WO2005095880A1 - 熱交換器 - Google Patents

熱交換器 Download PDF

Info

Publication number
WO2005095880A1
WO2005095880A1 PCT/JP2005/005964 JP2005005964W WO2005095880A1 WO 2005095880 A1 WO2005095880 A1 WO 2005095880A1 JP 2005005964 W JP2005005964 W JP 2005005964W WO 2005095880 A1 WO2005095880 A1 WO 2005095880A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
adsorbent
heat exchanger
fin
space
Prior art date
Application number
PCT/JP2005/005964
Other languages
English (en)
French (fr)
Inventor
Hirohiko Matsushita
Akira Kamino
Shuji Ikegami
Shun Yoshioka
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Publication of WO2005095880A1 publication Critical patent/WO2005095880A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/261Drying gases or vapours by adsorption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/14Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements

Definitions

  • the present invention relates to heat exchange, and more particularly to heat exchange in which an adsorbent for adsorbing moisture in the air and desorbing moisture into the air is supported on the surface.
  • Patent Literature 1 discloses an adsorption / desorption element (heat exchange) attached to an adsorption refrigeration apparatus.
  • the adsorption / desorption element is a flat element made of aluminum, aluminum alloy, copper, copper alloy, or the like. It has a tube and a number of fins formed by shaving the front and back surfaces of the tube, and a plurality of fluid passages are formed inside the tube.
  • adsorbent layer of an adsorbent composed of a large amount of silica gel (JIS A type) having a water absorbing and desorbing action and a bonding agent (butyl acetate resin).
  • JIS A type silica gel
  • a bonding agent butyl acetate resin
  • the compressor of the refrigerant circuit is operated, and a refrigeration cycle is performed in which one of the two adsorption / desorption elements serves as an evaporator and the other serves as a condenser. Further, in the refrigerant circuit, the circulation direction of the refrigerant is switched by operating the four-way switching valve, and the adsorption / desorption elements alternately function as an evaporator or the condenser by switching the circulation direction of the refrigerant.
  • Patent Document 1 JP-A-8-200876 Disclosure of the invention
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a heat exchanger that exhibits a high moisture absorption / release performance due to a large difference in static performance in an adsorbent layer. It is to provide
  • the first invention is directed to a heat exchanger having a large number of fins (57) and carrying an adsorbent for adsorbing moisture in air and desorbing moisture in air on the surface.
  • the static performance (gZg) of the adsorbent when the relative humidity (%) of air existing near the adsorbent layer on the fin surface of the adsorbent is 23%, and the fin surface of the adsorbent
  • the difference from the static performance (g / g) of the above adsorbent when the relative humidity (%) of the air existing near the adsorbent layer is 100% is 0.05 g / g or more.
  • the air existing near the adsorbent layer on the fin surface of the adsorbent is air close enough to absorb and remove moisture by the adsorbent of the adsorbent layer.
  • the static performance is the amount (g) of water adsorbed by the lg adsorbent at a certain relative humidity (%) of air existing near the adsorbent layer, that is, the water content.
  • the thickness of the adsorbent layer is 0.05 mm or more and 0.5 mm or less.
  • the static performance of the adsorbent when the relative humidity of air existing near the adsorbent layer on the fin surface of the adsorbent is 23%, and the adsorbent on the fin surface of the adsorbent
  • the difference from the static performance of the adsorbent when the relative humidity of the air existing near the bed is 100% is 0.05 gZg or more. Therefore, when a refrigeration cycle is performed on the first and second heat exchangers (47, 49), 0.05 g or more of water is absorbed and absorbed per lg of the adsorbent. Therefore, the first And the moisture absorption / release performance of the second heat exchange (47, 49) can be enhanced.
  • the second invention is a practically effective range of the thickness of the adsorbent layer. By limiting the thickness of the adsorbent layer in this way, pressure loss can be reduced, and fan efficiency can be improved and fan noise can be reduced.
  • FIG. 1 is a schematic configuration diagram of a humidity control apparatus according to Embodiment 1.
  • FIG. 2 is a piping diagram showing a refrigerant circuit of the humidity control apparatus according to Embodiment 1.
  • FIG. 3 is a schematic configuration diagram of a humidity control apparatus according to Embodiment 1.
  • FIG. 4 is a schematic configuration diagram of a humidity control apparatus showing an air flow in a first operation of the dehumidifying operation.
  • FIG. 5 is a schematic configuration diagram of a humidity control apparatus showing an air flow in a second operation of the dehumidifying operation.
  • FIG. 6 is a schematic configuration diagram of a humidity control apparatus showing an air flow in a first operation of the humidification operation.
  • FIG. 7 is a schematic configuration diagram of a humidity control apparatus showing an air flow in a second operation of the humidification operation.
  • FIG. 8 is a characteristic diagram showing an adsorption isotherm of an adsorbent and an adsorption isotherm of an adsorbent carried on a fin surface.
  • FIG. 9 is a schematic configuration diagram of a main part showing a heat exchanger in a first modification of the second embodiment.
  • FIG. 10 is a schematic configuration diagram of a main part showing a heat exchanger according to a second modification of the second embodiment.
  • FIG. 11 is a schematic configuration diagram of a main part showing a heat exchanger according to a third modification of the second embodiment.
  • FIG. 12 is a schematic perspective view showing a heat exchanger in a fourth modified example of Embodiment 2.
  • FIG. 13 is a schematic sectional view taken along line ZZ of FIG.
  • FIG. 14 is a schematic perspective view showing a heat exchanger according to a fifth modification of the second embodiment.
  • FIG. 15 is a schematic side view showing a heat exchanger according to a fifth modification of the second embodiment.
  • FIG. 1 schematically shows a configuration of a humidity control apparatus according to Embodiment 1 of the present invention.
  • FIG. 1 (a) is a cross-sectional view taken along line X--X of FIG. 1 (b), and FIG. It is a top view of the state shown, and the lower side in the figure is the front side.
  • FIG. 1 (c) is a cross-sectional view taken along line YY of FIG. 1 (b).
  • This humidity control device has a rectangular box-shaped casing (1).
  • the inside of the casing (1) has a large storage capacity with a first partition plate (3) extending forward and backward, and a first space (5) on the left side. , Which has a small storage volume! / And a second space (7) on the right.
  • the first space (5) includes a central third space (13) having a large storage capacity by two front and rear second and third partition plates (9, 11) extending in parallel to the left and right.
  • the third space (13) is divided into a fourth space and a fifth space (15, 17) having a small volume
  • the third space (13) is divided into a left space (13a) and a right space by a fourth partition plate (19) extending forward and backward. (13b).
  • the fifth space (17) on the rear side is divided into upper and lower parts by a fifth partition plate (21) extending horizontally to the left and right, the upper space being the first inflow path (23), and the lower space being the first inflow passage (23).
  • the fourth space (15) on the front side is also vertically divided by a sixth partition plate (27) extending horizontally to the left and right, the upper space being the second inflow channel (29), and the lower space being the second outflow space.
  • first to fourth openings (lla to lId) are provided on the left and right spaces (13a, 13b) of the third space (13) and the first inflow path (23). ) And the first outflow channel (25) (See FIG. 1 (a)).
  • fourth to eighth openings (9a to 9d) have left and right spaces (13a, 13b) of the third space (13), a second inflow path (29) and They are formed side by side vertically and horizontally to communicate with the second outflow channel (31) (see FIG. 1 (c)).
  • dampers are respectively provided in the first to fourth openings (11 & to 11 (1)) and the fifth to eighth openings (9a to 9d) so as to be freely opened and closed.
  • An outdoor air suction port (33) is formed behind the left side of the casing (1) so as to communicate with the first inflow path (23).
  • An exhaust air outlet (35) is formed on the rear side, and the exhaust air outlet (35) is connected to an exhaust fan (37) arranged on the rear side of the second space (7), and is connected to the first outlet passage (35). 25).
  • an indoor air suction port (39) is formed so as to communicate with the second inflow path (29).
  • An air outlet (41) is formed, and the air supply outlet (41) is connected to an air supply fan (43) arranged in front of the second space (7) and communicates with the second outflow passage (31). ing.
  • a refrigerant circuit (45) as shown in FIG. 2 is accommodated in the casing (1) configured as described above.
  • the refrigerant circuit (45) includes a first heat exchanger (47), a second heat exchanger (49), a compressor (51), a four-way switching valve (53), and an electric expansion valve (55). It is a closed circuit, filled with refrigerant, and circulating this refrigerant to perform a vapor compression refrigeration cycle.
  • the discharge side of the compressor (51) is connected to the first port of the four-way switching valve (53), and the suction side is connected to the second port of the four-way switching valve (53).
  • One end of the first heat exchanger (47) is connected to the third port of the four-way switching valve (53), and the other end is connected to one end of the second heat exchanger (49) via the electric expansion valve (55).
  • the other end of the second heat exchanger (49) is connected to the fourth port of the four-way switching valve (53).
  • the four-way switching valve (53) has a state in which the first port and the third port are in communication and the second and fourth ports are in communication (a state shown in Fig. 2 (a)); The fourth port communicates with the second port and the third port communicates with each other (the state shown in FIG. 2 (b)).
  • the refrigerant circuit (45) switches the four-way switching valve (53) so that the first heat exchanger (47) functions as a condenser and the second heat exchanger (49) functions as an evaporator.
  • the first cooling and refrigeration cycle operation, and the first heat exchanger (47) functions as an evaporator and the second heat exchanger (49) It is configured to switch and perform the operation of the second refrigeration cycle that functions as a condenser!
  • each component of the refrigerant circuit (45) includes a first heat exchanger (47) in the right space (13b) of the third space (13) and a second heat exchanger (47).
  • the exchanger (49) is arranged in the left space (13a) of the third space (13), and the compressor (51) is arranged in the middle of the second space (7).
  • the four-way switching valve (53) and the electric expansion valve (55) are also arranged in the second space (7).
  • Both the first and second heat exchangers (47, 49) are cross-fin type fin-and-tube heat exchangers as shown in FIG. (57) is provided with a group of fins (59) arranged in parallel at intervals! Both ends of the fin group (59) in the fin arrangement direction and the end surfaces at both ends in the longitudinal direction of the fin are surrounded by a rectangular metal frame plate (61), and the first and second heat exchangers (47, 49) Are disposed in the left and right spaces (13a, 13b) of the third space (13) via the frame plate (61), respectively.
  • a heat transfer tube (63) is arranged in the fin group (59).
  • the heat transfer tube (63) is formed in a meandering shape by a straight tube portion (63a) and a U-shaped tube portion (63b), and the straight tube portion (63a) penetrates the fin group (59) in the fin arrangement direction. At the same time, the U-shaped pipe (63b) protrudes from the frame plate (61). One end of the heat transfer tube (63) is connected to one end of a connection tube (65), and the connection tube (65) connects the heat transfer tube (63) to a refrigerant pipe (not shown).
  • an adsorbent layer carrying an adsorbent for adsorbing moisture in air and desorbing moisture into air is provided on the fin surfaces of the first and second heat exchangers (47, 49).
  • the feature of this invention is that the static performance of the adsorbent layer when the relative humidity of the air near the adsorbent layer is 23% and the relative humidity of the air near the adsorbent layer is 100% The difference from the static performance of the adsorbent layer when is equal to or more than 0.05 gZg.
  • the static performance of the adsorbent layer is the moisture content of the adsorbent in the adsorbent layer.
  • the adsorbent absorbs water vapor in the air
  • the water vapor contained in the air is cooled and absorbed as moisture, so that the air present near the adsorbent layer is saturated. Yes, so the air humidity is 100%.
  • the adsorbent desorbs moisture
  • the absorbed moisture becomes steam and is released into the air.
  • the temperature of the air existing near the adsorbent layer increases, and the amount of moisture contained in the air does not change, so that the humidity of the air existing near the adsorbent layer decreases.
  • the humidity controller equipped with the first and second heat exchangers (47, 49) is operated for dehumidification in summer, the regenerated air must be indoor air in summer (wet bulb temperature of 27 ° C, dry The bulb temperature is 19 ° C and the humidity is 7%).
  • the temperature of air existing near the adsorbent layer will be around 40 ° C.
  • Air with a wet-bulb temperature of 27 ° C, a dry-bulb temperature of 19 ° C and a humidity of 47% will have a humidity of 23% when the temperature rises to 40 ° C. That is, the humidity of the air existing near the adsorbent layer is 23%.
  • the temperature of the air near the adsorbent layer is 30 ° C and the humidity is 7 to 20% because the regenerated air is outdoor air in winter. It becomes.
  • the first and second heat exchangers (47, 49) alternately function as an evaporator or a condenser. Or function as. Therefore, when the above humidity controller is operated for dehumidification in summer, the humidity of the air near the adsorbent layer becomes 23% or 100%. In addition, when the above humidity controller is operated for dehumidification in winter, the humidity of the air near the adsorbent layer becomes 7 to 20% or 100%. From the above, the range of the change in the humidity of the air existing near the adsorbent layer when the humidity control device was operated in the dehumidifying operation in summer is near the adsorbent layer when the humidity control device was operated in winter.
  • the difference in static performance when the humidity control apparatus is operated in the dehumidifying operation in summer is smaller than the difference in static performance when the humidity control apparatus is operated in winter.
  • the static performance of the adsorbent layer when the relative humidity of the air near the adsorbent layer is 23% and the adsorbent when the relative humidity of the air near the adsorbent layer is 100%
  • the difference from the static performance of the layer is large, specifically if it is 0.05 gZg or more, the moisture absorption / release performance of the first and second heat exchangers (47, 49) can be enhanced.
  • the size of the first and second heat exchangers (47, 49) becomes about 5Z4 times.
  • the difference in static performance is more than 0.05gZg. It seems that something would be appropriate.
  • the dashed line graph in Fig. 8 shows the adsorption isotherm of only the adsorbent (here, zeolite) at 25 ° C
  • the solid line graph in Fig. 8 shows that of the adsorbent (here, zeolite) supported on the fin surface.
  • 3 shows an adsorption isotherm at 25 ° C.
  • the difference in static performance is 0.05gZg.
  • the line shape of the adsorption isotherm hardly changes in the practical use temperature range of the adsorbent between 0 ° C and 50 ° C. Therefore, it can be said that the static performance difference is 0.05 gZg between 0 ° C and 50 ° C.
  • adsorbent of the adsorbent layer in addition to zeolite, silica gel, activated carbon, an organic polymer material having a hydrophilic or water-absorbing functional group, an ion having a carboxylic acid group or a sulfonate group
  • materials that are excellent in water adsorption such as exchange resin-based materials, functional polymer materials such as temperature-sensitive polymers, and clay mineral-based materials such as sepiolite, imogolite, arophen, and kaolinato, are particularly limited. It can be used without.
  • the thickness of the adsorbent layer is preferably from 0.05 mm to 0.5 mm.
  • the method of forming the adsorbent layer on the outer surface of each fin (57) may be carried out by supporting the adsorbent by dip molding, or as long as the performance as the adsorbent is not impaired.
  • the adsorbent layer may be formed by any method.
  • the adsorbent layer can be carried on portions other than the fins (57), such as the frame plate (61), the heat transfer tube (63), and the connection tube (65).
  • the absorption performance of the first and second heat exchanges (47, 49) is improved. Can be enhanced.
  • the dehumidifying operation and the humidifying operation can be switched. Further, during the dehumidifying operation or the humidifying operation, the first operation and the second operation are alternately repeated.
  • the air conditioner operates the air supply fan (43) and the exhaust fan (37). Then, the humidity control device takes in the outdoor air (OA) as the first air and supplies it to the room, and takes in the room air (RA) as the second air and discharges it to the outside.
  • OA outdoor air
  • RA room air
  • the first operation during the dehumidifying operation will be described with reference to FIGS. 2 and 4.
  • the adsorbent is regenerated in the first heat exchanger (47), and the outdoor air (OA) as the first air is dehumidified in the second heat exchanger (49).
  • the four-way switching valve (53) is switched to the state shown in FIG. 2 (a).
  • the compressor (51) When the compressor (51) is operated in this state, the refrigerant circulates in the refrigerant circuit (45), the first heat exchanger (47) becomes a condenser, and the second heat exchanger (49) becomes an evaporator.
  • the first refrigeration cycle operation is performed. Specifically, the refrigerant discharged from the compressor (51) also radiates heat in the first heat exchanger (47) and condenses, and then is sent to the electric expansion valve (55) to be decompressed. The decompressed refrigerant absorbs heat in the second heat exchanger (49), evaporates, and is then sucked into the compressor (51) and compressed. Then, the compressed refrigerant is discharged again from the compressor (51).
  • the second opening (lib), the third opening (11c), the fifth opening (9a), and the eighth opening (9d) are in the open state, and the first opening (11a), The fourth opening (lid), the sixth opening (9b) and the seventh opening (9c) are closed.
  • indoor air (RA) as the second air is supplied to the first heat exchanger (47), and outdoor air (OA) as the first air is supplied to the second heat exchanger (49). Is supplied.
  • the second air that has flowed in from the indoor air suction port (39) passes through the fifth inflow (9a) from the second inflow path (29) to the right space (in the third space (13)). Sent to 13b).
  • the second air passes through the first heat exchange (47) from top to bottom.
  • the adsorbent carried on the fin surface is heated by the refrigerant, and water is desorbed from the adsorbent. Adsorbent force The desorbed water is provided to the second air passing through the first heat exchange (47).
  • the second air to which water has been added by the first heat exchanger (47) flows out of the right space (13b) of the third space (13) through the third opening (11c) to the first outflow passage (25). I do. Thereafter, the second air is sucked into the exhaust fan (37), and is exhausted from the exhaust air outlet (35) to the outside as exhaust air (EA).
  • the first air that has flowed in from the outdoor air suction port (33) passes from the first inflow path (23) through the second opening (lib), and enters the left space (13a) of the third space (13). ). In the left space (13a), the first air passes through the second heat exchanger (49) from top to bottom.
  • the moisture in the first air is adsorbed by the adsorbent carried on the fin surface.
  • the heat of adsorption generated at that time is absorbed by the refrigerant.
  • the first air dehumidified by the second heat exchanger (49) flows from the left space (13a) of the third space (13) through the eighth opening (9d) to the second outflow passage (31). Thereafter, the first air is sucked into the air supply fan (43), and is supplied from the air supply outlet (41) to the room as supply air (SA).
  • the four-way switching valve (53) is switched to the state shown in FIG. 2 (b).
  • the compressor (51) When the compressor (51) is operated in this state, the refrigerant circulates in the refrigerant circuit (45), the first heat exchanger (47) becomes an evaporator, and the second heat exchanger (49) becomes a condenser.
  • the second refrigeration cycle operation is performed. Specifically, the refrigerant discharged from the compressor (51) also radiates heat in the second heat exchanger (49) to condense, and then is sent to the electric expansion valve (55) to be decompressed. The decompressed refrigerant absorbs heat in the first heat exchanger (47), evaporates, and is then sucked into the compressor (51) to be compressed. Then, the compressed refrigerant is discharged again from the compressor (51).
  • the first opening (11a), the fourth opening (lid), the sixth opening (9b), and the seventh opening (9c) are in the open state, and the second opening (lib) is opened. ), The third opening (11c), the fifth opening (9a), and the eighth opening (9d) are closed. Then, as shown in FIG. 5, outdoor air (OA) as first air is supplied to the first heat exchanger (47), and indoor air as second air is supplied to the second heat exchanger (49). (RA) is supplied.
  • the second air that has flowed in from the indoor air suction port (39) passes through the sixth opening (9b) from the second inflow path (29), and then enters the third space (13) on the left space ( Sent to 13a).
  • the second air passes through the second heat exchange (49) with both upward and downward forces.
  • the adsorbent carried on the fin surface is heated by the refrigerant, Moisture desorbs from the agent.
  • the water desorbed from the adsorbent is provided to the second air passing through the second heat exchange (49).
  • the second air to which water has been added by the second heat exchanger (49) flows out of the left space (13a) of the third space (13) through the fourth opening (lid) to the first outflow passage (25). I do. Thereafter, the second air is sucked into the exhaust fan (37), and is exhausted from the exhaust air outlet (35) to the outside as exhaust air (EA).
  • the first air that has flowed in from the outdoor air suction port (33) passes through the first opening (11a) from the first inflow path (23) to the right space (13b) of the third space (13). Sent to In the right space (13b), the first air passes through the first heat exchange (47) with both upward and downward forces.
  • the first heat exchange (47) moisture in the first air is adsorbed by the adsorbent carried on the fin surface. The heat of adsorption generated at that time is absorbed by the refrigerant.
  • the first air dehumidified by the first heat exchanger (47) flows out of the right space (13b) of the third space (13) through the seventh opening (9c) to the second outflow passage (31). Thereafter, the first air is sucked into the air supply fan (43), and is supplied from the air supply outlet (41) to the room as supply air (SA).
  • the air conditioning fan (43) and the exhaust fan (37) are operated in the humidity control device. Then, the humidity control device takes in the room air (RA) as the first air and discharges it outside the room, and takes in the outdoor air (OA) as the second air and supplies it to the room.
  • RA room air
  • OA outdoor air
  • the four-way switching valve (53) is switched to the state shown in FIG. 2 (a).
  • the compressor (51) is operated in this state, the refrigerant circulates in the refrigerant circuit (45), the first heat exchanger (47) becomes a condenser, and the second heat exchanger (49) becomes an evaporator.
  • the first refrigeration cycle operation is performed.
  • the first opening (11a), the fourth opening (lid), the sixth opening (9b), and the seventh opening (9c) are in the open state, and the second opening (lib)
  • the third opening (11c), the fifth opening (9a) and the eighth opening (9d) are closed.
  • the first heat exchanger (47) Outdoor air (OA) is supplied as air, and indoor air (RA) is supplied as first air to the second heat exchanger (49).
  • the first air that has flowed in from the indoor air suction port (39) passes through the sixth opening (9b) from the second inflow path (29), and enters the left space (3) of the third space (13). Sent to 13a).
  • the first air passes through the second heat exchange (49) from top to bottom.
  • moisture in the first air is adsorbed by the adsorbent carried on the fin surface.
  • the heat of adsorption generated at that time is absorbed by the refrigerant.
  • the dewatered first air passes through the fourth opening (lid), the first outflow passage (25), and the exhaust fan (37) in that order, and is discharged from the exhaust outlet (35) as exhaust air (EA). It is discharged outside the room.
  • the second air that has flowed in from the outdoor air suction port (33) passes through the first opening (11a) from the first inflow path (23), and the right space (13b) of the third space (13). Sent to In the right space (13b), the second air passes through the first heat exchange (47) with both upward and downward forces.
  • the first heat exchange (47) the adsorbent carried on the fin surface is heated by the refrigerant, and water is desorbed from the adsorbent.
  • Adsorbent power The desorbed water is provided to the second air passing through the first heat exchanger (47).
  • the humidified second air passes through the seventh opening (9c), the second outflow passage (31), and the air supply fan (43) in this order, and is supplied as air (SA) from the air supply outlet (41). Supplied indoors.
  • the four-way switching valve (53) is switched to the state shown in FIG. 2 (b).
  • the compressor (51) is operated in this state, the refrigerant circulates in the refrigerant circuit (45), the first heat exchanger (47) becomes an evaporator, and the second heat exchanger (49) becomes a condenser.
  • the second refrigeration cycle operation is performed.
  • the second opening (lib), the third opening (11c), the fifth opening (9a), and the eighth opening (9d) are in the open state, and the first opening (11a) The fourth opening (lid), the sixth opening (9b) and the seventh opening (9c) are closed.
  • the first heat exchanger (47) has the first empty space. Indoor air (RA) as air is supplied, and outdoor air (OA) as second air is supplied to the second heat exchange (49).
  • RA Indoor air
  • OA outdoor air
  • the first air that has flowed in from the indoor air suction port (39) passes through the fifth opening (9a) from the second inflow path (29), and the right space (the right space) of the third space (13). Sent to 13b).
  • the first air passes through the first heat exchange (47) from top to bottom.
  • the first heat exchange (47) moisture in the first air is adsorbed by the adsorbent carried on the fin surface. The heat of adsorption generated at that time is absorbed by the refrigerant.
  • the dehydrated first air passes through the third opening (11c), the first outflow passage (25), and the exhaust fan (37) in this order, and serves as exhaust air (EA) as the exhaust air outlet (35). It is discharged outside the power room.
  • the second air that has flowed in from the outdoor air suction port (33) passes from the first inflow path (23) through the second opening (lib), and the left space (13a) of the third space (13). Sent to.
  • the second air passes through the second heat exchange (49) from top to bottom.
  • the adsorbent carried on the fin surface is heated by the refrigerant, and water is desorbed from the adsorbent.
  • Adsorbent power The desorbed water is provided to the second air passing through the second heat exchanger (49).
  • the humidified second air passes through the eighth opening (9d), the second outflow passage (31), and the air supply fan (43) in order, and is supplied from the air supply outlet (41) as supply air (SA). Supplied indoors.
  • This humidity control device takes in indoor air (RA) as the first air and supplies it to the room, while supplying outdoor air (OA).
  • OA outdoor air
  • OA indoor air
  • RA second air and dehumidifying operation in a circulation mode in which the outside air (OA) is taken in as the first air and discharged outside the room, while indoor air (RA) is taken in as the second air and taken into the room.
  • the humidifying operation in the circulation mode for supplying may also be performed.
  • the humidity control apparatus takes in outdoor air (OA) as the first air and the second air and supplies a part of the air to the room, and at the same time, discharges the rest to the outside of the room. Even when the operation is performed, the dehumidifying operation and the humidifying operation in the exhaust mode in which the indoor air (RA) is taken in as the first air and the second air and part of the air is supplied to the room, and the rest is discharged outside the room. Good.
  • OA outdoor air
  • RA indoor air
  • the first heat exchanger (47) and the second heat exchanger (49) are different from each other, and show first to fifth modifications.
  • the first heat exchanger (47) of the present invention and the second heat exchanger (49) are different from each other, and show first to fifth modifications.
  • the heat exchanger (49) is not limited to the heat exchangers of the first to fifth modifications, and may of course apply other various types of heat exchange.
  • the present modified example includes the first and second heat exchangers (47, 49) of the first embodiment.
  • the straight pipe portion (63a) of the heat transfer tube (63) is formed in an elliptical shape instead of the straight pipe portion (63a) of the heat transfer tube (63) being formed in a perfect circular shape.
  • first and second heat exchangers (47, 49) are cross-fin type fin “and” tube type heat exchangers, and the first and second heat exchangers (47, 49)
  • the straight tube portion (63a) of the heat transfer tube (63) in (49) has a horizontally long elliptical cross section.
  • the present modified example includes the first and second heat exchangers (47,
  • the fin (57) in (49) is formed as a corrugated fin (70) instead of being formed in a flat plate shape.
  • the first and second heat exchangers (47, 49) are cross-fin type fin “and” tube type heat exchangers, and the first and second heat exchangers (47, 49) In 49), a number of waveform fins (70) are arranged in parallel at intervals.
  • the corrugated fin (70) is a fin made of aluminum alloy, and is formed by bending a flat plate into a waveform in which triangles are continuous. Then, the straight pipe portion (63a) of the heat transfer tube (63) penetrates the corrugated fin (70).
  • the first and second heat exchangers (47, 49) are cross-fin type fin 'and' tube type heat exchangers, and the first and second heat exchangers (47, 49) In 49), a number of waveform fins (70) and a number of plate fins (71) are alternately arranged in parallel.
  • the corrugated fin (70) is an aluminum alloy fin, and is formed by bending a flat plate into a waveform in which triangles are continuous.
  • the plate fins (71) are fins made of an aluminum alloy, and are formed in a flat plate shape.
  • the corrugated fins (70) and the plate fins (71) are arranged alternately.
  • the straight pipe portion (63a) of the heat transfer tube (63) penetrates the corrugated fin (70) and the plate fin (71).
  • the first and second heat exchangers (47, 49) of the first embodiment are cross-fin type fin-and-tube heat exchangers. Instead of the structure, it is made of corrugated fin tube type heat exchange ⁇ .
  • the first and second heat exchangers (47, 49) include two headers (72, 73), a flat cooling pipe (74), and a corrugated fin (75).
  • the refrigerant pipe of the refrigerant circuit (45) is connected to the two headers (72, 73), and a plurality of flat cooling pipes (74) are provided between the headers (72, 73) at a predetermined interval. It is arranged in parallel with existence.
  • the flat cooling pipe (74) has a plurality of refrigerant passages (76) communicating with the headers (72, 73).
  • the corrugated fins (75) are arranged between the flat cooling pipes (74).
  • the corrugated fin (75) is formed in a sinusoidal waveform, and is provided over both headers (72, 73).
  • the surface of the fins of the first and second heat exchangers (47, 49) absorbs moisture in the air and absorbs moisture into the air.
  • An adsorbent layer supporting an adsorbent for desorption is formed.
  • the first and second heat exchangers (47, 49) of the first embodiment are cross-fin type fin-and-tube heat exchangers. Instead of the configuration, it is configured with a small-diameter multi-tube heat exchanger.
  • the first and second heat exchangers (47, 49) are composed of two headers (77, 78), many small-diameter heat transfer tubes (79), and many plate fins (80). Be prepared.
  • the refrigerant pipe of the refrigerant circuit (45) is connected to (78).
  • the small-diameter heat transfer tube (79) is bent and formed in a U-shape, and both ends are connected to the respective headers (77, 78).
  • the small-diameter heat transfer tubes (79) are arranged in parallel at predetermined intervals.
  • the plate fin (80) is formed in an elongated flat plate shape, and is attached to two long straight pipe portions of the small-diameter heat transfer tube (79).
  • the plurality of plate fins (80) are arranged in parallel at a predetermined interval.
  • the present invention is useful for a heat exchanger in which an adsorbent for adsorbing moisture in the air and desorbing moisture into the air is supported on the surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Geometry (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Central Air Conditioning (AREA)
  • Drying Of Gases (AREA)

Abstract

  第1及び2の熱交換器(47,49)は、多数のフィン(57)を有すると共に、空気中の水分の吸着と空気中への水分の脱離とを行う吸着剤が表面に担持されている。吸着剤のフィン表面の吸着剤層の近くに存在する空気の相対湿度が23%のときの吸着剤の静的性能と、吸着剤のフィン表面の吸着剤層の近くに存在する空気の相対湿度が100%のときの吸着剤の静的性能との差が0.05g/g以上である。

Description

明 細 書
熱交換器
技術分野
[0001] 本発明は、熱交^^、特に空気中の水分の吸着と空気中への水分の脱離とを行 う吸着剤が表面に担持された熱交^^に関する。
背景技術
[0002] 従来より、空気中の水分の吸着と空気中への水分の脱離とを行う吸着剤が表面 に担持された熱交^^が知られている。例えば、特許文献 1には、吸着式冷凍装置 に取り付けられる吸脱着エレメント (熱交 が開示されている。この吸脱着工レメン トは、アルミニウム、アルミニウム合金、銅、銅合金などからなる扁平状のチューブと、 そのチューブの表裏両面を削り起こすことによって形成された多数のフィンとを備え ており、そのチューブの内部には複数の流体通路が形成されている。また、これらの チューブ及びフィンの表面は、吸脱水作用のある多量のシリカゲル (JIS A型)と接 着剤 (酢酸ビュル榭脂)とからなる吸着剤の固着層(吸着剤層)により被覆されて ヽる 。そして、この吸脱着エレメントを備えた吸着式冷凍装置では、チューブが冷凍サイク ルを行う冷媒回路に接続されている。
[0003] この吸着式冷凍装置の運転中には、冷媒回路の圧縮機が運転され、 2つの吸脱 着エレメントの一方が蒸発器となって他方が凝縮器となる冷凍サイクルが行われる。 また、冷媒回路では、四方切換弁を操作することによって冷媒の循環方向が切り換 わり、冷媒の循環方向が切り換わることにより、各吸脱着エレメントは交互に蒸発器と して機能したり凝縮器として機能したりする。そして、吸脱着エレメントのチューブ及 びフィン表面に対して、重量比にぉ 、てシリカゲルの 3〜6%程度の酢酸ビニル榭脂 を添加したものを用いて固着層を形成すると、チューブ及びフィン表面にシリカゲル 粒子を高密度に固着させることができる。その結果、冷凍サイクルを繰り返しても、固 着層がチューブ及びフィン表面力 剥離したり、固着層に亀裂が生じたりすることは ない、と記載されている。
特許文献 1:特開平 8— 200876号公報 発明の開示
発明が解決しょうとする課題
[0004] し力しながら、フィン表面に静的性能の差の大きな吸着剤が担持されて 、な!/、た め、冷凍サイクルが行われても、吸着剤が吸脱する水分量はそれほど多くない。その ため、熱交翻の吸放湿性能はそれほどよくないといえる。
[0005] 本発明はカゝかる点に鑑みてなされたものであり、その目的とするところは、吸着剤 層における静的性能の差が大きぐそれにより高い吸放湿性能を示す熱交換器を提 供することである。
課題を解決するための手段
[0006] 第 1の発明は、多数のフィン (57)を有すると共に、空気中の水分の吸着と空気中 への水分の脱離とを行う吸着剤が表面に担持された熱交換器を対象としている。そし て、上記吸着剤のフィン表面の吸着剤層の近くに存在する空気の相対湿度(%)が 2 3%のときの上記吸着剤の静的性能 (gZg)と、上記吸着剤のフィン表面の吸着剤層 の近くに存在する空気の相対湿度(%)が 100%のときの上記吸着剤の静的性能 (g /g)との差が 0. 05g/g以上である。
[0007] ここで、吸着剤のフィン表面の吸着剤層の近くに存在する空気は、吸着剤層の吸 着剤により水分が吸脱される程度に近くに存在している空気である。また、静的性能 とは、吸着剤層の近くに存在する空気のある相対湿度(%)における lgの吸着剤が 吸着する水分の量 (g)、すなわち含水率である。
[0008] 第 2の発明は、上記第 1の熱交換器において、上記吸着剤層の厚さが 0. 05mm 以上 0. 5mm以下である。
発明の効果
[0009] 本発明では、上記吸着剤のフィン表面の吸着剤層の近くに存在する空気の相対 湿度が 23%のときの上記吸着剤の静的性能と、上記吸着剤のフィン表面の吸着剤 層の近くに存在する空気の相対湿度が 100%のときの上記吸着剤の静的性能との 差が 0. 05gZg以上である。そのため、第 1及び第 2熱交換器 (47, 49)に対して冷凍 サイクルを行うと、吸着剤 lgあたりに 0. 05g以上の水分が吸脱される。従って、第 1 及び第 2熱交 (47, 49)の吸放湿性能を高めることができる。
[0010] また、第 2の発明は、実用上有効な吸着剤層の厚さの範囲である。吸着剤層の厚 さをこのように限定することにより、圧力損失を低減してファン効率の向上及びファン 騒音の低減を達成することができる。
図面の簡単な説明
[0011] [図 1]図 1は、実施形態 1に係る調湿装置の概略構成図である。
[図 2]図 2は、実施形態 1に係る調湿装置の冷媒回路を示す配管系統図である。
[図 3]図 3は、実施形態 1に係る調湿装置の概略構成図である。
[図 4]図 4は、除湿運転の第 1動作における空気流れを示す調湿装置の概略構成図 である。
[図 5]図 5は、除湿運転の第 2動作における空気流れを示す調湿装置の概略構成図 である。
[図 6]図 6は、加湿運転の第 1動作における空気流れを示す調湿装置の概略構成図 である。
[図 7]図 7は、加湿運転の第 2動作における空気流れを示す調湿装置の概略構成図 である。
[図 8]図 8は、吸着剤の吸着等温線及びフィン表面に担持された吸着剤の吸着等温 線を示す特性図である。
[図 9]図 9は、実施形態 2の第 1変形例における熱交換器を示す要部の概略構成図 である。
[図 10]図 10は、実施形態 2の第 2変形例における熱交換器を示す要部の概略構成 図である。
[図 11]図 11は、実施形態 2の第 3変形例における熱交換器を示す要部の概略構成 図である。
[図 12]図 12は、実施形態 2の第 4変形例における熱交換器を示す概略斜視図である [図 13]図 13は、図 13の Z—Z線における概略断面図である。
[図 14]図 14は、実施形態 2の第 5変形例における熱交換器を示す概略斜視図である [図 15]図 15は、実施形態 2の第 5変形例における熱交換器を示す概略側面図である 符号の説明
[0012] 57 フィン
70 波形フィン
71 プレートフィン
75 コルゲートフィン
80 プレートフィン
発明を実施するための最良の形態
[0013] 以下、本発明の実施形態を図面に基づいて詳細に説明する。
[0014] 〈発明の実施形態 1〉
図 1はこの発明の実施形態 1に係る調湿装置の構成を概略的に示し、図 1 (a)は 図 1 (b)の X— X線における断面図、図 1 (b)は内部を見せた状態の平面図であって 図で下側が正面側である。図 1 (c)は図 1 (b)の Y— Y線における断面図である。この 調湿装置は矩形箱状のケーシング(1)を備え、ケーシング(1)内部は、前後に延びる 第 1仕切板 (3)で収納容積の大き!/、左側の第 1空間(5)と、収納容積の小さ!/、右側の 第 2空間(7)とに区画されている。また、上記第 1空間 (5)は、左右に平行に延びる前 後 2枚の第 2及び第 3仕切板 (9, 11)で収納容積の大きい中央の第 3空間(13)と、収 納容積の小さい前後 2つの第 4及び第 5空間(15, 17)とに区画され、上記第 3空間( 13)は、前後に延びる第 4仕切板 (19)で左側空間(13a)と右側空間(13b)とに区画さ れている。さらに、後側の第 5空間(17)は、左右に水平に延びる第 5仕切板 (21)で上 下に区画され、上側空間を第 1流入路 (23)とし、下側の空間を第 1流出路 (25)として いる。一方、前側の第 4空間(15)も、左右に水平に延びる第 6仕切板 (27)で上下に 区画され、上側空間を第 2流入路 (29)とし、下側の空間を第 2流出路 (31)としている
[0015] 上記第 3仕切板(11)には、 4つの第 1〜4開口(lla〜l Id)が第 3空間(13)の左右 の空間(13a, 13b)、第 1流入路 (23)及び第 1流出路 (25)と連通するように上下左右 に並んで形成されている(図 1 (a)参照)。また、上記第 2仕切板 (9)にも、 4つの第 5 〜8開口(9a〜9d)が第 3空間(13)の左右の空間(13a, 13b)、第 2流入路 (29)及び第 2流出路 (31)と連通するように上下左右に並んで形成されている(図 1 (c)参照)。な お、これら第 1〜4開口(11&〜11(1)及び第5〜8開口(9a〜9d)には、図示しないが、 ダンバがそれぞれ開閉自在に設けられている。
[0016] また、上記ケーシング(1)の左側面後側には、室外空気吸込口(33)が上記第 1流 入路 (23)に連通するように形成され、ケーシング(1)の右側面後側には排気吹出口( 35)が形成され、この排気吹出口(35)は上記第 2空間(7)後側に配置された排気ファ ン (37)に接続されて第 1流出路 (25)と連通している。一方、上記ケーシング(1)の左 側面前側には、室内空気吸込口(39)が上記第 2流入路 (29)に連通するように形成 され、ケーシング(1)の右側面前側には給気吹出口(41)が形成され、この給気吹出 口(41)は上記第 2空間(7)前側に配置された給気ファン (43)に接続されて第 2流出 路 (31)と連通している。
[0017] このように構成されたケーシング(1)内には、図 2に示すような冷媒回路 (45)が収 納されている。この冷媒回路 (45)は、第 1熱交換器 (47)、第 2熱交換器 (49)、圧縮機 (51)、四方切換弁 (53)及び電動膨張弁 (55)が介設された閉回路であって冷媒が充 填され、この冷媒を循環させることにより蒸気圧縮式の冷凍サイクルが行われる。
[0018] 具体的には、圧縮機 (51)の吐出側が四方切換弁 (53)の第 1ポートに接続され、 吸入側が四方切換弁 (53)の第 2ポートに接続されて 、る。第 1熱交 (47)の一端 は四方切換弁 (53)の第 3ポートに接続され、他端は電動膨張弁 (55)を介して第 2熱 交 (49)の一端に接続されて ヽる。第 2熱交 (49)の他端は四方切換弁 (53) の第 4ポートに接続されている。
[0019] 上記四方切換弁 (53)は、第 1ポートと第 3ポートが連通して第 2ポートと第 4ポート が連通する状態(図 2 (a)に示す状態)と、第 1ポートと第 4ポートが連通して第 2ポート と第 3ポートが連通する状態(図 2 (b)に示す状態)とに切り換え自在に構成されて!、 る。そして、この冷媒回路 (45)は、四方切換弁 (53)を切り換えることにより、第 1熱交 換器 (47)が凝縮器として機能して第 2熱交換器 (49)が蒸発器として機能する第 1冷 凍サイクル動作と、第 1熱交換器 (47)が蒸発器として機能して第 2熱交換器 (49)が 凝縮器として機能する第 2冷凍サイクル動作とを切り換えて行うように構成されて!ヽる
[0020] また、上記冷媒回路 (45)の各構成要素は、図 1に示すように、第 1熱交換器 (47) が第 3空間(13)の右側空間(13b)に、第 2熱交換器 (49)が第 3空間(13)の左側空間 (13a)に、圧縮機 (51)が第 2空間(7)の前後中程にそれぞれ配置されている。なお、 図示しな!、が、四方切換弁 (53)や電動膨張弁 (55)も第 2空間(7)に配置されて 、る
[0021] 上記第 1及び第 2熱交換器 (47, 49)は共に、図 3に示すようなクロスフィン型のフィ ン ·アンド ·チューブ型熱交換器であり、多数枚のアルミニウム合金製フィン (57)が間 隔をあけて並列配置されたフィン群 (59)を備えて!/、る。このフィン群 (59)のフィン配 列方向両端面とフィン長手方向両端側の端面とは矩形の金属製枠板 (61)で取り囲 まれ、第 1及び第 2熱交換器 (47, 49)は上記枠板 (61)を介して第 3空間(13)の左右 の空間(13a, 13b)にそれぞれ配置されて!、る。上記フィン群 (59)には伝熱管(63)が 配置されて 、る。この伝熱管 (63)は直管部 (63a)と U字管部 (63b)とで蛇行状に形成 され、上記直管部 (63a)が上記フィン群 (59)をフィン配列方向に貫挿するとともに、上 記 U字管部 (63b)が上記枠板 (61)から突出している。また、上記伝熱管 (63)の一端 には接続管 (65)の一端が接続され、この接続管 (65)により伝熱管 (63)を図示しない 冷媒配管に接続するようになって 、る。
[0022] 上記第 1及び第 2熱交換器 (47, 49)のフィン表面には、空気中の水分の吸着と空 気中への水分の脱離とを行う吸着剤を担持する吸着剤層が形成されている。この発 明の特徴として、吸着剤層の近くに存在する空気の相対湿度が 23%であるときの吸 着剤層の静的性能と吸着剤層の近くに存在する空気の相対湿度が 100%であるとき の吸着剤層の静的性能との差は 0. 05gZg以上である。なお、この発明において、 吸着剤層の静的性能とは吸着剤層の吸着剤の含水率である。
[0023] 吸着剤が空気中の水蒸気を吸収するとき、その空気に含まれている水蒸気が冷 却されて水分となって吸収されるため、吸着剤層の近くに存在する空気は飽和状態 であり、よって、その空気の湿度は 100%である。
[0024] 吸着剤が水分を脱離するとき、吸収されていた水分が水蒸気となって空気中に放 出されるため、吸着剤層の近くに存在する空気の温度は上昇し、空気に含まれてい る水分の量は変化しな 、ために吸着剤層の近くに存在する空気の湿度は下がる。例 えば、上記第 1及び第 2熱交換器 (47, 49)を備えた調湿装置を夏場に除湿運転させ る場合、再生空気は、夏場の室内空気 (湿球温度が 27°C、乾球温度が 19°C、湿度 力 7%)である。このとき、吸着剤層表面の温度は 40°C付近にまで上昇しているた め、吸着剤層の近くに存在する空気の温度は 40°C付近になる。そして、湿球温度が 27°C、乾球温度が 19°C、湿度が 47%である空気は、温度が 40°Cまで上昇すると、 その湿度が 23%となる。すなわち、吸着剤層の近くに存在する空気の湿度は 23%と なる。また、上記調湿装置を冬場に運転させる場合、再生空気は、冬場の室外空気 であるため、吸着剤層の近くに存在する空気の温度は 30°Cとなり、その湿度は 7〜2 0%となる。
[0025] 上記第 1及び第 2熱交換器 (47, 49)に対して冷凍サイクルを行うと、上記第 1及び 第 2熱交 (47, 49)は交互に蒸発器として機能したり凝縮器として機能したりする 。そのため、上記調湿装置を夏場に除湿運転させると、吸着剤層の近くに存在する 空気の湿度は 23%になったり 100%になったりする。また、上記調湿装置を冬場に 除湿運転させると、吸着剤層の近くに存在する空気の湿度は 7〜20%になったり 10 0%になったりする。以上より、上記調湿装置を夏場に除湿運転させたときの吸着剤 層の近くに存在する空気の湿度変化の範囲は、上記調湿装置を冬場に運転させた ときの吸着剤層の近くに存在する空気の湿度変化の範囲よりも狭い。そのため、上記 調湿装置を夏場に除湿運転させたときの静的性能の差は、上記調湿装置を冬場に 運転させたときの静的性能の差よりも小さい。すなわち、吸着剤層の近くに存在する 空気の相対湿度が 23%であるときの吸着剤層の静的性能と吸着剤層の近くに存在 する空気の相対湿度が 100%であるときの吸着剤層の静的性能との差が大きければ 、具体的には 0. 05gZg以上であれば、上記第 1及び第 2熱交換器 (47, 49)の吸放 湿性能を高めることができる。
[0026] 静的性能の差が 0. 05gZgから 0. 04gZgへと減少すると、上記第 1及び第 2熱 交換器 (47, 49)の大きさは約 5Z4倍になってしまう。商用上使用可能な上記第 1及 び第 2熱交 (47, 49)の大きさを考慮すると、静的性能の差は 0. 05gZg以上で あることが妥当であろうと考えられる。
[0027] 図 8の破線のグラフは吸着剤(ここではゼオライト)のみの 25°Cにおける吸着等温 線を示し、図 8の実線のグラフはフィン表面に担持された吸着剤(ここではゼオライト) の 25°Cにおける吸着等温線を示す。図 8の実線のグラフに示すように、静的性能の 差は 0. 05gZgである。そして、吸着等温線の線形は、吸着剤の実用的な使用温度 範囲である 0°C以上 50°C以下において、ほとんど変化しない。そのため、 0°C以上 50 °C以下において、静的性能の差は 0. 05gZgである、といえる。
[0028] なお、吸着剤層の吸着剤としては、ゼォライト以外に、シリカゲル、活性炭、親水 性又は吸水性の官能基を有する有機高分子ポリマー系材料、カルボン酸基又はス ルホン酸基を有するイオン交換榭脂系材料、感温性高分子等の機能性高分子材料 、セピオライト、ィモゴライト、ァロフェン及びカオリナトなどの粘土鉱物系材料など、水 分の吸着などに優れているものであれば特に限定することなく用いることができる。
[0029] また、吸着剤層の厚さは 0. 05mm以上 0. 5mm以下であることが好ましい。吸着 剤層の厚さをこのように限定することにより、圧力損失を低減してファン効率の向上及 びファン騒音の低減を達成することができる。
[0030] 各フィン (57)の外表面に吸着剤層を形成する方法は、吸着剤をディップ成形によ り担持させることにより形成してもよぐまた、吸着剤としての性能を損なわない限り、 如何なる方法で吸着剤層を形成してもよ ヽ。吸着剤をディップ成形により担持させる と、吸着剤層をフィン (57)以外の部分、例えば、枠板 (61)、伝熱管 (63)、接続管 (65 )などにも担持させることができる。そして、例えば、枠板 (61)、伝熱管 (63)、接続管( 65)などにも吸着剤を担持させることにより、上記第 1及び第 2熱交 (47, 49)の吸 脱性能を高めることができる。
[0031] 調湿装置の調湿動作
このように構成された調湿装置の調湿動作にっ 、て、図 4〜7を参照しながら説明 する。
[0032] この調湿装置では、除湿運転と加湿運転とが切り換え可能となっている。また、除 湿運転中や加湿運転中には、第 1動作と第 2動作とが交互に繰り返される。
[0033] 《除湿運転》 除湿運転時において、調湿装置では、給気ファン (43)及び排気ファン (37)が運 転される。そして、調湿装置は、室外空気 (OA)を第 1空気として取り込んで室内に供 給する一方、室内空気 (RA)を第 2空気として取り込んで室外に排出する。
[0034] まず、除湿運転時の第 1動作について、図 2及び図 4を参照しながら説明する。こ の第 1動作では、第 1熱交換器 (47)において吸着剤の再生が行われ、第 2熱交換器 (49)において第 1空気である室外空気(OA)の除湿が行われる。
[0035] 第 1動作時において、冷媒回路 (45)では、四方切換弁 (53)が図 2 (a)に示す状 態に切り換えられる。この状態で圧縮機 (51)を運転すると、冷媒回路 (45)で冷媒が 循環し、第 1熱交換器 (47)が凝縮器となって第 2熱交換器 (49)が蒸発器となる第 1 冷凍サイクル動作が行われる。具体的には、圧縮機 (51)力も吐出された冷媒は、第 1熱交換器 (47)で放熱して凝縮し、その後に電動膨張弁 (55)へ送られて減圧される 。減圧された冷媒は、第 2熱交換器 (49)で吸熱して蒸発し、その後に圧縮機 (51)へ 吸入されて圧縮される。そして、圧縮された冷媒は、再び圧縮機 (51)から吐出される
[0036] また、第 1動作時には、第 2開口(lib)、第 3開口(11c)、第 5開口(9a)及び第 8開 口(9d)が開口状態となり、第 1開口(11a)、第 4開口(lid)、第 6開口(9b)及び第 7開 口(9c)が閉鎖状態になる。そして、図 4に示すように、第 1熱交換器 (47)へ第 2空気 としての室内空気 (RA)が供給され、第 2熱交 (49)へ第 1空気としての室外空気 (OA)が供給される。
[0037] 具体的には、室内空気吸込口(39)より流入した第 2空気は、第 2流入路 (29)から 第 5開口(9a)を通って第 3空間(13)の右側空間(13b)へ送り込まれる。右側空間( 13b)では、第 2空気が第 1熱交 (47)を上から下へ向力つて通過して行く。第 1熱 交換器 (47)では、フィン表面に担持された吸着剤が冷媒により加熱され、この吸着 剤から水分が脱離する。吸着剤力 脱離した水分は、第 1熱交 (47)を通過する 第 2空気に付与される。第 1熱交換器 (47)で水分を付与された第 2空気は、第 3空間 (13)の右側空間(13b)から第 3開口(11c)を通って第 1流出路 (25)へ流出する。その 後、第 2空気は、排気ファン (37)へ吸い込まれ、排気吹出口(35)から排出空気 (EA) として室外へ排出される。 [0038] 一方、室外空気吸込口(33)より流入した第 1空気は、第 1流入路 (23)から第 2開 口(l ib)を通って第 3空間(13)の左側空間(13a)へ送り込まれる。左側空間(13a)で は、第 1空気が第 2熱交 (49)を上から下へ向力つて通過して行く。第 2熱交 (49)では、フィン表面に担持された吸着剤に第 1空気中の水分が吸着される。その 際に生じる吸着熱は、冷媒が吸熱する。第 2熱交換器 (49)で除湿された第 1空気は 、第 3空間(13)の左側空間(13a)から第 8開口(9d)を通って第 2流出路 (31)へ流出 する。その後、第 1空気は、給気ファン (43)へ吸い込まれ、給気吹出口(41)から供給 空気 (SA)として室内へ供給される。
[0039] 次に、除湿運転時の第 2動作について、図 2及び図 5を参照しながら説明する。こ の第 2動作では、第 2熱交換器 (49)において吸着剤の再生が行われ、第 1熱交換器 (47)において第 1空気である室外空気(OA)の除湿が行われる。
[0040] 第 2動作時において、冷媒回路 (45)では、四方切換弁 (53)が図 2 (b)に示す状 態に切り換えられる。この状態で圧縮機 (51)を運転すると、冷媒回路 (45)で冷媒が 循環し、第 1熱交換器 (47)が蒸発器となって第 2熱交換器 (49)が凝縮器となる第 2 冷凍サイクル動作が行われる。具体的には、圧縮機 (51)力も吐出された冷媒は、第 2熱交換器 (49)で放熱して凝縮し、その後に電動膨張弁 (55)へ送られて減圧される 。減圧された冷媒は、第 1熱交換器 (47)で吸熱して蒸発し、その後に圧縮機 (51)へ 吸入されて圧縮される。そして、圧縮された冷媒は、再び圧縮機 (51)から吐出される
[0041] また、第 2動作時には、第 1開口(11a)、第 4開口(l id)、第 6開口(9b)及び第 7開 口(9c)が開口状態となり、第 2開口(l ib)、第 3開口(11c)、第 5開口(9a)及び第 8開 口(9d)が閉鎖状態となる。そして、図 5に示すように、第 1熱交換器 (47)へ第 1空気と しての室外空気 (OA)が供給され、第 2熱交換器 (49)へ第 2空気としての室内空気( RA)が供給される。
[0042] 具体的には、室内空気吸込口(39)より流入した第 2空気は、第 2流入路 (29)から 第 6開口(9b)を通って第 3空間(13)の左側空間(13a)へ送り込まれる。左側空間( 13a)では、第 2空気が第 2熱交 (49)を上力も下へ向力つて通過して行く。第 2熱 交換器 (49)では、フィン表面に担持された吸着剤が冷媒により加熱され、この吸着 剤から水分が脱離する。吸着剤から脱離した水分は、第 2熱交 (49)を通過する 第 2空気に付与される。第 2熱交換器 (49)で水分を付与された第 2空気は、第 3空間 (13)の左側空間(13a)から第 4開口(lid)を通って第 1流出路 (25)へ流出する。その 後、第 2空気は、排気ファン (37)へ吸い込まれ、排気吹出口(35)から排出空気 (EA) として室外へ排出される。
[0043] 一方、室外空気吸込口(33)より流入した第 1空気は、第 1流入路 (23)から第 1開 口(11a)を通って第 3空間(13)の右側空間(13b)へ送り込まれる。右側空間(13b)で は、第 1空気が第 1熱交 (47)を上力も下へ向力つて通過して行く。第 1熱交 (47)では、フィン表面に担持された吸着剤に第 1空気中の水分が吸着される。その 際に生じる吸着熱は、冷媒が吸熱する。第 1熱交換器 (47)で除湿された第 1空気は 、第 3空間(13)の右側空間(13b)から第 7開口(9c)を通って第 2流出路 (31)へ流出 する。その後、第 1空気は、給気ファン (43)へ吸い込まれ、給気吹出口(41)から供給 空気 (SA)として室内へ供給される。
[0044] 《加湿運転》
加湿運転時において、調湿装置では、給気ファン (43)及び排気ファン (37)が運 転される。そして、調湿装置は、室内空気 (RA)を第 1空気として取り込んで室外に排 出する一方、室外空気 (OA)を第 2空気として取り込んで室内に供給する。
[0045] まず、加湿運転時の第 1動作について、図 2及び図 6を参照しながら説明する。こ の第 1動作では、第 1熱交換器 (47)において第 2空気である室外空気 (OA)の加湿 が行われ、第 2熱交 (49)において第 1空気である室内空気 (RA)力 水分の回 収が行われる。
[0046] 第 1動作時において、冷媒回路 (45)では、四方切換弁 (53)が図 2 (a)に示す状 態に切り換えられる。この状態で圧縮機 (51)を運転すると、冷媒回路 (45)で冷媒が 循環し、第 1熱交換器 (47)が凝縮器となって第 2熱交換器 (49)が蒸発器となる第 1 冷凍サイクル動作が行われる。
[0047] また、第 1動作時には、第 1開口(11a)、第 4開口(lid)、第 6開口(9b)及び第 7開 口 (9c)が開口状態になり、第 2開口 (lib)、第 3開口 (11c)、第 5開口 (9a)及び第 8開 口(9d)が閉鎖状態になる。そして、図 6に示すように、第 1熱交換器 (47)には第 2空 気としての室外空気 (OA)が供給され、第 2熱交 (49)には第 1空気としての室内 空気 (RA)が供給される。
[0048] 具体的には、室内空気吸込口(39)より流入した第 1空気は、第 2流入路 (29)から 第 6開口(9b)を通って第 3空間(13)の左側空間(13a)へ送り込まれる。第 2熱交換室 (42)では、第 1空気が第 2熱交 (49)を上から下へ向力つて通過して行く。左側 空間(13a)では、フィン表面に担持された吸着剤に第 1空気中の水分が吸着される。 その際に生じる吸着熱は、冷媒が吸熱する。その後、水分を奪われた第 1空気は、第 4開口(lid)、第 1流出路 (25)、排気ファン (37)を順に通過し、排出空気 (EA)として 排気吹出口(35)から室外へ排出される。
[0049] 一方、室外空気吸込口(33)より流入した第 2空気は、第 1流入路 (23)から第 1開 口(11a)を通って第 3空間(13)の右側空間(13b)へ送り込まれる。右側空間(13b)で は、第 2空気が第 1熱交 (47)を上力も下へ向力つて通過して行く。第 1熱交 (47)では、フィン表面に担持された吸着剤が冷媒により加熱され、この吸着剤力ゝら水 分が脱離する。吸着剤力 脱離した水分は、第 1熱交換器 (47)を通過する第 2空気 に付与される。その後、加湿された第 2空気は、第 7開口(9c)、第 2流出路 (31)、給 気ファン (43)を順に通過し、供給空気 (SA)として給気吹出口(41)から室内へ供給さ れる。
[0050] 次に、加湿運転時の第 2動作について、図 2及び図 7を参照しながら説明する。こ の第 2動作では、第 2熱交換器 (49)において第 2空気である室外空気 (OA)の加湿 が行われ、第 1熱交 (47)において第 1空気である室内空気 (RA)力 水分の回 収が行われる。
[0051] 第 2動作時において、冷媒回路 (45)では、四方切換弁 (53)が図 2 (b)に示す状 態に切り換えられる。この状態で圧縮機 (51)を運転すると、冷媒回路 (45)で冷媒が 循環し、第 1熱交換器 (47)が蒸発器となって第 2熱交換器 (49)が凝縮器となる第 2 冷凍サイクル動作が行われる。
[0052] また、第 2動作時には、第 2開口(lib)、第 3開口(11c)、第 5開口(9a)及び第 8開 口 (9d)が開口状態になり、第 1開口 (11a)、第 4開口 (lid)、第 6開口 (9b)及び第 7開 口(9c)が閉鎖状態になる。そして、図 7に示すように、第 1熱交換器 (47)には第 1空 気としての室内空気 (RA)が供給され、第 2熱交 (49)には第 2空気としての室外 空気 (OA)が供給される。
[0053] 具体的には、室内空気吸込口(39)より流入した第 1空気は、第 2流入路 (29)から 第 5開口(9a)を通って第 3空間(13)の右側空間(13b)に送り込まれる。右側空間( 13b)では、第 1空気が第 1熱交 (47)を上から下に向力つて通過して行く。第 1熱 交 (47)では、フィン表面に担持された吸着剤に第 1空気中の水分が吸着される 。その際に生じる吸着熱は、冷媒が吸熱する。その後、水分を奪われた第 1空気は、 第 3開口(11c)、第 1流出路 (25)、排気ファン (37)を順に通過し、排出空気 (EA)とし て排気吹出口(35)力 室外へ排出される。
[0054] 一方、室外空気吸込口(33)より流入した第 2空気は、第 1流入路 (23)から第 2開 口(lib)を通って第 3空間(13)の左側空間(13a)に送り込まれる。左側空間(13a)で は、第 2空気が第 2熱交 (49)を上から下へ向力つて通過して行く。第 2熱交 (49)では、フィン表面に担持された吸着剤が冷媒により加熱され、この吸着剤力ゝら水 分が脱離する。吸着剤力 脱離した水分は、第 2熱交換器 (49)を通過する第 2空気 に付与される。その後、加湿された第 2空気は、第 8開口(9d)、第 2流出路 (31)、給 気ファン (43)を順に通過し、供給空気 (SA)として給気吹出口(41)から室内へ供給さ れる。
[0055] 以上、全換気モードの除湿運転及び加湿運転につ!、て説明した力 この調湿装 置は、室内空気 (RA)を第 1空気として取り込み室内に供給する一方、室外空気(OA )を第 2空気として取り込み室外に排出する循環モードの除湿運転や、室外空気 (OA )を第 1空気として取り込み室外に排出する一方、室内空気 (RA)を第 2空気として取 り込み室内に供給する循環モードの加湿運転をも行うものであってもよい。
[0056] また、この調湿装置は、室外空気 (OA)を第 1空気及び第 2空気として取り込み、 一部を室内に供給すると同時に、残りを室外に排出する給気モードの除湿運転及び 加湿運転や、室内空気 (RA)を第 1空気及び第 2空気として取り込み、一部を室内に 供給すると同時に、残りを室外に排出する排気モードの除湿運転及び加湿運転をも 行うものであってもよい。
[0057] 〈発明の実施形態 2〉 次に、本発明の実施形態 2を図面に基づいて詳細に説明する。
[0058] 本実施形態は、第 1熱交換器 (47)及び第 2熱交換器 (49)を異なる形態としてもの であり、第 1変形例〜第 5変形を示している。尚、本発明の第 1熱交換器 (47)及び第
2熱交換器 (49)は、第 1変形例〜第 5変形の熱交換器に限られず、その他の各種の 熱交翻を適用してもよいことは勿論である。
[0059] 第 1変形例
本変形例は、図 9に示すように、上記実施形態 1の第 1及び第 2熱交換器 (47, 49
)における伝熱管(63)の直管部(63a)が真円形に形成されていたのに代えて、伝熱 管 (63)の直管部 (63a)を楕円形に形成したものである。
[0060] つまり、上記第 1及び第 2熱交換器 (47, 49)は、クロスフィン型のフィン 'アンド'チ ユーブ型熱交換器であり、この第 1及び第 2熱交換器 (47, 49)における伝熱管 (63) の直管部 (63a)は、断面が横長の楕円形に形成されている。
[0061] その他の構成、作用及び効果は、実施形態 1と同様である。特に、上記第 1及び 第 2熱交換器 (47, 49)のフィン表面には、空気中の水分の吸着と空気中への水分の 脱離とを行う吸着剤を担持する吸着剤層が形成されている。
[0062] 第 2変形例
本変形例は、図 10に示すように、上記実施形態 1の第 1及び第 2熱交換器 (47,
49)におけるフィン (57)が平板状に形成されていたのに代えて、波形フィン (70)とし たものである。
[0063] つまり、上記第 1及び第 2熱交換器 (47, 49)は、クロスフィン型のフィン 'アンド'チ ユーブ型熱交換器であり、この第 1及び第 2熱交換器 (47, 49)には、多数の波形フィ ン(70)が間隔をあけて並列配置されている。上記波形フィン (70)は、アルミニウム合 金製フィンであり、平板を折り曲げて三角形が連続する波形に形成されている。そし て、伝熱管 (63)の直管部 (63a)が上記波形フィン (70)を貫通して 、る。
[0064] その他の構成、作用及び効果は、実施形態 1と同様である。特に、上記第 1及び 第 2熱交換器 (47, 49)のフィン表面には、空気中の水分の吸着と空気中への水分の 脱離とを行う吸着剤を担持する吸着剤層が形成されている。
[0065] 第 3変形例 本変形例は、図 11に示すように、上記実施形態 1の第 1及び第 2熱交換器 (47, 49)におけるフィン (57)が平板状に形成されていたのに代えて、波形フィン (70)とプ レートフィン(71)とで構成したものである。
[0066] つまり、上記第 1及び第 2熱交換器 (47, 49)は、クロスフィン型のフィン 'アンド'チ ユーブ型熱交換器であり、この第 1及び第 2熱交換器 (47, 49)には、多数の波形フィ ン(70)と多数のプレートフィン (71)とが交互に並列配置されて 、る。上記波形フィン( 70)は、アルミニウム合金製フィンであり、平板を折り曲げて三角形が連続する波形に 形成されている。上記プレートフィン (71)アルミニウム合金製フィンであり、平板状に 形成されている。上記波形フィン (70)とプレートフィン (71)とは、交互に配置されてい る。そして、伝熱管(63)の直管部(63a)が上記波形フィン (70)とプレートフィン (71)と を貫通している。
[0067] その他の構成、作用及び効果は、実施形態 1と同様である。特に、上記第 1及び 第 2熱交換器 (47, 49)のフィン表面には、空気中の水分の吸着と空気中への水分の 脱離とを行う吸着剤を担持する吸着剤層が形成されている。
[0068] 第 4変形例
本変形例は、図 12及び図 13に示すように、上記実施形態 1の第 1及び第 2熱交 换器 (47, 49)がクロスフィン型のフィン ·アンド ·チューブ型熱交^^で構成したのに 代えて、コルゲートフィンチューブ型熱交^^で構成したものである。
[0069] つまり、上記第 1及び第 2熱交換器 (47, 49)は、 2つのヘッダ(72, 73)と、扁平冷 却管(74)とコルゲートフィン (75)とを備えている。上記 2つのヘッダ (72, 73)には、冷 媒回路 (45)の冷媒配管が接続される一方、両ヘッダ (72, 73)の間には、複数の扁平 冷却管(74)が所定間隔を存して並行に配置されて 、る。上記扁平冷却管(74)には 、両ヘッダ(72, 73)に連通する複数の冷媒通路(76)が形成されている。
[0070] 上記コルゲートフィン(75)は、扁平冷却管(74)の間に配置されている。上記コル ゲートフィン(75)は、正弦波状の波形に形成され、両ヘッダ(72, 73)に亘つて設けら れている。
[0071] その他の構成、作用及び効果は、実施形態 1と同様である。特に、上記第 1及び 第 2熱交換器 (47, 49)のフィン表面には、空気中の水分の吸着と空気中への水分の 脱離とを行う吸着剤を担持する吸着剤層が形成されている。
[0072] 第 5変形例
本変形例は、図 14及び図 15に示すように、上記実施形態 1の第 1及び第 2熱交 换器 (47, 49)がクロスフィン型のフィン ·アンド ·チューブ型熱交^^で構成したのに 代えて、細径多管式熱交換器で構成したものである。
[0073] つまり、上記第 1及び第 2熱交換器 (47, 49)は、 2つのヘッダ(77, 78)と、多数の 細径伝熱管(79)と多数のプレートフィン(80)とを備えて 、る。上記 2つのヘッダ(77,
78)には、冷媒回路 (45)の冷媒配管が接続されている。一方、上記細径伝熱管(79) は、 U字状に折り曲げ形成され、両端が上記各ヘッダ (77, 78)に接続されている。上 記細径伝熱管(79)は、所定間隔を存して並行に配置されている。
[0074] 上記プレートフィン (80)は、細長の平板状に形成され、細径伝熱管(79)の 2つの 長尺直管部に取り付けられている。上記多数のプレートフィン (80)は、所定間隔を存 して並行に配置されて 、る。
[0075] その他の構成、作用及び効果は、実施形態 1と同様である。特に、上記第 1及び 第 2熱交換器 (47, 49)のフィン表面には、空気中の水分の吸着と空気中への水分の 脱離とを行う吸着剤を担持する吸着剤層が形成されている。
産業上の利用可能性
[0076] この発明は、空気中の水分の吸着と空気中への水分の脱離とを行う吸着剤が表 面に担持された熱交換器に有用である。

Claims

請求の範囲
[1] 多数のフィン (57)を有すると共に、空気中の水分の吸着と空気中への水分の脱 離とを行う吸着剤が表面に担持された熱交^^であって、
上記吸着剤のフィン表面の吸着剤層の近くに存在する空気の相対湿度(%)が 2
3%のときの上記吸着剤の静的性能 (gZg)と、上記吸着剤のフィン表面の吸着剤層 の近くに存在する空気の相対湿度(%)が 100%のときの上記吸着剤の静的性能 (g
/g)との差が 0. 05g/g以上である
ことを特徴とする熱交^^。
[2] 請求項 1において、
上記吸着剤層の厚さは、 0. 05mm以上で且つ 0. 5mm以下である ことを特徴とする熱交^^。
PCT/JP2005/005964 2004-03-31 2005-03-29 熱交換器 WO2005095880A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004101777 2004-03-31
JP2004-101777 2004-03-31
JP2004-131757 2004-04-27
JP2004131757A JP2005315465A (ja) 2004-03-31 2004-04-27 熱交換器

Publications (1)

Publication Number Publication Date
WO2005095880A1 true WO2005095880A1 (ja) 2005-10-13

Family

ID=35063873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/005964 WO2005095880A1 (ja) 2004-03-31 2005-03-29 熱交換器

Country Status (2)

Country Link
JP (1) JP2005315465A (ja)
WO (1) WO2005095880A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102706970A (zh) * 2012-06-08 2012-10-03 云南烟草科学研究院 材料吸附性能的快速检测方法
CN111692741A (zh) * 2019-08-01 2020-09-22 浙江三花智能控制股份有限公司 换热器及其制备方法、换热系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5332534B2 (ja) * 2008-11-18 2013-11-06 アイシン精機株式会社 空気調和装置
DE102011015153A1 (de) * 2011-03-25 2012-09-27 Sortech Ag Verfahren und Vorrichtung zum Ausführen eines alternierenden Verdampfungs- und Kondensationsprozesses eines Arbeitsmediums

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07265649A (ja) * 1994-03-31 1995-10-17 Kobe Steel Ltd 乾式除湿装置
JP2001193966A (ja) * 2000-01-13 2001-07-17 Daikin Ind Ltd 調湿システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07265649A (ja) * 1994-03-31 1995-10-17 Kobe Steel Ltd 乾式除湿装置
JP2001193966A (ja) * 2000-01-13 2001-07-17 Daikin Ind Ltd 調湿システム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102706970A (zh) * 2012-06-08 2012-10-03 云南烟草科学研究院 材料吸附性能的快速检测方法
CN111692741A (zh) * 2019-08-01 2020-09-22 浙江三花智能控制股份有限公司 换热器及其制备方法、换热系统
CN111692741B (zh) * 2019-08-01 2021-09-28 浙江三花智能控制股份有限公司 换热器及其制备方法、换热系统
US11988464B2 (en) 2019-08-01 2024-05-21 Zhejiang Sanhua Intelligent Controls Co., Ltd. Heat exchanger, method for making heat exchanger, and heat exchange system

Also Published As

Publication number Publication date
JP2005315465A (ja) 2005-11-10

Similar Documents

Publication Publication Date Title
US7537050B2 (en) Heat exchanger
JP3668786B2 (ja) 空気調和装置
JP3649236B2 (ja) 空気調和装置
JP3891207B2 (ja) 調湿装置
JP3861902B2 (ja) 調湿装置
JP5786646B2 (ja) 調湿装置
WO2005095868A1 (ja) 調湿装置
WO2005103577A1 (ja) 調湿装置
US7717163B2 (en) Heat exchanger
WO2005095880A1 (ja) 熱交換器
JP2006078108A (ja) 調湿装置
JP3742931B2 (ja) 調湿装置の熱交換器
JP2004321885A (ja) 調湿用素子
JP2005134005A (ja) 調湿装置
JP2006349342A (ja) 熱交換器
JP2006346659A (ja) 調湿装置
JP3742932B2 (ja) 熱交換器
JP3815484B2 (ja) 熱交換器
JP2013064585A (ja) 調湿装置
JP2006078171A (ja) 調湿装置
JP4529530B2 (ja) 調湿装置
JP2005283054A (ja) 熱交換器
JP4273829B2 (ja) 調湿装置
JP2005291592A (ja) 熱交換器
JP2005291596A (ja) 調湿装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase