4 004482 4 004482
一 1 - 明細書 I 1-Statement
連続熱処理装置および連続熱処理方法 Continuous heat treatment apparatus and continuous heat treatment method
技術分野 Technical field
本発明は、 平板状のワークの熱処理に適した連続熱処理装置および連続熱処理方法に関 し、 例えば大型ガラス基板を含むフラッ卜パネルディスプレイパネル用部材を焼成するの に利用できる。 The present invention relates to a continuous heat treatment apparatus and a continuous heat treatment method suitable for heat treatment of a flat work, and can be used, for example, for firing a flat panel display panel member including a large-sized glass substrate.
背景技術 Background art
例えば、 プラズマディスプレイパネル用の大型ガラス基板を含むワークを焼成する場合 、 現在は専らローラハース式連続焼成炉が使用されている。 この従来の連続焼成炉におい ては、 ワークはセッ夕と呼ばれるワーク保持部材に保持された状態でローラにより搬送さ れつつ熱処理される。 そのようなセッ夕を用いることで、 ワークにおけるローラとの接触 面に摩擦やすべりに起因する傷が付くのが防止されている。 しかし、 セッ夕はワークより も大きな寸法と重量を有するために熱容量が大きく、 そのため必要以上のエネルギーが無 駄に消費される。 For example, when firing a work including a large glass substrate for a plasma display panel, a roller hearth continuous firing furnace is currently exclusively used. In this conventional continuous firing furnace, the work is heat-treated while being conveyed by rollers while being held by a work holding member called a setting. By using such a setting, it is possible to prevent the contact surface of the workpiece with the roller from being damaged due to friction or sliding. However, since the setting has a larger size and weight than the work, it has a large heat capacity, so that unnecessary energy is wasted.
そこで、 ワークの下面に空気等の気体を吹き付けることで、 ワークを浮揚状態で搬送し つつ熱処理を行うことが従来から提案されている (特開 2 0 0 0— 7 1 5 1号公報、 特開 2 0 0 2— 2 6 7 3 6 8号公報、 特開平 9— 1 3 2 4 2 0号公報、 特開平 1 0— 1 3 9 1 6 0号公報) 。 さらに、 ワークの下面に吹き付けられた気体の排出口を設け、 噴出ロゃ排 出口の数や開度を変化させることで、 噴出口からの気体噴出流量と排出口からの気体排出 流量との差に応じた圧力でワークを浮揚させることが提案されている (特開平 9— 1 3 2 4 2 0号公報) 。 Therefore, it has been conventionally proposed that a heat treatment is performed while blowing the workpiece in a floating state by blowing a gas such as air on the lower surface of the workpiece (Japanese Patent Application Laid-Open No. 2000-71515, Japanese Patent Application Laid-Open No. 2002-2667368, Japanese Patent Application Laid-Open No. 9-132420, Japanese Patent Application Laid-Open No. 10-139160). In addition, a discharge port for the gas blown to the lower surface of the work is provided, and the number and opening of the discharge port is changed, so that the difference between the gas discharge flow rate from the discharge port and the gas discharge flow rate from the discharge port is improved. It has been proposed to levitate a work at a pressure corresponding to the pressure (Japanese Patent Application Laid-Open No. 9-132240).
発明の開示 Disclosure of the invention
しかし、 従来技術によりワークを浮揚状態で搬送する場合、 ワークに傷が付くのを十分 に防止できない。 例えば予熱、 本焼成、 徐冷、 冷却等の熱処理ゾーンを有する連続熱処理 装置において大型ガラス基板等の熱処理を行う場合、 ワークの搬送を確実に行うと共に均
一な温度条件で熱処理することが要求されるため、 ワークを間欠的に搬送する方式が採用 される。 ワークを間欠的に搬送する場合、 ワークは所定の熱処理位置で受け部に載置され た後に、 次の熱処理位置まで搬送されて再び受け部に載置される。 そのため、 ワークを浮 揚状態で搬送させた後に受け部に載置させる際、 ワークに作用する慣性によりワークにお ける受け部との接触面に摩擦やすべりに起因する傷が付くおそれがある。 従来技術は、 こ のような問題や問題解決手段を何ら開示していない。 本発明は、 このような問題を解決す ることのできる連続熱処理装置および連続熱処理方法を提供することを目的とする。 さらに、 噴出口からの気体噴出流量と排出口からの気体排出流量との差に応じた圧力で ワークを浮揚させる従来技術においては、 噴出口や排出口の数や開度を変化させるための 制御が複雑になる。 そのため、 気体噴出流量の変化時に、 ワークに吹き付けられる気体を 円滑に排出口から排出できず、 その結果ワーク周囲の雰囲気に乱れが生じ、 清浄度の低下 や温度分布の変動により歩留まりが低下するおそれがある。 好ましくは、 このような問題 も本発明により解決することを図るものである。 本発明は、 板状のワークを載置する受け部と、 上方に向かうに従い一横方向に向かい気 体を噴出する噴出口と、 前記ワークを加熱するヒーターとを備える熱処理装置内において 、 前記ワークを間欠的に搬送しつつ熱処理する連続熱処理方法であって、 前記受け部に載 置された前記ワークの下面に、 前記噴出口から噴出される設定流量の気体を吹き付けるこ とで、 前記ワークを横方向移動することなく浮揚させる浮揚工程と、 横方向移動すること なく浮揚された前記ワークの下面に吹き付ける気体流量を、 前記浮揚工程における設定流 量よりも多い設定流量とすることで、 前記ワークを浮揚状態で一横方向に移動させる移動 工程と、 浮揚状態で移動する前記ワークの下面に吹き付ける気体流量を、 前記移動工程に おけるよりも少ない設定流量とすることで、 前記ワークを横方向移動することなく浮揚さ せる停止工程と、 横方向移動することなく浮揚された前記ワークに下面から吹き付ける気 体流量を、 前記浮揚工程および前記停止工程におけるよりも少ない設定流量とすることで 、 前記ワークを前記受け部に載置させる載置工程とを備え、 前記浮揚工程、 前記移動工程 、 前記停止工程、 前記載置工程の実行により前記ワークを搬送する。 However, when a work is transported in a floating state according to the conventional technique, it is not possible to sufficiently prevent the work from being damaged. For example, when performing a heat treatment of a large glass substrate or the like in a continuous heat treatment apparatus having a heat treatment zone of preheating, main firing, slow cooling, cooling, etc., the work is surely transported and uniformized. Since heat treatment is required under a uniform temperature condition, a method of intermittently transporting the work is adopted. When the work is conveyed intermittently, the work is placed on the receiving part at a predetermined heat treatment position, then transferred to the next heat treatment position and placed on the receiving part again. Therefore, when the work is placed in the receiving portion after being transported in a floating state, the contact surface of the work with the receiving portion may be scratched due to friction or slip due to inertia acting on the work. The prior art does not disclose any such problems or problem solving means. An object of the present invention is to provide a continuous heat treatment apparatus and a continuous heat treatment method that can solve such a problem. Furthermore, in the conventional technology that levitates the work with a pressure corresponding to the difference between the gas ejection flow rate from the gas outlet and the gas discharge flow rate from the discharge port, the control for changing the number and opening degree of the gas discharge port and the discharge port is required. Becomes complicated. Therefore, when the gas ejection flow rate changes, the gas blown to the work cannot be smoothly discharged from the discharge port, and as a result, the atmosphere around the work may be disturbed, and the yield may be reduced due to a decrease in cleanliness or temperature distribution. There is. Preferably, such a problem is also solved by the present invention. The present invention provides a heat treatment apparatus comprising: a receiving portion on which a plate-shaped work is placed; an ejection port for ejecting gas in a lateral direction as it goes upward; and a heater for heating the work. A continuous heat treatment method in which the workpiece is intermittently transported, wherein a gas having a set flow rate ejected from the ejection port is blown onto a lower surface of the work placed on the receiving portion, thereby forming the workpiece. A floating step for floating without moving in the lateral direction, and a flow rate of gas blown to the lower surface of the work floated without moving in the horizontal direction is set to a set flow rate larger than the set flow rate in the floating step, whereby the work A moving step of moving the workpiece in the horizontal direction in a floating state, and a gas flow rate blown to the lower surface of the work moving in the floating state is smaller than in the moving step. A floating flow rate by blowing the work from the lower surface onto the work levitated without moving in the lateral direction. A setting step of setting the flow rate smaller than that in the step, a mounting step of mounting the work on the receiving portion, wherein the floating step, the moving step, the stopping step, and the mounting step perform the work. Is transported.
本発明方法によれば、 受け部に載置されたワークを横方向に移動させることなく浮揚さ
せ、 しかる後に横方向に移動させ、 また、 浮揚状態で移動するワークを一旦横方向移動す ることなく浮揚する停止状態とし、 しかる後にワーク下面に吹き付ける気体流量を減少さ せることで受け部に載置させるので、 ワークにおける受け部との接触面に摩擦やすべりに 起因する傷が付くのを確実に防止できる。 本発明の連続熱処理方法において、 前記浮揚工程、 前記移動工程、 前記停止工程、 前記 載置工程を、 この順序で繰り返すことで前記ワークを間欠的に搬送するのが好ましい。 あ るいは、 前記浮揚工程と前記載置工程の間において、 前記移動工程と前記停止工程とを交 互に繰り返すことで前記ワークを間欠的に搬送するのが好ましい。 本発明の連続熱処置装置は、 板状のワークを載置する受け部と、 上方に向かうに従い一 横方向に向かい気体を噴出する噴出口と、 前記ワークを加熱するヒーターと、 前記噴出口 に択一的に連通される流路面積が互いに異なる複数の噴出流路と、 前記噴出流路を介して 前記噴出口に連通される気体噴出源と、 噴出流路切替え機構とを備え、 前記噴出口は、 前 記受け部に載置された前記ワークの下面に前記噴出口から噴出される気体を吹き付け可能 な位置に配置され、 前記噴出口に連通される前記噴出流路の切り換えにより、 前記噴出口 から噴出される気体流量が、 前記ワークを横方向移動することなく浮揚させる設定流量と 、 前記ワークを浮揚状態で一横方向に移動させる設定流量との間で変化する。 本発明の連 続熱処置装置によれば本発明方法を実施できる。 本発明の連続熱処理方法において、 前記熱処理装置は、 前記噴出口に択一的に連通され る流路面積が互いに異なる複数の噴出流路と、 噴出流路切替え機構と、 前記ワークの下面 に吹き付けられた気体の吸引口と、 前記吸引口に択一的に連通される流路面積が互いに異 なる複数の吸引流路と、 吸引流路切替え機構とを有し、 少なくとも前記浮揚工程と前記移 動工程との間および前記移動工程と前記停止工程との間において、 前記噴出口から噴出す る気体流量を変化させる際に、 前記噴出流路切替え機構を介して前記噴出口に連通される 前記噴出流路を切り換えることで、 前記気体流量を変化させ、 前記噴出口から噴出する気 体流量の変化に同期して、 前記吸引流路切替え機構を介して前記吸引口に連通される前記 吸引流路を切り換えることで、 前記吸引口から吸引する気体流量を変化させるのが好まし
い。 これにより、 気体噴出流量の変化時に、 噴出口から噴出された気体をタイミングよく 吸引し、 ワークに吹き付けられた気体によりワーク周囲の雰囲気に乱れが生じるのを抑制 し、 防塵効果を奏し、 安定した熱処理を行うことで歩留りを向上できる。 この場合に本発 明の連続熱処理方法を実施する上では、 本発明の連続熱処置装置は、 前記ワークの下面に 吹き付けられた気体の吸引口と、 前記吸引口に択一的に連通される流路面積が互いに異な る複数の吸引流路と、 前記吸引流路を介して前記吸引口に連通される気体吸引源と、 吸引 流路切替え機構とを備え、 前記噴出口から噴出される気体流量の変化に同期して、 前記吸 引流路切替え機構を介して前記吸引口に連通される前記吸引流路を切り換えることで、 前 記吸引口から吸引する気体流量を変化させるように、 前記噴出流路切替え機構と前記吸引 流路切替え機構とを制御する制御装置とを備えるのが好ましい。 この場合、 本発明の連続 熱処理方法において、 前記熱処理装置は、 前記吸引口から吸引された気体を前記噴出口か ら噴出するための循環経路と、 前記循環経路における気体の温度調節装置を備え、 前記載 置工程において、 前記噴出口からワークを浮揚させることのない設定流量の温度調節され た空気を噴出するのが好ましい。 これによりワークの熱処理を促進できる。 この場合に本 発明の連続熱処理方法を実施する上では、 本発明の連続熱処置装置は前記吸引口から吸引 された気体を前記噴出口から噴出するための循環経路と、 前記循環経路における気体の温 度調節装置とを備え、 前記温度調節装置により温度調節された気体の流量を、 前記ワーク を浮揚させることのない設定流量に制御可能であるのが好ましい。 本発明によれば、 連続熱処理に際してワークに傷が付くのが防止でき、 さらに安定した 熱処理を行うことが可能になる。 図面の簡単な説明 According to the method of the present invention, the work placed on the receiving portion is lifted without moving in the lateral direction. After that, the work moving in the floating state is moved to the horizontal direction, and the work moving in the floating state is temporarily stopped without moving in the horizontal direction.Then, the flow rate of the gas blown to the lower surface of the work is reduced, and then the receiving part is moved to the receiving part. Since the work is placed, it is possible to reliably prevent the contact surface of the work with the receiving portion from being damaged due to friction or sliding. In the continuous heat treatment method of the present invention, it is preferable that the work is intermittently conveyed by repeating the floating step, the moving step, the stopping step, and the placing step in this order. Alternatively, it is preferable that the work is intermittently conveyed by alternately repeating the moving step and the stopping step between the floating step and the placing step. The continuous heat treatment apparatus of the present invention includes: a receiving portion on which a plate-shaped work is placed; a jet port for jetting gas in a horizontal direction as it goes upward; a heater for heating the work; and a jet port. A plurality of ejection flow passages which are alternatively communicated with each other and have different flow passage areas, a gas ejection source which is communicated with the ejection port via the ejection passage, and an ejection passage switching mechanism; The outlet is disposed at a position where the gas ejected from the ejection port can be blown onto the lower surface of the work placed on the receiving portion, and the ejection channel communicated with the ejection port is switched, whereby The flow rate of the gas ejected from the spout varies between a set flow rate at which the work is levitated without moving in the lateral direction and a set flow rate at which the work is moved in the horizontal direction in the floating state. According to the continuous thermal treatment apparatus of the present invention, the method of the present invention can be carried out. In the continuous heat treatment method according to the aspect of the invention, the heat treatment apparatus may further include: a plurality of ejection passages that are selectively communicated with the ejection outlet and have different passage areas, an ejection passage switching mechanism, and spraying on a lower surface of the work. A suction port for the gas, a plurality of suction flow paths that are selectively communicated with the suction port, and have a plurality of suction flow paths, and a suction flow path switching mechanism. Between the moving step and the moving step and the stopping step, when changing the flow rate of the gas ejected from the ejection port, communicates with the ejection port via the ejection channel switching mechanism. By switching the ejection flow path, the gas flow rate is changed, and in synchronization with the change in the gas flow rate ejected from the ejection port, the suction flow communicated with the suction port via the suction flow path switching mechanism. Cut the road By obtaining, it is preferable to vary the flow of gas sucked from the suction port Yes. As a result, when the gas ejection flow rate changes, the gas ejected from the ejection port is suctioned in a timely manner, the disturbance of the atmosphere around the work due to the gas blown to the work is suppressed, and a dustproof effect is achieved, and The yield can be improved by performing the heat treatment. In this case, in performing the continuous heat treatment method of the present invention, the continuous heat treatment apparatus of the present invention is selectively communicated with the suction port of the gas blown to the lower surface of the work and the suction port. A plurality of suction flow paths having different flow path areas, a gas suction source communicated with the suction port through the suction flow path, and a suction flow path switching mechanism; By switching the suction flow path that is communicated with the suction port via the suction flow path switching mechanism in synchronization with a change in the flow rate, the ejection flow is changed so as to change the gas flow rate sucked from the suction port. It is preferable to include a control device for controlling the flow path switching mechanism and the suction flow path switching mechanism. In this case, in the continuous heat treatment method of the present invention, the heat treatment apparatus includes: a circulation path for ejecting the gas sucked from the suction port from the ejection port; and a gas temperature adjustment device in the circulation path. In the above placement step, it is preferable to blow out a temperature-controlled air at a set flow rate without floating the work from the outlet. Thereby, the heat treatment of the work can be promoted. In this case, in performing the continuous heat treatment method of the present invention, the continuous heat treatment apparatus of the present invention includes a circulation path for ejecting the gas sucked from the suction port from the ejection port, Preferably, a temperature control device is provided, and the flow rate of the gas whose temperature is controlled by the temperature control device can be controlled to a set flow rate that does not cause the work to float. ADVANTAGE OF THE INVENTION According to this invention, it can prevent that a workpiece | work is damaged at the time of a continuous heat processing, and it becomes possible to perform more stable heat processing. Brief Description of Drawings
図 1は本発明の実施形態の連続熱処理装置の構成説明図 FIG. 1 is a configuration explanatory view of a continuous heat treatment apparatus according to an embodiment of the present invention.
図 2は本発明の実施形態の連続熱処理装置における部分構成説明用斜視図 FIG. 2 is a perspective view for illustrating a partial configuration of the continuous heat treatment apparatus according to the embodiment of the present invention.
図 3は本発明の実施形態の連続熱処理装置における部分構成説明用正断面図 FIG. 3 is a front sectional view illustrating a partial configuration of the continuous heat treatment apparatus according to the embodiment of the present invention.
図 4は本発明の実施形態の連続熱処理装置における部分構成説明用平断面図 FIG. 4 is a cross-sectional plan view for illustrating a partial configuration of the continuous heat treatment apparatus according to the embodiment of the present invention.
図 5は本発明の実施形態の連続熱処理方法における時間とワークの温度との関係一例を 示す図
図 6は本発明の実施形態の連続熱処理方法における時間と空気噴出流量との関係一例を 示す図 FIG. 5 is a diagram showing an example of the relationship between time and work temperature in the continuous heat treatment method according to the embodiment of the present invention. FIG. 6 is a diagram illustrating an example of a relationship between time and air ejection flow rate in the continuous heat treatment method according to the embodiment of the present invention.
図 7は本発明の実施形態の連続熱処理方法における時間とワーク移動距離との関係一例 を示す図 発明を実施するための最良の形態 FIG. 7 is a diagram showing an example of a relationship between time and a moving distance of a workpiece in the continuous heat treatment method according to the embodiment of the present invention.
図 1に示す連続熱処理装置 1は、 炉体 2内において板状のワーク 3を載置する複数の受 け部 4を有する。 各受け部 4は、 互いに炉体 2の長手方向の間隔をおいて並列する。 炉体 2の長手方向がワーク 3の搬送方向 (図 1において矢印 α方向) とされる。 各受け部 4の 長手方向は炉体 2の幅方向に沿う。 受け部 4相互の間隔は、 ワーク 3を常に複数の受け部 4により支持できるように設定される。 本実施形態においては、 炉体 2の内部は入口から順に予熱ゾーン 2 a、 本焼成ゾーン 2 b、 徐冷ゾーン 2 c、 冷却ゾーン 2 dに区画される。 各ゾーン 2 a、 2 b、 2 c、 2 dは 単一あるいは複数の温度制御ブロックに区画される。 各ゾーン 2 a、 2 b、 2 c、 2 dに おける温度制御ブロックのワーク搬送方向における寸法は、 2枚のワーク 3を受け部 4に 載置することができるように設定されている。 炉体 2の天井に、 予熱ゾーン 2 aと本焼成 ゾーン 2 bにおいてワーク 3を加熱するヒー夕 5、 6が温度制御ブロック毎に設けられ、 徐冷ゾーン 2 cにおいて空冷式冷却装置 7が温度制御ブロック毎に設けられ、 冷却ゾーン 2 dにおいて水冷式冷却装置が温度制御ブロック毎に設けられている。 図 1においては温 度制御プロックの数は模式的に単一としている。 炉体 2の内面は耐熱ガラス等でライニン グされるのが好ましい。 受け部 4の相互間それぞれに、 気体供給管 1 1と気体排出管 1 2とが炉体 2の幅方向に 沿う軸心を有するように設けられている。 本実施形態の気体は空気とされている。 図 2に示すように、 各気体供給管 1 1に管軸方向に沿って複数の噴出口 1 1 Aが設けら れている。 各噴出口 1 1 Aの向きは、 上方に向かうに従いワーク 3の搬送方向である一横 方向に向かい気体を噴出するように設定されている。 本実施形態では、 気体供給管 1 1の
外周に形成された開口の周縁から延びる円錐台形の筒体 1 1 aの先端開口が噴出口 1 1 A とされている。 各噴出口 1 1 Aは、 受け部 4に載置されたワーク 3の下面に噴出口 1 1 A から噴出される気体を吹き付け可能な位置に配置される。 各気体排出管 1 2に管軸方向に沿って複数の吸引口 1 2 Aが設けられている。 各吸引口 1 2 Aの向きは、 噴出口 1 1 Aから噴出されることでワーク 3の下面に吹き付けられた気 体が、 ワーク 3の下面において向きを変化させることで向かう方向に向くように設定され ている。 本実施形態では、 気体排出管 1 2の外周に形成された開口の周縁から延びる逆円 錐台形の筒体 1 2 aの先端開口が吸引口 1 2 Aとされている。 炉体 2の外部に、 予熱ゾーン 2 a、 本焼成ゾーン 2 b、 徐冷ゾーン 2 c、 冷却ゾーン 2 dにおける温度制御ブロックそれぞれに対応する分配ダクト 2 0が設けられる。 各分配ダ クト 2 0は、 対応する温度制御ブロック内の気体供給管 1 1に枝管 2 0 ' を介して連通さ れる。 各分配ダクト 2 0は、 気体噴出源を構成する第 1ブロア 2 1に、 噴出流路切替え機構を 構成する電磁第 1切換弁 2 2を介して配管により連通される。 図 1は、 本焼成ゾーン 2 b における分配ダク卜 2 0に対応する第 1ブロア 2 1と第 1切換弁 2 2を示すが、 他の分配 ダクト 2 0も同様に第 1ブロア 2 1に第 1切換弁 2 2を介して配管により連通される。 第 1ブロア 2 1は一定流量で空気を吸引して吐出することが可能とされている。 第 1切換弁 2 2は、 分配ダクト 2 0との連通用第 1ポート S 2 aと、 第 1ブロア 2 1の 吐出側との連通用第 2ポート 2 2 bと、 第 1ブロア 2 1の吸引側との連通用第 3ポート 2 2 cと、 浮揚搬送位置と浮揚位置とに択一的に位置決めされるスプール 2 2 dとを有する 。 スプール 2 2 dに第 1噴出流路 2 2 d ' と、 第 1噴出流路 2 2 d ' よりも流路面積が小 さい第 2噴出流路 2 2 d〃 とが設けられている。 これにより、 第 1切換弁 2 2により噴出 口 1 1 Aから噴出される空気の流路が切換えられる。 すなわち、 スプール 2 2 dが浮揚搬 送位置に位置する時、 第 1ポート 2 2 aは第 1噴出流路 2 2 (Γ を介して第 2ポート 2 2 bに連通され、 第 3ポート 2 2 cは閉鎖される。 スプール 2 2 dが浮揚位置に位置する時
、 第 1ポート 2 2 aは第 2噴出流路 2 2 d " を介して第 2ポート 2 2 bに連通され、 第 3 ポート 2 2 cは第 2ポート 2 2 bに連通される。 これにより、 流路面積が互いに異なる第 1噴出流路 2 2 d ' と第 2噴出流路 2 2 d " は、 分配ダクト 2 0、 枝管 2 0 ' 、 気体供給 管 1 1を介して噴出口 1 1 Aに択一的に連通される。 また、 第 1ブロア 2 1の吐出側は第 1噴出流路 2 2 cT または第 2噴出流路 2 2 d " を介して噴出口 1 1 Aに連通される。 炉体 2の外部に、 予熱ゾーン 2 a、 本焼成ゾーン 2 b、 徐冷ゾーン 2 c、 冷却ゾーン 2 dにおける温度制御ブロックそれぞれに対応する集合ダクト 3 0が設けられる。 各集合ダ クト 3 0は、 対応する温度制御ブロック内の気体排出管 1 2に枝管 3 0 ' を介して連通さ れる。 各集合ダクト 3 0は、 気体吸引源を構成する第 2ブロア 3 1に配管を介して連通され、 第 2ブロア 3 1は吸引流路切替え機構を構成する電磁第 2切換弁 3 2に配管を介して連通 される。 図 1は本焼成ゾーン 2 bにおける集合ダクト 3 0に対応する第 2ブロア 3 1と第 2切換弁 3 2を示すが、 他の集合ダクト 3 0も同様に第 2ブロア 3 1に配管を介して連通 され、 第 2ブロア 3 1は第 2切換弁 3 2に配管を介して連通される。 第 2ブロア 3 1は一 定流量で空気を吸引して吐出することが可能とされている。 第 2切換弁 3 2は、 気体排出 用第 1ポート 3 2 aと、 第 2ブロア 3 1の吐出側との連通用第 2ポー卜 3 2 bと、 第 2ブ ロア 3 1の吸引側との連通用第 3ポート 3 2 cと、 浮揚搬送位置と浮揚位置とに択一的に 位置決めされるスプール 3 2 dとを有する。 スプール 3 2 dに第 1吸引流路 3 2 d ' と、 第 1吸引流路 3 2 d ' よりも流路面積が小さい第 2吸引流路 3 2 d〃 とが設けられている 。 これにより、 第 2切換弁 3 2により吸引口 1 2 Aから吸引される空気の流路が切換えら れる。 すなわち、 スプール 3 2 dが浮揚搬送位置に位置する時、 第 1ポート 3 2 aは第 1 吸引流路 3 2 (Γ を介して第 2ポート 3 2 bに連通され、 第 3ポート 3 2 cは閉鎖される 。 スプール 3 2 dが浮揚位置に位置する時、 第 1ポート 3 2 aは第 2吸引流路 3 2 d〃 を 介して第 2ポート 3 2 bに連通され、 第 3ポート 3 2 cは第 2ポート 3 2 bに連通される 。 これにより、 流路面積が互いに異なる第 1吸引流路 3 2 d ' と第 2吸引流路 3 2 d〃 は 、 集合ダクト 3 0、 枝管 3 0 ' 、 気体排出管 1 2を介して吸引口 1 2 Aに択一的に連通さ れる。 また、 第 2ブロア 3 1の吸引側は第 1吸引流路 3 2 d ' または第 2吸引流路 3 2 d
" を介して吸引口 1 2 Aに連通される。 第 2切換弁 3 2の気体排出用第 1ポート 3 2 aは、 ステンレス耐熱繊維防塵フィルター 3 5および循環空気の温度調節装置 3 6を介し、 第.1ブロア 2 1の吸引側に配管を介して 連通される。 温度調節装置 3 6は、 予熱ゾーン 2 aと本焼成ゾーン 2 bに対応する位置で はヒー夕により構成でき、 徐冷ゾーン 2 cに対応する位置では空冷式パッドゃ空冷式冷却 コイル等の冷却装置により構成でき、 冷却ゾーン 2 dに対応する位置では水冷式パッドゃ 水冷式冷却コイル等の冷却装置により構成できる。 これにより、 吸引口 1 2 Aから吸引された空気を噴出口 1 1 Aから噴出するための循環 経路が構成されている。 その循環経路における空気はフィルター 3 5により清浄化され、 温度調節装置 3 6により温度調節される。 温度調節装置 3 6は、 例えば循環経路中の空気 温度を検出する熱電対を有し、 その検出温度と対応する熱処理ゾーンの温度制御ブロック における熱処理温度との差に応じて噴出口 1 1 Aから噴出される空気の温度を制御する。 この循環経路を構成する配管は断熱材で保温するのが好ましい。 本実施形態では、 各受け部 4に温度調節装置が内蔵され、 ワーク 3を支持する受け部 4 の上面の温度調節を行う。 その温度調節装置は、 例えば受け部 4の上面温度を検出する熱 電対を有し、 その検出温度と対応する熱処理ゾーンの温度制御ブロックにおける熱処理温 度との差に応じて受け部 4の上面の温度を制御する。 これにより、 ワーク 3を受け部 4に 載置した状態での熱処理を促進できる。 温度調節装置は、 予熱ゾーン 2 aと本焼成ゾーン 2 bに対応する位置ではヒータにより構成でき、 徐冷ゾーン 2 cに対応する位置では空冷 式パッドゃ空冷式冷却コイル等の冷却装置により構成でき、 冷却ゾーン 2 dに対応する位 置では水冷式パッドゃ水冷式冷却コイル等の冷却装置により構成できる。 第 1切換弁 2 2と第 2切換弁 3 2は制御装置 4 0に接続される。 制御装置 4 0は、 第 1 切換弁 2 2と第 2切換弁 3 2を制御することで、 噴出口 1 1 Aから噴出される気体流量の ステップ状変化に同期して、 第 2切換弁 3 2を介して吸引口 1 2 Aに連通される吸引流路 を切り換え、 これにより吸引口 1 2 Aから吸引する気体流量をステップ状に変化させる。
すなわち、 第 1切換弁 2 2を介して噴出口 1 1 Aに第 1噴出流路 2 2 d ' が連通される時 、 第 2切換弁 3 2を介して吸引口 1 2 Aに第 1吸引流路 3 2 d ' が連通され、 第 1切換弁 2 2を介して噴出口 1 1 Aに第 2噴出流路 2 2 d〃 が連通される時、 第 2切換弁 3 2を介 して吸引口 1 2 Aに第 2吸引流路 3 2 d " が連通される。 噴出口 1 1 Aに第 2噴出流路 2 2 d〃 が連通され、 吸引口 1 2 Aに第 2吸引流路 3 2 d 〃 が連通される場合、 噴出口 1 1 Aから噴出される気体流量と吸引口 1 2 Aから吸引され る気体流量は、 ワーク 3を横方向移動することなく浮揚させることができる設定流量とな る。 この場合、 噴出口 1 1 Aから噴出される空気によりワーク 3を浮揚させることができ るように、 噴出口 1 1 Aから噴出される気体の設定流量は吸引口 1 2 Aから吸引される気 体の設定流量よりも多くされ、 各設定流量は実験的に求めることができる。 The continuous heat treatment apparatus 1 shown in FIG. 1 has a plurality of receiving portions 4 on which a plate-shaped work 3 is placed in a furnace body 2. The receiving portions 4 are arranged side by side at intervals in the longitudinal direction of the furnace body 2. The longitudinal direction of the furnace body 2 is set as the transfer direction of the work 3 (the direction of the arrow α in FIG. 1). The longitudinal direction of each receiving part 4 is along the width direction of the furnace body 2. The interval between the receiving portions 4 is set so that the work 3 can be always supported by the plurality of receiving portions 4. In the present embodiment, the inside of the furnace body 2 is divided into a preheating zone 2a, a main firing zone 2b, a slow cooling zone 2c, and a cooling zone 2d in order from the entrance. Each zone 2a, 2b, 2c, 2d is divided into one or more temperature control blocks. The dimensions of the temperature control block in each of the zones 2 a, 2 b, 2 c, and 2 d in the work transfer direction are set so that the two works 3 can be placed on the receiving portion 4. Heaters 5 and 6 for heating the work 3 in the preheating zone 2 a and the main firing zone 2 b are provided for each temperature control block on the ceiling of the furnace body 2, and the air cooling type cooling device 7 in the slow cooling zone 2 c A water-cooled cooling device is provided for each temperature control block in the cooling zone 2d. In FIG. 1, the number of temperature control blocks is typically one. The inner surface of the furnace body 2 is preferably lined with heat-resistant glass or the like. A gas supply pipe 11 and a gas discharge pipe 12 are provided between the receiving portions 4 so as to have an axis along the width direction of the furnace body 2. The gas in the present embodiment is air. As shown in FIG. 2, each gas supply pipe 11 is provided with a plurality of injection ports 11A along the pipe axis direction. The direction of each of the ejection ports 11 A is set such that the gas is ejected in one lateral direction, which is the transport direction of the work 3, as going upward. In this embodiment, the gas supply pipe 11 The tip end opening of the frustoconical cylindrical body 11a extending from the periphery of the opening formed on the outer periphery is defined as a jet port 11A. Each of the ejection ports 11 A is arranged at a position where the gas ejected from the ejection port 11 A can be blown onto the lower surface of the work 3 placed on the receiving portion 4. Each of the gas discharge pipes 12 is provided with a plurality of suction ports 12A along the pipe axis direction. The direction of each suction port 12 A is such that the air blown to the lower surface of the work 3 by being ejected from the outlet 11 A is directed to the direction toward which the air is directed by changing the direction on the lower surface of the work 3. It is set. In the present embodiment, the suction port 12A is formed at the tip end of the inverted frustum-shaped cylindrical body 12a extending from the periphery of the opening formed on the outer periphery of the gas discharge pipe 12. Outside the furnace body 2, distribution ducts 20 corresponding to the respective temperature control blocks in the preheating zone 2a, the main firing zone 2b, the slow cooling zone 2c, and the cooling zone 2d are provided. Each distribution duct 20 is connected to a gas supply pipe 11 in a corresponding temperature control block via a branch pipe 20 '. Each distribution duct 20 is connected to a first blower 21 constituting a gas ejection source by a pipe via an electromagnetic first switching valve 22 constituting an ejection channel switching mechanism. Fig. 1 shows the first blower 21 and the first switching valve 22 corresponding to the distribution duct 20 in the main sintering zone 2b, but the other distribution ducts 20 are similarly connected to the first blower 21. 1 It is connected by piping via the switching valve 22. The first blower 21 is capable of sucking and discharging air at a constant flow rate. The first switching valve 22 has a first port S 2 a for communication with the distribution duct 20, a second port 22 b for communication with the discharge side of the first blower 21, and a first port S 2 a for communication with the first blower 21. It has a third port 22c for communication with the suction side, and a spool 22d that is selectively positioned between the floating transport position and the floating position. The spool 22d is provided with a first ejection channel 22d 'and a second ejection channel 22d' having a smaller channel area than the first ejection channel 22d '. Thereby, the flow path of the air jetted from the jet port 11A by the first switching valve 22 is switched. That is, when the spool 22 d is located at the floating transport position, the first port 22 a is communicated with the second port 22 b via the first ejection flow path 22 (Γ), and the third port 22 c is closed when spool 2 2 d is in the floating position The first port 22a is connected to the second port 22b via the second ejection flow path 22d ", and the third port 22c is connected to the second port 22b. The first ejection flow path 2 2 d ′ and the second ejection flow path 2 2 d ″ having different flow passage areas are connected to the distribution port 20, the branch pipe 20 ′, and the gas supply pipe 11 via the gas supply pipe 11. It is alternatively communicated with 1 A. In addition, the discharge side of the first blower 21 is communicated with the discharge port 11A via the first discharge flow path 22cT or the second discharge flow path 22d ". Preheating outside the furnace body 2 Collective ducts 30 corresponding to temperature control blocks in zone 2a, main firing zone 2b, slow cooling zone 2c, and cooling zone 2d are provided, and each collective duct 30 is provided in a corresponding temperature control block. Each of the collecting ducts 30 is connected to a second blower 31 constituting a gas suction source via a pipe, and is connected to a second gas discharge pipe 12 of the second blower 3 1. Is connected via a pipe to the electromagnetic second switching valve 32 that constitutes the suction flow path switching mechanism.Figure 1 shows the switching between the second blower 31 corresponding to the collecting duct 30 and the second switching in the main firing zone 2b. The valve 32 is shown, but the other collecting duct 30 is also connected to the second blower 31 via a pipe, and the second blower 31 is 2 It is connected via a pipe to the switching valve 32. The second blower 31 is capable of sucking and discharging air at a constant flow rate, and the second switching valve 32 is for gas discharge. A first port 32a, a second port 32b for communication with the discharge side of the second blower 311, and a third port 32c for communication with the suction side of the second blower 31; It has a spool 32d that is selectively positioned between the floating conveyance position and the floating position, and the spool 32d has a first suction flow path 32d 'and a first suction flow path 32d' that are smaller than the first suction flow path 32d '. The second suction flow path 32 d が having a small flow path area is provided, whereby the flow path of the air sucked from the suction port 12 A by the second switching valve 32 is switched. When the spool 3 2 d is located at the floating transfer position, the first port 32 a is connected to the second port 32 b via the first suction flow path 32 (Γ, and the third port 32 c is Will be closed. When the spool 3 2 d is in the floating position, the first port 32 a is communicated with the second port 32 b via the second suction flow path 32 d〃, and the third port 32 c is connected to the second port 32 b. Thus, the first suction flow path 32 d 'and the second suction flow path 32 d' having different flow path areas are connected to the collecting duct 30, the branch pipe 30 ′, It is alternatively connected to the suction port 12 A via the gas discharge pipe 12. Further, the suction side of the second blower 31 is connected to the first suction channel 3 2 d ′ or the second suction channel 3 2 d The gas is connected to the suction port 12 A through the ". The first port 32 a for discharging the gas of the second switching valve 32 is connected to the stainless steel heat resistant fiber dust filter 35 and the circulating air temperature controller 36. The suction side of the No. 1 blower 21 is connected via a pipe.The temperature control device 36 can be constituted by a heater at the position corresponding to the preheating zone 2a and the main firing zone 2b, and gradually cooled. At the position corresponding to zone 2c, it can be constituted by a cooling device such as an air-cooled pad ゃ air-cooled cooling coil, and at the position corresponding to cooling zone 2d, it can be constituted by a cooling device such as a water-cooled pad ゃ water-cooled cooling coil. Constitutes a circulation path for ejecting the air sucked from the suction port 12 A from the ejection port 11 A. The air in the circulation path is cleaned by the filter 35 and the temperature control device 36 The temperature is controlled by the temperature The joint device 36 has, for example, a thermocouple that detects the air temperature in the circulation path, and ejects from the ejection port 11A according to the difference between the detected temperature and the heat treatment temperature in the corresponding temperature control block in the heat treatment zone. In this embodiment, it is preferable that the piping constituting the circulation path be kept insulated by a heat insulating material. The temperature control device includes, for example, a thermocouple that detects the temperature of the upper surface of the receiving part 4. The temperature control device controls the temperature between the detected temperature and the heat treatment temperature in the temperature control block of the corresponding heat treatment zone. The temperature of the upper surface of the receiving part 4 is controlled in accordance with the difference, thereby facilitating the heat treatment in a state where the workpiece 3 is placed on the receiving part 4. The temperature control device includes the preheating zone 2a and the main firing zone 2 Corresponds to b At the position corresponding to the slow cooling zone 2c, it can be configured by a cooling device such as an air-cooled pad ゃ air-cooled cooling coil, and at the position corresponding to the cooling zone 2d, the water-cooled pad ゃ water-cooled It can be constituted by a cooling device such as a cooling coil etc. The first switching valve 22 and the second switching valve 32 are connected to the control device 40. The control device 40 includes the first switching valve 22 and the second switching valve. By controlling 32, the suction flow path communicated with the suction port 12A via the second switching valve 32 is synchronized with the stepwise change in the gas flow rate ejected from the ejection port 11A. The flow rate of the gas sucked from the suction port 12A is changed stepwise. That is, when the first ejection flow path 2 2 d ′ is connected to the ejection port 11 A via the first switching valve 22, the first suction is performed to the suction port 12 A via the second switching valve 32. When the flow path 3 2 d ′ is communicated and the second ejection flow path 2 2 d に is communicated with the ejection port 11 A via the first switching valve 22, the flow is switched via the second switching valve 32. The second suction channel 3 2 d "is connected to the suction port 12A. The second ejection channel 22d is connected to the ejection port 11A, and the second suction channel is connected to the suction port 12A. When 3 2 d 連 is connected, the flow rate of gas ejected from the outlet 11 A and the flow rate of gas sucked from the suction port 12 A are set so that the workpiece 3 can be levitated without moving laterally. In this case, the set flow rate of the gas ejected from the ejection port 11A is set to the suction port 12A so that the work 3 can be levitated by the air ejected from the ejection port 11A. Setting flow of air sucked from The set flow rate can be determined experimentally.
噴出口 1 1 Aに第 1噴出流路 2 2 d ' が連通され、 吸引口 1 2 Aに第 1吸引流路 3 2 d ' が連通される場合、 噴出口 1 1 Aから噴出される気体流量と吸引口 1 2 Aから吸引され る気体流量は、 ワーク 3を浮揚状態で一横方向に移動させることができる設定流量となる 。 この場合、 噴出口 1 1 Aから噴出される空気によりワーク 3を浮揚状態で一横方向に移 動させることができるように、 噴出口 1 1 Aから噴出される気体の設定流量は吸引口 1 2 Aから吸引される気体の設定流量よりも多くされ、 各設定流量は実験的に求めることがで さる。 When the first outlet channel 2 2 d 'is connected to the outlet 11A and the first suction channel 32d' is connected to the suction port 12A, the gas discharged from the outlet 11A The flow rate and the flow rate of the gas sucked from the suction port 12 A are set flow rates at which the workpiece 3 can be moved in the horizontal direction in a floating state. In this case, the set flow rate of the gas ejected from the outlet 11 A is set so that the work 3 can be moved in the horizontal direction while floating by the air ejected from the outlet 11 A. The set flow rate of the gas sucked from 2 A is set to be larger than the set flow rate, and each set flow rate can be obtained experimentally.
これにより、 噴出口 1 1 Aに連通される噴出流路の切り換えと吸引口 1 2 Aに連通され る吸引流路の切り換えにより、 噴出口 1 1 Aから噴出される気体流量と吸引口 1 2 Aから 吸引される気体流量とが、 ワーク 3を横方向移動することなく浮揚させる設定流量と、 ヮ ーク 3を浮揚状態で一横方向に移動させる設定流量との間でステップ状に変化する。 分配ダクト 2 0の一端に圧力緩衝器 2 4が設けられ、 第 1切換弁 2 2による流路切換時 の急激な圧力変動を吸収し、 ワーク 3の円滑な浮揚と受け部 4への載置とが図られる。 同 様に集合ダクト 3 0の一端に圧力緩衝器を設けてもよい。 図 3、 図 4に示すように、 炉体 2内に設けられた支持部材 5 0を介して上下方向軸心の 複数のローラ 5 1が回転可能に支持される。 ローラ 5 1は炉体 2の長手方向に沿って並列
し、 ワーク 3の搬送方向 (図 4の矢印 /3方向) が炉体 2の長手方向に沿う搬送経路から外 れるのを防止する。 ローラ 5 1の外周面はアルミナ、 ジルコニァ、 溶融シリカ、 耐熱ガラ ス等のセラミック製とするのが好ましい。 図 4に示すように、 ワーク 3を検知する複数の検知センサ 5 2が炉体 2に取り付けられ る。 各センサ 5 2は互いにワーク 3の搬送方向の間隔をおいて配置される。 本実施形態の センサ 5 2は、 発光素子 5 2 aから図中一点鎖線で示すように発する光が、 ワーク 3に遮 られることで受光素子 5 2 bにより受光されない場合に、 ワーク 3の検知信号を制御装置 4 0に出力する。 相隣接するセンサ 5 2の間隔がタクト搬送距離とされる。 タクト搬送距 離はワーク 3の搬送方向における寸法よりも少し大きい値とされる。 本実施形態では、 各 ゾーン 2 a、 2 b , 2 c、 2 dにおける温度制御ブロックそれぞれの搬送方向における寸 法は、 夕クト搬送距離の略 2倍とされ、 各温度制御ブロックの受け部 4に同時に 2つのヮ ーク 3を載置できる。 上記熱処理装置 1によりワーク 3を搬送しつつ熱処理する際、 ワーク 3の搬送は以下の 浮揚工程、 移動工程、 停止工程、 載置工程により行われる。 浮揚工程においては、 受け部 4に載置されたワーク 3の下面に、 噴出口 1 1 Aから噴出 される設定流量の空気を吹き付けることで、 ワーク 3を横方向移動することなく浮揚させ る。 すなわち制御装置 4 0は、 第 1ブロア 2 1を一定速度で駆動し、 第 1切換弁 2 2を介 して噴出口 1 1 Aに第 2噴出流路 2 2 d " を連通し、 第 2ブロア 3 1を一定速度で駆動し 、 第 2切換弁 3 2を介して吸引口 1 2 Aに第 2吸引流路 3 2 d〃 を連通する。 移動工程においては、 横方向移動することなく浮揚されたワーク 3の下面に吹き付ける 空気流量を、 浮揚工程における設定流量よりも多い設定流量とすることで、 ワーク 3を浮 揚状態で一横方向に移動させる。 すなわち制御装置 4 0は、 第 1ブロア 2 1を一定速度で 駆動し、 第 1切換弁 2 2を介して噴出口 1 1 Aに第 1噴出流路 2 2 d ' を連通し、 第 2ブ ロア 3 1を一定速度で駆動し、 第 2切換弁 3 2を介して吸引口 1 2 Aに第 1吸引流路 3 2 d ' を連通する。
停止工程においては、 浮揚状態で移動するワーク 3の下面に吹き付ける空気流量を、 移 動工程におけるよりも少ない設定流量とすることで、 ワーク 3を横方向移動することなく 浮揚させる。 すなわち制御装置 4 0は、 第 1ブロア 2 1を一定速度で駆動し、 第 1切換弁 2 2を介して噴出口 1 1 Aに第 2噴出流路 2 2 d〃 を連通し、 第 2ブロア 3 1を一定速度 で駆動し、 第 2切換弁 3 2を介して吸引口 1 2 Aに第 2吸引流路 3 2 d〃 を連通する。 載置工程においては、 横方向移動することなく浮揚されたワーク 3に下面から吹き付け る空気流量を、 浮揚工程および停止工程におけるよりも少ない設定流量とすることで、 ヮ ーク 3を受け部 4に載置させる。 この浮揚工程においては、 制御装置 4 0は第 1ブロア 2 1と第 2ブロア 3 1の駆動を解除する。 これにより、 本実施形態では載置工程において噴 出口 1 1 Aから噴出される空気の設定流量は零になる。 制御装置 4 0は、 浮揚工程と移動工程との間および移動工程と停止工程の間において、 第 1切換弁 2 2を介して噴出口 1 1 Aに連通される噴出流路を切り換えることで、 噴出口 1 1 Aから噴出される気体流量をステップ状に変化させる。 この噴出口 1 1 Aから噴出す る気体流量のステップ状変化に同期して、 第 2切換弁 3 2を介して吸引口 1 2 Aに連通さ れる吸引流路を切り換えることで、 吸引口 1 2 Aから吸引する気体流量をステップ状に変 化させる。 また、 制御装置 4 0は、 載置工程と浮揚工程との間および停止工程と載置工程 の間において、 第 1ブロア 2 1の駆動と駆動解除により、 噴出口 1 1 Aから噴出される気 体流量を変化させる。 この噴出口 1 1 Aから噴出する気体流量の変化に同期して、 第 2ブ ロア 3 1の駆動と駆動解除により、 吸引口 1 2 Aから吸引する気体流量を変化させる。 上記浮揚工程、 移動工程、 停止工程、 載置工程により搬送されるワーク 3は、 予熱ゾ一 ン 2 a、 本焼成ゾーン 2 b、 徐冷ゾーン 2 c、 冷却ゾーン 2 dを順次通過し、 各ゾーン 2 a、 2 b、 2 c、 2 dにおいて予熱、 本焼成、 徐冷、 冷却の熱処理が連続的に行われる。 図 5は、 連続熱処理装置 1により熱処理されるワーク 3の温度と時間との関係一例を示し 、 ワーク 3は予熱ゾーン 2 aで次第に温度上昇し、 本焼成ゾーン 2 bで温度上昇後に最高 温度に保持され、 徐冷ゾーン 2 c、 冷却ゾーン 2 dで次第に温度下降する。
上記浮揚工程、 移動工程、 停止工程、 載置工程によりワーク 3が間欠的に搬送される。 例えば、 浮揚工程、 移動工程、 停止工程、 載置工程を、 この順序で繰り返すことでワーク 3を間欠的に搬送できる。 また、 浮揚工程と載置工程の間において、 移動工程と停止工程 とを交互に繰り返すことでワーク 3を間欠的に搬送することができる。 図 6は、 噴出口 1 1 Aからの空気噴出流量と時間との関係一例を示し、 図 7は、 図 6に 対応するワーク 3の移動距離と時間との関係を示す。 第 1ブロア 2 1が一定速度で駆動さ れている時の第 1噴出流路 2 2 d ' の流路面積に対応する流量を H、 第 2噴出流路 2 2 d " の流路面積に対応する流量を Lで示す。 この場合、 時間 t 1で噴出口 1 1 Aに連通され る噴出流路が第 2噴出流路 2 2 d〃 から第 1噴出流路 2 2 d ' に切り換えれられ、 時間 t 2で噴出口 1 1 Aからの空気噴出流量が Hとなることで噴出流量がステップ状に変化し、 時間 t 3で噴出口 1 1 Aに連通される噴出流路が第 1噴出流路 2 2 d ' から第 2噴出流路 2 2 d " に切り換えれられ、 時間 t 4で噴出口 1 1 Aからの空気噴出流量が Lとなること で噴出流量がステップ状に変化し、 時間 t 5で噴出口 1 1 Aに連通される噴出流路が第 2 噴出流路 2 2 d〃 から第 1噴出流路 2 2 d ' に切り換えれられる。 これが繰り返されるこ とで、 移動工程と停止工程とが交互に繰り返される。 すなわち、 時間 t 1と t 2の間にお いてワーク 3の横方向移動が開始され、 時間 t 3と t 4の間においてワーク 3の横方向移 動が停止され、 時間 t 5の後に再びワーク 3の横方向移動が開始される。 移動工程におい てワーク 3の加速度が大きくなると搬送方向や速度の制御が不安定となることから、 移動 工程の時間は、 ワーク 3の移動距離と時間との間に略直線関係が成立する最大値を予め実 験的に求め、 その最大値以下の時間とするのが好ましい。 各センサ 5 2によりワーク 3を検知する毎に、 停止工程を経て載置工程が行われ、 ヮー ク 3は受け部 4に載置される。 相隣接するセンサ 5 2の間隔に対応するタクト搬送距離だ けワーク 3を搬送するために、 上記浮揚工程、 移動工程、 停止工程、 載置工程を 1サイク ルだけ実行する場合、 搬送に要する時間を短縮できる。 夕クト搬送距離だけワーク 3を搬 送するために、 上記浮揚工程、 移動工程、 停止工程、 載置工程を複数サイクル実行する場 合、 ワーク 3の搬送方向や速度を安定させることができる。 タクト搬送距離だけワーク 3
を搬送する際、 搬送当初に上記浮揚工程を実行し、 次に移動工程と停止工程とを複数回繰 り返し実行し、 タクト搬送距離だけ移動してセンサ 5 2によりワーク 3が検知された時点 で載置工程を実行する場合、 搬送に要する時間を短縮できると共に搬送方向や速度を安定 させることができる。 なお、 炉体 2の各ゾーン 2 a、 2 b、 2 c、 2 dにおいて受け部 4 に載置された状態でのワーク 3の熱処理時間を、 ワーク 3の搬送時間よりも長くすること で、 ワーク 3全体に均一な熱処理を行うことができる。 また、 浮揚工程、 移動工程、 停止 工程、 載置工程それぞれにおいて、 噴出口 1 1 Aから噴出される空気を温度制御ブロック の設定温度に応じた熱処理に適した温度に温度調節装置 3 6により調節することで、 熱処 理を促進できる。 なお、 載置工程においては、 噴出口 1 1 Aからワーク 3を浮揚させるこ とのない流量で空気を噴出し、 その空気を熱処理に適した温度に温度調節装置 3 6により 調節することで熱処理を促進でき、 この場合、 噴出口 1 1 Aからの噴出空気流量の制御は 、 制御装置 4 0により第 1ブロア 2 1を制御することで行うことができる。 上記実施形態によれば、 受け部 4に載置されたワーク 3を横方向に移動させることなく 浮揚させ、 しかる後に横方向に移動させ、 また、 浮揚状態で移動するワーク 3を一旦横方 向移動することなく浮揚する停止状態とし、 しかる後にワーク 3の下面に吹き付ける空気 流量を減少させることで受け部 4に載置させるので、 ワーク 3における受け部 4との接触 面に摩擦やすべりに起因する傷が付くのを確実に防止できる。 さらに、 気体噴出流量の変 化時に、 噴出口 1 1 Aから噴出された気体を吸引口 1 2 Aからタイミングよく吸引し、 ヮ ーク 3に吹き付けられた空気によりワーク 3の周囲の雰囲気に乱れが生じるのを抑制し、 防塵効果を奏し、 安定した熱処理を行うことで歩留りを向上できる。 本発明は上記実施形態に限定されない。 例えば、 第 2噴出流路 2 2 d〃 よりも流路面積 の小さな第 3噴出流路を設け、 噴出流路切替え機構として第 1切換弁 2 2に代えて 3位置 切換式の切換弁を用い、 載置工程において第 3噴出流路を介して第 1ブロア 2 1と噴出口 1 1 Aとを連通するようにしてもよい。 また、 噴出口から噴出する気体は空気に限定され ず、 窒素等の不活性ガスを噴出してもよい。 気体噴出源はブロアに限定されず、 例えば加 圧気体の貯蔵タンクを用いてもよい。 連続熱処理装置は少なくともワークを加熱するヒー 夕を備えるものであればよい。 さらに、 吸引口はなくても本発明を実施できる。
As a result, the flow rate of the gas ejected from the ejection port 11A and the suction port 12 are changed by switching the ejection flow path communicating with the ejection port 11A and the suction channel communicating with the suction port 12A. The flow rate of gas sucked from A changes stepwise between the set flow rate that causes the workpiece 3 to levitate without moving laterally and the set flow rate that moves the workpiece 3 in the levitating state in one horizontal direction. . A pressure buffer 24 is provided at one end of the distribution duct 20 to absorb sudden pressure fluctuations at the time of switching the flow path by the first switching valve 22, and smoothly lift the work 3 and place it on the receiving part 4. Is achieved. Similarly, a pressure buffer may be provided at one end of the collecting duct 30. As shown in FIGS. 3 and 4, a plurality of rollers 51 having a vertical axis are rotatably supported via support members 50 provided in the furnace body 2. Rollers 5 1 are arranged in parallel along the longitudinal direction of furnace body 2 In addition, the transfer direction of the work 3 (the direction of the arrow / 3 in FIG. 4) is prevented from deviating from the transfer path along the longitudinal direction of the furnace body 2. The outer peripheral surface of the roller 51 is preferably made of ceramics such as alumina, zirconia, fused silica, and heat-resistant glass. As shown in FIG. 4, a plurality of detection sensors 52 for detecting the work 3 are attached to the furnace body 2. The sensors 52 are arranged at an interval in the conveying direction of the work 3 from each other. The sensor 52 of the present embodiment provides a detection signal of the work 3 when the light emitted from the light emitting element 52 a is not received by the light receiving element 52 b due to being blocked by the work 3 as shown by a dashed line in the drawing. Is output to the control device 40. The interval between adjacent sensors 52 is defined as the tact transport distance. The tact transfer distance is slightly larger than the dimension of the work 3 in the transfer direction. In the present embodiment, the dimension in the transport direction of each temperature control block in each of the zones 2a, 2b, 2c, and 2d is set to approximately twice the evening transport distance, and the receiving portion 4 of each temperature control block Two marks 3 can be placed simultaneously on each other. When the heat treatment is performed while the work 3 is being conveyed by the heat treatment apparatus 1, the work 3 is conveyed by the following levitating step, moving step, stopping step, and placing step. In the flotation process, the work 3 is levitated without moving laterally by blowing air at a set flow rate blown out from the spout 11A onto the lower surface of the work 3 placed on the receiving portion 4. That is, the control device 40 drives the first blower 21 at a constant speed, communicates the second ejection flow path 2 2 d ″ with the ejection port 11 A via the first switching valve 22, The blower 31 is driven at a constant speed, and the second suction flow path 32 d is connected to the suction port 12 A via the second switching valve 32. In the moving process, the air blows without moving laterally. The flow rate of the air blown to the lower surface of the work 3 is set to a flow rate larger than the flow rate set in the flotation process, thereby moving the work 3 in the floating state in one lateral direction. The blower 21 is driven at a constant speed, the first discharge passage 22 d 'is communicated with the jet port 11A via the first switching valve 22, and the second blower 31 is driven at a constant speed. The first suction flow path 32 d ′ is connected to the suction port 12 A via the second switching valve 32. In the stop process, the work 3 is levitated without moving in the lateral direction by setting the air flow rate blown to the lower surface of the work 3 moving in the floating state to a smaller set flow rate than in the moving process. That is, the control device 40 drives the first blower 21 at a constant speed, communicates the second ejection flow path 22 d〃 to the ejection port 11 A via the first switching valve 22, 31 is driven at a constant speed, and the second suction flow path 32 d is connected to the suction port 12 A via the second switching valve 32. In the placing process, the air flow blown from the lower surface to the work 3 levitated without moving in the lateral direction is set to a smaller flow rate than in the levitating process and the stop process, so that the work 3 receives the work 3 To be placed. In this levitation step, the controller 40 releases the drive of the first blower 21 and the second blower 31. Thus, in the present embodiment, the set flow rate of the air jetted from the jet port 11A in the mounting step becomes zero. The control device 40 switches the ejection flow path communicated with the ejection port 11A via the first switching valve 22 between the levitation step and the movement step and between the movement step and the stop step, Vent from the outlet 1 1 A The gas flow rate is changed stepwise. By synchronizing with the stepwise change of the gas flow rate spouting from the jet port 11A, the suction flow path communicated with the suction port 12A via the second switching valve 32 is switched, so that the suction port 1 Change the gas flow to be suctioned from 2 A in a step-like manner. Further, between the placing step and the floating step, and between the stopping step and the placing step, the control device 40 drives and blows the first blower 21 to release the air ejected from the ejection port 11A. Change body flow. In synchronization with the change in the flow rate of the gas ejected from the ejection port 11A, the flow rate of the gas sucked from the suction port 12A is changed by driving and releasing the drive of the second blower 31. The work 3 conveyed in the above-mentioned flotation step, moving step, stop step, and placing step passes through the preheating zone 2a, the main firing zone 2b, the slow cooling zone 2c, and the cooling zone 2d in order. In zones 2a, 2b, 2c and 2d, heat treatments of preheating, main firing, slow cooling and cooling are continuously performed. FIG. 5 shows an example of the relationship between the temperature and time of the work 3 to be heat-treated by the continuous heat treatment apparatus 1.The temperature of the work 3 gradually rises in the preheating zone 2a, and reaches the maximum temperature after the temperature rises in the main firing zone 2b. The temperature is gradually lowered in the slow cooling zone 2c and the cooling zone 2d. The work 3 is intermittently conveyed by the above-mentioned levitating step, moving step, stopping step, and placing step. For example, the work 3 can be transported intermittently by repeating the levitating step, moving step, stopping step, and placing step in this order. Further, the work 3 can be intermittently transported by alternately repeating the moving step and the stopping step between the floating step and the placing step. FIG. 6 shows an example of the relationship between the air ejection flow rate from the ejection port 11A and time, and FIG. 7 shows the relationship between the moving distance of the workpiece 3 and time corresponding to FIG. When the first blower 21 is driven at a constant speed, the flow rate corresponding to the flow area of the first ejection flow path 2 2 d ′ is set to H, and the flow area of the second The corresponding flow rate is indicated by L. In this case, at time t1, the ejection flow path communicating with the ejection port 11A is switched from the second ejection flow path 22d 2 to the first ejection flow path 22d '. At time t2, the flow rate of air ejected from the outlet 11A changes to H at time t2, and the ejected flow rate changes in a step-like manner. The jet channel 2 2 d 'is switched to the second jet channel 22 d'', and at time t4, the air jet flow from the jet 11A becomes L at time t4, and the jet flow changes stepwise. At time t5, the ejection flow path communicating with the ejection port 11A is switched from the second ejection flow path 22d〃 to the first ejection flow path 22d '. By repeating this, the moving process and the stopping process are alternately repeated. That is, the lateral movement of the work 3 is started between the times t1 and t2, the lateral movement of the work 3 is stopped between the times t3 and t4, and the work 3 is again moved after the time t5. The horizontal movement of 3 starts. When the acceleration of the work 3 increases in the moving process, the control of the transfer direction and the speed becomes unstable, so the time of the moving process is the maximum value at which a substantially linear relationship is established between the moving distance of the work 3 and the time. Is preferably obtained experimentally in advance, and the time is preferably equal to or less than the maximum value. Each time the work 3 is detected by each of the sensors 52, a placement process is performed through a stop process, and the work 3 is placed in the receiving portion 4. If the above-mentioned floating, moving, stopping, and placing steps are performed only one cycle in order to transport the work 3 by the tact transport distance corresponding to the interval between adjacent sensors 52, the time required for transporting Can be shortened. If the above-mentioned floating, moving, stopping, and placing steps are performed in a plurality of cycles in order to transport the work 3 by the evening transfer distance, the transfer direction and speed of the work 3 can be stabilized. Work 3 only for tact transfer distance When the workpiece is transported, the above-mentioned flotation process is performed at the beginning of the transport, then the moving process and the stopping process are repeated several times, and the workpiece 5 is moved by the tact transport distance and the workpiece 52 is detected by the sensor 52. When the mounting step is performed by using, the time required for the transfer can be reduced, and the transfer direction and speed can be stabilized. By setting the heat treatment time of the work 3 placed on the receiving portion 4 in each of the zones 2 a, 2 b, 2 c, and 2 d of the furnace body 2 longer than the transfer time of the work 3, A uniform heat treatment can be performed on the entire work 3. In addition, in each of the levitating process, moving process, stopping process, and placing process, the temperature of the air blown from the outlet 11A is adjusted by the temperature controller 36 to a temperature suitable for heat treatment according to the temperature set in the temperature control block. By doing so, heat treatment can be promoted. In the mounting process, air was blown from the outlet 11A at a flow rate that would not cause the workpiece 3 to float, and the air was adjusted to a temperature suitable for the heat treatment by the temperature control device 36. In this case, the control of the flow rate of the jet air from the jet port 11A can be performed by controlling the first blower 21 by the control device 40. According to the above-described embodiment, the work 3 placed on the receiving portion 4 is levitated without moving in the lateral direction, and then moved in the horizontal direction, and the work 3 moving in the floating state is temporarily moved in the horizontal direction. It is placed on the receiving part 4 by reducing the flow rate of air blown to the lower surface of the work 3 after that, it is placed on the receiving part 4 by reducing the flow rate of the air blown to the lower surface of the work 3 due to friction and slippage on the contact surface of the work 3 with the receiving part 4. It can be reliably prevented from being damaged. In addition, when the gas ejection flow rate changes, the gas ejected from the ejection port 11A is sucked in a timely manner from the suction port 12A, and the air blown to the workpiece 3 disturbs the atmosphere around the workpiece 3. The generation of dust is suppressed, the dust prevention effect is achieved, and the yield can be improved by performing stable heat treatment. The present invention is not limited to the above embodiment. For example, a third ejection passage having a smaller passage area than the second ejection passage 22 d 2 is provided, and a three-position switching valve is used instead of the first switching valve 22 as the ejection passage switching mechanism. Alternatively, in the mounting step, the first blower 21 and the ejection port 11A may be communicated via the third ejection channel. Further, the gas ejected from the ejection port is not limited to air, and an inert gas such as nitrogen may be ejected. The gas ejection source is not limited to a blower, and for example, a pressurized gas storage tank may be used. The continuous heat treatment apparatus only needs to have at least a heater for heating the work. Further, the present invention can be implemented without a suction port.