WO2005102157A1 - 血管年齢の評価方法 - Google Patents

血管年齢の評価方法 Download PDF

Info

Publication number
WO2005102157A1
WO2005102157A1 PCT/JP2004/004622 JP2004004622W WO2005102157A1 WO 2005102157 A1 WO2005102157 A1 WO 2005102157A1 JP 2004004622 W JP2004004622 W JP 2004004622W WO 2005102157 A1 WO2005102157 A1 WO 2005102157A1
Authority
WO
WIPO (PCT)
Prior art keywords
age
waveform
subject
finger
blood vessel
Prior art date
Application number
PCT/JP2004/004622
Other languages
English (en)
French (fr)
Inventor
Haruko Takada
Kazuo Okino
Original Assignee
U-Medica Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by U-Medica Inc. filed Critical U-Medica Inc.
Priority to PCT/JP2004/004622 priority Critical patent/WO2005102157A1/ja
Priority to JP2006512431A priority patent/JP4347338B2/ja
Publication of WO2005102157A1 publication Critical patent/WO2005102157A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6825Hand
    • A61B5/6826Finger
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/02007Evaluating blood vessel condition, e.g. elasticity, compliance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/683Means for maintaining contact with the body
    • A61B5/6838Clamps or clips

Definitions

  • the present invention relates to a method for evaluating blood vessel age, and in particular, a blood vessel aging score calculated based on a waveform index obtained from a component wave of an acceleration pulse wave measured using a reflection type pulse wave sensor. It relates to the method of evaluating the age. Background art
  • the pulse wave is a propagating wave of pulse pressure, which can be said to be a function of stroke volume and compliance of the arterial system.
  • the pulse pressure waveform changes as it goes from the aorta to the peripheral arteries. This is considered to be due to the combination of the projection wave and the reflection wave at various sites and the occurrence of resonance, and the degree of transformation can be regarded as the sum of the effects of the property or characteristics of the blood vessel.
  • the mean intra-arterial pressure of the peripheral artery is lower than that of the aorta, but the pulse wave waveform obtained at the periphery is more uneven than the central pulse wave waveform, and the waveform discrimination is It has the advantage of being easy to do.
  • the baseline may not be stable and it may be difficult to recognize the inflection point. Therefore, a second derivative wave (referred to as “acceleration pulse wave”) obtained by differentiating the source waveform of the peripheral pulse wave twice is used as a waveform more suitable for evaluation in research and clinics. .
  • a pulse wave meter that is widely used at present is a photoelectric fingertip plethysmograph.
  • the principle of this sphygmograph is to apply a light having a wavelength that is specific for light absorption to hemoglobin and measure the change in volume of blood flow in the blood vessel from the absorbed light or the reflected light to obtain a waveform. It is based.
  • the volume pulse wave and the pressure pulse wave reflect different things, the meanings of the waveforms are the same.
  • the acceleration pulse wave is a waveform of the systole of the heart. As shown in FIG. 1, although there are five component waves of a, b, c, d and e waves, these component waves are depending on the condition of the living body. In addition, we will change regularly as we get older.
  • the component wave (a wave) having the vertex a corresponds to the waveform of the rising portion of the original waveform, and the component wave (e wave) having the vertex e shrinks the original waveform It corresponds to the end notch.
  • the a-e interval from the top a to the top e corresponds to the left ventricular ejection time.
  • the a-e interval is shortened and the component wave is also deformed.
  • the a wave is a positive wave whose apex a is always above the base, and the b wave is always lower at its apex b below the base
  • the c-wave, d-wave, and e-wave are component waves whose apexes c, d, and e change to positive or negative depending on the conditions of the living body.
  • the waveform of an acceleration pulse wave was type 1: standard waveform (st and ard pat tern), type 2: d waveform deep (deeper- d pat t ern , 3: c waveform (deeper- c pat tern) (in this case, d waveform is also deep), and 4 type: b waveform shallow (shall ow-b pattern ern) (this If the waveform is deep, it is classified into four types and the details are clarified.
  • APG acceleration pulse wave
  • the acceleration pulse wave can represent the degree of aging of the blood vessel (blood vessel age). That is, since the waveform changes due to changes in the compliance of organic and functional arterial systems, if this waveform can be reasonably evaluated, it is possible to evaluate the age of blood vessels by the waveform.
  • the standard waveform of the acceleration pulse wave slightly differs depending on the type of measurement equipment, that is, the conditions such as the light source, the filter, the waveform reading method, and the signal processing.
  • it changes with aging it is difficult to distinguish between physiological changes and pathological changes.
  • there are also gender differences in the waveform As described above, it is suitable for any condition to evaluate the degree of vascular aging by evaluating different waveforms depending on the measurement device, measurement environment, age, etc.
  • a common waveform evaluation method must be established that can respond. That is, if the measurement environment is the same, it is necessary to create a common standard that can be used commonly for all instruments and for all age groups, and to evaluate based on that.
  • Vascular aging can be evaluated using the following: Vascular aging score 1 derived from the mean value and standard deviation of waveform index I, and vascular aging score 2 derived from the mean value and standard deviation of waveform index II (Patent No. 3 4 8 7 8 2 9).
  • the waveform index I is (dZa)-(bZa) (in this equation, a is from the base line to the top of the a waveform in the rising portion of the original waveform among the components of the acceleration pulse wave)
  • B represents the distance from the base of the second b-wave waveform to the vertex from the waveform of the rising portion of the original waveform among the components of the acceleration pulse wave
  • d represents the component of the acceleration pulse wave.
  • d represents the distance from the base line to the top of the fourth d waveform, counting from the waveform at the rising portion of the original waveform
  • the waveform index II is (c / a)-(b / a) (this In the equation, a and b are as described above, and c represents the distance from the base to the apex of the third c waveform, counting from the waveform of the rising portion of the original waveform among the components of the acceleration pulse wave. It is.
  • the vascular aging score 1 or 2 is 60 or more, the blood vessel is evaluated as aging.
  • the reflection type pulse wave sensor a light emitting unit and a light receiving unit are arranged side by side, a light transmitting plate is provided on the light emitting unit and the light receiving unit, and the skin of the subject's finger is formed on the light transmitting plate surface. It is used in close contact with the surface (see, for example, Japanese Patent Application Laid-Open No. 20061-6719).
  • a cushion for fixing the finger is provided, but when the finger is pressed by this cushion, arterial blood flow is inhibited if the finger is compressed by the cushion pressure.
  • the pulse wave changes. Therefore, the pulse waveform changes, and the light emitted from the light emitting unit (light source) to the inside of the finger indicates the relative position between the light source and the finger abdomen.
  • the relationship changes significantly, and as a result, there is a problem that a stable pulse waveform can not be measured, and the aging of the blood vessel can not be accurately evaluated.
  • the light emitted from the finger part to the light receiving part (light detector) (reflected light) is also reflected by the relative positional relationship between the finger part and the light detector, for example, due to the minute movement of the finger,
  • reflected light is also reflected by the relative positional relationship between the finger part and the light detector, for example, due to the minute movement of the finger.
  • the amplitude and pattern of the measurement waveform change depending on the thickness, dryness and humidity of the subject's finger, the condition such as the thickness of the skin, and the condition of the finger, etc. There are many appearance rates.
  • the object of the present invention is to solve the above-mentioned problems of the prior art, and it is possible to stably measure a pulse waveform and to measure using a reflection type pulse wave sensor with good measurement reproducibility. It is an object of the present invention to obtain a waveform index from the acceleration pulse wave, determine a vascular age based on an age response curve to the waveform index, and provide a method for evaluating the vascular age.
  • the present inventors have been able to estimate changes in the condition of the subject's circulatory system and changes in physical conditions that bring about changes by means of pulse waves, and therefore, in order to measure pulse waves with good reproducibility, research and development
  • Successful, using this pulse wave sensor New waveform index that has a strong correlation with age.
  • waveform parameters created a database of this waveform index, and devised a method to calculate the age of blood vessels using the obtained waveform index. Based on the age-correspondence curve for the waveform index obtained in this way, use the acceleration pulse wave as an indicator of the organic system's functional elasticity or curability to evaluate a more accurate vascular age.
  • the present invention has been completed.
  • the evaluation method of the blood vessel age determines the waveform index from the measurement value of the acceleration pulse wave of the subject and determines the age of the waveform of the acceleration pulse wave which corresponds to the waveform of the healthy person It is an evaluation method of the blood vessel age which is calculated based on the distribution according to the age and sex of the index, and this is the blood vessel age of the subject, and the value of the waveform index obtained for the subject is the age to which the subject belongs.
  • the range of the young-side distribution boundary to the elderly-side distribution boundary of the waveform index is divided into the age width of the age band to obtain the blood vessel age, If the value of the determined waveform index does not fall within the standard distribution range of the age range to which the subject belongs, the value of the young side distribution boundary or the elderly side distribution boundary in the distribution of the waveform index according to age and gender for healthy persons In particular, it is necessary to determine the blood vessel age To.
  • the young side distribution boundary is, for example, the mean value of the waveform index + standard deviation
  • the elderly side distribution boundary is, for example, the mean value of the waveform index-standard deviation
  • the waveform index used in the evaluation method of the blood vessel age is represented by the formula: (d ⁇ b) Z a (where a is the distance from the base line to the top of the a waveform of the rising portion of the original waveform among the acceleration pulse wave components) B represents the distance from the base to the top of the second b-wave waveform counted from the waveform of the rising portion of the original waveform among the components of the acceleration pulse wave, d represents the original waveform of the component of the acceleration pulse wave. The distance from the base to the top of the fourth d waveform is counted from the waveform of the rising portion of d.).
  • the acceleration pulse wave is measured using a pulse wave sensor.
  • the pulse wave sensor has a light emitting unit and a light receiving unit, and the light emitting unit and the light receiving unit are used to measure the pulse wave of the subject's finger.
  • the light emitting unit is a reflection type pulse wave sensor to be measured, and the light emitting unit is disposed on the downstream side of the arterial blood flow of the finger from the light receiving unit so that the upper surface thereof protrudes from the upper surface of the light receiving unit.
  • the upper surface of the window portion is disposed so as to protrude above the light emitting portion and the light receiving portion by a predetermined distance from the floor surface on which the abdomen of the finger is mounted. Furthermore, it is characterized in that a space is provided at the tip portion of the floor surface so that the tip of the finger is attached to the further downstream side of the finger arterial blood flow than the light emitting portion.
  • the window portion of the pulse wave sensor has a top surface above the floor surface on which the abdomen of the finger is placed.
  • the light receiving unit is arranged so as to protrude by 0.5 mm, and the light receiving unit is arranged such that the upper surface thereof is at the same level as the floor on which the finger's abdomen is placed, or the light receiving unit is separated by a predetermined distance.
  • a pressing material is attached to the surface opposite to the floor surface of the space to which the tip of the finger is attached, and the pressing material is further downstream of the finger artery and blood flow than the light emitting part.
  • the pressing member is configured to press the upper surface of the tip portion of the side finger, and the pressing member is configured to have a pressure of 50 to 200 g W when pressing the upper surface of the tip portion of the finger by the pressing member.
  • FIG. 1 is a standard waveform diagram of an acceleration pulse wave having five component waves of a, b, c, d, and e waves, which are waveforms of the systole of the heart.
  • FIG. 2 is a cross-sectional view schematically showing an example of the structure of a pulse wave sensor used in the present invention.
  • FIG. 2A is a cross-sectional view showing a schematic structure of a finger attachment portion which is a main part of this pulse wave sensor. It is a figure, (B) is an expanded sectional view of the vicinity of a light-emitting part of this (A), and a light-receiving part.
  • FIG. 3 is a schematic view showing the directivity of light
  • FIG. 3 (A) is a view showing the influence of the directivity between the light emitting element and the light receiving element in the prior art
  • FIG. 3 (B) is used in the present invention
  • FIG. 6 is a view showing the influence of directivity of a light emitting element and a light receiving element in a pulse wave sensor.
  • Figure 4 is a line graph that plots the measured waveform index (mean value, mean soil standard deviation) by age band, and explains the case of calculating the blood vessel age when the blood vessel aging score is 40 to 60.
  • Is a graph to Fig. 5 is a line graph plotting the measured waveform index (mean value, mean soil standard deviation) of men by age band, and explains the case of calculating the blood vessel age when the blood vessel aging score exceeds 60.
  • Figure 6 is a line graph plotting the measured waveform index (mean value, mean soil standard deviation) by age band, explaining another case of calculating the blood vessel age when the blood vessel aging score exceeds 60. Is a graph to
  • FIG. 7 is a line graph plotting measured waveform indexes (mean value, mean soil standard deviation) according to age range, and is a graph for explaining yet another case of calculating the blood vessel age.
  • FIG. 8 is a graph for explaining the blood vessel age obtained from the graph of the straight line approximate expression of the age to the average value of the conventional method in comparison with the case of the present invention.
  • the blood vessel age evaluation method and then the reflection type pulse wave sensor used in the present invention will be described, and the blood vessel age based on the waveform index determined using this pulse wave sensor An embodiment of the evaluation method will be described.
  • the evaluation method of the blood vessel age according to the embodiment of the present invention is characterized in that the waveform index ((d ⁇ b) / a (wherein a is the rising portion of the original waveform among the components of the acceleration pulse wave) obtained from the acceleration pulse wave.
  • vascular age is evaluated based on the vascular aging score derived from the above.
  • the evaluation method of blood vessel age determines the waveform index from the measurement value of the acceleration pulse wave of the subject, and determines the age waveform of the healthy person corresponding to the measured waveform of the acceleration pulse wave.
  • An evaluation method of the blood vessel age which is calculated based on the distribution according to the age and sex of the waveform index of a healthy person, and this is the blood vessel age of the subject,
  • the method for evaluating blood vessel age according to the embodiment of the present invention also determines a blood vessel aging score according to the above (1), and
  • the measured waveform index is compared with the lower end of the standard deviation of normal subjects at the age range of the oldest, and when the measured index is smaller, the standard deviation lower end of the normals at the oldest age range Extend the line connecting the lower end of the standard deviation of the distribution of healthy people in
  • the blood vessel age of each section is divided into a predetermined number between the lower end of the standard deviation of the healthy person distribution in the oldest age band and the lower end of the standard deviation of the healthy person in the previous age band. Assign sequentially from the subject's actual age or older,
  • the blood vessel age is extrapolated from the measured waveform index value to evaluate the blood vessel age. If the subject's age is higher than the oldest age range,
  • the lower limit of the waveform index in the (force) age range M is DnWXl (M) -A V e WX 1 (M) -S dWX 1 (M).
  • the blood vessel aging score is AGS.
  • A-1 The standard distribution range of blood vessel aging score (AGS) is the age range of the subject
  • the procedure for calculating the blood vessel age for the case of entering 40 60 is as follows.
  • AGS 10 * (AveWX1 (N) -WX1) / SdWX1 (N)) + 50 Calculate AGS from 0.
  • AGS divides the range of 40 60 (that is, the average value of waveform index AV eWX 1 (M) standard deviation S dWX 1 (M)) into five equal parts, and the central interval is the subject's actual age and As the interval between [the subject's actual age 1] and [the subject's actual age, Assign the subject to the age of the subject from the age of the interval where the value of AGS falls.
  • A-2 The procedure for determining the vascular age when the AGS value exceeds the standard distribution range 60 of the subject's age range is as follows.
  • the waveform index is calculated in the same manner as (1) to (3) of the above-mentioned 1-1).
  • a blood vessel aging score AGS is determined, and it is determined that AGS> 60.
  • Measured waveform index WX 1 is compared with the lower standard deviation D nWX 1 (Mm a x) of the normal person distribution standard deviation in the oldest age range of 65 years old or more (Mm a X). If the measured value WX 1 is smaller, WX 1 is out of the standard distribution range of healthy people in all age bands, so assuming that the blood vessel age is determined corresponding to the normal distribution of healthy people, Will not be required. At this time, the age of blood vessels will be determined according to the following procedure.
  • Age band The lower end of the standard deviation DnWX 1 of normal subject distribution in Mma X and the lower end of the standard deviation DnWX 1 of normal subject distribution in the subject's age band M is extended on the age side.
  • the blood vessel age is extrapolated from the value of the measured waveform index WX 1 to evaluate the age.
  • the standard deviation lower end DnWX 1 (Mmax-1) of the distribution of healthy people in the previous age range Mma X-1 is used, there may be cases where the error is large due to statistical variations and the like. Yes, not practical.
  • blood vessel age is a temporary characteristic value calculated based on the image that physical and physiological characteristics of blood vessels continue to change in a certain direction with age. The physical and physiological characteristics of blood vessels do not change, or in some cases, the direction of change reverses with increasing age.
  • the term blood vessel age as an indicator of the degree of progression of arteriosclerosis is a generally acceptable image, and if more accurate blood vessel age can be evaluated, using this expression in commercial use is sufficiently meaningful It is
  • the intended purpose can be achieved by using (d ⁇ b) / a (waveform index) as an index of waveform evaluation.
  • the position of the peak of the component b wave or component d wave of the acceleration pulse wave fluctuates due to changes in arterial extensibility or peripheral vascular resistance, so parameters bZ a and dZ a can represent arterial system compliance. It is understood. However, no definite conclusion has been obtained yet for the component c wave. Even in the present invention, a certain tendency is not seen for men. The relationship of age to the component c wave is different depending on men and women, and it is said that heart rate is also susceptible.
  • this waveform index shows a very good association with age.
  • the waveform index presented in the present invention is also a quantitative evaluation of the waveform pattern as in the conventional APG index, it encompasses both physiological aging changes and pathological changes of the artery. From numerical values alone, it is difficult to determine whether arterial changes are physiologically contained or deviated from the majority of changes. However, if it is possible to judge the deviance by expressing what rank the waveform obtained by the measurement of the acceleration pulse wave is located within a certain age group, it is possible to simply determine the structure of the artery. ⁇ The possibility of functional evaluation is created.
  • a desired blood vessel aging score is derived by adopting the deviation value method, which is the most classical method of knowing the position in a group.
  • the deviation value method which is the most classical method of knowing the position in a group.
  • set a reference group that is a broad age group over 20 years of age, Individual deviation from the mean value and standard deviation by age, gender, and age group by age of 5 for the waveform index calculated by waveform measurement of the population. I asked for the value.
  • acceleration sphygmograph there are two types of acceleration sphygmograph: reflection type and transmission type, and furthermore, the waveform of each product is slightly different depending on the difference of the light source wavelength, the type of filter, the differential form and so on.
  • the acceleration pulse wave was measured using the following reflection type pulse wave sensor (pulse wave meter), and this was analyzed to evaluate the blood vessel age. If this pulse wave sensor is adopted, it is considered useful for the development of future research.
  • the pulse wave sensor used in the present invention is a reflection type pulse wave sensor that has a light emitting unit and a light receiving unit and measures the pulse wave of the subject's finger by the light emitting unit and the light receiving unit.
  • the light receiving portion is disposed on the downstream side of the arterial blood flow of the finger so that the upper surface thereof protrudes beyond the upper surface of the light receiving portion, and the infrared transmitting window portion is provided above the light emitting portion and the light receiving portion.
  • the pulse wave sensor is provided with a space at the tip of the floor surface for mounting the tip of the tip on the further downstream side of the finger arterial blood flow than the light emitting part.
  • the adhesion of the finger to the light emitting part is improved, and even if the downstream side of the finger arterial blood flow is compressed, the pulse wave is less affected than the upstream side is compressed. Pulse wave information can be obtained with good reproducibility. Further, the contact area between the finger and the light emitting part is approximately equal to the area of the top face of the light emitting part, and the contact area applied to the finger is small, so there is almost no change in the waveform.
  • a pressing member is attached to the surface of the space to which the tip of the finger is attached facing the floor surface, and the pressing member is configured to press the upper surface of the tip of the finger downstream of the finger artery blood flow downstream of the light emitter.
  • the subject may put pressure on the fingertip consciously and unconsciously during pulse wave measurement. In this case, if instructions are given to relieve pressure, adhesion to the sensor may be impaired depending on the shape of the subject's finger. Even when applying a force or removing a force, a small finger movement produces noise. By providing the pressing member, noise is reduced, the repeatability of measurement data is increased, and accurate pulse wave information can be obtained.
  • the pulse wave in the finger arterial blood flow portion on the upstream side of the pressing site should be measured with high repeatability and accuracy.
  • the upper surface of the window is usually about 0.1 to 1.5 mm, preferably about 0.2 to 1.0 mm, and more preferably 0.3 to 0.5 mm from the floor surface on which the abdomen of the finger is placed. It is preferable to arrange so as to project about mm.
  • the pressure when pressing the upper surface of the tip of the finger beyond the window with the pressing material is usually 50 to 200 g W, preferably 70 to 150 g W. If it is less than ⁇ 50 g W, the amplitude of the pulse wave is small, noise due to vibration during measurement or finger movement of the subject is likely to be introduced, and the measurement waveform is likely to be deformed due to the subject's strain. Also, if it exceeds 200 g W, the measured waveform will be extremely deformed. When the entire finger is pressed, the measured waveform is deformed and the reproducibility is reduced.
  • the pressing portion When the light receiving portion is disposed on the downstream side of the arterial blood flow of the finger relative to the light emitting portion, when the pressing member as described above is provided, the pressing portion and the downstream side of the finger arterial blood flow than the pressing portion. Because the blood flow is generated, if a light receiver is placed near this part, a waveform of poor circulation of the peripheral arterial blood flow is obtained and appropriate evaluation can not be made.
  • the light emitting portion is usually about 0.1 to 1.5 mm, preferably about 0.2 to 1.0 mm, and more preferably 0.3 to 0 mm, from the floor surface on which the upper surface of the light emitting part is placed. It may be arranged to project about 5 mm.
  • the skin surface of the finger abdomen covers from the upper surface of the light emitting unit below, so that the influence of disturbance light or leaked light or reflected light on measurement data can be reduced.
  • it is easy to place the finger at a predetermined position by recognizing the sensor position by touching the projection.
  • the finger skin surface floats from the floor surface, resulting in an unstable wearing state, and pressure on the finger when the finger is placed causes deformation of the waveform, resulting in reproducibility.
  • the pulse wave data to be measured may vary, making it difficult to obtain accurate pulse wave information.
  • the light receiving unit may be disposed such that the upper surface thereof is at the same level as the floor on which the abdomen of the finger is placed, or may be disposed lower than the floor by a predetermined distance. The adhesion of the finger to the light emitting portion is further improved.
  • the side surface of the light emitting unit is surrounded by a light shielding wall in order to prevent the light emitted from the light emitting unit into the inside of the finger from leaking to the outside and to prevent the light reflected from the abdominal surface of the finger. .
  • the light emitting portion is disposed inside the light shielding wall whose inner surface has a reflection characteristic to the irradiation light, and the upper end of the light shielding wall is preferably about 0.1 to 1.5 mm from the floor surface on which the abdomen of the finger is placed. 0.2 to 2: L. 0 mm or so, more preferably 0.3 to 0.5 mm or so, and the abdomen of the finger is placed on the upper end to cover the entire upper end of the light shielding wall It is preferable to do so. If the upper end of the light shielding wall is projected so as to fall within such a range, the skin surface of the finger abdomen covers from the upper surface of the light emitting portion downward, reducing the influence of disturbance light, leaked light and reflected light on measurement data.
  • FIG. 2 is a view (FIG. 2 (a)) showing a cross-sectional structure of a finger attachment portion which is a main part of a reflection type pulse wave sensor, and a view showing an enlarged vicinity of a light emitting portion and a light receiving portion (FIG. It is a figure (b)) and shows the state which equipped the finger.
  • This reflection type pulse wave sensor has a light emitting portion and a light receiving portion, and is capable of measuring a pulse wave by wearing a finger of a subject, and is made of an openable synthetic resin upper portion constituting a lid portion. And a floor portion made of a synthetic resin configured to be able to mount the finger pad.
  • the upper part may be shaped so that the inner surface follows the contour of the finger, or the floor part may be flat or the finger may have a slightly higher base to block out disturbed light. It may have a sloped shape to be low.
  • a pressing member is provided at the tip of the upper portion so that the tip of the finger further downstream than the light emitting portion of the arterial blood flow of the finger placed on the floor can be pressed and fixed.
  • This pressing material may be any material that can hold down the tip of the finger and fix it, for example, a cushioning material, a plate material such as a panel material, etc., and pressing the tip of the finger with a predetermined pressure It is configured to be able to.
  • this sensor is provided with a reflected light current / voltage conversion circuit and an amplifier, and if this sensor is connected to a personal computer, accurate pulse wave information can be obtained based on the output from the sensor. it can.
  • this pulse wave sensor when a finger is inserted into the finger attachment portion and light such as an infrared ray is applied to the abdomen of the tip of the finger, hemoglobin (red blood cells) in the capillaries absorb a part of the light, The amount of reflection changes (the part with a large amount of blood decreases the amount of light reflection). This subtle change in the amount of light reflection is detected, and the detected reflected light is converted from current to voltage, It transmits to the amplifier, converts the amplified signal voltage to AD using a personal computer, outputs it, and uses it as pulse wave information.
  • light such as an infrared ray
  • a light emitting unit 1 comprising a semiconductor light emitting element such as a light emitting diode (LED) is formed on the finger attachment unit constituting the main part of the pulse wave sensor. It is arranged on the downstream side of the arterial blood flow of the finger 3 of the subject with respect to the light receiving part 2 made of a semiconductor light receiving element such as PD).
  • the luminous flux of the light emitting portion is diffused and spread as it travels in the finger.
  • the light quantity change of the light receiving part 2 due to the light quantity change from the light emitting part 1 is large, and the light quantity change of the diffused light received due to the position change of the light receiving part 2 is small. Therefore, it is necessary to bring the light emitting unit 1 into close contact with the finger. However, improving adhesion leads to the application of extra pressure on the finger. Therefore, the light emitting unit 1 is arranged on the downstream side of the finger arterial blood flow from the light receiving unit 2 so that an extra pressure is not applied to the finger.
  • the light emitting unit 1 is disposed such that the upper surface thereof protrudes (that is, becomes higher) by a predetermined distance than the upper surface of the light receiving unit 2. That is, the height H i of the light emitting unit 1 is configured to be higher than the height H 2 of the light receiving unit 2 by a predetermined distance.
  • a space 4 is provided on the further downstream side of the finger artery blood flow than the path of light 1 a irradiated from the light emitting unit 1 composed of an infrared LED or the like at the tip of the finger mounting unit. It is configured to be able to be placed in this space.
  • an infrared-transparent window 9 is provided above the light emitting unit 1 and the light receiving unit 2.
  • the window 9 is disposed such that the upper surface thereof is higher than the floor 5 on which the abdomen of the subject's finger is placed by a predetermined distance (0.1 mm or more, for example, about 0.53 mm). ing.
  • the window portion 9 may be placed and fixed on the edge of the floor surface so as to cover the light emitting portion 1 and the light receiving portion 2, or It may be placed and fixed on the notch, and there is no restriction on the way of its arrangement.
  • the provision of the window 9 prevents the light emitting unit 1 and the light receiving unit 2 from coming into direct contact with the subject's finger. As a result, the current-carrying part is not affected, and it is not necessary to clean the surface of the light-emitting part and the light-receiving part, which makes maintenance easier.
  • the outer shape of the window 9 is not particularly limited, and may be, for example, a plate having a thickness of about 0.5 mm. If the upper surface of the window 9 is formed of a concave lens, the directivity of the emitted light is further broadened. Can.
  • the material of the window is not particularly limited as long as it is an infrared-transparent material having high transparency to infrared light, and, for example, acrylic resin, polyethylene resin, polycarbonate resin, polystyrene resin, infrared-transparent glass, etc. It is possible to raise
  • the light emitting portion is disposed on the downstream side of the arterial blood flow of the finger from the light receiving portion, and the upper surface thereof protrudes a predetermined distance from the upper surface of the light receiving portion.
  • An infrared transmitting window is disposed above the light receiving unit so that the upper surface of the window projects a predetermined distance from the floor on which the abdomen is placed, and the tip of the finger is a finger artery than the light emitting unit.
  • a space is provided at the tip of the floor surface so that it can be attached further downstream of the blood flow, so that the adhesion of the finger to the light emitting part is improved, and the downstream side of the finger arterial blood flow is compressed.
  • the effect on the pulse wave is smaller than that on the upstream side, and accurate pulse wave information can be obtained with good reproducibility.
  • an infrared-transparent window above the light emitting unit and the light receiving unit is disposed such that the upper surface of the window protrudes a predetermined distance from the floor on which the abdomen of the finger is placed. Since it has no influence on the measured waveform, it is possible to obtain accurate pulse wave information with good repeatability.
  • the surface on which the finger pad of the finger mounting portion is placed is configured as a finger placement floor surface 5.
  • the light emitting unit 1 and the light receiving unit 2 are provided at predetermined positions on the floor 5, and the tip of the floor is configured to be inclined and rise so that the tip of the finger can be properly accommodated.
  • the pressing member 6 is provided on the surface facing the floor surface, which is the downstream side of the arterial blood flow from the position where the light emitting portion 1 is disposed. By this pressing member, the tip end portion (preferably, the claw portion) of the attached finger is lightly pressed to fix the attached finger so as not to move.
  • the irradiation light 1 a from the light emitting unit 1 When the irradiation light 1 a from the light emitting unit 1 is reflected by the skin surface of the finger and enters the light receiving unit 2, the reflected light becomes noise and the amount of light received into the light receiving unit 2 fluctuates. Because of this, accurate pulse waves can not be measured.
  • the efficiency of the irradiation light decreases and the light amount of the reflected light 2 a received by the light receiving unit Decreases and it becomes difficult to measure an accurate pulse wave. Therefore, the side surface of the light emitting unit 1 may be surrounded by a light shielding wall in order to prevent excessive reflected light and leaked light.
  • the shape of the light shielding wall is not limited as long as it is a shape that eliminates reflected light and leaked light, but a shape such as a cylindrical shape along the outer peripheral shape of the light emitting portion 1 is preferable.
  • the attached finger is closely attached and fixed at a predetermined point on the upper surface of the light shielding wall.
  • the light shielding wall may be black on the light receiving portion 2 side or may be a mirror surface on the inner surface.
  • the material for the light shielding wall is not particularly limited as long as it has a property of blocking infrared rays, and, for example, thermoplastic resins such as polypropylene resin and ABS resin which substantially do not transmit infrared rays, or Those to which the surface treatment such as black paint was given to these can be mentioned. ⁇
  • An infrared transparent insulator cap may be provided on the top surface of the light emitting unit 1 so that the light emitting unit 1 and the finger 3 do not come in direct contact with each other. This is for the purpose of not affecting the current-carrying part of the light emitting part and for avoiding cleaning the dirt on the surface of the light emitting part.
  • the outer shape of the insulator cap may be, for example, a shape such as a cylindrical shape along the shape of the upper portion of the light emitter 1. If the upper surface of the insulator cap is formed of a concave lens, the directivity of the emitted light can be further broadened.
  • the material of the insulator cap is not particularly limited as long as it is an infrared transmitting material having high transparency to infrared light, for example, acrylic resin, polyethylene resin, polybasic resin, polystyrene resin, etc. I can raise the glass.
  • FIG. 3 (a) The influence of directivity between the light emitting element of the light emitting unit 1 and the light receiving element of the light receiving unit 2 is shown in FIG.
  • FIG. 3 (b) When the arrangement of the light emitting element of the light emitting unit 1 and the light receiving element of the light receiving unit 2 is a conventional arrangement with strong directivity, the optical axis of the light emitting diode of the light emitting unit 1 is shifted. And the effective detection area is also shifted.
  • FIG. 3 (b) The deviation of the effective detection area with respect to deviation is relatively small. Therefore, the pulse wave information obtained is accurate.
  • the emission angle (half value angle) of the light emitted from the light emitting part 1 is usually 50 degrees or more, preferably 5 By setting the angle between 0 and 85 degrees, more preferably between 50 and 80 degrees, the deviation of the effective detection area is relatively small. If it is less than 50 degrees, the deviation of the effective detection area will be large, making it difficult to obtain accurate pulse wave data.
  • the amplitude of the a wave which is the waveform of the acceleration pulse wave
  • the amplitude of the a wave decreases, and noise components are easily generated. Tends to increase. Also, as this distance is longer, the pulse wave at the finger site affected by pressure will be measured, and the measured waveform is likely to be deformed. Therefore, if the distance between the light emitting unit and the light receiving unit is set to a predetermined distance, for example, within 8 mm, preferably within 6 mm, the a and b waves of the acceleration pulse wave and the a wave The ratio (b / a) falls within the appropriate range.
  • the deviation of the optical axis is small, the deviation of the effective detection area is also small, and the waveform is not easily deformed.
  • the arterial blood vessel is swollen and b / a becomes small (absolute value is large), and at the finger site on the downstream side, congestion occurs. In this state, b / a becomes large (absolute value is small).
  • the lower limit of the distance between the light emitting unit and the light receiving unit is not particularly limited, and may be the minimum distance that can be set as desired depending on the physical size of the light emitting unit and the light receiving unit, the size of the pulse wave sensor, and the like. Just do it. For example, it may be set to about 2 to 3 mm.
  • a flange may be provided on the lower portion of the insulator cap. Furthermore, if the upper surface of the insulator cap is formed of a concave lens, the directivity of the emitted light can be further broadened.
  • the light receiving unit is disposed such that the upper surface thereof is at the same height as or lower than the floor surface of the finger mounting unit so that no pressure is applied to the finger.
  • the finger portion corresponding to the top surface position of the light receiving portion having the highest ratio of light incident on the light receiving portion is not compressed.
  • the light receiving portion may be disposed so as to be about 1 mm lower than the finger mounting floor surface of the pulse wave sensor.
  • ARTETT reflection type pulse wave sensor
  • Acceleration plethysmogram measures 20 seconds of a total of 2086 healthy subjects including 1372 men and 14 women, and measures acceleration plethysmogram for 18 seconds with the second to third fingers in the right position with sitting at rest and the height of the heart And recorded.
  • the waveform index obtained from the obtained acceleration pulse wave With respect to (d ⁇ b) / a, the average value and standard deviation value (SD) of each age group (age group for every 5 years) of men and women
  • SD standard deviation value
  • the blood vessel age was evaluated by showing the line graphs of the mean value, the mean value one standard deviation value, and the mean value + standard deviation value for each age group (Tables 1 and 2).
  • Tables 1 were plotted in Figures 4-7 for the male waveform index and based on this figure the vascular age was assessed as described below.
  • the data shown in Tables 1 and 2 is a population statistics table of healthy people.
  • Aging score is in the range of 40 to 60 (average value of waveform index AV e WX 1 (7) standard deviation S dWX 1 (7)) is divided into 5 equal parts ((E) in FIG. 4) As the middle section becomes 36 years of the subject's actual age ((4) in Fig. 4), turn those sections from the top of the figure to the bottom, 34, 35, 36, 37 and 38 Evaluate the subject's blood vessel age as 38 years from the interval where the aging score value is entered (power in Figure 4).
  • the procedure for calculating the vascular age is as follows when the measured value of the vascular aging score exceeds 60 of the standard distribution range of the subject's age range.
  • the waveform index is calculated in the same manner as (1) to (3) of (8-1) above.
  • the blood vessel age is extrapolated from the measured waveform index WX 1 value (one 0.3. 3), and the subject's blood vessel age is evaluated as 71 years old.
  • the standard deviation of the distribution of healthy people in the age range Mma X-1 10 which is one before Mma X
  • errors may be large due to statistical variations and other factors, which is not practical.
  • the age distribution of the waveform index is obtained from the graph of the linear approximation of age versus average value.
  • the age and the age of blood vessels determined in Example 1 will be compared and described.
  • the blood vessel age is described as 5 years old.
  • the blood vessel age falls within the standard value range, which is the standard distribution range of 35 to 39 years old, and that the blood vessel age can be accurately evaluated. it can.
  • the width of the mean soil standard deviation which is the standard distribution range of the waveform index in a certain age range and gender, is fairly wide.
  • the value of the waveform index measured for a subject is older by the standard deviation than the average value of the age range to which the subject belongs
  • the blood vessel age is determined by this linear approximation formula
  • it may be 20 years or more older than the subject's actual age.
  • the distribution of the mean value of the waveform index shows almost no change with age. Therefore, in the case of the elderly, the blood vessel age obtained by the linear approximation of the entire distribution does not conform to the actual condition, but according to the present invention, it means that it can be evaluated accurately.
  • the reproducibility of the reflection type pulse wave sensor used becomes a problem, but according to the sensor used in the present invention, the subject's age and pulse wave sensor
  • the measured acceleration pulse wave can be used as a reference for the indicator of vascular aging, regardless of the method of Industrial applicability
  • the blood vessel aging score derived from the average value and the standard deviation of the waveform index of (d / a)-(b / a) (in this formula, a, b and d are as described above)
  • the ⁇ as an index of the organic and functional elasticity or stiffness of the arterial system, it is a sufficient index for clinical application, and it is common to all measuring instruments and all age groups.
  • the age of blood vessels can be significantly evaluated based on the above criteria.
  • the reflection type pulse wave sensor used in the present invention the adhesion of the finger to the light emitting portion is improved, and even if the downstream side of the finger arterial blood flow is compressed, the pulse is compared to the upstream side.
  • the effect on waves is small, and accurate pulse wave information can be obtained with good reproducibility, so it is a sufficient index for clinical application, and it can be used for any acceleration sphygmograph and in any age group. It also derives a common reference parameter, the vascular aging score, and based on this score, it is possible to evaluate the vascular age significantly.
  • the present invention is a system capable of expressing the degree of blood vessel aging with a blood vessel aging score and a blood vessel age, and is applicable to the fields of health care and disease management. '

Abstract

被験者の加速度脈波の測定値から波形指数を求めて、測定した加速度脈波の波形が健常人の何歳の波形に相当するかを、健常人の波形指数の年齢と性別に応じた分布に基づいて算出し、これを被験者の血管年齢とする血管年齢の評価方法であって、被験者に対して得られた波形指数の値が、その被験者が属する年齢帯の標準分布範囲に入る時は、波形指数の若年側分布境界~高齢側分布境界の範囲を年齢帯の年齢幅に分割して血管年齢を求めること、また、該被験者に対して得られた波形指数の値が、その被験者が属する年齢帯の標準分布範囲に入らない時は、健常人に対する年齢と性別に応じた波形指数の分布における若年側分布境界又は高齢側分布境界の値から血管年齢を求める。

Description

明細書
血管年齢の評価方法 技術分野
本発明は、 血管年齢の評価方法に関し、 特に反射型脈波センサを用いて測定さ れた加速度脈波の成分波から得られた波形指数に基づいて算出される血管老化ス コアを用いて血管年齢を評価する方法に関する。 背景技術
本発明の理解を高めるために、 まず、 加速度脈波について説明する。
脈波とは、 脈圧の伝搬波であるが、 これは 1回拍出量と動脈系のコンプライア ンスとの関数であるといえる。 脈圧の波形は大動脈から末梢の動脈に行くにつれ て変容していく。 これは種々の部位において投射波と反射波とが合成され、 共鳴 が起こるからと考えられ、 変容の程度は血管の性状又は特性の影響の総和とみる ことができる。 大動脈と末梢動脈とにおける動脈内圧を比較すると、 末梢動脈の 平均動脈内圧は大動脈の場合よりも低いが、 末梢で得られる脈波の波形は、 中心 脈波の波形よりも凹凸が大きく波形判別がし易いという利点がある。 しかし、 原 波形は基線が安定せず変曲点の認識が困難な場合がある。 そこで末梢脈波の原波 形を 2回微分して得られる二次微分波 (これを 「加速度脈波」 と称す。 ) が、 よ り評価に適した波形として研究や臨床で利用されている。 現在、 多く使われてい る脈波計は光電式指先容積脈波計である。 この脈波計の原理は、 指先にへモグロ ビンに対して吸光特異性のある波長の光を当てて、 吸収光又は反射光から血管内 の血流の容積変化を求め、 波形を得る方法に基づいている。 容積脈波と圧脈波は 反映しているものは異なるが、 波形のもつ意味は同等である。
加速度脈波は心臓の収縮期の波形であり、 第 1図に示すように、 a、 b、 c、 d、 e波の 5つの成分波をもつが、 これらの成分波は生体の条件により、 また、 加齢に応じて一定の変化をしていく。 頂点 aを有する成分波 (a波) は原波形の 立ち上がり部分の波形に相当し、 頂点 eを有する成分波 (e波) は原波形の収縮 終期のノッチ部分に相当する。 頂点 aから頂点 eまでの a— e間隔は左室駆出時 間に対応する。 それゆえ、 期外収縮時ゃ頻脈時には a— e間隔は短縮し、 成分波 も変形する。 波形の基線より上を正、 下を負の象限としたとき、 a波はその頂点 aが基線より常に上に位置する陽性波であり、 b波はその頂点 bが基線より常に 下に位置する陰性波であり、 c波、 d波、 e波はそれぞれの頂点 c、 d、 eが生 体の条件により陽性又は陰性に変化する成分波である。 そこで、 波形評価のパラ メータとして、 基線を X軸として、 基線から各成分波の頂点までの距離を y軸と してとらえ、 基線から a波の頂点 aまでの距離を分母にして、 基線から b波、 c 波、 d波、 e波の各頂点 b、 c、 d、 eまでの距離を分子とした b Z a、 c Z a、 d Z a、 e / aを用いて、 加速度脈波が生体の何を具体的に表現しているかを解 明しょうとしている研究が多く行われている。
本発明者らの一人は、 先行研究において、 加速度脈波(A P G)の波形を、 1型 :標準波形(s t andard pat t ern) , 2型: d波形の深いもの(deeper- d pat t ern) , 3型: c波形の深いもの(deeper- c pat t ern) (この場合、 d波形も深い) 、 そし て 4型: b波形の浅いもの(sha l l ow-b pa t t ern) (この場合、 d波形は深い) と 4つの型に分類し、 その詳細を明らかにした。 その結果、 波形評価法として、 こ の 4波形型に基づいて、 身長を補正した相対血管年齢による簡易式を提案した。 そして、 相対血管年齢式を用いた分析によって、 喫煙、 低肺活量、 高拡張期血圧、 高コレステロール血症が血管老化の危険因子となることを示した。 しかし、 相対 血管年齢式は 6 0歳以上の対象者には不合理な数字を示し易く、 臨床に応用する には不十分な指標であるという問題があつた。
加速度脈波が血管の老化度 (血管年齢) を表し得ることは明らかである。 つま り、 器質的 ·機能的な動脈系のコンプライアンスの変化によって波形が変化する ので、 この波形を合理的に評価できれば、 波形による血管年齢の評価が可能であ る。 しかし、 加速度脈波の標準波形は、 測定機器の種類、 すなわち、 光源、 フィ ルター、 波形読み取り方式、 信号処理等の条件の違いによって微妙に異なる。 ま た、 加齢によって変化してゆくので、 生理的変化と病的変化の判別も難しい。 そ の上、 波形に男女差もみられる。 このように、 測定機器、 測定環境、 年齢等によ つて異なる波形を評価して、 血管老化度を判定するには、 どのような条件にも適 応できるような共通の波形評価法を確立しなければならない。 すなわち、 測定環 境が同一であれば、 どの器械にも、 どの年齢層にも共通して使用できる共通の基 準を作成し、 それに基づいて評価することが必要である。
そこで、 本発明者の一人は、 加速度脈波の成分波である a波、 b波、 c波、 d 波から旧来の A P Gインデックスとは異なった新しい指標である波形指数 Iと波 形指数 I Iとを求め、 波形指数 Iの平均値及び標準偏差から導き出される血管老化 スコア 1と、 波形指数 I Iの平均値及び標準偏差から導き出される血管老化スコア 2とを用いて血管の老化を評価することができることを明らかにした (特許第 3 4 8 7 8 2 9号) 。 このとき、 波形指数 Iは、 (d Z a )—(b Z a ) (この式にお いて、 aは加速度脈波の成分のうち原波形の立ち上がり部分の a波波形の基線か ら頂点までの距離を表し、 bは加速度脈波の成分のうち原波形の立ち上がり部分 の波形から数えて第 2番目の b波波形の基線から頂点までの距離を表し、 dは加 速度脈波の成分のうち原波形の立ち上がり部分の波形から数えて第 4番目の d波 波形の基線から頂点までの距離を表す。 ) であり、 波形指数 I Iは、 (c / a )— ( b / a ) (この式において、 a及び bは前記の通りであり、 cは加速度脈波の成 分のうち原波形の立ち上がり部分の波形から数えて第 3番目の c波波形の基線か ら頂点までの距離を表す。 ) である。 この塲合、 血管老化スコア 1、 2が、 6 0 以上の場合に血管が老化していると評価する。
ところで、 上記脈波を測定するために、 従来から、 透過型、 反射型の脈波セン ザが多数市販されている。 反射型の脈波センサは、 発光部と受光部とが並べて配 置され、 この発光部と受光部との上に透光板が設けられて構成され、 透光板表面 に被験者の指の皮膚表面を密着させて使用されるものである (例えば、 特開 2 0 0 1 - 6 1 7 9 6号公報参照) 。 この場合、 発光部から指の皮膚に向けて光を照 射し、 指内部からの反射光を受光部で受光して、 その受光量の変化を電圧に変換 し、 脈波情報として検出している。
このような反射型脈波センサの場合、 指固定のためのクッションが設けられて いるが、 このクッションにより指を押さえる際に、 クッション圧により指が圧迫 されると、 動脈血流が阻害されて脈波が変化する。 そのため、 脈波波形が変化す ると共に、 発光部 (光源) から指内部への照射光が、 光源と指腹部との相対位置 関係により大きく変化し、 その結果、 安定な脈波波形が測定できず、 血管の老化 を正確に評価できないという問題がある。 また、 指腹部から受光部 (光検出器) への射出光 (反射光) も、 指腹部と光検出器との相対位置関係により、 例えば、 指の微小な動き等により、 指内部の光の経路が変化して受光光量が変わるため、 大きく変化し、 その結果、 安定な脈波波形が測定できず、 血管の老化を正確に評 価できないという問題もある。
従来の反射型脈波センサの場合、 上記したように、 発光部と受光部とが単に並 ベて配置されているだけであるので、 指の腹部の皮膚表面と透光板表面との界面 で反射した光がノィズ光として受光部に入り込むことがあり、 測定結果にノイズ が入りやすく、 その結果、 安定な脈波波形が測定できず、 血管の老化を正確に評 価できないという問題もある。
また、 被験者の指の太さや乾 ·湿の程度、 皮膚の厚さ等の性状や指装着状態等 により、 測定波形の振幅やパターンが変化するので、 測定結果の再現性に乏しく かつ測定不能の出現割合が多い。
そのため、 測定再現性のよい脈波センサを用いて安定な脈波波形を測定し、 血 管年齢をさらに正確に評価するシステムが求められている。 発明の開示
本発明の目的は、 上記した従来技術の問題点を解決することにあり、 脈波波形 を安定して計測することが可能であり、 かつ測定再現性のよい反射型脈波センサ を用いて測定した加速度脈波から波形指数を求め、 この波形指数に対する年齢対 応曲線に基づいて血管年齢を決定し、 血管年齢を評価する方法を提供することに ある。
本発明者らは、 脈波により、 被験者の循環器系の状態変化や、 その変化をもた らす体調の変化を推定することができることから、 脈波を再現性よく測定すべく 鋭意研究開発を行うと共に、 加速度脈波の波形評価の共通基準を見出すべく鋭意 努力を重ねてきた。 その結果、 指を押さえるクッション圧をできるだけ少なくし、 指腹部と光源及び光検出器との相対位置関係を適切にすることにより、 再現性よ く脈波を測定できる脈波センサを開発することに成功し、 この脈波センサを用い て測定した加速度脈波を解析し、 年齢に対して強い相関を有する新しい波形指数
(波形パラメ一夕) を見出し、 この波形指数のデータベースを作成し、 次いで、 得られた波形指数を使って血管年齢を算出する方法を工夫した。 このようにして 得られた波形指数に対する年齢対応曲線に基づいて、 加速度脈波を動脈系の器質 的 ·機能的弾力性もしくは硬化性の指標として利用し、 より正確な血管年齢を評 価することに成功し、 本発明を完成するに至った。
本発明の血管年齢の評価方法は、 被験者の加速度脈波の測定値から波形指数を 求めて、 測定した加速度脈波の波形が健常人の何歳の波形に相当するかを、 健常 人の波形指数の年齢と性別に応じた分布に基づいて算出し、 これを被験者の血管 年齢とする血管年齢の評価方法であって、 被験者に対して得られた波形指数の値 が、 その被験者が属する年齢帯の標準分布範囲に入る時は、 波形指数の若年側分 布境界〜高齢側分布境界の範囲を年齢帯の年齢幅に分割して血管年齢を求めるこ と、 また、 該被験者に対して得られた波形指数の値が、 その被験者が属する年齢 帯の標準分布範囲に入らない時は、 健常人に対する年齢と性別に応じた波形指数 の分布における若年側分布境界又は高齢側分布境界の値から血管年齢を求めるこ とを特徴とする。
前記血管年齢の評価方法では、 被験者が 6 0歳以上の高齢者である場合、 その 被験者に対して得られた波形指数の値が、 被験者が属する年齢帯の標準分布範囲 から高齢者側に外れる時は、 被験者の年齢における高齢側分布境界の波形指数値 を通って 6 0歳付近の高齢側分布境界の勾配を持つ直線から血管年齢を求めるこ とを特徴とする。
前記若年側分布境界は、 例えば波形指数の平均値 +標準偏差であり、 また、 高 齢側分布境界は、 例えば波形指数の平均値―標準偏差である。
前記血管年齢の評価方法で用いる波形指数は、 式: (d— b ) Z a (式中、 aは 加速度脈波の成分のうち原波形の立ち上がり部分の a波波形の基線から頂点まで の距離を表し、 bは加速度脈波の成分のうち原波形の立ち上がり部分の波形から 数えて第 2番目の b波波形の基線から頂点までの距離を表し、 dは加速度脈波の 成分のうち原波形の立ち上がり部分の波形から数えて第 4番目の d波波形の基線 から頂点までの距離を表す。 ) で表されるものであることを特徴とする。 前記加速度脈波は、 脈波センサを用いて測定されるが、 この脈波センサは、 発 光部と受光部とを有し、 該発光部と該受光部とにより被験者の指の脈波を測定す る反射型の脈波センサであって、 該発光部は、 該受光部より指の動脈血流の下流 側に、 その上面が該受光部の上面よりも突出するように配置されており、 さらに 赤外線透過性の窓部については、 窓部上面が指の腹部を載置する床面よりも該発 光部及び該受光部の上方に所定の距離だけ突出するように配置されており、 さら に指の先端部が該発光部よりも指動脈血流のさらに下流側に装着されるように空 間が該床面の先端部分に設けられているという特徴をもつ。
前記脈波センサにおける窓部は、 その上面が指の腹部を載置する床面より 0 . :!〜 0 . 5 mm突出するように配置されており、 前記受光部は、 その上面が指の 腹部を載置する床面と同じレベルになるように配置されているか、 又は所定の距 離だけ該床面より低くなるように配置されており、 そして前記指の先端部を装着 する空間の床面と対向する面に押圧材を取付け、 該押圧材で発光部よりも指動脈 血流のさらに下流側の指の先端部の上面を押さえるように構成し、 該押圧材は、 この押圧材で指の先端部の上面を押さえる際の圧力が 5 0〜2 0 0 g Wとなるよ うに構成されていることを特徴とする。 図面の簡単な説明
第 1図は、 心臓の収縮期の波形であり、 a、 b、 c、 d、 e波の 5つの成分波 をもつ加速度脈波の標準波形図である。
第 2図は、 本発明で用いる脈波センサの構造の一例を模式的に示す断面図であ つて、 (A)はこの脈波センサの要部である指装着部の模式的構造を示す断面図で あり、 (B )はこの(A)の発光部及び受光部の近傍の拡大断面図である。
第 3図は、 光の指向性を示す模式図であって、 (A)は従来技術における発光素 子と受光素子との指向性の影響について示す図であり、 (B )は本発明で用いる脈 波センサにおける発光素子と受光素子との指向性の影響について示す図である。 第 4図は、 測定波形指数 (平均値、 平均値土標準偏差) を年齢帯別にプロット した折れ線グラフであり、 血管老化スコアが 4 0〜6 0の時の血管年齢を算出す る場合を説明するためのグラフである。 第 5図は、 男性の測定波形指数 (平均値、 平均値土標準偏差) を年齢帯別にプ ロットした折れ線グラフであり、 血管老化スコアが 6 0を超える時の血管年齢を 算出する場合を説明するためのグラフである。
第 6図は、 測定波形指数 (平均値、 平均値土標準偏差) を年齢帯別にプロット した折れ線グラフであり、 血管老化スコアが 6 0を超える時の血管年齢を算出す る別の場合を説明するためのグラフである。
第 7図は、 測定波形指数 (平均値、 平均値土標準偏差) を年齢帯別にプロット した折れ線グラフであり、 血管年齢を算出するさらに別の場合を説明するための グラフである。
第 8図は、 従来法の年齢対平均値の直線近似式のグラフから求めた血管年齢を 本発明の場合と比較して説明するためのグラフである。 発明を実施するための最良の形態
以下、 本発明の実施の形態に関し、 まず血管年齢評価方法、 次いで本発明で用 いる反射型脈波センサについて説明し、 そしてこの脈波センサを用いて求めた波 形指数に基づいた血管年齢の評価方法についての実施例を説明する。
本発明の実施の形態に係わる血管年齢の評価方法は、 加速度脈波から求めた波 形指数((d— b ) / a (式中、 aは加速度脈波の成分のうち原波形の立ち上がり 部分の a波波形の基線から頂点までの距離を表し、 bは加速度脈波の成分のうち 原波形の立ち上がり部分の波形から数えて第 2番目の b波波形の基線から頂点ま での距離を表し、 dは加速度脈波の成分のうち原波形の立ち上がり部分の波形か ら数えて第 4番目の d波波形の基線から頂点までの距離を表す。 ;))の平均値と標 準偏差及びそれらから導き出された血管老化スコアに基づいて血管年齢を評価す るものである。
本発明の実施の形態に係わる血管年齢の評価方法は、 被験者の加速度脈波の測 定値から波形指数を求めて、 測定した加速度脈波の波形が健常人の何歳の波形に 相当するかを、 健常人の波形指数の年齢と性別に応じた分布に基づいて算出し、 これを被験者の血管年齢とする血管年齢の評価方法であって、
( 1 )該健常者の加速度脈波の a波、 b波及び d波の波高値 a、 b及び dから算 出した前記波形指数((d— b ) Z a )の平均値及び標準偏差を所定の年齢層別の各 年齢帯に対してプロットしたグラフから得た被験者の属する年齢帯の波形指数の 平均値 +標準偏差及び平均値一標準偏差に基づいて、 血管老化スコアを、 式: A G S = 1 0 * (平均値—測定波形指数)/ (標準偏差) + 5 0から求め、
( 2 ) ( a )この血管老化スコアが 4 0〜6 0の範囲に入る場合は、 波形指数の平 均値士標準偏差の範囲を該年齢帯の年齢幅に分割し、 中央の区間を被験者の実年 齢に設定し、 老化スコアの値が入る区間の年齢から被験者の血管年齢を評価する ものであり、 また、 (b )この血管老化スコアが 6 0を超える場合は、 被験者の属 する年齢帯よりも上の年齢帯で、 健常者分布の標準偏差下端が波形指数の測定値 未満となる最初の年齢帯を求め、 健常者分布の標準偏差下端と上記最初の年齢帯 の標準偏差下端との間をそれらの年齢帯の年齢差で分割し、 各々の区分に対応し て、 血管年齢を実年齢に所定の年齢を加えた年齢から順次割り当て、 そして波形 指数の測定値に対応する、 上で求めた区間から、 被験者の血管年齢を評価するも のである。
本発明の実施の形態に係わる血管年齢の評価方法はまた、 前記(1 )に従って血 管老化スコアを求め、 次いで
( 2 )測定波形指数と、 一番高齢の年齢帯以上における健常者分布標準偏差下端 とを比較し、 測定波形指数の方が小さい場合、 一番高齢の年齢帯における健常者 分布の標準偏差下端と被験者の年齢帯における健常者分布の標準偏差下端とを結 んだ直線を高年齢側に延長し、
( 3 )該一番高齢の年齢帯における健常者分布の標準偏差下端とその前の年齢帯 における健常者分布の標準偏差下端との間を所定の数に分割し、 それぞれの区間 の血管年齢を被験者の実年齢以上の年齢から順次割り当て、
( 4 )測定波形指数の値から血管年齢を外挿し、 血管年齢を評価するものである。 なお、 被験者の年齢が一番高齢の年齢帯より高い場合には、
( 1 )前記一番高齢の年齢帯における健常者分布の標準偏差下端と、 その一番高 齢の年齢帯より前の年齢帯における健常者分布の標準偏差下端とを結んだ直線を 分割し、 最後の区間を被験者の実年齢以上の年齢に割り当て、
( 2 )上で結んだ直線を高年齢側に延長して、 波形指数の測定値から血管年齢を 外挿し、 血管年齢を評価する。
上記の点についてさらに詳細に説明する。 先ず、 血管年齢算出方法に関するァ ルゴリズムについて説明し、 血管年齢算出方法について説明する。
(ァ)被験者の所属する年齢帯 M (実年齢の属する範囲)を、 M [実年齢 /5] ([ ]は、 [ ]内の数字の整数部を表す)(年齢範囲(5 *M 5 *M+4))として求 める。
(ィ)測定した波形指数((d/a)- (b/a))を WX 1とする。
(ゥ)性別 X、 年齢帯 Mにおける波形指数の平均値を A V e WX 1 (M)とする。 (ェ)性別 X、 年齢帯 Mにおける波形指数の標準偏差を S dWX 1 (M)とする。 (ォ)年齢帯 Mにおける波形指数の上限を、 UpWX 1 (M)=Av e WX 1 (M)
+ S dWX 1 (M)とする。
(力)年齢帯 Mにおける波形指数の下限を、 DnWXl (M)-A V e WX 1 (M) 一 S dWX 1 (M)とする。
(キ)血管老化スコアを AGSとする。
(A)まず、 実年齢が 60歳未満の場合について説明する。 60歳までであれば、 平均的な波形指数は年齢の増加に伴ってほぼ直線的に減少する。
(A— 1)血管老化スコア (AGS) の値が、 被測定者の年齢帯の標準分布範囲
40 60に入る場合について、 血管年齢を算出する手続きは次の通りである。
(1)まず、 被験者の属する年齢帯 Mを、 式: M= [実年齢 /5]より、 整数とし て求める。
(2)健常者の母集団統計テーブル (表 1) より、 上記年齢帯 Mの波形指数の 平均値 A V e WX 1 (M)と標準偏差 S d WX 1 (M)とを求める。
(3)平均加速度脈波の a波、 b波、 d波の波高値 a b dから波形指数を、 式: WX 1= (d/a)— (b/a)から算出する。
(4)式: AGS= 10 * (Av eWX l (N)-WX 1)/S dWX 1 (N)) + 5 0から AGSを求める。
(5) AGSが 40 60の範囲 (すなわち、 波形指数の平均値 A V eWX 1 (M)土標準偏差 S dWX 1 (M)の範囲) を 5等分し、 その中央区間が被験者の実 年齢となるように、 それらの区間を [被験者の実年齢一 2]から [被験者の実年齢 + 2 ]に割り当て、 AGSの値が入る区間の年齢から被験者の血管年齢を求める。 (A— 2) AGSの値が、 被測定者の年齢帯の標準分布範囲 60を超える場合に ついて、 血管年齢を求める手続きは次の通りである。
(A— 2— 1)測定波形指数が全年齢帯の標準分布範囲内に入る場合:
(1)〜(3)上記 — 1— 1)の(1)〜(3)と同様にして波形指数を算出する。
(4)波形指数の上記測定値 WX 1から、 血管老化スコア AGSを求め、 AG S>60と判定する。
(5)被験者の属する年齢帯 Mよりも上の年齢帯 M+nで、 健常者分布の標準 偏差下端 DnWX 1 (M)が、 波形指数の測定値 WX 1未満となる最初の年齢帯 M + n iを求める。
(6)健常者分布の標準偏差下端 DnWX 1 (M)と上記最初の年齢帯 M+n iの 標準偏差下端 DnWX 1 (M+n との間を、 5 * ( (M+ n _ M)等分し、 各々 の区分に対応して、 血管年齢を [実年齢] + 3から順次割り当てる。
(7)波形指数の測定値 WX 1に対応する、 上で求めた区間から、 被験者の血 管年齢を評価する。
(A— 2— 2)測定波形指数が全年齢帯の標準分布範囲内に入らない場合: (1)〜(4)上記(A - 1)の(1)〜(4)と同様にして血管老化スコア AGSを 求める。
(5)測定波形指数 WX 1と、 一番高齢の年齢帯 65歳以上(Mm a X)におけ る健常者分布標準偏差下端 D nWX 1 (Mm a x)とを比較する。 測定値 WX 1の 方が小さい場合、 WX 1は、 全年齢帯の健常者の標準分布範囲から外れているの で、 血管年齢を健常者の標準分布に対応して求めるものとすると、 血管年齢は求 まらないことになる。 この時は、 次の手順に従って血管年齢を求めることにする。
(6)年齢帯 Mma Xにおける健常者分布の標準偏差下端 DnWX 1と被験者 の年齢帯 Mにおける健常者分布の標準偏差下端 DnWX 1とを結んだ直線を高年 齢側に延長する。
(7)年齢帯 Mma Xにおける健常者分布の標準偏差下端 DnWX 1と、 被験 者の年齢帯 Mにおける健常者分布の標準偏差下端 DnWX 1との間を(5 * (Mm a X— M))区間に分割し、 それぞれの区間の血管年齢を被験者の実年齢 + 3歳か ら順次割り当てる。
(8)測定波形指数 WX 1の値から血管年齢を外挿し、 年齢を評価する。
(B)次に、 実年齢が 60歳以上の場合について説明する。 血管老化スコアが健常 者の標準分布範囲内である場合、 上記(A— 1)と同様にして求める。 この標準分 布を外れる場合、 60歳以上では、 平均的な波形指数は年齢の増加に伴って殆ど 変化しないので、 前項までのアルゴリズムは適用できない。 そこで、 60歳付近 での、 年齢に対する波形指数の変化割合が、 65歳以上でも続くものとして、 血 管年齢を算出する。
(1)年齢帯 Mma Xにおける健常者分布の標準偏差下端 DnWX 1 (Mma x)と、 二つ前の年齢帯 Mm a X— 2における健常者分布の標準偏差下端 D nW X 1 (Mma x_ 2)とを結んで 10等分し、 最後の区間を被験者の実年齢 + 2に 割り当てる。 この時、 一つ前の年齢帯 Mma X— 1における健常者分布の標準偏 差下端 DnWX 1 (Mma x- 1)を用いると、 統計的なばらつきなどの要因によ り誤差が大きく出る場合があり、 実用的ではない。
(2)上で結んだ直線を高年齢側に延長して、 波形指数の測定値から血管年齢 を外挿して、 被験者血管年齢を評価する。
上記から分かるように、 血管年齢と言うものは、 血管の物理的 ·生理的な特性 が年齢と共に一定方向に変化し続ける、 というイメージに基づいて算出する仮の 特性値であって、 実際には、 血管の物理的 ·生理的な特性が変化しなくなるか、 場合によっては、 年齢の増加と共に、 変化方向が逆転する場合もある。 しかしな がら、 現実問題として、 動脈硬化進行度の指標としての血管年齢という用語は、 一般に受け入れられやすいイメージであり、 より正確な血管年齢が評価できれば、 この表現を商業利用において用いることは十分意味のあることである。
次に、 本発明による血管年齢の評価システムについて詳細に説明する。
本発明によれば、 波形評価の指標として、 (d— b)/a (波形指数) を利用す ることにより所期の目的を達成することができる。 加速度脈波の成分 b波や成分 d波は動脈の伸展性や末梢血管抵抗の変化によって、 そのピークの位置が変動す るため、 パラメータ bZ aや dZ aが動脈系のコンプライアンスを表現しうると 理解されている。 しかし、 成分 c波については未だ一定の結論は得られていない。 本発明でも男性については一定の傾向がみられていない。 男女によって成分 c波 への年齢の関わりは異なり、 心拍数の影響も受けやすいといわれる。 従って、 こ れまでの A P Gインデックス [ (一 b + c + d ) / a ]のように、 異なる三つのパラ メータをまとめた場合、 成分 b波や成分 d波の変動性を成分 c波の変動がマスク する可能性も考えられる。 そこで、 本発明では、 (d— b ) / aを波形指数として 採用している。
以下の実施例で示すように、 この波形指数は年齢と非常によい関連性を示す。 しかし、 本発明で提示した波形指数も従来の A P Gインデックスと同様に波形の パターンの定量評価であるから、 動脈の生理的加齢変化と病的な変化の両方を包 合するものとなり、 これらの数値からだけでは、 動脈の変化が生理的に大多数の 変化の中に収まっているのか、 逸脱しているのかを判断することが困難である。 しかし、 加速度脈波の測定によって得られた波形が、 ある年齢集団の中で、 どの ようなランクに位置するのかを表現することによって、 その逸脱度が判断できれ ば、 簡便に動脈の器質的 ·機能的評価ができる可能性が生まれる。
そこで、 本発明では、 以下の実施例で述べるように、 集団での位置を知る最も 古典的な方法である偏差値方式を採用して、 所期の血管老化スコアを導き出して いる。 つまり、 2 0歳以上の広範な年齢集団である基準集団を設定し、 集団の波 形測定で計算された波形指数の男女別、 年齢 5歳階層別の平均値と標準偏差から、 個人の偏差値を求めた。
ところで、 加速度脈波計には反射型と透過型との二種類があり、 さらに光源波 長、 フィル夕一の種類、 微分形式等の違いにより、 各製品の波形は微妙に異なつ ている。 本発明では、 下記の反射型脈波センサ (脈波計) を用いて加速度脈波を 測定し、 これを解析して血管年齢の評価を行った。 この脈波センサを採用すれば、 今後の研究の発展にも有用であると考えられる。
本発明で用いる脈波センサは、 発光部と受光部とを有し、 発光部と受光部とに より被験者の指の脈波を測定する反射型の脈波センサであって、 この発光部を、 受光部より指の動脈血流の下流側に、 その上面が受光部の上面よりも突出するよ うに配置し、 また、 発光部及び受光部の上方に、 赤外線透過性の窓部を、 その上 面が腹部を載置する床面よりも所定の距離だけ突出するように配置し、 そして指 の先端部を発光部よりも指動脈血流のさらに下流側に装着するための空間が床面 の先端部分に設けられている脈波センサである。
このように構成することにより、 指の発光部に対する密着性が良好になると共 に、 指動脈血流の下流側が圧迫されても、 上流側が圧迫されるのに比べて脈波へ の影響は少なく、 再現性よく脈波情報を得ることができる。 また、 指と発光部と の接触面積は発光部の上面の面積と概略等しくなり、 指にかかる接触面積が小さ いので、 波形の変化はほとんどない。
上記指の先端部を装着する空間の床面と対向する面に押圧材を取付け、 押圧材 で発光部よりも指動脈血流のさらに下流側の指の先端部の上面を押さえるように 構成することが好ましい。 被験者は、 脈波測定中に意識的 ·無意識的に指先に力 を入れる場合がある。 この場合に、 力を抜くように指導すると、 被験者の指の形 状によっては、 センサへの密着性が悪くなることがある。 力を入れる場合も、 力 を抜く場合も、 指の小さな動きによるノイズが発生する。 押圧材を設けることに より、 ノイズが減少し、 測定データの再現性が増し、 正確な脈波情報を得ること ができる。
上記したように、 押圧部位を指の先端部上面の小面積に限るように構成してあ るので、 押圧部位の上流側の指動脈血流部分の脈波を再現性よく正確に測定する ことができる。
上記窓部の上面は、 指の腹部を載置する床面より通常 0 . 1〜1 . 5 mm程度、 望ましくは 0 . 2〜 1 . 0 mm程度、 更に望ましくは 0 . 3〜0 . 5 mm程度突 出するように配置されることが好ましい。
上記押圧材で窓部より先の指の先端部の上面を押さえる際の圧力を通常 5 0〜 2 0 0 g W、 望ましくは 7 0〜 1 5 0 g Wになるように構成することが好ましレ^ 5 0 g W未満であると、 脈波の振幅が小さく、 測定時の振動や被験者の指のふる えによるノイズが入りやすく、 また、 被験者の緊張などにより測定波形が変形し やすい。 また、 2 0 0 g Wを超えると測定波形が極端に変形する。 なお、 指全体 を加圧すると測定波形が変形し、 再現性が低下する。
なお、 受光部を発光部よりも指の動脈血流の下流側に配置すると、 上記したよ うな押圧材を設けた場合、 押圧部と押圧部よりも指動脈血流の下流側とにおいて うつ血が発生するので、 この部分の近くに受光部を設けると末梢動脈血流の循環 の悪い波形が得られ、 適切な評価ができない。
上記発光部は、 その上面が指の腹部を載置する床面より通常 0 . 1〜1 . 5 m m程度、 好ましくは 0 . 2〜 1 . 0 mm程度、 さらに好ましくは 0 . 3〜0 . 5 mm程度突出するように配置されてもよい。 発光部をこのように配置すると、 指 腹部の皮膚面が発光部上面から下に被さるので、 測定データに対する外乱光や漏 洩光ゃ反射光の影響を小さくすることができると共に、 被験者が指を装着する際 に、 その突出部に触れることによりセンサ位置を認識して、 指を所定の位置に載 置し易いという利点がある。 しかし、 0 . 1 mm未満であると、 センサ位置を確 認し難いので、 指先を所定位置に載置し難いと共に、 測定データに対する反射光 の影響が大きくなる。 また、 1 . 5 mmを超えると、 指皮膚面が床面から浮くた め、 不安定な装着状態になると共に、 指を載置した時の指に対する圧力により波 形の変形が生じて再現性が悪くなり、 測定される脈波データにバラツキが生じて、 正確な脈波情報を得ることが難しくなる。
上記受光部は、 その上面が指の腹部を載置する床面と同じレベルになるように 配置されているか、 又は所定の距離だけ床面より低くなるように配置されていて もよく、 これにより発光部に対する指の密着性がより良好になる。
上記発光部の側面は、 発光部から指内に照射される光が外部に漏れるのを阻止 しかつ指の腹部表面からの反射光を阻止するために、 遮光壁で囲まれていること が好ましい。
上記発光部は、 内面が照射光に対する反射特性を有する遮光壁内部に配置され、 遮光壁の上端が、 指の腹部を載置する床面から通常 0 . 1〜1 . 5 mm程度、 好 ましくは 0 . 2〜: L . 0 mm程度、 さらに好ましくは 0 . 3〜0 . 5 mm程度突 出するように構成され、 指の腹部がこの上端に載置されて遮光壁上端全面を覆う ようにすることが好ましい。 遮光壁の上端をこのような範囲内になるように突出 させると、 指腹部の皮膚面が発光部上面から下に被さるので、 測定データに対す る外乱光や漏洩光や反射光の影響を小さくすることができると共に、 被験者が指 を装着する際に、 遮光壁の突出位置に触れることによりセンサ位置を認識して、 指を所定の位置に載置し易いという利点がある。 しかし、 0 . 1 mm未満であると、 遮光壁位置を確認し難いので、 指先を所定 位置に載置し難いと共に、 発光部からの照射光や指腹部表面からの反射光が漏れ 易くな'り、 測定データに対する反射光の影響が大きくなる。 また、 1 . 5 mmを 超えると、 指皮膚面が床面から浮くため、 不安定な装着状態になると共に、 指を 載置した時の指に対する圧力により波形の変形が生じて再現性が悪くなり、 測定 される脈波デ一夕にバラツキが生じて、 正確な脈波情報を得ることが難しくなる。 以下、 図面を参照して本発明で用いることができる脈波センサについて図面を 参照して詳細に説明する。
第 2図は、 反射型脈波センサの要部である指装着部の断面構造を示す図(第 2 図(a ) )、 並びに発光部及び受光部の近傍を拡大して示す図(第 2図(b ) )であり、 指を装着した状態で示す。
この反射型脈波センサは、 発光部及び受光部を有し、 被験者の指を装着して脈 波の測定ができるものであって、 蓋部を構成する開閉自在の合成樹脂製の上方部 分と、 指腹部を載置することができるように構成された合成樹脂製の床部分とを 有してなる。 上方部分はその内面が指の外形に沿った形状をしていてもよく、 ま た、 床部分はその床面が平坦であっても又は外乱光を遮断するために指の付け根 側がやや高く又は低くなるように傾斜した形状になっていてもよい。 以下述べる ように、 上方部分の先端部には押圧材が設けられ、 床面に載置した指の動脈血流 の発光部よりもさらに下流側の指の先端部分を押さえて固定できるようになって おり、 また、 床部分には発光部及び受光部が所定の位置に配置されている。 この 押圧材は、 指の先端部分を押さえて固定できるものであればよく、 例えば、 クッ シヨン材ゃ、 パネ材のような板材などでよく、 所定の圧力で指の先端部分を押さ えることができるように構成されている。 また、 このセンサには、 反射光の電流 /電圧変換回路、 増幅器が設けられており、 このセンサをパーソナルコンビユー 夕に接続すれば、 センサからの出力に基づき正確な脈波情報を得ることができる。 この脈波センサの場合、 指装着部に指を差し込み、 指の先端部分の腹部に赤外 線などの光を当てると、 毛細血管中のヘモグロビン (赤血球) が光の一部を吸収 し、 光の反射量が変化する (血液量が多い部分は光の反射量が少なくなる) 。 こ の微妙な光の反射量の変化を検出し、 検出された反射光を電流から電圧へ変換し、 増幅器に送信し、 増幅された信号電圧をパーソナルコンピュータを利用して A D 変換して出力し、 脈波情報として活用する。
脈波センサの要部を構成する指装着部には、 第 2図(a )及び(b )に示すように、 発光ダイオード (L E D ) などの半導体発光素子からなる発光部 1が、 フォトダ ィオード (P D ) などの半導体受光素子からなる受光部 2よりも被験者の指 3の 動脈血流の下流側に配置される。 指内の発光部 1からの照射光 1 aの経路を見る と、 発光部分の光束は、 指内を進むにつれて拡散して拡がる。 このため、 発光部 1からの入射光量変化による受光部 2の光量変化は大きく、 受光部 2の位置変化 による受光する拡散光の光量変化は小さい。 従って、 発光部 1を指に密着するよ うにすることが必要となる。 しかし、 密着性を良くすることは、 指に余分の圧力 を加えることにつながる。 そこで、 発光部 1を受光部 2より指動脈血流の下流側 に配置し、 指に余分の圧力が加わらないようにする。
また、 発光部 1は、 その上面が受光部 2の上面より所定の距離だけ突出する (すなわち、 高くなる) ように配置される。 すなわち、 発光部 1の高さ H iが受 光部 2の高さ H 2より所定の距離だけ高くなるように構成する。 指装着部の先端 部分には、 赤外 L E Dなどからなる発光部 1から照射される光 1 aの経路よりも 指動脈血流のさらに下流側に空間 4が設けられ、 指 3の先端部がこの空間内に載 置され得るように構成される。
第 2図(a )及び(b )によれば、 発光部 1及び受光部 2の上方に赤外線透過性の 窓部 9が設けられている。 この窓部 9は、 その上面が被験者の指の腹部を載置す る床面 5よりも所定の距離(0 . 1 mm以上、 例えば約 0 . 3 5 mm)だけ高くな るように配置されている。 窓部 9を、 第 2図(b )に示すように、 発光部 1及び受 光部 2を覆うように床面の緣端部上に載置して固定しても、 又は縁端部の切欠き 上に載置して固定してもよく、 その配置の仕方に制限はない。 窓部 9を設けるこ とにより、 発光部 1及び受光部 2と被験者の指とが直接接触しないようになる。 これにより、 通電部に影響が及ぶことはなく、 また、 発光部及び受光部表面の汚 れを清拭しないで済み、 メンテナンスが楽になる。
窓部 9の外形は特に制限されず、 例えば、 厚さ 0 . 5 mm程度の板状でよい。 この窓部 9の上面を凹レンズで構成すれば、 射出光の指向性をさらに広げること ができる。 この窓部の材料としては、 赤外線に対して透光性が高い赤外線透過性 材料であれば特に制限はなく、 例えば、 アクリル樹脂、 ポリエチレン樹脂、 ポリ カーボネート榭脂、 ポリスチレン樹脂等や赤外線透過性ガラスをあげることがで さる。
本発明で用いる脈波センサは、 発光部を、 受光部より指の動脈血流の下流側に、 その上面が受光部の上面よりも所定の距離突出するように配置し、 また、 発光部 及び受光部の上方に、 赤外線透過性の窓部を、 その上面が腹部を載置する床面よ りも所定の距離だけ突出するように配置し、 そして指の先端部が発光部よりも指 動脈血流のさらに下流側に装着され得るように、 床面の先端部分に空間を設けて あるので、 指の発光部に対する密着性が良好になると共に、 指動脈血流の下流側 が圧迫されても、 上流側が圧迫されるのに比べて脈波への影響は少なく、 再現性 よく正確な脈波情報を得ることができる。
また、 この脈波センサでは、 発光部及び受光部の上方に赤外線透過性の窓部を、 窓部の上面が指の腹部を載置する床面よりも所定の距離だけ突出するように配置 してあるので、 測定波形への影響は少なく、 再現性よく正確な脈波情報を得るこ とができる。
指装着部の指腹部を載置する面は、 指載置床面 5として構成される。 床面 5に は発光部 1及び受光部 2が所定の位置に設けられ、 床面の先端部分は傾斜して立 ち上がり、 指の先端が適切に納まるように構成される。 この指装着部において、 発光部 1の配置された位置より動脈血流の下流側であって、 床面と対向する面に 押圧材 6が設けられる。 この押圧材により、 装着された指の先端部分 (好ましく は、 爪部) を軽く押さえ、 装着された指が動かないように固定する。 このように 構成することにより、 被験者の意識的 ·無意識的な指の小さな動きが少なくなつ て、 ノイズ発生が減少し、 その結果、 測定波形の変化も少なくなる。 なお、 押圧 材により動脈血流の下流側を圧迫しても、 脈波への影響は小さい。
発光部 1からの照射光 1 aが指の皮膚表面で反射して受光部 2に入り込むと、 この反射光がノイズとなり、 受光部 2に入る受光量が変動する。 このために、 正 確な脈波を測定することができなくなる。 また、 照射光 1 aが脈波センサの外部 に漏れると、 照射光の効率が下がり、 かつ、 受光部が受け取る反射光 2 aの光量 が減少して正確な脈波を測定することが困難になる。 そのため、 余分な反射光や 漏洩光を阻止するために、 発光部 1の側面を遮光壁で囲んでもよい。 この遮光壁 は、 反射光や漏洩光をなくすような形状であれば、 その形状は問わないが、 例え ば、 発光部 1の外周形状に沿った円筒状などの形状が好ましい。 装着された指は、 この遮光壁の上面の所定の点で密着し、 固定される。 遮光壁は、 その受光部 2側 が黒色であってもよく、 また、 その内面が鏡面であってもよい。 遮光壁の材料と しては、 赤外線を遮る性質を有する材料であれば特に制限はなく、 例えば、 赤外 線を実質的に透過させないポリプロピレン系樹脂や A B S系樹脂などの熱可塑性 樹脂など、 又はこれらに黒色塗装などの表面処理を施したものをあげることがで きる。 ·
発光部 1の上面に赤外線透過性の絶縁体キャップを設け、 発光部 1と指 3とが 直接接触しないようにしてもよい。 これは、 発光部の通電部に影響を及ぼさない ようにするためと、 発光部表面の汚れを清拭しないで済むようにするためである。 絶縁体キャップの外形は、 例えば、 発光体 1の上方部分の形状に沿った円筒形状 などの形状であればよい。 絶縁体キャップの上面を凹レンズで構成すれば、 射出 光の指向性をさらに広げることができる。 この絶縁体キヤップの材料としては、 赤外線に対して透光性が高い赤外線透過性材料であれば特に制限はなく、 例えば、 アクリル樹脂、 ポリエチレン樹脂、 ポリ力一ポネート樹脂、 ポリスチレン樹脂等 や赤外線透過ガラスをあげることができる。 また、 受光部 2と指 3とが直接接触 して指に圧力がかからないように、 受光部 2と指 3との間に隙間を設けるような 構造とすることが好ましい。
発光部 1の発光素子と受光部 2の受光素子との指向性の影響について第 3図に 示す。 第 3図(a )に示すように、 発光部 1の発光素子と受光部 2の受光素子との 配置が従来の指向性が強い配置の場合、 発光部 1の発光ダイォードの光軸がずれ ると、 有効な検出領域もずれる。 しかし、 上記したように、 指向性の弱い発光部 1の発光素子と受光部 2の受光素子とを接近して配置すれば、 第 3図(b )に示す ように、 発光ダイォードの光軸のずれに対する有効検出領域のずれは相対的に小 さい。 そのため、 得られる脈波情報は正確となる。
発光部 1からの照射光の射出角 (半値角) ひを通常 5 0度以上、 好ましくは 5 0〜8 5度、 より好ましくは 5 0〜8 0度とすることにより、 有効検出領域のず れは相対的に少なくなる。 5 0度未満であると、 有効検出領域のずれが大きくな り、 正確な脈波データを得ることが困難になる。
上記脈波センサにおいて、 発光部 1と受光部 2との距離が長くなる程、 加速度 脈波の波形である a波の振幅は小さくなり、 ノイズ成分が発生し易くなつて、 測 定波形の変形が大きくなる傾向がある。 また、 この距離が長い程、 圧力の影響が ある指部位の脈波を測定することになり、 測定波形が変形し易い。 そのため、 発 光部と受光部との距離を、 所定の距離、 例えば、 通常 8 mm以内、 好ましくは 6 mm以内に設定すれば、 加速度脈波の a波の振幅及び b波と a波との比(b / a ) は適切な範囲内に納まる。 この場合、 光軸のずれも少なく、 有効検出領域のずれ も少なく、 また、 波形は変形し難い。 なお、 この距離が上記範囲を外れた動脈上 流側の指部位では、 動脈血管が膨らんで、 b / aが小さい(絶対値が大きい)状態 になり、 また、 下流側の指部位では、 鬱血状態となって、 b / aが大きい(絶対値 が小さい)状態になる。 また、 発光部と受光部との距離の下限は、 特に制限はな く、 発光部と受光部との物理的な大きさや脈波センサの大きさなどに依って所望 により設定できる最低距離であればよい。 例えば、 2〜3 mm程度に設定しても よい。
また、 絶縁体キャップが脱落しないようにして、 脈波センサ本体の取り扱い性 を向上させるため、 絶縁体キャップの下方部分につば部を設けた構造としてもよ い。 さらに、 絶縁体キャップの上面を凹レンズで構成すれば、 射出光の指向性を さらに広げることができる。
上記した脈波センサでは、 受光部は、 指に圧力がかからないように、 その上面 が指装着部の床面と同一高さ又はそれより下になるように配置される。 これによ り、 受光部に入射する光の割合が最も多い受光部上面位置にあたる指部分が圧迫 されないようになる。 例えば、 受光部を脈波センサの指載置床面より l mm程度 低くなるように配置すればよい。
以下、 本発明の実施例及び比較例を図面を参照して詳細に説明する。
(実施例 1 )
本実施例では、 反射型脈波センサ((株)ュメディ力社製の A R T E T T (登録商 '標))を用いて、 所定の数の男性、 女性について加速度脈波を測定し、 この値に基 づいて平均値及び標準偏差を算出し、 血管の老化を評価した。
加速度脈波は、 男性 1372人、 女性 7 14人の計 2086人の健常人を測定 対象として、 安静時座位、 心臓の高さで、 右手第 2〜 3指にて加速度脈波を 18 秒間測定し、 記録した。 得られた加速度脈波から求めた波形指数: (d— b)/a について、 男性、 女性のそれぞれの年齢層別(5歳毎の年齢帯)の平均値と標準偏 差値(SD)を算出し(表 1及び 2)、 年齢帯に対する平均値、 平均値一標準偏差値、 及び平均値 +標準偏差値の各折れ線グラフを男性について示し、 血管年齢の評価 を行った。 男性の波形指数について、 表 1のデータを第 4〜 7図にプロットし、 この図面に基づいて以下述べるように血管年齢を評価した。 表 1及び 2に示すデ 一夕は、 健常者の母集団統計テーブルである。
(表 1) 男 性 波形指数 I: (d/a)-(b/a)
年齢区分 N 平均値 SD 平均値 + SD 平均値一 SD
20-24 132 0.7098 0.1558 0.8656 0.5540
25-29 46 0.5785 0.1575 0.7360 0.4210
30-34 100 0.5551 0.2293 0.7844 0.3258
35-39 243 0.4703 0.2856 0.7559 0.1847
40-44 224 0.3816 0.2628 0.6444 0.1188
45-49 188 0.3118 0.2881 0.5999 0.0237
50-54 220 0.2279 0.2902 0.5181 -0.0623
55-59 133 0.1271 0.3207 0.4478 -0.1936
60-64 53 0.1180 0.2701 0.3881 - 0.1521
65以上 33 0.0376 0.3072 0.3448 -0.2696 (表 2)
Figure imgf000023_0001
以下、 表 1及び第 4図〜第 7図に基づいて、 血管老化を評価するための血管年 齢の求め方について説明する。
(A)まず、 実年齢が 60歳未満の場合について説明する。 60歳までであれば、 平均的な波形指数は年齢の増加に伴ってほぼ直線的に減少する。
(A— 1)血管老化スコアの測定値が、 被測定者の年齢帯の標準分布範囲の 40 〜60に入る場合について、 血管年齢を算出する手続きは次の通りである。
(A— 1一 1)被験者の実年齢 36歳男性の測定波形指数が WX 1 = 0. 25で ある場合:
( 1 )被験者の属する年齢帯 Mを整数として求める。
M=[36/5] = 7 (第 4図の(ァ))。
(2)健常者の母集団統計テーブルより、 この年齢帯 M= 7の波形指数: (d— &)/&の平均値八¥ eWX 1 (7) (第 4図の(ィ))及び標準偏差 S dWX 1 (7) (第 4図の (:ゥ))を求める。 Av eWX l (7)=0. 47であり、 S dWX l (7) =0. 28であった。 第 4図中、 UpWX 1 (7)は(ヱ)、 また、 DnWX l (7) (ま(ォ)として示してある。
(3)平均加速度脈波の a波、 b波、 d波の波高値 a、 b、 dから波形指数を、 式: WX 1= (d-b) /aとして算出する(第 4図の(力))。
(4)老化スコア AGSを式:
AGS = 10 * (A V eWX 1 (7)-WX D/S dWX 1 (7)) + 50 から、 AGS= 58を得る(第 4図の(キ))。
(5)老化スコアが 40〜 60の範囲 (波形指数の平均値 A V e WX 1 (7)士 標準偏差 S dWX 1 (7)の範囲) を 5等分し(第 4図の(夕))、 その中央区間が被 験者の実年齢 36歳となるように(第 4図の(ケ))、 それらの区間を、 図の上から 下へ向かって、 34、 35、 36、 37及び 38歳に割り当て、 老化スコアの値 が入る区間(第 4図の力)から被験者の血管年齢を 38歳として評価する。
(A— 2)血管老化スコアの測定値が、 被測定者の年齢帯の標準分布範囲の 60 を超える場合について、 血管年齢を算出する手続きは次の通りである。
(A— 2— 1)被験者の実年齢 36歳男性の測定波形指数が WX 1 = 0. 1であ る場合:
(1)〜(3)上記(八ー 1— 1)の(1)〜(3)と同様にして波形指数を算出する。
(4)波形指数の上記測定値 WX 1 = 0. 1から、 AGS = 63を求め、 AG S>60と判定する(第 5図の(ザ))。
(5)被験者の属す得る年齢帯 M= 7よりも上の年齢帯で、 健常者分布の標準 偏差下端 DnWX l (M)が、 波形指数の測定値 WX 1 = 0. 1未満となる最初の 年齢帯 M= 9を求める(第 5図の(シ))。
( 6 )健常者分布の標準偏差下端 D nWX 1 (7)と上記最初の年齢帯の標準偏 差下端 DnWX 1 (9)とを直線で結び、 この間を 5 * (9— 7)= 10等分し、 各 々の区分に対応して、 血管年齢を実年齢 + 3 = 39歳から 49歳まで順次割り当 てる(第 5図の(ス; ))。
(7)波形指数の測定値 WX 1 = 0. 1に対応する、 上で求めた区間から、 被 験者の血管年齢を 44歳として評価する(第 5図の(セ))。
(A— 2— 2)被験者の実年齢 36歳男性の測定波形指数が WX 1 =-0. 3で ある場合:
(1)〜(4)上記(入_ 1— 1)の(1)〜(4)と同様にして老化スコア AGSを 求める。 (5)測定波形指数が WX 1 =— 0. 3 (第 6図の(ソ))と、 一番高齢の年齢帯 65歳以上(Mmax= l 3 )における健常者分布標準偏差下端 D n WX 1 (1 3) =- 0. 27 (第 6図の(夕))とを比較する。 測定値 WX l=— 0. 3の方が小さ い。 従って、 WX 1 =— 0. 3は、 全年齢帯の健常者の標準分布範囲から外れて いるので、 血管年齢を健常者の標準分布に対応して求めるものとすると、 血管年 齢は求まらないことになる。 この時は、 次の手順に従って血管年齢を求めること にする。
(6)年齢帯 Mma x= 1 3における健常者分布の標準偏差下端 D nWX 1 (1 3 ) (第 6図の(夕))と、 被験者の年齢帯 M= 7における健常者分布の標準偏差下 端 DnWX 1 (7) (第 6図の(チ))とを結んだ直線を高年齢側に延長する。
(7)年齢帯 Mma x= 13における健常者分布の標準偏差下端 D nWX 1 (1 3)と被験者の年齢帯 M= 7における健常者分布の標準偏差下端 DnWX 1 (7) との間を 5 * (1 3- 7) = 30分割し、 それぞれの区間の血管年齢を被験者の実 年齢 + 3歳 =39歳から 68歳まで順次割り当てる(第 6図の(ッ))。
(8)測定波形指数 WX 1の値(一 0. 3)から血管年齢を外挿し、 被験者の血 管年齢を 7 1歳として評価する。
(B)次に、 実年齢が 60歳を超える場合について説明する。 血管老化スコアが健 常者の標準分布範囲内である場合、 上記(A— 1一 1)と同様にして求める。 この 標準分布を外れる場合、 60歳を超えると、 平均的な波形指数は年齢の増加に伴 つて殆ど変化しないので、 前項までのアルゴリズムは適用できない。 そこで、 6 0歳付近での、 年齢に対する波形指数の変化割合が、 60歳を超えても続くもの として、 血管年齢を算出する。
(B— 1)被験者の実年齢が 7 5歳であり、 測定波形指数が WX 1 =— 0. 3 (第 7図の(卜))である場合:
(1)被験者の年齢帯 Mma x = 1 3における健常者分布の標準偏差下端 D n WX 1 (1 3)と、 二つ前の年齢帯 Mm a x— 2 = 1 1における健常者分布の標準 偏差下端 DnWX 1 (1 1)とを結んで 1 0等分し(第 7図の(ナ))、 最後の区間を 被験者の実年齢 + 2 (すなわち、 77歳)に割り当てる(第 7図の(二))。 この時、 Mma Xの一つ前の年齢帯 Mma X— 1 = 10における健常者分布の標準偏差下 端 D n WX 1 ( 1 0 )を用いると、 統計的なばらつきなどの要因により誤差が大き く出る場合があり、 実用的ではない。
( 2 )上で結んだ直線を高年齢側に延長して、 波形指数の測定値から血管年齢 を外揷して、 被験者の血管年齢を 8 2歳として評価する(第 7図の(ヌ):)。
また、 表 2について、 表 1の場合と同様にプロットした図から上記と同様にし て被験者の血管年齢を評価することができる。
(比較例 1 ) ·
本比較例では、 加速度脈波を用いて血管の老化を評価するために、 第 8図に基 づいて、 波形指数の年齢分布に関し、 年齢対平均値の直線近似式のグラフから求 めた血管年齢と実施例 1で求めた血管年齢とを比較して説明する。
第 8図に示すように、 例えば、 被験者が 3 5歳であり、 波形指数の測定値が 0 . 2である場合、 従来法による直線回帰式のグラフ aでは、 血管年齢は 5 7歳と評 価されるが、 本発明におけるグラフでは、 上記したように、 血管年齢は 3 5〜3 9歳の標準分布範囲である平均値士標準範囲内に入り、 血管年齢を正確に評価す ることができる。
これは、 ある年齢帯と性別における波形指数の標準分布範囲である平均値土標 準偏差の幅が相当広いためである。 上でみたように、 被験者について測定した波 形指数の値が、 その被験者が属する年齢帯の平均値より標準偏差だけ高齢側であ つた時に、 この直線近似式による方式で血管年齢を求めると、 場合により被験者 の実年齢より 2 0歳以上も高齢になることがある。 また、 6 0歳を越えると、 波 形指数の平均値の分布は、 年齢に対し、 ほとんど変化が見られなくなる。 従って、 高齢者の場合には、 分布全体の直線近似式により求めた血管年齢は実態に即さな いのが、 本発明によれば、 正確に評価できることを意味している。
以上詳細に説明したように、 本発明を実施する場合には、 使用する反射型脈波 センサの再現性が問題になるが、 本発明で用いたセンサによれば、 被験者の年齢 や脈波センサの方式によつて左右されることなく、 測定加速度脈波を血管老化の 指標の基準として利用することができる。 産業上の利用可能性 本発明によれば、 (d / a )— ( b / a ) (この式において、 a、 b、 dは上記の 通りである。 )の波形指数の平均値及び標準偏差から導き出される血管老化スコ ァを、 動脈系の器質的 ·機能的弾力性又は硬化性の指標として利用することによ り、 臨床応用するのに充分な指標となり、 また、 どの測定機器にも、 どの年齢層 にも共通な基準となり、 それに基づいて血管年齢を有意に評価することができる。 また、 本発明で用いる反射型脈波センサによれば、 指の発光部に対する密着性 が良好になると共に、 指動脈血流の下流側が圧迫されても、 上流側が圧迫される のに比べて脈波への影響は少なく、 再現性よく正確な脈波情報を得ることができ るので、 臨床応用するのに充分な指標となり、 また、 任意の加速度脈波計にも、 かつ任意の年齢層にも共通な基準となるパラメータである血管老化スコアを導き だし、 このスコアに基づいて血管年齢を有意に評価することが可能となる。
かくして、 本発明は、 血管老化度を血管老化スコアや血管年齢で表現できるシ ステムであり、 健康管理や疾病管理等の分野で適用可能である。 '

Claims

請求の範囲
1 . 被験者の加速度脈波の測定値から波形指数を求めて、 測定した加速度脈波の 波形が健常人の何歳の波形に相当するかを、 健常人の波形指数の年齢と性別に応 じた分布に基づいて算出し、 これを被験者の血管年齢とする血管年齢の評価方法 であって、 被験者に対して得られた波形指数の値が、 その被験者が属する年齢帯 の標準分布範囲に入る時は、 波形指数の若年側分布境界〜高齢側分布境界の範囲 を年齢帯の年齢幅に分割して血管年齢を求めること、 また、 該被験者に対して得 られた波形指数の値が、 その被験者が属する年齢帯の標準分布範囲に入らない時 は、 健常人に対する年齢と性別に応じた波形指数の分布における若年側分布境界 又は高齢側分布境界の値から血管年齢を求めることを特徴とする血管年齢の評価 方法。
2 . 被験者の加速度脈波の測定値から波形指数を求めて、 測定した加速度脈波の 波形が健常人の何歳の波形に相当するかを、 健常人の波形指数の年齢と性別に応 じた分布に基づいて算出し、 これを被験者の血管年齢とする血管年齢の評価方法 であって、 被験者が 6 0歳以上の高齢者である場合に、 その被験者に対して得ら れた波形指数の値が、 被験者が属する年齢帯の標準分布範囲から高齢者側に外れ る時は、 被験者の年齢における高齢側分布境界の波形指数値を通って 6 0歳付近 の高齢側分布境界の勾配を持つ直線から血管年齢を求めることを特徴とする血管 年齢の評価方法。
3 . 前記若年側分布境界が波形指数の平均値 +標準偏差であり、 また、 高齢側分 布境界が波形指数の平均値一標準偏差であることを特徴とする請求項 1又は 2記 載の血管年齢の評価方法。
4 . 前記波形指数が、 式: (d— b ) / a (式中、 aは加速度脈波の成分のうち原 波形の立ち上がり部分の a波波形の基線から頂点までの距離を表し、 bは加速度 脈波の成分のうち原波形の立ち上がり部分の波形から数えて第 2番目の b波波形 の基線から頂点までの距離を表し、 dは加速度脈波の成分のうち原波形の立ち上 がり部分の波形から数えて第 4番目の d波波形の基線から頂点までの距離を表 す。 )で表されるものであることを特徴とする請求項 1〜3のいずれかに記載の 血管年齢の評価方法。
5 . 請求項 1〜4のいずれかに記載の加速度脈波を、 発光部と受光部とを有し、 該発光部と該受光部とにより被験者の指の脈波を測定する反射型の脈波センサで あって、 該発光部が、 該受光部より指の動脈血流の下流側に、 その上面が該受光 部の上面よりも突出するように配置され、 さらに赤外線透過性の窓部が、 その上 面が指の腹部を載置する床面よりも該発光部及び該受光部の上方に所定の距離だ け突出するように配置され、 さらに指の先端部が該発光部よりも指動脈血流のさ らに下流側に装着されるような空間が該床面の先端部分に設けられている脈波セ ンサを用いて測定することを特徴とする請求項 1〜 4のいずれかに記載の血管年 齢の評価方法。
6 . 前記窓部は、 その上面が指の腹部を載置する床面より 0 . 1〜0 . 5 mm突 出するように配置されており、 前記受光部は、 その上面が指の腹部を載置する床 面と同じレベルになるように配置されているか、 又は所定の距離だけ該床面より 低くなるように配置されており、 そして前記指の先端部を装着する空間の床面と 対向する面に押圧材を取付け、 該押圧材で発光部よりも指動脈血流のさらに下流 側の指の先端部の上面を押さえるように構成し、 該押圧材は、 この押圧材で指の 先端部の上面を押さえる際の圧力が 5 0〜2 0 0 g Wとなるように構成されてい ることを特徴とする請求項 5記載の血管年齢の評価方法。
PCT/JP2004/004622 2004-03-31 2004-03-31 血管年齢の評価方法 WO2005102157A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2004/004622 WO2005102157A1 (ja) 2004-03-31 2004-03-31 血管年齢の評価方法
JP2006512431A JP4347338B2 (ja) 2004-03-31 2004-03-31 血管年齢の評価方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/004622 WO2005102157A1 (ja) 2004-03-31 2004-03-31 血管年齢の評価方法

Publications (1)

Publication Number Publication Date
WO2005102157A1 true WO2005102157A1 (ja) 2005-11-03

Family

ID=35196686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/004622 WO2005102157A1 (ja) 2004-03-31 2004-03-31 血管年齢の評価方法

Country Status (2)

Country Link
JP (1) JP4347338B2 (ja)
WO (1) WO2005102157A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007236807A (ja) * 2006-03-10 2007-09-20 Haruko Takada 運動耐容能評価装置
JPWO2007132865A1 (ja) * 2006-05-16 2009-09-24 株式会社網膜情報診断研究所 血管老化の検出システム
JP2012081063A (ja) * 2010-10-12 2012-04-26 Rohm Co Ltd ゲームシステム、プログラム、及び、情報記憶媒体
JP2013180122A (ja) * 2012-03-02 2013-09-12 Alcare Co Ltd 下肢判定装置
TWI555504B (zh) * 2014-06-06 2016-11-01 國立交通大學 血液脈波內生特徵分割系統與方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108185996B (zh) * 2017-12-27 2020-01-10 中国科学院深圳先进技术研究院 动脉血管年龄估算模型构建方法和装置
CN110710960B (zh) * 2019-09-12 2022-12-09 东莞市康助医疗科技有限公司 一种动脉血管年龄推算方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000023928A (ja) * 1998-07-07 2000-01-25 Future Wave:Kk 血液循環診断装置
JP2002238867A (ja) * 2001-02-22 2002-08-27 Haruko Takada 血管老化の評価法
JP2004000467A (ja) * 2002-03-15 2004-01-08 U-Medica Inc 脈波センサ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000023928A (ja) * 1998-07-07 2000-01-25 Future Wave:Kk 血液循環診断装置
JP2002238867A (ja) * 2001-02-22 2002-08-27 Haruko Takada 血管老化の評価法
JP2004000467A (ja) * 2002-03-15 2004-01-08 U-Medica Inc 脈波センサ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAKAZAWA K. ET AL: "Kasokudo Myakuha ni yoru Kekkan Nenrei no Suitei.", THE JOURNAL OF JAPAN ATHEROSCLEROSIS SOCIETY., vol. 26, no. 11-12, 1999, pages 313 - 319, XP002995814 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007236807A (ja) * 2006-03-10 2007-09-20 Haruko Takada 運動耐容能評価装置
JPWO2007132865A1 (ja) * 2006-05-16 2009-09-24 株式会社網膜情報診断研究所 血管老化の検出システム
JP5535477B2 (ja) * 2006-05-16 2014-07-02 株式会社網膜情報診断研究所 血管老化の検出システム
JP2012081063A (ja) * 2010-10-12 2012-04-26 Rohm Co Ltd ゲームシステム、プログラム、及び、情報記憶媒体
JP2013180122A (ja) * 2012-03-02 2013-09-12 Alcare Co Ltd 下肢判定装置
TWI555504B (zh) * 2014-06-06 2016-11-01 國立交通大學 血液脈波內生特徵分割系統與方法

Also Published As

Publication number Publication date
JP4347338B2 (ja) 2009-10-21
JPWO2005102157A1 (ja) 2008-07-31

Similar Documents

Publication Publication Date Title
JP4625886B2 (ja) 脈波解析法及び自律神経機能評価装置
EP1440653B1 (en) Method and apparatus for evaluating human stress using photoplethysmography
RU2511278C2 (ru) Бесконтактное наблюдение дыхания у пациента и оптический датчик для измерения методом фотоплетизмографии
JP2015503933A (ja) 身体に装着可能な脈拍計/酸素濃度計
US9161697B2 (en) System for measuring and recording a user's vital signs
EP3763291A1 (en) Blood glucose monitoring method and wearable blood glucose monitoring device using same
WO2019015294A1 (zh) 腕戴设备及基于其的血压测量方法
US20130217988A1 (en) Motion compensation in a sensor
JP2010051822A (ja) 自律神経機能評価装置
US20210113094A1 (en) Method and examination apparatus for medical examination of an animal
KR101736997B1 (ko) 손목에 착용하는 생체 신호를 측정하는 장치
WO2005102157A1 (ja) 血管年齢の評価方法
US20110021941A1 (en) Systems and methods for respiration monitoring
JP7247444B2 (ja) 血圧を測定するための装置
JP2004000467A (ja) 脈波センサ
KR20190105421A (ko) 광혈류 측정기 기반의 인체착용형 혈압 측정장치 및 혈압 측정방법
KR20120021098A (ko) 맥파의 주파수 영역 분석을 이용한 혈관노화 평가방법
US6496723B1 (en) Method of obtaining information that corresponds to electrocardiogram of human body from pulse wave thereof
US20210113155A1 (en) Examination apparatus for medical examination of an animal
WO2005010567A2 (en) Low profile fiber optic vital signs sensor
US20230039857A1 (en) Improved ppg measurement
JPH09262213A (ja) 生体情報検出装置
JP7133576B2 (ja) 位相差法による連続血圧測定システム
US20220202313A1 (en) Method for estimating a heart rate or a breathing rate
Maulana et al. Classification of lung condition for early diagnosis of pneumonia and tuberculosis based on embedded system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006512431

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase