クラッド層中の亜 鉛が活性層に拡散してしまうことがしばしば発生する。 このように活性層に亜鉛 が拡散してしまうと、 活性層の結晶性が劣悪ィヒし、 寿命が短くなる。 一方、 拡散 を防ぐために亜鉛濃度を低くすると、 »作電圧が高くなり、 レーザ発振が困難に なる。  In the conventional LD, zinc is used as a p-type impurity in the p-type cladding layers 904 and 906. Since zinc is easily diffused in AlGaInP crystals, zinc in the p-type cladding layer diffuses into the active layer during repeated epitaxial growth. Often occurs. When zinc diffuses into the active layer in this manner, the crystallinity of the active layer is deteriorated and the life is shortened. On the other hand, if the zinc concentration is reduced to prevent diffusion, the »working voltage increases and laser oscillation becomes difficult.
さらに、 従来型 L Dにおいて、 n型クラッド層および p型クラッド層は、 発光 する光を活性層内に閉じ込めるために、活性層よりも A 1組成を大きくしたダブ ルヘテロ構造がとられている。 しかるに、 光の閉じ込めを強くするために、 例え ば P型クラッド層の A 1量を大きくすると、 キャリア濃度が下がってしまい、 そ の結果、 素子抵抗が高くなり、 駆動電流が高くなるという問題があった。 一方、 逆に駆動電流を低くするために、 p型クラッド層内の A 1量を少なくすると、 光 閉じ込めやキャリア閉じ込めが弱くなり、発光効率が悪くなるという問題があつ た。  Further, in the conventional LD, the n-type cladding layer and the p-type cladding layer have a double hetero structure in which the A1 composition is larger than that of the active layer in order to confine the emitted light in the active layer. However, if the amount of A1 in the P-type cladding layer is increased to enhance light confinement, for example, the carrier concentration decreases, and as a result, the device resistance increases and the driving current increases. there were. On the other hand, if the amount of A 1 in the p-type cladding layer is reduced in order to lower the drive current, light confinement and carrier confinement are weakened, and the luminous efficiency is degraded.
上記問題を解決するために、 これまでにいくつかの半導体レーザ装置が開発さ れている。 例えば、 特開平 7— 2 9 7 4 8 3号公報には、 素子抵抗を低減させる ために、 高濃度にドーピングした P型第 2クラッド層 (リッジ:電流狭窄部) を 有する半^体レーザが記載されている。 し力 し、 ェピタキシャル成長の間ゃ通電 中に亜鉛などの p型ドーパントが活性層に拡散し、素子特性の劣化や信頼性の低 下を招くという欠点がある。 一方、 特開平 1 1一 2 6 8 8 0号公報には、 p型ド 一パントの活性層への拡散を防止するために、 p型第 2クラッド層 (リッジ:電 流狭窄部) と活性層との間にキヤリァ拡散抑制層を設けた半導体レーザ装置が記 載されている。 しかるに、 ここに記載のキャリア拡散抑制層は、 成長温度、 結晶 性などによる p型ドーパントの拡散状態の変化により十分対応できず、 さらに素 子特性にバラツキがあり、 信頼性の再現性に問題があった。 さらに、 特開平 1 1 - 8 7 8 3 2号公報には、 p型ドーパントの活性層への拡散を防止するために、 p型クラッド層と活性層との間に、 p型クラッド層と活性層との中間のパンドギ ヤップを有する層を形成した半導体レーザが記載されている。 しかし、 この半導 体レーザは、 リッジ部分のエッチングプロセスが複雑であり、 かつエッチングに よりリッジ部の側面上部に窪みが発生するなど安定したリッジ形状を形成する ことが困難であるという欠点があった。 . Several semiconductor laser devices have been developed to solve the above problems. It is. For example, Japanese Unexamined Patent Application Publication No. 7-294784 discloses a semiconductor laser having a highly doped P-type second cladding layer (ridge: current confinement portion) in order to reduce device resistance. Has been described. However, during epitaxial growth, p-type dopants such as zinc diffuse into the active layer during the current application, resulting in a deterioration in device characteristics and a decrease in reliability. On the other hand, Japanese Patent Application Laid-Open No. 11-260880 discloses that a p-type second cladding layer (ridge: current constriction portion) and a p-type second cladding layer are used to prevent diffusion of a p-type dopant into an active layer. A semiconductor laser device provided with a carrier diffusion suppressing layer between the layers is described. However, the carrier diffusion suppression layer described here cannot sufficiently cope with changes in the diffusion state of the p-type dopant due to growth temperature, crystallinity, etc., and further has variations in element characteristics, which causes a problem in reproducibility of reliability. there were. Furthermore, Japanese Patent Application Laid-Open No. 11-878332 discloses that a p-type cladding layer and an active layer are provided between a p-type cladding layer and an active layer in order to prevent diffusion of a p-type dopant into the active layer. A semiconductor laser having a layer with a pan gap between the layer and the layer is described. However, this semiconductor laser has drawbacks in that the etching process of the ridge portion is complicated, and it is difficult to form a stable ridge shape, for example, a depression is formed on the upper side surface of the ridge portion by etching. Was. .
一方、 従来型 L Dは、 通常、 [一 1 1 0 ] 方向にストライプ状のリッジを形成 することにより基本横モードを制御している (藤井他、 エレク トロニクスレター ズ誌第 2 3卷、 第 1 8号、 9 3 8— 9 3 9頁)。 リッジのストライプ方向を [一 1 1 0 ] 方向に選ぶことにより、 [ 1 1 0 ] 方向と比べて A 1 G a I n P秩序結 晶からなる活性層の発光効率が向上し、 しきい値電流密度が低下できるためであ る。 しかし、 より高出力で基本横モードを行うために、 リッジ幅をより狭く、 か つリッジ高さをより高くする必要があり、 [一 1- 1 0 ] 方向ではリッジ内に大き なジュール熱が発生するという問題があった。  On the other hand, conventional LDs usually control the fundamental transverse mode by forming stripe-shaped ridges in the [111] direction (Fujii et al., Electronics Letters Vol. 23, Vol. 1). No. 8, 938-9339). By selecting the ridge stripe direction in the [111] direction, the luminous efficiency of the active layer composed of A1GaInP ordered crystal is improved compared to the [110] direction, and the threshold voltage is increased. This is because the current density can be reduced. However, in order to perform the fundamental transverse mode with higher output, it is necessary to make the ridge width narrower and the ridge height higher. In the [1-1-10] direction, large Joule heat is generated in the ridge. There was a problem that occurred.
リッジ形成方向における上記問題を解決するために、 ストライプ状リッジを [ 1 1 0 ] 方向に形成した半導体レーザがこれまでに開発されている (特開平 7 - 1 9 3 3 1 3号公報)。 しかるに、 ここに記載のリッジ構造は、 逆メサ形状で あり、 この逆メサ形状の p型第 3クラッド層を形成するために、 無秩序状態で高 温成長 (7 0 0〜8 5 0 °C) させる必要がある。 無秩序状態にするために高温で 成長させると、 その成長過程に p型ドーパントが活性層に拡散し、 活性層の結晶 性が劣悪化し、 寿命が短くなり、 信頼性の低下を招くため好ましくない。 In order to solve the above-mentioned problem in the ridge forming direction, a semiconductor laser having a stripe-shaped ridge formed in the [110] direction has been developed (Japanese Patent Application Laid-Open No. 7-193313). However, the ridge structure described here has an inverted mesa shape. In order to form this inverted mesa-shaped p-type third cladding layer, it is necessary to perform high-temperature growth (700 to 850 ° C) in a disordered state. It is not preferable to grow at a high temperature in order to form a disordered state, because the p-type dopant diffuses into the active layer during the growth process, the crystallinity of the active layer deteriorates, the life is shortened, and the reliability is reduced.
以上の従来技術の課題を解決して、 素子抵抗、 熱抵抗、 通過抵抗および動作電 流がいずれも低く、 かつ高出力動作と自励発振が可能な半導体発光装置を提供す ることが望まれる力 そのような半導体発光装置はこれまで提供されるに至って いない。 発明の開示  It is desired to provide a semiconductor light emitting device which solves the above-mentioned problems of the prior art and has low element resistance, thermal resistance, passing resistance and operating current, and is capable of high output operation and self-excited oscillation. Force No such semiconductor light emitting device has been provided so far. Disclosure of the invention
本発明は、 上記の従来技術の課題に鑑みてなされたものであり、 本発明の目的 は、 素子抵抗、 熱抵抗、 通過抵抗おょぴ動作電流がいずれも低く、 かつ高出力動 作が可能な半導体発光装置を提供することにある。 また、 本発明は、 これらの特 性を有するとともに、 自励発振が可能な半導体レーザ装置を提供することも目的 とする。  SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the related art, and an object of the present invention is to provide a low output element, a low thermal resistance, a low through current, and a high operating current. It is to provide a simple semiconductor light emitting device. Another object of the present invention is to provide a semiconductor laser device having these characteristics and capable of self-sustained pulsation.
本発明者は、 上記従来技術の課題を解決するために、 リッジ構造を有する半導 体装置の構造につき鋭意検討を進めた結果、 リッジ構造を特定の条件を満たすよ うに構成することにより、 動作電流を大幅に低減でき高温動作が可能となり、 か つ高出力動作が可能な半導体発光装置が得られることを見出し、本発明を完成す るに至った。  The present inventor has conducted intensive studies on the structure of a semiconductor device having a ridge structure in order to solve the above-described problems of the related art, and as a result, by configuring the ridge structure so as to satisfy a specific condition, the operation is improved. The inventors have found that a semiconductor light emitting device which can greatly reduce the current, can operate at high temperature, and can operate at high power can be obtained, and have completed the present invention.
すなわち、本発明の目的は以下の構成を有する半導体発光装置により達成され る。  That is, the object of the present invention is achieved by a semiconductor light emitting device having the following configuration.
[ 1 ] 基板と、 該基板上に形成された少なくとも 1層からなる第 1導電型クヲッ ド層と、 該第 1導電型クラッド層上に形成された活性層と、 該活性層上に形成さ れた第 2導電型第 1クラッド層と、該第 2導電型第 1クラッド層上に形成された ストライプ状のリッジ構造を有する第 2導電型第 2クラッド層と、前記第 2導電 型第 2クラッド層のリッジの両側面を挟むように前記第 2導電型第 1クラッド 層上に形成された電流阻止層と、前記第 2導電型第 2クラッド層のリッジ上およ ぴ該リッジ近傍の前記電流阻止層上に形成された第 2導電型第 3クラッド層と から少なくとも構成されており、前記リッジ構造のストライプ長手方向に直交す る横断面が下記式を満足する台形である半導体発光装置。 [1] A substrate, a first conductivity type quad layer formed of at least one layer formed on the substrate, an active layer formed on the first conductivity type clad layer, and a substrate formed on the active layer. A first cladding layer of the second conductivity type, a second cladding layer of the second conductivity type having a stripe-shaped ridge structure formed on the first cladding layer of the second conductivity type, and a second cladding layer of the second conductivity type. First cladding of the second conductivity type so as to sandwich both sides of the ridge of the cladding layer. At least a current blocking layer formed on the first conductive layer and a second conductive type third cladding layer formed on the ridge of the second conductive type second cladding layer and on the current blocking layer near the ridge. A semiconductor light emitting device having a trapezoidal configuration, wherein a cross section orthogonal to a stripe longitudinal direction of the ridge structure satisfies the following expression.
0. 05 < h/ [(a + b) /2] く 0. 5  0.05 <h / [(a + b) / 2] ku 0.5
(上式において、 hは横断面の高さ、 aは横断面の上底、 bは横断面の下底であ る。)  (In the above formula, h is the height of the cross section, a is the upper bottom of the cross section, and b is the lower bottom of the cross section.)
[2] 前記横断面が、 上底よりも下底が長い台形である [1] に記載の半導体発 光装置。  [2] The semiconductor light emitting device according to [1], wherein the cross-section is a trapezoid whose lower bottom is longer than the upper bottom.
[3]前記横断面が、上底が 0. 4 /xm〜4 μΐηの台形である [1] または [2] に記載の半導体発光装置。  [3] The semiconductor light emitting device according to [1] or [2], wherein the cross section is a trapezoid having an upper base of 0.4 / xm to 4 μΐη.
[4]前記横断面が、 高さが 0. 2 μΐη〜1. 5 μπιの台形である [1] 〜 [3] のいずれか一項に記載の半導体発光装置。  [4] The semiconductor light emitting device according to any one of [1] to [3], wherein the cross section is a trapezoid having a height of 0.2 μΐη to 1.5 μπι.
[5] 前記横断面の形状が左右非対称である [1] 〜 [4] のいずれか一項に記 載の半導体発光装置。  [5] The semiconductor light-emitting device according to any one of [1] to [4], wherein the cross-sectional shape is asymmetrical.
[6] 基板と、 該基板上に形成された,少なくとも 1層からなる第 1導電型クラッ ド層と、該第 1導電型クラッド層上に形成された活性層と、 該活性層上に形成さ れた第 2導電型第 1クラッド層と、該第 2導電型第 1クラッド層上に形成された ストライプ状のリッジ構造を有する第 2導電型第 2クラッド層と、前記第 2導電 型第 2クラッド層のリッジの両側面を挟むように前記第 2導電型第 1クラッド 層上に形成された電流阻止層と、前記第 2導電型第 2クラッド層のリッジ上およ び該リッジ近傍の前記電流阻止層上に形成された第 2導電型第 3クラッド層と から少なくとも構成されており、 25 °Cでのパルス駆動において単一横モード発 振で最大光出力が 8 OmW以上である半導体発光装置。  [6] A substrate, a first-conductivity-type cladding layer formed on the substrate, comprising at least one layer, an active layer formed on the first-conductivity-type cladding layer, and formed on the active layer. A second conductive type first clad layer, a second conductive type second clad layer having a stripe-shaped ridge structure formed on the second conductive type first clad layer, and a second conductive type second clad layer. A current blocking layer formed on the second conductive type first cladding layer so as to sandwich both side surfaces of the ridge of the second cladding layer; and a current blocking layer formed on and near the ridge of the second conductive type second cladding layer. A second conductive type third cladding layer formed on the current blocking layer, and having a maximum light output of 8 OmW or more in single transverse mode oscillation in pulse driving at 25 ° C. Light emitting device.
[7] 前記最大光出力が 20 OmW以上である [6] に記載の半導体発光装置。  [7] The semiconductor light emitting device according to [6], wherein the maximum light output is 20 OmW or more.
[8] 光出力密度が 4mW///m2以上である [6] または [7] に記載の半導 体発光装置。 · [9] 前記半導体発光装置が自励発振型半導体レーザ装置である、 [1] 〜 [5] のいずれか一項に記載の半導体発光装置。 [8] The semiconductor light emitting device according to [6] or [7], wherein the light output density is 4 mW /// m 2 or more. · [9] The semiconductor light emitting device according to any one of [1] to [5], wherein the semiconductor light emitting device is a self-pulsation type semiconductor laser device.
[1 0] ¾板と、 該基板上に形成された少なくとも 1層からなる第 1導電型クラ ッド層と、 該第 1導電型クラッド層上に形成された活性層と、 該活性層上に形成 された第 2導電型第 1クラッド層と、該第 2導電型第 1クラッド層上に形成され たストライプ状のリッジ構造を有する第 2導電型第 2クラッド層と、前記第 2導 電型第 2クラッド層のリツジの両側面を挟むように前記第 2導電型第 1クラッ ド層上に形成された電流阻止層と、前記第 2導電型第 2クラッド層のリッジ上お よぴ該リッジ近傍の前記電流阻止層上に形成された第 2導電型第 3クラッド層 とから少なくとも構成されており、 25 °Cでの直流駆動において単一横モード発 振で最大光出力が 5 mW以上である自励発振型半導体レーザ装置である、半導体 発光装置。  [10] A substrate, a first conductivity type clad layer comprising at least one layer formed on the substrate, an active layer formed on the first conductivity type clad layer, and A second conductive type first clad layer formed on the second conductive type first clad layer, a second conductive type second clad layer having a stripe-shaped ridge structure formed on the second conductive type first clad layer, and the second conductive type second clad layer. A current blocking layer formed on the second conductive type first cladding layer so as to sandwich both sides of the ridge of the second conductive type cladding layer; and on a ridge of the second conductive type second cladding layer. And a third cladding layer of the second conductivity type formed on the current blocking layer in the vicinity of the ridge, and has a maximum light output of 5 mW or more in single transverse mode oscillation in DC driving at 25 ° C. A semiconductor light emitting device, which is a self-pulsation type semiconductor laser device.
[1 1] 光出力密度が 0. SmW/^m2以上である [1 0] に記載の半導体発 光装置。 [11] The semiconductor light emitting device according to [10], wherein the light output density is not less than 0. SmW / ^ m 2 .
[1 2] 基板と、 該基板上に形成された少なくとも 1層からなる第 1導電型クラ ッド層と、 該第 1導電型クラッド層上に形成された活性層と、 該活性層上に形成 された第 2導電型第 1クラッド層と、該第 2導電型第 1クラッド層上に形成され たストライプ状のリッジ構造を有する第 2導電型第 2クラッド層と、前記第 2導 電型第.2クラッド層のリッジの両側面を挟むように前記第 2導電型第 1クラッ ド層上に形成された電流阻止層と、前記第 2導電型第 2クラッド層のリッジ上お よぴ該リッジ近傍の前記電流阻止層上に形成された第 2導電型第 3クラッド層 とから少なくとも構成されており、直流駆動で 70°Cにおいて 5mW以上の出力 で自励発振する自励発振型半導体レーザ装置である、 半導体発光装置。  [12] A substrate, a first-conductivity-type clad layer formed of at least one layer formed on the substrate, an active layer formed on the first-conductivity-type clad layer, and A second conductive type first clad layer formed, a second conductive type second clad layer having a stripe-shaped ridge structure formed on the second conductive type first clad layer, and a second conductive type second clad layer; A current blocking layer formed on the first cladding layer of the second conductivity type so as to sandwich both sides of the ridge of the second cladding layer; and a ridge on the second cladding layer of the second conductivity type. A second conduction type third cladding layer formed on the current blocking layer in the vicinity of the ridge, and self-excited oscillation type semiconductor laser which self-oscillates with an output of 5 mW or more at 70 ° C by DC driving. The device is a semiconductor light emitting device.
[1 3] 7 5°Cにおいて 5 mW以上の出力で自励発振する [1 2] に記載の半導 体発光装置。  [1 3] The semiconductor light emitting device according to [1 2], which self-oscillates at an output of 5 mW or more at 75 ° C.
[14] 70°Cにおいて 1 OrnW以上の出力で自励発振する [1 2] に記載の半 導体発光装置。 [15] 75 °Cにおいて 1 OmW以上の出力で自励発振する [12] に記載の半 導体発光装置。 [14] The semiconductor light emitting device according to [12], which self-oscillates at an output of 1 OrnW or more at 70 ° C. [15] The semiconductor light emitting device according to [12], which self-oscillates at an output of 1 OmW or more at 75 ° C.
[16] 直流駆動で 25 °Cにおける発振しきい値電流が 45mA以下である [1 2] に記載の半導体発光装置。  [16] The semiconductor light emitting device according to [12], wherein an oscillation threshold current at 25 ° C. by DC driving is 45 mA or less.
[1 7] 前記電流阻止層の厚さが、 前記第 2導電型第 2クラッド層よりも薄い [17] The thickness of the current blocking layer is smaller than that of the second cladding layer of the second conductivity type.
[1] 〜 [16] のいずれか一項に記載の半導体発光装置。 The semiconductor light emitting device according to any one of [1] to [16].
[18]前記電流阻止層の屈折率が前記第 2導電型第 2クラッド層の屈折率より 小さい [1] 〜 [17] のいずれか一項に記載の半導体発光装置。  [18] The semiconductor light emitting device according to any one of [1] to [17], wherein a refractive index of the current blocking layer is smaller than a refractive index of the second conductive type second cladding layer.
[19] 前記電流阻止層が A 1 G a I nP、 A 1 I nP、 A 1 Ga Asおよび A 1 Ga A s Pからなる群から選ばれる一種で構成されている [1] 〜 [18] の いずれか一項に記載の半導体発光装置。  [19] The current blocking layer is made of a kind selected from the group consisting of A1GaInP, A1InP, A1GaAs and A1GaAsP. [1] to [18] The semiconductor light emitting device according to any one of claims 1 to 7.
[20]前記電流阻止層が A 1 G a Asまたは A 1 G a A s Pで構成されている [20] The current blocking layer is composed of A 1 G a As or A 1 G a As P
[19] に記載の半導体発光装置。 The semiconductor light emitting device according to [19].
[21] 前記リッジ構造上に酸ィヒ抑制層を有する [1] 〜 [20] のいずれか一 項に記載の半導体発光装置。  [21] The semiconductor light emitting device according to any one of [1] to [20], further comprising an acid suppression layer on the ridge structure.
[22] 前記酸化抑制層が、 前記活性層の材料よりもバンドギャップが大きい材 料で構成されている [21] に記載の半導体発光装置。  [22] The semiconductor light emitting device according to [21], wherein the oxidation suppressing layer is made of a material having a band gap larger than that of the material of the active layer.
[23]前記第 2導電型第 2クラッド層と前記酸ィ匕抑制層がともに A 1 G a I n Pで構成されている [21] または [22] に記載の半導体発光装置。  [23] The semiconductor light emitting device according to [21] or [22], wherein both the second conductivity type second cladding layer and the oxidation suppressing layer are made of A1GaInP.
[24]前記第 2導電型第 3クラッド層の屈折率が前記第 2導電型第 2クラッド 層の屈折率より小さい [1:!〜 [23]のいずれか一項に記載の半導体発光装置。  [24] The semiconductor light emitting device according to any one of [1] to [23], wherein a refractive index of the second conductive type third cladding layer is smaller than a refractive index of the second conductive type second cladding layer.
[25]前記第 2導電型第 3クラッド層の構成元素が前記第 2導電型第 2クラッ ド層の構成元素と異なる [1] 〜 [24] のいずれか一項に記載の半導体発光装 置。  [25] The semiconductor light emitting device according to any one of [1] to [24], wherein constituent elements of the second conductive type third cladding layer are different from constituent elements of the second conductive type second cladding layer. .
[26]前記第 2導電型第 3クラッド層の抵抗率が前記第 2導電型第 2クラッド 層の抵抗率より小さい [1]〜 [25]のいずれか一項に記載の半導体発光装置。  [26] The semiconductor light emitting device according to any one of [1] to [25], wherein the resistivity of the second conductive type third cladding layer is lower than the resistivity of the second conductive type second cladding layer.
[27]前記第 2導電型第 3クラッド層が Al GaAsまたは A l GaAs Pで 構成されている [1] 〜 [26] のいずれか一項に記載の半導体発光装置。 [27] The third cladding layer of the second conductivity type is made of AlGaAs or AlGaAsP. The semiconductor light emitting device according to any one of [1] to [26], which is configured.
[28] 前記電流阻止層の上に表面保護層を有する [1] 〜 [27] のいずれか 一項に記載の半導体発光装置。  [28] The semiconductor light emitting device according to any one of [1] to [27], further comprising a surface protection layer on the current blocking layer.
[29] 前記表面保護層が、 前記活性層の材料よりもパンドギャップが大きい材 料で構成されている [28] に記載の半導体発光装置。 ■  [29] The semiconductor light emitting device according to [28], wherein the surface protective layer is made of a material having a larger band gap than the material of the active layer. ■
[30] 前記活性層が構成元素として少なくとも Gaと I nとを含有するか、 ま たは少なくとも A 1と I nとを含有する [1] 〜 [29] のいずれか一項に記載 の半導体発光装置。  [30] The semiconductor according to any one of [1] to [29], wherein the active layer contains at least Ga and In as constituent elements, or contains at least A1 and In. Light emitting device.
[31]前記活性層が、 自励発振に必要な体積の過飽和吸収体を含む [1]〜 [3 0] のいずれか一項に記載の半導体発光装置。  [31] The semiconductor light emitting device according to any one of [1] to [30], wherein the active layer includes a saturable absorber having a volume necessary for self-pulsation.
[32] 前記基板が (100) 面と等価な面からオフアングルを有する [1] 〜 [31] のいずれか一項に記載の半導体発光装置。  [32] The semiconductor light emitting device according to any one of [1] to [31], wherein the substrate has an off angle from a plane equivalent to the (100) plane.
[33] 前記基板のオフアングルの方向が、 前記ストライプ状のリッジ構造のス トライプ長手方向に直交する方向から ±30° 以内である [32] に記載の半導 体発光装置。  [33] The semiconductor light-emitting device according to [32], wherein an off-angle direction of the substrate is within ± 30 ° from a direction perpendicular to a stripe longitudinal direction of the stripe-shaped ridge structure.
[34] 共振器長が 150 iim〜450 mである [1] 〜 [33] のいずれか 一項に記載の半導体発光装置。 '  [34] The semiconductor light emitting device according to any one of [1] to [33], wherein the resonator length is 150 iim to 450 m. '
[35] 前記半導体発光装置が半導体レーザである [1] 〜 [34] のいずれか 一項に記載の半導体発光装置。  [35] The semiconductor light emitting device according to any one of [1] to [34], wherein the semiconductor light emitting device is a semiconductor laser.
[36] 基板と、 該基板上に形成された少なくとも 1層からなる第 1導電型クラ ッド層と、 該第 1導電型クラッド層上に形成された活性層と、 該活性層上に形成 された第 2導電型第 1クラッド層と、該第 2導電型第 1クラッド層上に形成され た第 2導電型第 2クラッド層とから少なくとも構成される積層体を用意し、該積 層体の前記第 2導電型第 2クラッド層上にストライプ状の保護膜を形成し、前記 第 2導電型第 2クラッド層を部分的にエッチングすることにより前記第 2導電 型第 2クラッド層をストライプ状のリッジ構造に成形し、前記第 2導電型第 2ク ラッド層のリッジの両側面を挟むように電流阻止層を形成し、前記保護層を除去 し、前記第 2導電型第 2クラッド層のリツジ上およぴ該リッジ近傍の前記電流阻 止層上に第 2導電型第 3クラッド層を形成する工程を含む、 [ 1 ] 〜 [ 3 5 ] の いずれか一項に記載の半導体発光装置の製造方法。 [36] A substrate, a first-conductivity-type clad layer comprising at least one layer formed on the substrate, an active layer formed on the first-conductivity-type clad layer, and formed on the active layer A second conductive type second clad layer formed on the second conductive type first clad layer, and a second conductive type second clad layer formed on the second conductive type first clad layer. Forming a striped protective film on the second conductive type second clad layer, and partially etching the second conductive type second clad layer to form the second conductive type second clad layer in a striped shape. The current blocking layer is formed so as to sandwich both sides of the ridge of the second conductive type second clad layer, and the protective layer is removed. Forming a second cladding layer of the second conductivity type on the ridge of the second cladding layer of the second conductivity type and on the current blocking layer near the ridge, [1] to [35] ] The manufacturing method of the semiconductor light emitting device according to any one of the above.
[ 3 7 ] 前記電流阻止層の形成後に、 前記電流阻止層上に表面保護層を形成する 工程をさらに有する [ 3 6 ] に記載の半導体発光装置の製造方法。  [37] The method for manufacturing a semiconductor light emitting device according to [36], further comprising: after forming the current blocking layer, forming a surface protective layer on the current blocking layer.
本発明の半導体発光装置は、特定の条件を満たすように断面構造が設計された リッジ構造を有する第 2導電第 2クラッド層の両側にリアルガイド構造を有す 'る電流阻止層が形成され、 さらにリッジ構造の上に光閉じ込め用の第 2導電第 3 クラッド層を有する。 この構成により、 本発明によれば、 素子抵抗、 通過抵抗お よび熱抵抗の少ない、 高出力動作が可能な半導体 光装置を提供できる。 図面の簡単な説明  In the semiconductor light emitting device of the present invention, a current blocking layer having a real guide structure is formed on both sides of a second conductive second cladding layer having a ridge structure whose cross-sectional structure is designed to satisfy a specific condition, Further, a second conductive third clad layer for confining light is provided on the ridge structure. With this configuration, according to the present invention, it is possible to provide a semiconductor optical device having a low element resistance, a low pass resistance and a low thermal resistance and capable of high-output operation. Brief Description of Drawings
図 1は、本発明の基板から第 2導電型第 3クラッド層までの構成を有する半導 体発光装置の概略断面図である。  FIG. 1 is a schematic sectional view of a semiconductor light emitting device having a configuration from the substrate of the present invention to the second conductive type third clad layer.
図 2は、 本発明の好適な一実施態様の半導体レーザの概略断面図である。 図 3は、本発明の好適な実施例で用いられる半導体レーザの製造工程における 状態を説明するための概略説明図である。  FIG. 2 is a schematic sectional view of a semiconductor laser according to a preferred embodiment of the present invention. FIG. 3 is a schematic explanatory view for explaining a state in a manufacturing process of the semiconductor laser used in the preferred embodiment of the present invention.
図 4は、本発明の実施例 3〜 6で用いられる半導体レーザの製造工程における 状態を説明するための概略説明図である。  FIG. 4 is a schematic explanatory view for explaining a state in a manufacturing process of the semiconductor laser used in Examples 3 to 6 of the present invention.
図 5は、本発明の好適な実施例で作製された半導体レーザの動作電流と光出力 の関係を示すグラフである。  FIG. 5 is a graph showing the relationship between the operating current and the optical output of the semiconductor laser manufactured according to the preferred embodiment of the present invention.
図 6は、 本発明の実施例 3で作製された半導体レーザの発振スペクトル (a ) とビジピリティ (b ) を示すグラフである。 - 図 7は、従来の A 1 G a I n P系半導体材料を用いた半導体レーザの概略説明 図である。  FIG. 6 is a graph showing the oscillation spectrum (a) and the visibility (b) of the semiconductor laser manufactured in Example 3 of the present invention. -FIG. 7 is a schematic explanatory view of a semiconductor laser using a conventional A1GaInP-based semiconductor material.
図 8は、従来の A 1 G a I n P系半導体材料を用いた半導体レーザの概略説明 図である。 図 9は、従来の A 1 G a I n P系半導体材料を用いた半導体レーザの概略説明 図である。 FIG. 8 is a schematic explanatory view of a conventional semiconductor laser using an A1GaInP-based semiconductor material. FIG. 9 is a schematic explanatory view of a conventional semiconductor laser using an A1GaInP-based semiconductor material.
図 1 0は、従来の A 1 G a I n P系半導体材料を用いた半導体レーザの概略説 明図である。  FIG. 10 is a schematic explanatory view of a conventional semiconductor laser using an A1GaInP-based semiconductor material.
図 1 1は、従来の A 1 G a I n P系半導体材料を用いた半導体レーザの電流一 光出力特性を示すグラフである。  FIG. 11 is a graph showing current-light output characteristics of a semiconductor laser using a conventional A 1 G a In P semiconductor material.
図 1 2は、従来の A 1 G a I n P系半導体材料を用いた半導体レーザの概略説 明図である。  FIG. 12 is a schematic explanatory view of a semiconductor laser using a conventional A1GaInP-based semiconductor material.
図 1 3は、本発明の実施例 5で作製された半導体レーザの発振スぺクトル( a ) とビジビリティ (b ) を示すグラフである。  FIG. 13 is a graph showing the oscillation spectrum (a) and the visibility (b) of the semiconductor laser manufactured in Example 5 of the present invention.
図 1 4は、本発明の実施例 6で作製された各半導体レーザの自励発振の達成状 況を示す図である。 発明を実施するための最良の形態  FIG. 14 is a diagram showing a state of achievement of self-sustained pulsation of each semiconductor laser manufactured in Example 6 of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の半導体発光装置について、 図面を参照しつつ具体的に説明する。  The semiconductor light emitting device of the present invention will be specifically described with reference to the drawings.
なお、 本明細書において 「〜」 を用いて表される数値範囲は、 「〜」 の前後に 記載される数値を下限値および上限値として含む範囲を意味する。  In this specification, a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit and an upper limit.
図 1は、本宪明の基板から第 2導電型第 3クラッド層まで構成を有する半導体 発光装置の概略断面図である。 図 1より、 本発明の半導体発光装置は、 基板 1 0 1上に、 第 1導電型クラッド層 1 0 2と、 第 1導電型クラッド層 1 0 2上に形成 された活性層 1 0 6と、活性層 1 0 6上に形成された第 2導電型第 1クラッド層 1 0 7と、第 2導電型第 1クラッド層 1 0 7上に形成されたストライプ状のリッ ジ構造を有する第 2導電型第 2クラッド層 1 0 8と、第 2導電型第 1クラッド層 1 0 7上に前記リッジ構造の両側面を挟むように形成された電流阻止層 1 0 9 と、第 2導電型第 2クラッド層 1 0 8上おょぴ電流阻止層 1 0 9上に形成された 第 2導電型第 3クラッド層 1 1 0とから少なくとも構成されている。  FIG. 1 is a schematic cross-sectional view of a semiconductor light emitting device having a configuration from the substrate of the present invention to the second conductive type third clad layer. As shown in FIG. 1, the semiconductor light emitting device of the present invention comprises a substrate 101, a first conductive type clad layer 102, and an active layer 106 formed on the first conductive type clad layer 102. A second conductive type first clad layer 107 formed on the active layer 106 and a second conductive type first clad layer 107 formed on the second conductive type first clad layer 107 having a stripe-shaped lid structure. A conductive type second cladding layer 108, a current blocking layer 109 formed on the second conductive type first cladding layer 107 so as to sandwich both sides of the ridge structure, and a second conductive type second cladding layer 108. And at least the second conductivity type third cladding layer 110 formed on the two current blocking layers 109 on the two cladding layers 108.
図 2は、 本発明の好適な一実施態様の半導体レーザの概略断面図である。 図 2 に示す態様の半導体レーザは、 基板 2 0 1と、 基板 2 0 1上に形成されたパッフ ァ一層 2 0 2と、バッファ一層上に形成された第 1導電型第 1クラッド層 2 0 3 と、第 1導電型第 1クラッド層 2 0 3上に形成された第 1導電型第 2クラッド層 2 0 4と、 第 1導電型第 2クラッド層 2 0 4上に形成された活性層 2 0 5と、活 性層 2 0 5上に形成された第 2導電型第 1クラッド層 2 0 6と、第 2導電型第 1 クラッド層上に形成されたェ.ツチングストップ層 2 0 7と、エッチングストップ 層 2 0 7上に形成されたストライプ上のリッジ構造を有する第 2導電型第 2ク ラッド層 2 0 8と、エッチングストップ層 2 0 7上においてリッジ構造を有する 第 2導電型第 2クラッド層の両側面を挟むように形成された電流阻止層 2 0 9 と、第 2導電型第 2クラッド層 2 0 8のリツジ構造の上に形成された酸化抑制層 2 1 0と、電流阻止層 2 0 9上に形成された表面保護層(キャップ層) 2 1 1と、 表面保護層 2 1 1上に形成された第 2導電型第 3クラッド層 2 1 2と、第 2導電 型第 3クラッド層 2 1 2上に形成されたコンタクト層 2 1 3と、 コンタクト層 2 1 3側および基板 2 0 1側にそれぞれ形成された p側電極 2 1 4および n側電 極 2 1 5とから構成されている。 FIG. 2 is a schematic sectional view of a semiconductor laser according to a preferred embodiment of the present invention. Figure 2 The semiconductor laser according to the embodiment shown in FIG. 1 includes a substrate 201, a buffer layer 202 formed on the substrate 201, and a first conductivity type first cladding layer 203 formed on the buffer layer. A first conductive type second clad layer 204 formed on the first conductive type first clad layer 203, and an active layer 20 formed on the first conductive type second clad layer 204. 5, a second conductivity type first cladding layer 206 formed on the active layer 205, and an etching stop layer 207 formed on the second conductivity type first cladding layer. A second conductive type second cladding layer 208 having a ridge structure on the stripe formed on the etching stop layer 207, and a second conductive type second cladding layer 208 having a ridge structure on the etching stop layer 207. 2 A current blocking layer 209 formed so as to sandwich both sides of the cladding layer and a second conductive type second cladding layer 208 formed on the ridge structure. Oxidation suppression layer 210, surface protection layer (cap layer) 211 formed on current blocking layer 209, and second conductivity type third clad formed on surface protection layer 211 A layer 2 12, a contact layer 2 13 formed on the second conductive type third cladding layer 2 12, and a p-side electrode 2 formed on the contact layer 2 13 side and the substrate 201 side, respectively. 14 and n-side electrode 2 15.
本明細書において 「A層上に形成された B層」 という表現は、 A層の上面に B 層の底面が接するように B層が形成されている場合と、 A層の上面に 1以上の層 が形成され、 さらにその層上に B層が形成されている場合の両方を含む。 また、 A層の上面と B層の底面が部分的に接していて、 その他の部分では A層と B層の 間に 1以上の層が存在している場合も、 上記表現に含まれる。 具体的な態様につ いては、 以下の各層の説明と実施例の具体例から明らかである。  In this specification, the expression “the B layer formed on the A layer” means that the B layer is formed such that the bottom surface of the B layer is in contact with the upper surface of the A layer, and that one or more layers are formed on the upper surface of the A layer. This includes both the case where the layer is formed and the layer B is formed on the layer. The above expression also includes the case where the upper surface of the A layer and the bottom surface of the B layer are partially in contact with each other, and in other portions, one or more layers exist between the A layer and the B layer. Specific aspects are apparent from the following description of each layer and specific examples of the examples.
図 1およぴ図 2において、 基板 1 0 1、 2 0 1は、 その上にダブルへテロ構造 の結晶を成長することができるものであれば、 その導電性や材料は特に限定ざれ ない。 好ましくは、 導電性を有する半導体基板である。 具体的には、 基板上への 結晶薄膜成長に適した G a A s、 I n P、 G a P、 Z n S e、 Z n O、 S i、 A 1 203等の結晶基板、特に閃亜鉛鉱型構造を有する結晶基板を用いるのが好まし い。 その場合、 基板結晶成長面は低次な面またはそれと結晶学的に等価な面が好 ましく、 (100) 面が最も好ましい。 In FIGS. 1 and 2, the conductivity and material of the substrates 101 and 201 are not particularly limited as long as a crystal having a double hetero structure can be grown thereon. Preferably, it is a semiconductor substrate having conductivity. Specifically, G a A s, I n P, G a P, Z n S e, Z n O, S i, A 1 2 0 3 or the like crystal substrate suitable for crystal thin film growth on the substrate, In particular, it is preferable to use a crystal substrate having a zinc blende structure. In that case, the substrate crystal growth surface is preferably a low-order surface or a surface crystallographically equivalent to it. In particular, the (100) plane is most preferred.
なお、 本明細書において (100) 面という場合、 必ずしも厳密に (100) シャストの面である必要はなく、 (100) 面と等価な面、 すなわち最大 30° 程度のオフアングルを有する面まで包含する。 オフアングルの大きさは、 上限は 30° 以下であることが好ましく、 14° 以下であることがより好ましい。 オフ アングルの大きさの下限は 0. 5° 以上であるごとが好ましく、 2° 以上である ことがより好ましく、 6° 以上であることがさらに好ましく、 10° 以上である ことが最も好ましい。  In this specification, the (100) plane does not necessarily have to be strictly a (100) plane, but includes a plane equivalent to the (100) plane, that is, a plane having an off-angle of about 30 ° at the maximum. I do. The upper limit of the off-angle is preferably 30 ° or less, more preferably 14 ° or less. The lower limit of the off angle is preferably at least 0.5 °, more preferably at least 2 °, further preferably at least 6 °, most preferably at least 10 °.
また、 基板 101、 201のオフアングルの方向は、 後述する第 2導電型第 2 クラッド層 108、 208のリッジ構造を構成するストライプの伸びる方向に直 交する方向から、 ±30° 以内の方向が好ましく、 土 7° 以内の方向がより好ま しく、 ±2° 以内の方向が最も好ましい。 また、 リッジ構造のストライプの方向 は、 基板 101、 201の面方位が (100) の場合、 [0-11] またはそれ と等価な方向が好ましく、 オフアングルの方向は [011] 方向またはそれと等 価な方向から ±30° 以内の方向が好ましく、 士 7° 以内の方向であることがよ り好ましく、 ±2° 以内の方向が最も好ましい。  The direction of the off-angle of the substrates 101 and 201 is within ± 30 ° from the direction perpendicular to the direction in which the stripes constituting the ridge structure of the second conductive type second cladding layers 108 and 208 described later extend. Preferably, directions within 7 ° of soil are more preferred, and directions within ± 2 ° are most preferred. When the plane orientation of the substrates 101 and 201 is (100), the stripe direction of the ridge structure is preferably [0-11] or a direction equivalent thereto, and the off-angle direction is the [011] direction or the like. The direction is preferably within ± 30 °, more preferably within 7 °, and most preferably within ± 2 ° from the costly direction.
なお、 本明細書において [01— 1] 方向という場合は、 一般的な I I I—V 族、 I I—V I族半導体において、 (100) 面と [01— 1] 面との間に存在 する [1· 1— 1]面が、それぞれ V族又は V I族元素が現れる面であるように [0 1-1] 方向を定義する。  In this specification, the [01-1] direction refers to a general III-V or II-VI semiconductor that exists between the (100) plane and the [01-1] plane. · Define the [0 1-1] direction so that the [1-1] plane is the plane where the group V or group VI element appears, respectively.
また、 基板 101、 201は六方晶型の基板でもよく、 例えば、 A 1203、 6 H—S i C等からなる基板を用いることもできる。 The substrate 101, 201 may be a substrate of hexagonal type, for example, may be used a substrate made of A 1 2 0 3, 6 H -S i C , and the like.
図 2に示すように、 基板 201上には、 通常基板の欠陥をェピタキシャノレ成長 層に持ち込まないために厚さ 0. 2〜2 /zm程度のバッファ一層 202を形成し ておくことが好ましい。 バッファ一層の材料には、 通常は基板と同じ材料が用い られることが多く、 例えば第 1導電型の G a A s、 Ga P、 I nP、 G a N、 G a I nP、 G a I nAs、 G a I nN、 ZnS e、 ZnSS e、 ZnOなどが好 ましい。 As shown in FIG. 2, it is preferable to form a buffer layer 202 having a thickness of about 0.2 to 2 / zm on the substrate 201 so that defects of the substrate are not usually introduced into the epitaxial layer. In many cases, the same material as the substrate is used for the material of the buffer layer, for example, the first conductivity type of GaAs, GaP, InP, GaN, GaN, GInP, GInAs , G a InN, ZnS e, ZnSS e, ZnO, etc. are preferred. Good.
基板 101、 201の上には、 活性層 106、 205を含む化合物半導体層が 形成される。 化合物半導体層は、 活性層 106、 205の上下に活性層より屈折 率の小さい層を含んでおり、 そのうち基板側の層は第 1導電型クラッド層 (好ま しくは n型クラッド層)、 他方のェピタキシャル側の層は第 2導電型クラッド層 (好ましくは p型クラッド層) としてそれぞれ機能する。 これらの屈折率の大小 関係は、各層の材料組成を当業者に公知の方法に従って適宜選択することにより 調節できる。 活性層おょぴクラッド層は、 例えば A 1 xGa xAs、 (A 1 XG a χ_χ) y I n !_y P, A 1 XG a などの A 1組成を変化させることによつ て屈折率を調節できる。 On the substrates 101 and 201, a compound semiconductor layer including the active layers 106 and 205 is formed. The compound semiconductor layer includes layers above and below the active layers 106 and 205 that have a lower refractive index than the active layer, of which the layer on the substrate side is the first conductivity type cladding layer (preferably the n-type cladding layer), The layers on the epitaxial side each function as a second conductivity type cladding layer (preferably a p-type cladding layer). The magnitude relationship between the refractive indices can be adjusted by appropriately selecting the material composition of each layer according to a method known to those skilled in the art. Active layer Contact Yopi cladding layers, for example, A 1 x Ga x As, ( A 1 X G a χ _ χ) y I n! _ Y P, to changing the A 1 composition such as A 1 X G a Thus, the refractive index can be adjusted.
図 1に示すように、 第 1導電型のクラッド層が 1層の場合、 第 1導電型クラッ ド層 102は、活性層 106よりも屈折率の小さい材料で形成することができる。 また、 第 1導電型クラッド層 102の屈折率は、 後述する第 2導電型第 1クラッ ド層、第 2導電型第 2クラッド層および第 2導電型第 3クラッド層の屈折率より も大きいことが好ましい。 第 1導電型クラッド層 102は、 例えば、 第 1導電型 の A l Ga I nP、 A 1 I nP、 A l GaAs、 A l GaAs P、 A 1 G a I n As、 Ga I nAs P、 A 1 G a I n.N、 B eMg ZnS e、 Mg ZnSS e、 CdZnS eTe等の一般的な I I I一 V族、 I I _ V I族半導体材料を使用い て形成することができる。  As shown in FIG. 1, when the first conductivity type clad layer is a single layer, the first conductivity type clad layer 102 can be formed of a material having a lower refractive index than the active layer 106. In addition, the refractive index of the first conductivity type cladding layer 102 must be larger than the refractive index of the second conductivity type first cladding layer, the second conductivity type second cladding layer, and the second conductivity type third cladding layer, which will be described later. Is preferred. The first conductivity type cladding layer 102 is made of, for example, AlGaInP, A1InP, AlGaAs, AlGaAsP, A1GaInAs, GaInAsP, A It can be formed using a general III-V group or II-VI group semiconductor material such as 1GaInN, BeMgZnSe, MgZnSSe, and CdZnSeTe.
第 1導電型クラッド層 102のキャリア濃度は、下限が 1 X 1016 cm一3以上 であることが好ましく、 5 X 1016 cm一3以上であることがより好ましく、 I X 1017 cm— 3以上であることが最も好ましい。一方、キャリア濃度の上限は 5 X 1019cm一3以下であることが好ましく、 5 X I 018 cm一3以下であることが より好ましく、 2X 1018 cm一3以下であることが最も好ましい。 Carrier concentration of the first conductivity type cladding layer 102 is preferably lower limit is 1 X 10 16 cm one 3 or more, more preferably 5 X 10 16 cm one 3 or more, IX 10 17 cm- 3 or more Is most preferred. On the other hand, it is preferable that the upper limit of the carrier concentration is 5 X 10 19 cm one 3 or less, 5 XI 0 18 more preferably cm at one 3 or less, and most preferably 2X 10 18 cm one 3 below.
第 1導電型クラッド層 102の厚さは、 単層からなる場合、 好ましくは 0. 5 〜4jum、 より好ましくは 1〜3 程度である。  When the first conductivity type cladding layer 102 is formed of a single layer, the thickness is preferably about 0.5 to 4 jum, and more preferably about 1 to 3.
第 1導電型クラ.ッド層は、 例えば、 図 2の好適な実施例に示すように、 キヤリ ァ濃度、 組成などが異なる複数の層で構成されていてもよレ、。 第 1導電型クラッ ド層がキャリア濃度が異なる複数の層で形成されている場合、活性層 205側の 第 1導電型第 2クラッド層 204のキヤリァ濃度は、基板 201側の第 1導電型 第 1クラッド層 203のキャリア濃度より低くすることが好ましレ、。 基板 201 側の第 1導電型第 1クラッド層 203のキヤリァ濃度は、 1 X 1016〜3 X 10 18 cm—3の範囲が好ましく、 5 X 1016〜2X 1018 c m_3であることが好ま しい。 また、 活性層 205側の第 1導電型第 2クラッド層 204の厚さは、 第 1 導電型第 1クラッド層 203の厚さより薄くすることが好ましい。 第 1導電型第 2クラッド層 204の厚さの下限は、 0. 01 m以上であることが好ましく、 0. 03. μΐη以上であることがより好ましく、 上限は 1 m以下であることが好 ましく、 0. 7 μΐη以下であることがより好ましい。 第 1導電型クラッド層が組 成の異なる複数の層で形成されている場合の例としては、 例えば、 基板 201側 に A 1 G a A sまたは A 1 G a A s Pからなる第 1導電型第 1クラヅド層 20 3と、その層よりも活性層 205側にある A 1 Ga I nPまたは A 1 I nP力 ら なる第 1導電型第 2クラッド層 204とからなる態様を例示することができる。 本発明の半導体発光装置を構成する活性層 106、 205の構造は、 特に制限 されない。 図 1の一例においては、 活性層 106は多重量子井戸 (MQW) 構造 を有している。 この多重量子井戸構造は、具体的には光閉じ込め層(ノンドープ) 103、.量子井戸層 (ノンドープ) 104、 バリア層 (ノンドープ) 105、 量 子井戸層 (ノンドープ) 104および閉じ込め層 (ノンドープ) 103を順次積 層した構造を有する。 活性層は、 このように 3層以上の量子井戸層およびそれら に挟まれたバリア層並びに最上の量子井戸層の上および最下の量子井戸層の下 に積層された光閉じ込め層を有する多量子井戸構造(M Q W)以外にも、例えば、 量子井戸層および前記量子井戸層を上下から挟む光閉じ込め層からなる単一量 子井戸構造 (SQW) や、 二重量子井戸構造 (DQW) であってもよい。 活性層 を量子井戸構造とすることにより、単層のバルタ活性層と比較して、短波長化( 6 30n m〜 660n m) かつ低しきい値化を達成することができる。 自励発振型半導体レーザの場合は、活性層内に自励発振に必要な体積の過飽和 吸収体を形成するために、 通常の自励発振しないシングルモードレーザよりも、 井戸数を增やすことが有効である。 さらに、 この場合、 高温動作を向上させるた めに、量子井戸層に圧縮あるいは引っ張りの歪みが加えられることが有効である。 また、 弓 Iつ張り歪みを加えると TMモードで発振しやすくなるが、 パンドギヤッ プを大きくしたまま特性が向上できるので、短波長領域のレーザの高性能化には 有効である。 For example, as shown in the preferred embodiment of FIG. It may be composed of a plurality of layers having different concentrations and compositions. When the first conductivity type cladding layer is formed of a plurality of layers having different carrier concentrations, the carrier concentration of the first conductivity type second cladding layer 204 on the active layer 205 side is the first conductivity type second cladding layer on the substrate 201 side. 1 It is preferable that the carrier concentration is lower than that of the cladding layer 203. Kiyaria concentration of the first conductivity type first cladding layer 203 of the substrate 201 side, that the range of 1 X 10 16 ~3 X 10 18 cm- 3 is preferably, 5 X 10 16 ~2X 10 18 c m_ 3 I like it. It is preferable that the thickness of the first conductive type second cladding layer 204 on the active layer 205 side be smaller than the thickness of the first conductive type first cladding layer 203. The lower limit of the thickness of the first conductivity type second cladding layer 204 is preferably 0.01 m or more, more preferably 0.03.μΐη or more, and the upper limit is preferably 1 m or less. More preferably, it is 0.7 μΐη or less. Examples of the case where the first conductivity type clad layer is formed of a plurality of layers having different compositions include, for example, a first conductive layer made of A1GaAs or A1GaAsP on the substrate 201 side. It is possible to exemplify an embodiment comprising a first cladding layer 203 of the first conductivity type and a second cladding layer 204 of the first conductivity type composed of A 1 Ga InP or A 1 InP which is closer to the active layer 205 than that layer. it can. The structure of the active layers 106 and 205 constituting the semiconductor light emitting device of the present invention is not particularly limited. In the example of FIG. 1, the active layer 106 has a multiple quantum well (MQW) structure. Specifically, the multiple quantum well structure includes an optical confinement layer (non-doped) 103, a quantum well layer (non-doped) 104, a barrier layer (non-doped) 105, a quantum well layer (non-doped) 104, and a confinement layer (non-doped) 103 Are sequentially stacked. The active layer has a multi-quantum structure having three or more quantum well layers, a barrier layer sandwiched between them, and an optical confinement layer stacked above the uppermost quantum well layer and below the lowermost quantum well layer. In addition to the well structure (MQW), for example, a single quantum well structure (SQW) comprising a quantum well layer and optical confinement layers sandwiching the quantum well layer from above and below, and a double quantum well structure (DQW) Is also good. By making the active layer a quantum well structure, it is possible to achieve a shorter wavelength (630 nm to 660 nm) and a lower threshold as compared with a single-layer Balta active layer. In the case of a self-pulsation type semiconductor laser, the number of wells can be made smaller than that of a normal non-self-pulsation single-mode laser in order to form a saturable absorber having a volume necessary for self-pulsation in the active layer. It is valid. Further, in this case, it is effective that compressive or tensile strain is applied to the quantum well layer in order to improve high-temperature operation. When the bow I strain is applied, oscillation is likely to occur in the TM mode, but the characteristics can be improved while the bandgap is kept large, which is effective for improving the performance of lasers in the short wavelength region.
本発明の半導体発光装置における活性層 106、 205の材料としては、 G a I nP、 A l Ga I nP、 Ga I nAs、 A l Ga I nAs、 Ga I nAs P、 A 1 Ga I nNなどを例示することができる。 特に G aと I nあるいは A 1と I nを構成元素として含む材料である場合は、 自然超格子が形成されやすいために、 オフ基板を用いることによる自然超格子抑制の効果が大きくなる。  Examples of the material of the active layers 106 and 205 in the semiconductor light emitting device of the present invention include GaInP, AlGaInP, GaInAs, AlGaInAs, GaInAsP, and A1GaInN. Examples can be given. In particular, in the case of a material containing Ga and In or A1 and In as constituent elements, a natural superlattice is easily formed, so that the effect of suppressing the natural superlattice by using an off-substrate increases.
なお、 光導波路の両端部分における活性層は、 光導波路中央の電流注入領域に おける活性層内において発生した光に対して透明となるパンドギャップを有す ることが好ましい。  The active layers at both ends of the optical waveguide preferably have a band gap that is transparent to light generated in the active layer in the current injection region at the center of the optical waveguide.
実用的な高出力レーザを実現させるためには、活性層総厚の下限は 2 nm以上 が好ましく、 25 nm以上がより好ましく、 30 nm以上がさらに好ましく、 3 5 nm以上が最も好ましい。 一方、 活¾層総厚の上限は、 活性層に歪が入ってい ない場合、 量子効果が機能する厚み以下とすることが好ましい。 すなわち、 活性 層総厚の上限は、 100 nm以下が好ましく、 80 nm以下がより好ましく、 7 O nm以下がさらに好ましい。 また、 活性層に歪が入っている場合は、 臨界膜厚 を超えない厚み以下とすることが好ましい。 すなわち、 活性層総厚の上限は、 8 O nm以下が好ましく、 60 nm以下がより好ましく、 5 O nm以下がさらに好 ましい。  In order to realize a practical high-power laser, the lower limit of the total thickness of the active layer is preferably 2 nm or more, more preferably 25 nm or more, still more preferably 30 nm or more, and most preferably 35 nm or more. On the other hand, the upper limit of the total thickness of the active layer is preferably equal to or less than the thickness at which the quantum effect functions when the active layer has no strain. That is, the upper limit of the total thickness of the active layer is preferably 100 nm or less, more preferably 80 nm or less, and even more preferably 70 nm or less. When the active layer is strained, the thickness is preferably not more than the critical thickness. That is, the upper limit of the total thickness of the active layer is preferably 8 O nm or less, more preferably 60 nm or less, and even more preferably 5 O nm or less.
好ましい量子井戸数は、 600 nm帯赤色レーザの室温 (25°C) での発振波 長が 630〜 670 n mの場合、 1〜 5、 好ましくは 1〜 4、 より好ましくは 2 〜 3、 最も好まレくは 3であり、 一方、 室温付近の発振波長が 670〜 700 η mの場合、 1〜5、 好ましくは 1〜4、 より好ましくは 2〜3、 最も好ましくは 2である。 量子井戸の厚さは、 室温 (25°C) 付近の発振波長が 630〜670 nmの場 4、 3〜7 nmが好ましく、 4〜 6 n mがより好ましい。一方、室温(2 5 °C) 付近の発振波長が 670〜 700 n mの場合、 6〜 10 n mが好ましく、 7〜9 nmがより好ましい。 The preferred number of quantum wells is 1 to 5, preferably 1 to 4, more preferably 2 to 3, and most preferably 2 if the oscillation wavelength of a 600 nm red laser at room temperature (25 ° C) is 630 to 670 nm. The oscillation wavelength near room temperature is 670 ~ 700 η In the case of m, it is 1-5, preferably 1-4, more preferably 2-3, most preferably 2. The thickness of the quantum well is preferably 4, 3 to 7 nm, and more preferably 4 to 6 nm when the oscillation wavelength near room temperature (25 ° C.) is 630 to 670 nm. On the other hand, when the oscillation wavelength near room temperature (25 ° C.) is 670 to 700 nm, 6 to 10 nm is preferable, and 7 to 9 nm is more preferable.
活性層が G a I nP又は A 1 G a I n Pから形成されている自励発振型半導 体レーザの場合、 単層のパルク活性層でもよいが、 短波長化 (630 nm〜66 5 nm) 力つ低しきい値化のために、 量子井戸層及び量子井戸層を挟むパリア層 及ぴ又は閉じ込め層で構成されている多重量子井戸 (MQW) 構造の方がより好 ましい。 さらに、この場合、高温動作を向上させるために、量子井戸層に圧縮 (G a x I n !_XP, x< 0. 52) あるいは引っ張り (Gax I i^— xP x > 0. 52) の歪みが加えられることが有効である。 また、 引っ張り歪みを加えると T Mモードで発振しやすくなるが、バンドギヤップを大きくしたまま特性が向上で きるので、 630〜650 nmのより短波長領域のレーザの高性能化には有効で ある。 In the case of a self-pulsation type semiconductor laser in which the active layer is formed of GaInP or A1GaInP, a single layer active layer may be used, but a shorter wavelength (630 nm to 665 (nm) In order to lower the threshold voltage, a multiple quantum well (MQW) structure composed of a quantum well layer and a barrier layer sandwiching the quantum well layer and / or a confinement layer is more preferable. Furthermore, in this case, in order to improve the high temperature operation, compressed into the quantum well layer (G a x I n _ X P, x! <0. 52) or pulling (Gax I i ^ - xP x > 0. 52) Is effective. If tensile strain is applied, oscillation in the TM mode becomes easier, but the characteristics can be improved while the band gap is increased. This is effective for improving the performance of lasers in the shorter wavelength range of 630 to 650 nm.
活性層内に自励発振に必要な体積の過飽和吸収体を形成するために、活性層ト 一タルの厚さ、すなわち多重量子井戸の場合は各量子井戸活性層を合計した厚さ は、 自励発振に必要な過飽和吸収領域の体積を確保する観点から、 下限として、 5 nm以上が好ましく、 10 nm以上がより好ましく、 15nm以上がさらに好 ましく、 25 nmが最も好ましい。 端面での CODを抑制する観点から、 上限と して、 200 nm以下が好ましく、 15 nm以下がより好ましく、 l O O nm以 下がさらに好ましく、 50 nm以下が最も好ましい。  In order to form a saturable absorber having a volume required for self-sustained pulsation in the active layer, the total thickness of the active layer, that is, in the case of a multiple quantum well, the total thickness of each quantum well active layer is determined by the following equation. From the viewpoint of securing the volume of the supersaturated absorption region required for excitation oscillation, the lower limit is preferably 5 nm or more, more preferably 10 nm or more, still more preferably 15 nm or more, and most preferably 25 nm. From the viewpoint of suppressing COD at the end face, the upper limit is preferably 200 nm or less, more preferably 15 nm or less, still more preferably 100 nm or less, and most preferably 50 nm or less.
同様な理由から、 実用的な自励発振型レーザを実現させるために、 活性層各層 の厚さは、 下限として、 2nm以上が好ましく、 3 nm以上がより好ましく、 4 nm以上がさらに好ましく、 5 nm以上が最も好ましい。 端面での CODを抑制 する観点から、 上限として、 20nm以下が好ましく、 15nra以下がより好ま しく、 9 nm以下がさらに好ましく、 7 nm以下が最も好ましい。 自励発振の起こりやすさや自励発振が持続できる範囲 (温度 ·光出力) は、 活 性層総厚 (活性層内のすべての量子井戸層の厚みの合計) がある程度以上厚いこ とが好ましい。 具体的には、 活性層総厚の下限は 25 n m以上が好ましく、 30 nm以上がより好ましく、 35 nm以上がさらに好ましい。 一方、 活性層総厚の 上限は、 活性層に歪が入っていない場合、 量子効果が機能する厚み以下とするこ とが好ましい。 すなわち、 活性層総厚の上限は、 100 nm以下が好ましく、 8 0 nm以下がより好ましく、 70 nm以下がさらに好ましい。 また、 活性層に歪 が入っている場合は、 臨界膜厚を超えない厚み以下とすることが好ましい。 すな わち、 活 1 "生層総厚の上限は、 80 nm以下が好ましく、 60 nm以下がより好ま しく、 50 nm以下がさらに好ましい。 For the same reason, in order to realize a practical self-pulsation laser, the thickness of each layer of the active layer is, as a lower limit, preferably 2 nm or more, more preferably 3 nm or more, still more preferably 4 nm or more. Most preferably nm or more. From the viewpoint of suppressing COD on the end face, the upper limit is preferably 20 nm or less, more preferably 15 nra or less, still more preferably 9 nm or less, and most preferably 7 nm or less. It is preferable that the total thickness of the active layer (the sum of the thicknesses of all the quantum well layers in the active layer) should be at least a certain level for the ease of self-oscillation and the range in which self-oscillation can be sustained (temperature and optical output). . Specifically, the lower limit of the total thickness of the active layer is preferably 25 nm or more, more preferably 30 nm or more, and even more preferably 35 nm or more. On the other hand, the upper limit of the total thickness of the active layer is preferably equal to or less than the thickness at which the quantum effect functions when the active layer has no strain. That is, the upper limit of the total thickness of the active layer is preferably 100 nm or less, more preferably 80 nm or less, and even more preferably 70 nm or less. When the active layer is strained, the thickness is preferably not more than the critical thickness. That is, the upper limit of the total active layer thickness is preferably 80 nm or less, more preferably 60 nm or less, and even more preferably 50 nm or less.
好ましい量子井戸数は、 600 nm帯赤色レーザの室温 (25°C) での発振波 長が 630〜67 Onmの場合、 4〜: 10、 好ましくは 4〜 9、 より好ましくは 7〜9、 さらに好ましくは 7〜8、 最も好ましくは 8であり、 一方、 室温付近の 発振波長が 670〜 700 n mの場合、 3〜 9、 好ましくは 5〜 8、 より好まし くは 6〜8、 さらに好ましくは 6〜7、 最も好ましくは 7である。 量子井戸の厚 さは、 室温 ( 25 °C) 付近の発振波長が 630〜 670 n mの場合、 3〜 7 n m が好ましく、 4〜 6 n mがより好ましい。 一方、 室温 (25 °C) 付近の発振波長 が 670〜700 nmの場合、 6〜: 1 O nmが好ましく、 7〜9 nmがより好ま しい。 - 光閉じ込め層は、 量子井戸層への閉じ込め効率の增加、 Zn等の不純物の量子 井戸層への混入 (拡散) の防止を図る観点から有効である。 閉じ込め層の厚さを 適切に選ぶことにより、 レーザ発振しきい値電流の低減や寿命向上等を実現でき る。 具体的に、 閉じ込め層の厚さは、 自励発振に必要な過飽和吸収領域の体積を 確保する観点から、 下限として、 0. 01 im以上が好ましく、 0. 以 上がより好ましく、 0. 04 μπι以上がさらに好ましく、 0. 06 μπι以上が最 も好ましい。 端面での CODを抑制する観点から、 上限として、 0. 5 μηι以下 が好ましく、 0. 3 以下がより好ましく、 0. 15 μπι以下がさらに好まし く、 0· 1 μπι以下が最も好ましい。 The preferable number of quantum wells is 4 to 10, preferably 4 to 9, more preferably 7 to 9, when the oscillation wavelength of a 600 nm red laser at room temperature (25 ° C) is 630 to 67 Onm. Preferably, it is 7-8, most preferably 8, while when the oscillation wavelength near room temperature is 670-700 nm, it is 3-9, preferably 5-8, more preferably 6-8, and even more preferably 6-7, most preferably 7. When the oscillation wavelength near room temperature (25 ° C.) is 630 to 670 nm, the thickness of the quantum well is preferably 3 to 7 nm, more preferably 4 to 6 nm. On the other hand, when the oscillation wavelength near room temperature (25 ° C) is 670 to 700 nm, 6 to 1 O nm is preferable, and 7 to 9 nm is more preferable. -The optical confinement layer is effective from the viewpoints of increasing the confinement efficiency in the quantum well layer and preventing contamination (diffusion) of impurities such as Zn into the quantum well layer. By properly selecting the thickness of the confinement layer, it is possible to reduce the laser oscillation threshold current and improve the life. Specifically, from the viewpoint of securing the volume of the saturable absorption region required for self-pulsation, the thickness of the confinement layer is preferably 0.01 im or more, more preferably 0. μπι or more is more preferable, and 0.06 μπι or more is most preferable. From the viewpoint of suppressing COD at the end face, the upper limit is preferably 0.5 μηι or less, more preferably 0.3 or less, and even more preferably 0.15 μπι or less. And 0.1 μπι or less is most preferable.
光閉じ込め層の厚みは、 600 nm帯赤色レーザの室温での発振波長が 630 〜670 nmの場合、 下限として 5 Onm以上が好ましく、 6 Onm以上がより 好ましい。 上限として、 20 Onm以下が好ましく、 l O Onm以下がより好ま しい。 一方、 室温付近の発振波長が 670〜700 nmの場合、 下限として 40 nm以上が好ましく、 50 nm以上がより好ましい。 上限として、 150nm以 下が好ましく、 100 nm以下がより好ましい。 量子井戸数が 6の場合は 50〜 15 Onmが好ましく、 量子井戸数が 7の場合は 40〜 130 n mが好ましく、 量子井戸数が 8の場合は 25〜 90 n mが好ましい。  When the oscillation wavelength of the 600 nm red laser at room temperature is 630 to 670 nm, the lower limit of the thickness of the light confinement layer is preferably 5 Onm or more, more preferably 6 Onm or more. The upper limit is preferably 20 Onm or less, more preferably 10 Onm or less. On the other hand, when the oscillation wavelength near room temperature is 670 to 700 nm, the lower limit is preferably 40 nm or more, more preferably 50 nm or more. The upper limit is preferably 150 nm or less, more preferably 100 nm or less. When the number of quantum wells is 6, 50 to 15 Onm is preferable, when the number of quantum wells is 7, 40 to 130 nm is preferable, and when the number of quantum wells is 8, 25 to 90 nm is preferable.
活'1"生層内のキヤリァ濃度は特に限定されないが、量子井戸層及びバリア層につ いては特に不純物ドープをすることなく、 アンドープの状態 (この場合でもわず 力に (通常、 1 X 1017cm一3以下) 第 1又は第 2導電型になっている) である ことが、 素子の性能の向上及び安定化の点からより好ましい。 また、 光閉じ込め 層も少なくとも量子井戸層に近い部分はアンドープの状態であることが好まし い。 The carrier concentration in the active '1' active layer is not particularly limited, but the quantum well layer and the barrier layer are not undoped without any particular impurity doping. be 10 17 cm one 3 or less) and have) reached the first or second conductivity type, and more preferred from the viewpoint of improving and stabilizing the performance of the device. in addition, at least close to the quantum well layer is also light confinement layer Preferably, the portion is undoped.
活性層 106、 205上には、 第 2導電型のクラッド層が形成される。 エッチ ングストップ層が形成される場合は第 2導電型のクラッド層は、少なくとも 3層 形成される。 以下の説明では、 活性層 106に近い方から順に第 2導電型第 1ク ラッド層 107、 206、 第 2導電型第 2クラッド層 108、 208、 およぴ第 2導電型第 3クラッド層 110、 212を有する好ましい態様を例にとって説明 する。 エッチングストップ層が形成されない場合は、 第 2導電型クラッド層は少 なくとも 2層形成される。  On the active layers 106 and 205, a second conductivity type cladding layer is formed. When an etching stop layer is formed, at least three cladding layers of the second conductivity type are formed. In the following description, the second conductive type first clad layers 107 and 206, the second conductive type second clad layers 108 and 208, and the second conductive type third clad layer 110 , 212 will be described as an example. When the etching stop layer is not formed, at least two second conductivity type cladding layers are formed.
第 2導電型第 1クラッド層 107、 206は、 -活性層に光を閉じ込めるため活 性層 106、 205よりも屈折率の小さい材料で形成することができる。例えば、 第 2導電型第 1クラッド層 107、 206は、 第 2導電型の A 1 Ga I nP、 A 1 I nP、 Al GaAs、 A l GaAs P、 Al Ga I nAs、 Ga I nAs P、 A 1 G a I nN、 : B eMg ZnS e、 MgZnSS e、 CdZnS e T e等の一 般的な I I I一 V族、 I I—V I族半導体を用いることができる。 第 2導電型第 1クラッド層 107、 206が A 1を含む I I I—V族化合物半導体で構成され ている場合は、 その成長可能な実質的全面を G a A s、 GaAs P、 Ga l nA s、 G a I n P、 Ga l nN等の A 1を含まない I I I一 V族化合物半導体で覆 えば表面酸ィ匕を防止することができるため好ましい。 The second conductivity type first cladding layers 107 and 206 can be made of a material having a lower refractive index than the active layers 106 and 205 in order to confine light in the active layer. For example, the second conductivity type first cladding layers 107 and 206 are formed of the second conductivity type A 1 Ga InP, A 1 InP, Al GaAs, Al GaAs P, Al Ga InAs, Ga InAs P, A 1 G a I nN,: one of B eMg ZnS e, MgZnSS e, CdZnS e Te, etc. General III-V and II-VI semiconductors can be used. When the first cladding layers 107 and 206 of the second conductivity type are made of a III-V compound semiconductor containing A1, substantially the entire surface on which they can be grown is GaAs, GaAsP, or GalnAs. It is preferable to cover with a group III-V compound semiconductor that does not contain A1, such as GaInP and GalInN, since surface oxidation can be prevented.
第 2導電型第 1クラッド層 107、 206のキヤリァ濃度は、 下限は 2X 10 17 cm一3以上であることが好ましく、 3X 1017 cm一3であることがより好ま しく、 5X 1017cm_3であることが最も好ましい。またキヤリァ濃度の上限は、 5 X 1018 cm—3であることが好ましく、 4X 1018 c m—3であることがより 好ましく、 2 X 1018 cm_3であることが最も好ましい。 Kiyaria concentration of the second conductivity type first cladding layer 107, 206, the lower limit is preferably at 2X 10 17 cm one 3 or more, it is laid more preferred is a 3X 10 17 cm one 3, 5X 10 17 CM_ 3 Is most preferred. The upper limit of the Kiyaria concentration is preferably from 5 X 10 18 cm- 3, more preferably from 4X 10 18 cm- 3, and most preferably 2 X 10 18 cm_ 3.
第 2導電型第 1クラッド層 107、 206の厚さは、 薄くなりすぎると、 光閉 じ込めが強くなりすぎ、高出力まで単一横モード発振させることが困難となるほ 力、後述する電流阻止層 109、 209のリーク電流が発生しやすくなる。一方、 . 厚くなりすぎると、 第 2導電型第 1クラッド層 107、 206中で電流が横方向 に拡がり過ぎて、 しきい値電流や動作電流が增加してしまう。 これらを考慮して 第 2導電型第 1クラッド層 107、 206の厚さは、 下限を 0. 03 πι以上と することが好ましく、 0. 05 μηι以上とすることがより好ましく、 0. 07μ m以上とすることが最も好ましい。 ま 上限は、 0. 5 以下とすることが好 ましく、 0. 3 /zm以下とすることがより好ましく、 0. 2μπι以下とすること が最も好ましい。  If the thickness of the second conductive type first cladding layers 107 and 206 is too thin, the optical confinement becomes too strong and it becomes difficult to oscillate in a single transverse mode up to a high output. Leakage current of the blocking layers 109 and 209 is likely to occur. On the other hand, if the thickness is too large, the current spreads too much in the second conductive type first cladding layers 107 and 206 in the lateral direction, and the threshold current and operating current increase. In consideration of these, the lower limit of the thickness of the second conductive type first cladding layers 107 and 206 is preferably set to 0.03 πι or more, more preferably 0.05 μηι or more, and 0.07 μm or more. It is most preferable to set the above. The upper limit is preferably 0.5 or less, more preferably 0.3 / zm or less, and most preferably 0.2 μπι or less.
第 2導電型第 1クラッド層 107、 206の屈折率は、 第 1導電型クラッド層 102の屈折率よりも小さくすることもできる。 このようにすれば、 活性層から 光ガイド層側へ有効に光が滲み出すように光分布 (近視野像) を制御することが 可能となる。 また、 活性領域 (活性層の存在する部分) から亜鉛拡散領域への光 導波損失を低減することもできるため、高出力動作におけるレーザ特性や信頼性 の向上を達成することができる。  The refractive index of the second conductive type first cladding layers 107 and 206 may be smaller than the refractive index of the first conductive type cladding layer 102. In this way, it is possible to control the light distribution (near-field image) so that light can effectively seep from the active layer to the light guide layer side. In addition, since the optical waveguide loss from the active region (the portion where the active layer exists) to the zinc diffusion region can be reduced, laser characteristics and reliability in high-power operation can be improved.
図 2に示すように、 第 2導電型第 1クラッド層 206上には、 エッチング処理 時における第 2導電型第 1クラッド層 206のエッチング試薬による浸食を防 止する目的でエッチングストップ層 207を形成することができる。 エッチング ストップ層 207を有すれば、少なくともリッジ構造の第 2導電型第 2クラッド 層 208を再成長させる際に、再成長界面で通過抵抗を増大させるような高抵抗 層の発生を容易に防ぐことができるようになる。 As shown in FIG. 2, an etching process is performed on the second cladding layer 206 of the second conductivity type. Etching stop layer 207 can be formed for the purpose of preventing erosion of second conductive type first cladding layer 206 by the etching reagent at the time. The presence of the etching stop layer 207 makes it easy to prevent the formation of a high-resistance layer that increases the passage resistance at the regrowth interface at least when the second cladding layer 208 of the second conductivity type having the ridge structure is regrown. Will be able to
エッチングストップ層 207の材料は、エッチング処理時にエッチング試薬に 対し抵抗性のあるもの、 すなわち浸食されないものであれば、 特に限定はない。 またエッチングストップ層 207の材料は、 浸食防止機能のほか、 酸化防止機能 を併有していても構わない。 具体的には、 A 1 XG a XA s (0≤χ≤1), 1 nyG a !_yP (0≤y≤ 1), (A 1 UG a a_u) v I n P (0< ≤ 1 0< v≤ 1)、 I npAl qGa rN (0≤ρ≤1 0≤q≤l, 0≤ r≤ 1), I n iA 1 m GanAs (0≤ 1≤ 1, 0≤m≤ 1, 0≤n≤l) などが挙げられる。 The material of the etching stop layer 207 is not particularly limited as long as it has resistance to the etching reagent during the etching process, that is, does not corrode. Further, the material of the etching stop layer 207 may have not only an erosion preventing function but also an oxidation preventing function. Specifically, A 1 X G a X A s (0≤χ≤1), 1 n y G a! _ Y P (0≤y≤ 1), (A 1 U G a a _ u ) v I n P (0 <≤ 1 0 <v≤ 1), I n p Al q Ga r n (0≤ρ≤1 0≤q≤l, 0≤ r≤ 1), I n iA 1 m Ga n As ( 0≤ 1≤ 1, 0≤m≤ 1, 0≤n≤l).
エッチングストップ 207の厚みは、 一般に活性層 205の材料よりもバンド ギャップが大きくなるように選択され、 その上限は 20 nm'以下であることが好 ましく、 10 nm以下であることがより好ましく、 6 n m以下であることがさら に好ましい。 またその下限は 1 nm以上であることが好ましく、 1. 5nm以上 であることがより好ましく、 2 nm以上であることがさらに好ましい。  The thickness of the etching stop 207 is generally selected such that the band gap is larger than that of the material of the active layer 205, and the upper limit is preferably 20 nm 'or less, more preferably 10 nm or less, More preferably, it is 6 nm or less. The lower limit is preferably at least 1 nm, more preferably at least 1.5 nm, even more preferably at least 2 nm.
エッチングストップ層 207の導電型は、エッチングにより除去される場合は 特に制限はないが、 第 2導電型であることが好ましい。 また、 エッチングストツ プ層 207は基板 201になるべく格子整合させることが好ましい。 さらに、 動 作電流低減などの観点から、材料と厚みを適宜選択することによつて活性層 20 5からの光を吸収しないようにすることが好ましい。 .  The conductivity type of the etching stop layer 207 is not particularly limited when it is removed by etching, but is preferably the second conductivity type. Further, it is preferable that the etching stop layer 207 is lattice-matched to the substrate 201 as much as possible. Further, from the viewpoint of reducing the operating current, it is preferable that the light from the active layer 205 is not absorbed by appropriately selecting the material and the thickness. .
第 2導電型第 1クラッド層 107上またはェクチングストップ層 207上に はストライプ状のリッジ構造を有する半導体層が形成される。 このリッジ構造を 有する半導体層には、 第 2導電型第 2クラッド層 108、 208が少なくとも含 まれており、 酸化抑制層 210などその他の半導体層が含まれていてもよい。 リ ッジの上には光閉じ込めのための第 2導電型第 3クラッド層 110、 212を別 途形成し、 所望のクラッド層厚みを第 2導電型第 2クラッド層 1 08、 208の 厚さと第 2導電型第 3クラッド層 1 1 0、 2 1 2の厚さの合計で実現できるよう にすることにより、 第 2導電型第 2クラッド層 1 08、 208の厚みを薄く、 す なわちリッジの高さを低くすることができる。 これにより通過抵抗を低くするこ とができ、 かつリッジ非対称の影響を低減でき、 高いキンクレベルを達成するこ とができる。 On the second conductivity type first cladding layer 107 or the etching stop layer 207, a semiconductor layer having a stripe-shaped ridge structure is formed. The semiconductor layer having the ridge structure includes at least the second conductive type second cladding layers 108 and 208, and may include other semiconductor layers such as the oxidation suppression layer 210. The second conductive type third cladding layers 110 and 212 for confining light are provided on the bridge. The thickness of the second conductive type second cladding layer 108, 208 and the thickness of the second conductive type third cladding layer 110, 212 are determined so that the desired cladding layer thickness can be realized. By doing so, the thickness of the second conductive type second cladding layers 108 and 208 can be reduced, that is, the height of the ridge can be reduced. As a result, the passage resistance can be reduced, the influence of ridge asymmetry can be reduced, and a high kink level can be achieved.
リッジの高さ (第 2導電型第 2クラッド層 1 08、 208の厚さ) は、 通過抵 抗をできる限り低減する観点からは低くすることが好ましいが、 リッジの高さが 低くなり過ぎると、 電流阻止層 1 0 9、 20 9を形成する際に選択成長マスク上 のオーバーグロースが起こりやすくなる。 リッジ部、 とりわけ第 2導電型第 2ク ラッド層 1 08、 208に A 1が含まれると抵抗率が増加しやすくなり、 A 1と I nを含有する場合にはさらに増加しやすくなる。 この抵抗率の増加は、 p型に おいてより顕著となる。 また、 リッジのストライプ長手方向に直交するリッジ横 断面の形状が順メサ形状である場合には、逆メサ形状の場合と比べて通過抵抗が 上昇しやすくなる。  The height of the ridge (the thickness of the second conductive type second cladding layers 108 and 208) is preferably low from the viewpoint of reducing the passage resistance as much as possible, but if the ridge height becomes too low. When the current blocking layers 109 and 209 are formed, overgrowth on the selective growth mask is likely to occur. When A1 is contained in the ridge portion, particularly in the second conductivity type second cladding layers 108 and 208, the resistivity tends to increase, and when A1 and In are contained, the resistivity further increases. This increase in resistivity is more pronounced for p-type. When the ridge cross section orthogonal to the longitudinal direction of the ridge has a forward mesa shape, the passage resistance is more likely to increase than in the case of an inverted mesa shape.
本発明の半導体発光装置は、 リッジの横断面が下記式を満足する台形である。  In the semiconductor light emitting device of the present invention, the ridge has a trapezoidal cross section satisfying the following expression.
0. 05 < h/ [(a + b). /2] < 0. 5  0.05 <h / [(a + b). / 2] <0.5
上式において、 hは横断面の高さ、 aは横断面の上底、 bは横断面の下底である。 h/ [(a + b) /2] の範囲は、 0. 0 7~0. 45であるのが好ましく、 0. 1〜0. 3 5であるのがより好ましく、 0. 1 2〜0. 3であるのがさらに好ま しく、 0. 1 5〜0. 2 5であるのが最も好ましい。 In the above equation, h is the height of the cross section, a is the upper bottom of the cross section, and b is the lower bottom of the cross section. The range of h / [(a + b) / 2] is preferably from 0.07 to 0.45, more preferably from 0.1 to 0.35, and from 0.12 to 0. More preferably, it is from 3 to 15, most preferably from 0.15 to 0.25.
A 1 G a I n P系のように、 順メサ方向を形成する必要がある場合において、 リッジ部分をゥエツトェ チングで形成すると、 -通常、 リッジ横断面の台形の両 底角の合計が小さくなり (具体的には 1 30° 以下)、 通過抵抗が上昇しやすく なる。 これらの観点カ ら、 リッジの高さ (横断面の高さ) の上限は、 1. 5 /zm 以下であることが好ましく、 1. 0 μπα以下であることがより好ましく、 0. 8 以下であることがさらに好ましく、 0. 5 5 j m以下であることが最も好ま しい。また、 リッジの高さの下限は、 0. 1 m以上であることが好ましく、 0. 2 μπι以上であることがより好ましく、 0. 3 μηι以上であることがさらに好ま しく、 0. '35 ιη以上であることが最も好ましい。 リッジの高さを上記範囲内 とすることにより、 台形の両底角の合計を 130〜140° 、 好ましくは 135 〜140° の範囲に調整することができる。 When a forward mesa direction must be formed, as in the case of A1GaInP, if the ridge is formed by etching, the sum of the two base angles of the trapezoid of the ridge cross section usually becomes smaller. (Specifically, 130 ° or less), the passage resistance tends to increase. From these viewpoints, the upper limit of the height of the ridge (height of the cross section) is preferably 1.5 / zm or less, more preferably 1.0 μπα or less, and 0.8 or less. More preferably, it is most preferably 0.55 jm or less. That's right. Further, the lower limit of the height of the ridge is preferably 0.1 m or more, more preferably 0.2 μπι or more, still more preferably 0.3 μηι or more, and 0.35 μηι or more. It is most preferred that the value is not less than ιη. By setting the height of the ridge within the above range, the total of both base angles of the trapezoid can be adjusted to a range of 130 to 140 °, preferably 135 to 140 °.
単一横モードで発振される場合には、 第 2導電型第 2クラッド層 108、 20 8のリツジ底部の幅 (前記台形の下底の長さ) の上限は 5. 0 m以下であるこ とが好ましく、 4. 0 μπι以下であることがより好ましく、 3. 5 μπι以下であ ることがさらに好ましく、 3. 0 μηι以下であることが最も好ましい。 また、 リ ッジ底部の幅の下限は 0. 5 μπι以上であることが好ましく、 1. Ο μπι以上で あることがより好ましく、 1. 3 μπι以上であることがさらに好ましく、 1. 5 t m以上であることが最も好ましい。 また、 電流阻止層 109、 209が第 2導 電型第 2クラッド層 108、 208より屈折率が低い場合、 すなわち、 実屈折率 導波構造 (リアルガイド構造) の場合、 電流阻止層 109、 209が活性層 10 6、 205で発生する光を吸収する構造 (ロスガイド構造) の場合と比べて、 リ ッジ底部の幅を狭くする必要があり、順メサ形状ではリッジの高さを高くするこ とは大幅な通過抵抗の増大を招いてしまう。 このような観点から、 実屈折率導波 構造の場合、リッジ底部の幅の上限は 4. 0 m以下であることが好ましく、 3. 5 μπι以下であることがより好ましく、 3. 0 μΐη以下であることがさらに好ま しく、 2. 8 以下であることが最も好ましい。 またリッジ底部の幅の下限は 0. 5 /zm以上であることが好ましく、 1. Ομπι以上であることがより好まし く、 1. 3 jum以上であることがさらに好ましく、 1. 5 j m以上であることが 最も好ましい。 リッジ底部の幅を Wa、 リッジ上部の幅を Wbとした場合、 実屈 折率導波構造において、 平均値 (Wa +Wb) ノ2の上限は 4. 5 μπι以下が好 ましく、 4 μπι以下がより好ましく、 3. 5 m以下がさらに好ましい。 また、 下限は 1. 8 μπι以上が好ましく、 2 μπι以上がより好ましく、 2. 2 μ m以上 がさらに好ましい。 基板 101、 201がオフアングルを有し、 かっこのオフアングル方向と直交 する方向にストライプを形成した場合、一般にはリッジ構造の横断面の形状は左 右非対称となるが、 本発明の半導体発光装置では、 リッジ (第 2導電型第 2クラ ッド層 108、 208) の上に光閉じ込め層としての第 2導電型第 3クラッド層 110、 212を別途形成することにより、 リッジの高さを低くすることができ る。 これにより、 本発明の半導体発光装置は、 オフアングルを有する場合であつ ても、 リッジの非対称の影響を小さくすることができ、 その結果、 高いキンクレ ベルを達成することができる。 When oscillating in the single transverse mode, the upper limit of the width of the ridge bottom (the length of the bottom of the trapezoid) of the second conductivity type second cladding layer 108, 208 should be 5.0 m or less. Is preferably 4.0 μπι or less, more preferably 3.5 μπι or less, and most preferably 3.0 μηι or less. Further, the lower limit of the width of the bottom of the lid is preferably 0.5 μπι or more, more preferably 1.3 μπι or more, still more preferably 1.3 μπι or more, and 1.5 tm. It is most preferred that this is the case. When the current blocking layers 109 and 209 have a lower refractive index than the second conductive type second cladding layers 108 and 208, that is, in the case of a real refractive index waveguide structure (real guide structure), the current blocking layers 109 and 209 It is necessary to make the width of the bottom of the bridge narrower than in the case of the structure that absorbs the light generated by the active layers 106 and 205 (loss guide structure). This leads to a significant increase in passage resistance. From such a viewpoint, in the case of the real refractive index waveguide structure, the upper limit of the width of the ridge bottom is preferably 4.0 m or less, more preferably 3.5 μπι or less, and 3.0 μΐη or less. More preferably, it is most preferably 2.8 or less. Further, the lower limit of the width of the ridge bottom is preferably 0.5 / zm or more, more preferably 1.3 μπι or more, still more preferably 1.3 jum or more, and 1.5 jm or more. Is most preferred. If the width of the ridge bottom is Wa and the width of the ridge top is Wb, the upper limit of the average value (Wa + Wb) 2 in the actual refractive index waveguide structure is preferably 4.5 μπι or less, and 4 μπι. The following is more preferable, and 3.5 m or less is further preferable. The lower limit is preferably 1.8 μπι or more, more preferably 2 μπι or more, and even more preferably 2.2 μm or more. When the substrates 101 and 201 have an off-angle and stripes are formed in a direction perpendicular to the off-angle direction of the brackets, the cross-sectional shape of the ridge structure is generally left-right asymmetric. Then, the second conductive type third cladding layers 110 and 212 as light confinement layers are separately formed on the ridges (second conductive type second cladding layers 108 and 208), thereby reducing the ridge height. can do. As a result, even when the semiconductor light emitting device of the present invention has an off-angle, the influence of the ridge asymmetry can be reduced, and as a result, a high Kinkle level can be achieved.
リッジ形状が左右非対称の場合、一方の底角と他方の底角の差の絶対値である I (一方の底角)一(他方の底角) I の下限は 2° 以上であることが好ましく、 11° 以上であることがより好ましく、 15° 以上であることが最も好ましい。 上限は 35° 以下であることが好ましく、 30° 以下であることがより好ましく、 25° 以下であることが最も好ましい。  When the ridge shape is asymmetric, the lower limit of I (one base angle) -one (the other base angle) I, which is the absolute value of the difference between one base angle and the other base angle, is preferably 2 ° or more. , 11 ° or more, and most preferably 15 ° or more. The upper limit is preferably 35 ° or less, more preferably 30 ° or less, and most preferably 25 ° or less.
同様の理由により、 ウルツァイト型の基板を用いた場合には、 リッジ構造のス トライプ領域の伸びる方向は、 例えば (0001) 面上では [11一 20] 又は [1-100] が好ましい。 HVPE (Hydride Vapor Phase Epitaxy) ではど ちらの方向でもよいが、 MOVPEでは [11一 20] 方向がより好ましい。 第 2導電型第 2クラッド層 108、 208の材料は、 前述の第 2導電型第 1ク ラッド層 107、 206と同様、 第 2導電型の A 1 G a I nP、 A 1 I nP、 A l GaAs、 Al GaAs P、 Al Ga I nAs、 Ga I nAs P、 A 1 G a I nN、 B eMg ZnS e、 Mg ZnSS e、 CdZnS eTe等の一般的な I I I一 V族、 I I—VI族半導体を用いることができる。 但し、 第 2導電型第 2ク ラッド層 108、 208が活性層 106、 205から発光される光に対して透明 とする観点からは、 少なくとも 3種類の元素で構成される I I I一 V族、 I I - V I族半導体であることが好ましく、 A 1を含有することがより好ましく、 A1 および I nを含有することがさらに好ましく、 A 1 Ga I nPまたは A 1 I nP であることが最も.好ましい。 リッジ (第 2導電第 2クラッド層 108、 208) におけるキャリア濃度は、 下限は 1 X 1017 cm_3以上であることが好ましく、 3 X 1017 cm_3以上で あることがより好ましく、 5 X 1017 cm一3以上であることが最も好ましレ、。ま たキャリア濃度の上限は、 2 X 1019cm一3以下であることが好ましく、 5 X 1 018 cm— 3以下であることがより好ましく、 3 X 1018 cm一3以下であること が最も好ましい。 For the same reason, when a wurtzite-type substrate is used, the direction in which the stripe region of the ridge structure extends is preferably, for example, [11-20] or [1-100] on the (0001) plane. For HVPE (Hydride Vapor Phase Epitaxy), either direction is acceptable, but for MOVPE, the [11-20] direction is more preferable. The material of the second conductive type second clad layers 108 and 208 is the same as that of the second conductive type first clad layers 107 and 206 described above, and is of the second conductive type A 1 G a InP, A 1 InP, A l General III-V, II-VI semiconductors such as GaAs, Al GaAs P, Al Ga InAs, Ga InAs P, A1GaInN, BeMg ZnS e, Mg ZnSS e, CdZnS eTe Can be used. However, from the viewpoint that the second conductive type second cladding layers 108 and 208 are transparent to light emitted from the active layers 106 and 205, the III-V group and the II-V group composed of at least three types of elements are used. -Preferably a group VI semiconductor, more preferably containing A1, more preferably containing A1 and In, most preferably A1GaInP or A1InP. Carrier concentration in the ridge (second conductive second cladding layer 108, 208) is preferably a lower limit is 1 X 10 17 cm_ 3 or more, more preferably 3 X 10 17 cm_ 3 or more, 5 X 10 Most preferably, it is 17 cm or more than 3 cm. The upper limit of the or carrier concentration is preferably 2 X 10 19 cm one 3 or less, more preferably 5 X 1 0 18 cm- 3 or less, that is 3 X 10 18 cm one 3 or less Most preferred.
リッジ構造を有する第 2導電型第 2クラッド層 108、 208のリッジ構造の 両側面は電流阻止層 109、 209に挟まれている。 このとき、 第 2導電型第 2 クラッド層 108、 208のリッジ構造の側面は上端から下端まで全部が電流阻 止層 109、 209に挟まれていなくてもよく、 例えば、 側面の中腹から下端ま での間が電流阻止層 109、 209に挟まれているものであってもよい。電流は、 電流阻止層 109、 209により狭窄された状態で第 2導電型第 2クラッド層 1 08、 208を流れることから、 素子の通過抵抗は第 2導電型第 2クラッド層 1 08、 208の抵抗に大きく依存する。 本発明のリッジ構造を有する第 2導電型 第 2クラッド層 108、 109の厚さおよび幅を調整することにより得られる本 発明の通過抵抗の低減の効果は、 特に第 2導電型第 2クラッド層 108、 208 の導電型が p型である場合に顕著である。 これは、 p型は n型と比べて移動度が 小さく、 抵抗率が大きいこと、 p型の方がドーパントの不純物が拡散しやすいこ と (例えば、 p型では亜鉛 (Z n)、 n型ではシリコン (S i) をドーパントと して用いるが、 p型の方が拡散しやすい)、 および p型の方が活性層で発光した 光の吸収の影響を受けやすいなどの理由により、従来のように第 2導電型第 2ク ラッド層のキャリア濃度を上げて通過抵抗を下げることは、 レーザの素子特性お ょぴ信頼性の劣化を招くため、 妥当ではないからである。  Both side surfaces of the ridge structure of the second conductive type second cladding layers 108 and 208 having a ridge structure are sandwiched between current blocking layers 109 and 209. At this time, the entire side surfaces of the ridge structure of the second conductivity type second cladding layers 108 and 208 may not be entirely sandwiched by the current blocking layers 109 and 209 from the upper end to the lower end. May be sandwiched between the current blocking layers 109 and 209. Since the current flows through the second conductive type second cladding layers 108 and 208 in a state where the current is confined by the current blocking layers 109 and 209, the passing resistance of the element is equal to the second conductive type second cladding layers 108 and 208. It largely depends on resistance. The effect of reducing the passing resistance of the present invention obtained by adjusting the thickness and the width of the second conductive type second cladding layers 108 and 109 having the ridge structure of the present invention is particularly the second conductive type second cladding layer. This is remarkable when the conductivity types of 108 and 208 are p-type. This is because the p-type has lower mobility and higher resistivity than the n-type, and the p-type is easier to diffuse dopant impurities (for example, zinc (Zn) and n-type Uses silicon (Si) as a dopant, but the p-type is easier to diffuse), and the p-type is more susceptible to the absorption of light emitted by the active layer. This is because increasing the carrier concentration of the second-conductivity-type second cladding layer and lowering the passing resistance as described above is not appropriate because it causes deterioration in the device characteristics and reliability of the laser.
また、 図示していないが、 第 2導電型第 2クラッド層 108、 208と第 2導 電型第 3クラッド層 109、 209との間にエッチングストップ層を形成しても よい。 エッチングストップ層を形成することにより、 第 2導電型第 2クラッド層 108、 208の.リッジ形状、 特にリッジ底部の幅の制御性を高めることができ る。 Although not shown, an etching stop layer may be formed between the second conductive type second clad layers 108 and 208 and the second conductive type third clad layers 109 and 209. By forming the etching stop layer, the controllability of the ridge shape, particularly the width of the ridge bottom, of the second conductivity type second cladding layers 108 and 208 can be improved. The
また、 図 2に示すように、 第 2導電型第 2クラッド層 2 0 8上に第 2導電型の 酸化抑制層 2 1 0を形成することができる。 第 2導電型第 2クラッド層 2 0 8が A 1を含む I I I—V族化合物半導体で構成されている場合は、酸化抑制層 2 1 0の A 1組成は第 2導電型第 2クラッド層 2 0 8の A 1組成より小さいことが 好ましい。 第 2導電型第 2クラッド層 2 0 8上に酸化抑制層 2 1 0を形成するこ とにより、少なくともリッジ上に第 2導電型第 3クラッド層 2 1 2を再成長させ る際に、再成長界面で通過抵抗を増大させるような高抵抗層の発生を容易に防ぐ ことができる。 酸化抑制層 2 1 0の材料は、 酸化され難いか、 あるいは酸化され てもクリ一二ングが容易な材料であれば特に限定されない。 具体的に例示すると、 A 1等の酸化されやすい元素の含有率の低い I I I一 V族化合物半導体層が挙 げられる。 A 1を含有する場合、 A 1の含有率は 0 . 3以下が好ましく、 0 . 2 5以下がより好ましく、 0 . 1 5以下が最も好ましい。 例えば、 A l G a I n P または G a I n Pが好ましい。 また、 酸化抑制層 2 1 0の材料と厚みを選択する ことにより、 活性層 2 0 5で発生した光に対して透明であることが好ましい。 特 に実屈折率ガイドの場合は、 ロスガイドの場合よりも、 このような形態を採用す ることが好ましい。 酸化抑制層 2 1 0.の材料は、 一般に活性層 2 0 5の材料より もバンドギヤップが大きい材料から選択されるが、バンドギヤップが小さい材料 であっても、酸化抑制層 2 1 0の厚さが 3 0 n m以下、好ましくは 2 0 n m以下、 さらに好ましくは 1 0 n m以下であれば、 実質的に光の吸収をある程度無視でき るため用いることができる。  Further, as shown in FIG. 2, an oxidation suppression layer 210 of the second conductivity type can be formed on the second cladding layer 208 of the second conductivity type. When the second conductivity type second cladding layer 208 is composed of a III-V compound semiconductor containing A1, the A1 composition of the oxidation suppressing layer 210 is the second conductivity type second cladding layer 2108. It is preferably smaller than the A1 composition of 08. By forming the oxidation suppressing layer 210 on the second conductive type second clad layer 208, the second conductive type third clad layer 212 can be re-grown at least on the ridge. The generation of a high-resistance layer that increases the passage resistance at the growth interface can be easily prevented. The material of the oxidation suppressing layer 210 is not particularly limited as long as it is hardly oxidized or a material that is easy to clean even if oxidized. As a specific example, an III-V compound semiconductor layer having a low content of an easily oxidizable element such as A1 can be given. When A1 is contained, the content of A1 is preferably 0.3 or less, more preferably 0.25 or less, and most preferably 0.15 or less. For example, AlGaInP or GaInP is preferred. Further, by selecting the material and thickness of the oxidation suppressing layer 210, it is preferable that the material be transparent to light generated in the active layer 205. In particular, in the case of a real refractive index guide, it is preferable to adopt such a form than in the case of a loss guide. The material of the oxidation suppression layer 210 is generally selected from materials having a larger band gap than the material of the active layer 205. However, even if the material of the band gap is smaller, the thickness of the oxidation suppression layer 210 is small. When the thickness is 30 nm or less, preferably 20 nm or less, and more preferably 10 nm or less, light absorption can be substantially negligible to some extent and thus can be used.
電流阻止層 1 0 9、 2 0 9は、 第 2導電型第 1クラッド層 1 0 7またはエッチ ングストップ層 2ひ 7上に形成され、 かつ第 2導電型第 2クラッド層 1 0 8、 2 0 8の両側面を挟むように形成される。 電流阻止層 1 0 9、 2 0 9は電流が第 2 導電型第 2クラッド層 1 0 8、 2 0 8のリツジに流れるように狭窄させる働きを 有する。 電流阻止層 1 0 9、 2 0 9の材料は、 半導体であっても誘電体であって もよい。 半導体と誘電体にはそれぞれ以下に記載するような利点と欠点があるた め、電流阻止層の材料にはこれらの利点と欠点を考慮して適宜決定することが好 ましい。 The current blocking layers 109 and 209 are formed on the second conductive type first clad layer 107 or the etching stop layer 2 7, and the second conductive type second clad layers 108 and 2. 08 are formed so as to sandwich both side surfaces. The current blocking layers 109 and 209 have a function of constricting the current so as to flow through the second conductive type second cladding layers 108 and 208. The material of the current blocking layers 109 and 209 may be a semiconductor or a dielectric. Semiconductors and dielectrics each have advantages and disadvantages as described below. Therefore, it is preferable to appropriately determine the material of the current blocking layer in consideration of these advantages and disadvantages.
電流阻止層 109、 209の材料として半導体を用いた場合は、 誘電体膜と比 較して熱伝導率が高いために放熱性がよい、 劈開性がよい、 平坦化しやすいため にジャンクション ·ダウンで組立てやすい、 コンタクト層を全面に形成しやすい のでコンタクト抵抗を下げやすいなどの利点がある。 しかしながら、 半導体には 低屈折率にするために A 1 G a A s、 A 1 I n Pなどの高 A 1組成化合物を用い る場合には表面酸化などの対策が必要である等の欠点がある。  When a semiconductor is used as the material of the current blocking layers 109 and 209, the heat conductivity is higher because of the higher thermal conductivity compared to the dielectric film, the cleavage is better, and the junction is down because it is easier to flatten. There are advantages such as easy assembly and easy formation of the contact layer over the entire surface, which makes it easy to lower the contact resistance. However, semiconductors have drawbacks such as the need to take measures such as surface oxidation when using high-A1 compounds such as A1GaAs and A1InP to reduce the refractive index. is there.
電流阻止層 109、 209の材料として誘電体を用いる場合は、 例えば S i N x、 S i O2、 A 1203、 A 1 Nなどを用いることができる。 誘電体を用いると、 低屈折率で絶縁特性に優れた電流阻止層とすることができる。 しかしながら、 熱 伝導率が低いために放熱性が悪い、 劈開性が悪い、 平坦にし難いためにジャンク ションダウンで組み立てにくいなどの欠点も有している。 In the case of using a dielectric as the material of the current blocking layer 109, 209, for example, S i N x, or the like can be used S i O 2, A 1 2 0 3, A 1 N. When a dielectric is used, a current blocking layer having a low refractive index and excellent insulating properties can be obtained. However, it has disadvantages such as poor heat dissipation due to low thermal conductivity, poor cleavage, and difficulty in assembling due to junction down due to difficulty in flattening.
第 2導電型第 2クラッド層 108、 208よりも低屈折率にすることや、 G a As基板との格子整合を考慮すると、半導体からなる電流阻止層として A 1 Ga Asまたは A I GaAs Pもしくは A l Ga I n Pまたは A 1 I n Pを用いる ことが好ましい。 A 1 G a I n Pまたは A 1 I n Pは、 A 1 G a A sまたは A 1 GaAs Pと比べて、 熱伝導が悪い、 自然超格子の形成による屈折率の変化、 選 択成長 (リッジ側壁と底面) における I n組成が不安定であることから、 選択成 長時の保護膜へのポリの堆積防止 (HC 1添加選択成長) ができるのであれば、 A 10&八3または八1 Ga A s Pを選択する方が好ましい。 但し、 Al GaA sまたは A 1 Ga As Pの場合は、 A 1 A sや A 1 Pが潮解性を示すので、 A 1 組成の上限は 0. 97以下が好ましく、 0. 95以下がより好ましく、 0. 93 以下が最も好ましい。 第 2導電型第 2クラッド層 108、 208よりも低屈折率 にする必要があることから、 A 1組成の下限は 0. 3以上が好ましく、 0. 35 以上がより好ましく、 0. 4以上が最も好ましい。  Considering a lower refractive index than the second conductivity type second cladding layers 108 and 208, and lattice matching with the GaAs substrate, A 1 Ga As or AI GaAs P or A It is preferable to use lGaInP or A1InP. A1GaInP or A1InP has poorer thermal conductivity than A1GaAs or A1GaAsP, changes in refractive index due to formation of a natural superlattice, selective growth ( Since the In composition on the ridge side wall and bottom surface is unstable, if it is possible to prevent the deposition of poly on the protective film during selective growth (selective growth with the addition of HC1), A 10 & 8 3 or 8 1 It is more preferable to select GaAsP. However, in the case of Al GaAs or A 1 Ga As P, since A 1 As and A 1 P show deliquescence, the upper limit of the A 1 composition is preferably 0.97 or less, more preferably 0.95 or less. , 0.93 or less is most preferred. Since it is necessary to have a lower refractive index than the second conductivity type second cladding layers 108 and 208, the lower limit of the A1 composition is preferably 0.3 or more, more preferably 0.35 or more, and 0.4 or more. Most preferred.
電流阻止層 109、 209の屈折率は、 電流阻止層 109、 209に挟まれた 第 2導電型第 2クラッド層 108、 208の屈折率よりも低くする (実屈折率導 波構造)。 このような屈折率の制御を行うことにより、 従来のロスガイド構造と 比べて動作電流を低減することが可能になる。 電流阻止層 109、 209と第 2 導電型第 2クラッド層 108、 208との屈折率差は、 電流阻止層 109、 20 9が化合物半導体で形成されている場合、 下限は 0. 001以上であることが好 ましく、 0. 003以上であることがより好まじく、 0. 007以上であること が最も好ましい。また屈折率差の上限は、 1. 0以下であることが好ましく、 0. 5以下であることがより好ましく、 0. 1以下であることが最も好ましい。 また 電流阻止層 109、 209が誘電体で構成されている場合には、 下限は 0. 1以 上であることが好ましく、 0. 3以上であることがより好ましく、 0. 7以上で あることが最も好ましい。 また屈折率差の上限は、 3. 0以下であることが好ま しく、 2. 5以下であることがより好ましく、 1. 8以下であることが最も好ま しい。 The refractive index of the current blocking layers 109 and 209 is sandwiched between the current blocking layers 109 and 209. The refractive index of the second cladding layers 108 and 208 of the second conductivity type is made lower (real refractive index waveguide structure). By controlling such a refractive index, it becomes possible to reduce the operating current as compared with the conventional loss guide structure. The lower limit of the refractive index difference between the current blocking layers 109 and 209 and the second conductivity type second cladding layers 108 and 208 is 0.001 or more when the current blocking layers 109 and 209 are formed of a compound semiconductor. It is more preferably 0.003 or more, and most preferably 0.007 or more. The upper limit of the difference in the refractive index is preferably 1.0 or less, more preferably 0.5 or less, and most preferably 0.1 or less. When the current blocking layers 109 and 209 are made of a dielectric material, the lower limit is preferably 0.1 or more, more preferably 0.3 or more, and more preferably 0.7 or more. Is most preferred. Further, the upper limit of the refractive index difference is preferably 3.0 or less, more preferably 2.5 or less, and most preferably 1.8 or less.
電流阻止層 109、 209の導電型は、 第 1導電型または高抵抗 (アンドープ または深い順位を形成する不純物 (0、 C r、 F eなど) をドープ)、 あるいは これら 2つの組み合わせのいずれであってもよく、導電型または組成の異なる複 数の層から形成されていてもよい。 例えば、 活性層 106, 205に近い側から 第 2導電型あるいは高抵抗の半導体層、 および第 1導電型の半導体層の順に形成 されている電流阻止層を好ましく用いることができる。 電流阻止機能の観点から は、 電流阻止層 109、 209の導電型は第 1導電型であることが好ましい。 電 流阻止層 109、 209が第 1導電型である場合、 キャリア濃度は低くし過ぎる と電流がリークしゃすくなり、一方高くし過ぎると光吸収によるロスが大きくな るという問題がある。 これらの観点から電流阻止層のキャリア濃度の下限は、 1 X 1016 cm一3以上であることが好ましく、 1 X 1017 cm一3以上であること がより好ましく、 3 X 1017 cm一3以上であることが最も好ましい。またキヤリ ァ濃度の上限は、 2 X 1019 cm_3以下であることが好ましく、 5 X 1018 c m一3以下であることがより好ましく、 3 X 1018 cm一3以下であることが最も 好ましい。 The conductivity type of the current blocking layers 109 and 209 may be either the first conductivity type or a high resistance (undoped or doped with deep-forming impurities (0, Cr, Fe, etc.)), or a combination of the two. Or a plurality of layers having different conductivity types or different compositions. For example, a current blocking layer formed in the order of the second conductive type or high resistance semiconductor layer and the first conductive type semiconductor layer from the side close to the active layers 106 and 205 can be preferably used. From the viewpoint of the current blocking function, the conductivity type of the current blocking layers 109 and 209 is preferably the first conductivity type. When the current blocking layers 109 and 209 are of the first conductivity type, there is a problem that if the carrier concentration is too low, the current leaks, whereas if the carrier concentration is too high, the loss due to light absorption increases. The lower limit of the carrier concentration of the current blocking layer from these viewpoints is preferably at 1 X 10 16 cm one 3 or more, more preferably 1 X 10 17 cm one 3 or more, 3 X 10 17 cm one 3 It is most preferred that this is the case. The upper limit of the Kiyari § concentration is preferably 2 X 10 19 cm_ 3 or less, more preferably 5 X 10 18 cm one 3 or less, and most not more 3 X 10 18 cm one 3 or less preferable.
半導体からなる電流阻止層 109、 209の厚さは、 薄すぎると電流がリーク する問題があり、 一方厚すぎると選択成長保護膜にオーバーグロースして、 リツ ジ両脇の保護膜の除去が困難になるという問題がある。 そのような観点から、 半 導体からなる電流阻止層 109、 209のリツジ脇平坦部での厚みの下限は、 0. 03 /zm以上が好ましく、 0. 1 μπι以上がより好ましく、 0. 2 m以上が最 も好ましい。 また、 電流阻止層のリッジ脇平坦部での厚み (d) の上限は、 リツ ジの高さ(h)を基準としたときに、 h + 0. 2 μπι以下であることが好ましく、 h以下であることがより好ましく、 h— 0. 05 m以下であることが最も好ま しい。 リッジ両脇での電流阻止層の厚みが平坦部の厚みよりも大きくなっている 場合、 0. 8く d/hく 2が好ましく、 0. 9く d/hく 1. 5がより好ましく、 1 < d/h< 1. 3がさらに好ましい。  If the thickness of the current blocking layers 109 and 209 made of a semiconductor is too thin, there is a problem of current leakage. Problem. From such a viewpoint, the lower limit of the thickness of the current blocking layers 109 and 209 made of a semiconductor at the flat portion beside the ridge is preferably 0.03 / zm or more, more preferably 0.1 μπι or more, and 0.2 m or more. The above is the most preferable. Also, the upper limit of the thickness (d) of the current blocking layer at the flat portion beside the ridge is preferably h + 0.2 μπι or less, based on the height (h) of the ridge, and is preferably h or less. Is more preferable, and h−0.05 m or less is most preferable. When the thickness of the current blocking layer on both sides of the ridge is larger than the thickness of the flat portion, 0.8 d / h 2 is preferable, 0.9 d / h 1.5 is more preferable, 1 <d / h <1.3 is more preferable.
なお、 前述したとおり、 電流阻止層 109、 209の材料は、 選択成長保護膜 におけるオーバーグロースの観点から A 1 G a A sで形成することが好ましい。 すなわち、 電流阻止層 109、 209を A 1 Ga I n Pまたは A 1 I n Pで形成 した場合、 選択成長保護膜にオーバーグロースが起こりやすいという問題と、 組 成がリッジ脇と平坦部で異なるという問題とがある。 これに対し、 電流阻止層 1 09、 209を Al GaAsで形成した場合、 比較的オーバーグロースは起こり にくく、 ·組成もリッジ脇と平 ί且部で均一である。 このような理由から電流阻止層 109、 209は A 1 G a A sで形成することが好ましい。  Note that, as described above, the material of the current blocking layers 109 and 209 is preferably formed of A 1 GaAs from the viewpoint of overgrowth in the selective growth protective film. That is, when the current blocking layers 109 and 209 are formed of A1GaInP or A1InP, the problem that overgrowth is likely to occur in the selective growth protective film and the composition differs between the ridge side and the flat portion There is a problem. On the other hand, when the current blocking layers 109 and 209 are formed of AlGaAs, overgrowth is relatively unlikely to occur, and the composition is uniform between the ridge and the flat portion. For this reason, the current blocking layers 109 and 209 are preferably formed of A1GaAs.
電流阻止層 109、 209は、 光分布 (特に横方向の光分布) を制御したり電 流阻止の機能を向上させたりするために、 屈折率、 キャリア濃度または導電型が 異なる 2つ以上の層から形成してもよい。 - また、 図 2に示すように、 電流阻止層 209の上に表面保護層 211を形成し てもよい。 表面保護層 211を形成することにより、 電流阻止層 209の表面酸 化を抑制でき、 また、 選択成長用保護膜の除去時に電流阻止層がダメージを受け たり、 エッチングされたりすることを防止することができ、 さらに再成長時の昇 温段階で電流阻止層の表面が荒れるのを防止することができ、再成長層の表面モ ホロジーゃ結晶性を向上させることができる。 電流阻止層 209が活性層 205 で発生した光に対して透明である場合には、表面保護層 211も活性層 205で 発生した光に対して透明であること、すなわち活性層 205の材料よりもパンド ギヤップが大きい材料で形成されていることが好ましい。 電流阻止層が誘電体で 特に実屈折率ガイドの場合に、 ロスガイドに比 て、 このような形態を採用する ことが好ましい。 但し、 バンドギャップが小さい材料であっても、 厚さが 3 On m以下、 好ましくは 20 n m以下、 さらに好ましくは 10 n m以下であれば、 実 質的に光の吸収がある程度無視できるので、本発明における表面保護層 211の 材料として用いることができる。 表面保護層 211の A 1組成は、 電流阻止層 2 09の A 1組成より小さいことが好ましい。表面保護層 211の材料としては各 種の材料が挙げられるが、再成長時の昇温段階での V族元素置換等による下地層 の表面荒れによる再成長の表面モホロジーゃ結晶性の低下を防止するために、 リ ッジ上部表面、 すなわち第 2導電型第 2クラッド層 108、 208あるいは酸化 防止層 210と同じ材料系であることが好ましく、 中でも A 1 Ga I nPまたは Ga I nPであることが好ましい。表面保護層 211の導電型は特に限定されな いが、 第 2導電型とすることにより電流阻止機能を向上することができる。 The current blocking layers 109 and 209 are two or more layers having different refractive indices, carrier concentrations or conductivity types for controlling light distribution (particularly lateral light distribution) and improving current blocking function. May be formed. -As shown in FIG. 2, a surface protection layer 211 may be formed on the current blocking layer 209. By forming the surface protective layer 211, surface oxidation of the current blocking layer 209 can be suppressed, and the current blocking layer is prevented from being damaged or etched when the selective growth protective film is removed. And increase during regrowth The surface of the current blocking layer can be prevented from being roughened at the temperature stage, and the surface morphology and the crystallinity of the regrown layer can be improved. When the current blocking layer 209 is transparent to the light generated in the active layer 205, the surface protection layer 211 is also transparent to the light generated in the active layer 205, that is, the surface protection layer 211 is more transparent than the material of the active layer 205. Preferably, the bandgap is formed of a large material. When the current blocking layer is made of a dielectric material and is particularly a real refractive index guide, it is preferable to adopt such a form as compared with a loss guide. However, even if the material has a small band gap, if the thickness is 3 Onm or less, preferably 20 nm or less, and more preferably 10 nm or less, light absorption can be practically neglected to some extent. It can be used as a material for the surface protective layer 211 in the invention. The A1 composition of the surface protective layer 211 is preferably smaller than the A1 composition of the current blocking layer 209. Various materials can be used as the material of the surface protective layer 211, but the surface morphology of the regrowth due to the surface roughness of the underlayer due to the substitution of the group V element at the temperature rise stage during the regrowth ゃ prevents a decrease in crystallinity Therefore, it is preferable that the material is the same as that of the upper surface of the lid, that is, the second conductive type second cladding layers 108 and 208 or the antioxidant layer 210, and in particular, it is A 1 Ga InP or Ga InP. Is preferred. Although the conductivity type of the surface protective layer 211 is not particularly limited, the current blocking function can be improved by using the second conductivity type.
第 2導電型第 2クラッド層 108、 208のリッジ上およぴ該リッジ近傍の電 流阻止層 109、 209上には、 第 2導電型第 3クラッド層 110、 212が形 成される。 第 2導電型第 3クラッド層 110、 212は、 電流阻止層 109、 2 09上のすべてを覆うものであってもよいし、 リッジ近傍のみを覆うものであつ てもよい。 第 2導電型第 3クラッド層 110、 212は、 活性層 106、 205 より屈折率の小さい材料で形成される。 例えば; 第 2導電型の Al Ga I nP、 A 1 I nP、 A 1 G a A s N Al GaAs P、 Al Ga I nAs、 G a I n A s P、 Al Ga I nN、 B eMgZnS e、 MgZnSS e、 CdZnS eTe等 の一般的な I I I—V族、 I I一 V I族半導体を用いることができる。 Third conductive type third cladding layers 110 and 212 are formed on the ridges of the second conductive type second cladding layers 108 and 208 and on the current blocking layers 109 and 209 near the ridges. The third cladding layers 110 and 212 of the second conductivity type may cover all over the current blocking layers 109 and 209, or may cover only the vicinity of the ridge. The second conductive type third cladding layers 110 and 212 are formed of a material having a lower refractive index than the active layers 106 and 205. For example; second conductivity type Al Ga I nP, A 1 I nP, A 1 G a A s N Al GaAs P, Al Ga I nAs, G a I n A s P, Al Ga I nN, B eMgZnS e, General III-V and II-VI semiconductors such as MgZnSSe and CdZnSeTe can be used.
第 2導電型第 3.クラッド層 110、 212の厚さは、 薄すぎると光閉じ込めが 不十分となり、 コンタクト層 213で光吸収が顕著となり、 しきい値電流や動作 電流が増加してしまう。 一方、 厚すぎると、 通過抵抗が増大し、 この通過抵抗の 増大は p型 A l Ga I nPのように抵抗率が高い材料の場合に深刻な問題とな る。 そこで、 第 2導電型第 3クラッド層の材料としては A 1 Ga Asまたは A 1 Ga As Pを用いることが好ましく、 かつ第 2導電型第 3クラッド層 110、 2 12の厚さの下限を 0. 1 jum以上とすることが好ましく、 0. 以上とす ることがより好ましく、 0. 8 以上とすることがさらに好ましく、 1. 1 m以上とすることが最も好ましい。 また、 第 2導電型第 3クラッド層 1 10、 2 12の厚さの上限は、 3 μπι以下とすることが好ましく、 2. 5 m以下とする ことがより好ましく、 2 μΐη以下とすることがさらに好ましく、 1. 6 μπι以下 とすることが最も好ましい。 自励発振型半導体レーザの場合は、 第 2導電型第 3 クラッド層 1 10、 212の厚さの下限を 0. 1 zm以上とすることが好ましく、 0. 以上とすることがより好ましく、 0. 3 μπι以上とすることがさらに 好ましく、 0. 4 μπι以上とすることが最も好ましい。 また、 第 2導電型第 3ク ラッド層 1 10、 212の厚さの上限は、 2 m以下とすることが好ましく、 1. 5 m以下とすることがより好ましく、 1 m以下とすることがさらに好ましく、 0. 8 μπι以下とすることが最も好ましい。 If the thickness of the second conductive type third cladding layer 110, 212 is too small, light confinement will occur. As a result, the light absorption becomes remarkable in the contact layer 213, and the threshold current and the operating current increase. On the other hand, if the thickness is too large, the passage resistance increases, and this increase in the passage resistance becomes a serious problem in a material having a high resistivity such as p-type AlGaInP. Therefore, it is preferable to use A 1 Ga As or A 1 Ga As P as the material of the third cladding layer of the second conductivity type, and to set the lower limit of the thickness of the third cladding layers 110 and 212 of the second conductivity type to 0. It is preferably at least 1 jum, more preferably at least 0, more preferably at least 0.8, most preferably at least 1.1 m. Further, the upper limit of the thickness of the second conductive type third cladding layers 110 and 212 is preferably 3 μπι or less, more preferably 2.5 m or less, and 2 μΐη or less. More preferably, it is most preferably 1.6 μπι or less. In the case of a self-pulsation type semiconductor laser, the lower limit of the thickness of the second conductive type third cladding layers 110 and 212 is preferably 0.1 zm or more, more preferably 0. It is more preferably at least 3 μπι, most preferably at least 0.4 μπι. The upper limit of the thickness of the second conductive type third cladding layers 110 and 212 is preferably 2 m or less, more preferably 1.5 m or less, and more preferably 1 m or less. More preferably, it is most preferably 0.8 μπι or less.
第 2導電型第 3クラッド層 1 10、 212のキャリア濃度の下限は、 1 X 10 17 cmT"3以上であることが好ましく、 3 X 1017 cm一3以上であることがより 好ましく、 5 X 1017cm_3以上であることが最も好ましい。またキャリア濃度 の上限は、 2 X 1019cm— 3以下であることが好ましく、 5 X 1018cm— 3以 下であることがより好ましく、 3 X 1018c m一3以下であることが最も好ましい。 第 2導電型第 3クラッド層 1 10、 212の屈折率は、 第 2導電型第 2クラッ ド層 108、 208の屈折率よりも小さいことが好ましい。 これにより、 第 2導 電型のコンタクト層側へ光の漏れを小さくすることができ、 しきい値電流を低減 でき、 第 2導電型第 3クラッド層の膜厚を薄くすることができ、通過抵抗及び熱 抵抗を低減することができる。 屈折率差の上限は、 0. 1以下であることが好ま しく、 0. 07以下であることがより好ましく、 0. 05以下であることがさら に好ましい。 また、 屈折率差の下限は、 0. 001以上であることが好ましく、 0. 002以上であることがより好ましく、 0. 003以上であることがさらに 好ましい。 第 2導電型第 3クラッド層 110、 212の材料は、 第 2導電型第 2 クラッド層 108、 208よりも抵抗率あるいは熱抵抗を低くする観点から、 A 1 Ga As, A 1 Ga A s Pが好ましく、 さらに第 2導電型第 2クラッド層 10 8、 208よりも屈折率を低くする観点から、 A 1組成の下限は 0. 67以上が 好ましく、 0. 72以上がより好ましく、 0. 76以上が最も好ましい。 A1 A s、 A 1 Pは潮解性を示すために、 A 1組成の上限は 0. 97以下が好ましく、 0. 93以下がより好ましく、 0. 79以下が最も好ましい。 但し、 自励発振型 半導体レーザの場合は、 0. 89以下が最も好ましい。 The lower limit of the carrier concentration of the second conductivity type third cladding layer 1 10, 212 is preferably at 1 X 10 17 CMT "3 or more, more preferably 3 X 10 17 cm one 3 or more, 5 X and most preferably 10 17 CM_ is 3 or more. the upper limit of the carrier concentration is preferably 2 X 10 19 cm- 3 or less, more preferably 5 X 10 18 cm- 3 hereinafter, 3 most preferably X 10 18 cm is one 3. the refractive index of the second conductive type third clad layer 1 10, 212 is smaller than the refractive index of the second conductive type second clad layer 108, 208 Thereby, light leakage to the contact layer side of the second conductivity type can be reduced, the threshold current can be reduced, and the thickness of the third cladding layer of the second conductivity type can be reduced. The upper limit of the refractive index difference is preferably 0.1 or less. Ma It is more preferably 0.07 or less, and further preferably 0.05 or less. The lower limit of the difference in refractive index is preferably 0.001 or more, more preferably 0.002 or more, and even more preferably 0.003 or more. The material of the third cladding layers 110 and 212 of the second conductivity type is A 1 Ga As, A 1 Ga As P from the viewpoint of lowering the resistivity or thermal resistance than the second cladding layers 108 and 208 of the second conductivity type. From the viewpoint of further lowering the refractive index than the second conductivity type second cladding layers 108 and 208, the lower limit of the A1 composition is preferably 0.67 or more, more preferably 0.72 or more, and 0.76 or more. The above is most preferred. Since A1 As and A1 P exhibit deliquescence, the upper limit of the A1 composition is preferably 0.97 or less, more preferably 0.93 or less, and most preferably 0.79 or less. However, in the case of a self-pulsation type semiconductor laser, the value is most preferably 0.89 or less.
第 2導電型第 3クラッド層 110、 212上には、 電極材料との接触抵抗を低 減するために、 図 2に示すように低抵抗 (高キャリア濃度) の (第 2導電型) コ ンタクト層 213を形成することが好ましい。 特に電極を形成しょうとする最上 層 (第 2導電型第 3クラッド層 212) の表面全体にコンタクト層を形成した後 に電極を形成することが好ましい。 コンタクト層 213の材料は、 通常はクラッ ド層、 さらに好ましくは活性層よりバンドギャップが小さい材料の中から選択し、 具体的には G aAs、 GaAs P、 Ga I nAs、 Ga I nP、 G a I nN等の A 1を含まない I I I一 V族化合物半導体で形成すれば、表面酸化を防止するこ とができるため好ましい。  As shown in FIG. 2, on the third cladding layers 110 and 212 of the second conductivity type, in order to reduce the contact resistance with the electrode material, a (second conductivity type) contact having a low resistance (high carrier concentration) is used. Preferably, layer 213 is formed. In particular, it is preferable to form the electrode after forming the contact layer on the entire surface of the uppermost layer (the second conductive type third cladding layer 212) on which the electrode is to be formed. The material of the contact layer 213 is usually selected from a material having a band gap smaller than that of the cladding layer, and more preferably a material having a smaller band gap than that of the active layer. Specifically, GaAs, GaAsP, GaInAs, GaInP, GaIn It is preferable to use a group III-V compound semiconductor that does not contain A1, such as InN, because surface oxidation can be prevented.
また、 コンタクト層 213は、 金属電極とのォーミック性を取るため、 低抵抗 で適当なキャリア密度を有することが好ましい。 コンタクト層 213のキャリア 密度の下限は、 1 X 1018 cm— 3以上であることが好ましく、 3X 1018cm— 3以上であることがより好ましく、 5X 1018cm一3以上であることが最も好ま しい。またキヤリァ濃度の上限は、 2 X 1020 c m一3以下であることが好ましく、 5 X 1019cm一3以下であることがより好ましく、 3 X 1018 cm一3以下であ ることが最も好ましい。 コンタクト層 213の厚みは、 0. ェ〜丄。^!!!である ことが好ましく、 0· 2〜 7 mであることがより好ましく、 1〜5 μπιである ことが最も好ましい。 In addition, the contact layer 213 preferably has a low resistance and an appropriate carrier density in order to obtain ohmicity with the metal electrode. The lower limit of the carrier density of the contact layer 213 is preferably at 1 X 10 18 cm- 3 or more, more preferably 3X 10 18 cm- 3 or more, and most not more 5X 10 18 cm one 3 or more I like it. The upper limit of the Kiyaria concentration is preferably 2 X 10 20 cm one 3 or less, more preferably 5 X 10 19 cm one 3 or less, most 3 X 10 18 cm one 3 below der Rukoto preferable. The thickness of the contact layer 213 is from 0 to 丄. ^ !!! It is more preferably 0.2 to 7 m, and most preferably 1 to 5 μπι.
また、 第 2導電第 3クラッド層 212とコンタクト層 213との間には、 第 2 導電型の中間パンドギャップ層を形成してもよい。 これにより、 第 2導電型第 3 クラッド層 21 2とコンタクト層 213との間のへテロ障壁による通過抵抗を 低減することができる。 中間バンドギヤップ層のキヤリァ密度の下限は、 1 X 1 017 cm一3以上であることが好ましく、 5 X 1017 cm一3以上であることがよ り好ましく、 1 X 1018 cm一3以上であることが最も好ましい。 また、 中間バン ドギャップのキャリア密度の上限は、 5 X 1019 cm_3以下であることが好まし く、 1 X 1019 cm一3以下であることがより好ましく、 5 X 1018 cm— 3以下 であることが最も好ましい。 また、 中間バンドギャップ層の厚さは、 0. 01〜 0. 5 μπιであることが好ましく、 0. 02〜0. 3 μηαであることがより好ま しく、 0. 03〜0. 2 mであることが最も好ましい。 Further, an intermediate band gap layer of the second conductivity type may be formed between the second conductive third clad layer 212 and the contact layer 213. As a result, the passage resistance due to the hetero barrier between the third cladding layer 212 of the second conductivity type and the contact layer 213 can be reduced. The lower limit of Kiyaria density of the intermediate Bandogiyappu layer is preferably 1 X 1 0 17 cm one 3 or more, Ri preferably good is at 5 X 10 17 cm one 3 or more, 1 X 10 18 cm one 3 or more Is most preferred. The upper limit of the carrier density of the intermediate bandgap is, 5 X 10 19 It is rather preferable cm_ is 3 or less, more preferably 1 X 10 19 cm one 3 or less, 5 X 10 18 cm- 3 or less Is most preferred. Further, the thickness of the intermediate band gap layer is preferably 0.01 to 0.5 μπι, more preferably 0.02 to 0.3 μηα, and 0.03 to 0.2 m. Most preferably.
本発明の半導体発光装置の構造において、 まず、 所望の垂直拡がり角を得るた めに活性層の厚みとクラッド層の組成を決定する。  In the structure of the semiconductor light emitting device of the present invention, first, the thickness of the active layer and the composition of the cladding layer are determined to obtain a desired vertical divergence angle.
通常、 垂直拡がり角を狭くすると、 活性層からクラッド層への光の浸みだしが 促進され、 端面での光密度が小さくな.り、 出射端面の光学的損傷 (COD) レべ ルが向上することができる。 このため、 高出力動作を必要とする時には、 垂直拡 がり角を比較的に狭めに設定されるが、垂直拡がり角の下限は、 活性層内の光閉 じ込めの低減による発振しきい値電流の増大おょぴキヤリァのオーバーフロー による温度特性の低下を抑制することによる制限があり、 12° 以上であること が好ましく、 14° 以上であることがより好ましく、 1 5° 以上であることが最 も好ましい。 また垂直拡がり角の上限は、 30°-以下であることが好ましく、 2 5° 以下であることがより好ましく、 22° 以下であることが最も好ましい。 また、 通常、 垂直広がり角を大きくすると活性層内の過飽和吸収域が大きくな り、 自励発振が起こり易くなる。 このために、 自励発振型半導体レーザの場合、 垂直広がり角は比較的大きめに設定される。 しかしながら、 垂直広がり角は大き くし過ぎると出射端面の光学的損傷 (COD) レベルや光学系のディテクタでの 受光効率を低下させることになり、逆に小さくし過ぎると過飽和吸収域が小さく なってしまうために自励発振が起こりにくくなる。 このこと力 ら、垂直広がり角 の下限は 24° 以上が好ましぐ、 27°·以上がより好ましく、 29° 以上がさら に好ましく、 32。 以上が最も好ましい。 一方、 垂直広がり角の上限は 42° 以 下が好ましく、 40° 以下がより好ましく、 38° 以上がさらに好ましく、 36° 以下が最も好ましい。 Generally, narrowing the vertical divergence angle promotes light seepage from the active layer to the cladding layer, lowering the light density at the end face, and improving the optical damage (COD) level at the output end face be able to. For this reason, when high output operation is required, the vertical divergence angle is set to be relatively narrow, but the lower limit of the vertical divergence angle is determined by the oscillation threshold current due to the reduction of optical confinement in the active layer. There is a limitation due to the suppression of deterioration of the temperature characteristics due to the overflow of the carrier, preferably 12 ° or more, more preferably 14 ° or more, and most preferably 15 ° or more. Is also preferred. The upper limit of the vertical divergence angle is preferably 30 ° or less, more preferably 25 ° or less, and most preferably 22 ° or less. In general, when the vertical divergence angle is increased, the saturable absorption region in the active layer is increased, and self-sustained pulsation is likely to occur. For this reason, in the case of a self-pulsation type semiconductor laser, the vertical spread angle is set relatively large. However, the vertical spread angle is large Too much combusting will reduce the optical damage (COD) level of the emission end face and the light receiving efficiency of the optical system detector. Conversely, if too small, the supersaturated absorption region will be small, and self-pulsation will occur. It becomes difficult. For this reason, the lower limit of the vertical divergence angle is preferably 24 ° or more, more preferably 27 ° or more, even more preferably 29 ° or more, and 32. The above is most preferred. On the other hand, the upper limit of the vertical spread angle is preferably 42 ° or less, more preferably 40 ° or less, even more preferably 38 ° or more, and most preferably 36 ° or less.
次に、 垂直拡がり角を決定すると、 本発明の半導体発光装置における高出力特 性を大きく支配する構造パラメータは活性層 106、 205と電流阻止層 109、 209との間の距離 (d p) とリッジ底部におけるストライプ幅 (以下 「ストラ イブ幅」 という) (Wb) となる。 なお、 通常、 活性層 106、 205と電流阻 止層 109、 209との間には第 2導電型第 1クラッド層 107、 206が存在 するが、 その場合、 d pは第 2導電型第 1クラッド層 107、 206の厚みとな る。 また、 活性層 106、 205が量子井戸構造である場合、 最も電流阻止層近 い活性層と該電流阻止層との距離が d pになる。  Next, when the vertical divergence angle is determined, the structural parameters that largely govern the high output characteristics of the semiconductor light emitting device of the present invention are the distance (dp) between the active layers 106 and 205 and the current blocking layers 109 and 209 and the ridge. It is the stripe width (Wb) at the bottom (hereinafter referred to as the “stripe width”). Normally, the second conductivity type first cladding layers 107 and 206 are present between the active layers 106 and 205 and the current blocking layers 109 and 209, in which case, dp is the second conductivity type first cladding layer. The thickness of layers 107 and 206 is obtained. When the active layers 106 and 205 have a quantum well structure, the distance between the active layer closest to the current blocking layer and the current blocking layer is dp.
自励発振型半導体レーザを設計するときに、 垂直広がり角を狭くし過ぎたり、 第 2導電型第 1クラッド層を薄くし過ぎたり、 あるいはストライプ幅を広くし過 ぎたりすると、 自励発振しなくなってしまうことがある。 逆に、 垂直広がり角を 厚くし過ぎたり、 第 2導電型第 1クラッド層を厚くし過ぎたり、 あるいはストラ イブ幅を狭くし過ぎたりすると、 自励発振はするものの、 動作電流が大きくなり 過ぎたりレーザ特性を劣化させたりする。 また、 高温においても安定に自励発振 を持続させるためには、 d pはなるべく小さくなるように設定できた方がよ 、。 理由は d pが小さいほどリッジ両脇への横方向の電流漏れを少なくでき、高温に おいても自励発振に充分な過飽和吸収領域を活性層内に形成しておくことが可 能となるからである。 このため、 自励発振を達成するためには、 上記の d pと W を適切な範囲に制御性よく納めることが必要となる。すなわち、 d pについては、 0. 003〜0..5 mが好ましく、 0. 04〜0. 25 /^mがより好ましく、 0. 05〜0. 19 μπιがさらに好ましく、 0. 06〜0· 15μπιが特に好ま しい。 Wについては、 1〜4 μηιが好ましく、 1. 2〜3. 5 /zmがより好まし く、 1. 6〜2. 9 jLt mがより好ましく、 1. 9〜2. 5 /x mが特に好ましい。 ただし、 使用目的 (広がり角をどこに設定するかなど) や材料系 (屈折率、 抵 抗率等) などが異なると、 最適範囲も少しシフトする。 また、 この最適範囲は上 記の各構造パラメータがお互いに影響し合うことにも注意を要する。 When designing a self-pulsation type semiconductor laser, if the vertical spread angle is too narrow, the second conductivity type first cladding layer is too thin, or the stripe width is too wide, self-pulsation occurs. It may be gone. Conversely, if the vertical divergence angle is too large, the second conductivity type first cladding layer is too thick, or the stripe width is too narrow, the self-excited oscillation occurs, but the operating current becomes too large. Or deteriorate the laser characteristics. Also, in order to maintain self-sustained pulsation stably even at high temperatures, it is better to set dp as small as possible. The reason is that the smaller the dp, the smaller the lateral current leakage to both sides of the ridge, and the more it becomes possible to form a saturable absorption region in the active layer sufficient for self-pulsation even at high temperatures. It is. Therefore, in order to achieve self-sustained pulsation, it is necessary to control the above dp and W within an appropriate range with good controllability. That is, for dp, 0.003 to 0.5 m is preferable, and 0.04 to 0.25 / ^ m is more preferable. 0.05 to 0.19 μπι is more preferred, and 0.06 to 0.15 μπι is particularly preferred. As for W, 1-4 μηι is preferred, 1.2-3.5 / zm is more preferred, 1.6-2.9 jLtm is more preferred, and 1.9-2.5 / xm is particularly preferred. preferable. However, if the purpose of use (where to set the divergence angle, etc.) or the material system (refractive index, resistivity, etc.) is different, the optimum range will shift slightly. It should also be noted that this optimum range affects each of the above structural parameters.
ストライプ幅 (開口部の幅) W1とリッジ両脇のクラッド層の厚さ d pが自励 発振条件を満たすための光学設計指針として、活性層内部での横方向有効屈折率 段差を 2〜7 X 10_3程度、 リッジ両脇への光浸み出し割合 Γ & c t. o u tを 10〜40%程度に設定する必要がある。 Stripe width (width of aperture) W1 and thickness of cladding layer on both sides of ridge dp As a guideline for optical design to satisfy the self-sustained pulsation condition, the effective lateral refractive index step inside the active layer is 2 ~ 7 X 10_ 3 about, it is necessary to set the light oozing ratio Γ & c t. out of the ridge both sides to about 10 to about 40%.
また、 過飽和吸収体の体積は、 断面 X共振器長で決まるため、 共振器長も最適 化が必要である。共振器長の長さについては、下限は 150 μπι以上が好ましく、 200 μπι以上がより好ましく、 250 μπι以上がさらに好ましく、 270 m 以上が最も好ましい。 上限については、 600 m以下が好ましく、 500 μπι 以下がより好ましく、 450 μπι以下がさらに好ましく、 370 μπι以下が最も 好ましい。  Also, since the volume of the saturable absorber is determined by the cross-sectional X resonator length, the resonator length also needs to be optimized. The lower limit of the length of the resonator is preferably 150 μπι or more, more preferably 200 μπι or more, further preferably 250 μπι or more, and most preferably 270 m or more. The upper limit is preferably 600 m or less, more preferably 500 μπι or less, further preferably 450 μπι or less, and most preferably 370 μπι or less.
本発明の半導体発光装置を製造する方法は特に制限されない。 いかなる方法に より製造されたものであっても、上記本発明の要件を満たすものであれば本発明 の範囲に含まれる。  The method for manufacturing the semiconductor light emitting device of the present invention is not particularly limited. What is manufactured by any method is within the scope of the present invention as long as it satisfies the above requirements of the present invention.
本発明の半導体発光装置を製造する際には、従来から用いられている方法を適 宜選択して使用することができる。 結晶の成長方法は特に限定されるものではな く、 ダブルへテロ構造の結晶成長やリッジ部の選択成長には、 有機金属気相成長 法 (MOCVD法) 、 分子線エピタキシー法 (ΜΒΕ法) 、 ハイドライドあるい はハライド気相成長法 (VPE法) 、 液相成長法 (LPE法) 等の公知の成長方 法を適宜選択して用いることができる。  In manufacturing the semiconductor light emitting device of the present invention, a conventionally used method can be appropriately selected and used. The method of growing the crystal is not particularly limited. For the crystal growth of the double hetero structure and the selective growth of the ridge portion, a metal organic chemical vapor deposition method (MOCVD method), a molecular beam epitaxy method (ΜΒΕ method), Known growth methods such as hydride or halide vapor phase epitaxy (VPE) and liquid phase epitaxy (LPE) can be appropriately selected and used.
本発明の半導体発光装置の製造方法としては、 まず基板上に第 1導電型第 1ク ラッド層を形成する工程と、該第 1導電型クラッド層上に活性層を形成する工程 と、 該活性層上に第 2導電型第 1クラッド層を形成する工程と、 該第 2導電型第 1クラッド層上にストライプ状のリッジ構造を有する第 2導電型第 2クラッド 層を形成する工程と、前記第 2導電型第 1クラッド層上において前記第 2導電型 第 2クラッド層の両側面を挟持するように電流阻止層を形成する工程と、前記第 2導電型第 2クラッド層のリッジの上および少なくとも前記電流阻止層の一部 の上に第 2導電型第 3クラッド層を形成する工程を例示することができる。 その 他、 基板上にバッファ一層を形成する工程、 第 2導電型第 1クラッド層上にエツ チングストップ層を形成する工程と、第 2導電型第 2クラッド層上に酸ィヒ抑制層 を形成する工程、 電流阻止層上に表面保護層を形成する工程、 第 2導電型第 3ク ラッド層上にコンタクト層を形成する工程を有することもできる。 As a method for manufacturing a semiconductor light emitting device of the present invention, first, a step of forming a first conductive type first clad layer on a substrate and a step of forming an active layer on the first conductive type clad layer Forming a second conductivity type first cladding layer on the active layer; and forming a second conductivity type second cladding layer having a stripe-shaped ridge structure on the second conductivity type first cladding layer. Forming a current blocking layer on both sides of the second conductive type second cladding layer on the second conductive type first cladding layer; and forming a current blocking layer on the second conductive type second cladding layer. The step of forming the second conductivity type third cladding layer on the ridge and at least on a part of the current blocking layer can be exemplified. In addition, a step of forming a buffer layer on the substrate, a step of forming an etching stop layer on the first cladding layer of the second conductivity type, and a step of forming an acid suppression layer on the second cladding layer of the second conductivity type And forming a surface protective layer on the current blocking layer, and forming a contact layer on the second conductive type third cladding layer.
各層の具体的成長条件等は、 層の組成、 成長方法、 装置の形状等に応じて異な るが、 MOCVD法を用いて I I I一 V族化合物半導体層を成長する場合、 ダブ ルヘテロ構造は、 成長温度 650〜750°C程度、 V I I I比 20〜60程度 (A 1 Ga Asの場合) または 300〜600程度 (I nGaAs P、 Al Ga I n Pの場合)、 NAM領域およびプロック領域は、成長温度 600〜 700 °C、 V/ I I I比 40〜60程度 (A 1 Ga Asの場合) 、 または 350〜550程 度 (I nGaAs P、 Al Ga I n P.の場合) で行うことが好ましい。  The specific growth conditions of each layer vary depending on the composition of the layer, the growth method, the shape of the device, etc.When the III-V compound semiconductor layer is grown by MOCVD, the double heterostructure Temperature 650 to 750 ° C, VIII ratio about 20 to 60 (for A1GaAs) or about 300 to 600 (for InGaAsP, AlGaInP), growth temperature for NAM and block regions It is preferable to carry out at a temperature of 600 to 700 ° C., a V / III ratio of about 40 to 60 (for A 1 Ga As), or about 350 to 550 (for InGaAs P and Al Ga In P).
特に保護膜を用いて選択成長により形成する電流阻止層が A 1 G a A s、 A 1 Ga I nPのように Alを含む場合、成長中に微量の HC 1ガスを導入すること により、 マスク上へのポリの堆積を防止することができるため非常に好ましい。 A 1の組成が高いほど、 あるいはマスク幅あるいはマスク面積比が大きいほど、 他の成長条件を一定とした場合、 ポリの堆積を防止し、 かつ半導体表面露出部の みに選択成長を行う (セレクティブモード)のに必要な HC 1導入量は增加する。 一方、 HC 1ガスの導入量が多すぎると A 1 Ga As層の成長が起こらず、 逆に 半導体層がエッチングされてしまうが (エッチングモード) 力 A 1組成が高く なるほど他の成長条件を一定とした場合、 エッチングモードになるのに必要な H C 1導入量は増加する。 このため、 最適な HC 1導入量はトリメチルアルミニゥ ム等の A 1を含んだ I I I族原料供給モル数に大きく依存する。 具体的には、 H C 1の供給モル数と A 1を含んだ I I I族原料供給モル数の比 (HC 1 / I I I 族) は、 下限は 0. 01以上であることが好ましく、 0. 05以上であることが より好ましく、 0. 1以上であることが最も好ましい。 上限は、 50以下が好ま しく、 10以下がより好ましく、 5以下が最も好ましい。 伹し、 I nを含む化合 物半導体層を選択成長 (特に、 HC 1導入) させる場合は、 組成制御が困難にな りやすい。 In particular, when the current blocking layer formed by selective growth using a protective film contains Al, such as A1GaAs and A1GaInP, a small amount of HC1 gas is introduced during growth to mask Very preferred, as it prevents the deposition of poly on top. If the composition of A1 is higher, or the mask width or mask area ratio is larger, and other growth conditions are constant, poly deposition is prevented and selective growth is performed only on the exposed surface of the semiconductor (selective Mode)), the amount of HC1 introduced required increases. On the other hand, if the introduction amount of HC 1 gas is too large, the growth of the A 1 Ga As layer does not occur, and the semiconductor layer is etched instead. (Etching mode) Force The other growth conditions become more constant as the A 1 composition increases. In this case, the amount of introduced HC 1 required to enter the etching mode increases. For this reason, the optimal amount of HC1 introduced is trimethylaluminum It greatly depends on the number of moles of group III raw material including A1 such as rubber. Specifically, the lower limit of the ratio of the number of moles of HC1 supplied and the number of moles of group III material containing A1 (HC1 / III group) is preferably 0.01 or more, more preferably 0.05 or more. Is more preferable, and most preferably 0.1 or more. The upper limit is preferably 50 or less, more preferably 10 or less, and most preferably 5 or less. On the other hand, when the compound semiconductor layer containing In is selectively grown (in particular, HC1 is introduced), it is easy to control the composition.
リッジ形成や選択成長を行う場合、 保護膜を使用することができる。 保護膜は 誘電体であることが好ましく、具体的には S iNx膜、 S i 02膜、 S i ON膜、 A l 2〇3膜、 ΖηΟ膜、 S i C膜おょぴアモルファス S iからなる群から選択 される。 保護膜は、 マスクとして MOCVDなどを用いてリッジ部を選択再成長 により形成する場合に用いられる。 When performing ridge formation or selective growth, a protective film can be used. Preferably the protective film is a dielectric, specifically, S iN x film, S i 0 2 film, S i ON film, A l 2_Rei_3 film, Zetaitaomikuron film, S i C film Contact Yopi amorphous S selected from the group consisting of i. The protective film is used when the ridge is formed by selective regrowth using MOCVD or the like as a mask.
本発明の半導体発光装置を半導体レーザとして用いる場合、半導体レーザとし ては、 情報処理用光源 (通常 A 1 G a A s系 (波長 780 n m近傍) 、 A 1 G a I n P系 (波長 600 nm帯) 、 I n G a N系 (波長 400 nm近傍) ) 、 通信 用信号光源 (通常 I tiGa As Pあるいは I n G a A sを活性層とする 1. 3 μ m帯、 1. 5 111帯) レーザ、 フアイ ー励起用光源 (I nGaAs歪み量子井 戸活性層 ZG a A s基板を用いる 980 nm近傍、 I nGaAs P歪み量井戸活 性層 Z I n P基板を用いる 1480 nm近傍など) レーザなどの通信用半導体レ 一ザ装置などの、特に高出力動作が求められる多用な装置を挙げることができる。 本発明の半導体レーザは、高速パルスで駆動させた場合における単一横モード での出力は、 8 OmW以上であることが好ましく、 10 OmW以上であることが より好ましく、 12 OmW以上であることがさら-に好ましく、 16 OmW以上で あることが特に好ましい。 また、 本発明の半導体レーザは、 駆動させている場合 における通過抵抗は低い方が好ましく、 8 Ω以下であることが好ましく、 7 Ω以 下であることがより好ましく、 6 Ω以下であることが最も好ましい。  When the semiconductor light emitting device of the present invention is used as a semiconductor laser, the semiconductor laser may be a light source for information processing (usually an A1GaAs system (wavelength around 780 nm), an A1GaInP system (wavelength 600 nm). nm band), InGaN system (wavelength around 400 nm)), signal light source for communication (usually using ItiGaAsP or InGaAs as active layer 1.3 μm band, 1.5 Light source for laser and fire excitation (InGaAs strain quantum well active layer Near 980 nm using ZGaAs substrate, InGaAsP strain well active layer Near 1480 nm using ZInP substrate) Examples include various devices that require particularly high-output operation, such as communication semiconductor laser devices such as lasers. When the semiconductor laser of the present invention is driven by a high-speed pulse, the output in the single transverse mode is preferably 8 OmW or more, more preferably 10 OmW or more, and more preferably 12 OmW or more. More preferably, it is particularly preferably 16 OmW or more. Further, the semiconductor laser of the present invention preferably has a low pass resistance when driven, preferably 8 Ω or less, more preferably 7 Ω or less, and more preferably 6 Ω or less. Most preferred.
自励発振型半導体レーザの場合は、 25°Cにおいて直流で駆動させた場合にお ける単一横モードでの最大光出力は、 5 m 以上であることが好ましく、 7mW 以上であることがより好ましく、 1 OmW以上であることがさらに好ましい。 ま た、 光出力密度は、 4mW/ m2以上であることが好ましく、 SmW/jum2以 上であることがより好ましく、 8 mWZiU m2以上であることがさらに好ましレ、。 さらに、 自励発振型半導体レーザは、 駆動させている場合における通過抵抗は低 い方が好ましく、 8 Ω以下であることが好ましく、 7 Ω以下であることがより好 ましく、 6 Ω以下であることが最も好ましい。 本発明の典型的な自励発振型半導 体レーザは、 75°Cにおいて 5 mW以上の出力で自励発振する。 温度との関係で 具体例を示せば、 本発明の典型的な自励発振型半導体レーザは、 例えば 70°Cで あれば 5 mWの出力で自励発振し、 75°Cであれば 5mWの出力で自励発振し、 70°Cであれば 1 OmWの出力で自励発振し、 75°Cであれば 1 OmWの出力で 自励発振する。 また、 直流 (DC) 駆動で 25°Cにおける発振しきい値電流は例 えば 45mA以下であり、 4 OmA以下であることが好ましく、 35mA以下で あることがより好ましい。 In the case of a self-pulsation type semiconductor laser, when it is driven by DC at 25 ° C, The maximum light output in the single transverse mode is preferably 5 m or more, more preferably 7 mW or more, and even more preferably 1 OmW or more. Also, the optical power density is preferably at 4 mW / m 2 or more, more preferably SMW / jum 2 than on, still more preferably les it is 8 mWZiU m 2 or more. Further, the self-pulsation type semiconductor laser preferably has a low passing resistance when driven, preferably 8 Ω or less, more preferably 7 Ω or less, and more preferably 6 Ω or less. Most preferably. A typical self-sustained pulsation semiconductor laser of the present invention oscillates at 75 ° C with an output of 5 mW or more. If a specific example is shown in relation to the temperature, a typical self-pulsation type semiconductor laser of the present invention oscillates with a power of 5 mW at 70 ° C. and 5 mW at 75 ° C. Self-oscillates at output, self-oscillates at 1 OmW output at 70 ° C, and self-oscillates at 1 OmW output at 75 ° C. Further, the oscillation threshold current at 25 ° C. in direct current (DC) driving is, for example, 45 mA or less, preferably 4 OmA or less, and more preferably 35 mA or less.
本発明の半導体レーザは、通信用レーザとしても円形に近いレーザはファイバ 一との結合効率を高める点で有効である。 また、 遠視野像が単一ピークであるも のは、情報処理や光通信などの幅広い用途に好適なレーザとして供することがで きる。 さらに、 本発明の構造は半導体レーザ以外に端面発光型などの発光ダイォ ード (LED) としても応用可能である。  The semiconductor laser of the present invention is also effective as a communication laser in that a nearly circular laser increases the coupling efficiency with the fiber. A laser having a single far-field image can be used as a laser suitable for a wide range of uses such as information processing and optical communication. Further, the structure of the present invention can be applied to a light emitting diode (LED) of an edge emitting type or the like other than the semiconductor laser.
以下に具体例を挙げて、 本発明をさらに詳細に説明する。 以下の実施例に示す 材料、 試薬、 割合、 操作等は、 本発明の精神から逸脱しない限り適宜変更するこ とができる。 したがって、 本努明の範囲は以下に示す具体例に制限されるもので はない。 - (実施例 1 )  Hereinafter, the present invention will be described in more detail with reference to specific examples. Materials, reagents, ratios, operations, and the like shown in the following examples can be appropriately changed without departing from the spirit of the present invention. Therefore, the scope of this effort is not limited to the following specific examples. -(Example 1)
本実施例において、 図 3に示す半導体発光装置を製造した。 厚さ 350 で (100) 面から. [011] 方向に 10° オフした n型 G a A s (n= 1 X 10 18 cm—3) 基板 301上に、 MOCVD法により、厚さ 2. Ομπιの n型 (A 1 0. 7Ga0.3) o.5 I n0.5P (n = 8 X 1017cm— 3, 屈折率 3. 2454) ク ラッド層 302、 (A 1 o.5G a 0. J 0.5 I n0.5P光閉じ込め層 (ノンドープ) 321、 厚さ 5 nmの G a。.5 I n。.5P歪量子井戸層 (ノンドープ) 322、 厚さ 5 nmの(A 10.5Ga 0.5) 0. 5 I n0.5Pパリア層(ノンドープ) 323、 厚さ 511111の0&0.5 I n。.5P歪量子井戸層 (ノンドープ) 324、 厚さ 5 n mの (A 1。· 5Ga 5) 0. 5 I η0· 5Pノ リ ア層 (ノンドープ) 325、厚さ 511111の0 a 0. 5 I n0.5P歪量子井戸層 (ノンドープ) 326及ぴ (A 10.5 Ga 0. 5) I n。.5 P光閉じ込め層 (ノンドープ) 327を順次積層してなる三 重量子井戸 (TQW) 活性層 303、 厚さ 0. 15 μπιの p型 (A 10. 7G a 0. 3) o.5 I n0.5P (p = l X 1018cm— 3, 屈折率 3. 2454) からなる p 型第 1クラッド層 304、厚さ 5 nmの p型 G a 0.5 I n0.5P (p = 1 X 101 8 cm— 3)からなる p型エッチングストップ層 305、厚さ 0. 5 μπιの(A 10. 7Ga0.3) 0. 5 I n0.5P (Znドープ: p =l X 1018cm— 3, 屈折率 3. 2 454) からなる p型第 2クラッド層 306、 厚さ 0. O l /zmの p型 (Al 0. 2Ga0.8) 0.5 I n0.5P (p = l X 1018cm一3) からなる p型酸化抑制層 3 07を順次積層することにより、 ダブルへテロ構造を形成した (図 3 (a))。 次 に、 このダブルへテロ基板の表面にプラズマ CVDにより厚さ 100 nmの S i Nx保護膜を堆積した後に、 フォトリソグラフィ一により [01— 1] 方向 (基 板のオフ方向と直交する方向) を長手方向とするストライプ状の S i Nx保護膜 351を多数形成した (図 3 (b))。 In this example, the semiconductor light emitting device shown in FIG. 3 was manufactured. N-type G a A s (n = 1 X 10) with a thickness of 350 and off from (100) plane by 10 ° in [011] direction 18 cm- 3) on the substrate 301 by MOCVD, n-type thickness 2. Ομπι (A 1 0. 7 Ga 0. 3) o. 5 I n 0. 5 P (n = 8 X 10 17 cm - 3, refractive index 3.2454) clad layer 302, (.... a 1 o 5 G a 0 J 0 5 I n 0 5 P light confining layer (non-doped) 321, thickness 5 nm of G a. . 5 I n .. 5 P strained quantum well layer (undoped) 322, a thickness of 5 nm (a 1 0. 5 Ga 0. 5) 0. 5 I n 0. 5 P Paglia layer (non-doped) 323, thickness is 0 and 0 of 511111. 5 I n .. 5 P strained quantum well layer (non-doped) 324, a thickness of 5 nm of (a 1. · 5 Ga 5) 0. 5 I η 0 · 5 P Roh Li a layer ( doped) 325, 0 a 0. 5 I n 0 thick five hundred and eleven thousand one hundred eleven. 5 P strained quantum well layer (undoped) 326及Pi (a 1 0. 5 Ga 0. 5) I n .. 5 P light confining layer ( doped) 327 sequentially stacked three comprising quantum well the (TQW) active layer 303, a thickness of 0. 15 p-type μπι (a 10. 7 G a 0. 3) o.5 I n 0. 5 P ( p = l x 10 18 cm— 3 , refractive index 3.2454) Type first cladding layer 304, a thickness of 5 nm p-type G a 0. 5 I n 0 . 5 P (p = 1 X 10 1 8 cm- 3) p -type etching stop layer 305 made of, thickness 0. . of 5 μπι (. a 10. 7 Ga 0 3) 0. 5 I n 0 5 P (Zn -doped: p = l X 10 18 cm- 3, the refractive index 3. 2 454) p-type second clad consisting of layer 306, a thickness of 0. O l / zm p-type (Al 0. 2 Ga 0. 8) 0. 5 I n 0. 5 p -type oxidation control consisting of P (p = l X 10 18 cm one 3) A double hetero structure was formed by sequentially laminating layers 307. (Fig. 3 (a).) Next, a 100 nm-thick SiN x protective film was formed on the surface of this double hetero substrate by plasma CVD. After depositing a number of layers, a large number of striped SiO x protective films 351 were formed by photolithography using the [01-1] direction (the direction perpendicular to the off direction of the substrate) as a longitudinal direction (Fig. 3 (b )).
次に、 このストライプ状の S i Nx保護膜 351を用いて、 エッチングストツ プ層 305の表面までゥエツトエッチングを行い、 リッジ底部のストライプ幅が 2. 5 μπιとなるようにした。 このとき、 リッジ上部の幅は 1. 7 μπιであり、 また、 リッジ形状は左右非対称であり、 2つの底角の合計は 105° (—方の底 角 62° 、 他方の底角 43° ) であった。 (図 3 (c))。 このとき、 ゥヱットェ ツチングのエツチング液には塩酸系混合液あるいは硫酸系混合液を用いた。 上記のストライプ状の S i Nx保護膜 351を用いたリッジ形成のためのエツ チングにより除去された部分に、 MO C VD法を用いた選択成長により、厚さ 0. 4 μπιの n型 A 10. 9Ga 0. s電流阻止層 (n = 2 X 1018 c m— 3, 屈折率 3. 1590) 308および厚さ 0. 01 の!!型 (A l 0.7Ga0.3) 0.5 I n0.5P表面保護層(η=1 X 1018cm— 3) 309を形成した' (図 3 (d))。 その後、 ストライプ状の S i Nx保護膜 351を緩衝フッ酸液などを用いたゥヱ ットエッチングまたは S F 6、 CF4などのガスを用いたドライエッチングにより 除去し (図 3 (e))、 再ぴ MOCVD法により厚さ 0. 8 mの p型 A l 0.78 Ga0.22As第 3クラッド層 (p = 1 X 1018 cm— 3, 屈折率 3. 2407) 310、 厚さ 0. 0 の p型 A 10.35Ga0.65As中間パンドギャップ層Next, the surface of the etching stop layer 305 was subjected to wet etching by using the striped SiN x protective film 351 so that the stripe width at the bottom of the ridge was 2.5 μπι. At this time, the width of the upper part of the ridge is 1.7 μπι, and the ridge shape is asymmetric, and the sum of the two base angles is 105 ° (the base angle of one side is 62 ° and the base angle of the other is 43 °) Met. (Fig. 3 (c)). At this time, a hydrochloric acid-based mixed solution or a sulfuric acid-based mixed solution was used as an etching solution for wet etching. The portion removed by the etching for forming the ridge using the above-mentioned striped SiN x protective film 351 is selectively grown using the MOC VD method to form an n-type A having a thickness of 0.4 μπι. 10. 9 Ga 0.0s current blocking layer (n = 2 x 10 18 cm- 3 , refractive index 3.1 1590) 308 and thickness 0.011! ! Type (A l 0. 7 Ga 0 . 3) 0. 5 I n 0. 5 P surface protective layer (η = 1 X 10 18 cm- 3) 309 was formed '(FIG. 3 (d)). After that, the striped SiN x protective film 351 is removed by hot etching using a buffered hydrofluoric acid solution or dry etching using a gas such as SF 6 or CF 4 (FIG. 3 (e)). Pi MOCVD method by a thickness of 0. 8 m of the p-type a l 0. 78 Ga 0. 22 As third cladding layer (p = 1 X 10 18 cm- 3, the refractive index 3.2407) 310, thickness 0. p-type a 1 0 of 0. 35 Ga 0. 65 As intermediate Pando gap layer
(p = 1. 5 X 1018cm— 3) 311および厚さ 3. 5 μπιの p型 GaAsコン タクト層 (p = 7 X 1018 cm—3) 312を成長させた。 A p-type GaAs contact layer (p = 7 × 10 18 cm— 3 ) 312 (p = 1.5 × 10 18 cm— 3 ) 311 and a thickness of 3.5 μπι were grown.
この後、 p側の電極 313を蒸着し、 基板を 100 μπιまで薄くした後に、 η 側電極 314を蒸着し、 ァロイした (図 3 (f))。 このようにして作製したゥェ ハーを劈開して、 レーザ光出射端面を形成 (1次劈開) するようにチップパーに 切り出した。 このときの共振器長は 1000 μ mとした。 前端面に低反射膜、 後 端面に高反射膜を非対称コーティングした後、 2次劈開によりチップに分離した。 分離したチップをジャンクションダウンで組立して半導体レーザ装置を得た ς なお、 -上記の MOCVD法では、 I I I族原料としてトリメチルガリゥム (Τ MG)、 トリメチルインジウム (TMI) およびトリメチルアルミニウム (TM A)、 V族原料としてアルシンおょぴホスフィン、 キャリアガスとして水素をそ れぞれ用いた。 また、 p型ドーパントにはジメチル亜鉛 (DMZ) を用い、 n型 ドーパントにはジシランを用いた。 また、 n型 A 1 Q. 9G a。. 八 s層 (アンド ープ) 308の成長時には、 S i Nx保護膜上へのポリの堆積を抑制するために、 HC 1ガスを HC 1/1 I I族のモル比が 0. 2、 特に H C 1 /TMAのモル比 が 0. 22となるように導入した。 Thereafter, a p-side electrode 313 was deposited and the substrate was thinned to 100 μπι, and then an η-side electrode 314 was deposited and alloyed (FIG. 3 (f)). The wafer thus fabricated was cleaved and cut into chip pars so as to form a laser light emitting end face (primary cleavage). The resonator length at this time was 1000 μm. After asymmetric coating of a low-reflection film on the front end face and a high-reflection film on the rear end face, chips were separated by secondary cleavage. A semiconductor laser device was obtained by assembling the separated chips by junction down.-In the above MOCVD method, trimethyl gallium (ΤMG), trimethyl indium (TMI) and trimethyl aluminum (TMA) were used as Group III raw materials. ), Arsine phosphine as a group V raw material, and hydrogen as a carrier gas. Dimethyl zinc (DMZ) was used as the p-type dopant, and disilane was used as the n-type dopant. Also, n-type A 1 Q. 9 G a. During the growth of the s layer (ANDOP) 308, the HC 1 gas was converted to a HC 1/1 group molar ratio of 0.2 to suppress the deposition of poly on the SiN x protective film. In particular, it was introduced so that the molar ratio of HC 1 / TMA was 0.22.
作製した半導体.レーザ装置を 25 °Cで違続通電(CW) し、高速パルス測定(パ ルス幅: 1 00 n s e c、 d u t y: 50 %) により得られた電流一光出力およ ぴ電流一電圧特性を測定した。 The fabricated semiconductor laser device was intermittently energized (CW) at 25 ° C to perform high-speed pulse measurement ( The current-light output and current-voltage characteristics obtained with a pulse width of 100 nsec and a duty of 50% were measured.
結果を図 5に示す。 本実施例によって作製した半導体レーザ装置では、 高速パ ルス測定において、 動作電流の増加とともに光出力が増加し、 20 OmWまでキ ンクは発生せず、 高出力特性が得られた。 本実施例の半導体レーザ装置では、 発 振波長が平均 6 6 7 nm、 しきい値電流が 3 7 mA、 スロープ効率が平均 0. 9 5 mW/mAと優れた特性を示した。 さらに本発明の半導体レーザの垂直広がり 角は平均 1 9° 、 水平拡がり角は 8° であり、 p側クラッド層を厚膜にしたにも かかわらず、 素子抵抗を 5. 5 Ω程度と小さく抑えることができた。  Fig. 5 shows the results. In the semiconductor laser device manufactured according to this example, in high-speed pulse measurement, the optical output increased with an increase in operating current, and no kink was generated up to 20 OmW, and high output characteristics were obtained. The semiconductor laser device of this example exhibited excellent characteristics with an oscillation wavelength of 667 nm on average, a threshold current of 37 mA, and a slope efficiency of 0.95 mW / mA on average. Furthermore, the semiconductor laser of the present invention has an average vertical divergence angle of 19 ° and a horizontal divergence angle of 8 °, and keeps the device resistance at about 5.5 Ω despite the thick p-side cladding layer. I was able to.
このように、 本実施例の半導体レーザ装置は、 通過抵抗が小さいために、 素子 の発熱を低減することができ、 高温 ·高出力 (たとえば 70°C、 CW7 OmW) における長時間の安定動作が充分に可能となる。  As described above, the semiconductor laser device of this embodiment can reduce the heat generation of the device due to the small passing resistance, and can perform stable operation for a long time at high temperature and high output (for example, 70 ° C, CW7 OmW). It is possible enough.
(比較例 1 ) (Comparative Example 1)
p型第 3クラッド層 (厚さ 1. 2 μηι) を形成せずに、 その他は実施例 1と同 様の方法により半導体レーザ素子を作製し、高速パルス測定により得られた電流 一光出力おょぴ電流一電圧特性を測定した。 しきい値電流は 75mAと高く、 ス ロープ効率は 0. 3 5mWZmAと低くなつてしまった。  Without forming the p-type third cladding layer (thickness: 1.2 μηι), a semiconductor laser device was fabricated by the same method as in Example 1 except for the current, light output, and current obtained by high-speed pulse measurement. The current-voltage characteristics were measured. The threshold current was as high as 75mA, and the slope efficiency was as low as 0.35mWZmA.
このようにレーザ特性が悪ィ匕した原因は、 p型コンタクト層への光の漏れが大 きくなり、 光のロスが増加、 すなわち導波路ロスが大幅に増加したことにあると 考えられる。  It is considered that the reason for the poor laser characteristics is that the leakage of light to the p-type contact layer has increased and the light loss has increased, that is, the waveguide loss has increased significantly.
(比較例 2) - p型第 3クラッド層 (厚さ 1. 2 A m) を形成せずに、 その厚みを補うため p 型第 2クラッド層の厚みを 1. 7 μ niとし、 リツジ底部の幅を 3 m (実施例 1 よりも 0. 5 μπι広い) として、 その他は実施例 1と同様の方法により半導体レ 一ザ装置を作製し、高速パルス測定により得られた電流—光出力および電流ー電 圧特性を測定した。 得られた半導体レーザ装置ではレーザ発振しなかった。 (Comparative Example 2)-Without forming the p-type third cladding layer (thickness: 1.2 Am), the thickness of the p-type second cladding layer was set to 1.7 μni to compensate for the thickness, and the bottom of the ridge was formed. The semiconductor laser device was fabricated in the same manner as in Example 1 except that the width of the laser was 3 m (0.5 μπι wider than Example 1), and the current-light output and light output obtained by high-speed pulse measurement were Electric current Pressure characteristics were measured. No laser oscillation occurred in the obtained semiconductor laser device.
その原因は、 ストライプ状の S i Nx保護膜下のサイドエッチングのために、 リッジ上部の幅が 0. 2 mとかなり狭くなり、 素子抵抗がかなり高く ( 20 Ω 以上) なってしまったことが原因であると考えられる。 The reason for this is that the width of the top of the ridge was considerably narrowed down to 0.2 m, and the device resistance was considerably high (more than 20 Ω) due to side etching under the striped SiN x protective film. Is thought to be the cause.
(実施例 2) (Example 2)
p型第 3クラッド層 310を厚さ 0. 5 ^πιの (A 10. 75G a 0. 25) 0. 5 I n0.5P (p = 7 X l 018cm一3) に変更したこと以外は実施例 1と同様の方法 により半導体発光装置を作製した。 p-type third cladding layer 310 thickness 0. 5 ^ πι of (A 1 0. 75 G a 0. 25) 0. 5 I n 0. 5 to P (p = 7 X l 0 18 cm one 3) A semiconductor light emitting device was manufactured in the same manner as in Example 1 except for the change.
初期特性については、 実施例 1とほぼ同程度であつたが、 素子抵抗は 8 Ωと実 施例 1に比べて少し高くなつた。 その理由は、 (A 10. 75Ga。.25) 0. 5 I n0. 5 Pの抵抗率が p型 A 10. 8Ga0.2Asの抵抗率より大きいことによると考えら れる。 (実施例 3) The initial characteristics were almost the same as in Example 1, but the element resistance was 8 Ω, which was slightly higher than in Example 1. The reason is, (A 10. 75 Ga .. 25 ) 0. 5 I n 0. 5 P resistivities believed et al is due to greater than the resistivity of the p-type A 10. 8 Ga 0. 2 As . (Example 3)
本実施例において、 図 4に示す構造を有する自励発振型半導体レーザ装置を製 造した。 厚さ 350 で (100) 面から [011] 方向に 10° オフした n 型 GaAs (n= 1 X 1018cm— 3) 基板 301上に、 MOCVD法により、厚 さ 1. 2 μι の n型 (A 10. 7Ga 0.3) 。· 5 I η。· 5P (n = 8 X 1017 cm一 3, 屈折率 3. 2454) クラッド層 302、 (A 10, 5G a 0. 5) 0. 5 I n0. 5P 光閉じ込め層 (ノンドープ) 321、 厚さ 511«1の0 a 0. 5 I n0. 5P歪量子井 戸層 (ノンドープ) 322、厚さ 5 nmの (A 10. 5G a 0. 5) 0. 5 I n0. 5?バ リア層 (ノンドープ) 323からなる井戸数が 6である多重子井戸 (MQW、 N =6)活性層 303、厚さ 0. 08 μπιの p型 (A 10. 7Ga0. 3) 0. 5 I n0.5 P (p = 1 X 1018 cm— 3, 屈折率 3. 2454) からなる p型第 1クラッド層 304、 厚さ 5 nmの p型 Ga0. 5 I n0. 5P (p = 1 X 1018 cm-3) からな る p型エッチングストップ層 305、 厚さ 0. 5 mの (A 10. 7Ga0. 3) 0. 5 I n。.5P (Z nドープ: p = 1 X 1018 cm— 3, 屈折率 3. 2454) から なる p型第 2クラッド層 306、厚さ 0. 01 /xmの p型(A 10.2G a 0. 8) 0. 5 I η0.5Ρ (ρ = 1 Χ 1018cm一3) からなる p型酸化抑制層 307を順次積 層することにより、 ダブルへテロ構造を形成した (図 4 (a))。 次に、 このダブ ルヘテロ基板の表面にプラズマ CVDにより厚さ 100 nmの S i Nx保護膜 を堆積した後に、 フォトリソグラフィ一により [01— 1] 方向 (基板のオフ方 向と直交する方向) を長手方向とするストライプ状の S i Nx保護膜351を多 数形成した (図 4 (b))。 In this example, a self-pulsation type semiconductor laser device having the structure shown in FIG. 4 was manufactured. On a n-type GaAs (n = 1 x 10 18 cm— 3 ) substrate 301 with a thickness of 350 and turned off by 10 ° from the (100) plane in the [011] direction, an n-type with a thickness of 1.2 μι (A 1 0. 7 Ga 0 . 3). · 5 I η. · 5 P (n = 8 X 10 17 cm one 3, refractive index 3.2454) cladding layer 302, (A 1 0, 5 G a 0. 5) 0. 5 I n 0. 5 P light confining layer (non-doped ) 321, 0 a 0 thickness 511 «1. 5 I n 0 . 5 P strained quantum well Toso (non-doped) 322, a thickness of 5 nm (a 1 0. 5 G a 0. 5) 0. 5 I n 0. 5? barriers layers (undoped) number of wells consisting of 323 is 6 Tajuuko well (MQW, n = 6) active layer 303, a thickness of 0. 08 μπι p-type (a 10. 7 Ga 0 . 3) 0. 5 I n 0. 5 P (p = 1 X 10 18 cm- 3, the refractive index 3. p-type first cladding layer 304 made of 2454), the thickness of 5 nm of the p-type Ga 0. 5 I n 0. 5 P (p = 1 X 10 18 cm -3) Tona Ru p-type etching stop layer 305, the thickness of 0.5 to 5 m (a 1 0. 7 Ga 0. 3) 0. 5 I n. . 5 P. (Z n-doped: p = 1 X 10 18 cm- 3, the refractive index 3. 2454) p-type second cladding layer 306 made of, thickness 0. 01 / xm of p-type (A 1 0 2 G a 0. 8) 0. 5 I η 0. by 5 Ρ (ρ = 1 Χ 10 18 cm one 3) sequentially product layer a p-type oxidation control layer 307 made of, to form a double-hetero structure ( Figure 4 (a)). Next, after depositing a 100-nm-thick SiNx protective film on the surface of this double heterosubstrate by plasma CVD, the [01-1] direction (the direction perpendicular to the off direction of the substrate) was changed by photolithography. A large number of SiNx protective films 351 having a stripe shape in the longitudinal direction were formed (FIG. 4B).
次に、 このストライプ状の S i Nx保護膜 351を用いて、 エッチングストツ プ層 305の表面までウエットエッチングを行い、 リッジ底部のストライプ幅が 2. 2 となるようにした。 このとき、 リッジ上部の幅は 1. 4 jumであり、 また、 リッジ形状は左右非対称であり、 2つの底角の合計は 105° (—方の底 角 62° 、 他方の底角 43° ) であった。 (図 4 (c))。 このとき、 ウエットェ ツチングのエツチング液には塩酸系混合液あるレヽは硫酸系混合液を用いた。  Next, the surface of the etching stop layer 305 was wet-etched using the striped SiNx protective film 351 so that the stripe width at the bottom of the ridge was 2.2. At this time, the width of the upper part of the ridge is 1.4 jum, the ridge shape is asymmetric, and the sum of the two base angles is 105 ° (one base angle is 62 °, the other base angle is 43 °) Met. (Fig. 4 (c)). At this time, a hydrochloric acid-based mixed solution and a sulfuric acid-based mixed solution were used as the wet-etching solution.
上記のストライプ状の S i Nx保護膜 351を用いたリッジ形成のためのェ ツチングにより除去された部分に、 MOCVD法を用いた選択成長により、 厚さ 0. 4 111の11型八10.90&0.1 3電流阻止層 (n= 2 X 1018 cm— 3, 屈 折率 3. 1590) 308および厚さ 0. 01 μ mの n型(A 10.7 G a 0.3) 0. 5 I n0:5P表面保護層(n=l X 1018cm— 3) 309を形成した(図 4 (d))。 その後、 ストライプ状の S i Nx保護膜 351を緩衝フッ酸液などを用いたゥェ ットエッチングまたは S F6、 CF4などのガスを用いたドライエッチングにより 除去し (図 4 (e))、 再ぴ MOCVD法により厚さ 0. 5 mの p型 A 10.8 G a0.2As第 3クラッド層 (p = l X 1018 cm"3, 屈折率 3. 2267) 31 0、 厚さ 0. 05μπιの!)型 A10. 35Ga0.65 A s中間パンドギャップ層 (p =1. 5X 1018cm— 3) 311および厚さ 3. 5 mの p型 G a A sコンタク ト層 (p = 7 X 1018 cm_3) 312を成長させた。 The removed portion by E Tsuchingu for ridge formation using S i Nx protective film 351 of the stripe by selective growth using an MOCVD method, a thickness of 0.4 111 11 type eight 1 0. 9 0 & 0.1 3 current blocking layer (n = 2 X 10 18 cm- 3, refractive Oriritsu 3.1590) 308 and a thickness of 0. 01 mu n-type m (a 1 0. 7 G a 0. 3 .) 0 5 I n 0: 5 P surface protective layer (n = l X 10 18 cm- 3) 309 was formed (FIG. 4 (d)). Thereafter, the striped SiNx protective film 351 is removed by a wet etching using a buffered hydrofluoric acid solution or a dry etching using a gas such as SF 6 or CF 4 (FIG. 4 (e)). p-type thickness 0. 5 m by MOCVD a 1 0. 8 G a 0 . 2 As third cladding layer (p = l X 10 18 cm "3, refractive index 3.2267) 31 0, thickness 0 . of 05μπι!) type A10. 35 Ga 0. 65 a s intermediate Pando gap layer (p = 1. 5X 10 18 cm- 3) 311 and the thickness 3. p-type 5 m G a a s contactors coat layer ( p = 7 × 10 18 cm — 3 ) 312 was grown.
この後、 P側の.電極 313を蒸着し、 基板を 100 μπιまで薄くした後に、 n 側電極 314を蒸着し、 ァロイした (図 4 (f))。 このようにして作製したゥェ ハーを劈開して、 レーザ光出射端面を形成 (1次劈開) するようにチップバーに 切り出した。 このときの共振器長は 300 μπιとした。 前端面に低反射膜、 後端 面に高反射膜を非対称コーテイングした後、 2次劈開によりチップに分離した。 分離したチップをジャンクションダウンで組立して半導体レーザ装置を得た。 なお、 上記の MOCVD法では、 I I I族原料としてトリメチルガリゥム (Τ MG)、 トリメチルインジウム (TMI) およびトリメチルアルミニウム (TM A)、 V族原料としてアルシンおよびホスフィン、 キャリアガスとして水素をそ れぞれ用いた。 また、 p型ドーパントにはジメチル亜鉛 (DMZ) を用い、 n型 ドーパントにはジシランを用いた。 また、 n型 A 10. 9Ga 0. s層 (アンド ープ) 308の成長時には、 S i Nx保護膜上へのポリの堆積を抑制するために、 HC 1ガスを HC 1 I I I族のモル比が 0. 2、 特に HC 1 ZTMAのモル比 が 0. 22となるように導入した。 After this, the electrode 313 on the P side is deposited, and the substrate is thinned to 100 μπι. The side electrode 314 was deposited and alloyed (FIG. 4 (f)). The wafer thus fabricated was cleaved and cut into chip bars so as to form a laser light emitting end face (primary cleavage). The resonator length at this time was 300 μπι. After asymmetric coating of a low-reflection film on the front end surface and a high-reflection film on the rear end surface, the chip was separated by secondary cleavage. The separated chips were assembled at the junction down to obtain a semiconductor laser device. In the above MOCVD method, trimethyl gallium (ΤMG) and trimethyl indium (TMI) and trimethyl aluminum (TMA) are used as group III materials, arsine and phosphine are used as group V materials, and hydrogen is used as a carrier gas. Used. Dimethyl zinc (DMZ) was used as the p-type dopant, and disilane was used as the n-type dopant. Further, at the time of growth of the n-type A 10. 9 Ga 0. s layer (and-loop) 308, in order to suppress the poly deposition on S i Nx protective film, moles of HC 1 gas HC 1 III Group The introduction was carried out so that the ratio was 0.2, especially the molar ratio of HC 1 ZTMA was 0.22.
作製した半導体レーザ装置を 25°Cで連続通電 (CW) することにより電流一 光出力特性および電流一電圧特性を測定した。  Current-light output characteristics and current-voltage characteristics were measured by continuously applying current (CW) at 25 ° C to the fabricated semiconductor laser device.
以下の表 1に示すように、 本実施例の半導体レーザ装置は、 図 6 (a) に示す ように縦マルチモード発振しており、戻り光との可干渉性を示すビジビリティは 0. 25と低く、 高周波重畳回路無しで低ノィズ動作が可能であることが判明し た。 また、 発振波長は平均 656 nmであり、 しきい値電流は 27mA、 5 mW 出力時の動作電流は 31 mAであり、 低しきい値 ·低動作電流の優れた特性を示 した。 さらに本発明の半導体レーザの垂直広がり角は平均 37. 5° 、 水平拡が り角は 10. 6° であり、 p側クラッド層を厚膜にしたにもかかわらず、 素子抵 抗を 10 Ω程度に小さく抑えることができた。 - このように、 本実施例の半導体レーザ装置は、 通過抵抗が小さいために素子の 発熱を低減することができ、 75°C以上の高温においても安定な自励発振動作を 実現できる。 表 1 As shown in Table 1 below, the semiconductor laser device of this example oscillates in vertical multimode as shown in FIG. 6 (a), and the visibility indicating coherence with return light is 0.25. It was found that low noise operation was possible without a high-frequency superimposing circuit. The lasing wavelength was 656 nm on average, the threshold current was 27 mA, and the operating current at 5 mW output was 31 mA, demonstrating excellent characteristics of low threshold and low operating current. Further, the vertical divergence angle of the semiconductor laser of the present invention is 37.5 ° on average and the horizontal divergence angle is 10.6 °, and the device resistance is 10 Ω despite the thick p-side cladding layer. It was able to be kept small. -As described above, the semiconductor laser device of the present embodiment can reduce the heat generation of the element due to the small passage resistance, and can realize a stable self-pulsation operation even at a high temperature of 75 ° C. or more. table 1
Figure imgf000050_0001
Figure imgf000050_0001
(比較例 3) (Comparative Example 3)
p型第 3クラッド層 (厚さ 0. 5 μπι) を形成せずに、 その他は実施例 3と同 様の方法により半導体レーザ素子を作製し、高速 ルス測定により得られた電流 一光出力および電流一電圧特性を測定した。 しきい値電流は 60mAと高くなつ てしまった。 without forming the p-type third cladding layer (thickness 0. 5 μ πι), others to produce a semiconductor laser device by the method same as in Example 3, current Ikko output obtained by high pulse measurement And the current-voltage characteristics were measured. The threshold current has increased to 60 mA.
このようにレーザ特性が悪化した原因は、 p型コンタクト層への光の漏れが大 きくな'り、 光のロスが増加、 すなわち導波路ロスが大幅に增加したことにあると 考えられる。  It is considered that the cause of the deterioration of the laser characteristics in this way is that light leakage into the p-type contact layer is increased and light loss is increased, that is, waveguide loss is significantly increased.
(比較例 4) (Comparative Example 4)
P型第 3クラッド層 (厚さ 0. 5μπι) を形威せずに、 その厚さを捕うため ρ 型第 2クラッド層の厚さを 1 μΐηとして、 その他は実施例 3と同様の方法により 半導体レーザ装置を作製し、電流一光出力特性および電流一電圧特性を測定した。 得られた半導体レーザ装置ではレーザ発振しなかつた。 その原因は、 ストライプ状の S i Nx保護膜下のサイドエッチングのために、 リッジ上部の幅が 0. 2 μ mとかなり狭くなり、 素子抵抗がかなり高く ( 20 Ω 以上) なってしまったことにあると考えられる。 (実施例 4) The same method as in Example 3 except that the thickness of the ρ-type second cladding layer was set to 1 μΐη to capture the P-type third cladding layer (thickness 0.5μπι) without affecting the thickness. The semiconductor laser device was manufactured by the method described above, and the current-light output characteristics and the current-voltage characteristics were measured. Laser oscillation did not occur in the obtained semiconductor laser device. The reason for this is that the width of the top of the ridge was considerably narrowed to 0.2 μm due to side etching under the striped Si Nx protective film, and the device resistance was considerably high (more than 20 Ω). It is thought that there is. (Example 4)
p型第 3クラッド層 310を厚さ 0. 5 //mの (A 10.75 G a 0.25) 0.5 I n0.5P (p = 7 X l 018 cm一3) に変更したこと以外は実施例 3と同様の方法 により自励発振型半導体レーザ装置を作製した。 The p-type third cladding layer 310 thickness 0.5 // of m (A 1 0. 75 G a 0. 25) 0. 5 I n 0. 5 P (p = 7 X l 0 18 cm one 3) A self-sustained pulsation type semiconductor laser device was manufactured in the same manner as in Example 3 except that the configuration was changed to.
初期特性については、 実施例 3とほぼ同程度であつたが、 素子抵抗は 15 Ωと 実施例 3に比べて少し高くなり、 70°Cでの自励発振も得られなかった。 この原 因は、 (A l 0.75Ga0.25) 0.5 I n0.5Pの抵抗率及び熱抵抗が p型 A 10.8 G a 0. 2Asの抵抗率及び熱抵抗より大きいことにより、 素子の発熱、 すなわち 活性層の温度が増加したためであると考えられる。 (実施例 5) The initial characteristics were almost the same as in Example 3, but the element resistance was 15 Ω, which was slightly higher than in Example 3, and no self-excited oscillation at 70 ° C was obtained. The cause is, (A l 0. 75 Ga 0. 25) 0. 5 I n 0. 5 p -type A 1 0 is the resistivity and the thermal resistance of the P. 8 G a 0. 2 As the resistivity and thermal This is considered to be because the heat generation of the element, that is, the temperature of the active layer was increased due to being larger than the resistance. (Example 5)
本実施例において、 図 4に示す自励発振型半導体レーザ装置を製造した。 厚さ 350 μπιで(100)面から [01 U方向に 10° オフした η型 GaAs (n = 1 X 1018 cm一3) 基板 301上に、 MOCVD法により、厚さ 0. 5 μ mの n型 GaAs (n = 1 X 1018 cm-3) (図示せず)、厚さ 0. Ι μπιの n型 Ga o. 5 I n0.5P (n= 1 X 1018 cm"3) (図示せず)、厚さ 1. 6 //!!!の 型(A 1 o. 7G a o. 3) 0.5 I n0.5P (n = 8 X 1017 c m— 3, 屈折率 3. 2454) クラッド層 302、 (A l o. 5Ga0.5) 0.5 I n 0.5 P光閉じ込め層 (ノンドー プ) 321、 厚さ 5nmの Ga0.5 I n0.5P歪量子井戸層 (ノンドープ) 32 2、厚さ 4. 8 nmの (A 1。· 5Ga0.5) 0.5 I η0· 5Pバリア層 (ノンドープ) 323からなる井戸数が 8である多重量子井戸(MQW、N= 8)活性層 303、 厚さ 0· 1 ^ 111の1)型(A 10. 7Ga0.3) 。· 5 I n。.5P (p = 1 X 1018 cm 一3, 屈折率 3· 2.454) からなる ρ型第 1クラッド層 304、 厚さ 5 nmの ρ 型 Ga0.5 I n0.5P ( p = 1 X 1018 c m一3) からなる p型エッチングストツ プ層 305、厚さ 0. 5 の(A 10.7G a 0.3) 。· 5 I n0.5P (Z nドープ: ρ = 1 X 1018 cm— 3, 屈折率 3. 2454) からなる p型第 2クラッド層 30 6、厚さ 0· 01 の p型 (A 10. 2Ga0.8) 0.5 I n0.5P (p = l X 10 18 cm— 3)からなる p型酸化抑制層 307を順次積層することにより、ダブルへ テロ構造を形成した (図 4 (a))。 次に、 このダブルへテロ基板の表面にプラズ マ CVDにより厚さ 100 nmの S i N x保護膜を堆積した後に、 フォトリソグ ラフィ一により [01-1] 方向 (基板のオフ方向と直交する方向) を長手方向 とするストライプ状の S i Nx保護膜 351を多数形成した (図 4 (b))。 In this example, the self-pulsation type semiconductor laser device shown in FIG. 4 was manufactured. Thick 350 Myupaiiota from (100) plane [a 01 U direction 10 ° off the η-type GaAs (n = 1 X 10 18 cm one 3) on the substrate 301 by MOCVD, a thickness of 0. 5 mu m n-type GaAs (n = 1 X 10 18 cm -3) ( not shown), having a thickness of 0. Ι μπι n-type Ga o. 5 I n 0. 5 P (n = 1 X 10 18 cm "3) (not shown), the thickness of 1.6 // !!! type (a 1 o. 7 G a o. 3) 0. 5 I n 0. 5 P (n = 8 X 10 17 cm- 3, refractive index 3.2454) cladding layer 302, (a l o. 5 Ga 0. 5) 0. 5 I n 0. 5 P light confining layer (Nondo flop) 321, Ga thickness 5nm 0. 5 I n 0 . 5 P strained quantum well layer (undoped) 32 2, thickness 4. 8 nm (a 1. · 5 Ga 0. 5) 0. number of wells consisting of 5 I η 0 · 5 P barrier layer (non-doped) 323 a multiple quantum well (MQW, n = 8) There is a 8 active layer 303, the first thickness of 0 · 1 ^ 111) type (a 10. 7 Ga 0. 3 ). · 5 I n .. 5 P (p = 1 X 10 18 cm one 3, the first cladding layer 304 [rho type consisting refractive index 3 · 2.454), the thickness of 5 nm [rho Type Ga 0. 5 I n 0. 5 P (p = 1 X 10 18 cm one 3) p-type etching Sutotsu flop layer 305 consisting of, a thickness of 0. 5 (A 1 0. 7 G a 0. 3) . · 5 I n 0 5 P. (Z n -doped: ρ = 1 X 10 18 cm- 3, the refractive index 3. 2454) p-type second cladding layer 30 6 made of, p-type thickness 0 · 01 (A 10. 2 Ga 0. 8) 0 . the 5 I n 0. 5 P ( p = l X 10 18 cm- 3) by sequentially stacking a p-type oxidation control layer 307 made of, to form a double heterostructure (Figure 4 (a)). Next, a 100 nm-thick SiN x protective film is deposited on the surface of the double hetero substrate by plasma CVD, and then photolithography is performed in the [01-1] direction (a direction orthogonal to the off direction of the substrate). A large number of striped SiNx protective films 351 with () as the longitudinal direction were formed (Fig. 4 (b)).
次に、 このストライプ状の S i Nx保護膜 351を用いて、 エッチングストツ プ層 305の表面までゥエツトエッチングを行い、 リッジ底部のストライプ幅が 2. 6 μπιとなるようにした。 このとき、 リッジ上部の幅は 1. 7 μπιであり、 また、 リッジ形状は左右非対称であり、 2つの底角の合計は 100° (—方の底 角 60° 、 他方の底角 40° ) であった。 (図 4 (c))。 このとき、 ウエットェ ツチングのェツチング液には塩酸系混合液あるレ、は硫酸系混合液を用いた。  Next, using the SiNx protective film 351 in the form of stripes, a wet etching was performed to the surface of the etching stop layer 305 so that the stripe width at the bottom of the ridge became 2.6 μπι. At this time, the width of the upper part of the ridge is 1.7 μπι, and the ridge shape is asymmetric, and the sum of the two base angles is 100 ° (the base angle of one side is 60 °, the base angle of the other side is 40 °) Met. (Fig. 4 (c)). At this time, the wet etching solution used was a hydrochloric acid-based mixed solution or a sulfuric acid-based mixed solution.
上記のストライプ状の S i Nx保護膜 351を用いたリッジ形成のためのェ ツチングにより除去された部分に、 M.OCVD法を用いた選択成長により、 厚さ 0. 4 jumの n型 A 1。· 85Ga 0.15A s電流阻止層 (n = 2 X 1018 c m— 3, 屈折率 3. 1924) 308および厚さ 0. 01 μ mの n型 (A 10.7 G a 0.3) 0.5 I 110.5 ?表面保護層(11=1 X 1018 cm— 3) 309を形成した(図 4 (d))。 その後、 ストライプ状の S i Nx保護膜 351を緩衝フッ酸液などを用いたゥェ ットエッチングまたは S F6、 CF4などのガスを用いたドライエッチングにより 除去し (図 4 (e))、 再ぴ MOCVD法により厚さ 0. 5 mの p型 A 10.78 G a 0.22A s第 3クラッド層 (p - 1 X 1018 cm— 3, 屈折率 3. 2407) 310、 厚さ 0. 05 πιの p型 A10.35Ga0.65As中間パンドギャップ層 (p = 1. 5X 1018 cm~3) 311および厚さ 3· 5μηιの ρ型 GaAsコン タクト層 (p = 7.X 1018cm— 3) 312を成長させた。 この後、 p側の電極 313を蒸着し、 基板を 100 ηιまで薄くした後に、 n 側電極 1114を蒸着し、 ァロイした (図 4 (f))。 このようにして作製したゥ ェハーを劈開して、 レーザ光出射端面を形成 (1次劈開) するようにチップパー に切り出した。 このときの共振器長は 300 ^ mとした。 前端面に低反射膜、 後 端面に高反射膜を非対称コーティングした後、 2次劈開によりチップに分離した。 分離したチップをジャンクシヨンダウンで組立して半導体レーザ装置を得た。 なお、 上記の MOCVD法では、 I I I族原料としてトリメチルガリウム (T MG)、 トリメチルインジウム (TMI) およびトリメチルアルミユウム (TM A)、 V族原料としてアルシンおよびホスフィン、 キャリアガスとして水素をそ れぞれ用いた。 また、 p型ドーパントにはジメチル亜鉛 (DMZ) を用い、 n型 ドーパントにはジシランを用いた。 また、 n型 A 1。.9G a。. 八 s層 308の 成長時には、 S i Nx保護膜上へのポリの堆積を抑制するために、微量の HC 1 ガスを導入した。 The portion removed by the etching for forming the ridge using the above-mentioned striped SiNx protective film 351 is selectively grown using the M.OCVD method to form an n-type A1 layer having a thickness of 0.4 jum. . · 85 Ga 0. 15 A s current blocking layer (n = 2 X 10 18 cm- 3, the refractive index 3.1924) 308 and a thickness of 0. 01 mu n-type m (A 1 0. 7 G a 0. 3) 0.5 I 11 0. 5 ? surface protective layer (11 = 1 X 10 18 cm- 3) 309 was formed (FIG. 4 (d)). Thereafter, the striped SiNx protective film 351 is removed by a wet etching using a buffered hydrofluoric acid solution or a dry etching using a gas such as SF 6 or CF 4 (FIG. 4 (e)). p-type a 1 0 thickness 0. 5 m by MOCVD 78 G a 0 22 a s the third cladding layer.. (p - 1 X 10 18 cm- 3, the refractive index 3.2407) 310, thickness 0 . 05 πι of p-type A1 0. 35 Ga 0. 65 As intermediate Pando gap layer (p = 1. 5X 10 18 cm ~ 3) 311 and the thickness 3 · [rho type GaAs con tact layer 5μηι (p = 7. X 10 18 cm— 3 ) 312 was grown. Thereafter, a p-side electrode 313 was deposited and the substrate was thinned to 100 ηι, and then an n-side electrode 1114 was deposited and alloyed (FIG. 4 (f)). The wafer fabricated in this manner was cleaved and cut into chippers so as to form a laser light emitting end face (primary cleavage). The resonator length at this time was 300 ^ m. After asymmetric coating of a low-reflection film on the front end face and a high-reflection film on the rear end face, chips were separated by secondary cleavage. The separated chips were assembled in a junction down to obtain a semiconductor laser device. In the above MOCVD method, trimethylgallium (TMG), trimethylindium (TMI) and trimethylaluminum (TMA) are used as group III materials, arsine and phosphine are used as group V materials, and hydrogen is used as a carrier gas. Using. Dimethyl zinc (DMZ) was used as the p-type dopant, and disilane was used as the n-type dopant. Also n-type A1. 9 G a. During growth of the s layer 308, a small amount of HC 1 gas was introduced to suppress poly deposition on the Si Nx protective film.
作製した半導体レーザ装置を連続通電 (CW) することにより電流-光出力特 性およぴ電流 -電圧特性を測定した。  Current-light output characteristics and current-voltage characteristics were measured by continuously energizing (CW) the fabricated semiconductor laser device.
本実施例の半導体レーザ装置は、 図 13に示すように 75°C、 10 mWにおい ても縦マルチモード発振しており (ピーク波長 676. 3 nm)、 戻り光との可 干渉性を示すビジピリティは 0. 34と低く、 高温 ( 75 °C以上) ·高出力 (1 OmW以上) まで高周波重畳回路無しで低ノイズ動作が可能であることが判明し た。  As shown in Fig. 13, the semiconductor laser device of this example oscillates vertically in multimode even at 75 ° C and 10 mW (peak wavelength 676.3 nm), showing a visibility that shows coherence with the return light. Is low at 0.34, which indicates that low-noise operation is possible without high-frequency superimposing circuits up to high temperatures (75 ° C or higher) and high outputs (1 OmW or higher).
(実施例 6) (Example 6)
本実施例において、 図 4に示すように活性層総厚の異なる複数の自励発振型半 導体レーザ装置を製造した。 厚さ 350 μπιで (100) 面から [011] 方向 に 10° オフした η型 GaAs (n = 1 X 1018 c m— 3)基板 301上に、 MO CVD法により、 厚さ 0. 5 mの η型 GaAs (n = 1 X 1018 c m— 3) (図 示せず)、厚さ 0. 1 111の11型03 0. 5 I n0.5P (n= 1 X 1018 cm"3) (図 示せず)、 厚さ 1 · 2 /imの n型 (A 1 o.7G a o. J 。.5 I n。.5P (n = 8 X 1017 cm— 3) クラッド層 302、 (Al 0.5Ga0.5) 0.5 I n 0.5 P光閉じ込 め層 (ノンドープ) 321、 Ga0.5 I n0.5P歪量子井戸層 (ノンドープ) 3 22、 厚さ 5 nmの (A 10.5Ga 0.5) 0.5 I n 0.5 Pノ リア層 (ノンドープ) 323からなる多重子井戸 (MQW) 活性層 303、 厚さ 0. l /zmの p型 (A 10. 7Ga0.3) 0. 5 I n0.5P (p = l X 1018cm— 3) からなる p型第 1クラ ッド層 304、 厚さ 5 nmの p型 Ga0, 5 I n0.5P ( p = 1 X 1018 c m一3) からなる p型エッチングストップ層 305、 厚さ 0. 5 / mの (A 10. 7G a 0. J o.5 I n0.5P (Znドープ: p =l X 1018 cm一3) からなる p型第 2ク ラッド層 306、厚さ 0. 01 μΐηの p型(A 1。· 2G a。· 8) 0.5 I n0.5P (p = 1 X 1018 cm— 3)からなる p型酸化抑制層 307を順次積層することにより、 ダブルへテロ構造を形成した (図 4 (a))。 次に、 このダブルへテロ基板の表面 にプラズマ CVDにより厚さ 100 nmの S i N x保護膜を堆積した後に、 フォ トリソグラフィーにより [01- 1] 方向 (基板のオフ方向と直交する方向) を 長手方向とするストライプ状の S i Nx保護膜 351を多数形成した (図 4 (b))。 In this example, as shown in FIG. 4, a plurality of self-pulsation type semiconductor laser devices having different total active layer thicknesses were manufactured. On a η-type GaAs (n = 1 × 10 18 cm— 3 ) substrate 301 with a thickness of 350 μπι and turned off by 10 ° in the [011] direction from the (100) plane, a 0.5 m η-type GaAs (n = 1 X 10 18 cm- 3) ( not Shimese Figure), type 11 03 0 thickness 0. 1 111. 5 I n 0 . 5 P (n = 1 X 10 18 cm "3) (Figure Not shown), n-type (A1 o. 7 G ao. J .. 5 In .. 5 P (n = 8 × 10 17 cm— 3 ) cladding layer 302, al 0. 5 Ga 0. 5 ) 0. 5 I n 0. 5 P light confinement Me layer (non-doped) 321, Ga 0. 5 I n 0. 5 P strained quantum well layer (undoped) 3 22, the thickness of 5 nm (a 1 0. 5 Ga 0. 5) 0. 5 I n 0. 5 P Roh rear layer (non-doped) 323 consisting Tajuuko well (MQW) active layer 303, a thickness of 0. l / zm p type (a 10. 7 Ga 0. 3 ) 0. 5 I n 0. 5 P (p = l X 10 18 cm- 3) p -type first class head layer 304 made of, thickness 5 nm of the p-type Ga 0, 5 I n 0. 5 P (p = 1 X 10 18 cm one 3) p-type etching stop layer 305 made of, (a 10. 7 having a thickness of 0. 5 / m G a 0. J o. . 5 I n 0 5 P ( Zn -doped: p = l X 10 18 cm one 3) p-type and a second clad layer 306, a thickness of 0. 01 μΐη p-type (a 1. · 2 G a. · 8) by 0. 5 I n 0. 5 P (p = 1 X 10 18 cm- 3) by sequentially stacking a p-type oxidation control layer 307 made of A double heterostructure was formed (Fig. 4 (a).) Next, a 100-nm-thick SiNx protective film was deposited on the surface of the double heterosubstrate by plasma CVD, and then photolithography was performed. [01-1] A large number of striped SiNx protective films 351 were formed with the direction (the direction perpendicular to the off direction of the substrate) as the longitudinal direction (FIG. 4 (b)).
次に、 このストライプ状の S i Nx保護膜 351を用いて、 エッチングストツ プ層 1305の表面までゥエツトエッチングを行い、 リッジ底部のストライプ幅 が 2. 6 μΐηとなるようにした。 このとき、 リッジ上部の幅は 1. 7 mであつ た。 (図 4 (c))。 このとき、 ウエットエッチングのエッチング液には塩酸系混 合液あるいは硫酸系混合液を用いた。  Next, using the SiNx protective film 351 in the form of stripes, the surface of the etching stop layer 1305 was subjected to wet etching, so that the stripe width at the bottom of the ridge was 2.6 μΐη. At this time, the width of the upper part of the ridge was 1.7 m. (Fig. 4 (c)). At this time, a hydrochloric acid-based mixed solution or a sulfuric acid-based mixed solution was used as an etchant for wet etching.
上記のストライプ状の S i Nx保護膜 351を用いたリッジ形成のためのェ ツチングにより除去された部分に、 MOCVD法を用いた選択成長により、 厚さ 0. 4 μπιの n型 A 1 XG aト XA s電流阻止層 (x = 0. 85〜0. 9、 n = 2 X 1018 cm— 3) 308および厚さ 0. 01 111の11型 (A 10.7G a 0.3) 0. 5 I n0.5P表面保護層(n=l X 1018cm— 3) 309を形成した(図 4 (d))。 その後、 ストライプ状の S iNx保護膜 351を緩衝フッ酸液などを用いたゥェ ットエッチングまたは S F6、 CF4などのガスを用いたドライエッチングにより 除去し (図 4 (e))、 再ぴ MOCVD法により厚さ 0. 5 111の1)型八 10. 78 Ga0.22As第 3クラッド層 (p = l X 1018cm_3) 310、 厚さ◦. 05 111の1)型八 10.350& 0.65 As中間パンドギャップ層 (p = l. 5 X 1018 cm—3) 311および厚さ 3. 5 μπιの ρ型 G a A sコンタクト層 (ρ = 7Χ 1 018 cm一3) 312を成長させた。 The removed portion by E Tsuchingu for ridge formation using S i Nx protective film 351 of the stripe by selective growth using an MOCVD method, a thickness of 0. 4 μπι n-type A 1 X G a preparative X a s current blocking layer (x = 0. 85~0. 9, n = 2 X 10 18 cm- 3) 308 and the thickness 0.01 111 11 type (a 1 0. 7 G a 0. 3) 0. 5 I n 0 . 5 P surface protective layer (n = l X 10 18 cm- 3) 309 was formed (FIG. 4 (d)). After that, the striped SiNx protective film 351 is removed using a buffered hydrofluoric acid solution or the like. Tsu preparative etching or SF 6, gas such as CF 4 is removed by dry etching using (FIG. 4 (e)), 1 of a thickness of 0.5 111 Re-Pi MOCVD method) type eight 1 0. 78 Ga 0. 22 As third cladding layer (p = l X 10 18 cm_ 3) 310, thickness ◦. 05 111 1) type eight 1 0. 35 0 & 0. 65 As intermediate Pando gap layer (p = l. 5 X 10 18 cm- 3) 311 and the thickness 3. [rho type 5 μπι G a a s contact layer (ρ = 7Χ 1 0 18 cm one 3) 312 were grown.
この後、 p側の電極 313を蒸着し、 基板を 100 μπιまで薄くした後に、 η 側電極 314を蒸着し、 ァロイした (図 4 (f))。 このようにして作製したゥェ ハーを劈開して、 レーザ光出射端面を形成 (1次劈開) するようにチップバーに 切り出した。 このときの共振器長は 300 ^ mとした。 前端面に低反射膜、 後端 面に高反射膜を非対称コーティングした後、 2次劈開によりチップに分離した。 分離したチップをジャンクションダウンで組立して半導体レーザ装置を得た。 なお、 上記の MOCVD法では、 I I I族原料としてトリメチルガリウム (T MG)、 トリメチルインジウム (TMI) およびトリメチルアルミニウム (TM A)、 V族原料としてアルシンおょぴホスフィン、 キャリアガスとして水素をそ れぞれ用いた。 また、 p型ドーパントにはジメチル亜鉛 (DMZ) を用い、 n型 ドーパントにはジシランを用いた。また、 A 1 XG a s電流阻止層(x = 0.Thereafter, a p-side electrode 313 was deposited and the substrate was thinned to 100 μπι, and then an η-side electrode 314 was deposited and alloyed (FIG. 4 (f)). The wafer thus fabricated was cleaved and cut into chip bars so as to form a laser light emitting end face (primary cleavage). The resonator length at this time was 300 ^ m. After asymmetric coating of a low-reflection film on the front end face and a high-reflection film on the rear end face, the chips were separated by secondary cleavage. The separated chips were assembled at the junction down to obtain a semiconductor laser device. In the above MOCVD method, trimethylgallium (TMG) and trimethylindium (TMI) and trimethylaluminum (TMA) are used as group III materials, arsine phosphine is used as group V material, and hydrogen is used as carrier gas. Used. Dimethyl zinc (DMZ) was used as the p-type dopant, and disilane was used as the n-type dopant. In addition, the A 1 X G as current blocking layer (x = 0.
85〜0· 9、 η = 2 X 1018cm— 3) 308の成長時には、 S i Nx保護膜上 へのポリの堆積を抑制するために、 HC 1ガスを導入した。 85-0.9, η = 2 × 10 18 cm— 3 ) During the growth of 308, HC 1 gas was introduced to suppress the deposition of poly on the SiNx protective film.
作製した半導体レーザ装置を連続通電 (CW) することにより電流 -光出力特 性および電流 -電圧特性を測定した結果、 自励発振の範囲 (温度 ·光出力) は井 戸層の数にはあまり依存せず、 活性層総厚 (活性層内のすべての量子井戸層の厚 みの合計) に強く依存すことがわかった。 図 14に示すように、 活性層総厚が' 2 5 n m以上で 25 °C、 5 mWでの自励発振が可能となり、 30 n m以上で 70 °C、 5 mWでの自励発振が可能となった。 さらに、 35 n m以上で 75 °C、 10 mW での自励発振が可能となった。 したがって、 活性層総厚の下限は 25 nm以上が 好ましく、 30 nm以上がより好ましく、 35 nm以上がさらに好ましい。 本実 施例のように、 活性層に歪が入っている場合は、 臨界膜厚を超えない厚み以下と することが好ましレ、。すなわち、活性層総厚の上限は、 8 O n m以下が好ましく、 6 0 n m以下がより好ましく、 5 0 n m以下がさらに好ましい。 一方、 活性層総 厚の上限は、 活性層に歪が入っていない場合、 量子効果が機能する厚み以下とす ることが好ましい。すなわち、活性層総厚の上限は、 1 0 0 n m以下が好ましく、 8 0 n m以下がより好ましく、 7 0 n m以下がさらに好ましい。 産業上の利用可能性 The current-optical output characteristics and the current-voltage characteristics were measured by continuously energizing (CW) the fabricated semiconductor laser device. As a result, the range of self-sustained pulsation (temperature and optical output) was too small for the number of Ido layers. It turned out to be strongly dependent on the total thickness of the active layer (the sum of the thicknesses of all the quantum well layers in the active layer). As shown in Fig. 14, self-oscillation at 25 ° C and 5 mW is possible when the total active layer thickness is '25 nm or more, and self-oscillation at 70 ° C and 5 mW when the active layer thickness is 30 nm or more. It became. In addition, self-oscillation at 75 ° C and 10 mW at 35 nm and above became possible. Therefore, the lower limit of the total thickness of the active layer is preferably 25 nm or more, more preferably 30 nm or more, and even more preferably 35 nm or more. Real truth When the active layer is strained as in the embodiment, the thickness is preferably not more than the critical thickness. That is, the upper limit of the total thickness of the active layer is preferably 80 nm or less, more preferably 60 nm or less, and even more preferably 50 nm or less. On the other hand, the upper limit of the total thickness of the active layer is preferably equal to or less than the thickness at which the quantum effect functions when the active layer has no strain. That is, the upper limit of the total active layer thickness is preferably 100 nm or less, more preferably 80 nm or less, and even more preferably 70 nm or less. Industrial applicability
本発明の半導体発光装置は、、 素子抵抗、 通過抵抗および熱抵抗の少ない、 高 出力動作が可能な半導体レーザとして好適に用いることができる。光ディスクの 読み取り用や書き込み用光源として好適なレーザ、特に高出力動作が求められる 情報処理用や光通信用のレーザ、 情報処理、 光通信、 医療、 レーザ D D Z用など の幅広い用途に好適なレーザ、 端面発光型などの発光ダイオード (L E D) とし ても応用可能である。  INDUSTRIAL APPLICABILITY The semiconductor light emitting device of the present invention can be suitably used as a semiconductor laser having a low element resistance, a low pass resistance and a low thermal resistance and capable of high output operation. Lasers suitable as light sources for reading and writing optical discs, especially lasers for information processing and optical communication that require high output operation, lasers suitable for a wide range of applications such as information processing, optical communication, medical care, laser DDZ, etc. It can also be applied to light emitting diodes (LEDs) such as edge emitting type.
また、 本発明によれば、 素子抵抗、 通過抵抗、 熱抵抗おょぴ動作電流がいずれ も小さくて、 高温まで自励発振が可能な半導体レーザ装置を提供することができ る。 この自励発振型半導体レーザ装置は光ディスクからの戻り光ノィズに強いこ と力 ら、 戻り光ディスクの読み取り装置に高周波重畳回路が不要になり、 部品点 数の低減、 コストの低減を図ることが可能となる。 また、 距離測定用など可干渉 性の低い光源が必要とされる場合においても、 好適に用いることができる。  Further, according to the present invention, it is possible to provide a semiconductor laser device which has a small element resistance, a passing resistance, a thermal resistance and an operating current, and is capable of self-excited oscillation up to a high temperature. This self-pulsation type semiconductor laser device is resistant to the return light noise from the optical disk, so that a high-frequency superimposing circuit is not required in the device for reading the return optical disk, and it is possible to reduce the number of components and cost. It becomes. Further, it can be suitably used even when a light source having low coherence is required, such as for distance measurement.

Claims

請 求 の 範 囲 The scope of the claims
1. 基板と、 該基板上に形成された少なくとも 1層からなる第 1導電型 クラッド層と、 該第 1導電型クラッド層上に形成された活性層と、該活性層上に 形成された第 2導電型第 1クラッド層と、該第 2導電型第 1クラッド層上に形成 されたストライプ状のリッジ構造を有する第 2導電型第 2クラッド層と、前記第 2導電型第 2クラッド層のリツジの両側面を挟むように前記第 2導電型第 1ク ラッド層上に形成された電流阻止層と、前記第 2導電型第 2クラッド層のリッジ 上およぴ該リッジ近傍の前記電流阻止層上に形成された第 2導電型第 3クラッ ド層とから少なくとも構成されており、前記リッジ構造のストライプ長手方向に 直交する横断面が下記式を満足する台形である半導体発光装置。  1. a substrate, a first conductivity type cladding layer formed on the substrate, the first conductivity type cladding layer including at least one layer, an active layer formed on the first conductivity type cladding layer, and a first conductivity type cladding layer formed on the active layer. A second conductivity type first cladding layer, a second conductivity type second cladding layer having a stripe-shaped ridge structure formed on the second conductivity type first cladding layer, and a second conductivity type second cladding layer. A current blocking layer formed on the second conductive type first cladding layer so as to sandwich both sides of the ridge, and a current blocking layer on and near the ridge of the second conductive type second cladding layer; A semiconductor light-emitting device comprising at least a second-conductivity-type third cladding layer formed on the layer, and a trapezoidal cross section orthogonal to the stripe longitudinal direction of the ridge structure satisfying the following expression.
0. 0 5 く h/ [(a + b) /2] < 0. 5  0.05 h / [(a + b) / 2] <0.5
(上式において、 hは横断面の高さ、 aは横断面の上底、 bは横断面の下底であ る。)  (In the above formula, h is the height of the cross section, a is the upper bottom of the cross section, and b is the lower bottom of the cross section.)
2. 前記横断面が、 上底よりも下底が長い台形である請求の範囲第 1項 に記載の半導体発光装置。  2. The semiconductor light emitting device according to claim 1, wherein the cross-section is a trapezoid whose lower bottom is longer than the upper bottom.
3. 前記横断面が、 上底が 0. 4 !〜 4 μπιの台形である請求の範囲 第 1項または第 2項に記載の半導体発光装置。  3. The cross section is 0.4 at the top! 3. The semiconductor light emitting device according to claim 1, wherein the semiconductor light emitting device has a trapezoid having a trapezoid of about 4 μπι.
4. 前記横断面が、 高さが 0. 2 μηι〜1. 5 μπιの台形である請求の 範囲第.1〜 3項のいずれか一項に記載の半導体発光装置。  4. The semiconductor light emitting device according to any one of claims 1 to 3, wherein the cross section is a trapezoid having a height of 0.2 μηι to 1.5 μπι.
5. 前記横断面の形状が左右非対称である請求の範囲第 1〜 4項のいず れか一項に記載の半導体発光装置。  5. The semiconductor light emitting device according to any one of claims 1 to 4, wherein the shape of the cross section is asymmetrical.
6. 基板と、 該基板上に形成された少なくとも 1層からなる第 1導電型 クラッド層と、 該第 1導電型クラッド層上に形成された活性層と、 該活性層上に 形成された第 2導電型第 1クラッド層と、該第 2導電型第 1クラッド層上に形成 されたストライプ状のリッジ構造を有する第 2導電型第 2クラッド層と、前記第 2導電型第 2クラッド層のリッジの両側面を挟むように前記第 2導電型第 1ク ラッド層上に形成された電流阻止層と、前記第 2導電型第 2クラッド層のリッジ 上およぴ該リッジ近傍の前記電流阻止層上に形成された第 2導電型第 3クラッ ド層とから少なくとも構成されており、 2 5 °Cでのパルス駆動において単一横モ 一ド発振で最大光出力が 8 0 mW以上である半導体発光装置。 6. A substrate, a first conductivity type cladding layer formed on the substrate, the first conductivity type cladding layer including at least one layer, an active layer formed on the first conductivity type cladding layer, and a first conductivity type cladding layer formed on the active layer. A second conductive type first clad layer, a second conductive type second clad layer having a stripe-shaped ridge structure formed on the second conductive type first clad layer, and a second conductive type second clad layer. A current blocking layer formed on the second conductive type first cladding layer so as to sandwich both side surfaces of the ridge; and a ridge of the second conductive type second cladding layer. And at least a second conduction type third cladding layer formed on the current blocking layer above and near the ridge, and has a single transverse mode oscillation in pulse driving at 25 ° C. Semiconductor light emitting device with a maximum light output of 80 mW or more.
7 .光出力密度が 4 mW/ μ. m 2以上である請求の範囲第 6項に記載の半 導体発光装置。 7. The semiconductor light emitting device according to claim 6, wherein the light output density is 4 mW / μ.m 2 or more.
8 . 前記半導体発光装置が半導体レーザ装置である、 請求の範囲第 1〜 7項のいずれか一項に記載の半導体発光装置。  8. The semiconductor light emitting device according to any one of claims 1 to 7, wherein the semiconductor light emitting device is a semiconductor laser device.
9 . 前記半導体発光装置が自励発振型半導体レーザ装置である、 請求の 範囲第 1〜 5項のいずれか一項に記載の半導体発光装置。  9. The semiconductor light emitting device according to any one of claims 1 to 5, wherein the semiconductor light emitting device is a self-pulsation type semiconductor laser device.
1 0 . 基板と、 該基板上に形成された少なくとも 1層からなる第 1導電 型クラッド層と、 該第 1導電型クラッド層上に形成された活性層と、 該活性層上 に形成された第 2導電型第 1クラッド層と、該第 2導電型第 1クラッド層上に形 成されたストライプ状のリッジ構造を有する第 2導電型第 2クラッド層と、前記 第 2導電型第 2クラッド層のリッジの両側面を挟むように前記第 2導電型第 1 クラッド層上に形成された電流阻止層と、前記第 2導電型第 2クラッド層のリッ ジ上および該リッジ近傍の前記電流阻止層上に形成された第 2導電型第 3クラ ッド層とから少なくとも構成されており、 2 5 °Cでの直流駆動において単一横モ 一ド発振で最大光出力が 5 mW以上である自励発振型半導体レーザ装置である、 半導体発光装置。  10. A substrate, a first conductivity type clad layer formed on the substrate, the first conductivity type clad layer comprising at least one layer, an active layer formed on the first conductivity type clad layer, and formed on the active layer A second conductive type first clad layer, a second conductive type second clad layer having a stripe-shaped ridge structure formed on the second conductive type first clad layer, and the second conductive type second clad layer A current blocking layer formed on the first cladding layer of the second conductivity type so as to sandwich both side surfaces of the ridge of the layer, and the current blocking layer on the ridge of the second cladding layer of the second conductivity type and in the vicinity of the ridge. At least 5 mW in single transverse mode oscillation in DC drive at 25 ° C. A semiconductor light emitting device, which is a self-excited oscillation type semiconductor laser device.
1 1 . 光出力密度が 0 . S mW/ ^u m 2以上である請求の範囲第 1 0項に 記載の半導体発光装置。 11. The semiconductor light emitting device according to claim 10, wherein the light output density is not less than 0. S mW / ^ um 2 .
1 2 . 基板と、 該基板上に形成された少なくとも 1層からなる第 1導電 型クラッド層と、 該第 1導電型クラッド層上に形成された活性層と、 該活性層上 に形成された第 2導電型第 1クラッド層と、該第 2導電型第 1クラッド層上に形 成されたストライプ状のリッジ構造を有する第 2導電型第 2クラッド層と、前記 第 2導電型第 2クラッド層のリッジの両側面を挟むように前記第 2導電型第 1 クラッド層上に形成された電流阻止層と、前記第 2導電型第 2クラッド層のリッ ジ上およぴ該リッジ近傍の前記電流阻止層上に形成された第 2導電型第 3クラ ッド層とから少なくとも構成されており、直流駆動で 70 °Cにおいて 5 mW以上 の出力で自励発振する自励発振型半導体レーザ装置である、 半導体発光装置。 12. A substrate, a first-conductivity-type clad layer formed of at least one layer formed on the substrate, an active layer formed on the first-conductivity-type clad layer, and formed on the active layer A second conductive type first clad layer, a second conductive type second clad layer having a stripe-shaped ridge structure formed on the second conductive type first clad layer, and the second conductive type second clad layer A current blocking layer formed on the first cladding layer of the second conductivity type so as to sandwich both side surfaces of the ridge of the layer, and a lid of the second cladding layer of the second conductivity type. And a second conductive type third clad layer formed on the current blocking layer near the ridge and near the ridge, and is self-driven with an output of 5 mW or more at 70 ° C by DC driving. A semiconductor light emitting device, which is a self-excited oscillation type semiconductor laser device that oscillates.
13. 直流駆動で 25 °Cにおける発振しきい値電流が 45 mA以下であ る請求の範囲第 12項に記載の半導体発光装置。  13. The semiconductor light emitting device according to claim 12, wherein an oscillation threshold current at 25 ° C. by DC driving is 45 mA or less.
14. 前記電流阻止層の厚さが、 前記第 2導電型第 2クラッド層よりも 薄い請求の範囲第 1〜 13項のいずれか一項に記載の半導体発光装置。  14. The semiconductor light emitting device according to any one of claims 1 to 13, wherein a thickness of the current blocking layer is smaller than a thickness of the second conductive type second cladding layer.
15. 前記電流阻止層の屈折率が前記第 2導電型第 2クラッド層の屈折 率より小さい請求の範囲第 1〜 14項のいずれか一項に記載の半導体発光装置。  15. The semiconductor light emitting device according to claim 1, wherein a refractive index of the current blocking layer is smaller than a refractive index of the second conductive type second cladding layer.
16. 前記電流阻止層が A l Ga I nP、 A 1 I nP、 A l GaAsお よび A 1 G a A s Pからなる群から選ばれる一種で構成されている請求の範囲 第 1〜 15項のいずれか一項に記載の半導体発光装置。  16. The current blocking layer according to claim 1, wherein the current blocking layer is formed of a kind selected from the group consisting of AlGaInP, A1InP, AlGaAs, and A1GaAsP. The semiconductor light emitting device according to claim 1.
17. 前記リッジ構造上に酸化抑制層を有する請求の範囲第 1〜16項 のいずれか一項に記載の半導体発光装置。  17. The semiconductor light emitting device according to any one of claims 1 to 16, wherein an oxidation suppression layer is provided on the ridge structure.
18. 前記酸化抑制層が、 前記活性層の材料よりもパンドギヤップが大 きレ、材料で構成されている請求の範囲第 17項に記載の半導体発光装置。  18. The semiconductor light emitting device according to claim 17, wherein said oxidation suppressing layer is made of a material having a band gap larger than a material of said active layer.
19. 前記第 2導電型第 3ク ッド層の屈折率が前記第 2導電型第 2ク ラッド層の屈折率より小さい請求の範囲第 1〜18項のいずれか一項に記載の 半導体発光装置。  19. The semiconductor light emitting device according to any one of claims 1 to 18, wherein a refractive index of the second conductive type third quad layer is smaller than a refractive index of the second conductive type second quad layer. apparatus.
20. 前記第 2導電型第 3クラッド層の抵抗率が前記第 2導電型第 2ク ラッド層の抵抗率より小さい請求の範囲第 1〜19項のいずれか一項に記載の 半導体発光装置。  20. The semiconductor light emitting device according to any one of claims 1 to 19, wherein the resistivity of the third cladding layer of the second conductivity type is lower than the resistivity of the second cladding layer of the second conductivity type.
21. 前記電流阻止層の上に表面保護層を有する請求の範囲第 1〜 20 項のいずれか一項に記載の半導体発光装置。  21. The semiconductor light emitting device according to any one of claims 1 to 20, further comprising a surface protection layer on the current blocking layer.
22. 前記表面保護層が、 前記活性層の材料よりもバンドギャップが大 きい材料で構成されている請求の範囲第 21項に記載の半導体発光装置。  22. The semiconductor light emitting device according to claim 21, wherein the surface protective layer is made of a material having a larger band gap than a material of the active layer.
23. 前 |5活性層が、 自励発振に必要な体積の過飽和吸収体を含む請求 の範囲第 1〜 2 2項のいずれか一項に記載の半導体発光装置。 23. Previous | 5 Request for active layer containing saturable absorber in volume required for self-sustained pulsation The semiconductor light emitting device according to any one of Items 1 to 22.
2 4 . 前記基板が (1 0 0 ) 面と等価な面からオフアングルを有する請 求の範囲第 1〜 2 3項のいずれか一項に記載の半導体発光装置。  24. The semiconductor light emitting device according to any one of claims 1 to 23, wherein the substrate has an off-angle from a plane equivalent to a (100) plane.
2 5 . 共振器長が 1 5 0 /ζ ιη〜4 5 0 μ mである請求の範囲第 1〜 2 4 項のいずれか一項に記載の半導体発光装置。  25. The semiconductor light emitting device according to any one of claims 1 to 24, wherein the cavity length is 150 / ζιη to 450 μm.
2 6 . 基板と、 該基板上に形成された少なくとも 1層からなる第 1導電 型クラッド層と、 該第 1導電型クラッド層上に形成された活性層と、 該活性層上 に形成された第 2導電型第 1クラッド層と、該第 2導電型第 1クラッド層上に形 成された第 2導電型第 2クラッド層とから少なくとも構成される積層体を用意 し、該積層体の前記第 2導電型第 2クラッド層上にストライプ状の保護膜を形成 し、前記第 2導電型第 2クラッド層を部分的にェツチングすることにより前記第 2導電型第 2クラッド層をストライプ状のリッジ構造に成形し、前記第 2導電型 第 2クラッド層のリッジの両側面を挟むように電流阻止層を形成し、前記保護層 を除去し、前記第 2導電型第 2クラッド層のリッジ上およぴ該リッジ近傍の前記 電流阻止層上に第 2導電型第 3クラッド層を形成する工程を含む、請求の範囲第 1〜 2 5項のいずれか一項に記載の半導体発光装置の製造方法。  26. A substrate, a first-conductivity-type clad layer formed of at least one layer formed on the substrate, an active layer formed on the first-conductivity-type clad layer, and formed on the active layer A laminate comprising at least a second conductive type first clad layer and a second conductive type second clad layer formed on the second conductive type first clad layer is prepared. A stripe-shaped protective film is formed on the second conductive type second clad layer, and the second conductive type second clad layer is partially etched to form a stripe-shaped ridge on the second conductive type second clad layer. A current blocking layer is formed so as to sandwich both sides of the ridge of the second conductive type second cladding layer, the protective layer is removed, and the current blocking layer is formed on the ridge of the second conductive type second cladding layer. The third cladding of the second conductivity type is formed on the current blocking layer near the ridge. Comprising the step of forming a method of manufacturing a semiconductor light emitting device according to any one of claims first through 2 5 Section.
2 7 . 前記電流阻止層の形成後に、 前記電流阻止層上に表面保護層を形 成する工程をさらに有する請求の範囲第 2 6項に記載の半導体発光装置の製造 方法。 .  27. The method for manufacturing a semiconductor light emitting device according to claim 26, further comprising a step of forming a surface protective layer on said current blocking layer after forming said current blocking layer. .
PCT/JP2005/008327 2004-04-23 2005-04-25 Semiconductor light-emitting device WO2005104318A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-127624 2004-04-23
JP2004127624 2004-04-23
JP2004-209407 2004-07-16
JP2004209407 2004-07-16

Publications (1)

Publication Number Publication Date
WO2005104318A1 true WO2005104318A1 (en) 2005-11-03

Family

ID=35197313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/008327 WO2005104318A1 (en) 2004-04-23 2005-04-25 Semiconductor light-emitting device

Country Status (2)

Country Link
TW (1) TW200610188A (en)
WO (1) WO2005104318A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114038960A (en) * 2021-09-09 2022-02-11 重庆康佳光电技术研究院有限公司 Micro light emitting diode epitaxial structure, manufacturing method thereof and micro light emitting diode

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002124738A (en) * 2000-10-17 2002-04-26 Mitsubishi Chemicals Corp Semiconductor optical device and manufacturing method thereof
JP2003023213A (en) * 2001-07-05 2003-01-24 Toshiba Corp Semiconductor laser
JP2003309327A (en) * 2002-02-14 2003-10-31 Furukawa Electric Co Ltd:The Semiconductor laser device, semiconductor laser module, and optical fiber amplifier

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002124738A (en) * 2000-10-17 2002-04-26 Mitsubishi Chemicals Corp Semiconductor optical device and manufacturing method thereof
JP2003023213A (en) * 2001-07-05 2003-01-24 Toshiba Corp Semiconductor laser
JP2003309327A (en) * 2002-02-14 2003-10-31 Furukawa Electric Co Ltd:The Semiconductor laser device, semiconductor laser module, and optical fiber amplifier

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114038960A (en) * 2021-09-09 2022-02-11 重庆康佳光电技术研究院有限公司 Micro light emitting diode epitaxial structure, manufacturing method thereof and micro light emitting diode

Also Published As

Publication number Publication date
TW200610188A (en) 2006-03-16

Similar Documents

Publication Publication Date Title
US20120076165A1 (en) Asymmetrically cladded laser diode
US5556804A (en) Method of manufacturing semiconductor laser
JP3864634B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP4028158B2 (en) Semiconductor optical device equipment
JP2006054426A (en) Self-oscillation semiconductor laser device
JP3892637B2 (en) Semiconductor optical device equipment
JP3889910B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP2001203423A (en) Semiconductor light-emitting device
JP2002124738A (en) Semiconductor optical device and manufacturing method thereof
JP2001057459A (en) Semiconductor laser
JP2001185809A (en) Semiconductor optical device and manufacturing method therefor
JP2001135895A (en) Semiconductor light emitting device
JP3889896B2 (en) Semiconductor light emitting device
JP2001358409A (en) Semiconductor optical device and its manufacturing method
JP2001057458A (en) Semiconductor light-emitting device
JP2007049209A (en) Semiconductor optical device and manufacturing method thereof
WO2005104318A1 (en) Semiconductor light-emitting device
JP3963632B2 (en) Semiconductor optical device equipment
JP2000277856A (en) Self oscillation semiconductor laser system
JP4163321B2 (en) Semiconductor light emitting device
JP2001185810A (en) Semiconductor optical device and manufacturing method therefor
JP2002026451A (en) Semiconductor optical device
JP2004103679A (en) Semiconductor light emitting element and semiconductor light emitting element module
JP3889911B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP2000332359A (en) Semiconductor light emitting device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase