WO2005100960A1 - Surface defect examining device - Google Patents

Surface defect examining device Download PDF

Info

Publication number
WO2005100960A1
WO2005100960A1 PCT/JP2004/015467 JP2004015467W WO2005100960A1 WO 2005100960 A1 WO2005100960 A1 WO 2005100960A1 JP 2004015467 W JP2004015467 W JP 2004015467W WO 2005100960 A1 WO2005100960 A1 WO 2005100960A1
Authority
WO
WIPO (PCT)
Prior art keywords
defect
light
imaging
unit
image
Prior art date
Application number
PCT/JP2004/015467
Other languages
French (fr)
Japanese (ja)
Inventor
Mamoru Sakaue
Chie Ishikawa
Makoto Iwata
Toshiyuki Kaya
Chimoto Takada
Akifumi Seo
Norio Endo
Original Assignee
Daihatsu Motor Co., Ltd.
Chuo Electronic Measurement Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co., Ltd., Chuo Electronic Measurement Co., Ltd. filed Critical Daihatsu Motor Co., Ltd.
Publication of WO2005100960A1 publication Critical patent/WO2005100960A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9515Objects of complex shape, e.g. examined with use of a surface follower device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • G01N2021/8829Shadow projection or structured background, e.g. for deflectometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/062LED's
    • G01N2201/0626Use of several LED's for spatial resolution

Definitions

  • the present invention provides a plurality of light emitting elements arranged in a predetermined layout pattern, an imaging camera for imaging a surface to be inspected illuminated by light emitted from the light emitting elements, and imaging information of the imaging camera.
  • a painted surface of a vehicle body is illuminated with irradiation light that creates a bright B-tone sound pattern, and the illuminated painted surface is imaged by an imaging camera.
  • a technique of performing a surface inspection using an obtained captured image is known.
  • FIG. 10 illustrates a specific configuration of an inspection system using this technology. A technique using the same inspection principle as that of FIG. 10 is described in Patent Document 1 below.
  • a plurality of bumpers to be inspected are stocked at the stock station 202, and the first inspector 204 removes the bumper 1 from the stock station 202 and attaches it to the arm of the robot 22. Attach.
  • the robot 22 can change the posture of the bumper 1 by rotating the arm around the rotation axis 22d.
  • An illumination device 220 having a horizontal stripe light emission pattern is provided so as to surround the bumper 1 attached to the robot 22.
  • the light emission pattern is a stripe-like light / dark pattern extending parallel to the rotation axis 22d of the bumper 1.
  • the light and dark patterns of the irradiation light reflected on the bumper 1 are imaged by the plurality of imaging cameras 4.
  • the imaging result is sent to the analysis side. Then, the presence or absence of a defect is evaluated.
  • the second inspector 201 located on the lower side of the robot 22 removes the bumper 1 whose imaging has been completed from the robot 22, and performs a post-process such as a visual inspection.
  • the evaluation result of the bumper 1 by the defect evaluation unit and the information of the spot to be noticed in the visual inspection have already been sent to the second inspector in the subsequent process. Therefore, the second inspector can proceed quickly and reliably.
  • FIG. 11 shows the basic principle of the above-described surface defect inspection.
  • the image force of a defect such as a concave or convex surface on the painted surface becomes a coordinate in the direction orthogonal to the R direction (the direction of the front and back of the paper in Fig. 11). Images are taken while changing the direction coordinates (R coordinates) without changing. This can be used to detect defects. That is, in the captured image, the defective area is imaged darker than the surroundings in a bright stripe portion and brighter than the surroundings in a dark stripe portion. Therefore, using this phenomenon, defects can be avoided as halftone images of the bright and dark portions of the stripe.
  • Patent Literature 2 describes a technique for detecting a defect called "Yuzuhada", which is a periodic unevenness on the surface.
  • Yuzuhada a defect that is a periodic unevenness on the surface.
  • spots spots (mottle) in the paint thickness due to fluctuations in the captured image on the boundary between the light and dark areas of the light and dark stripes that are the irradiation light.
  • the paint surface where the disturbance that causes the displacement of the boundary image of the stripe occurs over a relatively wide range of the paint surface is detected.
  • the illuminating part illuminates the painted surface with a stripe-like light-dark pattern, so that the irradiation light wraps around in a direction orthogonal (crossing) to the stripe-like light-dark pattern. No force is generated. As a result, if a defect exists in the same direction as the stripe extending direction, it is difficult to catch the defect.
  • Patent Document 1 JP-A-8-145906 (FIGS. 5, 9 and 15)
  • Patent Document 2 JP-A-9-126744 (FIG. 13)
  • an object of the present invention is to provide a plurality of light emitting elements arranged in a predetermined layout pattern.
  • Imaging system and a surface defect inspection apparatus having an imaging power camera (imaging system) for imaging the surface to be inspected illuminated by the irradiation light of the light emitting element, the configuration of the irradiation system and the imaging system is simple and The objective is to obtain a surface defect inspection device that can perform reasonable and highly reliable inspections.
  • a first characteristic configuration of the present invention is:
  • a surface defect inspection apparatus comprising: a defect evaluation unit that evaluates an output signal from an output unit and detects a defect on the inspection surface,
  • the layout pattern is such that the light emitting elements are continuously arranged so that a surface of a predetermined shape is left inside.
  • the imaging camera is arranged to receive the irradiation light of each of the light-emitting elements reflected from the surface to be inspected,
  • a copying apparatus which moves the plurality of light emitting elements and the at least one imaging camera integrally along the surface to be inspected.
  • the layout pattern of the light emitting elements is hexagonal, and the optical axis of the irradiation light and the optical axis of the imaging camera are oriented in the normal direction of the painted surface, the painted surface If there is no defect in the image, only the hexagonal light / dark pattern is imaged. However, if there is a defect, an intermediate luminance area based on this defect is formed, and as shown in FIG. 7, it appears as, for example, an isolated point floating on a dark surface inside a hexagon. Therefore, the image resulting from this defect can be reliably captured by the imaging camera.
  • defect evaluation unit that evaluates the output signal of the output unit and detects a defect on the surface to be inspected, it automatically evaluates the defect location using technology established as image processing technology. Can be determined.
  • the imaging unit including these optical devices can be copied so that the positional relationship with respect to the surface to be inspected is constant.
  • the positional relationship is a relationship between the optical axis of the light emitting element and the optical axis of the imaging camera, and further, the distance from the irradiation surface to the inspection surface and the distance from the imaging surface force to the inspection surface.
  • a second characteristic configuration of the present invention is that the light-emitting surfaces of the plurality of light-emitting elements and the imaging surface of the at least one imaging camera are provided in the same plane, and the light-emitting surface in the same plane is provided. A surface and the imaging surface are maintained parallel to the surface to be inspected by the copying apparatus.
  • the brightness of a captured image, the position of the image portion, and the like largely depend on the positional relationship between the light-emitting surface and the imaging surface. .
  • an imaging unit in which these are integrated can be easily constructed.
  • a third characteristic configuration of the present invention is that the layout pattern is repeated in a predetermined direction. It is a repeated layout pattern to be performed.
  • image processing for imaging can be repeatedly performed on the same basis using the layout pattern portion of the light emitting element and the dark surface provided therein as one unit.
  • the same inspected surface portion can be repeatedly inspected, so that a plurality of pieces of imaging information is obtained from the inspected surface portion to perform the inspection with high reliability. be able to.
  • a fourth characteristic configuration of the present invention includes a transport mechanism that transports the inspection surface relative to the plurality of light-emitting elements and the imaging camera, and the repeating direction of the layout pattern is the relative direction. It is in the direction of conveyance.
  • the inspection may be performed with the surface to be inspected automatically moving.
  • a specific inspection surface is sequentially and repeatedly imaged by repeating a predetermined layout pattern to obtain imaging information. Can be performed.
  • FIG. 1 shows an overall configuration of an inspection system 200 employing a surface defect inspection apparatus 100 of the present invention.
  • This inspection system 200 is intended, for example, for surface defect inspection of a bumper 1 of an automobile.
  • the surface defect inspection apparatus 100 is disposed on the lower side of the stock station 202 and on the upper side of the visual inspection station 203.
  • the surface defect inspection apparatus 100 includes an imaging unit 300 having a configuration unique to the present application.
  • the imaging unit 300 performs a copying operation following the outer shape of the bumper 1, thereby making it possible to perform inspection with much higher accuracy, higher accuracy, and higher reliability than before.
  • a bumper 1 to be inspected is transferred by a transfer robot 2 from the upper right side to the lower left side in the figure.
  • a stock station 202, a surface defect inspection apparatus 100, and a visual inspection station 203 are provided along the transport direction. As shown Inspection is performed using a pair of bumpers 1 as one unit.
  • the first inspector 204 takes out the pair of bumpers 1 from the stock station 202 as needed and attaches them to the bumper support 2a of the transfer robot 2 (an example of a transfer mechanism).
  • the transfer robot 2 moves the transfer path to the lower side while holding the bumper 1. During this movement, the posture of the bumper 1 does not change, but only translates along the transport path.
  • the imaging unit 300 moves with a change in attitude so as to follow the surface shape of the bumper 1. As will be described later, while the imaging unit 300 is moving, the illumination unit 3 of the imaging unit 300 is maintained parallel to the inspection surface, the optical axis of the imaging camera 4 is maintained in the normal direction of the inspection surface, and The distance from the imaging unit 300 is kept constant.
  • the light and dark pattern of the irradiation light reflected on the bumper 1 is imaged by a plurality of imaging cameras 4 provided in the imaging unit 300.
  • the imaging result is sent to the defect evaluation unit 6 on the analysis side, and the presence or absence of a defect is evaluated.
  • the second inspector 201 located on the lower side of the conveyance visually inspects the sent bumper 1. As shown in FIG. 1, at this time, the second inspector 201 grasps the evaluation information from the defect evaluation unit 6 as information of “a place to be noticed in the inspection” displayed on the inspection result projector 15. The visual inspection can be advanced with particular emphasis on that location.
  • FIG. 4 shows an imaging unit 300 of the surface defect inspection apparatus 100.
  • FIG. 4A is a plan view of the imaging unit 300 when the imaging unit 300 is in a posture facing the surface to be inspected facing upward
  • FIG. 4B is a front view of the imaging unit 300
  • FIG. is there.
  • the imaging unit 300 is composed of a unit frame 300a having a basically rectangular parallelepiped shape, and a vertically extending direction from both ends in the longitudinal direction (the direction of the arrow L1 in FIG. 4A) of the unit frame 300a. Extending swing support frame And a memory section 300b.
  • the upper end surface of the unit frame 300a is configured as a lighting unit 3.
  • a large number of light emitting elements 30 are arranged in a repeating layout in which a hexagonal shape is repeated as one unit.
  • a large number of light emitting elements 30 constitute one light emitting surface 3a as a whole (see FIG. 5).
  • the lens surfaces 4a that is, imaging surfaces
  • the lens surfaces 4a that is, imaging surfaces
  • the plurality of imaging cameras 4 are juxtaposed at equal intervals along the longitudinal direction of the unit frame 300a.
  • ten imaging cameras 4 are provided.
  • a DC power supply 300c for the imaging camera 4 and the light emitting element 30 is provided inside the unit frame 300a.
  • the imaging unit 300 is provided at the tip of the swing support frame 300b and is supported by a pair of left and right support shafts 300d. These support shafts 300d are configured to be rotatable around the axis and to be movable in the vertical direction and the front-rear direction with respect to the device frame 100a of the surface defect inspection device 100.
  • FIG. 2 is a diagram also showing a frontal force orthogonal to the transport path of the apparatus frame 100a.
  • the transport robot 2 also moves to the left with a rightward force.
  • FIG. 3 is a side view of the apparatus frame 100a as viewed from the entry side force of the transfer robot 2.
  • FIG. 3 is a side view of the apparatus frame 100a as viewed from the entry side force of the transfer robot 2.
  • the device frame 100a is configured as a gate-like structure in a side view and a rectangular structure in a front view.
  • the apparatus frame 100a is provided with a traveling frame 100b movable in the left-right direction (a direction along the transport direction) when viewed from the front, and an elevating frame 100c movable up and down.
  • the lifting frame 100c is configured to be vertically movable along a rail rc provided on the traveling frame 100b. This vertical movement is performed by a lifting / lowering motor Mc (see FIG. 3) provided at the center of the traveling frame 100b.
  • the movement of the traveling frame 100b along the transport direction is performed by the rail rb, the traveling motor Mb, and the traveling motor Mb arranged above the apparatus frame 100a. This is executed by the drive transmission mechanism that transmits the driving force to the Ob.
  • This drive transmission mechanism also has a pair of gears and an endless chain belt.
  • a mechanism for adjusting the swing posture of the imaging unit 300 is provided near the tip of the swing support frame 300b by reducing the rotation of the rotating motor Md and the rotating motor Md. This is realized by a gear transmission mechanism G that transmits the pair of left and right support shafts 300d.
  • a laser sensor 400 is provided on the side of the device frame 100a. The laser sensor 400 detects the position of the surface portion of the bumper 1 currently being inspected by the imaging unit 300 and the inclination of the surface (the inclination shown in FIG. 2). Information from the laser sensor 400 is sent to the host computer 14 having a function as a copying and controlling device.
  • the host computer 14 generates a control command based on the shape information of the bumper 1 and the transfer position information of the transfer robot 2. Then, the control information is corrected based on the detection information from the laser sensor 400, and the control information is sent to the respective motors of the lifting motor Mc, the traveling motor Mb, and the rotating motor Md. Thereby, the image pickup unit 300 is automatically controlled so as to take an appropriate positional relationship with respect to the surface to be inspected.
  • the appropriate positional relationship is such that the optical axis of the imaging camera 4 is the normal direction of the inspection surface, the light emitting surface 3a is parallel to the inspection surface, and the light emitting surface is Both the 3a and the imaging surface (that is, the lens surface 4a) have a surface force to be inspected at a predetermined distance.
  • the position and orientation of the imaging unit 300 with respect to two different inspected surfaces are schematically indicated by one solid line and the other by a dashed line.
  • the main system of the imaging inspection in the surface defect inspection apparatus 100 is an illumination unit 3 that illuminates the painted surface of the bumper 1, which is the inspection surface, and the inspection unit illuminated by the illumination unit 3 It comprises an imaging camera 4 for imaging a surface and an image processing controller 5.
  • the image processing controller 5 uses the output signal from the imaging camera 4 to evaluate the presence of a defect on the surface to be inspected and to output the evaluation defect.
  • the imaging camera 4 is focused on the light emitting surface 3a projected on the inspection surface instead of the inspection surface, in other words, the imaging camera 4 is projected on the inspection surface.
  • Light emitting element 3 described later By capturing 0 images, more accurate inspections can be realized!
  • the image processing controller 5 is positioned as a lower computer with respect to the host computer 14.
  • the image processing controller 5 includes a monitor 12 and a printer 13 as output devices connected to an output unit 10 of the image processing controller 5 itself.
  • the image processing controller 5 has an image input unit 7 and a defect evaluation unit 6 in addition to the illumination / imaging control unit 9 for controlling the illumination unit 3.
  • the image input unit 7 takes in an output signal from the imaging camera 4 and develops it in the memory 8 as digital image data (hereinafter simply referred to as an input image).
  • the defect evaluation unit 6 performs a defect evaluation using the input image.
  • the image processing controller 5 can transmit data to the host computer 14 via the communication unit 11.
  • the host computer 14 stores information on the bumper 1 to be inspected (which is downloaded to the image processing controller 5 as necessary) or operation information on the transfer robot 2 as a transfer device. Further, the defect information of the painted surface generated by the image processing controller 5 is also uploaded from the image processing controller 5 to the host computer 14 and stored therein.
  • the visual inspection station includes an inspection result projector 15 and a printer, which are controlled by a terminal connected to the host computer 14 via a network. Thereby, based on the defect information sent from the image processing controller 5 via the host computer 14, the defect position and the like can be instructed to the inspector via the inspection result projector 15.
  • the imaging unit 300 is controlled to follow so that the three conditions are simultaneously satisfied. That is, the light emitting surface 3a of the illumination unit 3 and the lens surface (corresponding to the image capturing surface) 4a of the imaging camera 4 face the surface to be inspected of the bumper 1 transported by the transport robot 2, and the light emitting surface 3a and the image capturing surface That is, the normal line of 4a and the normal line of the surface to be inspected match, and the separation distance from the light emitting surface 3a and the imaging surface 4a to the surface to be inspected is constant.
  • the illumination unit 3 includes a large number of light emitting elements 30 (hereinafter, referred to as LED elements in this embodiment, which are LED elements).
  • the hexagonal layout pattern has a layout pattern of It has a configuration in which the LED elements 30 are arranged consecutively (while holding between adjacent LED elements 30) so as to be repeated a plurality of times.
  • the hexagonal layout pattern is a force that evenly covers the entire surface of the rectangular light emitting surface 3a. In FIG. 4 (a), only some of them are shown, and the rest are omitted.
  • the remaining space not occupied by the LED elements 30 is referred to herein as the surface 31 and is a black or other dark, non-luminous plate surface.
  • the lens surfaces 4a of the imaging camera 4 are located on the ten dark surfaces 31 which are equally spaced apart on the axis along the longitudinal direction of the unit frame 300a among these surfaces 31. . Thereby, a configuration in which the plurality of imaging cameras 4 are incorporated in the illumination unit 3 is realized.
  • the image processing controller 5 has a CPU as a core member, and a functional unit for performing various operations of the surface defect inspection apparatus 100 is constructed by hardware and / or software.
  • the defect evaluation unit 6 includes a preprocessing unit 60A that converts the input image developed in the memory 8 into a form suitable for defect detection, and a preprocessing unit 60A that uses the preprocessed input image on the inspection target surface. And a defect determination unit 60B that finds the defect of the defect.
  • the pre-processing unit 60A includes a luminance adjustment unit 61 that performs luminance adjustment on the input image, and a binarization processing unit 62 that performs binarization processing on the input image whose luminance has been adjusted.
  • the brightness adjustment unit 61 of this embodiment performs not only gamma adjustment but also brightness adjustment for each pixel area. In the brightness adjustment for each pixel area, the brightness level of the luminescent image included in the input image reaches the brightness level of the luminescent image of the LED element obtained from the normal inspection surface, which serves as a reference for each paint color and paint surface. Is adjusted as follows.
  • the binarization processing unit 62 includes a binarization threshold determination unit 62a and an image feature extraction unit 62b.
  • the binarization threshold determination unit 62a determines the binarization threshold from the grayscale histogram of the input image by a statistical method.
  • the image feature extraction unit 62b applies a smoothing filter to the input image to eliminate noise, and applies an edge enhancement filter such as a Sobel filter to enhance the contour of the luminescent image or the defective image.
  • FIG. 1 An example of an input image binarized by the binarization processing unit 62 is conceptually shown in FIG.
  • the high-luminance area is displayed in white. Therefore, the emission image of the LED element group continuously arranged in the hexagonal layout pattern is displayed as a continuously connected white contour line of the hexagonal spread.
  • the painted surface area facing the dark surface 31 is displayed as a dark area. If a paint defect exists in the paint surface area, it is displayed as an area (isolated point) that floats independently in white in the dark area as shown in Fig. 7 due to irregular reflection by the irradiation light of the peripheral force of the paint defect. .
  • the defect detection is performed in a region where the luminance is prominent (a white region in this embodiment) in the binary image, and is not continuous in a predetermined pattern. It is only necessary to find an isolated point.
  • a well-known image processing algorithm for searching for a continuous pixel while having a predetermined level of luminance value (density value) or for searching for an isolated area can be used.
  • the emission image of the LED element 30, which should originally appear as a continuous line, is interrupted, and the interrupted portion is erroneously detected as a coating defect.
  • the discontinuity of the emission image is caused by a change in the reflection characteristic with respect to the irradiation light based on the shape of the inspection surface (here, the painted surface).
  • the defect determination unit 60B is substantially constituted by the following program.
  • the defect determination unit 60B includes a defect candidate extraction unit 63, a defect candidate selection unit 64, an image mask generation unit 65, a label setting unit 66, an area calculation unit 67, and a defect determination unit 68. ing.
  • the defect candidate extraction unit 63 detects a non-consecutive independent pixel region having a predetermined number of pixels or less as an isolated point, and sets it as a defect candidate.
  • the defect candidate selection unit 64 excludes, from the defect candidates, the defect candidates included in the region indicating the light emission image of the LED elements 30 arranged continuously.
  • the image mask generation unit 65 integrates an unneeded image region such as an isolated point region and a background excluded from the defect candidates by the defect candidate selection unit 64 and performs a mask process as a non-defect determination target region.
  • the label setting unit 66 performs a labeling process of assigning different labels (numbers) to different defect candidate areas in order to identify a plurality of defect candidate areas located outside the image mask.
  • the area calculator 67 calculates the area of each labeled defect candidate area.
  • defect The determination unit 68 determines the defect candidate as a true defect based on the area information from the area calculation unit 67, and writes it to the defect map.
  • the defect candidate selection unit 64 includes a defect candidate time-series determination unit 64a and a light emission image discontinuous portion search unit 64b.
  • the defect candidate time series determination unit 64a determines whether or not the image candidates sequentially sent from the imaging camera 4 have been extracted as defect candidates a predetermined number of times in order to select the defect candidates extracted by the defect candidate extraction unit 63. By checking, it is possible to prevent suddenly occurring bright areas from being recognized as defect candidates.
  • the luminescence image discontinuous portion searching unit 64b checks whether the extracted defect candidate (isolated point) is located on an extension of the continuous luminescence image. As a result, it is possible to prevent the discontinuous portion of the light emission image from being recognized as a defect candidate.
  • the search for the non-continuous portion of the luminescent image is performed by using a shape feature extraction algorithm or the like that extracts a dark region located in an extended line region of the discontinuous portion while searching for consecutive luminescent image pixels. It is possible. The isolated points existing in the discontinuous region are excluded from the defect candidates.
  • the frame images sequentially sent from the imaging camera 4 via the image input unit 7 are stored in a memory.
  • the brightness (density value) of the captured input image is adjusted by the brightness adjustment unit 61 (# 02).
  • the feature amount of the input image is required.
  • This feature amount can also be used for determining the following binary threshold value and adjusting the lens aperture of the imaging camera 4.
  • the image feature extraction unit 62b After the binary threshold value is determined by the binary threshold value determination unit 62a (# 03), the image feature extraction unit 62b performs smoothing and edge enhancement of the image (# 04). Is binarized to form a binarized image (# 05).
  • an isolated bright pixel area having a predetermined number of pixels is extracted as a defect candidate by the defect candidate extraction unit 63. (# 06).
  • the defect candidate belonging to an isolated point that is instantaneously and locally generated due to disturbance light or the like is excluded from the defect candidate power by the defect candidate time-series determination unit 64a (# 07).
  • a defect candidate belonging to an isolated point located in a discontinuous region of the luminescence image is excluded from the defect candidate power by the luminescence image discontinuous portion searching unit 64b (# 08).
  • the peripheral region including the discontinuous region of the luminescence image found by the luminescence image discontinuous portion search unit 64b is masked by the image mask generation unit 65 as an unnecessary pixel region (# 09).
  • the mask processing is performed on the background area other than the painted surface as the surface to be inspected at the same time.
  • the background area is determined based on the shape information of the bumper 1 as the inspection object to which the force of the host computer 14 is also transmitted and the transfer position information of the transfer robot 2.
  • the transfer position information obtained from the host computer 14 may be different from the actual position, the displacement of the bumper 1 in real time is checked using a laser sensor or the like.
  • the position of the image mask is corrected (# 10).
  • the remaining defect candidates (isolated points) are labeled (# 11), and the area of the isolated points to which each label is assigned is calculated. (# 12), the preset area !, satisfying the area condition (whether the force has an area equal to or larger than the threshold), and determining only the isolated point as a true defect (# 13), its coordinate position and size Is written in the defect map (# 14).
  • the procedure of the defect evaluation of the painted surface by the defect evaluation unit 6 is completed.
  • the visual inspection station 203 performs a defect collation.
  • the defect matching is performed by assigning an ID that matches the ID of the bumper carried into the visual inspection station 203 among the defect maps sent from the image processing controller 5 via the host computer 14. This is performed using
  • the inspection result projector 15 in order to facilitate the collation work by the inspector, it is convenient to operate the inspection result projector 15 so as to point out a defective portion based on the corresponding defect map.
  • the defect information based on such a defect map is output on paper by a printer 13 connected to the output unit 10 of the surface defect inspection apparatus 100, and the output paper is attached to the bumper 1. It may be.
  • the illumination unit 3 is configured by the LED element group continuously arranged in a hexagonal mesh.
  • the mesh form may be other than hexagonal, and the light emitting element 30 may be other than the LED element.
  • any inspected surface having a force surface defect which is an example of inspecting a painted surface of an automobile body (particularly, a bumper), can be inspected.
  • An example of this type is surface inspection of press-formed products.
  • the optical axis of the imaging camera 4 which is the most preferable for performing the copying, is the normal direction of the surface to be inspected (the copying condition 1), and the light emitting surface is
  • This figure shows a copying apparatus that satisfies the relationship that is parallel to the surface to be inspected (scanning condition 2), the light emitting surface and the imaging surface are both at a predetermined distance from the surface to be inspected (scanning condition 3).
  • the copying conditions copying that satisfies at least one of the above-described copying conditions 1 to 3 may be performed, and the other conditions may be processed by the image processing side.
  • the input image is converted into a binary image for defect detection.
  • defect detection by using a ternary image, which is not limited to the binary image of the input image, and by using a multi-value image.
  • the inspection system 200 is arranged in the order of the stock station 202, the surface defect inspection apparatus 100 according to the present invention, and the visual inspection station 203.
  • this system is to be manufactured and inspected with predetermined surface processing (painting, press molding, etc.)
  • a stock station, a processing unit that performs painting, etc., a surface defect inspection device, and a visual inspection station are arranged in this order. Therefore, each process unit is to be arranged.
  • the light emitting surface of the light emitting element and the imaging surface of the imaging camera are located on the same plane, but the two surfaces are located at different positions due to the separation distance of the surface force to be inspected. It is a little in
  • the surface defect inspection apparatus that is active in the present invention is particularly suitable for use in automobile bodies such as bumpers. It is suitable for surface inspection of inspected surfaces with surface defects, including painted surfaces of die and press-formed products.
  • FIG. 1 is an explanatory view showing a schematic configuration of an inspection system employing a surface defect inspection apparatus according to the present invention.
  • FIG. 2 is an explanatory view showing a schematic overall configuration of a surface defect inspection apparatus according to the present invention.
  • FIG. 3 is an explanatory view showing a schematic overall configuration of a surface defect inspection apparatus according to the present invention.
  • FIG. 5 is an explanatory diagram showing a control and information processing system of an imaging unit of the surface defect inspection apparatus according to the present invention.
  • FIG. 6 is a functional block diagram showing a configuration of a defect evaluation unit mounted on the surface defect inspection apparatus.
  • FIG. 7 is an explanatory diagram for explaining a binarized input image
  • FIG. 8 is an explanatory view for explaining an isolated point present at a break in a light emission image
  • FIG. 9 is a flowchart showing a procedure of defect evaluation of a surface to be inspected by a defect evaluation unit.
  • FIG. 10 is an explanatory diagram showing the configuration of a conventional bumper inspection system
  • FIG. 11 An explanatory view of an inspection principle showing a stripe-shaped irradiation light.
  • LED element Light emitting element
  • Defect candidate (isolated point) extraction unit Defect candidate selection unit Image mask generation unit Label setting unit Area calculation unit Defect judgment unit

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

A surface defect examining device (100) comprising an irradiation system provided with a plurality of light-emitting elements (30) arranged in a predetermined layout pattern and an imaging camera (4) for imaging a surface to be examined irradiated with irradiation light from the light-emitting elements, wherein the layout pattern is such that the light-emitting elements are arranged continuously to leave dark surfaces (31) of predetermined shapes inside the layout pattern, the imaging camera is arranged on at least one dark surface to receive the light emitted from each light-emitting element and reflected off the surface being examined, and a copying unit (100a, 100b, 100c, Mb, Mc, Md) for moving the plurality of light-emitting elements and the imaging camera in one united body along the surface being examined are provided. The arrangement of the irradiation system and the imaging system is simple and rational, and highly reliable examination can be ensured.

Description

表面欠陥検査装置  Surface defect inspection equipment
技術分野  Technical field
[0001] この発明は、所定のレイアウトパターンで配置された複数の発光素子と、前記発光 素子の照射光によって照明された被検査面を撮像する撮像カメラと、前記撮像カメラ の撮像情報を出力する出力部とを備え、前記出力部からの出力信号を評価して前記 被検査面における欠陥を検知する欠陥評価部を備えた表面欠陥検査装置に関する 背景技術  [0001] The present invention provides a plurality of light emitting elements arranged in a predetermined layout pattern, an imaging camera for imaging a surface to be inspected illuminated by light emitted from the light emitting elements, and imaging information of the imaging camera. BACKGROUND OF THE INVENTION 1. Field of the Invention
[0002] この種の表面欠陥検査装置の代表例として、自動車ボディ(具体的にはバンパー) の塗装面の検査に使用される技術を挙げることができる。このような表面欠陥検査で は、被検査面としての塗装面上に存する凹凸や傷等が、その検査対象となる。  [0002] As a typical example of this type of surface defect inspection apparatus, there is a technique used for inspecting a painted surface of an automobile body (specifically, a bumper). In such a surface defect inspection, irregularities, scratches, and the like existing on the painted surface as the surface to be inspected are to be inspected.
特定のパターンを備えた検査光を使用する検査技術の例として、ストライプ状の明 B音パターンを作り出す照射光で車両ボディの塗装面を照明し、照明された塗装面を 撮像カメラにより撮像し、得られる撮像画像を用いて表面検査を行う技術が知られて いる。  As an example of an inspection technique that uses inspection light with a specific pattern, a painted surface of a vehicle body is illuminated with irradiation light that creates a bright B-tone sound pattern, and the illuminated painted surface is imaged by an imaging camera. A technique of performing a surface inspection using an obtained captured image is known.
[0003] この技術を用いた検査システムの具体的構成を図 10に例示した。図 10のものと同 様の検査原理を使用する技術は、下記の特許文献 1に記されて 、る。  [0003] Fig. 10 illustrates a specific configuration of an inspection system using this technology. A technique using the same inspection principle as that of FIG. 10 is described in Patent Document 1 below.
すなわち、図 10に示す欠陥検査システムでは、検査対象となる複数のバンパーが ストックステーション 202にストックされており、第 1の検査員 204がストックステーショ ン 202からバンパー 1を取り出し、ロボット 22のアームに取り付ける。ロボット 22は、ァ ームを回転軸 22d周りに回転させることで、バンパー 1の姿勢を変更できる。  That is, in the defect inspection system shown in FIG. 10, a plurality of bumpers to be inspected are stocked at the stock station 202, and the first inspector 204 removes the bumper 1 from the stock station 202 and attaches it to the arm of the robot 22. Attach. The robot 22 can change the posture of the bumper 1 by rotating the arm around the rotation axis 22d.
そして、横縞状の発光パターンを持つ照明装置 220が、ロボット 22に取り付けられ たバンパー 1を囲むように備えられている。発光パターンは、バンパー 1の回転軸 22 dと平行に延びるストライプ状の明暗パターンである。  An illumination device 220 having a horizontal stripe light emission pattern is provided so as to surround the bumper 1 attached to the robot 22. The light emission pattern is a stripe-like light / dark pattern extending parallel to the rotation axis 22d of the bumper 1.
[0004] ロボット 22によってバンパー 1の姿勢を変更しながら、バンパー 1に写り込んだ照射 光の明暗パターンを複数の撮像カメラ 4によって撮像する。撮像結果は解析側へ送 られ、欠陥の有無等の評価が行われる。 While the posture of the bumper 1 is changed by the robot 22, the light and dark patterns of the irradiation light reflected on the bumper 1 are imaged by the plurality of imaging cameras 4. The imaging result is sent to the analysis side. Then, the presence or absence of a defect is evaluated.
ロボット 22の下手側に位置する第 2の検査員 201は、撮像を終了したバンパー 1を ロボット 22から取り外し、目視検査等の後工程を行う。  The second inspector 201 located on the lower side of the robot 22 removes the bumper 1 whose imaging has been completed from the robot 22, and performs a post-process such as a visual inspection.
この後工程の第 2の検査員には、既に、当該バンパー 1に関する欠陥評価部による 評価結果と、目視検査において注目すべき箇所の情報とが送られている。従って、 第 2の検査員は迅速確実に作業を進めることができる。  The evaluation result of the bumper 1 by the defect evaluation unit and the information of the spot to be noticed in the visual inspection have already been sent to the second inspector in the subsequent process. Therefore, the second inspector can proceed quickly and reliably.
[0005] 図 11は、上記の表面欠陥検査の基本原理を示して 、る。 FIG. 11 shows the basic principle of the above-described surface defect inspection.
図 11に示すように、塗装面を矢印 R方向に移動させて行けば、塗装面上にある凹 凸面などの欠陥の画像力 R方向と直交する方向(図 11における紙面表裏方向)の 座標を変えることなぐその方向座標 (R座標)を変えながら撮像される。これを利用し て、欠陥の検出を行うことができる。即ち、撮像画像において、欠陥領域は、明のスト ライプ部位では周囲より暗ぐ暗のストライプ部位では周囲より明るく撮像される。従つ て、この現象を利用すると、欠陥をストライプの明部分及び暗部分の中間階調画像と して捕ら免ることがでさる。  As shown in Fig. 11, if the painted surface is moved in the direction of arrow R, the image force of a defect such as a concave or convex surface on the painted surface becomes a coordinate in the direction orthogonal to the R direction (the direction of the front and back of the paper in Fig. 11). Images are taken while changing the direction coordinates (R coordinates) without changing. This can be used to detect defects. That is, in the captured image, the defective area is imaged darker than the surroundings in a bright stripe portion and brighter than the surroundings in a dark stripe portion. Therefore, using this phenomenon, defects can be avoided as halftone images of the bright and dark portions of the stripe.
[0006] さらに、下記の特許文献 2には、表面の周期的な凹凸である「柚子肌(ゆずはだ)」 と呼ばれる欠陥を検出する技術が記されている。ここでは、照射光である明暗ストライ プの明領域と暗領域との境界線上での撮像画像のゆらぎにより塗装厚みの斑 (まだ ら)を見出そうとしている。この検査手法では、ストライプの境界線画像に位置ずれを 起こさせるような乱れが、塗装面の比較的広い範囲に渡って発生している塗装面が 検出対象となる。 [0006] Further, Patent Literature 2 below describes a technique for detecting a defect called "Yuzuhada", which is a periodic unevenness on the surface. Here, we are trying to find spots (mottle) in the paint thickness due to fluctuations in the captured image on the boundary between the light and dark areas of the light and dark stripes that are the irradiation light. In this inspection method, the paint surface where the disturbance that causes the displacement of the boundary image of the stripe occurs over a relatively wide range of the paint surface is detected.
しかし、これらの従来技術による表面欠陥検査手法では、照明部がストライプ状の 明暗パターンで塗装面を照明するので、照射光の回り込みは、ストライプ状の明暗パ ターンと直交 (横断)する方向でし力発生しない。その結果、ストライプの延長方向と 同方向に欠陥が存在した場合は、欠陥を捕らえにくい。  However, in these conventional surface defect inspection methods, the illuminating part illuminates the painted surface with a stripe-like light-dark pattern, so that the irradiation light wraps around in a direction orthogonal (crossing) to the stripe-like light-dark pattern. No force is generated. As a result, if a defect exists in the same direction as the stripe extending direction, it is difficult to catch the defect.
[0007] さらに、これらの従来技術による表面欠陥検査手法では、実質的に凸状欠陥しか 抽出できないという欠点がある。また、写り込み箇所における明暗差を得難いので、 2 値価処理で誤検出が出やすい。カ卩えて、意匠ライン及びその近傍の欠陥を捉えにく い。 [0008] し力も、図 10と図 11に示すように、検査に使用する照射光の光軸と、撮像カメラの 光軸とが交差するために、撮像カメラに取り込まれる光量が充分でない。また、このよ うな検査システムにおいては光学系の複雑さから、欠陥評価側の処理も複雑になら ざるを得ない。同時に、照射系と撮像系との位置関係を厳密なものとする必要が生じ る。 [0007] Furthermore, these conventional surface defect inspection techniques have the disadvantage that only convex defects can be substantially extracted. In addition, since it is difficult to obtain the difference in brightness at the reflected portion, erroneous detection is likely to occur in the binary value processing. It is difficult to catch design lines and defects near them. As shown in FIGS. 10 and 11, the optical power of the irradiation light used for the inspection and the optical axis of the imaging camera intersect with each other, so that the amount of light taken into the imaging camera is not sufficient. Also, in such an inspection system, the processing on the defect evaluation side must be complicated due to the complexity of the optical system. At the same time, it is necessary to make the positional relationship between the irradiation system and the imaging system strict.
[0009] 特許文献 1 :特開平 8— 145906号公報(図 5、図 9及び図 15)  Patent Document 1: JP-A-8-145906 (FIGS. 5, 9 and 15)
特許文献 2:特開平 9— 126744号公報(図 13)  Patent Document 2: JP-A-9-126744 (FIG. 13)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0010] 従って、本発明の目的は、所定のレイアウトパターンで配置された複数の発光素子 Therefore, an object of the present invention is to provide a plurality of light emitting elements arranged in a predetermined layout pattern.
(照射系)と、その発光素子の照射光によって照明された被検査面を撮像する撮像力 メラ (撮像系)とを備える表面欠陥検査装置において、照射系と撮像系との構成がシ ンプルかつ合理的であり、信頼性の高い検査を実施可能な表面欠陥検査装置を得 ることにめる。  (Irradiation system) and a surface defect inspection apparatus having an imaging power camera (imaging system) for imaging the surface to be inspected illuminated by the irradiation light of the light emitting element, the configuration of the irradiation system and the imaging system is simple and The objective is to obtain a surface defect inspection device that can perform reasonable and highly reliable inspections.
課題を解決するための手段  Means for solving the problem
[0011] 上記目的を達成するために、本発明の第 1の特徴構成は、 [0011] In order to achieve the above object, a first characteristic configuration of the present invention is:
所定のレイアウトパターンで配置された複数の発光素子と、前記発光素子の照射 光によって照明された被検査面を撮像する撮像カメラと、前記撮像カメラの撮像情報 を出力する出力部とを備え、前記出力部からの出力信号を評価して前記被検査面に おける欠陥を検知する欠陥評価部を備えた表面欠陥検査装置であって、  A plurality of light emitting elements arranged in a predetermined layout pattern, an imaging camera for imaging a surface to be inspected illuminated by irradiation light of the light emitting elements, and an output unit for outputting imaging information of the imaging camera, What is claimed is: 1. A surface defect inspection apparatus comprising: a defect evaluation unit that evaluates an output signal from an output unit and detects a defect on the inspection surface,
前記レイアウトパターンが、内側に所定形状の喑面を残すように前記発光素子を連 続的に配置させたものであり、  The layout pattern is such that the light emitting elements are continuously arranged so that a surface of a predetermined shape is left inside.
少なくとも一つの前記暗面には、前記撮像カメラが前記被検査面から反射される前 記各発光素子の照射光を受光するように配置され、  On at least one of the dark surfaces, the imaging camera is arranged to receive the irradiation light of each of the light-emitting elements reflected from the surface to be inspected,
前記複数の発光素子と前記少なくとも一つの撮像カメラとを一体として前記被検査 面に沿って移動させる倣い装置を設けてあることにある。  A copying apparatus is provided which moves the plurality of light emitting elements and the at least one imaging camera integrally along the surface to be inspected.
[0012] この欠陥検査装置においても、その検査原理として、照射光の回り込みを利用する 力 ここでは、内側に所定形状の喑面を残すように発光素子を連続的に配置したレイ アウトパターンを使用する。 [0012] Also in this defect inspection apparatus, as a principle of inspection, a force utilizing wraparound of irradiation light is used. Here, a ray in which light emitting elements are continuously arranged so as to leave a surface of a predetermined shape inside. Use out patterns.
このようにすると、例えば、塗装面が平面で、発光素子のレイアウトパターンが六角 形で、塗装面の法線方向に照射光の光軸および撮像カメラの光軸が向けられている 場合、塗装面に欠陥がなければ撮像は六角形の明暗パターンのみとなる。しかし、 欠陥がある場合、この欠陥に基づく中間輝度領域が形成され、図 7に示すように、例 えば六角の内部に在る暗面中に浮かぶ孤立点として現れる。従って、この欠陥起因 の像を撮像カメラで確実に撮像することができる。  In this case, for example, when the painted surface is flat, the layout pattern of the light emitting elements is hexagonal, and the optical axis of the irradiation light and the optical axis of the imaging camera are oriented in the normal direction of the painted surface, the painted surface If there is no defect in the image, only the hexagonal light / dark pattern is imaged. However, if there is a defect, an intermediate luminance area based on this defect is formed, and as shown in FIG. 7, it appears as, for example, an isolated point floating on a dark surface inside a hexagon. Therefore, the image resulting from this defect can be reliably captured by the imaging camera.
[0013] しかも、暗面に撮像カメラを配置することで、照射光の光軸方向と撮像側の光軸方 向を一致させることが可能となり、所謂、落射状態での撮像検査が可能となる。  [0013] Moreover, by arranging the imaging camera on a dark surface, it is possible to make the optical axis direction of the irradiation light coincide with the optical axis direction of the imaging side, and so-called imaging inspection in an epi-illumination state becomes possible. .
そして、出力部力もの出力信号を評価して被検査面における欠陥を検知する欠陥 評価部を設けておけば、画像処理技術として確立された技術を利用して、自動的に 欠陥箇所を評価、割り出しできる。  By providing a defect evaluation unit that evaluates the output signal of the output unit and detects a defect on the surface to be inspected, it automatically evaluates the defect location using technology established as image processing technology. Can be determined.
また、前記倣い (ならい)装置を設けることで、これら光学機器 (複数の発光素子と撮 像カメラ)を備えて構成される撮像ユニットを、被検査面に対する位置関係が一定と なるように倣わせて、自動的に動作し且つ信頼性の高い欠陥検査を実行できる。尚、 前記位置関係とは、発光素子の光軸と撮像カメラの光軸との関係、さらに、照射面か ら被検査面までの距離や撮像面力ゝら被検査面までの距離である。  Also, by providing the above-mentioned copying apparatus, the imaging unit including these optical devices (a plurality of light emitting elements and an imaging camera) can be copied so that the positional relationship with respect to the surface to be inspected is constant. As a result, a highly reliable defect inspection that operates automatically and can be performed. Note that the positional relationship is a relationship between the optical axis of the light emitting element and the optical axis of the imaging camera, and further, the distance from the irradiation surface to the inspection surface and the distance from the imaging surface force to the inspection surface.
[0014] 本発明の第 2の特徴構成は、前記複数の発光素子の発光面と、前記少なくとも一 つの撮像カメラの撮像面とが同一平面内に設けられ、前記同一平面内にある前記発 光面と前記撮像面とが前記倣い装置によって、被検査面に対して平行に維持される ことにある。  [0014] A second characteristic configuration of the present invention is that the light-emitting surfaces of the plurality of light-emitting elements and the imaging surface of the at least one imaging camera are provided in the same plane, and the light-emitting surface in the same plane is provided. A surface and the imaging surface are maintained parallel to the surface to be inspected by the copying apparatus.
[0015] すなわち、この種の検査にあっては、撮像された画像の明るさ、及び、その画像部 位の位置等は、発光面と撮像面とに対する被検査面の位置関係に大きく左右される 。その点、発光面と撮像面とを同一の平面上に位置させることで、これらが一体ィ匕し た撮像ユニットを容易に構築できる。その結果、この同一平面力も被検査面までの距 離の調節だけで、検査における光学系の構成を特定することが可能となり、検査の信 頼性が高められる。  [0015] That is, in this type of inspection, the brightness of a captured image, the position of the image portion, and the like largely depend on the positional relationship between the light-emitting surface and the imaging surface. . In this regard, by arranging the light emitting surface and the imaging surface on the same plane, an imaging unit in which these are integrated can be easily constructed. As a result, it is possible to specify the configuration of the optical system in the inspection only by adjusting the distance to the surface to be inspected with the same plane force, and the reliability of the inspection is improved.
[0016] 本発明の第 3の特徴構成は、前記レイアウトパターンが、所定方向において繰り返 される繰り返しレイアウトパターンであることにある。 [0016] A third characteristic configuration of the present invention is that the layout pattern is repeated in a predetermined direction. It is a repeated layout pattern to be performed.
[0017] このような構成とすれば、例えば、発光素子のレイアウトパターン部位とその内部に 設けられる暗面とを一つの単位として、撮像に対する画像処理を、同一の基準で繰り 返し行うことができる。また、検査中に被検査面が移動する場合、同一の被検査面部 位を繰り返し検査できるので、当該被検査面部位にっ 、て複数の撮像情報を得て、 信頼性の高 、検査を行うことができる。  [0017] With this configuration, for example, image processing for imaging can be repeatedly performed on the same basis using the layout pattern portion of the light emitting element and the dark surface provided therein as one unit. . In addition, when the surface to be inspected moves during the inspection, the same inspected surface portion can be repeatedly inspected, so that a plurality of pieces of imaging information is obtained from the inspected surface portion to perform the inspection with high reliability. be able to.
[0018] 本発明の第 4の特徴構成は、前記被検査面を前記複数の発光素子及び前記撮像 カメラに対して相対搬送移動する搬送機構を備え、前記レイアウトパターンの繰り返 し方向が前記相対搬送の方向であることにある。  [0018] A fourth characteristic configuration of the present invention includes a transport mechanism that transports the inspection surface relative to the plurality of light-emitting elements and the imaging camera, and the repeating direction of the layout pattern is the relative direction. It is in the direction of conveyance.
[0019] すなわち、この種の表面欠陥検査にあっては、被検査面が自動的に移動する状態 で検査される場合もある。しかし、本発明の第 4の特徴構成による表面欠陥検査装置 では、所定のレイアウトパターンの繰り返しで、順次、特定の被検査面を繰り返して撮 像し、撮像情報を得るので、信頼性の高い検査を行える。  That is, in this type of surface defect inspection, the inspection may be performed with the surface to be inspected automatically moving. However, in the surface defect inspection apparatus according to the fourth characteristic configuration of the present invention, a specific inspection surface is sequentially and repeatedly imaged by repeating a predetermined layout pattern to obtain imaging information. Can be performed.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0020] 本発明を添付の図面に従って、より詳細に記述する。図 1は、本発明の表面欠陥検 查装置 100を採用した検査システム 200の全体構成を示す。この検査システム 200 は、例えば、自動車のバンパー 1の表面欠陥検査を目的とする。  [0020] The present invention will be described in more detail with reference to the accompanying drawings. FIG. 1 shows an overall configuration of an inspection system 200 employing a surface defect inspection apparatus 100 of the present invention. This inspection system 200 is intended, for example, for surface defect inspection of a bumper 1 of an automobile.
[0021] 表面欠陥検査装置 100は、この検査システム 200において、ストックステーション 20 2の下手側、目視検査ステーション 203の上手側に配設されている。表面欠陥検査 装置 100には、本願独特の構成を有する撮像ユニット 300が備えられている。  In this inspection system 200, the surface defect inspection apparatus 100 is disposed on the lower side of the stock station 202 and on the upper side of the visual inspection station 203. The surface defect inspection apparatus 100 includes an imaging unit 300 having a configuration unique to the present application.
[0022] この撮像ユニット 300は、バンパー 1の外形形状に倣って倣い動作することで、検査 を従来よりも格段に高 、精度並びに高 、信頼性で行うことを可能として 、る。  [0022] The imaging unit 300 performs a copying operation following the outer shape of the bumper 1, thereby making it possible to perform inspection with much higher accuracy, higher accuracy, and higher reliability than before.
以下、検査システム 200の構成、表面欠陥検査装置 100における撮像ユニット 300 の倣い装置の構成、及び、撮像画像の処理について詳細に説明する。  Hereinafter, the configuration of the inspection system 200, the configuration of the copying apparatus of the imaging unit 300 in the surface defect inspection apparatus 100, and the processing of the captured image will be described in detail.
[0023] 〔検査システムの構成〕  [Configuration of Inspection System]
図 1において、検査対象のバンパー 1は、搬送ロボット 2によって、図の右上側から 左下側へ搬送される。そして、この搬送方向に沿って、ストックステーション 202、表 面欠陥検査装置 100、目視検査ステーション 203が設けられている。図示するように 、検査は一対のバンパー 1を一単位として行われる。 In FIG. 1, a bumper 1 to be inspected is transferred by a transfer robot 2 from the upper right side to the lower left side in the figure. A stock station 202, a surface defect inspection apparatus 100, and a visual inspection station 203 are provided along the transport direction. As shown Inspection is performed using a pair of bumpers 1 as one unit.
[0024] ストックステーション 202から搬送ロボット 2へのバンパー 1の移動が第 1の検査員 20 4により行われ、第 2の検査員 201によって目視検査が行われる。この点に関しては、 前述した従来技術の場合と同様である。 [0024] The movement of the bumper 1 from the stock station 202 to the transfer robot 2 is performed by the first inspector 204, and a visual inspection is performed by the second inspector 201. This is the same as in the case of the above-described conventional technology.
作業の流れに沿って説明すると、第 1の検査員 204が随時、ストックステーション 20 2から一対のバンパー 1を取り出し、搬送ロボット 2 (搬送機構の一例)のバンパー支 持部 2aに取り付ける。  Describing along the work flow, the first inspector 204 takes out the pair of bumpers 1 from the stock station 202 as needed and attaches them to the bumper support 2a of the transfer robot 2 (an example of a transfer mechanism).
[0025] 搬送ロボット 2は、バンパー 1を保持したまま、搬送経路を下手側に移動する。この 移動に際して、バンパー 1の姿勢変更は起こらず、搬送経路に沿って並進移動する のみである。バンパー 1が表面欠陥検査装置 100内に入ると、撮像ユニット 300がバ ンパー 1の表面形状に倣うように、姿勢変更を伴って移動する。後述するように、撮像 ユニット 300の移動中は、撮像ユニット 300の照明部 3が検査面に平行に維持され、 撮像カメラ 4の光軸が検査面の法線方向に維持され、被検査面と撮像ユニット 300と の間の距離は一定に保たれる。  [0025] The transfer robot 2 moves the transfer path to the lower side while holding the bumper 1. During this movement, the posture of the bumper 1 does not change, but only translates along the transport path. When the bumper 1 enters the surface defect inspection apparatus 100, the imaging unit 300 moves with a change in attitude so as to follow the surface shape of the bumper 1. As will be described later, while the imaging unit 300 is moving, the illumination unit 3 of the imaging unit 300 is maintained parallel to the inspection surface, the optical axis of the imaging camera 4 is maintained in the normal direction of the inspection surface, and The distance from the imaging unit 300 is kept constant.
そして、バンパー 1に写り込んだ照射光の明暗パターンが、撮像ユニット 300に備え られる複数の撮像カメラ 4によって撮像される。撮像結果は、解析側である欠陥評価 部 6へ送られ、欠陥の有無等の評価が行われる。  Then, the light and dark pattern of the irradiation light reflected on the bumper 1 is imaged by a plurality of imaging cameras 4 provided in the imaging unit 300. The imaging result is sent to the defect evaluation unit 6 on the analysis side, and the presence or absence of a defect is evaluated.
[0026] 搬送下手側に位置する第 2の検査員 201は、送られてくるバンパー 1を目視検査す る。図 1に示すように、この時、第 2の検査員 201は、欠陥評価部 6からの評価情報を 、検査結果プロジェクタ 15に表示された「検査において注目すべき箇所」の情報とし て把握しており、特にその箇所を重点的に目視検査を進めることができる。  [0026] The second inspector 201 located on the lower side of the conveyance visually inspects the sent bumper 1. As shown in FIG. 1, at this time, the second inspector 201 grasps the evaluation information from the defect evaluation unit 6 as information of “a place to be noticed in the inspection” displayed on the inspection result projector 15. The visual inspection can be advanced with particular emphasis on that location.
[0027] 〔表面欠陥検査装置における撮像ユニットの倣い構成〕  [Coping Configuration of Imaging Unit in Surface Defect Inspection Apparatus]
(a)撮像ユニット 300  (a) Imaging unit 300
図 4は、表面欠陥検査装置 100の撮像ユニット 300を示す。図 4 (a)は上向きの被 検査面と対向姿勢にある時の撮像ユニット 300の平面図、図 4 (b)は同正面図、図 4 ( c)は同平面視の要部詳細図である。これらの図に示すように、撮像ユニット 300は、 基本的に直方体形状を有したユニットフレーム 300aと、このユニットフレーム 300aの 長手方向(図 4 (a)の矢印 L1方向)の両端から上下方向に延出する揺動支持フレー ム部 300bとを備える。 FIG. 4 shows an imaging unit 300 of the surface defect inspection apparatus 100. FIG. 4A is a plan view of the imaging unit 300 when the imaging unit 300 is in a posture facing the surface to be inspected facing upward, FIG. 4B is a front view of the imaging unit 300, and FIG. is there. As shown in these figures, the imaging unit 300 is composed of a unit frame 300a having a basically rectangular parallelepiped shape, and a vertically extending direction from both ends in the longitudinal direction (the direction of the arrow L1 in FIG. 4A) of the unit frame 300a. Extending swing support frame And a memory section 300b.
[0028] ユニットフレーム 300aの上側端面は、照明部 3として構成されている。照明部 3には 、多数の発光素子 30が、六角形状を一つの単位として繰り返す、繰り返しレイアウト で配設されて 、る。多数の発光素子 30は全体として一つの発光面 3aを構成して 、る (図 5を参照)。  [0028] The upper end surface of the unit frame 300a is configured as a lighting unit 3. In the lighting section 3, a large number of light emitting elements 30 are arranged in a repeating layout in which a hexagonal shape is repeated as one unit. A large number of light emitting elements 30 constitute one light emitting surface 3a as a whole (see FIG. 5).
[0029] さらに、照明部 3の幅方向中央には、複数の撮像カメラ 4のレンズ面 4a (即ち撮像面 )が、ユニットフレーム 300aの長手方向に沿って、等間隔で並置されている。図示す る例では、 10個の撮像カメラ 4が備えられている。図 4 (b)に示すように、ユニットフレ ーム 300aの内部には、撮像カメラ 4および発光素子 30用の DC電源 300cが設けら れている。  Further, at the center in the width direction of the illumination unit 3, the lens surfaces 4a (that is, imaging surfaces) of the plurality of imaging cameras 4 are juxtaposed at equal intervals along the longitudinal direction of the unit frame 300a. In the illustrated example, ten imaging cameras 4 are provided. As shown in FIG. 4 (b), a DC power supply 300c for the imaging camera 4 and the light emitting element 30 is provided inside the unit frame 300a.
[0030] (b)倣い装置の構成  (B) Configuration of Copying Device
撮像ユニット 300は、揺動支持フレーム部 300bの先端に設けられて 、る左右一対 の支持軸 300dによって支持されている。これらの支持軸 300dは、その軸心周りに回 転可能で、且つ、表面欠陥検査装置 100の装置フレーム 100aに対して、その上下 方向およびその前後方向で移動可能に構成されて 、る。  The imaging unit 300 is provided at the tip of the swing support frame 300b and is supported by a pair of left and right support shafts 300d. These support shafts 300d are configured to be rotatable around the axis and to be movable in the vertical direction and the front-rear direction with respect to the device frame 100a of the surface defect inspection device 100.
[0031] 図 2は、装置フレーム 100aを搬送経路に直交する正面方向力も見た図であり、同 図にお 、て、搬送ロボット 2は右側力も左方向に移動する。  FIG. 2 is a diagram also showing a frontal force orthogonal to the transport path of the apparatus frame 100a. In FIG. 2, the transport robot 2 also moves to the left with a rightward force.
図 3は、装置フレーム 100aを搬送ロボット 2の侵入側力も見た側面図である。  FIG. 3 is a side view of the apparatus frame 100a as viewed from the entry side force of the transfer robot 2. FIG.
[0032] 図 2と図 3に示すように、装置フレーム 100aは、その側面視が門型で、その正面視 で方形の構造体として構成されて ヽる。  [0032] As shown in Figs. 2 and 3, the device frame 100a is configured as a gate-like structure in a side view and a rectangular structure in a front view.
装置フレーム 100aには、その正面視の左右方向(搬送方向に沿う方向)に移動可 能な走行フレーム 100bと、上下方向に移動可能な昇降フレーム 100cとが備えられ ている。  The apparatus frame 100a is provided with a traveling frame 100b movable in the left-right direction (a direction along the transport direction) when viewed from the front, and an elevating frame 100c movable up and down.
この昇降フレーム 100cは、走行フレーム 100bに設けられたレール rcに沿って上下 方向に移動可能に構成されている。この上下方向移動は、走行フレーム 100bの中 央部位に設けられる昇降モータ Mc (図 3を参照)によって実行される。  The lifting frame 100c is configured to be vertically movable along a rail rc provided on the traveling frame 100b. This vertical movement is performed by a lifting / lowering motor Mc (see FIG. 3) provided at the center of the traveling frame 100b.
[0033] 前記搬送方向に沿った、走行フレーム 100bの移動は、装置フレーム 100aの上方 に配置されたレール rb、走行モータ Mb、及び、走行モータ Mbから走行フレーム 10 Obへ駆動力を伝達する駆動伝達機構によって実行される。この駆動伝達機構は一 対のギヤと無端チェーンベルト等力もなる。 [0033] The movement of the traveling frame 100b along the transport direction is performed by the rail rb, the traveling motor Mb, and the traveling motor Mb arranged above the apparatus frame 100a. This is executed by the drive transmission mechanism that transmits the driving force to the Ob. This drive transmission mechanism also has a pair of gears and an endless chain belt.
[0034] 図 3に示すように、撮像ユニット 300の揺動姿勢を調整する機構は、回転モータ Md と、回転モータ Mdの回転を減速して、揺動支持フレーム部 300bの先端付近に設け られて 、る左右一対の支持軸 300dに伝達するギヤ伝達機構 Gとで実現されて 、る。 図 1と図 2に示すように、装置フレーム 100aの側部には、レーザーセンサ 400が備 えられている。レーザーセンサ 400は、撮像ユニット 300が現時点で検査対象として いるバンパー 1の表面部位の位置および表面の傾き(図 2で示す傾き)を検出する。 レーザーセンサ 400からの情報は、倣 、制御装置としての機能を有するホストコンビ ユータ 14に送られる。  As shown in FIG. 3, a mechanism for adjusting the swing posture of the imaging unit 300 is provided near the tip of the swing support frame 300b by reducing the rotation of the rotating motor Md and the rotating motor Md. This is realized by a gear transmission mechanism G that transmits the pair of left and right support shafts 300d. As shown in FIGS. 1 and 2, a laser sensor 400 is provided on the side of the device frame 100a. The laser sensor 400 detects the position of the surface portion of the bumper 1 currently being inspected by the imaging unit 300 and the inclination of the surface (the inclination shown in FIG. 2). Information from the laser sensor 400 is sent to the host computer 14 having a function as a copying and controlling device.
[0035] ホストコンピュータ 14は、バンパー 1の形状情報、及び、搬送ロボット 2の搬送位置 情報に基づいて制御指令を生成する。そして、レーザーセンサ 400からの検出情報 により制御情報を補正して、昇降モータ Mc、走行モータ Mb、回転モータ Mdの各モ ータに制御情報を送る。これによつて、撮像ユニット 300が被検査面に対して適切な 位置関係をとるように自動制御される。  The host computer 14 generates a control command based on the shape information of the bumper 1 and the transfer position information of the transfer robot 2. Then, the control information is corrected based on the detection information from the laser sensor 400, and the control information is sent to the respective motors of the lifting motor Mc, the traveling motor Mb, and the rotating motor Md. Thereby, the image pickup unit 300 is automatically controlled so as to take an appropriate positional relationship with respect to the surface to be inspected.
[0036] この適切な位置関係とは、図 2に示すように、撮像カメラ 4の光軸が被検査面の法 線方向とされ、発光面 3aが被検査面に対して平行で、発光面 3aおよび撮像面 (すな わちレンズ面 4a)が共に、被検査面力も所定の距離にある関係をいう。図 2では、異 なった 2つの被検査面に対する撮像ユニット 300の位置および姿勢を、一方は実線 で、他方は一点鎖線で模式的に示している。  As shown in FIG. 2, the appropriate positional relationship is such that the optical axis of the imaging camera 4 is the normal direction of the inspection surface, the light emitting surface 3a is parallel to the inspection surface, and the light emitting surface is Both the 3a and the imaging surface (that is, the lens surface 4a) have a surface force to be inspected at a predetermined distance. In FIG. 2, the position and orientation of the imaging unit 300 with respect to two different inspected surfaces are schematically indicated by one solid line and the other by a dashed line.
[0037] 〔撮像画像の処理〕  [Processing of Captured Image]
図 4と図 5に示すように、表面欠陥検査装置 100における撮像検査の主要な系統は 、被検査面であるバンパー 1の塗装面を照明する照明部 3、照明部 3で照明された被 検査面を撮像する撮像カメラ 4、及び、画像処理コントローラ 5から構成される。画像 処理コントローラ 5は、撮像カメラ 4からの出力信号を用いて、被検査面における欠陥 の存在の評価やその評価欠陥の出力を行う。尚、この表面欠陥検査装置 100では、 撮像カメラ 4の焦点を被検査面ではなぐ被検査面に映されている発光面 3aに合わ せることで、言い換えれば、撮像カメラ 4が被検査面に映された、後述する発光素子 3 0の像を撮像することで、より正確な検査を実現して!/、る。 As shown in FIGS. 4 and 5, the main system of the imaging inspection in the surface defect inspection apparatus 100 is an illumination unit 3 that illuminates the painted surface of the bumper 1, which is the inspection surface, and the inspection unit illuminated by the illumination unit 3 It comprises an imaging camera 4 for imaging a surface and an image processing controller 5. The image processing controller 5 uses the output signal from the imaging camera 4 to evaluate the presence of a defect on the surface to be inspected and to output the evaluation defect. In the surface defect inspection apparatus 100, the imaging camera 4 is focused on the light emitting surface 3a projected on the inspection surface instead of the inspection surface, in other words, the imaging camera 4 is projected on the inspection surface. Light emitting element 3 described later By capturing 0 images, more accurate inspections can be realized!
[0038] 画像処理コントローラ 5は、ホストコンピュータ 14に対する下位コンピュータとして位 置付けられる。画像処理コントローラ 5は、画像処理コントローラ 5自体の出力部 10に 接続される出力機器としてのモニタ 12及びプリンタ 13を備えている。また、画像処理 コントローラ 5は、照明部 3の制御を行う照明 ·撮像制御部 9の他に、画像入力部 7及 び欠陥評価部 6を有する。画像入力部 7は、撮像カメラ 4からの出力信号を取り込ん でデジタル画像データ(以下単に入力画像と称する)としてメモリ 8に展開する。欠陥 評価部 6は入力画像を用いて欠陥評価を行う。  [0038] The image processing controller 5 is positioned as a lower computer with respect to the host computer 14. The image processing controller 5 includes a monitor 12 and a printer 13 as output devices connected to an output unit 10 of the image processing controller 5 itself. Further, the image processing controller 5 has an image input unit 7 and a defect evaluation unit 6 in addition to the illumination / imaging control unit 9 for controlling the illumination unit 3. The image input unit 7 takes in an output signal from the imaging camera 4 and develops it in the memory 8 as digital image data (hereinafter simply referred to as an input image). The defect evaluation unit 6 performs a defect evaluation using the input image.
[0039] また、画像処理コントローラ 5は、通信部 11を介して、ホストコンピュータ 14にデータ を伝送することが可能となって 、る。  Further, the image processing controller 5 can transmit data to the host computer 14 via the communication unit 11.
ホストコンピュータ 14には、検査対象となるバンパー 1の情報 (これは必要に応じて 画像処理コントローラ 5にダウンロードされる)、或いは、搬送装置である搬送ロボット 2の動作情報が蓄積される。さらに、画像処理コントローラ 5で生成された塗装面の欠 陥情報も、画像処理コントローラ 5からホストコンピュータ 14にアップロードされ、そこ に蓄積される。  The host computer 14 stores information on the bumper 1 to be inspected (which is downloaded to the image processing controller 5 as necessary) or operation information on the transfer robot 2 as a transfer device. Further, the defect information of the painted surface generated by the image processing controller 5 is also uploaded from the image processing controller 5 to the host computer 14 and stored therein.
[0040] また、目視検査ステーションには、検査結果プロジェクタ 15やプリンタなどが備えら れており、これらはホストコンピュータ 14にネットワーク接続された端末によって制御さ れる。これによつて、画像処理コントローラ 5からホストコンピュータ 14を介して送られ てくる欠陥情報に基づいて、欠陥位置などを、検査結果プロジェクタ 15を介して検査 員に指示できる。  The visual inspection station includes an inspection result projector 15 and a printer, which are controlled by a terminal connected to the host computer 14 via a network. Thereby, based on the defect information sent from the image processing controller 5 via the host computer 14, the defect position and the like can be instructed to the inspector via the inspection result projector 15.
[0041] 上述のように、撮像ユニット 300は、 3つの条件が同時に満たされるように追従制御 される。すなわち、照明部 3の発光面 3a及び撮像カメラ 4のレンズ面 (撮像面に相当) 4aが、搬送ロボット 2によって搬送されるバンパー 1の被検査面に対向すること、その 発光面 3a及び撮像面 4aの法線と被検査面の法線とがー致すること、そして、発光面 3a及び撮像面 4aから被検査面までの離間距離が一定となることである。  As described above, the imaging unit 300 is controlled to follow so that the three conditions are simultaneously satisfied. That is, the light emitting surface 3a of the illumination unit 3 and the lens surface (corresponding to the image capturing surface) 4a of the imaging camera 4 face the surface to be inspected of the bumper 1 transported by the transport robot 2, and the light emitting surface 3a and the image capturing surface That is, the normal line of 4a and the normal line of the surface to be inspected match, and the separation distance from the light emitting surface 3a and the imaging surface 4a to the surface to be inspected is constant.
[0042] 図 4に示すように、照明部 3は多数の発光素子 30 (この実施形態では LED素子を 用いるので以後 LED素子と称する)を、 6角形のスペースを中央に残すような網状 (リ ング状)のレイアウトパターンを呈するように、且つ、この 6角形のレイアウトパターンが 複数回繰り返されように、連続的に(隣接する LED素子 30どうしの間をつめながら) 配置した構成を有している。 6角形のレイアウトパターンは、矩形の発光面 3aの全面 を均等に覆っている力 図 4 (a)ではそれらの一部のみを示し、残りを省略している。 LED素子 30によって占められない残されたスペースは、ここでは喑面 31と呼ばれ、 黒色もしくは他の暗色の、発光しないプレート面である。 As shown in FIG. 4, the illumination unit 3 includes a large number of light emitting elements 30 (hereinafter, referred to as LED elements in this embodiment, which are LED elements). The hexagonal layout pattern has a layout pattern of It has a configuration in which the LED elements 30 are arranged consecutively (while holding between adjacent LED elements 30) so as to be repeated a plurality of times. The hexagonal layout pattern is a force that evenly covers the entire surface of the rectangular light emitting surface 3a. In FIG. 4 (a), only some of them are shown, and the rest are omitted. The remaining space not occupied by the LED elements 30 is referred to herein as the surface 31 and is a black or other dark, non-luminous plate surface.
[0043] 網状に配置された LED素子 30によって多くの暗面 31が現出している。撮像カメラ 4のレンズ面 4aは、これらの喑面 31の内で、ユニットフレーム 300aの長手方向に沿 つた軸芯上に等間隔で離間して位置する 10個の暗面 31に位置している。これによつ て、複数の撮像カメラ 4が照明部 3に組み込まれた構成が実現されている。  Many dark surfaces 31 appear due to the LED elements 30 arranged in a mesh. The lens surfaces 4a of the imaging camera 4 are located on the ten dark surfaces 31 which are equally spaced apart on the axis along the longitudinal direction of the unit frame 300a among these surfaces 31. . Thereby, a configuration in which the plurality of imaging cameras 4 are incorporated in the illumination unit 3 is realized.
[0044] 画像処理コントローラ 5は、 CPUを中核部材としており、この表面欠陥検査装置 10 0の種々の動作を行うための機能部を、ハードウェア或いはソフトウェア或いはその 両方で構築している。  The image processing controller 5 has a CPU as a core member, and a functional unit for performing various operations of the surface defect inspection apparatus 100 is constructed by hardware and / or software.
図 6に示すように、欠陥評価部 6は、メモリ 8に展開された入力画像を欠陥検出に適 した形態に変換する前処理部 60Aと、前処理された入力画像を用いて被検査面上 の欠陥を見つけ出す欠陥決定部 60Bとからなる。  As shown in FIG. 6, the defect evaluation unit 6 includes a preprocessing unit 60A that converts the input image developed in the memory 8 into a form suitable for defect detection, and a preprocessing unit 60A that uses the preprocessed input image on the inspection target surface. And a defect determination unit 60B that finds the defect of the defect.
[0045] 前処理部 60Aは、入力画像に対する輝度調整を行う輝度調整部 61と、輝度調整さ れた入力画像を 2値化処理する 2値化処理部 62とからなる。この実施形態の輝度調 整部 61が行うのはガンマ調整だけではなぐ画素領域単位の輝度調整も行う。画素 領域単位の輝度調整では、入力画像に含まれている発光像の輝度レベルが、塗装 色や塗装面毎の基準となる正常な被検査面から得られる LED素子の発光像の輝度 レベルに達するように調整される。  [0045] The pre-processing unit 60A includes a luminance adjustment unit 61 that performs luminance adjustment on the input image, and a binarization processing unit 62 that performs binarization processing on the input image whose luminance has been adjusted. The brightness adjustment unit 61 of this embodiment performs not only gamma adjustment but also brightness adjustment for each pixel area. In the brightness adjustment for each pixel area, the brightness level of the luminescent image included in the input image reaches the brightness level of the luminescent image of the LED element obtained from the normal inspection surface, which serves as a reference for each paint color and paint surface. Is adjusted as follows.
[0046] 2値化処理部 62は、 2値化閾値決定部 62a及び画像特徴抽出部 62bを備える。 2 値化閾値決定部 62aは、入力画像の濃淡ヒストグラムから統計的手法で 2値化閾値 を決定する。画像特徴抽出部 62bは、ノイズ消しのために入力画像に対して平滑ィ匕 フィルタをかけると共に、発光像や欠陥像の輪郭を強調するために Sobelフィルタな どのエッジ強調フィルタをかける。 2値化処理部 62は、 2値ィ匕閾値決定部 62aによつ て決定された 2値化閾値を用いて、画像特徴抽出部 62bで強調された入力画像を2 値化画像にする。 [0047] 2値化処理部 62によって 2値化された入力画像の一例が図 7に概念的に示されて いる。この 2値ィ匕明暗画像においては、輝度の高い領域は白く表示される。従って、 6 角形レイアウトパターンで連続配置された LED素子群の発光像は、敷き詰められた 6 角形状の連続して繋がった白い輪郭線として表示される。他方、暗面 31に対向する 塗装面領域は暗領域として表示される。塗装面領域に塗装欠陥が存在する場合に は、塗装欠陥の周囲力 の照射光による乱反射によって、図 7に例示するように、暗 領域に白く独立して浮かぶ領域 (孤立点)として表示される。 [0046] The binarization processing unit 62 includes a binarization threshold determination unit 62a and an image feature extraction unit 62b. The binarization threshold determination unit 62a determines the binarization threshold from the grayscale histogram of the input image by a statistical method. The image feature extraction unit 62b applies a smoothing filter to the input image to eliminate noise, and applies an edge enhancement filter such as a Sobel filter to enhance the contour of the luminescent image or the defective image. Binarization processor 62, 2 Nei匕閾values using the determined portion 62a Niyotsu binarization threshold determined Te, the enhanced input image by the image feature extraction unit 62b into a binary image. An example of an input image binarized by the binarization processing unit 62 is conceptually shown in FIG. In the binary dark / dark image, the high-luminance area is displayed in white. Therefore, the emission image of the LED element group continuously arranged in the hexagonal layout pattern is displayed as a continuously connected white contour line of the hexagonal spread. On the other hand, the painted surface area facing the dark surface 31 is displayed as a dark area. If a paint defect exists in the paint surface area, it is displayed as an area (isolated point) that floats independently in white in the dark area as shown in Fig. 7 due to irregular reflection by the irradiation light of the peripheral force of the paint defect. .
[0048] このことから、欠陥検出は、 2値ィ匕画像において、輝度が突出している領域 (この実 施形態では白い領域)であって、且つ、所定のパターンで連続していない領域、つま り孤立点を探し出せばよいことになる。所定レベルの輝度値 (濃度値)を有しながら連 続する画素を探す、或いは、孤立した領域を探すための画像処理アルゴリズム自体 は良く知られたものを用いることができる。  [0048] From this, the defect detection is performed in a region where the luminance is prominent (a white region in this embodiment) in the binary image, and is not continuous in a predetermined pattern. It is only necessary to find an isolated point. A well-known image processing algorithm for searching for a continuous pixel while having a predetermined level of luminance value (density value) or for searching for an isolated area can be used.
[0049] し力しながら、図 8に拡大して示すように、本来は連続して繋がった線として現れる べき LED素子 30の発光像に途切れが生じ、その途切れた部分が塗装欠陥として誤 検出される可能性がある。この発光像の途切れは、照射光に対する反射特性の、被 検査面 (ここでは塗装面)の形状に基づく変動等に起因する。このような誤検出を適 切に回避するように、欠陥決定部 60Bは実質的には以下に示すようなプログラムで 構成されている。  As shown in the enlarged view of FIG. 8, the emission image of the LED element 30, which should originally appear as a continuous line, is interrupted, and the interrupted portion is erroneously detected as a coating defect. Could be done. The discontinuity of the emission image is caused by a change in the reflection characteristic with respect to the irradiation light based on the shape of the inspection surface (here, the painted surface). In order to appropriately avoid such erroneous detection, the defect determination unit 60B is substantially constituted by the following program.
[0050] この欠陥決定部 60Bは、欠陥候補抽出部 63と、欠陥候補選別部 64と、画像マスク 生成部 65と、ラベル設定部 66と、面積演算部 67と、欠陥判定部 68とを備えている。 欠陥候補抽出部 63は、所定数以内の画素数で構成される非連続の独立した画素領 域を孤立点として検出して欠陥候補とする。欠陥候補選別部 64は、連続配置された LED素子 30の発光像を示す領域に含まれる欠陥候補を欠陥候補から除外する。画 像マスク生成部 65は、この欠陥候補選別部 64で欠陥候補から除外された孤立点領 域及び背景などの不要画像領域を統合して欠陥判定対象外領域としてマスク処理 する。ラベル設定部 66は、画像マスク外に位置する複数の欠陥候補領域を識別する ために異なる欠陥候補領域には異なるラベル (番号)を割り当てるラベリング処理を 行う。面積演算部 67は、各ラベリングされた欠陥候補領域の面積を演算する。欠陥 判定部 68は、この面積演算部 67からの面積情報に基づいて欠陥候補を真の欠陥と 判定して欠陥マップに書き込む。 [0050] The defect determination unit 60B includes a defect candidate extraction unit 63, a defect candidate selection unit 64, an image mask generation unit 65, a label setting unit 66, an area calculation unit 67, and a defect determination unit 68. ing. The defect candidate extraction unit 63 detects a non-consecutive independent pixel region having a predetermined number of pixels or less as an isolated point, and sets it as a defect candidate. The defect candidate selection unit 64 excludes, from the defect candidates, the defect candidates included in the region indicating the light emission image of the LED elements 30 arranged continuously. The image mask generation unit 65 integrates an unneeded image region such as an isolated point region and a background excluded from the defect candidates by the defect candidate selection unit 64 and performs a mask process as a non-defect determination target region. The label setting unit 66 performs a labeling process of assigning different labels (numbers) to different defect candidate areas in order to identify a plurality of defect candidate areas located outside the image mask. The area calculator 67 calculates the area of each labeled defect candidate area. defect The determination unit 68 determines the defect candidate as a true defect based on the area information from the area calculation unit 67, and writes it to the defect map.
[0051] 欠陥候補選別部 64は、欠陥候補時系列判定部 64aと、発光像非連続部探索部 64 bとを備えている。欠陥候補時系列判定部 64aは、欠陥候補抽出部 63で抽出された 欠陥候補を選別するために、撮像カメラ 4から順次送られてくる画像カゝら所定回数欠 陥候補として抽出されているかどうかをチェックすることで、突発的に生じる明領域を 欠陥候補として認識することを防止する。発光像非連続部探索部 64bは、図 8から理 解できるように、抽出された欠陥候補 (孤立点)が、連続している発光像の延長線上 に位置して 、るからどうかをチェックすることで、発光像の途切れ部を欠陥候補として 認識することを防止する。  [0051] The defect candidate selection unit 64 includes a defect candidate time-series determination unit 64a and a light emission image discontinuous portion search unit 64b. The defect candidate time series determination unit 64a determines whether or not the image candidates sequentially sent from the imaging camera 4 have been extracted as defect candidates a predetermined number of times in order to select the defect candidates extracted by the defect candidate extraction unit 63. By checking, it is possible to prevent suddenly occurring bright areas from being recognized as defect candidates. As can be understood from FIG. 8, the luminescence image discontinuous portion searching unit 64b checks whether the extracted defect candidate (isolated point) is located on an extension of the continuous luminescence image. As a result, it is possible to prevent the discontinuous portion of the light emission image from being recognized as a defect candidate.
[0052] この発光像非連続部の探索は、連続する発光像画素を迪つて!、きながら、その途 切れ端の延長線領域に位置する暗領域を抽出する形状特徴抽出アルゴリズム等を 用いて行うことが可能である。この途切れ領域に存在する孤立点は欠陥候補から除 外される。  The search for the non-continuous portion of the luminescent image is performed by using a shape feature extraction algorithm or the like that extracts a dark region located in an extended line region of the discontinuous portion while searching for consecutive luminescent image pixels. It is possible. The isolated points existing in the discontinuous region are excluded from the defect candidates.
このように構成された欠陥評価部 6による塗装面の欠陥評価の手順を、図 9のフロ 一チャートを用いて以下に説明する。  The procedure of the defect evaluation of the painted surface by the defect evaluation unit 6 configured as described above will be described below with reference to the flowchart of FIG.
[0053] まず、撮像カメラ 4から画像入力部 7を介して順次送られてくるフレーム画像をメモリFirst, the frame images sequentially sent from the imaging camera 4 via the image input unit 7 are stored in a memory.
8に取り込む(# 01)。取り込まれた入力画像は、輝度調整部 61によって輝度 (濃度 値)調整される(# 02)。その際、入力画像の特徴量が必要となるが、その特徴量は 入力画像を所定の区画数で区画し、各区画毎に演算された濃度平均値の最大値を 特徴量とすることが好まし 、。 Take it into 8 (# 01). The brightness (density value) of the captured input image is adjusted by the brightness adjustment unit 61 (# 02). At this time, the feature amount of the input image is required. For the feature amount, it is preferable to divide the input image by a predetermined number of sections, and to use the maximum value of the average density value calculated for each section as the feature amount. Better ,.
[0054] この特徴量は次の 2値ィ匕閾値の決定及び撮像カメラ 4のレンズ開口度の調整にも 利用できる。 2値ィ匕閾値決定部 62aで 2値ィ匕閾値が決定されるとともに(# 03)、画像 特徴抽出部 62bで画像の平滑ィ匕及びエッジ強調を行った後 ( # 04)、この入力画像 は 2値化処理されて 2値化画像となる( # 05)。 This feature amount can also be used for determining the following binary threshold value and adjusting the lens aperture of the imaging camera 4. After the binary threshold value is determined by the binary threshold value determination unit 62a (# 03), the image feature extraction unit 62b performs smoothing and edge enhancement of the image (# 04). Is binarized to form a binarized image (# 05).
[0055] 2値化された入力画像から、欠陥候補抽出部 63によって、所定数以内 (画像解像 度等から予め決定される)の画素数力 なる孤立した明画素領域が欠陥候補として 抽出される(# 06)。 抽出された欠陥候補のうち、外乱光等により瞬時的かつ局地的に生じる孤立点に 属する欠陥候補は、欠陥候補時系列判定部 64aによって欠陥候補力も除外される ( # 07)。さらに、抽出された欠陥候補のうち発光像の途切れ領域に位置する孤立点 に属する欠陥候補は、発光像非連続部探索部 64bによって欠陥候補力も除外される ( # 08)。 From the binarized input image, an isolated bright pixel area having a predetermined number of pixels (predetermined from image resolution or the like) is extracted as a defect candidate by the defect candidate extraction unit 63. (# 06). Among the extracted defect candidates, the defect candidate belonging to an isolated point that is instantaneously and locally generated due to disturbance light or the like is excluded from the defect candidate power by the defect candidate time-series determination unit 64a (# 07). Further, among the extracted defect candidates, a defect candidate belonging to an isolated point located in a discontinuous region of the luminescence image is excluded from the defect candidate power by the luminescence image discontinuous portion searching unit 64b (# 08).
[0056] 発光像非連続部探索部 64bによって見つけ出された発光像の途切れ領域を含む その周辺領域は、不要画素領域として画像マスク生成部 65によってマスク処理され る(# 09)。この時、被検査面としての塗装面以外の背景領域も同時にマスク処理さ れる。尚、この背景領域は、ホストコンピュータ 14力も伝送される被検査物としてのバ ンパー 1の形状情報や搬送ロボット 2による搬送位置情報に基づいて決定される。  [0056] The peripheral region including the discontinuous region of the luminescence image found by the luminescence image discontinuous portion search unit 64b is masked by the image mask generation unit 65 as an unnecessary pixel region (# 09). At this time, the mask processing is performed on the background area other than the painted surface as the surface to be inspected at the same time. The background area is determined based on the shape information of the bumper 1 as the inspection object to which the force of the host computer 14 is also transmitted and the transfer position information of the transfer robot 2.
[0057] この実施形態では、ホストコンピュータ 14から得られる搬送位置情報は、実際の位 置とは異なる可能性があるので、レーザーセンサなどを用いてリアルタイムでのバン パー 1の位置ずれをチェックして、その画像マスクの位置を修正している(# 10)。 このようにして欠陥候補の選別や背景画像の除去を終えた後、残されている欠陥 候補 (孤立点)をラベリングし(# 11)、各ラベルを割り当てられた孤立点の面積を演 算し( # 12)、予め設定されて!、る面積条件(閾値以上の面積をもつ力どうか)を満た して 、る孤立点だけを真の欠陥として判定し(# 13)、その座標位置及びサイズなど を欠陥マップに書き込む(# 14)。  In this embodiment, since the transfer position information obtained from the host computer 14 may be different from the actual position, the displacement of the bumper 1 in real time is checked using a laser sensor or the like. Thus, the position of the image mask is corrected (# 10). After the selection of the defect candidates and the removal of the background image in this manner, the remaining defect candidates (isolated points) are labeled (# 11), and the area of the isolated points to which each label is assigned is calculated. (# 12), the preset area !, satisfying the area condition (whether the force has an area equal to or larger than the threshold), and determining only the isolated point as a true defect (# 13), its coordinate position and size Is written in the defect map (# 14).
[0058] 〔後処理〕  [Post-processing]
以上で欠陥評価部 6による塗装面の欠陥評価の手順は終了する。この手順で塗装 面の検査が終わると、目視検査ステーション 203において欠陥照合が行われる。欠 陥照合は、ホストコンピュータ 14を介して画像処理コントローラ 5から送られてきた欠 陥マップのうち、 目視検查ステーション 203に搬入されたバンパーの IDに一致する I Dを付与されて 、る欠陥マップを用いて行われる。  Thus, the procedure of the defect evaluation of the painted surface by the defect evaluation unit 6 is completed. After the inspection of the painted surface is completed in this procedure, the visual inspection station 203 performs a defect collation. The defect matching is performed by assigning an ID that matches the ID of the bumper carried into the visual inspection station 203 among the defect maps sent from the image processing controller 5 via the host computer 14. This is performed using
[0059] その際、検査員による照合作業を容易にするため、該当する欠陥マップに基づい て欠陥箇所を指摘するように検査結果プロジェクタ 15を動作させると好都合である。 もちろん、そのような欠陥マップに基づく欠陥情報を表面欠陥検査装置 100の出力 部 10に接続されたプリンタ 13によって紙出力し、この出力用紙をバンパー 1に貼り付 けてもよい。 At that time, in order to facilitate the collation work by the inspector, it is convenient to operate the inspection result projector 15 so as to point out a defective portion based on the corresponding defect map. Of course, the defect information based on such a defect map is output on paper by a printer 13 connected to the output unit 10 of the surface defect inspection apparatus 100, and the output paper is attached to the bumper 1. It may be.
上述した実施形態では、照明部 3が 6角形の網状に連続配置された LED素子群で 構成されていた。しかし、網状形態は 6角形以外を採用してもよいし、発光素子 30と して LED素子以外を採用してもょ 、。  In the above-described embodiment, the illumination unit 3 is configured by the LED element group continuously arranged in a hexagonal mesh. However, the mesh form may be other than hexagonal, and the light emitting element 30 may be other than the LED element.
[0060] 〔別実施形態〕  [Another Embodiment]
上記の実施の形態にあっては、自動車ボディ (特にバンパー)の塗装面の検査を行 う例を示した力 表面欠陥を有する任意の被検査面を検査対象とできる。この種の例 としては、プレス成形品の表面検査等がある。  In the above embodiment, any inspected surface having a force surface defect, which is an example of inspecting a painted surface of an automobile body (particularly, a bumper), can be inspected. An example of this type is surface inspection of press-formed products.
[0061] 上述した実施形態では、倣 、を実行するに最も好ま 、倣 、状態である、撮像カメ ラ 4の光軸が被検査面の法線方向とされ (倣い条件 1)、発光面が被検査面に対して 平行で (倣い条件 2)、発光面および撮像面が共に、被検査面から所定の距離にある (倣い条件 3)、関係を満たす倣い装置を示した。しかし、倣いの条件としては、上記 倣い条件 1一 3のいずれか一つ以上を満たす倣いを行い、他の条件に関しては、画 像処理側で処理するようにしてもょ ヽ。  In the above-described embodiment, the optical axis of the imaging camera 4, which is the most preferable for performing the copying, is the normal direction of the surface to be inspected (the copying condition 1), and the light emitting surface is This figure shows a copying apparatus that satisfies the relationship that is parallel to the surface to be inspected (scanning condition 2), the light emitting surface and the imaging surface are both at a predetermined distance from the surface to be inspected (scanning condition 3). However, as the copying conditions, copying that satisfies at least one of the above-described copying conditions 1 to 3 may be performed, and the other conditions may be processed by the image processing side.
[0062] 上述した実施形態では、欠陥検出のために入力画像を 2値ィ匕画像に変換して 、た 。しかし、入力画像の 2値ィ匕に限定されているわけではなぐ 3値化及びそれ以上の 多値ィ匕画像を用いて欠陥検出を行うこともできる。  In the embodiment described above, the input image is converted into a binary image for defect detection. However, it is also possible to perform defect detection by using a ternary image, which is not limited to the binary image of the input image, and by using a multi-value image.
[0063] 上記の実施形態にあっては、検査システム 200を構成するに、ストックステーション 202、本願に係る表面欠陥検査装置 100、目視検査ステーション 203の順に、配置 する例を示した。しかし、このシステムを所定の表面加工 (塗装、プレス成形等)を伴 つた製造 '検査システムとする場合、ストックステーション、塗装等を実行する加工処 理部、表面欠陥検査装置、目視検査ステーションの順に、各工程部を配置することと なる。  In the above embodiment, an example has been shown in which the inspection system 200 is arranged in the order of the stock station 202, the surface defect inspection apparatus 100 according to the present invention, and the visual inspection station 203. However, if this system is to be manufactured and inspected with predetermined surface processing (painting, press molding, etc.), a stock station, a processing unit that performs painting, etc., a surface defect inspection device, and a visual inspection station are arranged in this order. Therefore, each process unit is to be arranged.
[0064] 上記の実施の形態にあっては、発光素子の発光面と、撮像カメラの撮像面とを同一 平面上に位置させたが、被検査面力 の離間距離で、両面が異なった位置にあって ちょい。  In the above embodiment, the light emitting surface of the light emitting element and the imaging surface of the imaging camera are located on the same plane, but the two surfaces are located at different positions due to the separation distance of the surface force to be inspected. It is a little in
産業上の利用可能性  Industrial applicability
[0065] 以上のように、本発明に力かる表面欠陥検査装置は、特にバンパー等の自動車ボ ディの塗装面を始めとし、プレス成形品を含む、表面欠陥を有する被検査面の表面 検査に適している。 [0065] As described above, the surface defect inspection apparatus that is active in the present invention is particularly suitable for use in automobile bodies such as bumpers. It is suitable for surface inspection of inspected surfaces with surface defects, including painted surfaces of die and press-formed products.
図面の簡単な説明  Brief Description of Drawings
[0066] [図 1]本発明に係る表面欠陥検査装置を採用する検査システムの概略構成を示す説 明図  FIG. 1 is an explanatory view showing a schematic configuration of an inspection system employing a surface defect inspection apparatus according to the present invention.
[図 2]本発明に係る表面欠陥検査装置の概略全体構成を示す説明図  FIG. 2 is an explanatory view showing a schematic overall configuration of a surface defect inspection apparatus according to the present invention.
[図 3]本発明に係る表面欠陥検査装置の概略全体構成を示す説明図  FIG. 3 is an explanatory view showing a schematic overall configuration of a surface defect inspection apparatus according to the present invention.
圆 4]本発明に係る表面欠陥検査装置の撮像ユニットを示す説明図  [4] Explanatory view showing an imaging unit of the surface defect inspection device according to the present invention
[図 5]本発明に係る表面欠陥検査装置の撮像ユニットの制御 ·情報処理系を示す説 明図  FIG. 5 is an explanatory diagram showing a control and information processing system of an imaging unit of the surface defect inspection apparatus according to the present invention.
[図 6]表面欠陥検査装置に実装されている欠陥評価部の構成を示す機能ブロック図 [図 7]2値化された入力画像を説明する説明図  FIG. 6 is a functional block diagram showing a configuration of a defect evaluation unit mounted on the surface defect inspection apparatus. FIG. 7 is an explanatory diagram for explaining a binarized input image
[図 8]発光像の途切れ部に存在する孤立点を説明する説明図  FIG. 8 is an explanatory view for explaining an isolated point present at a break in a light emission image
[図 9]欠陥評価部による被検査面の欠陥評価の手順を示すフローチャート  FIG. 9 is a flowchart showing a procedure of defect evaluation of a surface to be inspected by a defect evaluation unit.
[図 10]従来型のバンパー検査システムの構成を示す説明図  FIG. 10 is an explanatory diagram showing the configuration of a conventional bumper inspection system
[図 11]ストライプ状の照射光を示す検査原理の説明図  [FIG. 11] An explanatory view of an inspection principle showing a stripe-shaped irradiation light.
符号の説明  Explanation of symbols
[0067] 3 照明部 [0067] 3 Lighting unit
4 撮像カメラ  4 Imaging camera
5 画像処理コントローラ  5 Image processing controller
6 欠陥評価部  6 Defect evaluation department
30 発光素子 (LED素子)  30 Light emitting element (LED element)
31 暗面  31 Dark side
60A 前処理部  60A Pre-processing section
60B 欠陥決定部  60B Defect determination unit
61 輝度調整部  61 Brightness adjuster
62 2値化処理部  62 Binarization processing section
63 欠陥候補 (孤立点)抽出部 欠陥候補選別部 画像マスク生成部 ラベル設定部 面積演算部 欠陥判定部 63 Defect candidate (isolated point) extraction unit Defect candidate selection unit Image mask generation unit Label setting unit Area calculation unit Defect judgment unit

Claims

請求の範囲 The scope of the claims
[1] 所定のレイアウトパターンで配置された複数の発光素子と、前記発光素子の照射 光によって照明された被検査面を撮像する撮像カメラと、前記撮像カメラの撮像情報 を出力する出力部とを備え、前記出力部力 の出力信号を評価して前記被検査面に おける欠陥を検知する欠陥評価部を備えた表面欠陥検査装置であって、  [1] A plurality of light emitting elements arranged in a predetermined layout pattern, an imaging camera for imaging a surface to be inspected illuminated by irradiation light of the light emitting elements, and an output unit for outputting imaging information of the imaging camera. A surface defect inspection apparatus comprising: a defect evaluation unit that evaluates an output signal of the output unit force and detects a defect on the inspection surface.
前記レイアウトパターンが、内側に所定形状の喑面を残すように前記発光素子を連 続的に配置させたものであり、  The layout pattern is such that the light emitting elements are continuously arranged so that a surface of a predetermined shape is left inside.
少なくとも一つの前記暗面には、前記撮像カメラが前記被検査面から反射される前 記各発光素子の照射光を受光するように配置され、  On at least one of the dark surfaces, the imaging camera is arranged to receive the irradiation light of each of the light-emitting elements reflected from the surface to be inspected,
前記複数の発光素子と前記少なくとも一つの撮像カメラとを一体として前記被検査 面に沿って移動させる倣い装置を設けてある表面欠陥検査装置。  A surface defect inspection apparatus provided with a copying apparatus for integrally moving the plurality of light emitting elements and the at least one imaging camera along the surface to be inspected.
[2] 前記複数の発光素子の発光面と、前記少なくとも一つの撮像カメラの撮像面とが同 一平面内に設けられ、前記同一平面内にある前記発光面と前記撮像面とが前記倣 い装置によって前記被検査面に平行に維持される請求項 1に記載の表面欠陥検査 装置。  [2] A light-emitting surface of the plurality of light-emitting elements and an image-capturing surface of the at least one image-capturing camera are provided in the same plane, and the light-emitting surface and the image-capturing surface in the same plane are copied. The surface defect inspection device according to claim 1, wherein the surface defect inspection device is maintained parallel to the inspection target surface by an apparatus.
[3] 前記レイアウトパターン力 所定方向にお!、て繰り返される繰り返しレイアウトパター ンである請求項 1に記載の表面欠陥検査装置。  3. The surface defect inspection apparatus according to claim 1, wherein the layout pattern force is a repetitive layout pattern that is repeated in a predetermined direction.
[4] 前記被検査面を前記複数の発光素子及び前記少なくとも一つの撮像カメラに対し て相対搬送移動する搬送機構を備え、前記レイアウトパターンの繰り返し方向が前記 相対搬送の方向である請求項 1に記載の表面欠陥検査装置。  4. The method according to claim 1, further comprising a transport mechanism configured to relatively transport and move the surface to be inspected with respect to the plurality of light emitting elements and the at least one imaging camera, wherein a repeating direction of the layout pattern is the direction of the relative transport. The surface defect inspection apparatus according to the above.
PCT/JP2004/015467 2004-03-31 2004-10-20 Surface defect examining device WO2005100960A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-105463 2004-03-31
JP2004105463A JP4318579B2 (en) 2004-03-31 2004-03-31 Surface defect inspection equipment

Publications (1)

Publication Number Publication Date
WO2005100960A1 true WO2005100960A1 (en) 2005-10-27

Family

ID=35150111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/015467 WO2005100960A1 (en) 2004-03-31 2004-10-20 Surface defect examining device

Country Status (2)

Country Link
JP (1) JP4318579B2 (en)
WO (1) WO2005100960A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008125702A1 (en) 2007-04-16 2008-10-23 Josep Maria Tornero Montserrat System of detection of faults in surfaces by merging of images by means of light sweeping
CN114486929A (en) * 2022-01-20 2022-05-13 深圳佳视德智能科技有限公司 Method and device for detecting appearance of automobile door trim

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007278713A (en) 2006-04-03 2007-10-25 Chuo Denshi Keisoku Kk Lighting method in coating inspecting device
JP5306976B2 (en) * 2009-12-16 2013-10-02 本田技研工業株式会社 Bumper transfer device
WO2011144964A1 (en) * 2010-05-17 2011-11-24 Ford Espana S.L. Inspection system and method of defect detection on specular surfaces
JP6016515B2 (en) * 2012-08-10 2016-10-26 株式会社キーレックス Inspection equipment for press parts
KR101416383B1 (en) 2012-11-16 2014-07-16 현대자동차 주식회사 Door inspection system for vehicle
JP2016075554A (en) * 2014-10-06 2016-05-12 株式会社ディスコ Wafer inspection method and wafer inspection device
CN105486248B (en) * 2015-11-23 2017-11-28 天津华夏联盛汽车部件有限公司 A kind of bumper self-checking device
JP6984747B2 (en) * 2018-06-05 2021-12-22 日本電気株式会社 Displacement measuring device, displacement measuring method, and program
JP7254327B2 (en) * 2018-06-25 2023-04-10 株式会社キーレックス PRESS PARTS INSPECTION DEVICE AND PRESS PARTS INSPECTION METHOD
CN109239086B (en) * 2018-10-22 2023-11-17 上海易清智觉自动化科技有限公司 Vehicle paint surface and appearance flaw detection system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54134485A (en) * 1978-04-10 1979-10-18 Hitachi Ltd Applying and wiping device of liquid to and from test piece
JPH06242019A (en) * 1993-02-19 1994-09-02 Kanto Auto Works Ltd Method and system for inspecting painted face using image signal
JP2000136917A (en) * 1998-10-30 2000-05-16 Moritex Corp Observation method for surface of molding and illumination device used for it
JP2000321037A (en) * 1999-05-14 2000-11-24 Nissan Motor Co Ltd Method and device for quantitatively evaluating surface defect
JP2001059717A (en) * 1999-08-25 2001-03-06 Toyota Motor Corp Surface defect inspection method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54134485A (en) * 1978-04-10 1979-10-18 Hitachi Ltd Applying and wiping device of liquid to and from test piece
JPH06242019A (en) * 1993-02-19 1994-09-02 Kanto Auto Works Ltd Method and system for inspecting painted face using image signal
JP2000136917A (en) * 1998-10-30 2000-05-16 Moritex Corp Observation method for surface of molding and illumination device used for it
JP2000321037A (en) * 1999-05-14 2000-11-24 Nissan Motor Co Ltd Method and device for quantitatively evaluating surface defect
JP2001059717A (en) * 1999-08-25 2001-03-06 Toyota Motor Corp Surface defect inspection method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008125702A1 (en) 2007-04-16 2008-10-23 Josep Maria Tornero Montserrat System of detection of faults in surfaces by merging of images by means of light sweeping
CN114486929A (en) * 2022-01-20 2022-05-13 深圳佳视德智能科技有限公司 Method and device for detecting appearance of automobile door trim
CN114486929B (en) * 2022-01-20 2024-02-02 深圳佳视德智能科技有限公司 Automobile door trim appearance detection method and device

Also Published As

Publication number Publication date
JP2005291845A (en) 2005-10-20
JP4318579B2 (en) 2009-08-26

Similar Documents

Publication Publication Date Title
KR100742003B1 (en) Surface defect inspecting method and device
US7505149B2 (en) Apparatus for surface inspection and method and apparatus for inspecting substrate
US10805552B2 (en) Visual inspection device and illumination condition setting method of visual inspection device
US5237404A (en) Inspection apparatus with improved detection of surface defects over large and curved surfaces
KR101679205B1 (en) Device for detecting defect of device
JP3311135B2 (en) Inspection range recognition method
JP4322230B2 (en) Surface defect inspection apparatus and surface defect inspection method
WO2005100960A1 (en) Surface defect examining device
JP2007316019A (en) Surface defect inspection device
JP3690157B2 (en) Surface defect inspection equipment
CN100520376C (en) Surface inspecting method and system for finding imperfection
JPH11271038A (en) Painting defect inspection device
JP2004109018A (en) Circuit pattern inspecting method and inspecting device
JPH0979988A (en) Surface defect inspecting device
JP2005214720A (en) Surface inspection device and surface inspection method
JP4349960B2 (en) Surface defect inspection equipment
JP2019082333A (en) Inspection device, inspection system, and inspection method
JP4315899B2 (en) Surface inspection method and surface inspection apparatus
JP4015436B2 (en) Gold plating defect inspection system
JP4398282B2 (en) Pantograph slip board inspection device.
JP2005315841A (en) Surface defect inspection device
JP4371883B2 (en) Illumination light source unit for inspection and surface defect inspection apparatus using the light source unit
JP4017585B2 (en) Paint surface inspection equipment
JP4967132B2 (en) Defect inspection method for object surface
KR102005345B1 (en) An automobile junction box terminal vision inspection method using line scan camera

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase