WO2005101589A1 - Die for manufacturing anisotropic conductive sheet and method for manufacturing anisotropic conductive sheet - Google Patents

Die for manufacturing anisotropic conductive sheet and method for manufacturing anisotropic conductive sheet Download PDF

Info

Publication number
WO2005101589A1
WO2005101589A1 PCT/JP2005/007035 JP2005007035W WO2005101589A1 WO 2005101589 A1 WO2005101589 A1 WO 2005101589A1 JP 2005007035 W JP2005007035 W JP 2005007035W WO 2005101589 A1 WO2005101589 A1 WO 2005101589A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
material layer
anisotropic conductive
magnetic field
path forming
Prior art date
Application number
PCT/JP2005/007035
Other languages
French (fr)
Japanese (ja)
Inventor
Masaya Naoi
Original Assignee
Jsr Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr Corporation filed Critical Jsr Corporation
Publication of WO2005101589A1 publication Critical patent/WO2005101589A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/22Contacts for co-operating by abutting
    • H01R13/24Contacts for co-operating by abutting resilient; resiliently-mounted
    • H01R13/2407Contacts for co-operating by abutting resilient; resiliently-mounted characterized by the resilient means
    • H01R13/2414Contacts for co-operating by abutting resilient; resiliently-mounted characterized by the resilient means conductive elastomers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/03Contact members characterised by the material, e.g. plating, or coating materials

Definitions

  • the present invention relates to a mold for producing an anisotropic conductive sheet and a method for producing an anisotropic conductive sheet.
  • the present invention relates to a mold for producing an anisotropic conductive sheet and a method for producing an anisotropic conductive sheet.
  • an anisotropic device that can be suitably used for electrical inspection of circuit devices such as integrated circuits formed on a wafer, integrated circuits obtained by dicing the wafer, cage ICs, and printed circuit boards.
  • the present invention relates to a mold for manufacturing an anisotropic conductive sheet for manufacturing a conductive sheet and a method for manufacturing an anisotropic conductive sheet.
  • An anisotropic conductive elastomer sheet is a sheet having conductivity only in the thickness direction, or a sheet having a pressurized conductive portion which is conductive only in the thickness direction when pressed in the thickness direction.
  • compact electrical connection can be achieved without using means such as soldering or mechanical fitting, and soft connection is possible by absorbing mechanical shock and strain.
  • circuit devices such as printed circuit boards and leadless chip carriers, and liquid crystal panels can be used in fields such as electronic calculators, electronic digital watches, electronic cameras, and computer keyboards. It is widely used as a connector to achieve an electrical connection between them.
  • a circuit device to be inspected has one surface.
  • the test device electrode area of the circuit device to be tested and the test circuit board An anisotropic conductive elastomer sheet is interposed between the test electrode region and the test electrode region.
  • Patent Document 1 and the like disclose thick conductive particles exhibiting magnetism in the elastomer.
  • Patent Document 2 and the like disclose a non-uniform distribution of conductive particles exhibiting magnetism in an elastomer, thereby forming a large number of conductive path forming portions extending in the thickness direction and interconnecting these portions.
  • An anisotropic conductive sheet (hereinafter referred to as a “distributed anisotropic conductive sheet”) in which an insulating portion to be insulated is formed is disclosed. Further, Patent Document 3 and the like disclose a conductive path forming portion. An unevenly distributed anisotropic conductive sheet in which a step is formed between a surface and an insulating portion is disclosed.
  • the unevenly distributed anisotropic conductive sheet has a conductive path forming portion formed in accordance with a pattern corresponding to a pattern of an electrode to be connected, and a conductive path forming portion is formed between adjacent conductive path forming portions. Since the insulating portion is formed, high reliability and electrical connection can be achieved even when the electrodes to be connected are arranged at a small pitch as compared with the dispersion type anisotropic conductive sheet. In that respect, it is advantageous.
  • a special anisotropically conductive sheet manufacturing die having a configuration shown in FIG. 10, for example, has been conventionally used.
  • This mold for producing an anisotropic conductive sheet is composed of an upper mold 90 and a lower mold 95, which is a pair of the upper mold 90, arranged so that their molding surfaces face each other.
  • the cavity is formed between the lower surface of the lower mold 95 and the molding surface of the lower mold 95 (the upper surface in FIG. 10).
  • a ferromagnetic layer 92 is formed on the lower surface of the ferromagnetic substrate 91 according to a pattern opposite to the arrangement pattern of the conductive path forming portions of the anisotropic conductive sheet to be manufactured.
  • a weak magnetic layer 93 is formed in a portion other than the body layer 92.
  • a ferromagnetic layer 97 is formed on the upper surface of the ferromagnetic substrate 96 according to the same pattern as the arrangement pattern of the conductive path forming portions of the anisotropic conductive sheet to be manufactured.
  • a weak magnetic layer 98 is formed in a portion other than the body layer 97.
  • a material layer 80 is formed.
  • a pair of electromagnets (not shown) are arranged on the upper surface of the upper die 90 and the lower surface of the lower die 95 and actuated.
  • a magnetic field having a larger intensity is applied to a portion located between the ferromagnetic layer 92 of the upper die 90 and the ferromagnetic layer 97 of the lower die 95.
  • the conductive particles P dispersed in the conductive material layer 80 are located between the ferromagnetic layer 92 of the upper die 90 and the ferromagnetic layer 97 of the lower die 95, that is, a conductive path is formed. Assemble into the part that will be the part, and be aligned in the thickness direction. Then, by conducting a curing treatment of the conductive material layer 80 in this state, an unevenly distributed anisotropic conductive sheet is obtained.
  • the ferromagnetic substrates 91 and 96 themselves function as magnetic poles, so that the portions of the conductive material layer 80 that become insulating portions also have weak magnetic properties. Since a magnetic field acts through the body layers 93 and 98, the conductive particles P present in the portion of the conductive material layer 80 that will become the insulating portion remain without moving toward the portion that becomes the conductive path forming portion. It's easy to do. As a result, an insulating portion having a required insulating property is not formed, and furthermore, a conductive path forming portion containing a required amount of the conductive particles P is not reliably formed. Is difficult to obtain. Such a phenomenon is more remarkable as the pitch of the conductive path forming portion is smaller.
  • the thickness direction that is, the surface of the conductive material layer. It is important to form a chain of conductive particles in a direction perpendicular to.
  • the magnetic field is applied in the thickness direction of the conductive material layer.
  • the chain of the conductive particles P is formed not only in the thickness direction of the conductive material layer 80 but also in a direction inclined with respect to the thickness direction.
  • the conductive force is also magnetodynamically stable, and the individual conductive particles are constrained by the magnetic force, so that the conductive particles form a chain in the thickness direction even when the action of the magnetic field is continued. None move as you do.
  • the conductive material layer 80 is cured, whereby the obtained anisotropic conductive sheet is also formed in a direction in which the chain of the conductive particles is inclined with respect to the thickness direction. Therefore, high conductivity can be obtained with a small pressing force. It is difficult to obtain.
  • the conductive particles P remaining in the portion to be the insulating portion are connected to the other conductive particles P, so that the upper die as shown in FIG. A chain of conductive particles P is formed between the ferromagnetic layer 92 of 90 and the ferromagnetic layer 97 adjacent to the ferromagnetic layer 97 of the lower mold 95 corresponding thereto, and as a result, the adjacent conductive layer P It is difficult to obtain an anisotropic conductive sheet having the required insulation between the path forming portions. Such a phenomenon is more remarkable as the pitch of the conductive path forming portion is smaller.
  • the present applicant stops the action of the magnetic field on the conductive material layer in the step of applying the magnetic field to the conductive material layer, and then again performs the action on the conductive material layer.
  • a method for producing an anisotropic conductive sheet in which a magnetic field whose direction of magnetic flux lines is opposite to that of a magnetic field is proposed (see Japanese Patent Application No. 2004-30180).
  • the magnetic force generated when a magnetic field in which the direction of the magnetic flux lines is applied to the conductive material layer is opposite to that in the anisotropic conductive sheet manufacturing mold.
  • Each of the ferromagnetic substrates of the mold and the lower mold moves, thereby causing a displacement between the upper mold and the lower mold as shown in FIG.
  • a conductive path forming portion extending in a direction inclined with respect to the thickness direction is formed, so that it is difficult to obtain the desired conductivity.
  • the ferromagnetic substrate of each of the upper mold and the lower mold moves, air enters the mold for producing an anisotropic conductive sheet, so that bubbles are easily generated in the obtained anisotropic conductive sheet. There is a problem.
  • Patent Document 1 JP-A-51-93393
  • Patent Document 2 JP-A-53-147772
  • Patent Document 3 JP-A-61-250906 Disclosure of the invention
  • the present invention has been made in view of the above circumstances, and a first object of the present invention is to provide a plurality of conductive path forming portions containing conductive particles, and a method for forming these conductive paths.
  • a mold for manufacturing an anisotropic conductive sheet having an insulating part that insulates parts from each other, even if the pitch of the conductive path forming part to be formed is small A conductive path forming portion exhibiting the above-mentioned conductivity, and a mold for manufacturing an anisotropic conductive sheet capable of manufacturing an anisotropic conductive sheet that can reliably obtain required insulation between adjacent conductive path forming portions.
  • a second object of the present invention is to manufacture an anisotropic conductive sheet having a plurality of conductive path forming portions containing conductive particles, and an insulating portion for insulating these conductive path forming portions from each other.
  • this method even if the pitch of the conductive path forming portion to be formed is small, the conductive path forming portion having the intended conductivity is provided, and the required insulation between the adjacent conductive path forming portions is ensured.
  • the mold for producing an anisotropic conductive sheet according to the present invention includes a plurality of conductive path forming portions each containing a conductive particle exhibiting magnetism in a state of being oriented in a thickness direction in an insulating elastic polymer material. And an anisotropic conductive sheet manufacturing mold for manufacturing an anisotropic conductive sheet having an insulating portion made of an insulating elastic polymer material that insulates these conductive path forming portions from each other. And a ferromagnetic layer disposed on the substrate according to a pattern corresponding to the pattern of the conductive path forming portion,
  • the substrate is made of a weak magnetic material.
  • the mold for producing an anisotropic conductive sheet of the present invention has a conductive polymer in a liquid polymer-forming material which is cured to become an insulating elastic polymer substance in a mold for producing an anisotropic conductive sheet.
  • a conductive material layer containing particles is formed, and the conductive material layer is formed on the conductive material layer in the thickness direction of the conductive material layer via the ferromagnetic layer in the anisotropic conductive sheet manufacturing mold.
  • a step of assembling conductive particles in a portion to be the conductive path forming portion by applying a magnetic field and orienting the conductive particles in a thickness direction of the conductive material layer; After stopping the action of the magnetic field, the magnetic material is again applied to the conductive material layer.
  • the method can be suitably used for a method for producing an anisotropic conductive sheet in which an operation for applying a field is performed at least once.
  • the substrate is preferably linear thermal expansion coefficient is from 1 X 1 0 one 7 ⁇ 1 X ⁇ - 5 ⁇ - 1 of weak magnetic material .
  • a metal film is formed on the surface of the substrate.
  • the method for producing an anisotropic conductive sheet according to the present invention comprises a plurality of conductive path forming portions each comprising a conductive particle exhibiting magnetism in an insulating elastic polymer material oriented in a thickness direction.
  • a conductive material layer containing conductive particles in a liquid polymer-forming material that is cured to become an insulating elastic polymer material is formed in the anisotropic conductive sheet manufacturing mold.
  • the operation of applying the magnetic field to the conductive material layer is performed at least once again.
  • the operation of applying the magnetic field to the conductive material layer again causes It is preferable that the direction of the magnetic flux lines of the magnetic field applied again to the conductive material layer is opposite to the direction of the magnetic flux lines of the magnetic field before the stop.
  • the operation of applying the magnetic field to the conductive material layer again is performed.
  • U which is preferably done repeatedly.
  • the operation of applying the magnetic field to the conductive material layer be performed five or more times.
  • the substrate is made of a weak magnetic material
  • the conductive Since the strength of the magnetic field acting on the insulating portion in the material layer can be sufficiently reduced, the conductive particles existing in the insulating portion can be surely collected in the conductive path forming portion.
  • the step of applying a magnetic field to the conductive material layer after the action of the magnetic field on the conductive material layer is stopped, the production of the anisotropic conductive sheet in which the magnetic field is applied to the conductive material layer is performed again.
  • the ferromagnetic substrate does not move even when a magnetic field in which the direction of the magnetic flux lines is applied to the conductive material layer is opposite, so that a displacement may occur. Therefore, a conductive path forming portion extending in a direction faithful to the thickness direction can be formed, and therefore, an anisotropic conductive sheet having a conductive path forming portion exhibiting expected conductivity can be manufactured. . Further, since air is prevented from entering the mold for producing an anisotropic conductive sheet, the occurrence of defective products due to bubbles can be suppressed.
  • the individual conductive particles in the conductive material layer are in this stopped state. Is released from the constraint by the magnetic force. Then, by applying a magnetic field again to the conductive material layer in the thickness direction, this operation is triggered, and the movement of the conductive particles starts again. A chain of conductive particles is formed in a more faithful direction.
  • the formation of chains of conductive particles in a direction inclined with respect to the thickness direction can be suppressed, so that even if the pressure is applied with a small pressing force, the electric resistance value is low and the conductive property is stable. Can be produced.
  • the shape of the adjacent conductive path forming portion is small. It is possible to manufacture an anisotropic conductive sheet that ensures the required insulation between the components.Furthermore, since the substrate for the anisotropic conductive sheet manufacturing mold is made of a weak magnetic material, the conductive When a magnetic field in which the direction of the magnetic flux lines is opposite to the magnetic material layer acts on the ferromagnetic material layer, the ferromagnetic substrate does not move.
  • the conductive path forming portion extending in any direction can be formed, and therefore, an anisotropic conductive sheet having the conductive path forming portion exhibiting the desired conductivity can be manufactured. Further, since air is prevented from entering the mold for producing an anisotropic conductive sheet, the occurrence of defective products due to bubbles can be suppressed.
  • FIG. 1 is an explanatory cross-sectional view showing a configuration of an example of an anisotropic conductive sheet obtained by a mold for producing an anisotropic conductive sheet of the present invention.
  • FIG. 2 is an enlarged cross-sectional view illustrating a main part of the anisotropic conductive sheet shown in FIG. 1.
  • FIG. 3 is an explanatory cross-sectional view showing a configuration of a mold for manufacturing an anisotropic conductive sheet used for manufacturing the anisotropic conductive sheet shown in FIG. 1.
  • FIG. 4 is an explanatory cross-sectional view showing a state where a conductive material is applied to molding surfaces of upper and lower dies in the mold for producing an anisotropic conductive sheet shown in FIG. 1.
  • FIG. 5 is an explanatory cross-sectional view showing a state in which a conductive material layer is formed in a cavity of a mold for producing an anisotropic conductive sheet.
  • FIG. 6 is an explanatory cross-sectional view showing a state where a mold for producing an anisotropic conductive sheet is set in an electromagnet device.
  • FIG. 7 is an explanatory sectional view showing directions of magnetic flux lines in a magnetic field before stop.
  • FIG. 8 is an explanatory cross-sectional view showing directions of magnetic flux lines in a magnetic field applied again.
  • FIG. 9 is an explanatory cross-sectional view showing a state where conductive particles in a conductive material layer are gathered at a portion to be a conductive path forming portion and are aligned so as to be arranged in a thickness direction.
  • FIG. 10 is an explanatory cross-sectional view showing a configuration of an example of a conventional anisotropic conductive sheet manufacturing mold.
  • FIG. 11 The conductivity between the upper mold and the lower mold in the mold for producing an anisotropic conductive sheet shown in FIG. It is explanatory sectional drawing which shows the state in which the material layer was formed.
  • FIG. 12 is an explanatory cross-sectional view showing a state in which a chain of conductive particles in a conductive material layer is formed in a direction inclined with respect to a thickness direction.
  • FIG. 13 An explanatory cross-section showing a state in which a chain of conductive particles is formed between the upper ferromagnetic layer and the corresponding ferromagnetic layer adjacent to the lower ferromagnetic layer.
  • FIG. 14 is an explanatory cross-sectional view showing a state in which a positional shift has occurred between an upper mold and a lower mold.
  • FIG. 1 is an explanatory cross-sectional view showing a configuration of an example of an anisotropic conductive sheet obtained by a mold for producing an anisotropic conductive sheet of the present invention.
  • the anisotropic conductive sheet 10 includes a plurality of conductive path forming portions 11 extending in the thickness direction, each of which is arranged according to a pattern corresponding to an electrode to be connected, for example, an electrode to be inspected of a circuit device to be inspected. And an insulating portion 12 that insulates the conductive path forming portions 11 from each other.
  • Each of the conductive path forming portions 11 includes conductive particles P in an insulating elastic polymer material E in a state of being aligned in the thickness direction, as shown in an enlarged view in FIG. In addition, by applying pressure in the thickness direction, a conductive path formed by a chain of conductive particles P is formed in the thickness direction.
  • each of the conductive path forming portions 11 is formed with protruding portions 13 and 14 protruding from both sides of the insulating portion 12.
  • the insulating portion 12 is made of an insulating elastic polymer material, contains no or almost no conductive particles P, and has conductivity in the thickness direction and the plane direction. Not shown.
  • a frame-shaped frame plate 15 is provided integrally with a peripheral portion of the insulating portion 12.
  • the content ratio of the conductive particles P in the conductive path forming portion 11 is preferably 10 to 60% by volume, and more preferably 15 to 50%. If this ratio is less than 10%, the conductive path forming portion 11 having a sufficiently low electric resistance may not be obtained. On the other hand, if this ratio exceeds 60%, the resulting conductive path forming portion 11 may be fragile or may not immediately have the required elasticity as the conductive path forming portion 11.
  • the pitch of the conductive path forming portions 11 is, for example, a force of 60 to 500 m.
  • the manufacturing method of the present invention is extremely effective. It is.
  • FIG. 3 is an explanatory cross-sectional view showing a configuration of an example of the mold for producing an anisotropic conductive sheet of the present invention.
  • This mold for producing an anisotropic conductive sheet is composed of an upper mold 50 and a lower mold 55 that is paired with the upper mold 50 such that their molding surfaces face each other.
  • the cavity is formed between the lower surface of the lower mold 55 and the molding surface of the lower mold 55 (the upper surface in FIG. 3).
  • a ferromagnetic layer 52 is formed on the lower surface of the substrate 51 according to a pattern opposite to the arrangement pattern of the conductive path forming portions 11 of the anisotropic conductive sheet 10 to be manufactured.
  • a weak magnetic layer 53 having a thickness larger than the thickness of the ferromagnetic layer 52 is formed in a portion other than the layer 52, and thereby, the ferromagnetic layer 52 on the molding surface of the upper mold 50 is formed.
  • a protruding portion concave portion 52a for forming the protruding portion 13 in the anisotropic conductive sheet 10 is formed at the position where it is located.
  • a cavity recess 53a for forming a cavity is formed on the surface of the weak magnetic layer 53.
  • a ferromagnetic layer 57 is formed on the upper surface of the substrate 56 according to the same pattern as the arrangement pattern of the conductive path forming portions 11 of the anisotropic conductive sheet 10 to be manufactured.
  • a weak magnetic layer 58 having a thickness larger than the thickness of the ferromagnetic layer 57 is formed in a portion other than the body layer 57, and thereby the ferromagnetic layer 57 on the molding surface of the lower mold 55 is positioned.
  • a protruding portion concave portion 57a for forming the protruding portion 14 in the anisotropic conductive sheet 10 is formed at the corresponding position.
  • a cavity recess 58a for forming a cavity is formed on the surface of the weak magnetic layer 58.
  • the weak magnetic material may be any of a paramagnetic material and a diamagnetic material.
  • Specific examples of the weak magnetic material include ceramics such as alumina, beryllia, silicon carbide, aluminum nitride, and fluorophlogopite, glass materials such as blue plate glass, flint glass, and Pyrex (registered trademark) glass, copper, aluminum, and tungsten. And a weak magnetic material such as molybdenum.
  • the anisotropic conductive sheet has high dimensional accuracy and a high position of the conductive path forming portion.
  • the weak magnetic material constituting the substrate 51, 56 it is preferable that a coefficient of linear thermal expansion used as the 1 X 10- 7 ⁇ 1 X 10- 5 ⁇ - 1.
  • the substrates 51 and 56 preferably have a thickness of 0.1 to 50 mm, have a smooth surface, are chemically degreased, and are mechanically polished. Better.
  • a single metal film or a plurality of different types of metal films can easily form the ferromagnetic layers 52 and 57 by electrolytic plating. (Omitted) is preferably formed.
  • the material for forming the metal film may be a weak magnetic material or a ferromagnetic material. Specific examples thereof include copper, nickel, cobalt, gold, silver, palladium, rhodium, and platinum. .
  • the thickness of the metal film is preferably 30 m or less, more preferably 20 m or less.
  • the thickness is excessively large, when a magnetic field having a direction of a magnetic flux line opposite to the conductive material layer is applied to the conductive material layer in a method for manufacturing an anisotropic conductive sheet described below, It is not preferable because the 51 and 56 move, which may cause a displacement between the upper mold 50 and the lower mold 55.
  • the material forming the ferromagnetic layers 52 and 57 in each of the upper mold 50 and the lower mold 55 includes a strong material such as iron, iron-nickel alloy, iron-cobalt alloy, nickel, cono- tant, and nickel-cobalt alloy. Magnetic metals can be used.
  • the ferromagnetic layers 52 and 57 preferably have a thickness force S of 10 ⁇ m or more. If the thickness is less than 10 ⁇ m, it becomes difficult to apply a magnetic field having a sufficient intensity distribution to the conductive material layer formed in the anisotropic conductive sheet manufacturing mold. As a result, it becomes difficult to aggregate the conductive particles at a high density in a portion of the conductive material layer where the conductive path forming portion is to be formed, so that a sheet having good anisotropic conductivity may not be obtained. .
  • an electrolytic plating method can be used as a method for forming the ferromagnetic layers 52, 57 on the surfaces of the substrates 51, 56.
  • a weak magnetic metal such as copper, a heat-resistant polymer substance, or the like may be used.
  • Able to use a polymer material that is hardened by electromagnetic waves because it is possible to easily form the weak magnetic layers 53 and 58 by a photolithographic method for example, acrylic Photoresists such as a system dry film resist, an epoxy system liquid resist, and a polyimide system liquid resist can be used.
  • a conductive material layer in a mold for producing an anisotropic conductive sheet which contains conductive particles in a liquid polymer forming material which is cured to become an insulating elastic polymer material (a- 1) and by acting on the conductive material layer in the thickness direction of the conductive material layer via the ferromagnetic material layer in the anisotropic conductive sheet production mold, (B-1) a step of assembling conductive particles in a portion to be oriented in the thickness direction of the conductive material layer; Curing the conductive material layer after stopping the action of the magnetic field on the conductive material layer or while continuing the action of the magnetic field (c 1);
  • the anisotropic conductive sheet 10 is manufactured.
  • a conductive material is prepared by dispersing conductive particles in a liquid polymer-forming material which is cured to become an insulating elastic polymer material.
  • Various materials can be used as the polymer substance forming material for preparing the conductive material, and specific examples thereof include silicone rubber, polybutadiene rubber, natural rubber, polyisoprene rubber, and styrene-butadiene copolymer.
  • Rubber conjugated rubbers such as acrylonitrile-butadiene copolymer rubber and hydrogenated products thereof, and block copolymer rubbers such as styrene butagen-gen block copolymer rubber and styrene isoprene block copolymer;
  • hydrogenated products include chloroprene rubber, urethane rubber, polyester rubber, epichlorohydrin rubber, ethylene-propylene copolymer rubber, ethylene-propylene copolymer rubber, and soft liquid epoxy rubber.
  • silicone rubber is preferred from the viewpoints of durability, moldability and electrical properties.
  • the silicone rubber is preferably one obtained by crosslinking or condensing a liquid silicone rubber.
  • the liquid silicone rubber may be any of a condensation type, an addition type, and a compound having a bull group-hydroxyl group. Specific examples include raw dimethyl silicone rubber, raw methyl silicone rubber, raw methyl methyl silicone rubber and the like.
  • the addition-type liquid silicone rubber is a one-pack type liquid silicone rubber which is cured by a reaction between a bullet group and a Si—H bond, and is a polysiloxanka containing both a bullet group and a Si—H bond.
  • Both (one-component type) and two-component type (two-component type) having a vinyl group-containing polysiloxane and a Si-H bond-containing polysiloxane can be used.
  • liquid silicone rubber containing a bullet group (polydimethylsiloxane containing a bullet group) is usually prepared by using dimethyldichlorosilane or dimethyldialkoxysilane in the presence of dimethylvinylchlorosilane or dimethylvinylalkoxysilane.
  • hydrolysis and condensation reactions are performed, for example, followed by fractionation by repeated dissolution and precipitation.
  • Liquid silicone rubbers containing vinyl groups at both ends are polymerized with a cyclic siloxane such as otatamethylcyclotetrasiloxane in the presence of a catalyst to form a polymerization terminator such as dimethyldibutyl. It can be obtained by using siloxane and appropriately selecting other reaction conditions (for example, the amount of the cyclic siloxane and the amount of the polymerization terminator).
  • a catalyst for the aone polymerization alkalis such as tetramethylammonium hydroxide and n-butylphospho-hydroxymide or a silanolate solution thereof can be used. For example, 80 to 130 ° C.
  • Such a vinyl group-containing polydimethylsiloxane preferably has a molecular weight Mw (referred to as a standard polystyrene-converted weight average molecular weight; the same applies hereinafter) of 10,000 to 40,000.
  • Mw molecular weight
  • the molecular weight distribution index refers to the value of the ratio MwZMn between the weight average molecular weight Mw in terms of standard polystyrene and the number average molecular weight Mn in terms of standard polystyrene; the same applies hereinafter). Is preferably 2 or less.
  • liquid silicone rubber containing hydroxyl groups (hydroxyl-containing polydimethylsiloxane) is usually prepared by adding dimethyldichlorosilane or dimethyldialkoxysilane to dimethylhydrochlorosilane or dimethylhydroalkoxysilane in the presence of! / It can be obtained by carrying out hydrolysis and condensation reactions, for example, followed by fractionation by repeated dissolution and precipitation.
  • cyclic siloxane is polymerized in the presence of a catalyst in the presence of a catalyst, and as a polymerization terminator, dimethinolehydrochlorosilane, methinoreshydrochlorosilane or dimethinolehydroalkoxysilane is used as a polymerization terminator, and other reaction conditions (for example, , The amount of the cyclic siloxane and the amount of the polymerization terminator).
  • alkali such as tetramethylammonium hydroxide and ⁇ -butylphosphodium hydroxide or a silanolate solution thereof can be used.
  • alkali such as tetramethylammonium hydroxide and ⁇ -butylphosphodium hydroxide or a silanolate solution thereof can be used.
  • alkali such as tetramethylammonium hydroxide and ⁇ -butylphosphodium hydroxide or a silanolate solution thereof can be used.
  • Example it is 80 to 130
  • Such a hydroxyl group-containing polydimethylsiloxane preferably has a molecular weight Mw of 10,000 to 40,000. From the viewpoint of the heat resistance of the obtained anisotropic conductive sheet 10, those having a molecular weight distribution index of 2 or less are preferable.
  • either one of the above-mentioned polydimethylsiloxane containing a butyl group and polydimethylsiloxane containing a hydroxyl group can be used, or both are used in combination.
  • the cured product thereof has a compression set of 10% at 150 ° C. It is more preferable to use the following, more preferably 8% or less, and further preferably 6% or less. If the compression set exceeds 10%, the conductive path forming portion 11 is permanently set when the obtained anisotropic conductive sheet 10 is used repeatedly many times or repeatedly in a high temperature environment. Immediately after the distortion occurs, the chain of the conductive particles in the conductive path forming portion 11 is disturbed, so that it may be difficult to maintain the required conductivity.
  • the compression set of the cured product of the liquid silicone rubber can be measured by a method based on JIS K 6249.
  • the liquid silicone rubber preferably has a durometer A hardness of 10 to 60 at 23 ° C, more preferably 15 to 60, particularly preferably 20 to 60. Things. If the durometer A hardness is less than 10, the insulating part 12 that insulates the conductive path forming parts 11 from each other when pressurized may be excessively deformed or may have a required insulation property between the conductive path forming parts 11. May be difficult to maintain. On the other hand, if the durometer A hardness exceeds 60, a considerably large load is required to apply an appropriate strain to the conductive path forming portion 11, so that, for example, deformation or breakage of the inspection object may occur. It is easy to occur.
  • the durometer A hardness of the cured liquid silicone rubber can be measured by a method based on JIS K 6249.
  • the liquid silicone rubber has a cured product having a tear strength at 23 ° C. of 8 k. It is preferable to use one having NZm or more, more preferably at least 10 kN / m, more preferably at least 15 kN / m, particularly preferably at least 20 kN / m.
  • the tear strength is less than 8 kNZm, the durability is likely to decrease when the anisotropic conductive sheet 10 is subjected to excessive strain.
  • the tear strength of the cured product of the liquid silicone rubber can be measured by a method based on JIS K 6249.
  • liquid silicone rubber it is preferable to use a liquid silicone rubber having a viscosity at 23 ° C. of 100 to 1,250 Pa ′s, more preferably 150 to 800 Pa ′s, and particularly preferably 250 to 500 Pa ′s. s.
  • the viscosity is less than 100 Pa's, the resulting conductive material is liable to cause sedimentation of the conductive particles in the liquid silicone rubber, failing to obtain good storage stability, and a process described below.
  • (b-1) when a magnetic field is applied to the conductive material layer in the thickness direction, the conductive particles are not aligned so as to be aligned in the thickness direction, and form a chain of conductive particles in a uniform state. It can be difficult.
  • the resulting conductive material has a high viscosity, so that it is difficult to form a conductive material layer in the anisotropic conductive sheet manufacturing mold.
  • the conductive particles do not move sufficiently, and therefore, the conductive particles may be oriented to be aligned in the thickness direction. It can be difficult.
  • the viscosity of the liquid silicone rubber can be measured by a B-type viscometer.
  • the polymer substance-forming material may contain a curing catalyst for curing the polymer substance-forming material.
  • a curing catalyst an organic peroxide, a fatty acid azoide compound, a hydrosilylide catalyst, or the like can be used.
  • organic peroxide used as the curing catalyst examples include benzoyl peroxide, bisdicyclobenzoyl peroxide, dicumyl peroxide, and ditertiary butyl peroxide.
  • fatty acid azo compound used as a curing catalyst examples include azobisisobutyl nitrile.
  • Specific examples of those which can be used as a catalyst for the hydrosilylation reaction include chloroplatinic acid and And its salts, siloxane complex containing platinum unsaturated group, complex of butylsiloxane and platinum, complex of platinum and 1,3 dibutyltetramethyldisiloxane, complex of triorganophosphine or phosphite and platinum, acetylacetate platinum
  • siloxane complex containing platinum unsaturated group complex of butylsiloxane and platinum
  • platinum and 1,3 dibutyltetramethyldisiloxane complex of triorganophosphine or phosphite and platinum
  • acetylacetate platinum Known ones such as a chelate and a complex of a cyclic gen and platinum are exemplified.
  • the amount of the curing catalyst used is appropriately selected in consideration of the type of the polymer-forming material, the type of the curing catalyst, and other curing conditions. 15 parts by weight.
  • the polymer substance forming material may be a material containing an inorganic filler such as ordinary silica powder, colloidal silica, air-port gel silica, and alumina.
  • an inorganic filler such as ordinary silica powder, colloidal silica, air-port gel silica, and alumina.
  • the use amount of such an inorganic filler is not particularly limited. However, when used in a large amount, the movement of the conductive particles P due to the magnetic field in the step (b-1) described later is greatly inhibited. Therefore, it is not preferable.
  • the conductive particles for preparing the conductive material those exhibiting magnetism are used, and specific examples thereof include particles of a metal exhibiting magnetism such as iron, nickel, and cobalt or alloys thereof. Particles or particles containing these metals, or those particles as core particles, and the surface of the core particles is subjected to plating of a metal having good conductivity such as gold, silver, nordium, rhodium, In some cases, inorganic particles or polymer particles such as weak magnetic metal particles or glass beads are used as core particles, and the surface of the core particles is coated with a conductive magnetic material such as nickel or cobalt. And those coated with both a conductive magnetic material and a metal having good conductivity.
  • nickel particles as core particles, the surfaces of which are plated with a metal having good conductivity such as gold or silver.
  • Means for coating the surface of the core particles with a conductive metal is not particularly limited, but may be, for example, an electroless plating.
  • the coverage of the conductive metal on the particle surface is preferably 40% or more, more preferably 45% or more, and particularly preferably 47 to 95%.
  • the coating amount of the conductive metal is preferably 2.5 to 50% by weight of the core particles, more preferably 3 to 30% by weight, still more preferably 3.5 to 25% by weight, and particularly preferably. Is from 4 to 20% by weight.
  • the coating amount is preferably 3 to 30% by weight of the core particles, more preferably 3.5 to 25% by weight, still more preferably 4 to 25% by weight. 20% by weight.
  • the coating amount is preferably 3 to 30% by weight of the core particles, more preferably 4 to 25% by weight, and even more preferably 5 to 25% by weight. -23% by weight, particularly preferably 6-20% by weight.
  • the particle diameter of the conductive particles is preferably 1 to 500 ⁇ m, more preferably 2 to 300 m, further preferably 3 to 200 m, particularly preferably 5 to 500 ⁇ m. 150 m.
  • the particle size distribution (DwZDn) of the conductive particles is preferably from 1 to LO, more preferably from 1 to 7, further preferably from 1 to 5, and particularly preferably from 1 to 4.
  • the obtained anisotropic conductive sheet 10 can be easily deformed under pressure, and the conductive path forming portion 11 in the anisotropic conductive sheet 10 can be obtained. In addition, sufficient electrical contact between the conductive particles P can be obtained.
  • the shape of the conductive particles is not particularly limited, but is spherical, star-shaped, or agglomerated because they can be easily dispersed in the polymer-forming material. It is preferably a lump formed by secondary particles.
  • the water content of the conductive particles is preferably 5% or less, more preferably 3% or less, further preferably 2% or less, and particularly preferably 1% or less.
  • FIG. 4 One of the molding surface of the upper mold 50 and the molding surface of the lower mold 55 in the mold for producing an anisotropic conductive sheet shown in FIG.
  • the upper mold 50 coated with the conductive material is superimposed on the lower mold 55 coated with the conductive material via the frame plate 15 as shown in FIG.
  • a conductive material layer 10A containing the conductive particles P in the polymer-forming material is formed in the cavity between the upper mold 50 and the lower mold 55 in the mold for producing an anisotropic conductive sheet.
  • the conductive particles P are in a state of being dispersed in the conductive material layer 10A.
  • various materials such as a metal material, a ceramic material, and a resin material can be used as a material of the frame plate 15, and specific examples thereof include iron, copper, and ⁇ .
  • Metal materials such as nickel, chromium, conoort, magnesium, manganese, molybdenum, indium, lead, palladium, titanium, tungsten, aluminum, gold, platinum, silver, and alloys or alloy steels combining two or more of these.
  • Ceramic materials such as silicon nitride, silicon carbide, and alumina, aramide resin, aramide nonwoven reinforced epoxy resin, aramide nonwoven reinforced polyimide resin, aramide nonwoven reinforced bismaleimide triazine resin, etc. Fatty materials.
  • the material constituting the frame plate 15 has a linear thermal expansion coefficient of the linear thermal expansion coefficient of the material constituting the wafer to be inspected. It is preferable to use one that is equivalent or approximate to the expansion coefficient.
  • the material constituting the wafer is silicon, a coefficient of linear thermal expansion 1. 5 X 10 ZK less, in particular, be used as a 3 X 10- 6 ⁇ 8 X 10- 6 ⁇
  • Specific examples that are preferred are Invar-type alloys such as Invar, Elinvar-type alloys such as Elinvar, metal materials such as Super Invar, Kovar, 42 alloy, and non-woven fabric-reinforced organic resin materials such as Aramide. No.
  • the thickness of the frame plate 15 is, for example, 0.02 to Lmm, and preferably 0.05 to 0.25 mm.
  • the conductive material layer 10A formed in the step (a-l) is connected to the conductive material layer 10A via the ferromagnetic layers 52 and 57 in the anisotropic conductive sheet manufacturing mold.
  • the conductive material layer 10A is guided to the conductive path forming portion.
  • the conductive particles are aggregated and oriented so as to be arranged in the thickness direction of the conductive material layer 10A. More specifically, as shown in FIG. 6, an electromagnet device 60 having an upper electromagnet 61 and a lower electromagnet 65 and having the magnetic poles 62 and 66 opposed to each other is prepared.
  • a mold for producing an anisotropic conductive sheet having a conductive material layer 10A formed in a cavity is arranged.
  • the weak magnetic layer 53 of the upper die 50 is placed between the ferromagnetic layer 52 of the upper die 50 and the corresponding ferromagnetic layer 57 of the lower die 55.
  • a stronger magnetic field is formed between the lower mold 55 and the weak magnetic layer 58 of the lower mold 55.
  • a magnetic field having a greater intensity is applied to the conductive material layer 10A on the portion to be the conductive path forming portion, and thereby the conductive particles dispersed in the conductive material layer 10A are formed.
  • P is collected in a portion to be a conductive path forming portion and is oriented so as to be arranged in the thickness direction of the conductive material layer 10A.
  • the intensity of the magnetic field applied to the conductive material layer 10A has a magnitude of 0.02 to 2.5 Tesla on average.
  • This step (b-1) is preferably performed under conditions that do not promote the curing of the conductive material layer 10A, for example, at room temperature.
  • this step (b-1) the operation of the magnetic field on the conductive material layer 10A is temporarily stopped, and thereafter, the operation of applying the magnetic field on the conductive material layer 10A again (hereinafter, this operation is referred to as the operation).
  • "Re-operating operation" is performed at least once. Specifically, this restarting operation is performed by stopping the operation of the electromagnet device 60 and then activating the electromagnet device 60 again.
  • operation stop time the time from when the magnetic field is stopped applied to the conductive material layer 10A until when the magnetic field is applied again to the conductive material layer 10A (hereinafter referred to as “operation stop time”) ) Is appropriately set in consideration of the viscosity of the conductive material layer 10A, the ratio of the conductive particles in the conductive material layer 10A, the average particle size of the conductive particles, and the like, but may be 200 seconds or less. It is more preferably 60 seconds or less.
  • the operation stop time is excessively long, the time required for the process (b-1) becomes too long, so that the production efficiency throughout the entire production process becomes extremely low and the liquid Since the curing of the secondary material forming material starts, the viscosity of the conductive material layer 10A changes, so that a sufficient effect may not be obtained.
  • the magnetic field applied to the conductive material layer 10A again has the same direction as that of the magnetic field before the stop. May be in the direction opposite to the direction of the magnetic flux lines of the magnetic field before the stop, but may be in the direction opposite to the direction of the magnetic flux lines of the magnetic field before the stop in that the effect of the residual magnetic field is small. preferable.
  • the strength of the magnetic field is preferably substantially equal to the strength of the magnetic field before the stop.
  • the polarity of the magnetic poles 62 of the upper electromagnet 61 and the magnetic poles 66 of the lower electromagnet 65 in the electromagnet device 60 must be adjusted. Change the polarity!
  • the electromagnet device 60 when a magnetic field is first applied to the conductive material layer 10A, for example, under the condition that the magnetic pole 62 of the upper electromagnet 61 is the N pole and the magnetic pole 66 of the lower electromagnet 65 is the S pole, Activate the electromagnet device 60.
  • the ferromagnetic layer 52 of the upper mold 50 functions as the N pole and the ferromagnetic layer 57 of the lower mold 55 functions as the S pole, as shown in FIG.
  • the direction of the magnetic flux lines in the acting magnetic field is the direction from the ferromagnetic layer 52 of the upper die 50 to the corresponding ferromagnetic layer 57 of the lower die 55, that is, from the top to the bottom.
  • the operation of the electromagnet device 60 is temporarily stopped after a predetermined time has elapsed while the magnetic field is applied to the conductive material layer 10A. Thereafter, the electromagnet device 60 is operated again under the condition that the magnetic pole 62 of the upper electromagnet 61 becomes the S pole and the magnetic pole 66 of the lower electromagnet 65 becomes the N pole. In this state, the ferromagnetic layer 52 of the upper mold 50 functions as the S pole and the ferromagnetic layer 57 of the lower mold 55 functions as the N pole, so that it acts on the conductive material layer 10A as shown in FIG.
  • the direction of the magnetic flux lines in the applied magnetic field is the direction from the ferromagnetic layer 57 of the lower die 55 to the corresponding ferromagnetic layer 52 of the upper die 50, that is, the direction of the upward force from below. According to such a method, when the operation of the electromagnet device 60 is stopped, even if a residual magnetic field is generated, it is demagnetized by operating the electromagnet device 60 again, so that the influence of the residual magnetic field is reduced.
  • the restarting operation may be performed at least once in step (b-1). Specifically, it is preferable that the operation is performed repeatedly. More preferably, the number of restart operations is 5 or more, more preferably 10 to 500 times.
  • the magnetic field is again applied to the conductive material layer, and then the operation of the magnetic field to the conductive material layer is stopped.
  • reactivation time is appropriately determined in consideration of the viscosity of the conductive material layer 10A, the ratio of the conductive particles in the conductive material layer 10A, the average particle size of the conductive particles, and the like.
  • the set force is preferably from 10 to 300 seconds, more preferably from 10 to 200 seconds.
  • the reactivation time is too short, a high-intensity magnetic field is not formed, so that the conductive particles P in the conductive material layer 10A do not move sufficiently, and as a result, the conductive material layer 10A In some cases, it is difficult to form a chain of the conductive particles P in a direction more faithful to the thickness direction.
  • the reactivation time is too long, the time required for the step (b-1) becomes too long, and the production efficiency throughout the entire production process becomes extremely low. As the curing of the conductive material starts, the viscosity of the conductive material layer 10A changes, so that a sufficient effect may not be obtained.
  • step (bl) as shown in FIG. 9, the ferromagnetic layer 52 of the upper die 50 and the ferromagnetic layer 57 of the lower die 55 corresponding thereto are formed.
  • a hardening treatment is performed on the conductive material layer 10A in which the conductive particles P are densely contained in a portion to be the conductive path forming portion in a state of being oriented in the thickness direction.
  • the curing treatment of the conductive material layer 10A reduces the action of the magnetic field on the conductive material layer 10A. It may be performed after stopping, or may be performed while applying a magnetic field to the conductive material layer 10A, but is preferably performed while applying a magnetic field.
  • the curing treatment of the conductive material layer 10A is usually performed by a heat treatment which varies depending on the material used.
  • the specific heating temperature and heating time are appropriately set in consideration of the type of the polymer substance forming material constituting the conductive material layer 1OA.
  • the anisotropic conductive sheet 10 shown in FIG. 1 and FIG. can get.
  • the substrate 51 of the upper mold 50 and the substrate 56 of the lower mold 55 are each made of a weak magnetic material, when a magnetic field is applied to the conductive material layer 10A, the conductive material layer Since the strength of the magnetic field acting on the insulating portion at 10A can be sufficiently reduced, the conductive particles P present in the insulating portion surely gather in the conductive path forming portion. As a result, it is possible to form the insulating portion 12 having no or almost no conductive particles P, and to form the conductive path forming portion 11 containing a required amount of the conductive particles P. .
  • the substrate 51 and 56 can be subjected to heat treatment for curing the conductive material layer 1OA. , 56, the anisotropic conductive sheet having high dimensional accuracy of the entire sheet and high positional accuracy of the conductive path forming portion can be manufactured.
  • the formation of chains of conductive particles P in a direction inclined with respect to the thickness direction can be suppressed, so that even when pressed with a small pressing force, the electric resistance value is low and stable. Since the conductive particles P exhibit high conductivity and prevent the formation of a chain of conductive particles P that connects adjacent conductive path forming portions, the pitch of the conductive path forming portions 11 is small. In addition, it is possible to manufacture the anisotropic conductive sheet 10 that ensures the required insulation between the adjacent conductive path forming portions 11.
  • the magnetic force prevents the substrate 51 of the upper die 50 and the substrate 56 of the lower die 55 from moving. Therefore, since there is no displacement between the upper mold 50 and the lower mold 55, the conductive path forming portion 11 extending in the direction faithful to the thickness direction can be formed.
  • the anisotropic conductive sheet 10 having the conductive path forming portion 11 exhibiting the above-mentioned conductivity can be manufactured. Further, since air is prevented from entering the mold for producing an anisotropic conductive sheet, it is possible to suppress the occurrence of defective products due to bubbles.
  • a mold for producing an anisotropic conductive sheet having the following specifications was produced.
  • the upper mold (50) and the lower mold (55) are coated on the surface of a substrate material made of fluorophlogopite with a thickness of 6 mm, and a nickel film with a thickness of 3 ⁇ m and a copper film with a thickness of 5 ⁇ m,
  • Each substrate (51, 56) has 2,000 rectangular ferromagnetic layers (52, 57) made of nickel-cobalt on the surface of each substrate (51, 56). Formed by!
  • each of the ferromagnetic layers (52, 57) are 40 m (length) ⁇ 100 m (width) ⁇ 5 O / zm (thickness), and the arrangement pitch is 80 m.
  • the dry film resist is hardened in areas other than the ferromagnetic layers (52, 57) on the surface of the substrate (51, 56).
  • the processed weak magnetic layer (53, 58) is formed.
  • the thickness of the portion where the cavity recesses (53a, 58a) are formed in the weak magnetic layer (53, 58) is 80 ⁇ m, and the thickness of the other portions is 90 ⁇ m.
  • a frame plate having the following specifications was produced.
  • the frame plate is made of S42 alloy material and has a rectangular shape of S250mm X 250mm X O. 03mm with dimensional force of 100mm. It is formed as follows.
  • a conductive material was prepared by adding and mixing 140 parts by weight of conductive particles having an average particle diameter of 8.7 m to 100 parts by weight of an addition-type liquid silicone rubber, followed by defoaming under reduced pressure. .
  • This conductive material is applied to the upper mold surface and the lower mold surface of the above-described anisotropic conductive sheet manufacturing mold by a screen printing method, and then the lower plate, the frame plate and the upper mold are placed on the lower mold. By overlapping in this order, a conductive material layer was formed in the cavity between the upper mold and the lower mold.
  • nickel particles were used as the core particles, and the core particles were subjected to electroless gold plating (average coating amount: 25% by weight of the core particles).
  • the addition-type liquid silicone rubber is a two-part type having a viscosity of liquid A of 250 Pa's and a viscosity of liquid B of 250 Pa's. 5%, the durometer A hardness of the cured product was 35, and the tear strength of the cured product was 25 kNZm.
  • the viscosity at 23 ⁇ 2 ° C was measured by a B-type viscometer.
  • An electromagnet device having an upper electromagnet and a lower electromagnet, and arranged such that their magnetic poles face each other, is provided between the magnetic pole of the upper electromagnet and the magnetic pole of the lower electromagnet in the electromagnet device.
  • a mold for manufacturing an anisotropic conductive sheet on which a conductive material layer was formed was set.
  • a magnetic field of 1.6 T was applied to the portion of the conductive material layer to be the conductive path forming portion, and a re-operation was performed for a total of 200 times.
  • a magnetic field was applied to the portion to be the conductive path forming portion while performing the process.
  • the conditions for the restart operation are as follows: the operation stop time is 5 seconds, the restart time is 15 seconds, the direction of the magnetic flux lines of the magnetic field applied again is opposite to the direction of the magnetic flux lines before the stop, Again, when a magnetic field is applied to the portion of the conductive material layer that becomes the conductive path forming portion, the strength of the magnetic field is 1.6 T in each case.
  • Step (c1) By operating the electromagnet device with the anisotropic conductive sheet manufacturing mold set between the magnetic pole of the upper electromagnet and the magnetic pole of the lower electromagnet in the electromagnet device,
  • the conductive material is cured at 100 ° C for 2 hours, and then room temperature is applied. After cooling, the anisotropic conductive sheet manufacturing die was taken out to produce an anisotropic conductive sheet in which a frame plate was integrally provided on the periphery of the insulating part.
  • the conductive path forming part has a vertical and horizontal dimensional force of 0 mx 100 m and a thickness of 100 m.
  • the projecting height from both sides of the insulating portion was 110 / ⁇ , and the thickness of the insulating portion was 50 / zm, respectively.
  • the volume fraction was about 30% in all the conductive path forming portions.
  • the upper mold (50) and the lower mold (55) are each formed of a 0-thick film formed by sputtering on a surface of a substrate material made of Pyrex (registered trademark) glass having a thickness of 6 mm.
  • a substrate (51, 56) in which a 5 m copper film is laminated in this order.
  • the layers (52, 57) are formed by electrolytic plating.
  • each of the ferromagnetic layers (52, 57) are 40 / z m (length) X 100 / z m (width) ⁇ 50 / ⁇ ⁇ (thickness), and the arrangement pitch is 80 m.
  • weak magnetic layers (53, 58) obtained by hardening a dry film resist are provided in regions other than the ferromagnetic layers (52, 57) on the surface of the substrate (51, 56).
  • weak magnetic layers (53, 58) obtained by hardening a dry film resist are provided. Is formed.
  • the thickness of the portion where the cavity recesses (53a, 58a) are formed in the weak magnetic layer (53, 58) is 80 ⁇ m, and the thickness of the other portions is 90 ⁇ m.
  • An anisotropic conductive sheet was produced in the same manner as in Example 1, except that this mold for producing an anisotropic conductive sheet was used.
  • the conductive path forming part has a vertical and horizontal dimensional force of 0 mx 100 m, a thickness of 100 m.
  • the thickness of the insulating part was 30 / zm, the height of the protrusion from both sides of the insulating part was 30 / zm, and the thickness of the insulating part was 50 / zm.
  • the volume fraction was about 30% in all the conductive path forming portions.
  • the upper mold (50) and the lower mold (55) are formed by sputtering a nickel film with a thickness of 0.5 m and a copper film with a thickness of 5 / zm on the surface of a substrate material made of molybdenum with a thickness of 6 mm.
  • 5 7) is formed by electrolytic plating.
  • each of the ferromagnetic layers (52, 57) are 40 m (length) ⁇ 100 m (width) ⁇ 50 m (thickness), and the arrangement pitch is 80 ⁇ m.
  • a weak magnetic layer (53, 58) obtained by hardening a dry film resist is provided on the surface of the substrate (51, 56) other than where the ferromagnetic layer (52, 57) is formed. Is formed.
  • the thickness of the portion where the cavity recesses (53a, 58a) are formed in the weak magnetic layer (53, 58) is 80 ⁇ m, and the thickness of the other portions is 90 ⁇ m.
  • An anisotropic conductive sheet was produced in the same manner as in Example 1 except that this mold for producing an anisotropic conductive sheet was used.
  • the conductive path forming part has a vertical and horizontal dimensional force of 0 mx 100 m and a thickness of 100 m.
  • the projecting height from both sides of the insulating portion was 110 / ⁇ , and the thickness of the insulating portion was 50 / zm, respectively.
  • the volume fraction was about 30% in all the conductive path forming portions.
  • a mold for producing an anisotropic conductive sheet having the same specifications as in Example 1 was prepared except that a substrate made of ferromagnetic material 42 alloy was used, and this mold for producing an anisotropic conductive sheet was used. Except for this, an anisotropic conductive sheet was produced in the same manner as in Example 1.
  • 2000 rectangular conductive path forming portions are 80 m
  • the conductive path forming part has a vertical and horizontal dimensional force of 0 mx 100 m, a thickness of 110 / ⁇ , and a protrusion height from both sides of the insulating part of 30 m each.
  • the volume fraction was about 30% in all the conductive path forming portions.
  • Insulation between conductive path forming parts Insulation between conductive path forming parts:
  • the conductive path forming portion has a low electric resistance value and exhibits stable conductivity. And all that It was confirmed that an anisotropic conductive sheet having a required insulating property with respect to the adjacent conductive path forming portion can be obtained with respect to the conductive path forming portion.
  • the anisotropic conductive sheet obtained in Comparative Example 1 has a small electrical resistance value with respect to a part of the conductive path forming part and an adjacent conductive path forming part. The difference between the anisotropically conductive sheets obtained in Examples 1 to 3 and the anisotropically conductive sheet obtained in Comparative Example 1 is obvious.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electrical Connectors (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

A die for manufacturing an anisotropic conductive sheet and a method for manufacturing the anisotropic conductive sheet are provided for manufacturing the anisotropic conductive sheet, which has conductive path forming parts exhibiting a prescribed conductivity even when the pitch of the conductive path forming parts to be formed is small, and surely provides prescribed insulation between the adjacent conductive path forming parts. The die for manufacturing the anisotropic conductive sheet is provided for manufacturing the anisotropic conductive sheet having a plurality of the conductive path forming parts containing conductive particles in a condition where the conductive particles exhibiting magnetism are oriented in a thickness direction in an insulating elastic polymeric substance, and insulating parts, which are composed of an insulating elastic polymeric substance that insulates the conductive path forming parts from one another. The die is composed of a board, and a ferromagnetic layer, which is arranged on the board in accordance with a pattern that corresponds to a pattern of the conductive path forming parts. The board is made of a feeble magnetic material.

Description

明 細 書  Specification
異方導電性シート製造用型および異方導電性シートの製造方法 技術分野  TECHNICAL FIELD The present invention relates to a mold for producing an anisotropic conductive sheet and a method for producing an anisotropic conductive sheet.
[0001] 本発明は、異方導電性シート製造用型および異方導電性シートの製造方法に関し The present invention relates to a mold for producing an anisotropic conductive sheet and a method for producing an anisotropic conductive sheet.
、更に詳しくはウェハに形成された集積回路、このウェハをダイシングして得られる集 積回路、ノ¾ケージ IC、プリント回路基板などの回路装置の電気的検査に好適に用 いることができる異方導電性シートを製造するための異方導電性シート製造用型およ び異方導電性シートの製造方法に関する。 More specifically, an anisotropic device that can be suitably used for electrical inspection of circuit devices such as integrated circuits formed on a wafer, integrated circuits obtained by dicing the wafer, cage ICs, and printed circuit boards. The present invention relates to a mold for manufacturing an anisotropic conductive sheet for manufacturing a conductive sheet and a method for manufacturing an anisotropic conductive sheet.
背景技術  Background art
[0002] 異方導電性エラストマ一シートは、厚み方向にのみ導電性を示すもの、または厚み 方向に加圧されたときに厚み方向にのみ導電性を示す加圧導電性導電部を有する ものであり、ハンダ付けあるいは機械的嵌合などの手段を用いずにコンパクトな電気 的接続を達成することが可能であること、機械的な衝撃やひずみを吸収してソフトな 接続が可能であることなどの特長を有するため、このような特長を利用して、例えば 電子計算機、電子式デジタル時計、電子カメラ、コンピューターキーボードなどの分 野において、回路装置、例えばプリント回路基板とリードレスチップキャリアー、液晶 パネルなどとの相互間の電気的な接続を達成するためのコネクタ一として広く用いら れている。  [0002] An anisotropic conductive elastomer sheet is a sheet having conductivity only in the thickness direction, or a sheet having a pressurized conductive portion which is conductive only in the thickness direction when pressed in the thickness direction. Yes, compact electrical connection can be achieved without using means such as soldering or mechanical fitting, and soft connection is possible by absorbing mechanical shock and strain. Utilizing such features, circuit devices such as printed circuit boards and leadless chip carriers, and liquid crystal panels can be used in fields such as electronic calculators, electronic digital watches, electronic cameras, and computer keyboards. It is widely used as a connector to achieve an electrical connection between them.
[0003] また、ノ ッケージ IC、 MCM等の半導体集積回路装置、集積回路が形成されたゥ エノ、、プリント回路基板などの回路装置の電気的検査においては、検査対象である 回路装置の一面に形成された被検査電極と、検査用回路基板の表面に形成された 検査用電極との電気的な接続を達成するために、検査対象である回路装置の被検 查電極領域と検査用回路基板の検査用電極領域との間に異方導電性エラストマ一 シートを介在させることが行われて 、る。  [0003] Further, in an electrical inspection of a circuit device such as a semiconductor integrated circuit device such as a knock IC, an MCM, an integrated circuit formed thereon, and a printed circuit board, a circuit device to be inspected has one surface. In order to achieve electrical connection between the formed test electrode and the test electrode formed on the surface of the test circuit board, the test device electrode area of the circuit device to be tested and the test circuit board An anisotropic conductive elastomer sheet is interposed between the test electrode region and the test electrode region.
[0004] 従来、このような異方導電性エラストマ一シートとしては、種々の構造のものが知ら れており、例えば特許文献 1等には、磁性を示す導電性粒子をエラストマ一中に厚 み方向に並ぶよう配向した状態で分散させて得られる異方導電性シート(以下、これ を「分散型異方導電性シート」という。)が開示され、また、特許文献 2等には、磁性を 示す導電性粒子をエラストマ一中に不均一に分布させることにより、厚み方向に伸び る多数の導電路形成部と、これらを相互に絶縁する絶縁部とが形成されてなる異方 導電性シート (以下、これを「偏在型異方導電性シート」という。)が開示され、更に、 特許文献 3等には、導電路形成部の表面と絶縁部との間に段差が形成された偏在 型異方導電性シートが開示されている。 [0004] Conventionally, as such an anisotropic conductive elastomer sheet, those having various structures are known. For example, Patent Document 1 and the like disclose thick conductive particles exhibiting magnetism in the elastomer. Anisotropic conductive sheet obtained by dispersing in a state aligned in Is referred to as a “dispersion type anisotropic conductive sheet”. Patent Document 2 and the like disclose a non-uniform distribution of conductive particles exhibiting magnetism in an elastomer, thereby forming a large number of conductive path forming portions extending in the thickness direction and interconnecting these portions. An anisotropic conductive sheet (hereinafter referred to as a “distributed anisotropic conductive sheet”) in which an insulating portion to be insulated is formed is disclosed. Further, Patent Document 3 and the like disclose a conductive path forming portion. An unevenly distributed anisotropic conductive sheet in which a step is formed between a surface and an insulating portion is disclosed.
これらの異方導電性エラストマ一シートのうち、偏在型異方導電性シートは、接続す べき電極のパターンに対応するパターンに従って導電路形成部が形成され、隣接す る導電路形成部間には絶縁部が形成されているため、分散型異方導電性シートに 比較して、接続すべき電極が小さ ヽピッチで配置されて ヽても信頼性の高 、電気的 接続を達成することができる点で、有利である。  Among these anisotropic conductive elastomer sheets, the unevenly distributed anisotropic conductive sheet has a conductive path forming portion formed in accordance with a pattern corresponding to a pattern of an electrode to be connected, and a conductive path forming portion is formed between adjacent conductive path forming portions. Since the insulating portion is formed, high reliability and electrical connection can be achieved even when the electrodes to be connected are arranged at a small pitch as compared with the dispersion type anisotropic conductive sheet. In that respect, it is advantageous.
このような偏在型異方導電性シートを製造するためには、従来、例えば図 10に示 す構成の特殊な異方導電性シート製造用型が使用されている。この異方導電性シー ト製造用型は、上型 90およびこれと対となる下型 95が、それぞれの成形面が互いに 対向するよう配置されて構成され、上型 90の成形面(図 10において下面)と下型 95 の成形面(図 10において上面)との間にキヤビティが形成されている。上型 90におい ては、強磁性体基板 91の下面に、製造すべき異方導電性シートの導電路形成部の 配置パターンに対掌なパターンに従って強磁性体層 92が形成され、この強磁性体 層 92以外の個所には、弱磁性体層 93が形成されている。一方、下型 95においては 、強磁性体基板 96の上面に、製造すべき異方導電性シートの導電路形成部の配置 パターンと同一のパターンに従って強磁性体層 97が形成され、この強磁性体層 97 以外の個所には、弱磁性体層 98が形成されている。  In order to manufacture such an unevenly distributed anisotropically conductive sheet, a special anisotropically conductive sheet manufacturing die having a configuration shown in FIG. 10, for example, has been conventionally used. This mold for producing an anisotropic conductive sheet is composed of an upper mold 90 and a lower mold 95, which is a pair of the upper mold 90, arranged so that their molding surfaces face each other. The cavity is formed between the lower surface of the lower mold 95 and the molding surface of the lower mold 95 (the upper surface in FIG. 10). In the upper die 90, a ferromagnetic layer 92 is formed on the lower surface of the ferromagnetic substrate 91 according to a pattern opposite to the arrangement pattern of the conductive path forming portions of the anisotropic conductive sheet to be manufactured. A weak magnetic layer 93 is formed in a portion other than the body layer 92. On the other hand, in the lower mold 95, a ferromagnetic layer 97 is formed on the upper surface of the ferromagnetic substrate 96 according to the same pattern as the arrangement pattern of the conductive path forming portions of the anisotropic conductive sheet to be manufactured. A weak magnetic layer 98 is formed in a portion other than the body layer 97.
そして、この異方導電性シート製造用型を用い、以下のようにして偏在型異方導電 性シートが得られる。  Then, using this mold for producing an anisotropic conductive sheet, an unevenly distributed anisotropic conductive sheet is obtained as follows.
先ず、図 11に示すように、異方導電性シート製造用型内に、硬化されて弾性高分 子物質となる高分子形成材料中に磁性を示す導電性粒子 Pが分散されてなる導電 性材料層 80を形成する。次いで、上型 90の上面および下型 95の下面に一対の電 磁石(図示せず)を配置してこれを作動させることにより、導電性材料層 80における 上型 90の強磁性体層 92と下型 95の強磁性体層 97との間に位置する部分に、それ 以外の部分より大きい強度の磁場を作用させる。その結果、導電性材料層 80中に分 散されていた導電性粒子 P力 上型 90の強磁性体層 92と下型 95の強磁性体層 97 との間に位置する部分すなわち導電路形成部となる部分に集合すると共に、厚み方 向に並ぶよう配向する。そして、この状態で、導電性材料層 80の硬化処理を行うこと により、偏在型異方導電性シートが得られる。 First, as shown in FIG. 11, in a mold for producing an anisotropic conductive sheet, a conductive material obtained by dispersing conductive particles P exhibiting magnetism in a polymer forming material which is cured to become an elastic polymer material. A material layer 80 is formed. Next, a pair of electromagnets (not shown) are arranged on the upper surface of the upper die 90 and the lower surface of the lower die 95 and actuated. A magnetic field having a larger intensity is applied to a portion located between the ferromagnetic layer 92 of the upper die 90 and the ferromagnetic layer 97 of the lower die 95. As a result, the conductive particles P dispersed in the conductive material layer 80 are located between the ferromagnetic layer 92 of the upper die 90 and the ferromagnetic layer 97 of the lower die 95, that is, a conductive path is formed. Assemble into the part that will be the part, and be aligned in the thickness direction. Then, by conducting a curing treatment of the conductive material layer 80 in this state, an unevenly distributed anisotropic conductive sheet is obtained.
[0006] し力しながら、従来の異方導電性シート製造用型においては、以下のような問題が あることが判明した。 [0006] However, it has been found that the conventional mold for producing an anisotropic conductive sheet has the following problems.
(1)導電性材料層 80に磁場を作用させる工程においては、強磁性体基板 91, 96自 体が磁極として機能することによって、導電性材料層 80における絶縁部となる部分 にも、弱磁性体層 93、 98を介して磁場が作用するため、導電性材料層 80における 絶縁部となる部分に存在する導電性粒子 Pが、導電路形成部となる部分に向力つて 移動せずに残留しやすい。その結果、所要の絶縁性を有する絶縁部が形成されず、 そればかりか、所要の量の導電性粒子 Pが含有された導電路形成部が確実に形成さ れず、従って、所期の導電性を示す異方導電性シートを得ることが困難となる。この ような現象は、導電路形成部のピッチが小さければ小さい程、顕著である。  (1) In the step of applying a magnetic field to the conductive material layer 80, the ferromagnetic substrates 91 and 96 themselves function as magnetic poles, so that the portions of the conductive material layer 80 that become insulating portions also have weak magnetic properties. Since a magnetic field acts through the body layers 93 and 98, the conductive particles P present in the portion of the conductive material layer 80 that will become the insulating portion remain without moving toward the portion that becomes the conductive path forming portion. It's easy to do. As a result, an insulating portion having a required insulating property is not formed, and furthermore, a conductive path forming portion containing a required amount of the conductive particles P is not reliably formed. Is difficult to obtain. Such a phenomenon is more remarkable as the pitch of the conductive path forming portion is smaller.
[0007] (2)小さい加圧力で高い導電性を示す異方導電性シートを製造するためには、導電 性材料層に対して磁場を作用させる工程において、厚み方向すなわち導電性材料 層の表面に対して垂直な方向に導電性粒子の連鎖を形成することが肝要である。 然るに、磁場を作用させる前の導電性材料層においては、導電性粒子が当該導電 性材料層中に均一に分散した状態で存在するため、導電性材料層の厚み方向に磁 場を作用させても、図 12に示すように、導電性粒子 Pの連鎖は、導電性材料層 80の 厚み方向のみならず、厚み方向に対して傾斜した方向にも形成されてしまう。し力も 、この状態においては、磁気力学的に安定で、個々の導電性粒子が磁気力によって 拘束されているため、磁場の作用を継続しても、導電性粒子が厚み方向に連鎖を形 成するよう移動することがない。そして、この状態で、導電性材料層 80が硬化処理さ れることにより、得られる異方導電性シートは、導電性粒子の連鎖が厚み方向に対し て傾斜した方向にも形成されたものとなり、そのため、小さい加圧力で高い導電性を 得ることが困難となる。 [0007] (2) In order to produce an anisotropic conductive sheet exhibiting high conductivity with a small pressing force, in the step of applying a magnetic field to the conductive material layer, the thickness direction, that is, the surface of the conductive material layer, is required. It is important to form a chain of conductive particles in a direction perpendicular to. However, in the conductive material layer before applying a magnetic field, since the conductive particles are present in a state of being uniformly dispersed in the conductive material layer, the magnetic field is applied in the thickness direction of the conductive material layer. However, as shown in FIG. 12, the chain of the conductive particles P is formed not only in the thickness direction of the conductive material layer 80 but also in a direction inclined with respect to the thickness direction. In this state, the conductive force is also magnetodynamically stable, and the individual conductive particles are constrained by the magnetic force, so that the conductive particles form a chain in the thickness direction even when the action of the magnetic field is continued. Never move as you do. Then, in this state, the conductive material layer 80 is cured, whereby the obtained anisotropic conductive sheet is also formed in a direction in which the chain of the conductive particles is inclined with respect to the thickness direction. Therefore, high conductivity can be obtained with a small pressing force. It is difficult to obtain.
また、導電性材料層 80に磁場を作用させたときに、絶縁部となる部分に滞留した導 電性粒子 Pに他の導電性粒子 Pが連なることにより、図 13に示すように、上型 90の強 磁性体層 92とこれに対応する下型 95の強磁性体層 97に隣接する強磁性体層 97と の間に、導電性粒子 Pの連鎖が形成され、その結果、隣接する導電路形成部間に所 要の絶縁性が確保された異方導電性シートを得ることが困難となる。このような現象 は、導電路形成部のピッチが小さければ小さい程、顕著である。  Further, when a magnetic field is applied to the conductive material layer 80, the conductive particles P remaining in the portion to be the insulating portion are connected to the other conductive particles P, so that the upper die as shown in FIG. A chain of conductive particles P is formed between the ferromagnetic layer 92 of 90 and the ferromagnetic layer 97 adjacent to the ferromagnetic layer 97 of the lower mold 95 corresponding thereto, and as a result, the adjacent conductive layer P It is difficult to obtain an anisotropic conductive sheet having the required insulation between the path forming portions. Such a phenomenon is more remarkable as the pitch of the conductive path forming portion is smaller.
[0008] このような問題を解決するため、本出願人は、導電性材料層に磁場を作用させるェ 程において、導電性材料層に対する磁場の作用を停止した後、再度、当該導電性 材料層に対して、例えば磁束線の方向が逆方向の磁場を作用させる異方導電性シ ートの製造方法を提案した (特願 2004— 30180号明細書参照)。 [0008] In order to solve such a problem, the present applicant stops the action of the magnetic field on the conductive material layer in the step of applying the magnetic field to the conductive material layer, and then again performs the action on the conductive material layer. In response to this, for example, a method for producing an anisotropic conductive sheet in which a magnetic field whose direction of magnetic flux lines is opposite to that of a magnetic field is proposed (see Japanese Patent Application No. 2004-30180).
このような製造方法によれば、導電性材料層に対する磁場の作用を一旦停止する ため、この停止状態においては、導電性材料層中の個々の導電性粒子が磁気力に よる拘束から開放される。そして、再度、導電性材料層に対して厚み方向に磁束線の 方向が逆方向の磁場を作用させることにより、この動作がトリガーとなって、導電性粒 子の移動が再度開始するため、導電性材料層の厚み方向に対してより忠実な方向 に導電性粒子の連鎖が形成される。  According to such a manufacturing method, since the action of the magnetic field on the conductive material layer is temporarily stopped, in this stopped state, the individual conductive particles in the conductive material layer are released from the restraint by the magnetic force. . Then, by applying a magnetic field in which the direction of the magnetic flux lines in the thickness direction is opposite to that of the conductive material layer again, this operation triggers and the movement of the conductive particles starts again. A chain of conductive particles is formed in a direction more faithful to the thickness direction of the conductive material layer.
し力しながら、このような製造方法においては、導電性材料層に対して磁束線の方 向が逆方向の磁場を作用させたときの磁力によって、異方導電性シート製造用型に おける上型および下型の各々の強磁性体基板が運動し、これにより、図 14に示すよ うに、上型および下型の間に位置ずれが生じる。そのため、得られる異方導電性シー トにぉ 、ては、その厚み方向に対して傾斜した方向に伸びる導電路形成部が形成さ れる結果、所期の導電性を得ることが困難となる。また、上型および下型の各々の強 磁性体基板が運動することにより、当該異方導電性シート製造用型内に空気が入る 結果、得られる異方導電性シートに気泡が生じやすくなる、という問題がある。  However, in such a manufacturing method, the magnetic force generated when a magnetic field in which the direction of the magnetic flux lines is applied to the conductive material layer is opposite to that in the anisotropic conductive sheet manufacturing mold. Each of the ferromagnetic substrates of the mold and the lower mold moves, thereby causing a displacement between the upper mold and the lower mold as shown in FIG. For this reason, in the obtained anisotropic conductive sheet, a conductive path forming portion extending in a direction inclined with respect to the thickness direction is formed, so that it is difficult to obtain the desired conductivity. In addition, when the ferromagnetic substrate of each of the upper mold and the lower mold moves, air enters the mold for producing an anisotropic conductive sheet, so that bubbles are easily generated in the obtained anisotropic conductive sheet. There is a problem.
[0009] 特許文献 1 :特開昭 51— 93393号公報 Patent Document 1: JP-A-51-93393
特許文献 2:特開昭 53— 147772号公報  Patent Document 2: JP-A-53-147772
特許文献 3:特開昭 61 - 250906号公報 発明の開示 Patent Document 3: JP-A-61-250906 Disclosure of the invention
[0010] 本発明は、以上のような事情に基づいてなされたものであって、その第 1の目的は、 導電性粒子が含有されてなる複数の導電路形成部と、これらの導電路形成部を相互 に絶縁する絶縁部とを有する異方導電性シートを製造するための異方導電性シート 製造用型において、形成すべき導電路形成部のピッチが小さいものであっても、所 期の導電性を示す導電路形成部を有し、隣接する導電路形成部間に所要の絶縁性 が確実に得られる異方導電性シートを製造することができる異方導電性シート製造 用型を提供することにある。  [0010] The present invention has been made in view of the above circumstances, and a first object of the present invention is to provide a plurality of conductive path forming portions containing conductive particles, and a method for forming these conductive paths. In a mold for manufacturing an anisotropic conductive sheet having an insulating part that insulates parts from each other, even if the pitch of the conductive path forming part to be formed is small, A conductive path forming portion exhibiting the above-mentioned conductivity, and a mold for manufacturing an anisotropic conductive sheet capable of manufacturing an anisotropic conductive sheet that can reliably obtain required insulation between adjacent conductive path forming portions. To provide.
本発明の第 2の目的は、導電性粒子が含有されてなる複数の導電路形成部と、こ れらの導電路形成部を相互に絶縁する絶縁部とを有する異方導電性シートを製造 する方法において、形成すべき導電路形成部のピッチが小さいものであっても、所期 の導電性を示す導電路形成部を有し、隣接する導電路形成部間に所要の絶縁性が 確実に得られる異方導電性シートの製造方法を提供することにある。  A second object of the present invention is to manufacture an anisotropic conductive sheet having a plurality of conductive path forming portions containing conductive particles, and an insulating portion for insulating these conductive path forming portions from each other. In this method, even if the pitch of the conductive path forming portion to be formed is small, the conductive path forming portion having the intended conductivity is provided, and the required insulation between the adjacent conductive path forming portions is ensured. To provide a method for producing an anisotropic conductive sheet obtained by the method described above.
[0011] 本発明の異方導電性シート製造用型は、絶縁性の弾性高分子物質中に磁性を示 す導電性粒子が厚み方向に配向した状態で含有されてなる複数の導電路形成部と 、これらの導電路形成部を相互に絶縁する絶縁性の弾性高分子物質よりなる絶縁部 とを有する異方導電性シートを製造するための異方導電性シート製造用型であって 基板と、この基板上に前記導電路形成部のパターンに対応するパターンに従って 配置された強磁性体層とを有してなり、 [0011] The mold for producing an anisotropic conductive sheet according to the present invention includes a plurality of conductive path forming portions each containing a conductive particle exhibiting magnetism in a state of being oriented in a thickness direction in an insulating elastic polymer material. And an anisotropic conductive sheet manufacturing mold for manufacturing an anisotropic conductive sheet having an insulating portion made of an insulating elastic polymer material that insulates these conductive path forming portions from each other. And a ferromagnetic layer disposed on the substrate according to a pattern corresponding to the pattern of the conductive path forming portion,
前記基板は、弱磁性体材料よりなることを特徴とする。  The substrate is made of a weak magnetic material.
[0012] 本発明の異方導電性シート製造用型は、異方導電性シート製造用型内に、硬化さ れて絶縁性の弾性高分子物質となる液状の高分子形成材料中に導電性粒子が含 有されてなる導電性材料層を形成し、この導電性材料層に対して、当該異方導電性 シート製造用型における強磁性体層を介して当該導電性材料層の厚み方向に磁場 を作用させることにより、当該導電路形成部となる部分に導電性粒子を集合させて当 該導電性材料層の厚み方向に配向させる工程を有し、この工程において、前記導電 性材料層に対する磁場の作用を停止した後、再度、当該導電性材料層に対して磁 場を作用させる操作を少なくとも 1回行う異方導電性シートの製造方法に好適に用い ることがでさる。 [0012] The mold for producing an anisotropic conductive sheet of the present invention has a conductive polymer in a liquid polymer-forming material which is cured to become an insulating elastic polymer substance in a mold for producing an anisotropic conductive sheet. A conductive material layer containing particles is formed, and the conductive material layer is formed on the conductive material layer in the thickness direction of the conductive material layer via the ferromagnetic layer in the anisotropic conductive sheet manufacturing mold. A step of assembling conductive particles in a portion to be the conductive path forming portion by applying a magnetic field and orienting the conductive particles in a thickness direction of the conductive material layer; After stopping the action of the magnetic field, the magnetic material is again applied to the conductive material layer. The method can be suitably used for a method for producing an anisotropic conductive sheet in which an operation for applying a field is performed at least once.
[0013] 本発明の異方導電性シート製造用型においては、基板は、線熱膨張係数が 1 X 1 0一7〜 1 X ιο—5κ— 1の弱磁性体材料よりなることが好ましい。 [0013] In the anisotropic conductive sheet manufacturing mold of the present invention, the substrate is preferably linear thermal expansion coefficient is from 1 X 1 0 one 7 ~ 1 X ιο- 5 κ- 1 of weak magnetic material .
また、基板の表面に金属膜が形成されて 、ることが好ま U、。  Preferably, a metal film is formed on the surface of the substrate.
[0014] 本発明の異方導電性シートの製造方法は、絶縁性の弾性高分子物質中に磁性を 示す導電性粒子が厚み方向に配向した状態で含有されてなる複数の導電路形成部 と、これらの導電路形成部を相互に絶縁する絶縁性の弾性高分子物質よりなる絶縁 部とを有する異方導電性シートを製造する方法であって、 [0014] The method for producing an anisotropic conductive sheet according to the present invention comprises a plurality of conductive path forming portions each comprising a conductive particle exhibiting magnetism in an insulating elastic polymer material oriented in a thickness direction. A method of manufacturing an anisotropic conductive sheet having an insulating portion made of an insulating elastic polymer material that insulates these conductive path forming portions from each other,
上記の異方導電性シート製造用型を用い、  Using the above anisotropic conductive sheet manufacturing mold,
この異方導電性シート製造用型内に、硬化されて絶縁性の弾性高分子物質となる 液状の高分子形成材料中に導電性粒子が含有されてなる導電性材料層を形成し、 この導電性材料層に対して、当該異方導電性シート製造用型における強磁性体層 を介して当該導電性材料層の厚み方向に磁場を作用させることにより、当該導電路 形成部となる部分に導電性粒子を集合させて当該導電性材料層の厚み方向に配向 させる工程を有し、  A conductive material layer containing conductive particles in a liquid polymer-forming material that is cured to become an insulating elastic polymer material is formed in the anisotropic conductive sheet manufacturing mold. By applying a magnetic field to the conductive material layer through the ferromagnetic layer in the anisotropic conductive sheet manufacturing mold in the thickness direction of the conductive material layer, a conductive portion is formed on the conductive path forming portion. Aggregating the conductive particles and orienting them in the thickness direction of the conductive material layer,
この工程において、前記導電性材料層に対する磁場の作用を停止した後、再度、 当該導電性材料層に対して磁場を作用させる操作を少なくとも 1回行うことを特徴と する。  In this step, after stopping the action of the magnetic field on the conductive material layer, the operation of applying the magnetic field to the conductive material layer is performed at least once again.
[0015] 本発明の異方導電性シートの製造方法においては、導電性材料層に対する磁場 の作用を停止した後、再度、当該導電性材料層に対して磁場を作用させる操作にお いて、導電性材料層に再度作用させる磁場の磁束線の方向が、停止前の磁場の磁 束線の方向と逆方向であることが好ましい。  [0015] In the method for producing an anisotropic conductive sheet of the present invention, after stopping the action of the magnetic field on the conductive material layer, the operation of applying the magnetic field to the conductive material layer again causes It is preferable that the direction of the magnetic flux lines of the magnetic field applied again to the conductive material layer is opposite to the direction of the magnetic flux lines of the magnetic field before the stop.
[0016] また、本発明の異方導電性シートの製造方法にぉ 、ては、導電性材料層に対する 磁場の作用を停止した後、再度、当該導電性材料層に対して磁場を作用させる操作 を繰り返して行うことが好ま U、。  Further, in the method for producing an anisotropic conductive sheet of the present invention, after stopping the action of the magnetic field on the conductive material layer, the operation of applying the magnetic field to the conductive material layer again is performed. U, which is preferably done repeatedly.
また、導電性材料層に対する磁場の作用を停止した後、再度、当該導電性材料層 に対して磁場を作用させる操作を 5回以上行うことが好ましい。 [0017] 本発明の異方導電性シート製造用型によれば、基板が弱磁性体材料により構成さ れているため、導電性材料層に対して磁場を作用させたときに、当該導電性材料層 における絶縁部となる部分に作用する磁場の強度を十分に小さくすることができるた め、当該絶縁部となる部分に存在する導電性粒子を、導電路形成部となる部分に確 実に集合し、その結果、導電性粒子が全く或いは殆ど存在しない絶縁部を形成する ことができると共に、所要の量の導電性粒子が含有された導電路形成部を形成する ことができる。従って、形成すべき導電路形成部のピッチが小さいものであっても、所 期の導電性を示す導電路形成部を有し、隣接する導電路形成部間に所要の絶縁性 が確実に得られる異方導電性シートを製造することができる。 In addition, it is preferable that after stopping the action of the magnetic field on the conductive material layer, the operation of applying the magnetic field to the conductive material layer be performed five or more times. According to the mold for producing an anisotropic conductive sheet of the present invention, since the substrate is made of a weak magnetic material, when the magnetic field is applied to the conductive material layer, the conductive Since the strength of the magnetic field acting on the insulating portion in the material layer can be sufficiently reduced, the conductive particles existing in the insulating portion can be surely collected in the conductive path forming portion. As a result, it is possible to form an insulating portion having no or almost no conductive particles, and to form a conductive path forming portion containing a required amount of conductive particles. Therefore, even if the pitch of the conductive path forming portions to be formed is small, the conductive path forming portions exhibiting the desired conductivity are provided, and the required insulation between the adjacent conductive path forming portions can be reliably obtained. Can be manufactured.
また、導電性材料層に磁場を作用させる工程において、導電性材料層に対する磁 場の作用を停止した後、再度、当該導電性材料層に対して磁場を作用させる異方導 電性シートの製造方法に使用した場合には、導電性材料層に対して磁束線の方向 が逆方向の磁場を作用させたときにも、強磁性体基板が運動することがなぐ従って 、位置ずれが生じることがないため、厚み方向に対して忠実な方向に伸びる導電路 形成部を形成することができ、従って、所期の導電性を示す導電路形成部を有する 異方導電性シートを製造することができる。また、異方導電性シート製造用型内に空 気が入ることが回避されるため、気泡による不良品の発生を抑制することができる。  Further, in the step of applying a magnetic field to the conductive material layer, after the action of the magnetic field on the conductive material layer is stopped, the production of the anisotropic conductive sheet in which the magnetic field is applied to the conductive material layer is performed again. When used in the method, the ferromagnetic substrate does not move even when a magnetic field in which the direction of the magnetic flux lines is applied to the conductive material layer is opposite, so that a displacement may occur. Therefore, a conductive path forming portion extending in a direction faithful to the thickness direction can be formed, and therefore, an anisotropic conductive sheet having a conductive path forming portion exhibiting expected conductivity can be manufactured. . Further, since air is prevented from entering the mold for producing an anisotropic conductive sheet, the occurrence of defective products due to bubbles can be suppressed.
[0018] 本発明の異方導電性シートの製造方法によれば、導電性材料層に対する磁場の 作用を一旦停止するため、この停止状態においては、導電性材料層中の個々の導 電性粒子が磁気力による拘束から開放される。そして、再度、導電性材料層に対して 厚み方向に磁場を作用させることにより、この動作がトリガーとなって、導電性粒子の 移動が再度開始するため、導電性材料層の厚み方向に対してより忠実な方向に導 電性粒子の連鎖が形成される。 According to the method for producing an anisotropic conductive sheet of the present invention, since the action of the magnetic field on the conductive material layer is temporarily stopped, the individual conductive particles in the conductive material layer are in this stopped state. Is released from the constraint by the magnetic force. Then, by applying a magnetic field again to the conductive material layer in the thickness direction, this operation is triggered, and the movement of the conductive particles starts again. A chain of conductive particles is formed in a more faithful direction.
このように、厚み方向に対して傾斜した方向に導電性粒子の連鎖が形成されること を抑制することができるので、小さい加圧力で加圧しても、電気抵抗値が低くて安定 な導電性を示す異方導電性シートを製造することができる。  As described above, the formation of chains of conductive particles in a direction inclined with respect to the thickness direction can be suppressed, so that even if the pressure is applied with a small pressing force, the electric resistance value is low and the conductive property is stable. Can be produced.
また、隣接する導電路形成部間を結ぶような導電性粒子の連鎖が形成されることが 防止されるので、導電路形成部のピッチが小さいものであっても、隣接する導電路形 成部間に所要の絶縁性が確実に得られる異方導電性シートを製造することができる 更に、異方導電性シート製造用型の基板が弱磁性体材料により構成されているた め、導電性材料層に対して磁束線の方向が逆方向の磁場を作用させたときにも、強 磁性体基板が運動することがなぐ従って、位置ずれが生じることがないため、厚み 方向に対して忠実な方向に伸びる導電路形成部を形成することができ、従って、所 期の導電性を示す導電路形成部を有する異方導電性シートを製造することができる 。また、異方導電性シート製造用型内に空気が入ることが回避されるため、気泡によ る不良品の発生を抑制することができる。 In addition, since a chain of conductive particles that connects adjacent conductive path forming portions is prevented from being formed, even if the pitch of the conductive path forming portions is small, the shape of the adjacent conductive path forming portion is small. It is possible to manufacture an anisotropic conductive sheet that ensures the required insulation between the components.Furthermore, since the substrate for the anisotropic conductive sheet manufacturing mold is made of a weak magnetic material, the conductive When a magnetic field in which the direction of the magnetic flux lines is opposite to the magnetic material layer acts on the ferromagnetic material layer, the ferromagnetic substrate does not move. The conductive path forming portion extending in any direction can be formed, and therefore, an anisotropic conductive sheet having the conductive path forming portion exhibiting the desired conductivity can be manufactured. Further, since air is prevented from entering the mold for producing an anisotropic conductive sheet, the occurrence of defective products due to bubbles can be suppressed.
図面の簡単な説明 Brief Description of Drawings
[図 1]本発明の異方導電性シート製造用型によって得られる異方導電性シートの一 例における構成を示す説明用断面図である。 FIG. 1 is an explanatory cross-sectional view showing a configuration of an example of an anisotropic conductive sheet obtained by a mold for producing an anisotropic conductive sheet of the present invention.
[図 2]図 1に示す異方導電性シートの要部を拡大して示す説明用断面図である。  FIG. 2 is an enlarged cross-sectional view illustrating a main part of the anisotropic conductive sheet shown in FIG. 1.
[図 3]図 1に示す異方導電性シートを製造するために用いられる異方導電性シート製 造用型の構成を示す説明用断面図である。 FIG. 3 is an explanatory cross-sectional view showing a configuration of a mold for manufacturing an anisotropic conductive sheet used for manufacturing the anisotropic conductive sheet shown in FIG. 1.
[図 4]図 1に示す異方導電性シート製造用型おける上型および下型の成形面に導電 性材料が塗布された状態を示す説明用断面図である。  FIG. 4 is an explanatory cross-sectional view showing a state where a conductive material is applied to molding surfaces of upper and lower dies in the mold for producing an anisotropic conductive sheet shown in FIG. 1.
[図 5]異方導電性シート製造用型のキヤビティ内に導電性材料層が形成された状態 を示す説明用断面図である。  FIG. 5 is an explanatory cross-sectional view showing a state in which a conductive material layer is formed in a cavity of a mold for producing an anisotropic conductive sheet.
[図 6]異方導電性シート製造用型が電磁石装置にセットされた状態を示す説明用断 面図である。  FIG. 6 is an explanatory cross-sectional view showing a state where a mold for producing an anisotropic conductive sheet is set in an electromagnet device.
[図 7]停止前の磁場における磁束線の方向を示す説明用断面図である。  FIG. 7 is an explanatory sectional view showing directions of magnetic flux lines in a magnetic field before stop.
[図 8]再度作用させた磁場における磁束線の方向を示す説明用断面図である。 FIG. 8 is an explanatory cross-sectional view showing directions of magnetic flux lines in a magnetic field applied again.
[図 9]導電性材料層中の導電性粒子が導電路形成部となる部分に集合して厚み方 向に並ぶよう配向した状態を示す説明用断面図である。 FIG. 9 is an explanatory cross-sectional view showing a state where conductive particles in a conductive material layer are gathered at a portion to be a conductive path forming portion and are aligned so as to be arranged in a thickness direction.
[図 10]従来の異方導電性シート製造用型の一例における構成を示す説明用断面図 である。  FIG. 10 is an explanatory cross-sectional view showing a configuration of an example of a conventional anisotropic conductive sheet manufacturing mold.
[図 11]図 10に示す異方導電性シート製造用型における上型と下型との間に導電性 材料層が形成された状態を示す説明用断面図である。 [FIG. 11] The conductivity between the upper mold and the lower mold in the mold for producing an anisotropic conductive sheet shown in FIG. It is explanatory sectional drawing which shows the state in which the material layer was formed.
[図 12]導電性材料層中の導電性粒子の連鎖が厚み方向に対して傾斜した方向に形 成された状態を示す説明用断面図である。  FIG. 12 is an explanatory cross-sectional view showing a state in which a chain of conductive particles in a conductive material layer is formed in a direction inclined with respect to a thickness direction.
[図 13]上型の強磁性体層とこれに対応する下型の強磁性体層に隣接する強磁性体 層との間に、導電性粒子の連鎖が形成された状態を示す説明用断面図である。  [FIG. 13] An explanatory cross-section showing a state in which a chain of conductive particles is formed between the upper ferromagnetic layer and the corresponding ferromagnetic layer adjacent to the lower ferromagnetic layer. FIG.
[図 14]上型および下型の間に位置ずれが生じた状態を示す説明用断面図である。 符号の説明 FIG. 14 is an explanatory cross-sectional view showing a state in which a positional shift has occurred between an upper mold and a lower mold. Explanation of symbols
10 異方導電性シート 10 Anisotropic conductive sheet
10A 導電性材料層 10A conductive material layer
11 導電路形成部 11 Conductive path forming section
12 絶縁部 12 Insulation
13, 14 突出部 13, 14 Projection
15 フレーム板 15 Frame board
50 上型 50 Upper type
51 基板 51 substrate
52 強磁性体層 52 Ferromagnetic layer
52a 突出部用凹所 52a Projection recess
53 弱磁性体層 53 weak magnetic layer
53a キヤビティ用凹所 53a Cavity recess
55 下型 55 lower mold
56 基板 56 substrate
57 強磁性体層 57 Ferromagnetic layer
57a 突出部用凹所 57a Projection recess
58 弱磁性体層 58 weak magnetic layer
58a キヤビティ用凹所 58a Cavity recess
60 電磁石装置 60 Electromagnetic device
61 上側電磁石 61 Upper electromagnet
62 磁極 65 下側電磁石 62 magnetic poles 65 Lower electromagnet
66 磁極  66 magnetic poles
80 導電性材料層  80 Conductive material layer
90 上型  90 Upper type
91 強磁性体基板  91 Ferromagnetic substrate
92 強磁性体層  92 Ferromagnetic layer
93 弱磁性体層  93 weak magnetic layer
95 下型  95 lower mold
96 強磁性体基板  96 Ferromagnetic substrate
97 強磁性体層  97 Ferromagnetic layer
98 弱磁性体層  98 weak magnetic layer
P 導電性粒子  P conductive particles
E 弾性高分子物質  E elastic polymer material
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、本発明の実施の形態について詳細に説明する。  Hereinafter, embodiments of the present invention will be described in detail.
図 1は、本発明の異方導電性シート製造用型によって得られる異方導電性シートの 一例における構成を示す説明用断面図である。  FIG. 1 is an explanatory cross-sectional view showing a configuration of an example of an anisotropic conductive sheet obtained by a mold for producing an anisotropic conductive sheet of the present invention.
この異方導電性シート 10は、接続すべき電極例えば検査対象である回路装置の 被検査電極のパターンに対応するパターンに従って配置された、それぞれ厚み方向 に伸びる複数の導電路形成部 11と、これらの導電路形成部 11を相互に絶縁する絶 縁部 12とにより構成されている。導電路形成部 11の各々は、図 2に拡大して示すよう に、絶縁性の弾性高分子物質 E中に導電性粒子 Pが厚み方向に並ぶよう配向した状 態で含有されてなるものであって、厚み方向に加圧されることにより、厚み方向に導 電性粒子 Pの連鎖による導電路が形成されるものである。図示の例では、導電路形 成部 11の各々には、絶縁部 12の両面の各々から突出する突出部 13, 14が形成さ れている。これに対して、絶縁部 12は、絶縁性の弾性高分子物質よりなり、導電性粒 子 Pが全く或いは殆ど含有されて 、な 、ものであって、厚み方向および面方向に導 電性を示さな 、ものである。 また、この例の異方導電性シートにおいては、枠状のフレーム板 15が絶縁部 12の 周縁部分に一体的に設けられている。 The anisotropic conductive sheet 10 includes a plurality of conductive path forming portions 11 extending in the thickness direction, each of which is arranged according to a pattern corresponding to an electrode to be connected, for example, an electrode to be inspected of a circuit device to be inspected. And an insulating portion 12 that insulates the conductive path forming portions 11 from each other. Each of the conductive path forming portions 11 includes conductive particles P in an insulating elastic polymer material E in a state of being aligned in the thickness direction, as shown in an enlarged view in FIG. In addition, by applying pressure in the thickness direction, a conductive path formed by a chain of conductive particles P is formed in the thickness direction. In the illustrated example, each of the conductive path forming portions 11 is formed with protruding portions 13 and 14 protruding from both sides of the insulating portion 12. On the other hand, the insulating portion 12 is made of an insulating elastic polymer material, contains no or almost no conductive particles P, and has conductivity in the thickness direction and the plane direction. Not shown. Further, in the anisotropic conductive sheet of this example, a frame-shaped frame plate 15 is provided integrally with a peripheral portion of the insulating portion 12.
ここで、導電路形成部 11における導電性粒子 Pの含有割合は、体積分率で 10〜6 0%、好ましくは 15〜50%であることが好ましい。この割合が 10%未満の場合には、 十分に電気抵抗値の小さい導電路形成部 11が得られないことがある。一方、この割 合が 60%を超える場合には、得られる導電路形成部 11は脆弱なものとなりやすぐ 導電路形成部 11として必要な弾性が得られな ヽことがある。  Here, the content ratio of the conductive particles P in the conductive path forming portion 11 is preferably 10 to 60% by volume, and more preferably 15 to 50%. If this ratio is less than 10%, the conductive path forming portion 11 having a sufficiently low electric resistance may not be obtained. On the other hand, if this ratio exceeds 60%, the resulting conductive path forming portion 11 may be fragile or may not immediately have the required elasticity as the conductive path forming portion 11.
また、導電路形成部 11のピッチは、例えば 60〜500 mである力 このピッチが 2 00 μ m以下である異方導電性シート 10を製造する場合には、本発明の製造方法は 極めて有効である。  Further, the pitch of the conductive path forming portions 11 is, for example, a force of 60 to 500 m. When manufacturing the anisotropic conductive sheet 10 in which the pitch is 200 μm or less, the manufacturing method of the present invention is extremely effective. It is.
図 3は、本発明の異方導電性シート製造用型の一例における構成を示す説明用断 面図である。この異方導電性シート製造用型は、上型 50およびこれと対となる下型 5 5が、それぞれの成形面が互いに対向するよう配置されて構成され、上型 50の成形 面(図 3において下面)と下型 55の成形面(図 3において上面)との間にキヤビティが 形成されている。  FIG. 3 is an explanatory cross-sectional view showing a configuration of an example of the mold for producing an anisotropic conductive sheet of the present invention. This mold for producing an anisotropic conductive sheet is composed of an upper mold 50 and a lower mold 55 that is paired with the upper mold 50 such that their molding surfaces face each other. The cavity is formed between the lower surface of the lower mold 55 and the molding surface of the lower mold 55 (the upper surface in FIG. 3).
上型 50においては、基板 51の下面に、製造すべき異方導電性シート 10の導電路 形成部 11の配置パターンに対掌なパターンに従って強磁性体層 52が形成され、こ の強磁性体層 52以外の個所には、当該強磁性体層 52の厚みより大きい厚みを有す る弱磁性体層 53が形成されており、これにより、上型 50の成形面における強磁性体 層 52が位置する個所には、異方導電性シート 10における突出部 13を形成するため の突出部用凹所 52aが形成されている。また、弱磁性体層 53の表面には、キヤビテ ィを形成するためのキヤビティ用凹所 53aが形成されて 、る。  In the upper die 50, a ferromagnetic layer 52 is formed on the lower surface of the substrate 51 according to a pattern opposite to the arrangement pattern of the conductive path forming portions 11 of the anisotropic conductive sheet 10 to be manufactured. A weak magnetic layer 53 having a thickness larger than the thickness of the ferromagnetic layer 52 is formed in a portion other than the layer 52, and thereby, the ferromagnetic layer 52 on the molding surface of the upper mold 50 is formed. A protruding portion concave portion 52a for forming the protruding portion 13 in the anisotropic conductive sheet 10 is formed at the position where it is located. On the surface of the weak magnetic layer 53, a cavity recess 53a for forming a cavity is formed.
一方、下型 55においては、基板 56の上面に、製造すべき異方導電性シート 10の 導電路形成部 11の配置パターンと同一のパターンに従って強磁性体層 57が形成さ れ、この強磁性体層 57以外の個所には、当該強磁性体層 57の厚みより大きい厚み を有する弱磁性体層 58が形成されており、これにより、下型 55の成形面における強 磁性体層 57が位置する個所には、異方導電性シート 10における突出部 14を形成 するための突出部用凹所 57aが形成されている。また、弱磁性体層 58の表面には、 キヤビティを形成するためのキヤビティ用凹所 58aが形成されて ヽる。 On the other hand, in the lower mold 55, a ferromagnetic layer 57 is formed on the upper surface of the substrate 56 according to the same pattern as the arrangement pattern of the conductive path forming portions 11 of the anisotropic conductive sheet 10 to be manufactured. A weak magnetic layer 58 having a thickness larger than the thickness of the ferromagnetic layer 57 is formed in a portion other than the body layer 57, and thereby the ferromagnetic layer 57 on the molding surface of the lower mold 55 is positioned. A protruding portion concave portion 57a for forming the protruding portion 14 in the anisotropic conductive sheet 10 is formed at the corresponding position. Also, on the surface of the weak magnetic layer 58, A cavity recess 58a for forming a cavity is formed.
[0023] 上型 50および下型 55の各々における基板 51, 56を構成する材料としては、弱磁 性体材料が用いられる。弱磁性体材料は、常磁性体材料および反磁性体材料のい ずれであってもよい。弱磁性体材料の具体例としては、アルミナ、ベリリア、炭化ケィ 素、窒化アルミニウム、フッ素金雲母などのセラミックス、青板ガラス、フリントガラス、 パイレックス (登録商標)ガラスなどのガラス材料、銅、アルミニウム、タングステン、モ リブデンなどの弱磁性の金属材料が挙げられる。 As a material forming the substrates 51 and 56 in each of the upper mold 50 and the lower mold 55, a weak magnetic material is used. The weak magnetic material may be any of a paramagnetic material and a diamagnetic material. Specific examples of the weak magnetic material include ceramics such as alumina, beryllia, silicon carbide, aluminum nitride, and fluorophlogopite, glass materials such as blue plate glass, flint glass, and Pyrex (registered trademark) glass, copper, aluminum, and tungsten. And a weak magnetic material such as molybdenum.
また、 目的とする異方導電性シートの接続対象物が、ウェハに形成された集積回路 などである場合には、当該異方導電性シートには、高い寸法精度および導電路形成 部の高い位置精度が要求されるため、基板 51, 56を構成する弱磁性体材料として は、線熱膨張係数が 1 X 10—7〜1 X 10—5Κ— 1のものを用いることが好ましい。このような 弱磁性体材料を例示すると、セラミックスとしては、アルミナ (4. 8 Χ 10— — 、ベリリ ァ(4. 3 X 10— 6Κ— 、炭化ケィ素(3. 7 X 10— 6Κ— 、窒化アルミニウム (4. 5 X 10_6Κ_1 )、フッ素金雲母 (8. 0 X 10"6Κ_1)、ガラス材料としては、青板ガラス(8 X 10— 6〜: LO X 10"6Κ_1)、フリントガラス (8 X 10— 6〜9 X 10"6Κ_1)、パイレックス(登録商標)ガラス (2. 8 X 10— 6Κ— 、金属材料としては、タングステン (4. 8 X 10_6Κ_1)、モリブデン(5. 6 X 10— 6κ— である。 When the target connection object of the anisotropic conductive sheet is an integrated circuit or the like formed on a wafer, the anisotropic conductive sheet has high dimensional accuracy and a high position of the conductive path forming portion. since precision is required, as the weak magnetic material constituting the substrate 51, 56, it is preferable that a coefficient of linear thermal expansion used as the 1 X 10- 7 ~1 X 10- 5 Κ- 1. Examples of such a weak magnetic material, the ceramic, alumina (4. 8 Χ 10- -, beryllium § (4. 3 X 10- 6 Κ-, carbide Kei element (3. 7 X 10- 6 Κ -, aluminum nitride (4. 5 X 10 _6 Κ _1 ), fluorine phlogopite (8. 0 X 10 "6 Κ _1), as the glass material, soda lime glass (8 X 10- 6 ~: LO X 10" 6 kappa _1), flint glass (8 X 10- 6 ~9 X 10 "6 Κ _1), Pyrex glass (2. 8 X 10- 6 Κ-, as the metal material, tungsten (4. 8 X 10 _6 Κ _1), molybdenum (5. 6 X 10- 6 κ-.
また、基板 51, 56は、その厚みが 0. l〜50mmであることが好ましぐ表面が平滑 で、化学的に脱脂処理され、また、機械的に研磨処理されたものであることが好まし い。  The substrates 51 and 56 preferably have a thickness of 0.1 to 50 mm, have a smooth surface, are chemically degreased, and are mechanically polished. Better.
[0024] また、基板 51, 56の表面には、強磁性体層 52, 57を電解メツキによって容易に形 成することができる点で、単一の或いはそれぞれ種類の異なる複数の金属膜 (図示 省略)が形成されて ヽることが好ま ヽ。  On the surfaces of the substrates 51 and 56, a single metal film or a plurality of different types of metal films (illustrated in the drawings) can easily form the ferromagnetic layers 52 and 57 by electrolytic plating. (Omitted) is preferably formed.
金属膜を形成する材料は、弱磁性体であっても強磁性体であってもよぐその具体 例としては、銅、ニッケル、コバルト、金、銀、パラジウム、ロジウム、白金などが挙げら れる。  The material for forming the metal film may be a weak magnetic material or a ferromagnetic material. Specific examples thereof include copper, nickel, cobalt, gold, silver, palladium, rhodium, and platinum. .
また、金属膜を形成する手段としては、無電解メツキ法を利用することができる。 また、金属膜を形成する材料として強磁性体を用いる場合には、磁場の作用による 影響を抑制する観点から、当該金属膜の厚みは 30 m以下であることが好ましぐよ り好ましくは 20 m以下である。この厚みが過大である場合には、後述する異方導電 性シートの製造方法にぉ 、て、導電性材料層に対して磁束線の方向が逆方向の磁 場を作用させたときに、基板 51, 56が運動し、これにより、上型 50および下型 55の 間に位置ずれが生じる恐れがあるため、好ましくない。 As a means for forming a metal film, an electroless plating method can be used. When a ferromagnetic material is used as the material for forming the metal film, the magnetic field From the viewpoint of suppressing the influence, the thickness of the metal film is preferably 30 m or less, more preferably 20 m or less. When the thickness is excessively large, when a magnetic field having a direction of a magnetic flux line opposite to the conductive material layer is applied to the conductive material layer in a method for manufacturing an anisotropic conductive sheet described below, It is not preferable because the 51 and 56 move, which may cause a displacement between the upper mold 50 and the lower mold 55.
[0025] 上型 50および下型 55の各々における強磁性体層 52, 57を構成する材料としては 、鉄、鉄—ニッケル合金、鉄—コバルト合金、ニッケル、コノルト、ニッケル—コバルト 合金などの強磁性金属を用いることができる。この強磁性体層 52, 57は、その厚み 力 S 10 μ m以上であることが好ましい。この厚みが 10 μ m未満である場合には、異方 導電性シート製造用型内に形成される導電性材料層に対して、十分な強度分布を 有する磁場を作用させることが困難となり、この結果、当該導電性材料層における導 電路形成部を形成すべき部分に導電性粒子を高密度に集合させることが困難となる ため、良好な異方導電性を有するシートが得られないことがある。 The material forming the ferromagnetic layers 52 and 57 in each of the upper mold 50 and the lower mold 55 includes a strong material such as iron, iron-nickel alloy, iron-cobalt alloy, nickel, cono- tant, and nickel-cobalt alloy. Magnetic metals can be used. The ferromagnetic layers 52 and 57 preferably have a thickness force S of 10 μm or more. If the thickness is less than 10 μm, it becomes difficult to apply a magnetic field having a sufficient intensity distribution to the conductive material layer formed in the anisotropic conductive sheet manufacturing mold. As a result, it becomes difficult to aggregate the conductive particles at a high density in a portion of the conductive material layer where the conductive path forming portion is to be formed, so that a sheet having good anisotropic conductivity may not be obtained. .
基板 51, 56の表面に強磁性体層 52, 57を形成する方法としては、電解メツキ法を 用!/、ることができる。  As a method for forming the ferromagnetic layers 52, 57 on the surfaces of the substrates 51, 56, an electrolytic plating method can be used.
[0026] また、上型 50および下型 55の各々における弱磁性体層 53, 58を構成する材料と しては、銅などの弱磁性金属、耐熱性を有する高分子物質などを用いることができる 力 フォトリソグラフィ一の手法により容易に弱磁性体層 53, 58を形成することができ る点で、電磁波によって硬化された高分子物質を用いることが好ましぐその材料とし ては、例えばアクリル系のドライフィルムレジスト、エポキシ系の液状レジスト、ポリイミ ド系の液状レジストなどのフォトレジストを用いることができる。  As a material for forming the weak magnetic layers 53 and 58 in each of the upper mold 50 and the lower mold 55, a weak magnetic metal such as copper, a heat-resistant polymer substance, or the like may be used. Able to use a polymer material that is hardened by electromagnetic waves because it is possible to easily form the weak magnetic layers 53 and 58 by a photolithographic method, for example, acrylic Photoresists such as a system dry film resist, an epoxy system liquid resist, and a polyimide system liquid resist can be used.
[0027] そして、上記の異方導電性シート製造用型を用い、  [0027] Then, using the mold for producing an anisotropic conductive sheet described above,
異方導電性シート製造用型内に、硬化されて絶縁性の弾性高分子物質となる液状 の高分子形成材料中に導電性粒子が含有されてなる導電性材料層を形成する工程 (a— 1)と、 前記導電性材料層に対して、当該異方導電性シート製造用型における 強磁性体層を介して当該導電性材料層の厚み方向に作用させることにより、当該導 電路形成部となる部分に導電性粒子を集合させて当該導電性材料層の厚み方向に 配向させる工程 (b— 1)と、 前記導電性材料層に対する磁場の作用を停止した後または磁場の作用を継続し ながら、当該導電性材料層を硬化処理する工程 (c 1)と Forming a conductive material layer in a mold for producing an anisotropic conductive sheet, which contains conductive particles in a liquid polymer forming material which is cured to become an insulating elastic polymer material (a- 1) and by acting on the conductive material layer in the thickness direction of the conductive material layer via the ferromagnetic material layer in the anisotropic conductive sheet production mold, (B-1) a step of assembling conductive particles in a portion to be oriented in the thickness direction of the conductive material layer; Curing the conductive material layer after stopping the action of the magnetic field on the conductive material layer or while continuing the action of the magnetic field (c 1);
を経由して、異方導電性シート 10が製造される。  Through this, the anisotropic conductive sheet 10 is manufactured.
以下、各工程について具体的に説明する。  Hereinafter, each step will be specifically described.
[0028] 工程(a— 1) : Step (a-1):
工程 (a— 1)においては、先ず、硬化されて絶縁性の弾性高分子物質となる液状の 高分子形成材料中に導電性粒子を分散させることにより、導電性材料を調製する。 導電性材料を調製するための高分子物質形成材料としては、種々のものを用いる ことができ、その具体例としては、シリコーンゴム、ポリブタジエンゴム、天然ゴム、ポリ イソプレンゴム、スチレン一ブタジエン共重合体ゴム、アクリロニトリル一ブタジエン共 重合体ゴムなどの共役ジェン系ゴムおよびこれらの水素添加物、スチレンーブタジェ ンージェンブロック共重合体ゴム、スチレン イソプレンブロック共重合体などのブロ ック共重合体ゴムおよびこれらの水素添加物、クロロプレンゴム、ウレタンゴム、ポリエ ステル系ゴム、ェピクロルヒドリンゴム、エチレン一プロピレン共重合体ゴム、エチレン プロピレン ジェン共重合体ゴム、軟質液状エポキシゴムなどが挙げられる。 これらの中では、耐久性、成形加工性、電気特性などの観点から、シリコーンゴムが 好ましい。  In the step (a-1), first, a conductive material is prepared by dispersing conductive particles in a liquid polymer-forming material which is cured to become an insulating elastic polymer material. Various materials can be used as the polymer substance forming material for preparing the conductive material, and specific examples thereof include silicone rubber, polybutadiene rubber, natural rubber, polyisoprene rubber, and styrene-butadiene copolymer. Rubber, conjugated rubbers such as acrylonitrile-butadiene copolymer rubber and hydrogenated products thereof, and block copolymer rubbers such as styrene butagen-gen block copolymer rubber and styrene isoprene block copolymer; Examples of such hydrogenated products include chloroprene rubber, urethane rubber, polyester rubber, epichlorohydrin rubber, ethylene-propylene copolymer rubber, ethylene-propylene copolymer rubber, and soft liquid epoxy rubber. Among these, silicone rubber is preferred from the viewpoints of durability, moldability and electrical properties.
[0029] シリコーンゴムとしては、液状シリコーンゴムを架橋または縮合したものが好ましい。  [0029] The silicone rubber is preferably one obtained by crosslinking or condensing a liquid silicone rubber.
液状シリコーンゴムは、縮合型のもの、付加型のもの、ビュル基ゃヒドロキシル基を含 有するものなどのいずれであってもよい。具体的には、ジメチルシリコーン生ゴム、メ チルビ-ルシリコーン生ゴム、メチルフエ-ルビ-ルシリコーン生ゴムなどを挙げること ができる。  The liquid silicone rubber may be any of a condensation type, an addition type, and a compound having a bull group-hydroxyl group. Specific examples include raw dimethyl silicone rubber, raw methyl silicone rubber, raw methyl methyl silicone rubber and the like.
また、付加型の液状シリコーンゴムとしては、ビュル基と Si— H結合との反応によつ て硬化するものであって、ビュル基および Si— H結合の両方を含有するポリシロキサ ンカ なる一液型(一成分型)のもの、およびビニル基を含有するポリシロキサンおよ び Si— H結合を含有するポリシロキサン力 なる二液型(二成分型)のもののいずれ も用いることができるが、二液型の付加型液状シリコーンゴムを用いることが好ましい [0030] これらの中で、ビュル基を含有する液状シリコーンゴム(ビュル基含有ポリジメチル シロキサン)は、通常、ジメチルジクロロシランまたはジメチルジアルコキシシランを、 ジメチルビ-ルクロロシランまたはジメチルビ-ルアルコキシシランの存在下において 、加水分解および縮合反応させ、例えば引続き溶解 沈殿の繰り返しによる分別を 行うこと〖こより得られる。 In addition, the addition-type liquid silicone rubber is a one-pack type liquid silicone rubber which is cured by a reaction between a bullet group and a Si—H bond, and is a polysiloxanka containing both a bullet group and a Si—H bond. Both (one-component type) and two-component type (two-component type) having a vinyl group-containing polysiloxane and a Si-H bond-containing polysiloxane can be used. It is preferable to use an addition type liquid silicone rubber of the mold [0030] Of these, the liquid silicone rubber containing a bullet group (polydimethylsiloxane containing a bullet group) is usually prepared by using dimethyldichlorosilane or dimethyldialkoxysilane in the presence of dimethylvinylchlorosilane or dimethylvinylalkoxysilane. In the following, hydrolysis and condensation reactions are performed, for example, followed by fractionation by repeated dissolution and precipitation.
また、ビニル基を両末端に含有する液状シリコーンゴムは、オタタメチルシクロテトラ シロキサンのような環状シロキサンを触媒の存在下にお 、てァ-オン重合し、重合停 止剤として例えばジメチルジビュルシロキサンを用い、その他の反応条件 (例えば、 環状シロキサンの量および重合停止剤の量)を適宜選択することにより得られる。ここ で、ァ-オン重合の触媒としては、水酸ィ匕テトラメチルアンモ -ゥムおよび水酸化 n— ブチルホスホ-ゥムなどのアルカリまたはこれらのシラノレート溶液などを用いることが でき、反応温度は、例えば 80〜130°Cである。  Liquid silicone rubbers containing vinyl groups at both ends are polymerized with a cyclic siloxane such as otatamethylcyclotetrasiloxane in the presence of a catalyst to form a polymerization terminator such as dimethyldibutyl. It can be obtained by using siloxane and appropriately selecting other reaction conditions (for example, the amount of the cyclic siloxane and the amount of the polymerization terminator). Here, as the catalyst for the aone polymerization, alkalis such as tetramethylammonium hydroxide and n-butylphospho-hydroxymide or a silanolate solution thereof can be used. For example, 80 to 130 ° C.
このようなビニル基含有ポリジメチルシロキサンは、その分子量 Mw (標準ポリスチレ ン換算重量平均分子量をいう。以下同じ。)が 10000〜40000のものであることが好 ましい。また、得られる異方導電性シート 10の耐熱性の観点から、分子量分布指数( 標準ポリスチレン換算重量平均分子量 Mwと標準ポリスチレン換算数平均分子量 M nとの比 MwZMnの値をいう。以下同じ。)が 2以下のものが好ましい。  Such a vinyl group-containing polydimethylsiloxane preferably has a molecular weight Mw (referred to as a standard polystyrene-converted weight average molecular weight; the same applies hereinafter) of 10,000 to 40,000. From the viewpoint of the heat resistance of the obtained anisotropic conductive sheet 10, the molecular weight distribution index (refers to the value of the ratio MwZMn between the weight average molecular weight Mw in terms of standard polystyrene and the number average molecular weight Mn in terms of standard polystyrene; the same applies hereinafter). Is preferably 2 or less.
[0031] 一方、ヒドロキシル基を含有する液状シリコーンゴム(ヒドロキシル基含有ポリジメチ ルシロキサン)は、通常、ジメチルジクロロシランまたはジメチルジアルコキシシランを 、ジメチルヒドロクロロシランまたはジメチルヒドロアルコキシシランの存在下にお!/、て、 加水分解および縮合反応させ、例えば引続き溶解 沈殿の繰り返しによる分別を行 うことにより得られる。 [0031] On the other hand, liquid silicone rubber containing hydroxyl groups (hydroxyl-containing polydimethylsiloxane) is usually prepared by adding dimethyldichlorosilane or dimethyldialkoxysilane to dimethylhydrochlorosilane or dimethylhydroalkoxysilane in the presence of! / It can be obtained by carrying out hydrolysis and condensation reactions, for example, followed by fractionation by repeated dissolution and precipitation.
また、環状シロキサンを触媒の存在下においてァ-オン重合し、重合停止剤として 、 ί列免ばジメチノレヒドロクロロシラン、メチノレジヒドロクロロシランまたはジメチノレヒドロア ルコキシシランなどを用い、その他の反応条件 (例えば、環状シロキサンの量および 重合停止剤の量)を適宜選択することによつても得られる。ここで、ァ-オン重合の触 媒としては、水酸ィ匕テトラメチルアンモ -ゥムおよび水酸化 η—ブチルホスホ-ゥムな どのアルカリまたはこれらのシラノレート溶液などを用いることができ、反応温度は、例 えば 80〜130°Cである。 Further, cyclic siloxane is polymerized in the presence of a catalyst in the presence of a catalyst, and as a polymerization terminator, dimethinolehydrochlorosilane, methinoreshydrochlorosilane or dimethinolehydroalkoxysilane is used as a polymerization terminator, and other reaction conditions (for example, , The amount of the cyclic siloxane and the amount of the polymerization terminator). Here, as a catalyst for the aone polymerization, alkali such as tetramethylammonium hydroxide and η-butylphosphodium hydroxide or a silanolate solution thereof can be used. , Example For example, it is 80 to 130 ° C.
[0032] このようなヒドロキシル基含有ポリジメチルシロキサンは、その分子量 Mwが 10000 〜40000のものであることが好ましい。また、得られる異方導電性シート 10の耐熱性 の観点から、分子量分布指数が 2以下のものが好ま 、。 [0032] Such a hydroxyl group-containing polydimethylsiloxane preferably has a molecular weight Mw of 10,000 to 40,000. From the viewpoint of the heat resistance of the obtained anisotropic conductive sheet 10, those having a molecular weight distribution index of 2 or less are preferable.
本発明にお 、ては、上記のビュル基含有ポリジメチルシロキサンおよびヒドロキシル 基含有ポリジメチルシロキサンのいずれか一方を用いることもでき、両者を併用するこ とちでさる。  In the present invention, either one of the above-mentioned polydimethylsiloxane containing a butyl group and polydimethylsiloxane containing a hydroxyl group can be used, or both are used in combination.
[0033] また、回路装置のプローブ試験またはバーンイン試験などに用いられる異方導電 性シート 10を製造する場合には、液状シリコーンゴムとして、その硬化物の 150°Cに おける圧縮永久歪みが 10%以下であるものを用いることが好ましぐより好ましくは 8 %以下、さらに好ましくは 6%以下である。この圧縮永久歪みが 10%を超える場合に は、得られる異方導電性シート 10を多数回にわたって繰り返し使用したとき或いは高 温環境下にお 、て繰り返し使用したときには、導電路形成部 11に永久歪みが発生し やすぐこれにより、導電路形成部 11における導電性粒子の連鎖に乱れが生じる結 果、所要の導電性を維持することが困難となることがある。  When producing an anisotropic conductive sheet 10 used for a probe test or a burn-in test of a circuit device, for example, as a liquid silicone rubber, the cured product thereof has a compression set of 10% at 150 ° C. It is more preferable to use the following, more preferably 8% or less, and further preferably 6% or less. If the compression set exceeds 10%, the conductive path forming portion 11 is permanently set when the obtained anisotropic conductive sheet 10 is used repeatedly many times or repeatedly in a high temperature environment. Immediately after the distortion occurs, the chain of the conductive particles in the conductive path forming portion 11 is disturbed, so that it may be difficult to maintain the required conductivity.
ここで、液状シリコーンゴムの硬化物の圧縮永久歪みは、 JIS K 6249に準拠した 方法によって測定することができる。  Here, the compression set of the cured product of the liquid silicone rubber can be measured by a method based on JIS K 6249.
[0034] また、液状シリコーンゴムとしては、その硬化物の 23°Cにおけるデュロメーター A硬 度が 10〜60のものを用いることが好ましぐさらに好ましくは 15〜60、特に好ましく は 20〜60のものである。このデュロメーター A硬度が 10未満である場合には、加圧 されたときに、導電路形成部 11を相互に絶縁する絶縁部 12が過度に歪みやすぐ 導電路形成部 11間の所要の絶縁性を維持することが困難となることがある。一方、こ のデュロメーター A硬度が 60を超える場合には、導電路形成部 11に適正な歪みを 与えるために相当に大きい荷重による加圧力が必要となるため、例えば検査対象物 の変形や破損が生じやすくなる。  [0034] The liquid silicone rubber preferably has a durometer A hardness of 10 to 60 at 23 ° C, more preferably 15 to 60, particularly preferably 20 to 60. Things. If the durometer A hardness is less than 10, the insulating part 12 that insulates the conductive path forming parts 11 from each other when pressurized may be excessively deformed or may have a required insulation property between the conductive path forming parts 11. May be difficult to maintain. On the other hand, if the durometer A hardness exceeds 60, a considerably large load is required to apply an appropriate strain to the conductive path forming portion 11, so that, for example, deformation or breakage of the inspection object may occur. It is easy to occur.
ここで、液状シリコーンゴムの硬化物のデュロメーター A硬度は、 JIS K 6249に 準拠した方法によって測定することができる。  Here, the durometer A hardness of the cured liquid silicone rubber can be measured by a method based on JIS K 6249.
[0035] また、液状シリコーンゴムとしては、その硬化物の 23°Cにおける引き裂き強度が 8k NZm以上のものを用いることが好ましぐさらに好ましくは lOkNZm以上、より好ま しくは 15kN/m以上、特に好ましくは 20kN/m以上のものである。この引き裂き強 度が 8kNZm未満である場合には、異方導電性シート 10に過度の歪みが与えられ たときに、耐久性の低下を起こしやすい。 The liquid silicone rubber has a cured product having a tear strength at 23 ° C. of 8 k. It is preferable to use one having NZm or more, more preferably at least 10 kN / m, more preferably at least 15 kN / m, particularly preferably at least 20 kN / m. When the tear strength is less than 8 kNZm, the durability is likely to decrease when the anisotropic conductive sheet 10 is subjected to excessive strain.
ここで、液状シリコーンゴムの硬化物の引き裂き強度は、 JIS K 6249に準拠した 方法によって測定することができる。  Here, the tear strength of the cured product of the liquid silicone rubber can be measured by a method based on JIS K 6249.
[0036] また、液状シリコーンゴムとしては、その 23°Cにおける粘度が 100〜1, 250Pa' sの ものを用いることが好ましぐさらに好ましくは 150〜800Pa' s、特に好ましくは 250〜 500Pa' sのものである。この粘度が lOOPa' s未満である場合には、得られる導電性 材料において、当該液状シリコーンゴム中における導電性粒子の沈降が生じやすく 、良好な保存安定性が得られず、また、後述する工程 (b— 1)において、導電性材料 層に対して厚み方向に磁場を作用させたときに、導電性粒子が厚み方向に並ぶよう 配向せず、均一な状態で導電性粒子の連鎖を形成することが困難となることがある。 一方、この粘度が 1, 250Pa' sを超える場合には、得られる導電性材料が粘度の高 いものとなるため、異方導電性シート製造用型内に導電性材料層を形成しにくいもの となることがあり、また、導電性材料層に対して厚み方向に磁場を作用させても、導電 性粒子が十分に移動せず、そのため、導電性粒子を厚み方向に並ぶよう配向させる ことが困難となることがある。 As the liquid silicone rubber, it is preferable to use a liquid silicone rubber having a viscosity at 23 ° C. of 100 to 1,250 Pa ′s, more preferably 150 to 800 Pa ′s, and particularly preferably 250 to 500 Pa ′s. s. When the viscosity is less than 100 Pa's, the resulting conductive material is liable to cause sedimentation of the conductive particles in the liquid silicone rubber, failing to obtain good storage stability, and a process described below. In (b-1), when a magnetic field is applied to the conductive material layer in the thickness direction, the conductive particles are not aligned so as to be aligned in the thickness direction, and form a chain of conductive particles in a uniform state. It can be difficult. On the other hand, if the viscosity exceeds 1,250 Pa's, the resulting conductive material has a high viscosity, so that it is difficult to form a conductive material layer in the anisotropic conductive sheet manufacturing mold. In addition, even when a magnetic field is applied to the conductive material layer in the thickness direction, the conductive particles do not move sufficiently, and therefore, the conductive particles may be oriented to be aligned in the thickness direction. It can be difficult.
ここで、液状シリコーンゴムの粘度は、 B型粘度計によって測定することができる。  Here, the viscosity of the liquid silicone rubber can be measured by a B-type viscometer.
[0037] 高分子物質形成材料中には、当該高分子物質形成材料を硬化させるための硬化 触媒を含有させることができる。このような硬化触媒としては、有機過酸化物、脂肪酸 ァゾィ匕合物、ヒドロシリルイ匕触媒などを用いることができる。 [0037] The polymer substance-forming material may contain a curing catalyst for curing the polymer substance-forming material. As such a curing catalyst, an organic peroxide, a fatty acid azoide compound, a hydrosilylide catalyst, or the like can be used.
硬化触媒として用いられる有機過酸化物の具体例としては、過酸化べンゾィル、過 酸化ビスジシクロべンゾィル、過酸化ジクミル、過酸化ジターシャリーブチルなどが挙 げられる。  Specific examples of the organic peroxide used as the curing catalyst include benzoyl peroxide, bisdicyclobenzoyl peroxide, dicumyl peroxide, and ditertiary butyl peroxide.
硬化触媒として用いられる脂肪酸ァゾ化合物の具体例としては、ァゾビスイソプチ口 二トリルなどが挙げられる。  Specific examples of the fatty acid azo compound used as a curing catalyst include azobisisobutyl nitrile.
ヒドロシリル化反応の触媒として使用し得るものの具体例としては、塩化白金酸およ びその塩、白金 不飽和基含有シロキサンコンプレックス、ビュルシロキサンと白金と のコンプレックス、白金と 1, 3 ジビュルテトラメチルジシロキサンとのコンプレックス、 トリオルガノホスフィンあるいはホスファイトと白金とのコンプレックス、ァセチルァセテ ート白金キレート、環状ジェンと白金とのコンプレックスなどの公知のものが挙げられ る。 Specific examples of those which can be used as a catalyst for the hydrosilylation reaction include chloroplatinic acid and And its salts, siloxane complex containing platinum unsaturated group, complex of butylsiloxane and platinum, complex of platinum and 1,3 dibutyltetramethyldisiloxane, complex of triorganophosphine or phosphite and platinum, acetylacetate platinum Known ones such as a chelate and a complex of a cyclic gen and platinum are exemplified.
硬化触媒の使用量は、高分子物質形成材料の種類、硬化触媒の種類、その他の 硬化処理条件を考慮して適宜選択されるが、通常、高分子物質形成材料 100重量 部に対して 3〜 15重量部である。  The amount of the curing catalyst used is appropriately selected in consideration of the type of the polymer-forming material, the type of the curing catalyst, and other curing conditions. 15 parts by weight.
[0038] 高分子物質形成材料は、通常のシリカ粉、コロイダルシリカ、エア口ゲルシリカ、ァ ルミナなどの無機充填材が含有されてなるものが含有されてなるものであってもよい 。このような無機充填材が含有されることにより、得られる導電性材料のチクソトロピー 性が確保され、その粘度が高くなり、しかも、導電性粒子 Pの分散安定性が向上する と共に、硬化処理されて得られる異方導電性シート 10の強度が高くなる。 [0038] The polymer substance forming material may be a material containing an inorganic filler such as ordinary silica powder, colloidal silica, air-port gel silica, and alumina. By containing such an inorganic filler, the thixotropic property of the obtained conductive material is secured, the viscosity thereof is increased, and the dispersion stability of the conductive particles P is improved, and the conductive material P is cured. The strength of the obtained anisotropic conductive sheet 10 increases.
このような無機充填材の使用量は、特に限定されるものではないが、多量に使用す ると、後述する工程 (b— 1)において、磁場による導電性粒子 Pの移動が大きく阻害さ れるため、好ましくない。  The use amount of such an inorganic filler is not particularly limited. However, when used in a large amount, the movement of the conductive particles P due to the magnetic field in the step (b-1) described later is greatly inhibited. Therefore, it is not preferable.
[0039] 導電性材料を調製するための導電性粒子としては、磁性を示すものが用いられ、そ の具体例としては、鉄、ニッケル、コバルトなどの磁性を示す金属の粒子若しくはこれ らの合金の粒子またはこれらの金属を含有する粒子、またはこれらの粒子を芯粒子と し、当該芯粒子の表面に金、銀、ノ ラジウム、ロジウムなどの導電性の良好な金属の メツキを施したもの、ある 、は弱磁性金属粒子若しくはガラスビーズなどの無機物質 粒子またはポリマー粒子を芯粒子とし、当該芯粒子の表面に、ニッケル、コバルトな どの導電性磁性体のメツキを施したもの、あるいは芯粒子に、導電性磁性体および導 電性の良好な金属の両方を被覆したものなどが挙げられる。 As the conductive particles for preparing the conductive material, those exhibiting magnetism are used, and specific examples thereof include particles of a metal exhibiting magnetism such as iron, nickel, and cobalt or alloys thereof. Particles or particles containing these metals, or those particles as core particles, and the surface of the core particles is subjected to plating of a metal having good conductivity such as gold, silver, nordium, rhodium, In some cases, inorganic particles or polymer particles such as weak magnetic metal particles or glass beads are used as core particles, and the surface of the core particles is coated with a conductive magnetic material such as nickel or cobalt. And those coated with both a conductive magnetic material and a metal having good conductivity.
これらの中では、ニッケル粒子を芯粒子とし、その表面に金や銀などの導電性の良 好な金属のメツキを施したものを用いることが好まし 、。  Among them, it is preferable to use nickel particles as core particles, the surfaces of which are plated with a metal having good conductivity such as gold or silver.
芯粒子の表面に導電性金属を被覆する手段としては、特に限定されるものではな いが、例えば無電解メツキにより行うことができる。 [0040] 導電性粒子として、芯粒子の表面に導電性金属が被覆されてなるものを用いる場 合には、良好な導電性が得られる観点から、粒子表面における導電性金属の被覆率 (芯粒子の表面積に対する導電性金属の被覆面積の割合)が 40%以上であることが 好ましぐさらに好ましくは 45%以上、特に好ましくは 47〜95%である。 Means for coating the surface of the core particles with a conductive metal is not particularly limited, but may be, for example, an electroless plating. [0040] When the conductive particles are formed by coating the surface of a core particle with a conductive metal, from the viewpoint of obtaining good conductivity, the coverage of the conductive metal on the particle surface (core The ratio of the conductive metal coating area to the particle surface area) is preferably 40% or more, more preferably 45% or more, and particularly preferably 47 to 95%.
また、導電性金属の被覆量は、芯粒子の 2. 5〜50重量%であることが好ましぐよ り好ましくは 3〜30重量%、さらに好ましくは 3. 5〜25重量%、特に好ましくは 4〜20 重量%である。被覆される導電性金属が金である場合には、その被覆量は、芯粒子 の 3〜30重量%であることが好ましぐより好ましくは 3. 5〜25重量%、さらに好ましく は 4〜20重量%である。また、被覆される導電性金属が銀である場合には、その被 覆量は、芯粒子の 3〜30重量%であることが好ましぐより好ましくは 4〜25重量%、 さらに好ましくは 5〜23重量%、特に好ましくは 6〜20重量%である。  The coating amount of the conductive metal is preferably 2.5 to 50% by weight of the core particles, more preferably 3 to 30% by weight, still more preferably 3.5 to 25% by weight, and particularly preferably. Is from 4 to 20% by weight. When the conductive metal to be coated is gold, the coating amount is preferably 3 to 30% by weight of the core particles, more preferably 3.5 to 25% by weight, still more preferably 4 to 25% by weight. 20% by weight. When the conductive metal to be coated is silver, the coating amount is preferably 3 to 30% by weight of the core particles, more preferably 4 to 25% by weight, and even more preferably 5 to 25% by weight. -23% by weight, particularly preferably 6-20% by weight.
[0041] また、導電性粒子の粒子径は、 1〜500 μ mであることが好ましぐより好ましくは 2 〜300 m、さら〖こ好ましくは 3〜200 m、特〖こ好ましくは 5〜 150 mである。 また、導電性粒子の粒子径分布 (DwZDn)は、 1〜: LOであることが好ましぐより好 ましくは 1〜7、さらに好ましくは 1〜5、特に好ましくは 1〜4である。 The particle diameter of the conductive particles is preferably 1 to 500 μm, more preferably 2 to 300 m, further preferably 3 to 200 m, particularly preferably 5 to 500 μm. 150 m. The particle size distribution (DwZDn) of the conductive particles is preferably from 1 to LO, more preferably from 1 to 7, further preferably from 1 to 5, and particularly preferably from 1 to 4.
このような条件を満足する導電性粒子を用いることにより、得られる異方導電性シー ト 10は、加圧変形が容易なものとなり、また、当該異方導電性シート 10における導電 路形成部 11にお!/ヽて導電性粒子 P間に十分な電気的接触が得られる。  By using the conductive particles satisfying such conditions, the obtained anisotropic conductive sheet 10 can be easily deformed under pressure, and the conductive path forming portion 11 in the anisotropic conductive sheet 10 can be obtained. In addition, sufficient electrical contact between the conductive particles P can be obtained.
また、導電性粒子の形状は、特に限定されるものではないが、高分子物質形成材 料中に容易に分散させることができる点で、球状のもの、星形状のものあるいはこれ らが凝集した 2次粒子による塊状のものであることが好ましい。  Further, the shape of the conductive particles is not particularly limited, but is spherical, star-shaped, or agglomerated because they can be easily dispersed in the polymer-forming material. It is preferably a lump formed by secondary particles.
[0042] また、導電性粒子の含水率は、 5%以下であることが好ましぐより好ましくは 3%以 下、さらに好ましくは 2%以下、特に好ましくは 1%以下である。このような条件を満足 する導電性粒子を用いることにより、後述する工程 (c—1)において、導電性材料層 を硬化処理する際に、当該導電性材料層内に気泡が生ずることが防止または抑制さ れる。 [0042] The water content of the conductive particles is preferably 5% or less, more preferably 3% or less, further preferably 2% or less, and particularly preferably 1% or less. By using the conductive particles satisfying such conditions, it is possible to prevent or prevent air bubbles from being generated in the conductive material layer when the conductive material layer is cured in the step (c-1) described later. It is suppressed.
[0043] このような導電性材料を、例えばスクリーン印刷法によって、図 3に示す異方導電性 シート製造用型における上型 50の成形面および下型 55の成形面のいずれか一方 または両方に塗布し、その後、図 4に示すように、導電性材料が塗布された下型 55 に、フレーム板 15を介して導電性材料が塗布された上型 50を重ね合わせることによ り、異方導電性シート製造用型における上型 50および下型 55の間のキヤビティ内に 、高分子形成材料中に導電性粒子 Pが含有されてなる導電性材料層 10Aが形成さ れる。この導電性材料層 10Aにおいては、図 5に示すように、導電性粒子 Pは当該導 電性材料層 10A中に分散された状態である。 One of the molding surface of the upper mold 50 and the molding surface of the lower mold 55 in the mold for producing an anisotropic conductive sheet shown in FIG. Alternatively, as shown in FIG. 4, the upper mold 50 coated with the conductive material is superimposed on the lower mold 55 coated with the conductive material via the frame plate 15 as shown in FIG. In the cavity between the upper mold 50 and the lower mold 55 in the mold for producing an anisotropic conductive sheet, a conductive material layer 10A containing the conductive particles P in the polymer-forming material is formed. In the conductive material layer 10A, as shown in FIG. 5, the conductive particles P are in a state of being dispersed in the conductive material layer 10A.
[0044] 以上にぉ 、て、フレーム板 15を構成する材料としては、金属材料、セラミックス材料 、榭脂材料などの種々の材料を用いることができ、その具体例としては、鉄、銅、 -ッ ケル、クロム、コノルト、マグネシウム、マンガン、モリブデン、インジウム、鉛、パラジゥ ム、チタン、タングステン、アルミニウム、金、白金、銀などの金属またはこれらを 2種 以上組み合わせた合金若しくは合金鋼などの金属材料、窒化珪素、炭化珪素、アル ミナなどのセラミックス材料、ァラミド榭脂、ァラミド不繊布補強型エポキシ榭脂、ァラミ ド不繊布補強型ポリイミド榭脂、ァラミド不繊布補強型ビスマレイミドトリアジン榭脂な どの榭脂材料が挙げられる。 As described above, various materials such as a metal material, a ceramic material, and a resin material can be used as a material of the frame plate 15, and specific examples thereof include iron, copper, and −. Metal materials such as nickel, chromium, conoort, magnesium, manganese, molybdenum, indium, lead, palladium, titanium, tungsten, aluminum, gold, platinum, silver, and alloys or alloy steels combining two or more of these. Ceramic materials such as silicon nitride, silicon carbide, and alumina, aramide resin, aramide nonwoven reinforced epoxy resin, aramide nonwoven reinforced polyimide resin, aramide nonwoven reinforced bismaleimide triazine resin, etc. Fatty materials.
また、バーンイン試験に用いられる異方導電性シート 10を製造する場合には、フレ ーム板 15を構成する材料としては、線熱膨張係数が検査対象であるウェハを構成す る材料の線熱膨張係数と同等若しくは近似したものを用いることが好まし ヽ。具体的 には、ウェハを構成する材料がシリコンである場合には、線熱膨張係数が 1. 5 X 10 ZK以下、特に、 3 X 10— 6〜8 X 10— 6Ζκのものを用いることが好ましぐその具体例と しては、インバーなどのインバー型合金、エリンバーなどのエリンバー型合金、スーパ 一インバー、コバール、 42ァロイなどの金属材料、ァラミド不繊布補強型有機榭脂材 料が挙げられる。 When the anisotropic conductive sheet 10 used for the burn-in test is manufactured, the material constituting the frame plate 15 has a linear thermal expansion coefficient of the linear thermal expansion coefficient of the material constituting the wafer to be inspected. It is preferable to use one that is equivalent or approximate to the expansion coefficient. Specifically, when the material constituting the wafer is silicon, a coefficient of linear thermal expansion 1. 5 X 10 ZK less, in particular, be used as a 3 X 10- 6 ~8 X 10- 6 Ζκ Specific examples that are preferred are Invar-type alloys such as Invar, Elinvar-type alloys such as Elinvar, metal materials such as Super Invar, Kovar, 42 alloy, and non-woven fabric-reinforced organic resin materials such as Aramide. No.
また、フレーム板 15の厚みは、例えば 0. 02〜: Lmm、好ましくは 0. 05〜0. 25mm である。  The thickness of the frame plate 15 is, for example, 0.02 to Lmm, and preferably 0.05 to 0.25 mm.
[0045] 工程 (b—l) : Step (b-l):
工程 (b—l)においては、工程 (a—l)において形成された導電性材料層 10Aに対 して、異方導電性シート製造用型における強磁性体層 52, 57を介して当該導電性 材料層 10Aの厚み方向に作用させることにより、当該導電路形成部となる部分に導 電性粒子を集合させて当該導電性材料層 10Aの厚み方向に並ぶよう配向させる。 具体的に説明すると、図 6に示すように、上側電磁石 61および下側電磁石 65を有 してなり、それぞれの磁極 62, 66が互いに対向するよう配置された電磁石装置 60を 用意し、この電磁石装置 60における上側電磁石 61の磁極 62と下側電磁石 65の磁 極 66との間に、キヤビティ内に導電性材料層 10Aが形成された異方導電性シート製 造用型を配置する。次いで、電磁石装置 60を作動させることにより、上型 50の強磁 性体層 52とこれに対応する下型 55の強磁性体層 57との間には、上型 50の弱磁性 体層 53と下型 55の弱磁性体層 58との間より強度の大きい磁場が形成される。すな わち、導電性材料層 10Aに、導電路形成部となる部分にそれ以外の部分より大きい 強度の磁場を作用させ、これにより、導電性材料層 10A中に分散されている導電性 粒子 Pを導電路形成部となる部分に集合させて当該導電性材料層 10Aの厚み方向 に並ぶよう配向させる。 In the step (b-l), the conductive material layer 10A formed in the step (a-l) is connected to the conductive material layer 10A via the ferromagnetic layers 52 and 57 in the anisotropic conductive sheet manufacturing mold. By acting in the thickness direction of the conductive material layer 10A, the conductive material layer 10A is guided to the conductive path forming portion. The conductive particles are aggregated and oriented so as to be arranged in the thickness direction of the conductive material layer 10A. More specifically, as shown in FIG. 6, an electromagnet device 60 having an upper electromagnet 61 and a lower electromagnet 65 and having the magnetic poles 62 and 66 opposed to each other is prepared. Between the magnetic pole 62 of the upper electromagnet 61 and the magnetic pole 66 of the lower electromagnet 65 in the device 60, a mold for producing an anisotropic conductive sheet having a conductive material layer 10A formed in a cavity is arranged. Next, by operating the electromagnet device 60, the weak magnetic layer 53 of the upper die 50 is placed between the ferromagnetic layer 52 of the upper die 50 and the corresponding ferromagnetic layer 57 of the lower die 55. A stronger magnetic field is formed between the lower mold 55 and the weak magnetic layer 58 of the lower mold 55. In other words, a magnetic field having a greater intensity is applied to the conductive material layer 10A on the portion to be the conductive path forming portion, and thereby the conductive particles dispersed in the conductive material layer 10A are formed. P is collected in a portion to be a conductive path forming portion and is oriented so as to be arranged in the thickness direction of the conductive material layer 10A.
ここで、導電性材料層 10Aに作用させる磁場の強度は、平均で 0. 02〜2. 5テスラ となる大きさが好ましい。  Here, it is preferable that the intensity of the magnetic field applied to the conductive material layer 10A has a magnitude of 0.02 to 2.5 Tesla on average.
また、この工程 (b— 1)は、導電性材料層 10Aの硬化を促進しない条件下、例えば 室温下で行われることが好ま U、。  This step (b-1) is preferably performed under conditions that do not promote the curing of the conductive material layer 10A, for example, at room temperature.
そして、この工程 (b— 1)においては、導電性材料層 10Aに対する磁場の作用を一 且停止し、その後、再度、導電性材料層 10Aに対して磁場を作用させる操作 (以下、 この操作を「再作動操作」という。)が少なくとも 1回行われる。この再作動操作は、具 体的には、電磁石装置 60の作動を停止した後、再度、電磁石装置 60を作動させる こと〖こよって行われる。  Then, in this step (b-1), the operation of the magnetic field on the conductive material layer 10A is temporarily stopped, and thereafter, the operation of applying the magnetic field on the conductive material layer 10A again (hereinafter, this operation is referred to as the operation). "Re-operating operation") is performed at least once. Specifically, this restarting operation is performed by stopping the operation of the electromagnet device 60 and then activating the electromagnet device 60 again.
この再作動操作にぉ 、て、導電性材料層 10Aに対する磁場の作用を停止してから 、再度、導電性材料層 10Aに対して磁場を作用させるまでの時間(以下、「作動停止 時間」という。)は、導電性材料層 10Aの粘度、導電性材料層 10A中の導電性粒子 の割合、導電性粒子の平均粒子径などを考慮して適宜設定されるが、 200秒間以下 であることが好ましぐより好ましくは 60秒間以下である。  In response to this restarting operation, the time from when the magnetic field is stopped applied to the conductive material layer 10A until when the magnetic field is applied again to the conductive material layer 10A (hereinafter referred to as “operation stop time”) ) Is appropriately set in consideration of the viscosity of the conductive material layer 10A, the ratio of the conductive particles in the conductive material layer 10A, the average particle size of the conductive particles, and the like, but may be 200 seconds or less. It is more preferably 60 seconds or less.
この作動停止時間が過大である場合には、工程 (b— 1)に要する時間が長くなりす ぎて製造工程全体を通しての生産効率が極めて低いものとなると共に、液状の高分 子物質形成材料の硬化が開始するため、導電性材料層 10Aの粘度が変化する結果 、十分な効果が得られないことがある。 If the operation stop time is excessively long, the time required for the process (b-1) becomes too long, so that the production efficiency throughout the entire production process becomes extremely low and the liquid Since the curing of the secondary material forming material starts, the viscosity of the conductive material layer 10A changes, so that a sufficient effect may not be obtained.
[0047] また、再作動操作にお!、て、導電性材料層 10Aに再度作用させる磁場は、その磁 束線の方向が停止前の磁場の磁束線の方向と同方向のものであっても、停止前の 磁場の磁束線の方向と逆方向のものであってもよいが、残留磁場の影響が少ない点 で、停止前の磁場の磁束線の方向と逆方向のものであることが好ましい。 [0047] In the restarting operation, the magnetic field applied to the conductive material layer 10A again has the same direction as that of the magnetic field before the stop. May be in the direction opposite to the direction of the magnetic flux lines of the magnetic field before the stop, but may be in the direction opposite to the direction of the magnetic flux lines of the magnetic field before the stop in that the effect of the residual magnetic field is small. preferable.
また、磁束線の方向が停止前の磁場の磁束線と逆方向の磁場を作用させる場合に は、当該磁場の強度は、停止前の磁場の強度と同程度であることが好ましい。  When a magnetic field whose direction of the magnetic flux lines is opposite to that of the magnetic field before the stop is applied, the strength of the magnetic field is preferably substantially equal to the strength of the magnetic field before the stop.
磁束線の方向が停止前の磁場の磁束線の方向と逆方向である磁場を作用させる ためには、電磁石装置 60における上型電磁石 61の磁極 62の極性および下型電磁 石 65の磁極 66の極性を変更すればよ!、。  In order to apply a magnetic field in which the direction of the magnetic flux lines is opposite to the direction of the magnetic flux lines of the magnetic field before stopping, the polarity of the magnetic poles 62 of the upper electromagnet 61 and the magnetic poles 66 of the lower electromagnet 65 in the electromagnet device 60 must be adjusted. Change the polarity!
具体的に説明すると、導電性材料層 10Aに対して最初に磁場を作用させるときに、 例えば上型電磁石 61の磁極 62が N極および下型電磁石 65の磁極 66が S極となる 条件で、電磁石装置 60を作動させる。この状態においては,上型 50の強磁性体層 5 2が N極、下型 55の強磁性体層 57が S極として機能するため、図 7に示すように、導 電性材料層 10Aに作用する磁場における磁束線の方向は、上型 50の強磁性体層 5 2からこれに対応する下型 55の強磁性体層 57に向う方向、すなわち上から下に向か う方向である。このようにして、導電性材料層 10Aに磁場を作用させた状態で所定の 時間が経過した後、電磁石装置 60の作動を一旦停止する。その後、上型電磁石 61 の磁極 62が S極および下型電磁石 65の磁極 66が N極となる条件で、再度、電磁石 装置 60を作動させる。この状態においては、上型 50の強磁性体層 52が S極、下型 5 5の強磁性体層 57が N極として機能するため、図 8に示すように、導電性材料層 10A に作用する磁場における磁束線の方向は、下型 55の強磁性体層 57からこれに対応 する上型 50の強磁性体層 52に向う方向、すなわち下から上に向力 方向である。 このような方法によれば、電磁石装置 60の作動を停止したときに、残留磁場が生じ ていても、電磁石装置 60を再度作動させることによって消磁されるので、残留磁場に よる影響が少なくなる。  Specifically, when a magnetic field is first applied to the conductive material layer 10A, for example, under the condition that the magnetic pole 62 of the upper electromagnet 61 is the N pole and the magnetic pole 66 of the lower electromagnet 65 is the S pole, Activate the electromagnet device 60. In this state, since the ferromagnetic layer 52 of the upper mold 50 functions as the N pole and the ferromagnetic layer 57 of the lower mold 55 functions as the S pole, as shown in FIG. The direction of the magnetic flux lines in the acting magnetic field is the direction from the ferromagnetic layer 52 of the upper die 50 to the corresponding ferromagnetic layer 57 of the lower die 55, that is, from the top to the bottom. In this way, the operation of the electromagnet device 60 is temporarily stopped after a predetermined time has elapsed while the magnetic field is applied to the conductive material layer 10A. Thereafter, the electromagnet device 60 is operated again under the condition that the magnetic pole 62 of the upper electromagnet 61 becomes the S pole and the magnetic pole 66 of the lower electromagnet 65 becomes the N pole. In this state, the ferromagnetic layer 52 of the upper mold 50 functions as the S pole and the ferromagnetic layer 57 of the lower mold 55 functions as the N pole, so that it acts on the conductive material layer 10A as shown in FIG. The direction of the magnetic flux lines in the applied magnetic field is the direction from the ferromagnetic layer 57 of the lower die 55 to the corresponding ferromagnetic layer 52 of the upper die 50, that is, the direction of the upward force from below. According to such a method, when the operation of the electromagnet device 60 is stopped, even if a residual magnetic field is generated, it is demagnetized by operating the electromagnet device 60 again, so that the influence of the residual magnetic field is reduced.
[0048] また、再作動操作は、工程 (b— 1)において少なくとも 1回行われればよいが、繰り 返して行われることが好ましぐ具体的には、再作動操作の回数が 5回以上であること が好ましぐより好ましくは 10〜500回である。 [0048] The restarting operation may be performed at least once in step (b-1). Specifically, it is preferable that the operation is performed repeatedly. More preferably, the number of restart operations is 5 or more, more preferably 10 to 500 times.
再作動操作の回数が過小である場合には、導電性材料層 10A中の個々の導電性 粒子 Pが磁気力による拘束力 開放される機会が少なぐ従って、導電性粒子 Pの移 動が再度開始する機会が少な 、ため、導電性材料層 10Aの厚み方向に対してより 忠実な方向に導電性粒子 Pの連鎖が形成されにくくなり、その結果、得られる異方導 電性シートにぉ ヽて、隣接する導電路形成部間を結ぶような導電性粒子 Pの連鎖が 形成されることを確実に防止することが困難となることがある。  If the number of restart operations is too small, there is little opportunity for the individual conductive particles P in the conductive material layer 10A to be released by the binding force of the magnetic force, and therefore, the movement of the conductive particles P again occurs. Since there is little opportunity to start, the chain of the conductive particles P is less likely to be formed in a direction more faithful to the thickness direction of the conductive material layer 10A, and as a result, the resulting anisotropic conductive sheet has a small thickness. Therefore, it may be difficult to reliably prevent the formation of the chain of the conductive particles P that connects the adjacent conductive path forming portions.
[0049] このように、再作動操作を繰り返して行う場合にぉ ヽては、再度、導電性材料層に 対して磁場を作用させてから、当該導電性材料層に対する磁場の作用を停止するま での時間 (以下、「再作動時間」という。)は、導電性材料層 10Aの粘度、導電性材料 層 10A中の導電性粒子の割合、導電性粒子の平均粒子径などを考慮して適宜設定 される力 10〜300秒間であることが好ましぐより好ましくは 10〜200秒間である。 この再作動時間が過小である場合には、高い強度の磁場が形成されず、そのため 、導電性材料層 10A中の導電性粒子 Pが十分に移動せず、その結果、導電性材料 層 10Aの厚み方向に対してより忠実な方向に導電性粒子 Pの連鎖が形成されにくく なることがある。一方、再作動時間が過大である場合には、工程 (b— 1)に要する時 間が長くなりすぎて製造工程全体を通しての生産効率が極めて低いものとなると共に 、液状の高分子物質形成材料の硬化が開始するため、導電性材料層 10Aの粘度が 変化する結果、十分な効果が得られないことがある。 [0049] As described above, when the restart operation is repeatedly performed, the magnetic field is again applied to the conductive material layer, and then the operation of the magnetic field to the conductive material layer is stopped. (Hereinafter referred to as “reactivation time”) is appropriately determined in consideration of the viscosity of the conductive material layer 10A, the ratio of the conductive particles in the conductive material layer 10A, the average particle size of the conductive particles, and the like. The set force is preferably from 10 to 300 seconds, more preferably from 10 to 200 seconds. If the reactivation time is too short, a high-intensity magnetic field is not formed, so that the conductive particles P in the conductive material layer 10A do not move sufficiently, and as a result, the conductive material layer 10A In some cases, it is difficult to form a chain of the conductive particles P in a direction more faithful to the thickness direction. On the other hand, if the reactivation time is too long, the time required for the step (b-1) becomes too long, and the production efficiency throughout the entire production process becomes extremely low. As the curing of the conductive material starts, the viscosity of the conductive material layer 10A changes, so that a sufficient effect may not be obtained.
[0050] 以上のようにして、工程 (b— l)においては、図 9に示すように、上型 50の強磁性体 層 52とこれに対応する下型 55の強磁性体層 57との間の部分、すわなち導電路形成 部となる部分に導電性粒子 Pが厚み方向に配向した状態で密に含有された導電性 材料層 10Aが形成される。 As described above, in step (bl), as shown in FIG. 9, the ferromagnetic layer 52 of the upper die 50 and the ferromagnetic layer 57 of the lower die 55 corresponding thereto are formed. A conductive material layer 10A densely contained with conductive particles P oriented in the thickness direction is formed in a portion therebetween, that is, a portion serving as a conductive path forming portion.
[0051] 工程(c 1) : [0051] Step (c1):
工程 (c—l)においては、導電路形成部となる部分に導電性粒子 Pが厚み方向に 配向した状態で密に含有された導電性材料層 10Aに対して、硬化処理を行う。 導電性材料層 10Aの硬化処理は、当該導電性材料層 10Aに対する磁場の作用を 停止した後に行われても、導電性材料層 10Aに対して磁場を作用させながら行われ てもよ 、が、磁場を作用させながら行われることが好ま 、。 In the step (cl), a hardening treatment is performed on the conductive material layer 10A in which the conductive particles P are densely contained in a portion to be the conductive path forming portion in a state of being oriented in the thickness direction. The curing treatment of the conductive material layer 10A reduces the action of the magnetic field on the conductive material layer 10A. It may be performed after stopping, or may be performed while applying a magnetic field to the conductive material layer 10A, but is preferably performed while applying a magnetic field.
また、導電性材料層 10Aの硬化処理は、使用される材料によって異なる力 通常、 加熱処理によって行われる。具体的な加熱温度および加熱時間は、導電性材料層 1 OAを構成する高分子物質形成材料の種類などを考慮して適宜設定される。  The curing treatment of the conductive material layer 10A is usually performed by a heat treatment which varies depending on the material used. The specific heating temperature and heating time are appropriately set in consideration of the type of the polymer substance forming material constituting the conductive material layer 1OA.
そして、導電性材料層 10Aの硬化処理が終了した後、例えば室温に冷却して異方 導電性シート製造用型力 取り出すことにより、図 1および図 2に示す異方導電性シ ート 10が得られる。  After the curing process of the conductive material layer 10A is completed, the anisotropic conductive sheet 10 shown in FIG. 1 and FIG. can get.
[0052] 上記の異方導電性シート製造用型および異方導電性シートの製造方法によれば、 以下のような効果が奏される。  According to the above-described mold for producing an anisotropic conductive sheet and the method for producing an anisotropic conductive sheet, the following effects can be obtained.
すなわち、上型 50の基板 51および下型 55の基板 56がそれぞれ弱磁性体材料に より構成されているため、導電性材料層 10Aに対して磁場を作用させたときに、当該 導電性材料層 10Aにおける絶縁部となる部分に作用する磁場の強度を十分に小さ くすることができるため、当該絶縁部となる部分に存在する導電性粒子 Pが導電路形 成部となる部分に確実に集合し、その結果、導電性粒子 Pが全く或いは殆ど存在し ない絶縁部 12を形成することができると共に、所要の量の導電性粒子 Pが含有され た導電路形成部 11を形成することができる。従って、形成すべき導電路形成部 11の ピッチが小さいものであっても、所期の導電性を示す導電路形成部 11を有し、隣接 する導電路形成部 11間に所要の絶縁性が確実に得られる異方導電性シート 10を製 造することができる。  That is, since the substrate 51 of the upper mold 50 and the substrate 56 of the lower mold 55 are each made of a weak magnetic material, when a magnetic field is applied to the conductive material layer 10A, the conductive material layer Since the strength of the magnetic field acting on the insulating portion at 10A can be sufficiently reduced, the conductive particles P present in the insulating portion surely gather in the conductive path forming portion. As a result, it is possible to form the insulating portion 12 having no or almost no conductive particles P, and to form the conductive path forming portion 11 containing a required amount of the conductive particles P. . Therefore, even if the pitch of the conductive path forming portions 11 to be formed is small, the conductive path forming portions 11 having the desired conductivity are provided, and the required insulating property between the adjacent conductive path forming portions 11 is maintained. An anisotropic conductive sheet 10 that can be reliably obtained can be manufactured.
また、基板 51, 56を構成する材料として、線熱膨張係数が特定の範囲にあるもの を用いることにより、導電性材料層 1 OAを硬化処理するための加熱処理にお ヽても、 基板 51, 56の熱膨張が小さいため、シート全体の寸法精度および導電路形成部の 位置精度が高い異方導電性シートを製造することができる。  In addition, by using a material having a specific coefficient of linear thermal expansion in a specific range as a material for forming the substrates 51 and 56, the substrate 51 and 56 can be subjected to heat treatment for curing the conductive material layer 1OA. , 56, the anisotropic conductive sheet having high dimensional accuracy of the entire sheet and high positional accuracy of the conductive path forming portion can be manufactured.
[0053] また、導電性材料層 10Aに対する磁場の作用を一旦停止するため、この停止状態 においては、導電性材料層 10A中の個々の導電性粒子 Pが磁気力による拘束から 開放される。そして、導電性材料層 10Aに対して、再度、厚み方向に磁場を作用さ せることにより、この動作がトリガーとなって、導電性粒子 Pの移動が再度開始するた め、導電性材料層 10Aの厚み方向に対してより忠実な方向に導電性粒子 Pの連鎖 が形成される。 Further, since the action of the magnetic field on the conductive material layer 10A is temporarily stopped, in this stopped state, the individual conductive particles P in the conductive material layer 10A are released from the restraint by the magnetic force. Then, by applying a magnetic field again to the conductive material layer 10A in the thickness direction, this operation was triggered, and the movement of the conductive particles P was started again. Therefore, a chain of the conductive particles P is formed in a direction more faithful to the thickness direction of the conductive material layer 10A.
このように、厚み方向に対して傾斜した方向に導電性粒子 Pの連鎖が形成されるこ とを抑制することができるので、小さい加圧力で加圧しても、電気抵抗値が低くて安 定な導電性を示し、しかも、隣接する導電路形成部間を結ぶような導電性粒子 Pの連 鎖が形成されることが防止されるので、導電路形成部 11のピッチが小さいものであつ ても、隣接する導電路形成部 11間に所要の絶縁性が確実に得られる異方導電性シ ート 10を製造することができる。  In this way, the formation of chains of conductive particles P in a direction inclined with respect to the thickness direction can be suppressed, so that even when pressed with a small pressing force, the electric resistance value is low and stable. Since the conductive particles P exhibit high conductivity and prevent the formation of a chain of conductive particles P that connects adjacent conductive path forming portions, the pitch of the conductive path forming portions 11 is small. In addition, it is possible to manufacture the anisotropic conductive sheet 10 that ensures the required insulation between the adjacent conductive path forming portions 11.
更に、導電性材料層 10Aに対して磁束線の方向が逆方向の磁場を作用させたとき にも、その磁力によって、上型 50の基板 51および下型 55の基板 56が運動すること がなぐ従って、上型 50および下型 55の間に位置ずれが生じることがないため、厚 み方向に対して忠実な方向に伸びる導電路形成部 11を形成することができ、その結 果、所期の導電性を示す導電路形成部 11を有する異方導電性シート 10を製造する ことができる。また、異方導電性シート製造用型内に空気が入ることが回避されるた め、気泡による不良品の発生を抑制することができる。  Further, even when a magnetic field whose direction of the magnetic flux lines is opposite to that of the conductive material layer 10A is applied, the magnetic force prevents the substrate 51 of the upper die 50 and the substrate 56 of the lower die 55 from moving. Therefore, since there is no displacement between the upper mold 50 and the lower mold 55, the conductive path forming portion 11 extending in the direction faithful to the thickness direction can be formed. The anisotropic conductive sheet 10 having the conductive path forming portion 11 exhibiting the above-mentioned conductivity can be manufactured. Further, since air is prevented from entering the mold for producing an anisotropic conductive sheet, it is possible to suppress the occurrence of defective products due to bubbles.
実施例  Example
[0054] 以下、本発明の具体的な実施例について説明する力 本発明はこれらに限定され るものではない。  Hereinafter, the ability to explain specific examples of the present invention is not limited thereto.
[0055] 〈実施例 1〉  <Example 1>
(1)異方導電性シート製造用型の作製:  (1) Production of mold for producing anisotropic conductive sheet:
図 3に示す構成に従い、下記の仕様の異方導電性シート製造用型を作製した。 上型(50)および下型(55)は、それぞれ厚みが 6mmのフッ素金雲母よりなる基板 材の表面に、厚みが 3 μ mのニッケル膜および厚みが 5 μ mの銅膜力この順で形成 されてなる基板(51, 56)を有し、各基板(51, 56)の表面上には、それぞれニッケル —コバルトよりなる 2000個の矩形の強磁性体層 (52, 57)が電解メツキによって形成 されて!/、る。強磁性体層 (52, 57)の各々の寸法は 40 m (縦) X 100 m (横) X 5 O /z m (厚み)で、配置ピッチが 80 mである。また、基板(51, 56)の表面における 強磁性体層 (52, 57)が形成された以外の領域には、ドライフィルムレジストが硬化 処理されてなる弱磁性体層(53, 58)が形成されている。弱磁性体層(53, 58)にお けるキヤビティ用凹所(53a, 58a)が形成された部分の厚みは 80 μ m、それ以外の 部分の厚みが 90 μ mである。 According to the configuration shown in FIG. 3, a mold for producing an anisotropic conductive sheet having the following specifications was produced. The upper mold (50) and the lower mold (55) are coated on the surface of a substrate material made of fluorophlogopite with a thickness of 6 mm, and a nickel film with a thickness of 3 μm and a copper film with a thickness of 5 μm, Each substrate (51, 56) has 2,000 rectangular ferromagnetic layers (52, 57) made of nickel-cobalt on the surface of each substrate (51, 56). Formed by! / The dimensions of each of the ferromagnetic layers (52, 57) are 40 m (length) × 100 m (width) × 5 O / zm (thickness), and the arrangement pitch is 80 m. The dry film resist is hardened in areas other than the ferromagnetic layers (52, 57) on the surface of the substrate (51, 56). The processed weak magnetic layer (53, 58) is formed. The thickness of the portion where the cavity recesses (53a, 58a) are formed in the weak magnetic layer (53, 58) is 80 μm, and the thickness of the other portions is 90 μm.
[0056] (2)フレーム板の作製: (2) Production of frame plate:
以下の仕様のフレーム板を作製した。  A frame plate having the following specifications was produced.
フレーム板は、材質力 S42ァロイで、寸法力 S250mm X 250mm X O. 03mmの矩形 であり、その全面には、それぞれ寸法が 1. 6mm X O. 3mmの矩形の 100個の開口 が縦横に並ぶよう形成されて 、る。  The frame plate is made of S42 alloy material and has a rectangular shape of S250mm X 250mm X O. 03mm with dimensional force of 100mm. It is formed as follows.
[0057] (3)工程(a— 1) : [0057] (3) Step (a-1):
付加型液状シリコーンゴム 100重量部に、平均粒子径が 8. 7 mの導電性粒子 14 0重量部を添加して混合した後、減圧による脱泡処理を行うことにより、導電性材料を 調製した。  A conductive material was prepared by adding and mixing 140 parts by weight of conductive particles having an average particle diameter of 8.7 m to 100 parts by weight of an addition-type liquid silicone rubber, followed by defoaming under reduced pressure. .
この導電性材料を、スクリーン印刷法によって、上記の異方導電性シート製造用型 における上型の成形面および下型の成形面に塗布し、その後、下型に、フレーム板 および上型を下力 この順で重ね合わせることにより、上型および下型の間のキヤビ ティ内に導電性材料層を形成した。  This conductive material is applied to the upper mold surface and the lower mold surface of the above-described anisotropic conductive sheet manufacturing mold by a screen printing method, and then the lower plate, the frame plate and the upper mold are placed on the lower mold. By overlapping in this order, a conductive material layer was formed in the cavity between the upper mold and the lower mold.
以上において、導電性粒子としては、ニッケル粒子を芯粒子とし、この芯粒子に無 電解金メッキが施されてなるもの(平均被覆量:芯粒子の重量の 25重量%となる量) を用いた。  In the above, nickel particles were used as the core particles, and the core particles were subjected to electroless gold plating (average coating amount: 25% by weight of the core particles).
また、付加型液状シリコーンゴムとしては、 A液の粘度が 250Pa' sで、 B液の粘度が 250Pa' sである二液型のものであって、硬化物の 150°Cにおける永久圧縮歪みが 5 %、硬化物のデュロメーター A硬度が 35、硬化物の引裂強度が 25kNZmのものを 用いた。  The addition-type liquid silicone rubber is a two-part type having a viscosity of liquid A of 250 Pa's and a viscosity of liquid B of 250 Pa's. 5%, the durometer A hardness of the cured product was 35, and the tear strength of the cured product was 25 kNZm.
[0058] また、上記の付加型液状シリコーンゴムおよびその硬化物の特性は、次のようにし て測定した。  [0058] The properties of the above-mentioned addition type liquid silicone rubber and its cured product were measured as follows.
(i)付加型液状シリコーンゴムの粘度:  (i) Viscosity of addition type liquid silicone rubber:
B型粘度計により、 23 ± 2°Cにおける粘度を測定した。  The viscosity at 23 ± 2 ° C was measured by a B-type viscometer.
(ii)シリコーンゴム硬化物の圧縮永久歪み: 二液型の付加型液状シリコーンゴムにおける A液と B液とを等量となる割合で攪拌 混合した。次いで、この混合物を異方導電性シート製造用型に流し込み、当該混合 物に対して減圧による脱泡処理を行った後、 120°C、 30分間の条件で硬化処理を行 うことにより、厚みが 12. 7mm、直径が 29mmのシリコーンゴム硬化物よりなる円柱体 を作製し、この円柱体に対して、 200°C、 4時間の条件でポストキュアを行った。この ようにして得られた円柱体を試験片として用い、 JIS K 6249に準拠して 150± 2°C における圧縮永久歪みを測定した。 (ii) Compression set of silicone rubber cured product: The liquid A and the liquid B in the two-part addition-type liquid silicone rubber were stirred and mixed at an equal ratio. Next, the mixture is poured into a mold for producing an anisotropic conductive sheet, the mixture is subjected to a defoaming treatment under reduced pressure, and a curing treatment is performed at 120 ° C. for 30 minutes to obtain a thickness. Was made of a silicone rubber cured product having a diameter of 12.7 mm and a diameter of 29 mm, and was post-cured at 200 ° C. for 4 hours. Using the thus obtained cylinder as a test piece, compression set at 150 ± 2 ° C was measured in accordance with JIS K 6249.
(iii)シリコーンゴム硬化物の引裂強度:  (iii) Tear strength of cured silicone rubber:
上記 (ii)と同様の条件で付加型液状シリコーンゴムの硬化処理およびポストキュア を行うことにより、厚みが 2. 5mmのシートを作製した。このシートから打ち抜きによつ てタレセント形の試験片を作製し、 JIS K 6249に準拠して 23± 2°Cにおける引裂 強度を測定した。  By subjecting the addition type liquid silicone rubber to curing treatment and post-curing under the same conditions as in (ii) above, a sheet having a thickness of 2.5 mm was produced. A turret-shaped test piece was prepared from this sheet by punching, and the tear strength at 23 ± 2 ° C was measured in accordance with JIS K 6249.
(iv)デュロメーター A硬度:  (iv) Durometer A hardness:
上記 (iii)と同様にして作製されたシートを 5枚重ね合わせ、得られた積重体を試験 片として用い、 JIS K 6249に準拠して 23 ± 2°Cにおけるデュロメーター A硬度を測 し 7こ。  Five sheets prepared in the same manner as in (iii) above are stacked, and the obtained stack is used as a test piece.The durometer A hardness at 23 ± 2 ° C is measured in accordance with JIS K 6249, and 7 sheets are measured. .
[0059] (4)工程 (b— 1) :  (4) Step (b-1):
上側電磁石および下側電磁石を有してなり、それぞれの磁極が互いに対向するよ う配置された電磁石装置を用意し、この電磁石装置における上側電磁石の磁極と下 側電磁石の磁極との間に、上記の導電性材料層が形成された異方導電性シート製 造用型をセットした。次いで、室温で、電磁石装置を 15秒間作動させることにより、導 電性材料層における導電路形成部となる部分に 1. 6Tの強度の磁場を作用させ、更 に、再作動操作を合計で 200回行いながら、導電路形成部となる部分に磁場を作用 させた。ここで、再作動操作の条件は、作動停止時間が 5秒間、再作動時間が 15秒 間、再度作用させる磁場の磁束線の方向が停止前の磁場の磁束線の方向と逆方向 であり、再度、導電性材料層における導電路形成部となる部分に対して磁場を作用 させたときの当該磁場の強度は、いずれも 1. 6Tである。  An electromagnet device having an upper electromagnet and a lower electromagnet, and arranged such that their magnetic poles face each other, is provided between the magnetic pole of the upper electromagnet and the magnetic pole of the lower electromagnet in the electromagnet device. A mold for manufacturing an anisotropic conductive sheet on which a conductive material layer was formed was set. Next, by operating the electromagnet device at room temperature for 15 seconds, a magnetic field of 1.6 T was applied to the portion of the conductive material layer to be the conductive path forming portion, and a re-operation was performed for a total of 200 times. A magnetic field was applied to the portion to be the conductive path forming portion while performing the process. Here, the conditions for the restart operation are as follows: the operation stop time is 5 seconds, the restart time is 15 seconds, the direction of the magnetic flux lines of the magnetic field applied again is opposite to the direction of the magnetic flux lines before the stop, Again, when a magnetic field is applied to the portion of the conductive material layer that becomes the conductive path forming portion, the strength of the magnetic field is 1.6 T in each case.
[0060] (5)工程(c 1) : 電磁石装置における上側電磁石の磁極と下側電磁石の磁極との間に、異方導電 性シート製造用型をセットしたままの状態で、当該電磁石装置を作動させることにより[0060] (5) Step (c1): By operating the electromagnet device with the anisotropic conductive sheet manufacturing mold set between the magnetic pole of the upper electromagnet and the magnetic pole of the lower electromagnet in the electromagnet device,
、導電性材料層における導電路形成部となる部分に 1. 6Tの強度の磁場を作用させ ながら、 100°Cで 2時間の条件で、当該導電性材料の硬化処理を行い、次いで、室 温に冷却した後、異方導電性シート製造用型力 取り出すことにより、絶縁部の周縁 部分にフレーム板が一体的に設けられた異方導電性シートを製造した。 Then, while applying a magnetic field having a strength of 1.6 T to the portion of the conductive material layer that will become the conductive path forming portion, the conductive material is cured at 100 ° C for 2 hours, and then room temperature is applied. After cooling, the anisotropic conductive sheet manufacturing die was taken out to produce an anisotropic conductive sheet in which a frame plate was integrally provided on the periphery of the insulating part.
得られた異方導電性シートにおいては、 2000個の矩形の導電路形成部が 80 m のピッチで配置されており、導電路形成部は、縦横の寸法力 0 m X 100 m、厚 みが 110 /ζ πι、絶縁部の両面からの突出高さがそれぞれ 30 mであり、絶縁部の厚 みが 50 /z mであった。  In the obtained anisotropic conductive sheet, 2,000 rectangular conductive path forming parts are arranged at a pitch of 80 m, and the conductive path forming part has a vertical and horizontal dimensional force of 0 mx 100 m and a thickness of 100 m. The projecting height from both sides of the insulating portion was 110 / ζπι, and the thickness of the insulating portion was 50 / zm, respectively.
また、導電路形成部中の導電性粒子の含有割合を調べたところ、全ての導電路形 成部にっ 、て体積分率で約 30%であった。  Further, when the content ratio of the conductive particles in the conductive path forming portion was examined, the volume fraction was about 30% in all the conductive path forming portions.
〈実施例 2〉 <Example 2>
図 3に示す構成に従い、下記の仕様の異方導電性シート製造用型を作製した。 上型(50)および下型(55)は、それぞれ厚みが 6mmのパイレックス(登録商標)ガ ラスよりなる基板材の表面に、スパッターによって形成された厚みが 0. の-ッケ ル膜および厚みが 5 mの銅膜がこの順で積層されてなる基板(51, 56)を有し、各 基板(51 , 56)の表面上には、それぞれニッケル コバルトよりなる 2000個の矩形の 強磁性体層(52, 57)が電解メツキによって形成されている。強磁性体層(52, 57) の各々の寸法は 40 /z m (縦) X lOO /z m (横) Χ 50 /ζ πι (厚み)で、配置ピッチが 80 mである。また、基板(51, 56)の表面における強磁性体層(52, 57)が形成され た以外の領域には、ドライフィルムレジストが硬化処理されてなる弱磁性体層(53, 5 8)が形成されている。弱磁性体層(53, 58)におけるキヤビティ用凹所(53a, 58a) が形成された部分の厚みは 80 μ m、それ以外の部分の厚みが 90 μ mである。 この異方導電性シート製造用型を用いたこと以外は実施例 1と同様にして異方導電 性シートを作製した。  According to the configuration shown in FIG. 3, a mold for producing an anisotropic conductive sheet having the following specifications was produced. The upper mold (50) and the lower mold (55) are each formed of a 0-thick film formed by sputtering on a surface of a substrate material made of Pyrex (registered trademark) glass having a thickness of 6 mm. Has a substrate (51, 56) in which a 5 m copper film is laminated in this order. On the surface of each substrate (51, 56), there are 2,000 rectangular ferromagnetic materials made of nickel-cobalt, respectively. The layers (52, 57) are formed by electrolytic plating. The dimensions of each of the ferromagnetic layers (52, 57) are 40 / z m (length) X 100 / z m (width) Χ 50 / ζ πι (thickness), and the arrangement pitch is 80 m. In regions other than the ferromagnetic layers (52, 57) on the surface of the substrate (51, 56), weak magnetic layers (53, 58) obtained by hardening a dry film resist are provided. Is formed. The thickness of the portion where the cavity recesses (53a, 58a) are formed in the weak magnetic layer (53, 58) is 80 μm, and the thickness of the other portions is 90 μm. An anisotropic conductive sheet was produced in the same manner as in Example 1, except that this mold for producing an anisotropic conductive sheet was used.
得られた異方導電性シートにおいては、 2000個の矩形の導電路形成部が 80 m のピッチで配置されており、導電路形成部は、縦横の寸法力 0 m X 100 m、厚 みが 110 /ζ πι、絶縁部の両面からの突出高さがそれぞれ 30 /z mであり、絶縁部の厚 みが 50 /z mであった。 In the obtained anisotropic conductive sheet, 2,000 rectangular conductive path forming parts are arranged at a pitch of 80 m, and the conductive path forming part has a vertical and horizontal dimensional force of 0 mx 100 m, a thickness of 100 m. The thickness of the insulating part was 30 / zm, the height of the protrusion from both sides of the insulating part was 30 / zm, and the thickness of the insulating part was 50 / zm.
また、導電路形成部中の導電性粒子の含有割合を調べたところ、全ての導電路形 成部にっ 、て体積分率で約 30%であった。  Further, when the content ratio of the conductive particles in the conductive path forming portion was examined, the volume fraction was about 30% in all the conductive path forming portions.
[0062] 〈実施例 3〉 <Example 3>
図 3に示す構成に従い、下記の仕様の異方導電性シート製造用型を作製した。 上型(50)および下型(55)は、それぞれ厚みが 6mmのモリブデンよりなる基板材 の表面に、スパッターによって形成された厚みが 0. 5 mのニッケル膜および厚みが 5 /z mの銅膜がこの順で積層されてなる基板(51, 56)を有し、各基板(51, 56)の表 面上には、それぞれニッケル—コバルトよりなる 2000個の矩形の強磁性体層(52, 5 7)が電解メツキによって形成されている。強磁性体層(52, 57)の各々の寸法は 40 m (縦) X 100 m (横) X 50 m (厚み)で、配置ピッチが 80 μ mである。また、基 板(51 , 56)の表面における強磁性体層(52, 57)が形成された以外の領域には、ド ライフイルムレジストが硬化処理されてなる弱磁性体層 (53, 58)が形成されている。 弱磁性体層(53, 58)におけるキヤビティ用凹所(53a, 58a)が形成された部分の厚 みは 80 μ m、それ以外の部分の厚みが 90 μ mである。 この異方導電性シート製造 用型を用いたこと以外は実施例 1と同様にして異方導電性シートを作製した。  According to the configuration shown in FIG. 3, a mold for producing an anisotropic conductive sheet having the following specifications was produced. The upper mold (50) and the lower mold (55) are formed by sputtering a nickel film with a thickness of 0.5 m and a copper film with a thickness of 5 / zm on the surface of a substrate material made of molybdenum with a thickness of 6 mm. Have substrates (51, 56) laminated in this order, and on the surface of each substrate (51, 56), 2,000 rectangular ferromagnetic layers (52, 56) made of nickel-cobalt, respectively. 5 7) is formed by electrolytic plating. The dimensions of each of the ferromagnetic layers (52, 57) are 40 m (length) × 100 m (width) × 50 m (thickness), and the arrangement pitch is 80 μm. On the surface of the substrate (51, 56) other than where the ferromagnetic layer (52, 57) is formed, a weak magnetic layer (53, 58) obtained by hardening a dry film resist is provided. Is formed. The thickness of the portion where the cavity recesses (53a, 58a) are formed in the weak magnetic layer (53, 58) is 80 μm, and the thickness of the other portions is 90 μm. An anisotropic conductive sheet was produced in the same manner as in Example 1 except that this mold for producing an anisotropic conductive sheet was used.
得られた異方導電性シートにおいては、 2000個の矩形の導電路形成部が 80 m のピッチで配置されており、導電路形成部は、縦横の寸法力 0 m X 100 m、厚 みが 110 /ζ πι、絶縁部の両面からの突出高さがそれぞれ 30 mであり、絶縁部の厚 みが 50 /z mであった。  In the obtained anisotropic conductive sheet, 2,000 rectangular conductive path forming parts are arranged at a pitch of 80 m, and the conductive path forming part has a vertical and horizontal dimensional force of 0 mx 100 m and a thickness of 100 m. The projecting height from both sides of the insulating portion was 110 / ζπι, and the thickness of the insulating portion was 50 / zm, respectively.
また、導電路形成部中の導電性粒子の含有割合を調べたところ、全ての導電路形 成部にっ 、て体積分率で約 30%であった。  Further, when the content ratio of the conductive particles in the conductive path forming portion was examined, the volume fraction was about 30% in all the conductive path forming portions.
[0063] 〈比較例 1〉 <Comparative Example 1>
基板として強磁性体である 42ァロイよりなるものを用いたこと以外は実施例 1と同様 の仕様の異方導電性シート製造用型を作製し、この異方導電性シート製造用型を用 いたこと以外は実施例 1と同様にして異方導電性シートを製造した。  A mold for producing an anisotropic conductive sheet having the same specifications as in Example 1 was prepared except that a substrate made of ferromagnetic material 42 alloy was used, and this mold for producing an anisotropic conductive sheet was used. Except for this, an anisotropic conductive sheet was produced in the same manner as in Example 1.
得られた異方導電性シートにおいては、 2000個の矩形の導電路形成部が 80 m のピッチで配置されており、導電路形成部は、縦横の寸法力 0 m X 100 m、厚 みが 110 /ζ πι、絶縁部の両面からの突出高さがそれぞれ 30 mであり、絶縁部の厚 みが 50 /z mであった。 In the obtained anisotropic conductive sheet, 2000 rectangular conductive path forming portions are 80 m The conductive path forming part has a vertical and horizontal dimensional force of 0 mx 100 m, a thickness of 110 / ζπι, and a protrusion height from both sides of the insulating part of 30 m each. Was 50 / zm thick.
また、導電路形成部中の導電性粒子の含有割合を調べたところ、全ての導電路形 成部にっ 、て体積分率で約 30%であった。  Further, when the content ratio of the conductive particles in the conductive path forming portion was examined, the volume fraction was about 30% in all the conductive path forming portions.
[0064] 〔異方導電性シートの評価〕 [Evaluation of Anisotropic Conductive Sheet]
実施例 1〜実施例 3および比較例 1で得られた異方導電性シートにっ 、て、下記の 評価を行った。  The following evaluations were performed on the anisotropic conductive sheets obtained in Examples 1 to 3 and Comparative Example 1.
導電路形成部の導電性:  Conductivity of conductive path forming part:
異方導電性シートの全ての導電路形成部を、その厚み方向の歪み率が 20%となる よう加圧した状態で、当該導電路形成部の各々の厚み方向の電気抵抗値を測定し た。その結果を表 1に示す。  In a state where all the conductive path forming portions of the anisotropic conductive sheet were pressed so that the strain rate in the thickness direction became 20%, the electrical resistance value in the thickness direction of each of the conductive path forming portions was measured. . The results are shown in Table 1.
導電路形成部間の絶縁性:  Insulation between conductive path forming parts:
異方導電性シートの全ての導電路形成部を、その厚み方向の歪み率が 20%となる よう加圧した状態で、隣接する導電路形成部間の電気抵抗値を測定し、その値が 1 Μ Ω未満のものの数を求めた。その結果を表 1に示す。  In a state where all the conductive path forming portions of the anisotropic conductive sheet are pressed so that the strain rate in the thickness direction is 20%, the electric resistance value between the adjacent conductive path forming portions is measured, and the value is measured. Numbers less than 1 ΜΩ were determined. The results are shown in Table 1.
[0065] [表 1] [0065] [Table 1]
Figure imgf000032_0001
Figure imgf000032_0001
表 1の結果から明らかなように、実施例 1〜実施例 3によれば、小さい加圧力で加圧 しても、電気抵抗値が低くて安定な導電性を示す導電路形成部を有し、しかも、全て の導電路形成部について、隣接する導電路形成部との所要の絶縁性を有する異方 導電性シートが得られることが確認された。これに対し、比較例 1で得られた異方導 電性シートは、一部の導電路形成部について、隣接する導電路形成部との電気抵 抗値が小さいものであり、この点において、実施例 1〜実施例 3で得られた異方導電 性シートと比較例 1で得られた異方導電性シートとの差は歴然としている。 As is evident from the results in Table 1, according to Examples 1 to 3, even when pressurized with a small pressing force, the conductive path forming portion has a low electric resistance value and exhibits stable conductivity. And all that It was confirmed that an anisotropic conductive sheet having a required insulating property with respect to the adjacent conductive path forming portion can be obtained with respect to the conductive path forming portion. On the other hand, the anisotropic conductive sheet obtained in Comparative Example 1 has a small electrical resistance value with respect to a part of the conductive path forming part and an adjacent conductive path forming part. The difference between the anisotropically conductive sheets obtained in Examples 1 to 3 and the anisotropically conductive sheet obtained in Comparative Example 1 is obvious.

Claims

請求の範囲 The scope of the claims
[1] 絶縁性の弾性高分子物質中に磁性を示す導電性粒子が厚み方向に配向した状 態で含有されてなる複数の導電路形成部と、これらの導電路形成部を相互に絶縁す る絶縁性の弾性高分子物質よりなる絶縁部とを有する異方導電性シートを製造する ための異方導電性シート製造用型であって、  [1] A plurality of conductive path forming portions including conductive particles exhibiting magnetism in an insulating elastic polymer material in a state of being oriented in a thickness direction, and insulating the conductive path forming portions from each other. A mold for manufacturing an anisotropic conductive sheet for manufacturing an anisotropic conductive sheet having an insulating portion made of an insulating elastic polymer material.
基板と、この基板上に前記導電路形成部のパターンに対応するパターンに従って 配置された強磁性体層とを有してなり、  A substrate and a ferromagnetic layer disposed on the substrate according to a pattern corresponding to the pattern of the conductive path forming portion,
前記基板は、弱磁性体材料よりなることを特徴とする異方導電性シート製造用型。  The mold for producing an anisotropic conductive sheet, wherein the substrate is made of a weak magnetic material.
[2] 異方導電性シート製造用型内に、硬化されて絶縁性の弾性高分子物質となる液状 の高分子形成材料中に導電性粒子が含有されてなる導電性材料層を形成し、この 導電性材料層に対して、当該異方導電性シート製造用型における強磁性体層を介 して当該導電性材料層の厚み方向に磁場を作用させることにより、当該導電路形成 部となる部分に導電性粒子を集合させて当該導電性材料層の厚み方向に配向させ る工程を有し、この工程において、前記導電性材料層に対する磁場の作用を停止し た後、再度、当該導電性材料層に対して磁場を作用させる操作を少なくとも 1回行う 異方導電性シートの製造方法に用いられるものであることを特徴とする請求項 1に記 載の異方導電性シート製造用型。  [2] A conductive material layer in which conductive particles are contained in a liquid polymer forming material which is cured to become an insulating elastic polymer material is formed in a mold for producing an anisotropic conductive sheet; By applying a magnetic field to the conductive material layer in the thickness direction of the conductive material layer via the ferromagnetic layer in the anisotropic conductive sheet manufacturing mold, the conductive path forming portion is formed. A step of assembling the conductive particles in the portion and orienting the conductive particles in the thickness direction of the conductive material layer. In this step, after stopping the action of the magnetic field on the conductive material layer, the conductive 2. The mold for producing an anisotropic conductive sheet according to claim 1, wherein the mold is used in a method for producing an anisotropic conductive sheet in which an operation of applying a magnetic field to a material layer is performed at least once.
[3] 基板は、線熱膨張係数が 1 X 10— 7〜1 X 10— 5K_1の弱磁性体材料よりなることを特徴 とする請求項 1または請求項 2に記載の異方導電性シート製造用型。 [3] The substrate, anisotropic conductive according to claim 1 or claim 2, wherein the coefficient of linear thermal expansion is made of a weak magnetic material 1 X 10- 7 ~1 X 10- 5 K _1 Mold for sheet production.
[4] 基板の表面に金属膜が形成されていることを特徴とする請求項 1乃至請求項 3のい ずれか一に記載の異方導電性シート製造用型。  4. The mold for producing an anisotropic conductive sheet according to claim 1, wherein a metal film is formed on a surface of the substrate.
[5] 絶縁性の弾性高分子物質中に磁性を示す導電性粒子が厚み方向に配向した状 態で含有されてなる複数の導電路形成部と、これらの導電路形成部を相互に絶縁す る絶縁性の弾性高分子物質よりなる絶縁部とを有する異方導電性シートを製造する 方法であって、  [5] A plurality of conductive path forming portions in which conductive particles exhibiting magnetism are contained in an insulating elastic polymer material in a state oriented in the thickness direction, and these conductive path forming portions are insulated from each other. A method for producing an anisotropic conductive sheet having an insulating portion made of an insulating elastic polymer material,
請求項 1乃至請求項 4のいずれか一に記載の異方導電性シート製造用型を用い、 この異方導電性シート製造用型内に、硬化されて絶縁性の弾性高分子物質となる 液状の高分子形成材料中に導電性粒子が含有されてなる導電性材料層を形成し、 この導電性材料層に対して、当該異方導電性シート製造用型における強磁性体層 を介して当該導電性材料層の厚み方向に磁場を作用させることにより、当該導電路 形成部となる部分に導電性粒子を集合させて当該導電性材料層の厚み方向に配向 させる工程を有し、 The mold for producing an anisotropic conductive sheet according to any one of claims 1 to 4, which is cured into an insulating elastic polymer material in the mold for producing an anisotropic conductive sheet. Forming a conductive material layer containing conductive particles in the polymer forming material of By applying a magnetic field to the conductive material layer in the thickness direction of the conductive material layer via the ferromagnetic layer in the anisotropic conductive sheet manufacturing mold, a portion serving as the conductive path forming portion is formed. A process of assembling conductive particles and orienting them in the thickness direction of the conductive material layer,
この工程において、前記導電性材料層に対する磁場の作用を停止した後、再度、 当該導電性材料層に対して磁場を作用させる操作を少なくとも 1回行うことを特徴と する異方導電性シートの製造方法。  In this step, after the action of the magnetic field on the conductive material layer is stopped, an operation of applying the magnetic field to the conductive material layer is performed at least once again. Method.
[6] 導電性材料層に対する磁場の作用を停止した後、再度、当該導電性材料層に対し て磁場を作用させる操作において、導電性材料層に再度作用させる磁場の磁束線 の方向が、停止前の磁場の磁束線の方向と逆方向であることを特徴とする請求項 5 に記載の異方導電性シートの製造方法。  [6] After stopping the action of the magnetic field on the conductive material layer, in the operation of applying the magnetic field again to the conductive material layer, the direction of the magnetic flux lines of the magnetic field applied again on the conductive material layer is stopped. 6. The method for producing an anisotropic conductive sheet according to claim 5, wherein the direction is opposite to the direction of the magnetic flux lines of the previous magnetic field.
[7] 導電性材料層に対する磁場の作用を停止した後、再度、当該導電性材料層に対し て磁場を作用させる操作を繰り返して行うことを特徴とする請求項 5または請求項 6に 記載の異方導電性シートの製造方法。 [7] The method according to claim 5 or 6, wherein the operation of applying the magnetic field to the conductive material layer is repeated after stopping the action of the magnetic field on the conductive material layer. A method for producing an anisotropic conductive sheet.
[8] 導電性材料層に対する磁場の作用を停止した後、再度、当該導電性材料層に対し て磁場を作用させる操作を 5回以上行うことを特徴とする請求項 7に記載の異方導電 性シートの製造方法。 [8] The anisotropic conductive material according to claim 7, wherein after stopping the action of the magnetic field on the conductive material layer, the operation of applying the magnetic field to the conductive material layer is performed five times or more again. Method for producing a functional sheet.
PCT/JP2005/007035 2004-04-14 2005-04-11 Die for manufacturing anisotropic conductive sheet and method for manufacturing anisotropic conductive sheet WO2005101589A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004118822 2004-04-14
JP2004-118822 2004-04-14

Publications (1)

Publication Number Publication Date
WO2005101589A1 true WO2005101589A1 (en) 2005-10-27

Family

ID=35150284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/007035 WO2005101589A1 (en) 2004-04-14 2005-04-11 Die for manufacturing anisotropic conductive sheet and method for manufacturing anisotropic conductive sheet

Country Status (4)

Country Link
KR (1) KR20070010012A (en)
CN (1) CN1943081A (en)
TW (1) TW200603486A (en)
WO (1) WO2005101589A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210359434A1 (en) * 2018-10-11 2021-11-18 Sekisui Polymatech Co., Ltd. Electrical connection sheet and terminal-equipped glass plate structure

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101038270B1 (en) * 2009-07-24 2011-05-31 (주)케미텍 Anisotropic Conductive Connector And The Manufacturing Method Thereof
JP5650611B2 (en) * 2011-08-23 2015-01-07 デクセリアルズ株式会社 Anisotropic conductive film, method for manufacturing anisotropic conductive film, connection method, and joined body
KR102180143B1 (en) * 2017-12-29 2020-11-17 국도화학 주식회사 Anisotropic conductive film, display device comprising the same and/or semiconductor device comprising the same
CN111757670B (en) * 2018-04-09 2022-10-14 大日本除虫菊株式会社 Flying pest repellent product and flying pest repellent method
KR102075669B1 (en) * 2018-10-26 2020-02-10 오재숙 Data signal transmission connector and manufacturing method for the same
CN110343386B (en) * 2019-05-13 2023-09-22 中国科学院宁波材料技术与工程研究所 Stretchable composite force-sensitive material, preparation method thereof and stretchable pressure sensor
KR102615617B1 (en) * 2021-01-08 2023-12-20 리노공업주식회사 Test socket and method for manufacturing the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5193393A (en) * 1975-02-12 1976-08-16 Erasuteitsuku kontakutoshiitonoseizohoho
JPS53147772A (en) * 1977-05-31 1978-12-22 Japan Synthetic Rubber Co Ltd Manufacture of pressure-conductive elastomer
JPS61250906A (en) * 1985-04-26 1986-11-08 ジェイエスアール株式会社 Conductive elastomer sheet
JPH11260518A (en) * 1998-03-13 1999-09-24 Jsr Corp Manufacture of anisotropic conductive sheet and its manufacturing device
JPH11283718A (en) * 1998-03-27 1999-10-15 Jsr Corp Manufacture of and manufacturing device for anisotropic conductive sheet
JP2000334742A (en) * 1999-05-27 2000-12-05 Jsr Corp Mold, its manufacture, casting mold for manufacturing mold, and manufacture of anisotropic conductive sheet
JP2002246428A (en) * 2000-12-08 2002-08-30 Jsr Corp Anisotropic conductive sheet and wafer tester
JP2004111930A (en) * 2002-08-09 2004-04-08 Jsr Corp Anisotropically conductive connector, probe material member, wafer inspection apparatus, and wafer inspection method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5193393A (en) * 1975-02-12 1976-08-16 Erasuteitsuku kontakutoshiitonoseizohoho
JPS53147772A (en) * 1977-05-31 1978-12-22 Japan Synthetic Rubber Co Ltd Manufacture of pressure-conductive elastomer
JPS61250906A (en) * 1985-04-26 1986-11-08 ジェイエスアール株式会社 Conductive elastomer sheet
JPH11260518A (en) * 1998-03-13 1999-09-24 Jsr Corp Manufacture of anisotropic conductive sheet and its manufacturing device
JPH11283718A (en) * 1998-03-27 1999-10-15 Jsr Corp Manufacture of and manufacturing device for anisotropic conductive sheet
JP2000334742A (en) * 1999-05-27 2000-12-05 Jsr Corp Mold, its manufacture, casting mold for manufacturing mold, and manufacture of anisotropic conductive sheet
JP2002246428A (en) * 2000-12-08 2002-08-30 Jsr Corp Anisotropic conductive sheet and wafer tester
JP2004111930A (en) * 2002-08-09 2004-04-08 Jsr Corp Anisotropically conductive connector, probe material member, wafer inspection apparatus, and wafer inspection method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210359434A1 (en) * 2018-10-11 2021-11-18 Sekisui Polymatech Co., Ltd. Electrical connection sheet and terminal-equipped glass plate structure

Also Published As

Publication number Publication date
TW200603486A (en) 2006-01-16
KR20070010012A (en) 2007-01-19
CN1943081A (en) 2007-04-04

Similar Documents

Publication Publication Date Title
US8124885B2 (en) Anisotropically conductive connector and anisotropically conductive connector device
KR100756707B1 (en) Anisotropic conductivity connector, conductive paste composition, probe member, and wafer inspecting device
JPWO2007043350A1 (en) Anisotropic conductive connector device and circuit device inspection device
KR100844627B1 (en) Anisotropic Conductive Sheet, Its Manufacturing Method, and Its Application
WO2005101589A1 (en) Die for manufacturing anisotropic conductive sheet and method for manufacturing anisotropic conductive sheet
JP2002324600A (en) Anisotropic conductive connector and applied product thereof
WO2005096368A1 (en) Probe apparatus, wafer inspecting apparatus provided with the probe apparatus and wafer inspecting method
WO2004066449A1 (en) Anisotropic conductive connector and production method therefor and inspectioon unit for circuit device
WO2006008784A1 (en) Anisotropic conductive connector and inspection equipment for circuit device
JP3573120B2 (en) Anisotropic conductive connector, method of manufacturing the same, and application product thereof
JP3726839B2 (en) PROBE DEVICE, WAFER INSPECTION DEVICE HAVING THE PROBE DEVICE, AND WAFER INSPECTION METHOD
KR101167748B1 (en) Probe member for wafer inspection, probe card for wafer inspection and wafer inspection apparatus
WO2005076418A1 (en) Process for producing anisotropic conductive sheet
JP2000243485A (en) Anisotropic conductive sheet
JP2001067942A (en) Anisotropic conductive sheet
JP4479477B2 (en) Anisotropic conductive sheet, manufacturing method thereof, and applied product thereof
JP2008164476A (en) Anisotropic conductive connector apparatus and manufacturing method of the same, and inspection apparatus for circuit apparatus
JP3928607B2 (en) Anisotropic conductive sheet, its production method and its application
JP2004055514A (en) Anisotropic conductivity connector, method for manufacturing the same, and inspection device for circuit device
JP2001067940A (en) Anisotropic conductive sheet
JP2002170608A (en) Anisotropic conductive sheet, manufacturing method of the same, and applied product using the same
JP2005327706A (en) Mold and method for manufacturing anisotropic conductive sheet
JP4385767B2 (en) Anisotropic conductive connector, manufacturing method thereof, and circuit device inspection apparatus
JP2004227828A (en) Testing device of anisotropic conductive connector device and circuit device
JP2002280092A (en) Anisotropic electrical conductive sheet and application product thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067019845

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580011209.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 1020067019845

Country of ref document: KR

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP