WO2005095681A1 - Method for producing iii group element nitride crystal, production apparatus for use therein, and semiconductor element produced thereby - Google Patents

Method for producing iii group element nitride crystal, production apparatus for use therein, and semiconductor element produced thereby Download PDF

Info

Publication number
WO2005095681A1
WO2005095681A1 PCT/JP2005/006365 JP2005006365W WO2005095681A1 WO 2005095681 A1 WO2005095681 A1 WO 2005095681A1 JP 2005006365 W JP2005006365 W JP 2005006365W WO 2005095681 A1 WO2005095681 A1 WO 2005095681A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
crystal growth
nitrogen
material preparation
container
Prior art date
Application number
PCT/JP2005/006365
Other languages
French (fr)
Japanese (ja)
Inventor
Yusuke Mori
Hisashi Minemoto
Yasuo Kitaoka
Isao Kidoguchi
Fumio Kawamura
Takatomo Sasaki
Yasuhito Takahashi
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2006519467A priority Critical patent/JP4819677B2/en
Priority to EP05727620A priority patent/EP1736573A4/en
Priority to US10/599,501 priority patent/US7794539B2/en
Publication of WO2005095681A1 publication Critical patent/WO2005095681A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B9/00Single-crystal growth from melt solutions using molten solvents
    • C30B9/04Single-crystal growth from melt solutions using molten solvents by cooling of the solution
    • C30B9/08Single-crystal growth from melt solutions using molten solvents by cooling of the solution using other solvents
    • C30B9/10Metal solvents
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state
    • Y10T117/1092Shape defined by a solid member other than seed or product [e.g., Bridgman-Stockbarger]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state
    • Y10T117/1096Apparatus for crystallization from liquid or supercritical state including pressurized crystallization means [e.g., hydrothermal]

Definitions

  • the present invention relates to a method for producing a group III element nitride crystal, a production apparatus used for the method, and a semiconductor device obtained by the method.
  • Gallium nitride has attracted attention as a material for semiconductor elements that emit blue or ultraviolet light.
  • Blue laser diodes LDs
  • LEDs blue light-emitting diodes
  • Ultraviolet LDs are also expected to be applied to biotechnology, etc., and ultraviolet LEDs are expected to be used as ultraviolet light of fluorescent lamps.
  • a GaN crystal for LD or LED is usually formed on a sapphire substrate by heteroepitaxially growing a GaN crystal using a vapor phase epitaxy method.
  • the dislocation density of the GaN crystal obtained by this method typically, 10 8 cm- 2 ⁇ : for 10 9 cm- is 2, there is a problem with the quality of the resulting crystals.
  • an ELOG (Epitaxial lateral overgrowth) method has been developed. According to this method, the dislocation density can be reduced to about 10 5 cm 2 to about 10 6 cm 2 .
  • this method has a problem that the process is complicated.
  • Patent Document 1 JP 2002-293696 A
  • Patent Document 2 JP 2003-300798 A
  • an object of the present invention is to provide a method for producing a Group III element nitride crystal capable of improving a growth rate and growing a large crystal of high quality in a short time, a production apparatus used therefor, and a production apparatus used in the method.
  • a semiconductor device To provide a semiconductor device.
  • the production method of the present invention is a method for producing a solution containing at least one of an alkali metal and an alkaline earth metal, a Group III element, and nitrogen under a nitrogen-containing gas atmosphere.
  • a method for producing a Group III element nitride crystal comprising a crystal growth step of growing a crystal by reacting nitrogen in the raw material solution with nitrogen in the raw material liquid by heating under pressure, and further comprising, prior to the crystal growth step, A step of preparing at least one of an alkali metal and an alkaline earth metal under a nitrogen-containing gas atmosphere by setting at least one of an atmosphere temperature and an atmosphere pressure higher than the conditions of the crystal growth step. It is characterized in that it is a step of preparing the raw material liquid by dissolving nitrogen in a melt containing one and a group m element.
  • the production apparatus of the present invention is an apparatus for producing a m-group element nitride crystal, which includes a heating means, a calo-pressure means, a nitrogen-containing gas supply means, a crystal growth vessel, a raw material preparation vessel, and a raw material transfer means.
  • the crystal growth vessel and the raw material preparation vessel are connected via the raw material transfer means, and the heating means, the pressurizing means, and the nitrogen A gas-containing supply means is arranged, and the heating means, the pressurizing means, and the nitrogen-containing gas supply Step, pressurize and heat under a nitrogen-containing gas atmosphere to prepare a melt containing a Group III element and at least one of an alkali metal and an alkaline earth metal in the raw material preparation vessel, and prepare the melt in the melt.
  • a raw material liquid is prepared by dissolving nitrogen, and the raw material liquid is transferred from the raw material preparation vessel to the crystal growth vessel by the raw material transfer means, and the inside of the crystal growth vessel is heated by the heating means and the heating means.
  • the present inventors have conducted a series of studies on the growth of Group III nitride crystals.
  • the time that does not contribute to the initial crystal growth depends on the force depending on the crystal growth conditions. It was found that the time was very long, about 48 hours and about 20% to 50% of the total growth time.
  • the existence of the time that does not contribute to the crystal growth substantially shortens the time during which the crystal grows, and as a result, the thickness of the grown crystal is reduced by the growth time (including the time that does not contribute to the growth).
  • the apparent crystal growth rate divided by when growing a large crystal or a thick film crystal, the time required to obtain a crystal of a desired size becomes longer.
  • the present inventors have stated that the cause of the time during which no crystal grows at the beginning of crystal growth is that sufficient time is required for nitrogen to dissolve in the melt containing the group III element. I figured it out. Therefore, based on this finding, the present inventors have further studied and reached the present invention. In other words, prior to crystal growth, by setting at least one of the ambient temperature and the atmospheric pressure higher than the crystal growth conditions in advance, a melt containing at least one of an alkali metal and an alkaline earth metal and a Group III element can be obtained.
  • the raw material liquid is prepared by forcibly dissolving nitrogen in the raw material (raw material preparation step: in this state, the Group III element nitride crystal in the melt (raw material liquid) is saturated or unsaturated). Thereafter, for example, the temperature of the raw material liquid is lowered to a desired temperature, and the state of the group III element nitride crystal in the melt is changed from a saturated or unsaturated state to a supersaturated state. As a result, the crystal is grown at a desired atmosphere temperature and pressure (crystal growth step: in this state, the Group III element nitride crystal in the melt is in a supersaturated state). Alternatively, after the raw material preparation step, the crystal growth is performed by reducing the atmospheric pressure to a desired pressure.
  • the time until the supersaturation is reached is reduced. Can be shortened. Therefore, according to the present invention, it is possible to start the crystal growth of the m-group element nitride crystal in a state where the time not contributing to the growth time is reduced or almost not.
  • the atmospheric pressure is reduced to a desired pressure, immediately after that, the m-group element nitride crystal in the melt is in a saturated or unsaturated state, but the atmospheric pressure is maintained at the desired pressure for a certain period of time.
  • the nitrogen is further dissolved in the melt (raw material liquid), and the m-group element nitride crystal in the melt becomes a supersaturated state and crystal growth starts.
  • the dissolution of nitrogen in the melt in the raw material preparation step can be performed in a shorter time by using, for example, an ambient temperature, an ambient pressure, a gas supply method (eg, gas flow and publishing), and ultrasonic waves.
  • the crystal growth step for example, the m-group element nitride crystal was grown three-dimensionally by keeping the atmospheric pressure and the atmospheric temperature constant during the crystal growth, or by gently changing them. Even in this case, the crystal growth rate can be kept constant. As a result, for example, a high-quality crystal with little change in impurity concentration or the like in the obtained crystal can be grown more quickly.
  • FIG. 1 is a graph showing the relationship between time and ambient temperature in one embodiment of the present invention.
  • FIG. 2 is a graph showing a relationship between time and a grown film thickness in the embodiment of the present invention.
  • FIG. 3 is a graph showing a relationship between time and atmospheric pressure in another embodiment of the present invention.
  • FIG. 4 is a graph showing a relationship between time and a grown film thickness in the other embodiment of the present invention.
  • FIG. 5 is a graph showing the relationship between time and ambient temperature in still another embodiment of the present invention.
  • FIG. 6 is a graph showing the relationship between time and atmospheric pressure in still another embodiment of the present invention.
  • FIG. 7 is a configuration diagram of a manufacturing apparatus used in the one embodiment of the present invention.
  • FIG. 8 is a configuration diagram of a manufacturing apparatus used in still another embodiment of the present invention.
  • FIG. 9 is a configuration diagram of a manufacturing apparatus used in still another embodiment of the present invention.
  • FIG. 10 is a configuration diagram of a manufacturing apparatus used in still another embodiment of the present invention.
  • FIG. 11 is a configuration diagram of a manufacturing apparatus used in still another embodiment of the present invention.
  • FIG. 12 is a configuration diagram of a manufacturing apparatus used in still another embodiment of the present invention.
  • FIG. 13 is a configuration diagram of a manufacturing apparatus used in still another embodiment of the present invention.
  • FIG. 14 is a configuration diagram of a manufacturing apparatus used in still another embodiment of the present invention.
  • FIG. 15 is a configuration diagram of a manufacturing apparatus used in still another embodiment of the present invention.
  • FIG. 16 is a sectional view of a group III element nitride semiconductor device according to an example of the present invention.
  • the production method of the present invention is a production method including a raw material preparation step and a crystal growth step.
  • the raw material preparation step by setting at least one of the atmospheric temperature and the atmospheric pressure higher than the conditions of the crystal growth step, nitrogen is dissolved in the melt to prepare the raw material liquid (in this state, the melt ( Group III element nitride crystals in the raw material solution) are saturated or unsaturated.)
  • the atmospheric temperature and the atmospheric pressure is once lowered to bring the Group III element nitride crystal in the raw material liquid into a supersaturated state, and the Group III element nitride crystal is grown in the raw material liquid.
  • the crystal can be grown at a higher ambient temperature than in the case where only the ambient temperature is lowered, and as a result, the crystal can be grown under the condition that the impurity is less taken up.
  • the m-group element nitride crystal in the raw material liquid may be supersaturated by simultaneously lowering the atmospheric pressure and the atmospheric temperature to grow the crystal.
  • the ambient temperature in the present invention is, for example, 800 ° C to 1 ° C in the raw material preparation step. It is in the range of 100 ° C, preferably 850.
  • the temperature is in the range of C to 1000 ° C.
  • the evaporation of the alkali metal and the alkaline earth metal can be suppressed, and the group III element nitride crystal can be efficiently dissolved.
  • the temperature is in the range of 600 ° C. to: 1000 ° C., preferably 800 ° C. to 950 ° C.
  • the difference between the ambient temperatures in the raw material preparation step and the crystal growth step is, for example, 20 ° C to 200 ° C, and preferably 50 ° C to 100 ° C.
  • atmospheric pressure in the present invention in the raw material preparation step, for example, 2atm ⁇ 10 0atm: in the range of (2 X l 013 X 10 5 Pa ⁇ . 100 X 1. 013 X 10 5 Pa), preferably is 10a a tm ⁇ 70atm (10 X l. 013 X 10 5 Pa ⁇ 70 X 1. 013 X 10 5 Pa), with such a pressure range, suppress evaporation of alkali metals and alkaline earth metals A group III element nitride crystal can be efficiently dissolved using a relatively inexpensive pressure vessel.
  • the crystal growth step is performed in the range of 2 atm to 100 atm (2 X l.
  • 013 X 10 5 Pa to: 100 X 1.03 X 10 5 Pa), preferably 25 atm. a ⁇ 50atm (25 X 1. 013 X 10 5 Pa ⁇ 50 XI. 013 X 10 5 Pa).
  • the difference between atmosphere pressure of the raw material preparation step and the crystal growth step for example, 0 ⁇ latm ⁇ 30atm (0. 1 X 1. 013 X 10 5 Pa ⁇ 30 X 1. 0 13 X 10 5 Pa) by weight, preferably 0. 5atm ⁇ 20atm (0. 5 X 1. 013 X 10 5 Pa ⁇ 20 X 1. 013 X 10 5 Pa).
  • the atmosphere temperature in the crystal growth step is gradually lowered to obtain a predetermined crystal. It is preferable to set the growth temperature.
  • the decrease in the ambient temperature may be, for example, continuous or stepwise. Examples of a method of gradually lowering the ambient temperature include, for example, a method of once lowering the ambient temperature, maintaining the temperature for a certain period of time, lowering the temperature again, repeating these steps, or changing the rate of decrease. Method and the like.
  • the descending speed may be changed to two stages or to more stages.
  • the rate of decrease in the ambient temperature is, for example, 0.05 ° C / hour to 30 ° C / hour, preferably 0.1 ° C / hour to 5 ° C / hour, and more preferably 0.1 ° C / hour. C / hour to 1 ° C / hour.
  • the atmospheric pressure when the atmospheric pressure is changed during the crystal growth step, the above-mentioned raw material preparation is performed. After switching from the manufacturing process to the crystal growth process, it is preferable to gradually increase the atmospheric pressure in the crystal growth process to a predetermined crystal growth pressure.
  • the increase in the atmospheric pressure may be, for example, continuous or stepwise.
  • the atmospheric pressure is increased stepwise, for example, once the atmospheric pressure is increased, the temperature is maintained for a certain period of time, then the pressure is increased again, and a method of repeating these steps or changing the rate of increase are used. Method and the like.
  • the rising speed When changing the rising speed, the rising speed may be changed in two stages or may be changed in more stages. Further, the decrease in the atmospheric temperature and the increase in the atmospheric pressure may be performed independently or simultaneously.
  • the atmosphere increases the rate of pressure, for example, 0. Olatm / Time ⁇ 0 ⁇ 3 atm / Time (0. 01 X 1. 01 3 X 10 5 Pa / Time ⁇ 0. 3 X 1. 013 X 10 5 Pa / and time), preferably 0 ⁇ 05atm / time ⁇ 0. LATM / time (0. 05 X 1. 013 X 10 5 Pa / time ⁇ 0. 1 X 1. 013 X 10 5 Pa / hour).
  • the substantial crystal growth rate can be further increased. Further, by performing both of these at the same time, the crystal growth rate can be further increased.
  • the substantial crystal growth rate is, for example, 5 ⁇ m / hour to 100 ⁇ m / hour, and preferably 10 ⁇ m / hour to 50 ⁇ m / hour.
  • the substantial crystal growth rate in the present invention means the thickness of a crystal grown per hour from when crystal growth actually starts to when it ends (excluding time that does not contribute to crystal growth). .
  • the rate of decrease in the ambient temperature and the rate of increase in the ambient pressure may be constant or may be varied.
  • the rate of decrease in the ambient temperature and the rate of increase in the ambient pressure may be gradually increased.
  • the temperature be lowered at a rate of 0.05 ° C./hour in the initial stage of crystal growth and 3 ° C./hour in the latter period, and more preferable that the temperature be lowered.
  • Initially 0. C Per hour, and in the latter period as 1 ° C / hour.
  • the pressure is increased at 0.1 Olatm / hour (0.01 ⁇ 1.013 ⁇ 10 5 Pa / hour) in the early stage of crystal growth, and is increased to 0.3 atm / hour (0%) in the latter period. . 3 X 1. 013 X l. 5 Pa / more preferably it is preferred instrument to increase in time between), the initial crystal growth 0. 05atm / inter hr (0. 05 X 1. 013 X 10 5 Pa / Hour), and in the latter period, it is increased by 0. latm / hour (0.1 ⁇ 1.013 ⁇ 10 5 Pa / hour).
  • the raw material liquid is in a state of being saturated or unsaturated with the group III element nitride crystal.
  • the unsaturated state means a state in which the dissolution of the group III element nitride crystal in the raw material liquid is still possible.
  • the solubility of the group III element nitride in the raw material liquid is, for example, 0.2 to 5 at.%, Preferably 0.2 at.% To lat.%, And the nitrogen concentration in the raw material liquid is % Is, for example, 0.2 Olat.% To 5 at.%, Preferably 0.2 at.% To: lat.%.
  • the nitrogen-containing gas in the raw material preparation step of the present invention, it is preferable to supply the nitrogen-containing gas by flowing the nitrogen-containing gas on the liquid surface of the melt (raw material liquid).
  • the flow can be performed, for example, by supplying the nitrogen-containing gas to the liquid surface of the melt.
  • the flow rate of the nitrogen-containing gas to be flown can be controlled by, for example, a mass flow controller or a flow meter.
  • the nitrogen-containing gas it is preferable to supply the nitrogen-containing gas by publishing the nitrogen-containing gas in the melt. This is because, by publishing, the gas-liquid interface area where the melt and the nitrogen-containing gas come into contact with each other is increased, and the efficiency of dissolving nitrogen in the melt can be further improved. Further, convection by publishing can, for example, make the nitrogen concentration in the melt uniform.
  • the publishing can be performed, for example, by directly supplying a nitrogen-containing gas into the melt.
  • the flow rate of the nitrogen-containing gas to be bubbled can be controlled by, for example, a mass flow controller, a flow meter, or the like, as in the case of flowing the nitrogen-containing gas.
  • the size of the bubbles supplied by the publishing is not particularly limited, but is preferably as small as possible.
  • microbubbles eg, a diameter of 100 ⁇ m or less
  • nanobubbles eg, a diameter of 100 nm or less
  • Masure By reducing the bubble in this way, the gas-liquid boundary area where the melt and the nitrogen-containing gas come into contact with each other is further reduced. The number of layers increases, the efficiency of dissolving nitrogen in the melt is improved, and the evaporation of alkali metals and the like in the melt can be suppressed. Further, it is preferable to apply ultrasonic waves to the melt in addition to the publishing.
  • the bubble force of the nitrogen-containing gas supplied by the publishing is fixed at the position of the node of the ultrasonic wave, for example, so that the bubble can stay in the melt for a longer time and the bubble diameter can be further reduced. Therefore, the dissolving efficiency of nitrogen can be further improved.
  • a method for obtaining a Group III element nitride crystal by bubbling ammonia gas in a melt containing a Group m element for example, JP-A-10-7496 and US Pat. No. 6,066,205 Is disclosed.
  • heterogeneous nuclei are generated or heterogeneous nuclei are incorporated as impurities in the grown crystals because the nitrogen-containing gas is bubbled in the supersaturated melt of the group III nitride crystal.
  • the group III element nitride crystal publishes the nitrogen-containing gas in the melt in a saturated or unsaturated state. You get it.
  • the raw material preparation step may be performed before or during the crystal growth step and / or during or after the crystal growth step. It is preferable that crystal growth be performed continuously, for example, by simultaneously performing the above.
  • a crystal growth step may be performed by separately preparing a melt (raw material liquid) in which nitrogen is dissolved, and adding it as appropriate.
  • the raw material preparation step by continuously performing the raw material preparation step at the time of taking out the crystal, preparing the crystal, and the like, the crystal can be continuously grown thereafter, and the production efficiency can be further improved.
  • examples of the alkali metal include sodium (Na), lithium (Li), potassium (K), rubidium (Rb), and cesium (Cs). a). These may be used alone or in combination of two or more.
  • examples of the alkaline earth metal include calcium (Ca), magnesium (Mg), beryllium (Be), strontium (Sr) and barium (Ba), and preferably calcium (Ca) and strontium (Sr). And barium (Ba), and more preferably calcium (Ca). These may be used alone or in combination of two or more.
  • the alkaline earth metals are calcium (Ca), magnesium (Mg), beryllium (Be ), Strontium (Sr) and barium (Ba).
  • the melt may contain, for example, n-type and p-type dopants such as silicon (Si), zinc (Zn) and magnesium (Mg) as dopants.
  • the GaN crystal is produced using Ga, among which the group IV element is preferably Al, Ga and In.
  • the nitrogen source of nitrogen contained in the raw material liquid is not particularly limited, and may be, for example, a nitrogen-containing gas, a nitrogen compound mixed in the raw material liquid, or the like.
  • the nitrogen-containing gas (reaction gas) include a nitrogen (N) gas and an ammonia gas), and either one of them may be used, or a mixture thereof may be used.
  • the nitrogen-containing gas (reaction gas) may include, for example, an inert gas (eg, Ar, He and Ne), a hydrogen gas, and the like. Hydrazine (H NNH) may be used as the nitrogen-containing gas (reaction gas) source, or hydrazine may be mixed into the melt and used as a nitrogen source.
  • hydrazine When hydrazine is used as a nitrogen-containing gas (reaction gas) source, hydrazine decomposes into ammonia and nitrogen at 180 ° C in air.
  • a gas obtained by heating hydrazine can be used as it is as a nitrogen-containing gas.
  • a carrier gas such as nitrogen (N) gas and the above-mentioned inert gas.
  • a pressurized gas for pressurization may be supplied separately from the reaction gas.
  • the pressurized gas in this case include the above-mentioned inert gas.
  • the pressurized gas may be supplied as a mixture with the reaction gas, or may be supplied independently in a separate system.
  • a crystal growth reaction is performed in a crystal growth vessel, and in the raw material preparation step, at least one of the alkali metal and the alkaline earth metal is contained in the raw material preparation vessel.
  • nitrogen is dissolved in a melt containing a Group III element to prepare a raw material liquid, and the raw material liquid is transferred from the raw material preparation container to the crystal growth container, where the crystal is grown.
  • the raw material preparation container and the crystal growth container may be separated, or may be integrated.
  • a raw material preparation container portion and a crystal growth container portion are provided in one reaction container, and the raw material preparation container portion and the crystal growth container portion communicate with each other to form a raw material preparation container.
  • Containers that can transfer the raw material liquid in the container section to the crystal growth container section can be used.
  • the transfer of the raw material liquid is simplified.
  • the raw material preparation container and the crystal growth container are separated and arranged in separate pressure vessels, the raw materials are prepared before and after crystal growth (for example, at the time of crystal removal, crystal preparation, etc.). Therefore, the production efficiency can be further improved.
  • the number of the raw material preparation containers is not particularly limited, and may be one or more. It is preferable to use a plurality of raw material preparation containers.
  • the raw material liquid obtained by dissolving nitrogen in the plurality of raw material preparation containers is once collected in another container via a pipe or the like, and then transferred to a crystal growth container. Transport is preferred.
  • the material used for the raw material preparation container and the crystal growth container is not particularly limited.For example, BN, A1N, anolemina, SiC, and carbonaceous materials such as graphite and diamond-like carbon can be used, and are preferable. Is alumina.
  • the production apparatus of the present invention is an apparatus for producing a group III element nitride crystal, and includes a heating means, a pressurizing means, a nitrogen-containing gas supply means, a crystal growth vessel, a raw material preparation vessel, and a raw material.
  • a transfer means wherein the crystal growth vessel and the raw material preparation vessel are connected via the raw material transfer means, and the crystal growth vessel and the raw material preparation vessel are respectively provided with the heating means, the pressurizing means,
  • the nitrogen-containing gas supply means is provided.
  • the heating unit, the pressurizing unit, and the nitrogen-containing gas supply unit set at least one of the atmospheric temperature and the atmospheric pressure in the raw material preparation container higher than that of the crystal growth container under a nitrogen-containing gas atmosphere.
  • the raw material preparation container is heated under pressure to prepare a melt containing at least one of an alkali metal and an alkaline earth metal and a Group III element, and dissolve nitrogen in the melt to obtain a raw material liquid.
  • the raw material liquid is transferred from the raw material preparation vessel to the crystal growth vessel by the raw material transfer means, and the inside of the crystal growth vessel is nitrogen-containing by the heating means, the pressurizing means, and the nitrogen-containing gas supply means. It is manufactured by heating under pressure in a gas atmosphere to cause the nitrogen in the raw material liquid to react with the group III element to grow a group III element nitride crystal.
  • Patent Document 2 Japanese Patent Application Laid-Open No.
  • 2003-300798 discloses an apparatus in which a crystal growth region and a mixed melt holding region are separated from each other, and the mixed melt holding region has an inert gas atmosphere. Forming a mixed melt of a group III element and an alkali metal under air, and producing a group III element nitride crystal from the mixed melt under a nitrogen atmosphere in the crystal growth region. Has been. Since the mixed melt holding region is under an inert gas atmosphere and does not contain a nitrogen-containing gas, the obtained mixed melt does not contain nitrogen. Therefore, when the apparatus described in the document is used, in the crystal growth region, after dissolving nitrogen in the mixed melt, a Group III element nitride crystal is grown, and no crystal grows in the crystal growth region. Time will exist for a long time.
  • the melt in which nitrogen is dissolved is transferred to the crystal growth container by the raw material transfer means, thereby contributing to crystal growth in the crystal growth container. This significantly reduces the time spent not performing. As a result, the apparent crystal growth rate can be further increased.
  • the first pressure vessel has the crystal growth vessel disposed therein
  • the second pressure vessel has the material preparation vessel disposed therein.
  • the heating means for example, a resistance heater, an RF heater, or the like can be used as the heating means, and the pressurizing means includes, for example, means for pressurizing with a nitrogen-containing gas. is there.
  • the pressurizing means includes, for example, means for pressurizing with a nitrogen-containing gas. is there.
  • nitrogen-containing gas reaction gas
  • pressurized gas for example, only N gas is used for nitrogen-containing gas (reaction gas) and pressurized gas.
  • a gas purification device When used, a gas purification device may be arranged in the gas system. It is preferable that at least one of a temperature adjusting unit and a pressure adjusting unit is further arranged on the device.
  • the temperature and pressure of the raw material preparation vessel and the crystal growth vessel can be controlled by controlling the heating means or the pressurizing means.
  • the raw material transfer means for example, A method in which the atmospheric pressure of the pressure vessel is slightly higher than the atmospheric pressure of the first pressure vessel, and transfer using a pump.
  • the raw material transfer means for example, a pipe made of metal such as W or Ta, a pipe whose inner wall is coated with BN, SiC, or the like is used. it can.
  • generation of heterogeneous nuclei can be prevented even when the raw material is transferred, by setting the group III element nitride crystal in the raw material liquid to a saturated or unsaturated state.
  • the manufacturing apparatus of the present invention preferably further includes a gas flow means.
  • This makes it possible to flow the nitrogen-containing gas on the surface of the melt in the raw material preparation vessel, thereby further improving the rate of dissolving nitrogen in the melt.
  • the gas flow means includes, for example, means for supplying the nitrogen-containing gas to the surface of the melt.
  • the number of raw material preparation containers is not particularly limited, and may be one or more. It is preferable to use a plurality of raw material preparation containers. . Thereby, the gas-liquid interface area where the melt in the raw material preparation container and the nitrogen-containing gas come into contact can be increased.
  • a plurality of raw material preparation containers for example, a container for raw materials and the like is provided, and a raw material liquid obtained by dissolving nitrogen in the plurality of raw material preparation containers is supplied to the raw material via a noive or the like. It is preferable to collect it immediately and transfer it to a crystal growth vessel.
  • the material used for the raw material preparation container, the crystal growth container and the raw material is not particularly limited, but examples thereof include BN, A1N, alumina, SiC, and carbon-based materials such as graphite and diamond-like carbon. Materials can be used, preferably anolemina.
  • a gas publishing unit is provided in addition to the gas flow unit or in place of the gas flow unit. This makes it possible to publish the nitrogen-containing gas in the melt in the raw material preparation container, and the nitrogen dissolution rate in the melt can be further improved.
  • the gas publishing unit include a unit that supplies a nitrogen-containing gas into the melt. By publishing, the area of the gas-liquid interface where the melt and the nitrogen-containing gas come into contact with each other can be increased, and the efficiency of dissolving nitrogen in the melt can be further improved. This is because the nitrogen concentration can be made uniform.
  • the publishing can be performed, for example, by supplying a nitrogen-containing gas into the melt.
  • the flow rate of the nitrogen-containing gas to be bubbled can be controlled by, for example, a mass flow controller or a flow meter in the same manner as in the case of flowing the nitrogen-containing gas.
  • the size of the bubble supplied by the publishing is not particularly limited, For example, microbubbles (for example, a diameter of 100 zm or less) and nanobubbles (for example, a diameter of 100 nm or less) are preferable.
  • the bubble of the nitrogen-containing gas supplied by the publishing is fixed, for example, at the position of the node of the ultrasonic wave, so that the bubble can stay in the melt for a longer time or the bubble diameter can be reduced. Therefore, the dissolution efficiency of nitrogen can be further improved.
  • the semiconductor element of the present invention includes the crystal obtained by the above-described manufacturing method.
  • the semiconductor element is, for example, a light emitting device such as an LED or a semiconductor laser, or an electronic device such as a power device or a high-frequency amplifier.
  • a GaN crystal is grown using Ga as a group III element, metal Na as an alkali metal, and nitrogen (N) gas as a nitrogen-containing gas.
  • FIG. 7 is a configuration diagram showing an example of a configuration of an apparatus used in the manufacturing method of the present invention.
  • this device has a pressure vessel 51, a gas supply device 21, a flow control vessel 22 and a pressure regulator 24 as main components, and the reaction vessel 11 can be accommodated in the pressure vessel 51.
  • a heater 30 for heating is arranged on the side surface.
  • a flow regulator 22 and a pressure regulator 24 are connected to the pressure vessel 51 via pipes, respectively, and the other end of the flow regulator 22 is connected to a gas supply device 21 via a S pipe. Te, ru.
  • the ambient temperature in the pressure vessel 51 is increased from 900 ° C to: 1050 ° C (for example, a temperature higher by 50 ° C to 200 ° C than the crystal growth process),
  • the ambient temperature in the pressure vessel 51 is increased from 900 ° C to: 1050 ° C (for example, a temperature higher by 50 ° C to 200 ° C than the crystal growth process)
  • an atmospheric pressure of 40 atm 40 X 10 .13 X 10 5 Pa
  • nitrogen is rapidly dissolved in the melt containing Na and Ga, and the nitrogen concentration in the melt is adjusted to a desired nitrogen concentration (the raw material preparation step).
  • the amount of nitrogen supply in the pressure vessel 51 is adjusted using the flow rate regulator 22.
  • FIG. 1 shows an example of a temporal change in the ambient temperature in this embodiment
  • FIG. 2 shows an example of the relationship between the growth film thickness and the time.
  • FIG. 2 also shows the relationship between the growth film thickness and time when the crystal was grown by the conventional method.
  • the apparent growth rate is, for example, 15 xm / hour, which can be about 1.5 times faster than the conventional method.
  • a GaN crystal is grown using Ga as a group III element, metal Na as an alkali metal, and nitrogen (N) gas as a nitrogen-containing gas.
  • the vapor pressure 60atm ⁇ 70atm than (60 X l. 013 X 10 5 Pa ⁇ 70 X 1. 013 X 10 5 Pa) ( ambient pressure in the crystal growth, for example, 20atm ⁇ 30atm (20 X l. 013 X 10 5 Pa ⁇ 30 X 1.013 X 10 5 Pa) High pressure), hold the atmosphere temperature at 850 ° C for 1 hour to 5 hours, rapidly dissolve nitrogen in the melt containing Ga and Na, Adjust the nitrogen concentration in the liquid to the desired nitrogen concentration (raw material preparation step). Then, while maintaining the ambient temperature at 850 ° C., the atmospheric pressure is reduced to 40 atm (40 ⁇ 10 13 ⁇ 10 5 Pa), and the GaN crystal is grown in the melt (crystal growth step). ).
  • the time from the start of the heating of the raw material to the start of the crystal growth is, for example, 10 to 20 hours, which is drastically reduced from 1Z5 times to 1/2 times of the conventional method.
  • FIG. 3 shows an example of a temporal change in the atmospheric pressure in the present embodiment.
  • the apparent growth rate can be, for example, 15 xm / hour.
  • a raw material preparation step is performed in the same manner as in Embodiment 1, and the ambient temperature is reduced. After the temperature is lowered, the ambient temperature is further lowered at 0.2 ° C./hour to 1.5 ° C./hour in the crystal growth step. As a result, the substantial crystal growth rate becomes faster, for example, 25 xm / hour.
  • FIG. 5 shows an example of the change over time of the ambient temperature in this embodiment
  • FIG. 4 shows an example of the relationship between the growth film thickness and the time.
  • FIG. 4 also shows the relationship between the growth film thickness and the time when the crystal was grown by the conventional method.
  • the temperature does not need to be lowered linearly with time, but may be lowered stepwise. Further, the descending speed may be gradually increased in a range of, for example, 0.1 ° C./hour to 1.5 ° C./hour.
  • a raw material preparation step is performed in the same manner as in the second embodiment, and after reducing the atmospheric pressure, in the crystal growth step, 0.05 atm / hour to 0.3 atm / hour (0.05 X1. 013 X 10 5 Pa / hour to 0.3 X 1.03 X 10 5 Pa / hour).
  • the substantial crystal growth rate can be higher, for example, 20 / m / hour.
  • FIG. 6 shows an example of a temporal change of the atmospheric pressure in the present embodiment.
  • the method of increasing the atmospheric pressure may be increased stepwise, especially when it is not necessary to increase the pressure linearly with time.
  • the increasing speed for example, 0. 05atm / Time ⁇ 0. 3 atm / Time (0. 05 X 1. 013 X 10 5 Pa / H # ⁇ ⁇ 0. 3 X 1. 013 X 10 5 Pa / Time ) May be gradually increased.
  • Embodiments 1 to 4 do not necessarily need to be performed separately.
  • the melting point in the melt can be improved more efficiently.
  • the crystal growth rate can be further increased.
  • the rate of increase in the atmospheric pressure may be gradually increased.
  • the driving force for crystal growth is increased by gradually increasing the rate of increase in the atmospheric pressure during the middle to late stages of crystal growth as described above. (Supersaturation) can be kept constant, and the growth rate in one crystal axis direction can be kept constant.
  • FIG. 8 shows an example of the manufacturing apparatus of the present invention.
  • this apparatus comprises a first pressure vessel 50, a second pressure vessel 52, a raw material transfer means 16, pressure regulators 24 and 26, a flow regulator 22, and gas supply devices 21 and 20.
  • a crystal growth vessel 14 and a raw material preparation vessel 12 can be stored, respectively, and the sides of those vessels (14 and 12) are used for heating.
  • a heater 30 is provided in the first pressure vessel 50 and the second pressure vessel 52.
  • the first pressure vessel 50 and the second pressure vessel 52 are connected by the raw material transfer means 16, and the raw material transfer means 16 is provided with a heater 34 for heating.
  • the gas supply device 20 and the pressure regulator 26 are connected to the first pressure vessel 50 via pipes, respectively.
  • the second pressure vessel 52 has the gas supply device 21, the flow regulator 22, and the pressure regulator. 24 are connected via pipes, respectively.
  • the raw material transfer means 16 for example, it is preferable to use a pipe made of a material hardly reacting with Na or a group III element, and specific examples thereof include metal pipes such as W and Ta, BN and Examples include a pipe whose inner wall is coated with SiC or the like.
  • the configuration of the production apparatus of the present invention is not limited to this. May be arranged in another place in the same growth furnace, or these vessels may be integrated. By integrating these containers, the power of the raw material preparation container can be further enhanced to facilitate the transfer of the raw material to the crystal growth container.
  • Ga and Na in desired amounts are placed in the crystal growth vessel 14 in advance.
  • the nitrogen-containing gas is supplied from the gas supply device 20 to the pressure regulator 26, adjusted to a desired pressure by the pressure regulator 26, and introduced into the first pressure vessel 50.
  • the atmosphere temperature of the first pressure vessel 50 is set to a temperature higher than that of the crystal growth step, for example, 900 ° C. to: 1050 ° C., and the atmosphere pressure is set to 40 atm (40 ⁇ 1.013 ⁇ 10 5 Pa).
  • a melt is prepared by dissolving the Ga and Na, and nitrogen is dissolved in the melt (raw material preparation step).
  • the melt in the crystal growth vessel 14 is Nitrogen is dissolved, but GaN is unsaturated. Note that the melt in which the nitrogen is sufficiently dissolved may be prepared in advance in the raw material preparation container 12 and transferred to the crystal growth container 14 using the raw material transfer means 16 for use.
  • the ambient temperature of the first pressure vessel 50 is set to 800 ° C., and the ambient pressure is set to 30 atm (30 X 1.
  • the atmospheric pressure of the second pressure vessel 52 is made slightly higher than the atmospheric pressure of the first pressure vessel 50. Is preferred.
  • FIG. 9 shows an example of the configuration inside the pressure vessel 52.
  • a raw material preparation container 12 is disposed in a second pressure container 52, and a heating heater 30 is disposed on a side surface thereof.
  • a stirring means 74 is attached to the pressure vessel 52 so as to penetrate an upper wall surface thereof, and a driving means 72 is disposed at one end of the stirring means 74 via a rotation introducing means 76.
  • the other end of the stirring means 74 can be arranged in the melt in the raw material preparation container 12, and by driving the stirring means 74 through the driving means 72 and the rotation introducing means 76, The melt in the raw material preparation container 12 can be stirred.
  • a gas introduction pipe 23 and a raw material transfer means 16 are arranged, and the melt in which nitrogen is dissolved (raw material liquid) is converted into a crystal growth vessel (not shown) by the raw material transfer means 16.
  • a gas supply device 21 is disposed at one end of the gas introduction pipe 23 via a flow rate regulator 22. Since nitrogen diffuses from the melt surface, the nitrogen concentration on the melt surface (gas-liquid interface) tends to increase.
  • the propeller material is not particularly limited as long as it does not dissolve in the raw material melt, and examples thereof include tungsten, tantalum, alumina, and yttria.
  • examples thereof include tungsten, tantalum, alumina, and yttria.
  • the raw material preparation container is set to the saturated or unsaturated atmosphere temperature and the atmospheric pressure, non-uniform nuclei are not generated by stirring.
  • FIG. 10 shows another example of the configuration inside the second pressure vessel 52. As shown in FIG. 10
  • each raw material preparation container 12 is provided with a gas introduction pipe 23 and a pipe 17, and a distal end of the pipe 17 is provided with a raw material liquid 13.
  • a raw material transfer means 16 is disposed in the raw material liquid 13, and the melt (raw material liquid) in which nitrogen is dissolved can be transferred to a crystal growth vessel (not shown) by the raw material transfer means 16. (Direction of arrow A).
  • a gas supply device 21 is arranged via a flow rate regulator 22, and the other end is arranged so as to be positioned at the melt surface in the raw material preparation container 12.
  • the nitrogen-containing gas can be supplied at the liquid level (in the direction of arrow B).
  • the apparent growth rate can be increased, for example, to 1.5 to 2 times that of the conventional method.
  • the raw material preparation container 12 is disposed in the second pressure container 52, and the heater 30 is disposed on a side surface thereof.
  • a gas introduction pipe 23 and a raw material transfer means 16 are arranged in each raw material preparation vessel 12, and the melt (raw liquid) in which nitrogen is dissolved by the raw material transfer means 16 is supplied to a crystal growth vessel (see FIG. 1). (Not shown) (arrow A direction).
  • a gas supply device 21 is arranged at one end of the gas introduction pipe 23 via a flow rate regulator 22, and the other end is arranged so as to penetrate a wall surface of the raw material preparation container 12.
  • a nitrogen-containing gas is introduced into the raw material preparation container 12 through the gas introduction pipe 23.
  • the transfer of the melt (raw material liquid) from the raw material preparation container to the crystal growth container can be performed, for example, by a pressure difference between the second pressure container and the first pressure container.
  • gas introduction pipe 23 By arranging gas introduction pipe 23 in this manner, it is possible to publish a nitrogen-containing gas in the melt in raw material preparation container 12 and to dissolve nitrogen more quickly in the melt. be able to. Therefore, crystal growth can be started earlier.
  • the time until the crystal growth starts can be set to, for example, less than 3 hours.
  • the apparent crystal growth rate For example, compared to 2 to 2.5 times faster.
  • the inside of the raw material preparation container 12 is kept in an unsaturated state similarly to Embodiment 5 described above, the dissolution of nitrogen can be quickly realized. Further, microcrystals such as heterogeneous nucleation are not generated in the raw material preparation container 12.
  • FIG. 12 is a configuration diagram showing an example of the configuration of the peripheral part of the raw material preparation container 12, and the same reference numerals in FIG. 12 denote the same parts as in FIG.
  • a gas introduction pipe 23 and a raw material transfer means 16 are arranged in the raw material preparation container 12 so as to penetrate the wall surface.
  • a cap 27 is arranged at the tip of the gas introduction pipe 23.
  • the size of the bubble is increased. Can be controlled (eg, reduced). By reducing the size of the bubble, the contact surface (gas-liquid interface area) between the melt and the nitrogen-containing gas can be increased. Further, by reducing the size of the bubble, the residence time of the bubble in the melt can be extended due to the viscosity of the melt and the influence of Brownian motion. As a result, since the dissolving efficiency of nitrogen in the melt can be improved, more nitrogen can be dissolved in the melt with a smaller gas flow rate.
  • the size of the bubble can be adjusted by, for example, the hole diameter of the cap 27, the flow rate of the supplied gas, and the like.
  • a cap having a small hole diameter is used. Good.
  • the nitrogen-containing gas is supplied with the pore diameter of several xm to several hundred xm and the flow rate of 50 cc / min to 5000 cc / min, bubbles having a diameter of several ⁇ m to several hundred ⁇ m are supplied into the melt. it can.
  • the cap 27 for example, a porous alumina or the like And metal caps derived from porous ceramics, tungsten, tantalum, and the like.
  • FIG. 13 is a configuration diagram showing another example of the configuration of the peripheral portion of the raw material preparation container.
  • a raw material transfer means 16 is disposed on the right wall surface of the raw material preparation container 12 in a state penetrating the wall surface, and a lower part of the raw material preparation container 12 is connected to An ultrasonic generator 29 is arranged.
  • a gas introduction tube 23 is arranged from the upper side of the material preparation container 12 such that the tip is located on the bottom surface of the material preparation container 12, and a cap 27 is arranged at the tip of the gas introduction tube 23. .
  • the bubbles supplied from the gas introduction pipe 23 are fixed at, for example, the positions of the nodes of the ultrasonic waves. .
  • bubbles can be kept in the melt for a longer time, and the dissolving efficiency of nitrogen can be further improved.
  • this example is a container in which a raw material preparation container and a crystal growth container are integrated, and has a double structure in which one container is divided into a raw material preparation container portion and a crystal growth container portion.
  • this device has a pressure vessel 53, a pressure regulator 24, a flow regulator 22 and a gas supply device 21 as main components.
  • the pressure vessel 53 can house a raw material preparation vessel and a crystal growth vessel 15, and a heater 30 is arranged on the side and bottom of the vessel 15.
  • a flow regulator 22 and a pressure regulator 24 are connected to the pressure vessel 53 via pipes, respectively, and a gas supply device 21 is connected to the flow regulator 22 via pipes.
  • FIG. 15 shows an example of the configuration of the raw material preparation container and the crystal growth container 15.
  • the upper part of the raw material preparation container / crystal growth container 15 can be closed by a lid 44.
  • the inside of the raw material preparation container and crystal growth container 15 is separated by a partition plate 43 into a crystal growth container. It has a double structure divided into a part 46 and a raw material preparation container part 47, and a seed crystal 45 can be arranged in the crystal growth container part 46.
  • Holes 42 are formed in the lower part of the partition plate 43 (near the bottom surface of the raw material preparation container and the crystal growth container 15) so that the melt in the raw material preparation container portion 47 can be transferred to the crystal growth container portion 46. .
  • the gas introduction pipe 23 is disposed in the raw material preparation container part 47 so that the tip thereof is located at a lower portion (near the bottom surface of the raw material preparation container / crystal growth container 15).
  • holes 48 and 49 are formed in the lid 44 so as to correspond to the raw material preparation container part 47 and the crystal growth container part 46, respectively. Nitrogen-containing gas and the like can be discharged.
  • the hole 49 formed in the lid 44 of the crystal growth vessel section 46 is for making the pressure of the pressure vessel 53 and the pressure of the crystal growth vessel section 46 uniform.
  • a group III element nitride crystal using the apparatus shown in FIGS. 14 and 15 will be described below.
  • at least one of an alkali metal and an alkaline earth metal and a Group III element are arranged in a raw material preparation container and a crystal growth container 15.
  • the raw material preparation container and the crystal growth container 15 are heated under pressure using the heater 30 and the pressure regulator 24 to prepare a melt containing at least one of an alkali metal and an alkaline earth metal and a Group III element.
  • the temperature of the raw material preparation container part 47 is, for example, several degrees C to several tens of degrees higher than the temperature of the crystal growth container part 46.
  • the nitrogen-containing melt (raw material liquid) in the raw material preparation container part 47 diffuses into the crystal growth container part 46 through the holes 42 due to an increase in the nitrogen concentration of the melt in the raw material preparation container part 47 and publishing.
  • the holes 42 serve as the raw material transfer means.
  • the apparatus can be made compact and the transfer of the melt becomes extremely easy. Further, by transferring a melt (raw material solution) containing high-concentration nitrogen from the lower side of the crystal growth vessel section 46, nitrogen at the interface between the melt and the partition plate 43, the liquid level of the melt, and the like can be obtained. The concentration can be reduced, and as a result, the generation of heterogeneous nuclei can be further reduced. .
  • the seed crystal 45 is arranged in an upright state. However, the present invention is not limited to this.
  • the seed crystal 45 may be arranged on the bottom surface of the crystal growth vessel 46 with the seed crystal 45 laid down.
  • the seed crystal 45 may be arranged diagonally.
  • FIG. 16 shows the structure of the semiconductor laser 90.
  • a GaN crystal produced in the same manner as in the first embodiment is used as a substrate 91, and a carrier concentration of 5 ⁇ 10 18 cm ⁇ 3 or less (for example, 0.7 ⁇ 10
  • An n-type GaN layer 92 to which Si was added as a dopant was formed to a thickness of 18 cm- 3 ).
  • GaN-based crystals crystals containing Ga and N
  • Si when Si is added as a dopant, Ga vacancies tend to increase. Since the Ga vacancies are easily diffused, fabrication of a device on the Ga vacancies adversely affects the life and the like. Therefore, the amount of dopant was controlled so that the carrier concentration was 5 ⁇ 10 18 cm ⁇ 3 or less, and a highly reliable device was fabricated.
  • a cladding layer 93 having an n-type AlGaN force and a light guide layer 94 having an n-type GaN force were formed on the n-type GaN layer 92.
  • the semiconductor laser 90 is a double heterojunction semiconductor laser.
  • the energy gap of the well layer containing indium in the MQW active layer is smaller than the energy gap of the n-type and p-type cladding layers containing aluminum.
  • the refractive index of the light was smaller than the largest in the well layer of the active layer 95, and was smaller in the order of the light guide layer and the cladding layer.
  • An insulating film 99 forming a current injection region having a width of about 2 ⁇ m was formed on the contact layer 98.
  • a ridge portion serving as a current confinement portion was formed on the p-type cladding layer 97 and the p-type contact layer 98.
  • the contact layer 98 A P-side electrode 100 was formed to make contact.
  • an n-side electrode 101 was formed which was in ohmic contact with the n-type GaN substrate 91.
  • the device evaluation of the semiconductor laser manufactured by the above method was performed.
  • the MQW active layer has holes from the p-side electrode and holes from the n-side electrode.
  • the electrons were injected and recombined in the MQW active layer to produce an optical gain, which caused laser oscillation at an oscillation wavelength of 404 nm.
  • the GaN crystal obtained by the manufacturing method of the present invention has a low defect density and thus has high reliability.
  • a semiconductor device was manufactured using a GaN single-crystal substrate.
  • such a group III element nitride crystal can be formed by replacing a part of Ga with another group III element.
  • the GaN single-crystal substrate obtained by the manufacturing method and the manufacturing apparatus of the present invention has a lower dislocation density than a substrate manufactured by vapor phase growth (for example, HVPE) or the like. This is extremely advantageous for the production.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

A method for producing a III Group element nitride crystal having a crystal growth step of heating under pressure a raw material fluid containing at least one of an alkali metal and an alkaline earth metal, a III Group element and nitrogen in an atmosphere of a gas containing nitrogen, to thereby react the nitrogen and the III Group element in the above raw material fluid and grow crystals, which further comprises a raw material preparation step, prior to the above crystal growth step, wherein nitrogen is dissolved in a melt containing at least one of an alkali metal and an alkaline earth metal in an atmosphere of a gas containing nitrogen under a condition wherein at least one of the temperature and the pressure of the atmosphere is set at a higher level than that for the above crystal growth step, to prepare the above raw material fluid; a production apparatus for practicing the above method, for example, shown in FIG. 7; and a semiconductor element produced by the above. The method allows the production of a crystal of a III Group element nitride having high quality and a large size in a short time, with an improved growth rate.

Description

明 細 書  Specification
III族元素窒化物結晶の製造方法、それに用いる製造装置、およびそれら により得られた半導体素子  Method for producing group III element nitride crystal, production apparatus used therefor, and semiconductor element obtained by them
技術分野  Technical field
[0001] 本発明は、 III族元素窒化物結晶の製造方法、それに用いる製造装置、およびそれ らにより得られた半導体素子に関する。  The present invention relates to a method for producing a group III element nitride crystal, a production apparatus used for the method, and a semiconductor device obtained by the method.
背景技術  Background art
[0002] 窒化ガリウム(GaN)は、青色や紫外光を発光する半導体素子の材料として注目さ れている。青色レーザーダイオード(LD)は、高密度光ディスクやディスプレイに応用 され、また青色発光ダイオード (LED)は、ディスプレイや照明などに応用される。ま た、紫外線 LDは、バイオテクノロジーなどへの応用が期待され、紫外線 LEDは、蛍 光灯の紫外光として期待されている。  [0002] Gallium nitride (GaN) has attracted attention as a material for semiconductor elements that emit blue or ultraviolet light. Blue laser diodes (LDs) are applied to high-density optical discs and displays, and blue light-emitting diodes (LEDs) are applied to displays and lighting. Ultraviolet LDs are also expected to be applied to biotechnology, etc., and ultraviolet LEDs are expected to be used as ultraviolet light of fluorescent lamps.
[0003] LDや LED用の GaN結晶は、通常、サファイア基板上に、気相ェピタキシャル成長 法を用いて GaN結晶をへテロェピタキシャル成長させることによって形成されている 。この方法で得られる GaN結晶の転位密度は、通常、 108cm— 2〜: 109cm— 2であるため 、得られる結晶の品質に問題がある。この問題を解決する方法として、例えば、 ELO G (Epitaxial lateral overgrowth)法が開発されている。この方法によれば、転位 密度を 105cm 2〜: 106cm 2程度まで下げることができる。しかし、この方法は、工程が 複雑であるという問題がある。 [0003] A GaN crystal for LD or LED is usually formed on a sapphire substrate by heteroepitaxially growing a GaN crystal using a vapor phase epitaxy method. The dislocation density of the GaN crystal obtained by this method typically, 10 8 cm- 2 ~: for 10 9 cm- is 2, there is a problem with the quality of the resulting crystals. As a method for solving this problem, for example, an ELOG (Epitaxial lateral overgrowth) method has been developed. According to this method, the dislocation density can be reduced to about 10 5 cm 2 to about 10 6 cm 2 . However, this method has a problem that the process is complicated.
[0004] 一方、気相ェピタキシャル成長ではなぐ液相で結晶成長を行う方法も検討されて いる。しかしながら、 GaN結晶の融点における窒素の平衡蒸気圧は 10000atm (10 000 X 1. 013 X 105Pa)以上であるため、 GaN結晶を液相で成長させるためには、 1200。Cで 8000atm (8000 X l . 013 X 105Pa)とレヽぅ過酷な条件にする必要力 Sあつ た。この問題を解決するために、 Naフラックスを用いる方法が開発されている。この 方法によれば、比較的穏やかな条件で GaN結晶を得ることができる。さらに、アンモ ユアを含む窒素ガス雰囲気下において、 Gaと Naとの混合物を加圧加熱して溶融さ せ、この融液を用いて 96時間の育成させることにより、 1. 2mm程度の最大結晶サイ ズの単結晶が得られている(例えば、特許文献 1参照)。 [0004] On the other hand, a method of performing crystal growth in a liquid phase rather than vapor phase epitaxial growth has been studied. However, since the equilibrium vapor pressure of nitrogen at the melting point of the GaN crystal is more than 10,000 atm (10 000 × 1.013 × 10 5 Pa), 1200 is required for growing the GaN crystal in the liquid phase. C required 8000 atm (8000 X l. 013 x 10 5 Pa), which is the power required for severe conditions. To solve this problem, a method using Na flux has been developed. According to this method, a GaN crystal can be obtained under relatively mild conditions. Further, in a nitrogen gas atmosphere containing ammonia, a mixture of Ga and Na is heated under pressure and melted, and the melt is grown for 96 hours to obtain a maximum crystal size of about 1.2 mm. Thus, a single crystal having a small size has been obtained (for example, see Patent Document 1).
[0005] また、反応容器と結晶成長容器とを分離し、 自然核発生を抑えて大型の結晶を成 長させる方法が提案されている(例えば、特許文献 2参照)。 [0005] Further, a method has been proposed in which a reaction vessel and a crystal growth vessel are separated from each other to suppress generation of natural nuclei and grow large crystals (for example, see Patent Document 2).
[0006] しかしながら、 GaNをはじめとする ΠΙ族元素窒化物の分野では、さらなる成長レート および品質の向上が求められている。 [0006] However, in the field of Group III element nitrides such as GaN, further improvement in growth rate and quality is required.
特許文献 1 :特開 2002— 293696号公報  Patent Document 1: JP 2002-293696 A
特許文献 2:特開 2003 - 300798号公報  Patent Document 2: JP 2003-300798 A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] そこで、本発明の目的は、成長レートを向上し、高品質で大きな結晶を短時間で育 成できる ΙΠ族元素窒化物結晶の製造方法、それに用いる製造装置、およびそれらに より得られた半導体素子を提供することである。 [0007] Therefore, an object of the present invention is to provide a method for producing a Group III element nitride crystal capable of improving a growth rate and growing a large crystal of high quality in a short time, a production apparatus used therefor, and a production apparatus used in the method. To provide a semiconductor device.
課題を解決するための手段  Means for solving the problem
[0008] 上記目的を達成するために、本発明の製造方法は、アルカリ金属およびアルカリ土 類金属の少なくとも一方と III族元素と窒素とを含む原料液中において、窒素含有ガ ス雰囲気下、加圧加熱して前記原料液中の窒素と III族元素とを反応させ結晶を成長 させる結晶成長工程を有する ΠΙ族元素窒化物結晶の製造方法であって、前記結晶 成長工程に先立ち、さらに、原料調製工程を有し、前記原料調製工程が、窒素含有 ガス雰囲気下、雰囲気温度および雰囲気圧力の少なくとも一方を前記結晶成長ェ 程の条件よりも高く設定して、アルカリ金属およびアルカリ土類金属の少なくとも一方 と m族元素とを含む融液中に窒素を溶解させて前記原料液を調製する工程であるこ とを特徴とする。 [0008] In order to achieve the above object, the production method of the present invention is a method for producing a solution containing at least one of an alkali metal and an alkaline earth metal, a Group III element, and nitrogen under a nitrogen-containing gas atmosphere. A method for producing a Group III element nitride crystal, comprising a crystal growth step of growing a crystal by reacting nitrogen in the raw material solution with nitrogen in the raw material liquid by heating under pressure, and further comprising, prior to the crystal growth step, A step of preparing at least one of an alkali metal and an alkaline earth metal under a nitrogen-containing gas atmosphere by setting at least one of an atmosphere temperature and an atmosphere pressure higher than the conditions of the crystal growth step. It is characterized in that it is a step of preparing the raw material liquid by dissolving nitrogen in a melt containing one and a group m element.
[0009] 本発明の製造装置は、 m族元素窒化物結晶の製造装置であって、加熱手段、カロ 圧手段、窒素含有ガス供給手段、結晶成長容器、原料調製容器および原料移送手 段を有し、前記結晶成長容器および前記原料調製容器は、前記原料移送手段を介 して連結され、前記結晶成長容器および前記原料調製容器には、それぞれ、前記加 熱手段、前記加圧手段および前記窒素含有ガス供給手段が配置されており、前記 原料調製容器内を、前記加熱手段、前記加圧手段および前記窒素含有ガス供給手 段により、窒素含有ガス雰囲気下、加圧加熱し、前記原料調製容器内において、 III 族元素とアルカリ金属およびアルカリ土類金属の少なくとも一方とを含む融液を調製 し、前記融液中への窒素の溶解を行って原料液を調製し、この原料液を、前記原料 移送手段により、前記原料調製容器から前記結晶成長容器に移送し、前記結晶成 長容器内を、前記加熱手段、前記加圧手段および前記窒素含有ガス供給手段によ り、窒素含有ガス雰囲気下、加圧加熱し、前記結晶成長容器内において、前記原料 液中の窒素と ΠΙ族元素とを反応させ、 ΠΙ族元素窒化物結晶を成長させて製造する装 置であり、前記原料調製容器内の雰囲気温度および雰囲気圧力の少なくとも一方が 、前記結晶成長容器よりも高く設定されることを特徴とする。 [0009] The production apparatus of the present invention is an apparatus for producing a m-group element nitride crystal, which includes a heating means, a calo-pressure means, a nitrogen-containing gas supply means, a crystal growth vessel, a raw material preparation vessel, and a raw material transfer means. The crystal growth vessel and the raw material preparation vessel are connected via the raw material transfer means, and the heating means, the pressurizing means, and the nitrogen A gas-containing supply means is arranged, and the heating means, the pressurizing means, and the nitrogen-containing gas supply Step, pressurize and heat under a nitrogen-containing gas atmosphere to prepare a melt containing a Group III element and at least one of an alkali metal and an alkaline earth metal in the raw material preparation vessel, and prepare the melt in the melt. A raw material liquid is prepared by dissolving nitrogen, and the raw material liquid is transferred from the raw material preparation vessel to the crystal growth vessel by the raw material transfer means, and the inside of the crystal growth vessel is heated by the heating means and the heating means. Pressurizing and heating under a nitrogen-containing gas atmosphere by the pressure means and the nitrogen-containing gas supply means to cause the nitrogen in the raw material liquid to react with the group IV element in the crystal growth vessel, and This is an apparatus for growing and manufacturing a product crystal, wherein at least one of the ambient temperature and the atmospheric pressure in the raw material preparation container is set higher than the crystal growth container.
発明の効果 The invention's effect
本発明者等は、 ΠΙ族元素窒化物結晶の成長について一連の研究を重ねた。その 過程で、従来の方法の場合、結晶成長初期にまったく結晶が成長しない時間が長時 間にわたって存在し、この初期の結晶成長にまったく寄与しない時間は、結晶成長 条件にもよる力 例えば、 24時間〜 48時間程度と全成長時間の 20%〜50%程度と 非常に長い時間であることを突き止めた。このように、結晶成長に寄与しない時間が 存在することにより、実質的に結晶成長している時間が短くなり、その結果、成長した 結晶の膜厚を成長時間 (成長に寄与しない時間を含む)で割ったみかけの結晶成長 速度が小さくなる。つまり、大型結晶や厚膜結晶を成長させる時に、所望の大きさの 結晶を得るための時間が長くなる。本発明者等は、さらなる研究の過程で、結晶成長 初期にまったく結晶が成長しない時間が生じる要因として、 III族元素を含む融液中 に窒素が溶解するために十分な時間が必要であるということを突き止めた。そこで、こ の知見に基づき、さらに研究を重ねた結果、本発明に到達したのである。つまり、結 晶成長に先立ち、予め、雰囲気温度および雰囲気圧力の少なくとも一方を結晶成長 条件よりも高く設定することにより、アルカリ金属およびアルカリ土類金属の少なくとも 一方と III族元素とを含む融液中に窒素を強制的に溶解させ、原料液を調製する (原 料調製工程:この状態では融液 (原料液)中の III族元素窒化物結晶は飽和又は未飽 和状態である)。その後、例えば、前記原料液の温度を、所望の温度に低下させて、 融液中の III族元素窒化物結晶の状態を飽和又は未飽和状態から過飽和状態とする ことにより、所望の雰囲気温度および雰囲気圧力で結晶成長を行う(結晶成長工程: この状態では融液中の ΙΠ族元素窒化物結晶は過飽和状態である)。または、前記原 料調製工程の後、雰囲気圧力を所望の圧力まで降下させて、結晶成長を行う。この ように、原料調製工程を行うことで、融液中に窒素を溶解させる段階から雰囲気温度 および雰囲気圧力を結晶成長条件に保持する従来の方法と比較して、過飽和状態 になるまでの時間を短縮できる。したがって、本発明によれば、成長時間に寄与しな い時間を短縮またはほとんどない状態で、 m族元素窒化物結晶の結晶成長を開始さ せることができる。なお、雰囲気圧力を所望の圧力まで降下させる場合、その直後に おいては、融液中の m族元素窒化物結晶は飽和又は未飽和状態であるが、雰囲気 圧力を前記所望の圧力で一定時間保持することにより、融液 (原料液)中に窒素がさ らに溶解し、前記融液中の m族元素窒化物結晶が過飽和状態となって結晶成長が 開始する。前記原料調製工程における融液への窒素の溶解は、例えば、雰囲気温 度、雰囲気圧力、ガス供給方法 (例えば、ガスフローおよびパブリング等)、および超 音波等を利用することにより、より一層短時間で行うことができる。また、前記結晶成 長工程において、結晶成長中における雰囲気圧力および雰囲気温度を一定にする ことや、それらを穏やかに変化させること等により、例えば、 m族元素窒化物結晶が 3 次元的に成長した場合であっても、結晶成長速度を一定とすることが可能となる。そ の結果、例えば、得られる結晶における不純物濃度等の変化の少ない高品質な結 晶をより早く成長させることができる。 The present inventors have conducted a series of studies on the growth of Group III nitride crystals. In the process, in the case of the conventional method, there is a long period of time during which no crystal grows at the beginning of crystal growth, and the time that does not contribute to the initial crystal growth depends on the force depending on the crystal growth conditions. It was found that the time was very long, about 48 hours and about 20% to 50% of the total growth time. As described above, the existence of the time that does not contribute to the crystal growth substantially shortens the time during which the crystal grows, and as a result, the thickness of the grown crystal is reduced by the growth time (including the time that does not contribute to the growth). The apparent crystal growth rate divided by In other words, when growing a large crystal or a thick film crystal, the time required to obtain a crystal of a desired size becomes longer. In the course of further research, the present inventors have stated that the cause of the time during which no crystal grows at the beginning of crystal growth is that sufficient time is required for nitrogen to dissolve in the melt containing the group III element. I figured it out. Therefore, based on this finding, the present inventors have further studied and reached the present invention. In other words, prior to crystal growth, by setting at least one of the ambient temperature and the atmospheric pressure higher than the crystal growth conditions in advance, a melt containing at least one of an alkali metal and an alkaline earth metal and a Group III element can be obtained. The raw material liquid is prepared by forcibly dissolving nitrogen in the raw material (raw material preparation step: in this state, the Group III element nitride crystal in the melt (raw material liquid) is saturated or unsaturated). Thereafter, for example, the temperature of the raw material liquid is lowered to a desired temperature, and the state of the group III element nitride crystal in the melt is changed from a saturated or unsaturated state to a supersaturated state. As a result, the crystal is grown at a desired atmosphere temperature and pressure (crystal growth step: in this state, the Group III element nitride crystal in the melt is in a supersaturated state). Alternatively, after the raw material preparation step, the crystal growth is performed by reducing the atmospheric pressure to a desired pressure. In this way, by performing the raw material preparation step, compared with the conventional method in which the temperature and pressure of the atmosphere are maintained at the crystal growth conditions from the stage of dissolving the nitrogen in the melt, the time until the supersaturation is reached is reduced. Can be shortened. Therefore, according to the present invention, it is possible to start the crystal growth of the m-group element nitride crystal in a state where the time not contributing to the growth time is reduced or almost not. When the atmospheric pressure is reduced to a desired pressure, immediately after that, the m-group element nitride crystal in the melt is in a saturated or unsaturated state, but the atmospheric pressure is maintained at the desired pressure for a certain period of time. By holding, the nitrogen is further dissolved in the melt (raw material liquid), and the m-group element nitride crystal in the melt becomes a supersaturated state and crystal growth starts. The dissolution of nitrogen in the melt in the raw material preparation step can be performed in a shorter time by using, for example, an ambient temperature, an ambient pressure, a gas supply method (eg, gas flow and publishing), and ultrasonic waves. Can be done with In the crystal growth step, for example, the m-group element nitride crystal was grown three-dimensionally by keeping the atmospheric pressure and the atmospheric temperature constant during the crystal growth, or by gently changing them. Even in this case, the crystal growth rate can be kept constant. As a result, for example, a high-quality crystal with little change in impurity concentration or the like in the obtained crystal can be grown more quickly.
図面の簡単な説明 Brief Description of Drawings
[図 1]図 1は、本発明の一実施形態における時間と雰囲気温度との関係を示すグラフ である。 FIG. 1 is a graph showing the relationship between time and ambient temperature in one embodiment of the present invention.
[図 2]図 2は、本発明の前記一実施形態における時間と成長膜厚との関係を示すダラ フである。  FIG. 2 is a graph showing a relationship between time and a grown film thickness in the embodiment of the present invention.
[図 3]図 3は、本発明のその他の実施形態における時間と雰囲気圧力との関係を示 すグラフである。  FIG. 3 is a graph showing a relationship between time and atmospheric pressure in another embodiment of the present invention.
[図 4]図 4は、本発明の前記その他の実施形態における時間と成長膜厚との関係を 示すグラフである。 園 5]図 5は、本発明のさらにその他の実施形態における時間と雰囲気温度との関係 を示すグラフである。 FIG. 4 is a graph showing a relationship between time and a grown film thickness in the other embodiment of the present invention. Garden 5] FIG. 5 is a graph showing the relationship between time and ambient temperature in still another embodiment of the present invention.
園 6]図 6は、本発明のさらにその他の実施形態における時間と雰囲気圧力との関係 を示すグラフである。 Garden 6] FIG. 6 is a graph showing the relationship between time and atmospheric pressure in still another embodiment of the present invention.
園 7]図 7は、本発明の前記一実施形態において使用する製造装置の構成図である 園 8]図 8は、本発明のさらにその他の実施形態において使用する製造装置の構成 図である。 Garden 7] FIG. 7 is a configuration diagram of a manufacturing apparatus used in the one embodiment of the present invention. Garden 8] FIG. 8 is a configuration diagram of a manufacturing apparatus used in still another embodiment of the present invention.
園 9]図 9は、本発明のさらにその他の実施形態において使用する製造装置の構成 図である。 Garden 9] FIG. 9 is a configuration diagram of a manufacturing apparatus used in still another embodiment of the present invention.
[図 10]図 10は、本発明のさらにその他の実施形態において使用する製造装置の構 成図である。  FIG. 10 is a configuration diagram of a manufacturing apparatus used in still another embodiment of the present invention.
園 11]図 11は、本発明のさらにその他の実施形態において使用する製造装置の構 成図である。 Garden 11] FIG. 11 is a configuration diagram of a manufacturing apparatus used in still another embodiment of the present invention.
[図 12]図 12は、本発明のさらにその他の実施形態において使用する製造装置の構 成図である。  FIG. 12 is a configuration diagram of a manufacturing apparatus used in still another embodiment of the present invention.
[図 13]図 13は、本発明のさらにその他の実施形態において使用する製造装置の構 成図である。  FIG. 13 is a configuration diagram of a manufacturing apparatus used in still another embodiment of the present invention.
[図 14]図 14は、本発明のさらにその他の実施形態において使用する製造装置の構 成図である。  FIG. 14 is a configuration diagram of a manufacturing apparatus used in still another embodiment of the present invention.
[図 15]図 15は、本発明のさらにその他の実施形態において使用する製造装置の構 成図である。  FIG. 15 is a configuration diagram of a manufacturing apparatus used in still another embodiment of the present invention.
[図 16]図 16は、本発明の実施例における III族元素窒化物半導体素子の断面図であ る。  FIG. 16 is a sectional view of a group III element nitride semiconductor device according to an example of the present invention.
符号の説明 Explanation of symbols
11 反応容器  11 Reaction vessel
12 原料調製容器  12 Raw material preparation container
13 原料液ため 結晶成長容器 13 For raw material liquid Crystal growth vessel
原料調製容器兼結晶成長容器 原料移送手段  Material preparation container and crystal growth container Material transfer means
パイプ  Pipe
、 21 ガス供給装置 , 21 gas supply equipment
流量調整器  Flow regulator
ガス導入管  Gas inlet pipe
、 26 圧力調整器 , 26 pressure regulator
キャップ  Cap
熱遮断板  Heat barrier
超音波発生装置  Ultrasonic generator
、 34 加熱用ヒータ , 34 heater for heating
、 48、 49 孑し , 48, 49
仕切り板  Partition board
 Lid
シード結晶  Seed crystal
結晶成長容器部  Crystal growth vessel
原料調製容器部  Raw material preparation container
第 1の圧力容器  1st pressure vessel
、 53 圧力容器 , 53 pressure vessels
第 2の圧力容器  Second pressure vessel
駆動手段  Drive means
回転導入手段  Rotation introduction means
撹拌手段  Stirring means
半導体レーザ  Semiconductor laser
基板  Substrate
コンタクト層  Contact layer
クラッド層 94、 96 光ガイド層 Cladding layer 94, 96 Light guide layer
95 多重量子井戸層  95 Multiple quantum well layer
97 クラッド層  97 cladding layer
98 コンタクト層  98 Contact Layer
99 絶縁膜  99 Insulation film
100 p側電極  100 p side electrode
101 n側電極  101 n-side electrode
A 原料移送方向  A Material transfer direction
B ガス供給方向  B Gas supply direction
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0013] 本発明の製造方法は、前述のように、原料調製工程と結晶成長工程とを含む製造 方法である。原料調製工程において、雰囲気温度および雰囲気圧力の少なくとも一 方を結晶成長工程の条件より高く設定することにより、前記融液中に窒素を溶解させ て原料液を調製する(この状態では、融液 (原料液)中の ΠΙ族元素窒化物結晶は飽 和又は未飽和状態である)。そして、いったん前記雰囲気温度および雰囲気圧力の 少なくとも一方を降下させて前記原料液中の ΙΠ族元素窒化物結晶を過飽和状態とし 、前記原料液中で ΙΠ族元素窒化物結晶を成長させる。前記雰囲気温度温度のみを 降下させる場合、この操作のみで、速やかに前記原料液中の III族元素窒化物結晶 を過飽和状態にでき、結晶成長に寄与しない時間を大幅に短縮して結晶成長を開 始できる。雰囲気圧力のみを降下させる場合、その直後の原料液中の ΠΙ族元素窒化 物結晶は飽和又は未飽和状態である。し力しながら、この圧力を一定時間保持する ことにより、原料液中に窒素がさらに溶解し、過飽和状態となって結晶成長が開始す るため、結晶成長に寄与しない時間を短縮して結晶成長を行うことができる。この場 合、雰囲気温度のみ降下させる場合と比較して、高い雰囲気温度で結晶成長させる ことができ、その結果、不純物の取り込みの少ない条件で結晶成長させることができ る。また、雰囲気圧力および雰囲気温度を同時に降下させて、前記原料液中の m族 元素窒化物結晶を過飽和状態とし、結晶成長させてもよい。 [0013] As described above, the production method of the present invention is a production method including a raw material preparation step and a crystal growth step. In the raw material preparation step, by setting at least one of the atmospheric temperature and the atmospheric pressure higher than the conditions of the crystal growth step, nitrogen is dissolved in the melt to prepare the raw material liquid (in this state, the melt ( Group III element nitride crystals in the raw material solution) are saturated or unsaturated.) Then, at least one of the atmospheric temperature and the atmospheric pressure is once lowered to bring the Group III element nitride crystal in the raw material liquid into a supersaturated state, and the Group III element nitride crystal is grown in the raw material liquid. When only the ambient temperature is lowered, this operation alone can quickly bring the Group III element nitride crystal in the raw material solution into a supersaturated state, greatly shortening the time not contributing to crystal growth, and starting crystal growth. You can start. When only the atmospheric pressure is decreased, the Group III element nitride crystal in the raw material liquid immediately thereafter is in a saturated or unsaturated state. By maintaining this pressure for a certain period of time while applying pressure, nitrogen is further dissolved in the raw material liquid, and the material grows into a supersaturated state and crystal growth starts. It can be performed. In this case, the crystal can be grown at a higher ambient temperature than in the case where only the ambient temperature is lowered, and as a result, the crystal can be grown under the condition that the impurity is less taken up. Further, the m-group element nitride crystal in the raw material liquid may be supersaturated by simultaneously lowering the atmospheric pressure and the atmospheric temperature to grow the crystal.
[0014] 本発明における雰囲気温度は、前記原料調製工程において、例えば、 800°C〜1 100°Cの範囲であり、好ましくは 850。C〜1000°Cであり、このような温度範囲とするこ とで、アルカリ金属およびアルカリ土類金属の蒸発を抑制でき、 III族元素窒化物結晶 を効率よく溶解できる。前記結晶成長工程において、例えば、 600°C〜: 1000°Cの範 囲であり、好ましくは 800°C〜950°Cである。また、前記原料調製工程および前記結 晶成長工程の雰囲気温度の差は、例えば、 20°C〜200°Cであり、好ましくは 50°C〜 100°Cである。 [0014] The ambient temperature in the present invention is, for example, 800 ° C to 1 ° C in the raw material preparation step. It is in the range of 100 ° C, preferably 850. When the temperature is in the range of C to 1000 ° C., the evaporation of the alkali metal and the alkaline earth metal can be suppressed, and the group III element nitride crystal can be efficiently dissolved. In the crystal growth step, for example, the temperature is in the range of 600 ° C. to: 1000 ° C., preferably 800 ° C. to 950 ° C. The difference between the ambient temperatures in the raw material preparation step and the crystal growth step is, for example, 20 ° C to 200 ° C, and preferably 50 ° C to 100 ° C.
[0015] 本発明における雰囲気圧力は、前記原料調製工程において、例えば、 2atm〜10 0atm (2 X l . 013 X 105Pa〜: 100 X 1. 013 X 105Pa)の範囲であり、好ましくは 10a tm〜70atm (10 X l . 013 X 105Pa〜70 X 1. 013 X 105Pa)であり、このような圧力 範囲とすることで、アルカリ金属およびアルカリ土類金属の蒸発を抑制でき、かつ、比 較的安価な圧力容器を用いて III族元素窒化物結晶を効率よく溶解できる。前記結晶 成長工程【こおレヽて、 ί列え ίま、 2atm~100atm (2 X l . 013 X 105Pa〜: 100 X 1. 01 3 X 105Pa)の範囲であり、好ましくは 25atm〜50atm (25 X 1. 013 X 105Pa〜50 X I . 013 X 105Pa)である。また、前記原料調製工程および前記結晶成長工程の雰 囲気圧力の差は、例えば、 0· latm〜30atm (0. 1 X 1. 013 X 105Pa〜30 X 1. 0 13 X 105Pa)であり、好ましくは 0. 5atm〜20atm (0. 5 X 1. 013 X 105Pa〜20 X 1 . 013 X 105Pa)である。 [0015] atmospheric pressure in the present invention, in the raw material preparation step, for example, 2atm~10 0atm: in the range of (2 X l 013 X 10 5 Pa~. 100 X 1. 013 X 10 5 Pa), preferably is 10a a tm~70atm (10 X l. 013 X 10 5 Pa~70 X 1. 013 X 10 5 Pa), with such a pressure range, suppress evaporation of alkali metals and alkaline earth metals A group III element nitride crystal can be efficiently dissolved using a relatively inexpensive pressure vessel. The crystal growth step is performed in the range of 2 atm to 100 atm (2 X l. 013 X 10 5 Pa to: 100 X 1.03 X 10 5 Pa), preferably 25 atm. a ~50atm (25 X 1. 013 X 10 5 Pa~50 XI. 013 X 10 5 Pa). The difference between atmosphere pressure of the raw material preparation step and the crystal growth step, for example, 0 · latm~30atm (0. 1 X 1. 013 X 10 5 Pa~30 X 1. 0 13 X 10 5 Pa) by weight, preferably 0. 5atm~20atm (0. 5 X 1. 013 X 10 5 Pa~20 X 1. 013 X 10 5 Pa).
[0016] 本発明において、結晶成長工程中に雰囲気温度を変化させる場合、前記原料調 製工程から前記結晶成長工程に切り替えた後、前記結晶成長工程の雰囲気温度を 徐々に降下させ、所定の結晶成長の温度に設定することが好ましい。前記雰囲気温 度の降下は、例えば、連続的であってもよいし、段階的であってもよい。また、段階的 に雰囲気温度を降下させる方法としては、例えば、いったん雰囲気温度を降下させ た後、一定時間その温度に保ち、再度温度を降下させ、これらを繰り返し行う方法や 、降下速度を変化させる方法等があげられる。前記降下速度を変化させる場合、 2段 階に変化させてもよいし、それ以上の段階に変化させてもよい。前記雰囲気温度の 降下速度は、例えば、 0. 05°C/時間〜 30°C/時間とし、好ましくは 0. 1°C/時間〜 5 °C /時間であり、より好ましくは 0. 1°C/時間〜 1°C/時間である。  [0016] In the present invention, when the atmosphere temperature is changed during the crystal growth step, after switching from the raw material preparation step to the crystal growth step, the atmosphere temperature in the crystal growth step is gradually lowered to obtain a predetermined crystal. It is preferable to set the growth temperature. The decrease in the ambient temperature may be, for example, continuous or stepwise. Examples of a method of gradually lowering the ambient temperature include, for example, a method of once lowering the ambient temperature, maintaining the temperature for a certain period of time, lowering the temperature again, repeating these steps, or changing the rate of decrease. Method and the like. When changing the descending speed, the descending speed may be changed to two stages or to more stages. The rate of decrease in the ambient temperature is, for example, 0.05 ° C / hour to 30 ° C / hour, preferably 0.1 ° C / hour to 5 ° C / hour, and more preferably 0.1 ° C / hour. C / hour to 1 ° C / hour.
[0017] 本発明において、結晶成長工程中に雰囲気圧力を変化させる場合、前記原料調 製工程から前記結晶成長工程に切り替えた後、前記結晶成長工程の雰囲気圧力を 徐々に上昇させ、所定の結晶成長の圧力に設定することが好ましい。前記雰囲気圧 力の上昇は、例えば、連続的であってもよいし、段階的であってもよい。また、段階的 に雰囲気圧力を上昇させる場合、例えば、いったん雰囲気圧力を上昇させた後、一 定時間その温度に保ち、再度圧力を上昇させ、これらを繰り返し行う方法や、上昇速 度を変化させる方法等があげられる。前記上昇速度を変化させる場合、 2段階に変 ィ匕させてもよいし、それ以上の段階に変化させてもよい。また、前記雰囲気温度の降 下および雰囲気圧力の上昇は、単独で行ってもよいし、同時に行ってもよレ、。前記雰 囲気圧力の上昇速度は、例えば、 0. Olatm/時間〜 0· 3atm/時間(0. 01 X 1. 01 3 X 105Pa/時間〜 0. 3 X 1. 013 X 105Pa/時間)とし、好ましくは 0· 05atm/時間〜 0. latm/時間(0. 05 X 1. 013 X 105Pa/時間〜 0. 1 X 1. 013 X 105Pa/時間)で ある。 In the present invention, when the atmospheric pressure is changed during the crystal growth step, the above-mentioned raw material preparation is performed. After switching from the manufacturing process to the crystal growth process, it is preferable to gradually increase the atmospheric pressure in the crystal growth process to a predetermined crystal growth pressure. The increase in the atmospheric pressure may be, for example, continuous or stepwise. When the atmospheric pressure is increased stepwise, for example, once the atmospheric pressure is increased, the temperature is maintained for a certain period of time, then the pressure is increased again, and a method of repeating these steps or changing the rate of increase are used. Method and the like. When changing the rising speed, the rising speed may be changed in two stages or may be changed in more stages. Further, the decrease in the atmospheric temperature and the increase in the atmospheric pressure may be performed independently or simultaneously. The atmosphere increases the rate of pressure, for example, 0. Olatm / Time ~ 0 · 3 atm / Time (0. 01 X 1. 01 3 X 10 5 Pa / Time ~ 0. 3 X 1. 013 X 10 5 Pa / and time), preferably 0 · 05atm / time ~ 0. LATM / time (0. 05 X 1. 013 X 10 5 Pa / time ~ 0. 1 X 1. 013 X 10 5 Pa / hour).
[0018] このように、結晶成長中に雰囲気温度を徐々に降下させること又は雰囲気圧力を徐 々に上昇させることで、さらに実質的な結晶成長速度を早くすることができる。また、こ れらの双方を同時に行うことにより、結晶成長速度をより一層早くすることができる。本 発明において、実質的な結晶成長速度は、例えば、 5 x m/時間〜 lOO x m/時間で あり、好ましくは lO x m/時間〜 50 x m/時間である。なお、本発明における実質的 な結晶成長速度とは、結晶成長が実際に開始してから終了するまで (結晶成長に寄 与しない時間を除く)に成長した 1時間あたりの結晶の厚みを意味する。  As described above, by gradually lowering the ambient temperature or gradually increasing the atmospheric pressure during the crystal growth, the substantial crystal growth rate can be further increased. Further, by performing both of these at the same time, the crystal growth rate can be further increased. In the present invention, the substantial crystal growth rate is, for example, 5 × m / hour to 100 × m / hour, and preferably 10 × m / hour to 50 × m / hour. The substantial crystal growth rate in the present invention means the thickness of a crystal grown per hour from when crystal growth actually starts to when it ends (excluding time that does not contribute to crystal growth). .
[0019] 結晶成長工程において、前記雰囲気温度の降下速度や前記雰囲気圧力の上昇 速度は、一定でもよいが、変化させてもよい。例えば、結晶成長中期から後期におい て、前記雰囲気温度の降下速度や、雰囲気圧力の上昇速度を徐々に大きくしてもよ レ、。このように変化させることにより、結晶形状が 3次元的に大きくなつた場合でも、あ る軸 (例えば、 C軸)方向の結晶成長速度をほぼ一定 (すなわち、前記融液中の ΠΙ族 元素窒化物結晶の過飽和度をほぼ一定)に保ち、結晶品質を結晶成長開始時と結 晶成長後期とにおいて、同一の品質とすることが可能となる。雰囲気温度を変化させ る場合、例えば、まず、結晶成長の初期では 0. 05°C/時間で降下させ、後期には 3 °C /時間として降下させることが好ましぐより好ましくは、結晶成長の初期では 0. C /時間で降下させ、後期には 1°C/時間として降下させることである。また、雰囲気圧力 を変化させる場合、例えば、結晶成長の初期では 0. Olatm/時間(0. 01 X 1. 013 X 105Pa/時間)で上昇させ、後期には 0. 3atm/時間(0. 3 X 1. 013 X l。5Pa/時 間)で上昇させることが好ましぐより好ましくは、結晶成長の初期では 0. 05atm/時 間(0. 05 X 1. 013 X 105Pa/時間)で上昇させ、後期には 0. latm/時間(0. 1 X 1 . 013 X 105Pa/時間)で上昇させることである。 In the crystal growth step, the rate of decrease in the ambient temperature and the rate of increase in the ambient pressure may be constant or may be varied. For example, during the middle to late stages of crystal growth, the rate of decrease in the ambient temperature and the rate of increase in the ambient pressure may be gradually increased. By making such a change, even when the crystal shape becomes three-dimensionally large, the crystal growth rate in a certain axis (for example, C-axis) direction is almost constant (that is, the group III element nitride in the melt is not changed). The supersaturation degree of the crystal is kept almost constant), and the crystal quality can be made the same at the start of crystal growth and at the latter stage of crystal growth. When the ambient temperature is changed, for example, it is preferable that the temperature be lowered at a rate of 0.05 ° C./hour in the initial stage of crystal growth and 3 ° C./hour in the latter period, and more preferable that the temperature be lowered. Initially 0. C Per hour, and in the latter period as 1 ° C / hour. When the atmospheric pressure is changed, for example, the pressure is increased at 0.1 Olatm / hour (0.01 × 1.013 × 10 5 Pa / hour) in the early stage of crystal growth, and is increased to 0.3 atm / hour (0%) in the latter period. . 3 X 1. 013 X l. 5 Pa / more preferably it is preferred instrument to increase in time between), the initial crystal growth 0. 05atm / inter hr (0. 05 X 1. 013 X 10 5 Pa / Hour), and in the latter period, it is increased by 0. latm / hour (0.1 × 1.013 × 10 5 Pa / hour).
[0020] 本発明の原料調製工程において、前記原料液を、前記 III族元素窒化物結晶の飽 和又は未飽和状態にしておくことが好ましい。未飽和状態とは、原料液中への III族 元素窒化物結晶の溶解がまだ可能である状態を意味する。前記原料液中における III族元素窒化物の溶解度は、例えば、 0. Olat. %〜5at. %であり、好ましくは 0. 2 at. %〜lat. %であり、前記原料液中の窒素濃度は、例えば、 0. Olat. %〜5at. %であり、好ましくは 0· 2at. %〜: lat. %である。  In the raw material preparation step of the present invention, it is preferable that the raw material liquid is in a state of being saturated or unsaturated with the group III element nitride crystal. The unsaturated state means a state in which the dissolution of the group III element nitride crystal in the raw material liquid is still possible. The solubility of the group III element nitride in the raw material liquid is, for example, 0.2 to 5 at.%, Preferably 0.2 at.% To lat.%, And the nitrogen concentration in the raw material liquid is % Is, for example, 0.2 Olat.% To 5 at.%, Preferably 0.2 at.% To: lat.%.
[0021] 本発明の原料調製工程にぉレ、て、前記融液 (原料液)の液面に、前記窒素含有ガ スをフローさせることにより、窒素含有ガスを供給することが好ましい。フローは、例え ば、前記窒素含有ガスを融液液面に供給することにより行うことができる。また、フロ 一させる窒素含有ガスの流量は、例えば、マスフローコントローラや流量計等で制御 すること力 Sできる。  In the raw material preparation step of the present invention, it is preferable to supply the nitrogen-containing gas by flowing the nitrogen-containing gas on the liquid surface of the melt (raw material liquid). The flow can be performed, for example, by supplying the nitrogen-containing gas to the liquid surface of the melt. Further, the flow rate of the nitrogen-containing gas to be flown can be controlled by, for example, a mass flow controller or a flow meter.
[0022] 本発明の原料調製工程において、前記融液中で前記窒素含有ガスをパブリングさ せることにより、窒素含有ガスを供給することが好ましい。パブリングにより、融液と窒 素含有ガスとが接触する気液界面積を増加させ、融液中への窒素の溶解効率をより 一層向上できるからである。さらに、パブリングによる対流によって、例えば、融液中 の窒素濃度を均一化できる。パブリングは、例えば、窒素含有ガスを融液内に直接 供給することにより行うことができる。パブリングさせる窒素含有ガスの流量は、窒素 含有ガスをフローさせる場合と同様に、例えば、マスフローコントローラや流量計等で 制御することができる。前記パブリングにより供給するバブルの大きさは、特に制限さ れないが、できる限り小さくすることが好ましぐ例えば、マイクロバブル (例えば、直径 100 x m以下)およびナノバブル(例えば、直径 lOOnm以下)が好ましレ、。このように バブルを小さくすることにより、融液と窒素含有ガスとが接触する気液界面積がより一 層増加し、融液中への窒素の溶解効率を向上させ、融液中のアルカリ金属等の蒸発 を抑制できる。また、前記パブリングに加えて、前記融液に超音波を印加することが 好ましい。これにより、前記パブリングにより供給された窒素含有ガスのバブル力 例 えば、超音波の節の位置で固定され、より一層長い時間、バブルを融液中に滞在さ せることやバブル径をより微細化できるため、窒素の溶解効率をより一層向上できる。 なお、 m族元素を含む融液中に、例えば、アンモニアガスをバブリングして ΠΙ族元素 窒化物結晶を得る方法としては、例えば、特開平 10— 7496号公報および米国特許 第 6066205号明細書等に開示されている。しかし、これら方法では、 III族元素窒化 物結晶が過飽和状態の融液中で窒素含有ガスがパブリングされるため、不均一核が 発生したり、成長した結晶中に不均一核が不純物として取り込まれるという問題があ つた。し力 ながら、本発明では、 III族元素窒化物結晶が飽和又は未飽和状態の融 液中で窒素含有ガスをパブリングするため、このような問題が生じることもなぐかつ、 前述のような効果が得られるのである。 In the raw material preparation step of the present invention, it is preferable to supply the nitrogen-containing gas by publishing the nitrogen-containing gas in the melt. This is because, by publishing, the gas-liquid interface area where the melt and the nitrogen-containing gas come into contact with each other is increased, and the efficiency of dissolving nitrogen in the melt can be further improved. Further, convection by publishing can, for example, make the nitrogen concentration in the melt uniform. The publishing can be performed, for example, by directly supplying a nitrogen-containing gas into the melt. The flow rate of the nitrogen-containing gas to be bubbled can be controlled by, for example, a mass flow controller, a flow meter, or the like, as in the case of flowing the nitrogen-containing gas. The size of the bubbles supplied by the publishing is not particularly limited, but is preferably as small as possible. For example, microbubbles (eg, a diameter of 100 × m or less) and nanobubbles (eg, a diameter of 100 nm or less) are preferable. Masure, By reducing the bubble in this way, the gas-liquid boundary area where the melt and the nitrogen-containing gas come into contact with each other is further reduced. The number of layers increases, the efficiency of dissolving nitrogen in the melt is improved, and the evaporation of alkali metals and the like in the melt can be suppressed. Further, it is preferable to apply ultrasonic waves to the melt in addition to the publishing. As a result, the bubble force of the nitrogen-containing gas supplied by the publishing is fixed at the position of the node of the ultrasonic wave, for example, so that the bubble can stay in the melt for a longer time and the bubble diameter can be further reduced. Therefore, the dissolving efficiency of nitrogen can be further improved. As a method for obtaining a Group III element nitride crystal by bubbling ammonia gas in a melt containing a Group m element, for example, JP-A-10-7496 and US Pat. No. 6,066,205 Is disclosed. However, in these methods, heterogeneous nuclei are generated or heterogeneous nuclei are incorporated as impurities in the grown crystals because the nitrogen-containing gas is bubbled in the supersaturated melt of the group III nitride crystal. There was a problem. However, in the present invention, such a problem does not occur because the group III element nitride crystal publishes the nitrogen-containing gas in the melt in a saturated or unsaturated state. You get it.
[0023] 本発明において、結晶成長工程の実施前に加え、結晶成長工程の実施中および 実施後の少なくとも一方において、前記原料調製工程を実施することや、前記原料 調製工程と前記結晶成長工程とを同時に実施すること等により、結晶成長を連続し て行うことが好ましい。例えば、窒素を溶解させた融液 (原料液)を別途準備し、それ を適宜追加して結晶成長工程を行ってもよい。また、結晶の取り出し時、結晶仕込み 時等においても原料調製工程を連続して行うことにより、その後、結晶成長を連続し て行うことができ、製造効率をより一層向上できる。  In the present invention, the raw material preparation step may be performed before or during the crystal growth step and / or during or after the crystal growth step. It is preferable that crystal growth be performed continuously, for example, by simultaneously performing the above. For example, a crystal growth step may be performed by separately preparing a melt (raw material liquid) in which nitrogen is dissolved, and adding it as appropriate. In addition, by continuously performing the raw material preparation step at the time of taking out the crystal, preparing the crystal, and the like, the crystal can be continuously grown thereafter, and the production efficiency can be further improved.
[0024] 本発明において、前記アルカリ金属は、例えば、ナトリウム (Na)、リチウム(Li)、カリ ゥム (K)、ルビジウム (Rb)およびセシウム(Cs)等があげられ、好ましくはナトリウム(N a)である。これらは 1種類で使用してもよいし、 2種類以上を併用してもよい。前記ァ ルカリ土類金属としては、例えば、カルシウム(Ca)、マグネシウム(Mg)、ベリリウム( Be)、ストロンチウム(Sr)およびバリウム(Ba)があげられ、好ましくはカルシウム(Ca) 、ストロンチウム(Sr)およびバリウム(Ba)であり、より好ましくはカルシウム(Ca)である 。これらは 1種類で使用してもよいし、 2種類以上を併用してもよい。なお、本発明に おいて、アルカリ土類金属とは、カルシウム(Ca)、マグネシウム(Mg)、ベリリウム(Be )、ストロンチウム(Sr)およびバリウム(Ba)を含むものとする。なお、本発明において 、前記融液は、ドーパントとして、例えば、ケィ素(Si)、亜鉛 (Zn)およびマグネシウム (Mg)等の n型および p型ドーパントを含んでレ、てもよレ、。 In the present invention, examples of the alkali metal include sodium (Na), lithium (Li), potassium (K), rubidium (Rb), and cesium (Cs). a). These may be used alone or in combination of two or more. Examples of the alkaline earth metal include calcium (Ca), magnesium (Mg), beryllium (Be), strontium (Sr) and barium (Ba), and preferably calcium (Ca) and strontium (Sr). And barium (Ba), and more preferably calcium (Ca). These may be used alone or in combination of two or more. In the present invention, the alkaline earth metals are calcium (Ca), magnesium (Mg), beryllium (Be ), Strontium (Sr) and barium (Ba). In the present invention, the melt may contain, for example, n-type and p-type dopants such as silicon (Si), zinc (Zn) and magnesium (Mg) as dopants.
[0025] 本発明において、前記 ΠΙ族元素が、 Al、 Gaおよび Inであることが好ましぐなかでも Gaを使用して、 GaN結晶を製造することがより好ましい。  [0025] In the present invention, it is more preferable that the GaN crystal is produced using Ga, among which the group IV element is preferably Al, Ga and In.
[0026] 本発明において、前記原料液中に含まれる窒素の窒素源は特に限定されるもので はなぐ例えば、窒素含有ガス、原料液中に混入させた窒素化合物等であってもよい 。前記窒素含有ガス(反応ガス)は、例えば、窒素(N )ガス、アンモニア ら! )ガス 等があげられ、いずれか一方のみを使用してもよいし、混合して使用してもよい。前 記窒素含有ガス(反応ガス)は、例えば、不活性ガス(例えば、 Ar、 Heおよび Ne)お よび水素ガス等を含んでいてもよい。前記窒素含有ガス (反応ガス)源として、ヒドラジ ン(H NNH )を使用してもよいし、前記融液中にヒドラジンに混入させ、これを窒素 源として使用してもよい。窒素含有ガス(反応ガス)源として、ヒドラジンを使用する場 合、ヒドラジンは空気中 180°Cでアンモニアおよび窒素に分解することから、例えば、 ヒドラジンを加熱して得られたガスをそのまま窒素含有ガスとして供給してもよいし、窒 素(N )ガスおよび前記不活性ガス等のキャリアガスで希釈して供給してもよい。また [0026] In the present invention, the nitrogen source of nitrogen contained in the raw material liquid is not particularly limited, and may be, for example, a nitrogen-containing gas, a nitrogen compound mixed in the raw material liquid, or the like. Examples of the nitrogen-containing gas (reaction gas) include a nitrogen (N) gas and an ammonia gas), and either one of them may be used, or a mixture thereof may be used. The nitrogen-containing gas (reaction gas) may include, for example, an inert gas (eg, Ar, He and Ne), a hydrogen gas, and the like. Hydrazine (H NNH) may be used as the nitrogen-containing gas (reaction gas) source, or hydrazine may be mixed into the melt and used as a nitrogen source. When hydrazine is used as a nitrogen-containing gas (reaction gas) source, hydrazine decomposes into ammonia and nitrogen at 180 ° C in air. For example, a gas obtained by heating hydrazine can be used as it is as a nitrogen-containing gas. Or diluted with a carrier gas such as nitrogen (N) gas and the above-mentioned inert gas. Also
、本発明では、前記反応ガスとは別に、加圧用の加圧ガスを供給してもよぐこの場 合の加圧ガスとしては、例えば、前述の不活性ガス等があげられる。前記加圧ガスは 、前記反応ガスと混合して供給してもよいし、別系統で独立して供給してもよい。 In the present invention, a pressurized gas for pressurization may be supplied separately from the reaction gas. Examples of the pressurized gas in this case include the above-mentioned inert gas. The pressurized gas may be supplied as a mixture with the reaction gas, or may be supplied independently in a separate system.
[0027] 本発明において、前記結晶成長工程では、結晶成長容器内で結晶成長反応を行 レ、、前記原料調製工程では、原料調製容器内で、前記アルカリ金属およびアルカリ 土類金属の少なくとも一方と III族元素とを含む融液への窒素の溶解を行って原料液 を調製し、前記原料調製容器から前記原料液を前記結晶成長容器に移送し、ここで 結晶成長させることが好ましい。前記原料調製容器と前記結晶成長容器とは、分離 していてもよいし、一体化していてもよい。一体化した容器である場合、例えば、 1つ の反応容器内に、原料調製容器部と結晶成長容器部とを有し、前記原料調製容器 部と前記結晶成長容器部とが連通し、原料調製容器部の原料液が結晶成長容器部 に移送可能な容器等があげられる。この場合、原料液の移送が簡単になるという特 徴がある。前記原料調製容器と前記結晶成長容器とを分離して、別個の圧力容器に 配置する場合、結晶成長の前後(例えば、結晶の取り出し時、結晶仕込み時等)にお レ、ても原料を調製できるため、製造効率をより一層向上できる。この場合、前記原料 調製容器の個数は、特に制限されず、 1つであってもよいし、複数であってもよいが、 複数の原料調製容器を使用することが好ましい。また、複数の原料調製容器を使用 する場合、複数の原料調製容器で窒素を溶解させたて得られた原料液を、パイプ等 を介して別の容器にいったん回収し、その後、結晶成長容器に移送することが好まし い。前記原料調製容器および前記結晶成長容器に使用する材質は、特に制限され ないが、例えば、 BN、 A1N、ァノレミナ、 SiC、および、グラフアイトならびにダイヤモン ドライクカーボン等の炭素系材料が使用でき、好ましくはアルミナである。 [0027] In the present invention, in the crystal growth step, a crystal growth reaction is performed in a crystal growth vessel, and in the raw material preparation step, at least one of the alkali metal and the alkaline earth metal is contained in the raw material preparation vessel. Preferably, nitrogen is dissolved in a melt containing a Group III element to prepare a raw material liquid, and the raw material liquid is transferred from the raw material preparation container to the crystal growth container, where the crystal is grown. The raw material preparation container and the crystal growth container may be separated, or may be integrated. In the case of an integrated container, for example, a raw material preparation container portion and a crystal growth container portion are provided in one reaction container, and the raw material preparation container portion and the crystal growth container portion communicate with each other to form a raw material preparation container. Containers that can transfer the raw material liquid in the container section to the crystal growth container section can be used. In this case, the transfer of the raw material liquid is simplified. There is a sign. When the raw material preparation container and the crystal growth container are separated and arranged in separate pressure vessels, the raw materials are prepared before and after crystal growth (for example, at the time of crystal removal, crystal preparation, etc.). Therefore, the production efficiency can be further improved. In this case, the number of the raw material preparation containers is not particularly limited, and may be one or more. It is preferable to use a plurality of raw material preparation containers. When a plurality of raw material preparation containers are used, the raw material liquid obtained by dissolving nitrogen in the plurality of raw material preparation containers is once collected in another container via a pipe or the like, and then transferred to a crystal growth container. Transport is preferred. The material used for the raw material preparation container and the crystal growth container is not particularly limited.For example, BN, A1N, anolemina, SiC, and carbonaceous materials such as graphite and diamond-like carbon can be used, and are preferable. Is alumina.
次に、本発明の製造装置は、前述のように、 III族元素窒化物結晶の製造装置であ つて、加熱手段、加圧手段、窒素含有ガス供給手段、結晶成長容器、原料調製容器 および原料移送手段を有し、前記結晶成長容器および前記原料調製容器は、前記 原料移送手段を介して連結され、前記結晶成長容器および前記原料調製容器には 、それぞれ、前記加熱手段、前記加圧手段および前記窒素含有ガス供給手段が配 置されている。前記加熱手段、前記加圧手段および前記窒素含有ガス供給手段に より、窒素含有ガス雰囲気下において、前記原料調製容器内の雰囲気温度および 雰囲気圧力の少なくとも一方を、前記結晶成長容器よりも高く設定して、前記原料調 製容器を加圧加熱し、アルカリ金属およびアルカリ土類金属の少なくとも一方と ΠΙ族 元素とを含む融液を調製し、前記融液中への窒素の溶解を行って原料液を調製す る。この原料液を、前記原料移送手段により、前記原料調製容器から前記結晶成長 容器に移送し、前記結晶成長容器内を、前記加熱手段、前記加圧手段および前記 窒素含有ガス供給手段により、窒素含有ガス雰囲気下、加圧加熱し、前記原料液中 の窒素と ΠΙ族元素とを反応させ、 ΠΙ族元素窒化物結晶を成長させて製造する。なお、 前記特許文献 2 (特開 2003— 300798号公報)には、結晶成長領域と混合融液保 持領域とが分離した装置であって、前記混合融液保持領域では、不活性気体雰囲 気下で ΙΠ族元素とアルカリ金属との混合融液を形成すること、前記結晶成長領域で は、窒素雰囲気下で前記混合融液から III族元素窒化物結晶の製造することが記載 されている。前記混合融液保持領域は不活性気体雰囲気下であり、窒素含有ガスは 含まれないため、得られる混合融液には、窒素は含まれない。したがって、同文献の 装置を用いた場合、結晶成長領域において、混合融液に窒素を溶解させた後、 ΠΙ族 元素窒化物結晶を成長させることになり、結晶成長領域において、結晶が成長しな い時間が長時間にわたって存在することになる。それに対し、本発明の製造装置に よれば、原料調製容器において、窒素を溶解させた融液を、前記原料移送手段によ り、結晶成長容器に移送するため、結晶成長容器において結晶成長に寄与しない時 間を著しく短縮できる。その結果、見かけの結晶成長速度をより一層大きくすることが できる。 Next, as described above, the production apparatus of the present invention is an apparatus for producing a group III element nitride crystal, and includes a heating means, a pressurizing means, a nitrogen-containing gas supply means, a crystal growth vessel, a raw material preparation vessel, and a raw material. A transfer means, wherein the crystal growth vessel and the raw material preparation vessel are connected via the raw material transfer means, and the crystal growth vessel and the raw material preparation vessel are respectively provided with the heating means, the pressurizing means, The nitrogen-containing gas supply means is provided. The heating unit, the pressurizing unit, and the nitrogen-containing gas supply unit set at least one of the atmospheric temperature and the atmospheric pressure in the raw material preparation container higher than that of the crystal growth container under a nitrogen-containing gas atmosphere. Then, the raw material preparation container is heated under pressure to prepare a melt containing at least one of an alkali metal and an alkaline earth metal and a Group III element, and dissolve nitrogen in the melt to obtain a raw material liquid. Is prepared. The raw material liquid is transferred from the raw material preparation vessel to the crystal growth vessel by the raw material transfer means, and the inside of the crystal growth vessel is nitrogen-containing by the heating means, the pressurizing means, and the nitrogen-containing gas supply means. It is manufactured by heating under pressure in a gas atmosphere to cause the nitrogen in the raw material liquid to react with the group III element to grow a group III element nitride crystal. Patent Document 2 (Japanese Patent Application Laid-Open No. 2003-300798) discloses an apparatus in which a crystal growth region and a mixed melt holding region are separated from each other, and the mixed melt holding region has an inert gas atmosphere. Forming a mixed melt of a group III element and an alkali metal under air, and producing a group III element nitride crystal from the mixed melt under a nitrogen atmosphere in the crystal growth region. Has been. Since the mixed melt holding region is under an inert gas atmosphere and does not contain a nitrogen-containing gas, the obtained mixed melt does not contain nitrogen. Therefore, when the apparatus described in the document is used, in the crystal growth region, after dissolving nitrogen in the mixed melt, a Group III element nitride crystal is grown, and no crystal grows in the crystal growth region. Time will exist for a long time. On the other hand, according to the production apparatus of the present invention, in the raw material preparation container, the melt in which nitrogen is dissolved is transferred to the crystal growth container by the raw material transfer means, thereby contributing to crystal growth in the crystal growth container. This significantly reduces the time spent not performing. As a result, the apparent crystal growth rate can be further increased.
[0029] 原料調製容器および結晶成長容器を分離する場合、例えば、第 1の圧力容器と第  [0029] When the raw material preparation container and the crystal growth container are separated, for example, the first pressure container and the second pressure container are separated.
2の圧力容器とを有し、前記第 1の圧力容器内には前記結晶成長容器が配置され、 前記第 2の圧力容器内には前記原料調製容器が配置される例があげられる。このよ うに、結晶成長容器と原料調製容器とを別々の圧力容器に配置させることにより、結 晶成長の前後(例えば、結晶の取り出し時、結晶仕込み時等)においても原料を調製 することが可能となり、結晶成長に寄与しない時間の削減に加えて、より一層製造効 率を向上できる。  And an example in which the first pressure vessel has the crystal growth vessel disposed therein, and the second pressure vessel has the material preparation vessel disposed therein. In this way, by arranging the crystal growth vessel and the raw material preparation vessel in separate pressure vessels, it is possible to prepare the raw material before and after crystal growth (for example, at the time of crystal removal, crystal preparation, etc.). Thus, in addition to the reduction of time that does not contribute to crystal growth, the manufacturing efficiency can be further improved.
[0030] 本発明の製造装置において、前記加熱手段には、例えば、抵抗加熱ヒータ、 RF加 熱ヒータ等が使用でき、前記加圧手段には、例えば、窒素含有ガスにより加圧する手 段等がある。また、例えば、 Nガスのみを、窒素含有ガス(反応ガス)および加圧ガス  [0030] In the manufacturing apparatus of the present invention, for example, a resistance heater, an RF heater, or the like can be used as the heating means, and the pressurizing means includes, for example, means for pressurizing with a nitrogen-containing gas. is there. In addition, for example, only N gas is used for nitrogen-containing gas (reaction gas) and pressurized gas.
2  2
として使用する場合、ガス系統にガス精製装置を配置してもよい。前記装置に、さら に、温度調整手段および圧力調整手段の少なくとも一方が配置されていることが好ま しい。これらにより、例えば、前記加熱手段または前記加圧手段を制御し、原料調製 容器および結晶成長容器の温度および圧力を制御できる。  When used, a gas purification device may be arranged in the gas system. It is preferable that at least one of a temperature adjusting unit and a pressure adjusting unit is further arranged on the device. Thus, for example, the temperature and pressure of the raw material preparation vessel and the crystal growth vessel can be controlled by controlling the heating means or the pressurizing means.
[0031] 本発明の製造装置において、前記原料移送手段により、窒素が溶解した融液 (原 料液)を、前記原料調製容器から前記結晶成長容器に移送する方法としては、例え ば、第 2の圧力容器の雰囲気圧力をわずかに第 1の圧力容器の雰囲気圧力よりも高 くする方法、ポンプを用いた移送等があげられる。前記原料移送手段としては、例え ば、 W、 Ta等の金属製のパイプ、 BN、 SiC等により内壁をコートしたパイプ等が使用 できる。なお、前記原料移送手段において、原料液中の ΠΙ族元素窒化物結晶を飽和 又は未飽和状態とすることにより、原料を移送したとしても、不均一核の発生を防止 できる。 [0031] In the production apparatus of the present invention, as a method of transferring the melt (raw material liquid) in which nitrogen is dissolved from the raw material preparation container to the crystal growth container by the raw material transfer means, for example, A method in which the atmospheric pressure of the pressure vessel is slightly higher than the atmospheric pressure of the first pressure vessel, and transfer using a pump. As the raw material transfer means, for example, a pipe made of metal such as W or Ta, a pipe whose inner wall is coated with BN, SiC, or the like is used. it can. In the raw material transfer means, generation of heterogeneous nuclei can be prevented even when the raw material is transferred, by setting the group III element nitride crystal in the raw material liquid to a saturated or unsaturated state.
[0032] 本発明の製造装置において、さらに、ガスフロー手段を有することが好ましい。これ により、前記原料調製容器の融液液面において、前記窒素含有ガスをフローすること が可能となり、前記融液への窒素溶解速度をより一層向上できる。前記ガスフロー手 段は、例えば、前記窒素含有ガスを融液液面に供給する手段等があげられる。  [0032] The manufacturing apparatus of the present invention preferably further includes a gas flow means. This makes it possible to flow the nitrogen-containing gas on the surface of the melt in the raw material preparation vessel, thereby further improving the rate of dissolving nitrogen in the melt. The gas flow means includes, for example, means for supplying the nitrogen-containing gas to the surface of the melt.
[0033] 本発明の製造装置において、原料調製容器の個数は、特に制限されず、 1つであ つてもよいし、複数であってもよいが、複数の原料調製容器を使用することが好ましい 。これにより、前記原料調製容器の融液と前記窒素含有ガスとが接触する気液界面 積を大きくすることができる。また、複数の原料調製容器を使用する場合、例えば、原 料ため等の容器を有し、複数の原料調製容器で窒素を溶解させて得られた原料液 を、ノイブ等を介して前記原料ためにいつたん回収し、結晶成長容器に移送すること が好ましい。前記原料調製容器、前記結晶成長容器および前記原料ために使用す る材質は、特に制限されなレ、が、例えば、 BN、 A1N、アルミナ、 SiC、および、グラフ アイトならびにダイヤモンドライクカーボン等の炭素系材料が使用でき、好ましくはァ ノレミナである。  [0033] In the manufacturing apparatus of the present invention, the number of raw material preparation containers is not particularly limited, and may be one or more. It is preferable to use a plurality of raw material preparation containers. . Thereby, the gas-liquid interface area where the melt in the raw material preparation container and the nitrogen-containing gas come into contact can be increased. When a plurality of raw material preparation containers are used, for example, a container for raw materials and the like is provided, and a raw material liquid obtained by dissolving nitrogen in the plurality of raw material preparation containers is supplied to the raw material via a noive or the like. It is preferable to collect it immediately and transfer it to a crystal growth vessel. The material used for the raw material preparation container, the crystal growth container and the raw material is not particularly limited, but examples thereof include BN, A1N, alumina, SiC, and carbon-based materials such as graphite and diamond-like carbon. Materials can be used, preferably anolemina.
[0034] 本発明の製造装置において、前記ガスフロー手段に加えて、又は、前記ガスフロー 手段に代えて、ガスパブリング手段を有することが好ましい。これにより、前記原料調 製容器の融液において前記窒素含有ガスをパブリングすることが可能となり、前記融 液への窒素溶解速度を、より一層向上できる。前記ガスパブリング手段は、例えば、 融液中に窒素含有ガスを供給する手段等があげられる。パブリングにより、融液と窒 素含有ガスとが接触する気液界面積を増加させ、融液中への窒素の溶解効率をより 一層向上でき、さらに、パブリングによる対流によって、例えば、融液中の窒素濃度を 均一化できるからである。パブリングは、例えば、窒素含有ガスを、融液中に供給す ることにより行うことができる。パブリングさせる窒素含有ガスの流量は、窒素含有ガス をフローさせる場合と同様に、例えば、マスフローコントローラや流量計等で制御する こと力 Sできる。前記パブリングにより供給するバブルの大きさは、特に制限されないが 、できる限り小さくすることが好まし 例えば、マイクロバブル(例えば、直径 100 z m 以下)およびナノバブル (例えば、直径 lOOnm以下)が好ましい。このようにバブルを 小さくすることにより、融液と窒素含有ガスとが接触する気液界面積が増加し、融液 中への窒素の溶解効率が向上し、融液中のアルカリ金属等の蒸発を抑制できる。ま た、前記パブリングに加えて、前記融液に超音波を印加することが好ましい。これによ り、前記パブリングにより供給された窒素含有ガスのバブルが、例えば、超音波の節 の位置で固定され、より一層長い時間、バブルを融液中に滞在させることやバブル径 をより微細化できるため、窒素の溶解効率をより一層向上できる。 [0034] In the production apparatus of the present invention, it is preferable that a gas publishing unit is provided in addition to the gas flow unit or in place of the gas flow unit. This makes it possible to publish the nitrogen-containing gas in the melt in the raw material preparation container, and the nitrogen dissolution rate in the melt can be further improved. Examples of the gas publishing unit include a unit that supplies a nitrogen-containing gas into the melt. By publishing, the area of the gas-liquid interface where the melt and the nitrogen-containing gas come into contact with each other can be increased, and the efficiency of dissolving nitrogen in the melt can be further improved. This is because the nitrogen concentration can be made uniform. The publishing can be performed, for example, by supplying a nitrogen-containing gas into the melt. The flow rate of the nitrogen-containing gas to be bubbled can be controlled by, for example, a mass flow controller or a flow meter in the same manner as in the case of flowing the nitrogen-containing gas. The size of the bubble supplied by the publishing is not particularly limited, For example, microbubbles (for example, a diameter of 100 zm or less) and nanobubbles (for example, a diameter of 100 nm or less) are preferable. By reducing the size of the bubbles in this way, the gas-liquid interface area where the melt and the nitrogen-containing gas come into contact increases, the efficiency of dissolving nitrogen in the melt improves, and the evaporation of alkali metals and the like in the melt increases. Can be suppressed. Further, it is preferable to apply ultrasonic waves to the melt in addition to the publishing. As a result, the bubble of the nitrogen-containing gas supplied by the publishing is fixed, for example, at the position of the node of the ultrasonic wave, so that the bubble can stay in the melt for a longer time or the bubble diameter can be reduced. Therefore, the dissolution efficiency of nitrogen can be further improved.
[0035] 本発明の半導体素子は、前述の製造方法により得られた結晶を含むものである。  [0035] The semiconductor element of the present invention includes the crystal obtained by the above-described manufacturing method.
[0036] 前記半導体素子が、例えば、 LEDや半導体レーザ等の発光デバイス、パワーデバ イスや高周波アンプ等の電子デバイス等であることが好ましい。  [0036] Preferably, the semiconductor element is, for example, a light emitting device such as an LED or a semiconductor laser, or an electronic device such as a power device or a high-frequency amplifier.
[0037] 本発明の製造方法および装置を、以下の実施形態を用いて説明する。  [0037] The manufacturing method and apparatus of the present invention will be described using the following embodiments.
[0038] (実施形態 1)  (Embodiment 1)
本実施形態では、 III族元素として Gaを使用し、アルカリ金属として金属 Naを使用し 、窒素含有ガスとして窒素(N )ガスを使用して、 GaN結晶を成長させる。その方法に  In the present embodiment, a GaN crystal is grown using Ga as a group III element, metal Na as an alkali metal, and nitrogen (N) gas as a nitrogen-containing gas. In that way
2  2
ついて、図 7を用いて説明する。図 7は、本発明の製造方法に使用する装置の構成 の一例を示す構成図である。同図に示すように、この装置は、圧力容器 51、ガス供 給装置 21、流量調整容器 22および圧力調整器 24を主要構成要素とし、前記圧力 容器 51内には、反応容器 11が収納可能で、その側面には、加熱用ヒータ 30が配置 されている。前記圧力容器 51には、流量調整器 22および圧力調整器 24がパイプを 介してそれぞれ接続されており、前記流量調整器 22の他端には、ガス供給装置 21 力 Sパイプを介して接続されてレ、る。  This will be described with reference to FIG. FIG. 7 is a configuration diagram showing an example of a configuration of an apparatus used in the manufacturing method of the present invention. As shown in the figure, this device has a pressure vessel 51, a gas supply device 21, a flow control vessel 22 and a pressure regulator 24 as main components, and the reaction vessel 11 can be accommodated in the pressure vessel 51. A heater 30 for heating is arranged on the side surface. A flow regulator 22 and a pressure regulator 24 are connected to the pressure vessel 51 via pipes, respectively, and the other end of the flow regulator 22 is connected to a gas supply device 21 via a S pipe. Te, ru.
[0039] まず、反応容器 11内に、 Gaおよび Naを配置する。そして加熱用ヒータ 30および圧 力調整器 24を用いて、圧力容器 51内の雰囲気温度を 900°C〜: 1050°C (結晶成長 工程より、例えば、 50°C〜200°C高い温度)、雰囲気圧力を 40atm (40 X l . 013 X 105Pa)として、 Naおよび Gaを含む融液中に窒素を急速に溶解させ、融液内の窒素 濃度を所望の窒素濃度とする (原料調製工程)。圧力容器 51内の窒素供給量は、流 量調整器 22を用いて調整する。その後、圧力容器 51内の雰囲気圧力を 40atm (40 X 1. 013 X 105Pa)に保持した状態で、雰囲気温度を 850°Cに降下させ、前記融液 中で GaN結晶を成長させる(結晶成長工程)。その結果、原料加熱開始から結晶成 長が開始するまでの時間が、例えば、 10時間〜 30時間と、従来の方法の 1/5倍から 1/2倍程度にまで大幅に短縮される。本実施形態における、雰囲気温度の時間変化 の一例を図 1に示し、成長膜厚と時間との関係を、その一例として図 2に示す。なお、 従来の方法により結晶を成長させた場合の成長膜厚と時間との関係も図 2に合わせ て示す。また、見かけの成長速度は、例えば、 15 x m/時間となり、従来の方法の 1. 5倍程度早くすることができる。 First, Ga and Na are placed in the reaction vessel 11. Then, by using the heater 30 for heating and the pressure regulator 24, the ambient temperature in the pressure vessel 51 is increased from 900 ° C to: 1050 ° C (for example, a temperature higher by 50 ° C to 200 ° C than the crystal growth process), At an atmospheric pressure of 40 atm (40 X 10 .13 X 10 5 Pa), nitrogen is rapidly dissolved in the melt containing Na and Ga, and the nitrogen concentration in the melt is adjusted to a desired nitrogen concentration (the raw material preparation step). ). The amount of nitrogen supply in the pressure vessel 51 is adjusted using the flow rate regulator 22. Then, the atmospheric pressure in the pressure vessel 51 is reduced to 40 atm (40 X 1.013 X 10 5 Pa), the ambient temperature is lowered to 850 ° C, and a GaN crystal is grown in the melt (crystal growth step). As a result, the time from the start of the heating of the raw material to the start of the crystal growth is greatly reduced to, for example, 10 to 30 hours, which is about 1/5 to 1/2 times of the conventional method. FIG. 1 shows an example of a temporal change in the ambient temperature in this embodiment, and FIG. 2 shows an example of the relationship between the growth film thickness and the time. FIG. 2 also shows the relationship between the growth film thickness and time when the crystal was grown by the conventional method. Further, the apparent growth rate is, for example, 15 xm / hour, which can be about 1.5 times faster than the conventional method.
[0040] (実施形態 2) (Embodiment 2)
本実施形態では、 III族元素として Gaを使用し、アルカリ金属として金属 Naを使用し 、窒素含有ガスとして窒素(N )ガスを使用して、 GaN結晶を成長させる。まず、雰囲  In the present embodiment, a GaN crystal is grown using Ga as a group III element, metal Na as an alkali metal, and nitrogen (N) gas as a nitrogen-containing gas. First, the atmosphere
2  2
気圧力を 60atm〜70atm (60 X l . 013 X 105Pa〜70 X 1. 013 X 105Pa) (結晶成 長中の雰囲気圧力より、例えば、 20atm〜30atm (20 X l . 013 X 105Pa〜30 X 1. 013 X 105Pa)高い圧力)、雰囲気温度を 850°Cとして、 1時間〜 5時間保持し、 Ga および Naを含む融液中に窒素を急速に溶解させ、融液内の窒素濃度を所望の窒素 濃度とする (原料調製工程)。そして、雰囲気温度を 850°Cに保持した状態で、雰囲 気圧力を 40atm (40 X l . 013 X 105Pa)に降下させ、前記融液中で GaN結晶を成 長させる (結晶成長工程)。その結果、原料加熱開始から結晶成長が開始するまでの 時間が、例えば、 10時間〜 20時間と、従来の方法の 1Z5倍から 1/2倍程度にまで 大幅に短縮される。本実施形態における、雰囲気圧力の時間変化の一例を図 3に示 す。また、見かけの成長速度は、例えば、 15 x m/時間にできる。なお、原料調製ェ 程 (こおレヽて、 H i±^¾r60atm~70atm (60 X 1. 013 X 105Pa〜70 X 1. 013 X 105Pa)、雰囲気温度を 850°Cとした場合、平衡状態では窒素が過飽和の状態と なる。しかしながら、窒素供給時間が、例えば、 1時間〜 5時間と短時間であれば、融 液中の III族元素窒化物濃度(窒素濃度)は飽和濃度以下であるため、原料調製工程 では、結晶成長は開始しない。 The vapor pressure 60atm~70atm than (60 X l. 013 X 10 5 Pa~70 X 1. 013 X 10 5 Pa) ( ambient pressure in the crystal growth, for example, 20atm~30atm (20 X l. 013 X 10 5 Pa ~ 30 X 1.013 X 10 5 Pa) High pressure), hold the atmosphere temperature at 850 ° C for 1 hour to 5 hours, rapidly dissolve nitrogen in the melt containing Ga and Na, Adjust the nitrogen concentration in the liquid to the desired nitrogen concentration (raw material preparation step). Then, while maintaining the ambient temperature at 850 ° C., the atmospheric pressure is reduced to 40 atm (40 × 10 13 × 10 5 Pa), and the GaN crystal is grown in the melt (crystal growth step). ). As a result, the time from the start of the heating of the raw material to the start of the crystal growth is, for example, 10 to 20 hours, which is drastically reduced from 1Z5 times to 1/2 times of the conventional method. FIG. 3 shows an example of a temporal change in the atmospheric pressure in the present embodiment. Also, the apparent growth rate can be, for example, 15 xm / hour. It should be noted that, as the raw material preparation E Te (Nobi Rere, H i ± ^ ¾r60atm ~ 70atm (60 X 1. 013 X 10 5 Pa~70 X 1. 013 X 10 5 Pa), when the ambient temperature was 850 ° C However, in the equilibrium state, the nitrogen is supersaturated, however, if the nitrogen supply time is as short as 1 hour to 5 hours, for example, the concentration of the group III element nitride (nitrogen concentration) in the melt becomes the saturation concentration. Because of the following, crystal growth does not start in the raw material preparation step.
[0041] (実施形態 3) (Embodiment 3)
本実施形態では、まず、実施形態 1と同様に原料調製工程を行い、雰囲気温度を 降下させた後、結晶成長工程において、 0. 2°C/時間〜 1 . 5°C/時間で雰囲気温度 をさらに降下させる。その結果、実質的な結晶成長速度がより早くなり、例えば、 25 x m/時間にできる。本実施形態における、雰囲気温度の時間変化の一例を図 5に 示し、成長膜厚と時間との関係を、その一例として図 4に示す。なお、従来の方法に より結晶を成長させた場合の成長膜厚と時間との関係も図 4に合わせて示す。なお、 雰囲気温度を降下させる方法は、特に時間に対して直線的に降下させる必要はなく 、段階的に降下させてもよい。また、前記降下速度を、例えば、 0. 1°C/時間〜 1. 5 °C /時間の範囲で徐々に大きくしてもよい。 In this embodiment, first, a raw material preparation step is performed in the same manner as in Embodiment 1, and the ambient temperature is reduced. After the temperature is lowered, the ambient temperature is further lowered at 0.2 ° C./hour to 1.5 ° C./hour in the crystal growth step. As a result, the substantial crystal growth rate becomes faster, for example, 25 xm / hour. FIG. 5 shows an example of the change over time of the ambient temperature in this embodiment, and FIG. 4 shows an example of the relationship between the growth film thickness and the time. FIG. 4 also shows the relationship between the growth film thickness and the time when the crystal was grown by the conventional method. In the method of lowering the ambient temperature, the temperature does not need to be lowered linearly with time, but may be lowered stepwise. Further, the descending speed may be gradually increased in a range of, for example, 0.1 ° C./hour to 1.5 ° C./hour.
[0042] (実施形態 4) (Embodiment 4)
本実施形態では、まず、実施形態 2と同様に原料調製工程を行い、雰囲気圧力を 降下させた後、結晶成長工程において、 0. 05atm/時間〜 0. 3atm/時間(0. 05 X 1. 013 X 105Pa/時間〜 0. 3 X 1 . 013 X 105Pa/時間)で雰囲気圧力を上昇させる 。その結果、実質的な結晶成長速度が、より早くなり、例えば、 20 / m/時間にできる 。本実施形態における、雰囲気圧力の時間変化の一例を図 6に示す。なお、雰囲気 圧力を上昇させる方法は、特に時間に対して直線的に上昇させる必要はなぐ段階 的に上昇させてもよい。また、前記上昇速度を、例えば、 0. 05atm/時間〜 0. 3atm /時間(0. 05 X 1. 013 X 105Pa/H#^ ~0. 3 X 1. 013 X 105Pa/時間)の範囲で徐 々に大きくしてもよい。 In the present embodiment, first, a raw material preparation step is performed in the same manner as in the second embodiment, and after reducing the atmospheric pressure, in the crystal growth step, 0.05 atm / hour to 0.3 atm / hour (0.05 X1. 013 X 10 5 Pa / hour to 0.3 X 1.03 X 10 5 Pa / hour). As a result, the substantial crystal growth rate can be higher, for example, 20 / m / hour. FIG. 6 shows an example of a temporal change of the atmospheric pressure in the present embodiment. In addition, the method of increasing the atmospheric pressure may be increased stepwise, especially when it is not necessary to increase the pressure linearly with time. Moreover, the increasing speed, for example, 0. 05atm / Time ~ 0. 3 atm / Time (0. 05 X 1. 013 X 10 5 Pa / H # ^ ~ 0. 3 X 1. 013 X 10 5 Pa / Time ) May be gradually increased.
[0043] なお、前記実施形態 1から 4は必ずしも別々に行う必要はなぐ例えば、原料調製 工程において、雰囲気温度の上昇と雰囲気圧力の上昇とを同時に行うことにより、よ り効率的に融液中に窒素を溶解させることができる。  Note that Embodiments 1 to 4 do not necessarily need to be performed separately. For example, in the raw material preparation step, by simultaneously increasing the atmospheric temperature and the atmospheric pressure, the melting point in the melt can be improved more efficiently. Can be dissolved in nitrogen.
[0044] また、結晶成長工程において、雰囲気温度の降下と雰囲気圧力の上昇とを同時に 行うことにより、結晶成長速度をより早くすることができる。また、結晶成長中期から後 期において、雰囲気圧力の上昇速度を徐々に大きくしてもよい。例えば、結晶がバ ルク状の場合、結晶は 3次元的に成長するため、前述のように結晶成長中期から後 期において、雰囲気圧力の上昇速度を徐々に大きくすることにより、結晶成長の駆動 力(過飽和度)を一定とし、 1つの結晶軸方向の成長速度を一定にすることもできる。  Further, in the crystal growth step, by simultaneously lowering the ambient temperature and increasing the atmospheric pressure, the crystal growth rate can be further increased. In the middle to late stages of crystal growth, the rate of increase in the atmospheric pressure may be gradually increased. For example, when the crystal is bulky, the crystal grows three-dimensionally, and as described above, the driving force for crystal growth is increased by gradually increasing the rate of increase in the atmospheric pressure during the middle to late stages of crystal growth as described above. (Supersaturation) can be kept constant, and the growth rate in one crystal axis direction can be kept constant.
[0045] (実施形態 5) 本発明の製造装置の構成の一例を、図 8を用いて説明する。図 8に、本発明の製 造装置の一例を示す。同図に示すように、この装置は、第 1の圧力容器 50、第 2の圧 力容器 52、原料移送手段 16、圧力調整器 24および 26、流量調整器 22ならびにガ ス供給装置 21および 20を主要構成要素とする。第 1の圧力容器 50および第 2の圧 力容器 52の中には、それぞれ、結晶成長容器 14および原料調製容器 12が収納可 能で、それらの容器(14および 12)の側面には加熱用ヒータ 30が配置されている。そ して、第 1の圧力容器 50および第 2の圧力容器 52は、原料移送手段 16により接続さ れており、原料移送手段 16には加熱用ヒータ 34が配置されている。第 1の圧力容器 50には、ガス供給装置 20と圧力調整器 26とがパイプを介してそれぞれ接続され、第 2の圧力容器 52には、ガス供給装置 21、流量調整器 22および圧力調整器 24がパ イブを介してそれぞれ接続されてレヽる。 (Embodiment 5) An example of the configuration of the manufacturing apparatus of the present invention will be described with reference to FIG. FIG. 8 shows an example of the manufacturing apparatus of the present invention. As shown in the figure, this apparatus comprises a first pressure vessel 50, a second pressure vessel 52, a raw material transfer means 16, pressure regulators 24 and 26, a flow regulator 22, and gas supply devices 21 and 20. Is the main component. In the first pressure vessel 50 and the second pressure vessel 52, a crystal growth vessel 14 and a raw material preparation vessel 12 can be stored, respectively, and the sides of those vessels (14 and 12) are used for heating. A heater 30 is provided. The first pressure vessel 50 and the second pressure vessel 52 are connected by the raw material transfer means 16, and the raw material transfer means 16 is provided with a heater 34 for heating. The gas supply device 20 and the pressure regulator 26 are connected to the first pressure vessel 50 via pipes, respectively.The second pressure vessel 52 has the gas supply device 21, the flow regulator 22, and the pressure regulator. 24 are connected via pipes, respectively.
[0046] 前記原料移送手段 16は、例えば、 Naや III族元素と反応しにくい材質のパイプ等を 使用することが好ましぐ具体例としては、 Wおよび Ta等の金属製のパイプ、 BNや Si C等により内壁をコートしたパイプ等があげられる。なお、同図において、原料調製容 器と結晶成長容器とは空間的に分離しているが、本発明の製造装置の構成は、これ に限定されるものではなぐ原料調製容器と結晶成長容器とを同一育成炉内の別の 場所に配置してもよいし、これらの容器が一体化していてもよい。これらの容器が一 体化することで、原料調製容器力 結晶成長容器への原料の移送をより一層容易に すること力 Sできる。 As the raw material transfer means 16, for example, it is preferable to use a pipe made of a material hardly reacting with Na or a group III element, and specific examples thereof include metal pipes such as W and Ta, BN and Examples include a pipe whose inner wall is coated with SiC or the like. Although the raw material preparation container and the crystal growth container are spatially separated from each other in the figure, the configuration of the production apparatus of the present invention is not limited to this. May be arranged in another place in the same growth furnace, or these vessels may be integrated. By integrating these containers, the power of the raw material preparation container can be further enhanced to facilitate the transfer of the raw material to the crystal growth container.
[0047] 図 8に示す製造装置を用いた III族元素窒化物結晶の製造について、 ΠΙ族元素とし て Gaを使用し、アルカリ金属として Naを使用し、窒素含有ガスとして窒素(N )ガスを 使用した場合を例にとり説明する。  [0047] Regarding the production of a group III element nitride crystal using the production apparatus shown in Fig. 8, Ga was used as the group III element, Na was used as the alkali metal, and nitrogen (N) gas was used as the nitrogen-containing gas. A description will be given of an example in which the device is used.
[0048] まず、予め、結晶成長容器 14に、所望の量の Gaと Naとを配置する。窒素含有ガス を、ガス供給装置 20から圧力調整器 26に供給し、圧力調整器 26により所望の圧力 に調整して第 1の圧力容器 50に導入する。そして、第 1の圧力容器 50の雰囲気温度 を、結晶成長工程より高い温度、例えば、 900°C〜: 1050°Cとし、雰囲気圧力を 40at m (40 X 1. 013 X 105Pa)として、前記 Gaと Naとを溶解して融液を調製し、前記融 液中に窒素を溶解させる(原料調製工程)。このとき、結晶成長容器 14内の融液は、 窒素は溶解しているが、 GaNは未飽和の状態である。なお、前記窒素を十分に溶解 させた融液を原料調製容器 12で予め作製し、原料移送手段 16を用いて、それを結 晶成長容器 14に移送させて使用してもよい。 First, Ga and Na in desired amounts are placed in the crystal growth vessel 14 in advance. The nitrogen-containing gas is supplied from the gas supply device 20 to the pressure regulator 26, adjusted to a desired pressure by the pressure regulator 26, and introduced into the first pressure vessel 50. Then, the atmosphere temperature of the first pressure vessel 50 is set to a temperature higher than that of the crystal growth step, for example, 900 ° C. to: 1050 ° C., and the atmosphere pressure is set to 40 atm (40 × 1.013 × 10 5 Pa). A melt is prepared by dissolving the Ga and Na, and nitrogen is dissolved in the melt (raw material preparation step). At this time, the melt in the crystal growth vessel 14 is Nitrogen is dissolved, but GaN is unsaturated. Note that the melt in which the nitrogen is sufficiently dissolved may be prepared in advance in the raw material preparation container 12 and transferred to the crystal growth container 14 using the raw material transfer means 16 for use.
[0049] 次に、第 1の圧力容器 50の雰囲気温度を 800°C、雰囲気圧力を 30atm (30 X 1.  Next, the ambient temperature of the first pressure vessel 50 is set to 800 ° C., and the ambient pressure is set to 30 atm (30 X 1.
013 X 105Pa)に降下させ、融液中で結晶を成長させる(結晶成長工程)。このとき、 第 2の圧力容器 52の雰囲気温度を 900°C、雰囲気圧力を 30. latm〜31atm (30. 1 X 1. 013 X 105Pa〜31 X l . 013 X 105Pa)とすることカ好ましレヽ。また、窒素を溶 解させた原料調製容器 12内の融液を移送させるために、第 2の圧力容器 52の雰囲 気圧力を、第 1の圧力容器 50の雰囲気圧力よりもわずかに高くすることが好ましい。 013 × 10 5 Pa) to grow crystals in the melt (crystal growth step). In this case, 900 ° C to ambient temperature of the second pressure vessel 52, an atmosphere pressure 30. latm~31atm (30. 1 X 1. 013 X 10 5 Pa~31 X l. 013 X 10 5 Pa) That's what you like. Further, in order to transfer the melt in the raw material preparation vessel 12 in which nitrogen has been dissolved, the atmospheric pressure of the second pressure vessel 52 is made slightly higher than the atmospheric pressure of the first pressure vessel 50. Is preferred.
[0050] 図 9に、圧力容器 52内の構成の一例を示す。同図に示すように、第 2の圧力容器 5 2内には、原料調製容器 12が配置され、その側面には、加熱用ヒータ 30が配置され ている。前記圧力容器 52には、その上部壁面を貫通した状態で撹拌手段 74が取り 付けられ、前記撹拌手段 74の一端には、回転導入手段 76を介して駆動手段 72が 配置されている。前記撹拌手段 74の他端は、原料調製容器 12内の融液内に配置 可能であって、前記駆動手段 72および前記回転導入手段 76を介して、前記撹拌手 段 74を駆動することにより、原料調製容器 12内の融液を撹拌できる。前記原料調製 容器 12には、ガス導入管 23および原料移送手段 16が配置され、前記原料移送手 段 16により、窒素を溶解させた融液 (原料液)は、結晶成長容器(図示せず)に移送 可能である(矢印 A方向)。前記ガス導入管 23の一端には、流量調整器 22を介して ガス供給装置 21が配置されている。窒素は融液液面から拡散するので、融液液面( 気液界面)の窒素濃度が濃くなる傾向がある。このようにプロペラ等の撹拌手段で原 料調製容器中の原料液を撹拌すること等により、原料調製容器中の原料液の窒素 濃度をより均一にできる。プロペラの材料は、原料融液に溶解しないものであれば特 に制限されず、例えば、タングステン、タンタル、アルミナ、イットリア等があげられる。 なお、原料調製容器は、飽和又は未飽和状態の雰囲気温度および雰囲気圧力に設 定されているので、撹拌により、不均一核が発生することはない。  FIG. 9 shows an example of the configuration inside the pressure vessel 52. As shown in the figure, a raw material preparation container 12 is disposed in a second pressure container 52, and a heating heater 30 is disposed on a side surface thereof. A stirring means 74 is attached to the pressure vessel 52 so as to penetrate an upper wall surface thereof, and a driving means 72 is disposed at one end of the stirring means 74 via a rotation introducing means 76. The other end of the stirring means 74 can be arranged in the melt in the raw material preparation container 12, and by driving the stirring means 74 through the driving means 72 and the rotation introducing means 76, The melt in the raw material preparation container 12 can be stirred. In the raw material preparation vessel 12, a gas introduction pipe 23 and a raw material transfer means 16 are arranged, and the melt in which nitrogen is dissolved (raw material liquid) is converted into a crystal growth vessel (not shown) by the raw material transfer means 16. (Arrow A direction). A gas supply device 21 is disposed at one end of the gas introduction pipe 23 via a flow rate regulator 22. Since nitrogen diffuses from the melt surface, the nitrogen concentration on the melt surface (gas-liquid interface) tends to increase. By stirring the raw material liquid in the raw material preparation container with a stirring means such as a propeller, the nitrogen concentration of the raw material liquid in the raw material preparation container can be made more uniform. The propeller material is not particularly limited as long as it does not dissolve in the raw material melt, and examples thereof include tungsten, tantalum, alumina, and yttria. In addition, since the raw material preparation container is set to the saturated or unsaturated atmosphere temperature and the atmospheric pressure, non-uniform nuclei are not generated by stirring.
[0051] 図 10に、第 2の圧力容器 52内の構成のその他の例を示す。同図に示すように、第  FIG. 10 shows another example of the configuration inside the second pressure vessel 52. As shown in FIG.
2の圧力容器 52内には、原料調製容器 12が複数個配置され、その側面には、加熱 用ヒータ 30が配置されている。各原料調製容器 12には、それぞれ、ガス導入管 23 およびパイプ 17が配置され、前記パイプ 17の先端には、原料液ため 13が配置され ている。前記原料液ため 13には、原料移送手段 16が配置され、前記原料移送手段 16により、窒素を溶解させた融液 (原料液)は、結晶成長容器(図示せず)に移送可 能である(矢印 A方向)。前記ガス導入管 23の一端には、流量調整器 22を介してガ ス供給装置 21が配置され、他端の先端が、前記原料調製容器 12内の融液液面に 位置するように配置され、その液面で窒素含有ガスが供給可能である(矢印 B方向) 。このように原料調製容器 12を複数配置することにより、融液と窒素含有ガスとが接 触する気液界面積を大きくすることができる。さらに、窒素含有ガスを融液液面でフロ 一させることにより、融液への窒素溶解速度をより早くすることができる。 In the second pressure vessel 52, a plurality of raw material preparation vessels 12 are arranged, and a heating Heater 30 is arranged. Each raw material preparation container 12 is provided with a gas introduction pipe 23 and a pipe 17, and a distal end of the pipe 17 is provided with a raw material liquid 13. A raw material transfer means 16 is disposed in the raw material liquid 13, and the melt (raw material liquid) in which nitrogen is dissolved can be transferred to a crystal growth vessel (not shown) by the raw material transfer means 16. (Direction of arrow A). At one end of the gas introduction pipe 23, a gas supply device 21 is arranged via a flow rate regulator 22, and the other end is arranged so as to be positioned at the melt surface in the raw material preparation container 12. The nitrogen-containing gas can be supplied at the liquid level (in the direction of arrow B). By arranging a plurality of raw material preparation containers 12 in this manner, the gas-liquid boundary area where the melt and the nitrogen-containing gas come into contact can be increased. Further, by allowing the nitrogen-containing gas to flow on the surface of the melt, the nitrogen dissolution rate in the melt can be further increased.
[0052] 図 8、図 9および図 10の製造装置を使用することで、見かけの成長速度を、例えば 、従来の方法の 1. 5倍〜 2倍に上昇させることが可能となる。  [0052] By using the manufacturing apparatus of Figs. 8, 9 and 10, the apparent growth rate can be increased, for example, to 1.5 to 2 times that of the conventional method.
[0053] (実施形態 6)  (Embodiment 6)
第 2の圧力容器 52内の構成のさらにその他の例を、図 11を用いて説明する。同図 に示すように、第 2の圧力容器 52内に原料調製容器 12が配置され、その側面にはヒ ータ 30が配置されている。各原料調製容器 12には、それぞれ、ガス導入管 23およ び原料移送手段 16が配置され、前記原料移送手段 16により、窒素を溶解させた融 液 (原料液)は、結晶成長容器(図示せず)に移送可能である(矢印 A方向)。前記ガ ス導入管 23の一端には、流量調整器 22を介してガス供給装置 21が配置され、他端 は、原料調製容器 12の壁面を貫通した状態で配置されている。このガス導入管 23を 通じて、原料調製容器 12内に窒素含有ガスが導入される。なお、前記原料調製容 器から前記結晶成長容器への融液 (原料液)の移送は、例えば、第 2の圧力容器と 第 1の圧力容器との間の圧力差で行うことができる。  Still another example of the configuration inside the second pressure vessel 52 will be described with reference to FIG. As shown in the figure, the raw material preparation container 12 is disposed in the second pressure container 52, and the heater 30 is disposed on a side surface thereof. A gas introduction pipe 23 and a raw material transfer means 16 are arranged in each raw material preparation vessel 12, and the melt (raw liquid) in which nitrogen is dissolved by the raw material transfer means 16 is supplied to a crystal growth vessel (see FIG. 1). (Not shown) (arrow A direction). A gas supply device 21 is arranged at one end of the gas introduction pipe 23 via a flow rate regulator 22, and the other end is arranged so as to penetrate a wall surface of the raw material preparation container 12. A nitrogen-containing gas is introduced into the raw material preparation container 12 through the gas introduction pipe 23. The transfer of the melt (raw material liquid) from the raw material preparation container to the crystal growth container can be performed, for example, by a pressure difference between the second pressure container and the first pressure container.
[0054] このようにガス導入管 23を配置することで、原料調製容器 12内の融液中で窒素含 有ガスをパブリングすることができ、かつ、融液中に窒素をより一層早く溶解すること ができる。そのため、より早く結晶成長を開始させることができる。本装置の構成により 、実施形態 5と同様な条件で GaN結晶を成長させた場合、結晶成長が開始するまで の時間を、例えば、 3時間未満にできる。この結果、見かけの結晶成長速度を、従来 と比較して、例えば、 2倍〜 2. 5倍程度早くできる。なお、原料調製容器 12内は、前 記実施形態 5と同様に未飽和の状態に保たれているので、窒素の溶解は速やかに 実現させることができる。また、不均一核発生などの微結晶が原料調製容器 12内で 発生することもない。 By arranging gas introduction pipe 23 in this manner, it is possible to publish a nitrogen-containing gas in the melt in raw material preparation container 12 and to dissolve nitrogen more quickly in the melt. be able to. Therefore, crystal growth can be started earlier. With the configuration of the present apparatus, when a GaN crystal is grown under the same conditions as in Embodiment 5, the time until the crystal growth starts can be set to, for example, less than 3 hours. As a result, the apparent crystal growth rate For example, compared to 2 to 2.5 times faster. In addition, since the inside of the raw material preparation container 12 is kept in an unsaturated state similarly to Embodiment 5 described above, the dissolution of nitrogen can be quickly realized. Further, microcrystals such as heterogeneous nucleation are not generated in the raw material preparation container 12.
[0055] 窒素含有ガスをパブリングさせる際、融液中への窒素の溶解効率を向上させる観 点から、融液中にバブルをできる限り長時間滞在させることが好ましぐその方法とし ては、例えば、前記ガス導入管の先端にキャップを配置することにより、バブルの大き さを小さくする方法があげられる。その方法について、図 12を用いて説明する。図 12 は、原料調製容器 12の周辺部の構成の一例を示す構成図であって、同図において 、図 11と同一箇所には、同一の符号を付している。同図に示すように、原料調製容 器 12には、ガス導入管 23および原料移送手段 16が、それぞれ壁面を貫通した状態 で配置されている。前記ガス導入管 23の先端にはキャップ 27が配置されており、ガ ス導入管 23の先端に配置したキャップ 27を介して窒素含有ガスを融液中に供給す ることにより、バブルの大きさを制御(例えば、小さく)できる。バブルの大きさを小さく することにより、融液と窒素含有ガスとの接触面(気液界面積)を増加させることができ る。さらに、バブルの大きさを小さくすることで、融液の粘性およびブラウン運動の影 響等により、融液中におけるバブルの滞在時間を延ばすことができる。これらの結果 、融液中への窒素の溶解効率を向上することができるため、より少ないガス流量で、 より多くの窒素を融液中に溶解できる。したがって、融液中に同量の窒素を溶解にあ たってもより少ないガス流量でよいので、融液中のアルカリ金属やアルカリ土類金属 の蒸発をより軽減できる。さらに、ガス流量を少なくすることにより、対流が比較的穏ゃ かになるため、原料調製工程における融液中の ΠΙ族元素窒化物結晶が多少過飽和 状態となっても、融液中に不均一核が発生しにくいという効果もある。  [0055] When publishing a nitrogen-containing gas, from the viewpoint of improving the dissolving efficiency of nitrogen in the melt, it is preferable to make bubbles stay in the melt as long as possible. For example, there is a method of reducing the size of bubbles by arranging a cap at the tip of the gas introduction tube. The method will be described with reference to FIG. FIG. 12 is a configuration diagram showing an example of the configuration of the peripheral part of the raw material preparation container 12, and the same reference numerals in FIG. 12 denote the same parts as in FIG. As shown in the figure, a gas introduction pipe 23 and a raw material transfer means 16 are arranged in the raw material preparation container 12 so as to penetrate the wall surface. A cap 27 is arranged at the tip of the gas introduction pipe 23. By supplying a nitrogen-containing gas into the melt through the cap 27 arranged at the tip of the gas introduction pipe 23, the size of the bubble is increased. Can be controlled (eg, reduced). By reducing the size of the bubble, the contact surface (gas-liquid interface area) between the melt and the nitrogen-containing gas can be increased. Further, by reducing the size of the bubble, the residence time of the bubble in the melt can be extended due to the viscosity of the melt and the influence of Brownian motion. As a result, since the dissolving efficiency of nitrogen in the melt can be improved, more nitrogen can be dissolved in the melt with a smaller gas flow rate. Therefore, even if the same amount of nitrogen is dissolved in the melt, a smaller gas flow rate is sufficient, so that evaporation of the alkali metal or alkaline earth metal in the melt can be further reduced. Furthermore, since the convection becomes relatively gentle by reducing the gas flow rate, even if the Group III element nitride crystal in the melt in the raw material preparation step becomes somewhat supersaturated, it is not uniform in the melt. There is also an effect that nuclei hardly occur.
[0056] 前記バブルの大きさは、例えば、前記キャップ 27の孔径や、供給するガスの流量等 で調整でき、バブルの大きさを小さくする場合は、例えば、孔径の小さいキャップを使 用すればよい。例えば、前記孔径を数 x m〜数 100 x m、流量を 50cc/分〜 5000c c/分として窒素含有ガスを供給した場合、数 μ m〜数 100 μ mの径を有するバブル を融液中に供給できる。前記キャップ 27としては、例えば、多孔質アルミナ等の多孔 質セラミック、タングステンおよびタンタル等由来の金属キャップ等があげられる。 [0056] The size of the bubble can be adjusted by, for example, the hole diameter of the cap 27, the flow rate of the supplied gas, and the like. To reduce the size of the bubble, for example, a cap having a small hole diameter is used. Good. For example, when the nitrogen-containing gas is supplied with the pore diameter of several xm to several hundred xm and the flow rate of 50 cc / min to 5000 cc / min, bubbles having a diameter of several μm to several hundred μm are supplied into the melt. it can. As the cap 27, for example, a porous alumina or the like And metal caps derived from porous ceramics, tungsten, tantalum, and the like.
[0057] また、融液中にバブルをできる限り長時間滞在させる方法としては、前記ガス導入 管の先端にキャップを配置する方法に加えて若しくは代えて、超音波を利用する方 法があげられる。その方法について、図 13を用いて説明する。図 13は、原料調製容 器の周辺部の構成のその他の例を示す構成図であって、同図において、図 12と同 一箇所には、同一の符号を付している。同図に示すように、原料調製容器 12の右壁 面には、原料移送手段 16が壁面を貫通した状態で配置され、原料調製容器 12の下 部には、熱遮断板 28を介して、超音波発生器 29が配置されている。原料調製容器 1 2の底面にその先端が位置するように、ガス導入管 23が、原料調製容器 12の上部方 向から配置され、前記ガス導入管 23の先端にはキャップ 27が配置されている。超音 波発生器 29を用いて原料調製容器 12内の融液に超音波を印加することにより、ガ ス導入管 23から供給されたバブルは、例えば、超音波の節の位置で固定される。そ の結果、より一層長い時間、バブルを融液中に滞在させることができ、窒素の溶解効 率をより一層向上できる。 As a method for allowing bubbles to stay in the melt for as long as possible, there is a method using ultrasonic waves in addition to or instead of the method of disposing a cap at the tip of the gas introduction tube. . The method will be described with reference to FIG. FIG. 13 is a configuration diagram showing another example of the configuration of the peripheral portion of the raw material preparation container. In FIG. 13, the same reference numerals are given to the same portions as in FIG. As shown in the figure, a raw material transfer means 16 is disposed on the right wall surface of the raw material preparation container 12 in a state penetrating the wall surface, and a lower part of the raw material preparation container 12 is connected to An ultrasonic generator 29 is arranged. A gas introduction tube 23 is arranged from the upper side of the material preparation container 12 such that the tip is located on the bottom surface of the material preparation container 12, and a cap 27 is arranged at the tip of the gas introduction tube 23. . By applying ultrasonic waves to the melt in the raw material preparation container 12 using the ultrasonic generator 29, the bubbles supplied from the gas introduction pipe 23 are fixed at, for example, the positions of the nodes of the ultrasonic waves. . As a result, bubbles can be kept in the melt for a longer time, and the dissolving efficiency of nitrogen can be further improved.
[0058] (実施形態 7) (Embodiment 7)
本実施形態では、本発明の製造装置の構成のさらにその他の例を、図 14を用いて 説明する。この例は、原料調製容器と結晶成長容器とを一体化した容器であり、 1つ の容器が原料調製容器部と結晶成長容器部とに区切られた二重構造の例である。 同図において、図 8と同一箇所には、同一の符号を付している。同図に示すように、 この装置は、圧力容器 53、圧力調整器 24、流量調整器 22およびガス供給装置 21 を主要構成要素とする。前記圧力容器 53には、原料調製容器兼結晶成長容器 15 が収納可能であり、前記容器 15の側面および底面には、加熱用ヒータ 30が配置さ れている。前記圧力容器 53には、流量調整器 22および圧力調整器 24がパイプを介 してそれぞれ接続され、前記流量調整器 22には、ガス供給装置 21がパイプを介して 接続されている。  In the present embodiment, still another example of the configuration of the manufacturing apparatus of the present invention will be described with reference to FIG. This example is a container in which a raw material preparation container and a crystal growth container are integrated, and has a double structure in which one container is divided into a raw material preparation container portion and a crystal growth container portion. In the figure, the same parts as those in FIG. 8 are denoted by the same reference numerals. As shown in the figure, this device has a pressure vessel 53, a pressure regulator 24, a flow regulator 22 and a gas supply device 21 as main components. The pressure vessel 53 can house a raw material preparation vessel and a crystal growth vessel 15, and a heater 30 is arranged on the side and bottom of the vessel 15. A flow regulator 22 and a pressure regulator 24 are connected to the pressure vessel 53 via pipes, respectively, and a gas supply device 21 is connected to the flow regulator 22 via pipes.
[0059] 原料調製容器兼結晶成長容器 15の構成の一例を、図 15に示す。同図に示すよう に、原料調製容器兼結晶成長容器 15は、蓋 44によりその上部が閉塞可能である。 前記原料調製容器兼結晶成長容器 15内部は、仕切り板 43によって、結晶成長容器 部 46と原料調製容器部 47とに区切られた二重構造であり、結晶成長容器部 46には 、シード結晶 45が配置可能である。仕切り板 43の下部 (原料調製容器兼結晶成長 容器 15の底面付近)には、原料調製容器部 47内の融液が、結晶成長容器部 46に 移送可能なように孔 42が形成されている。原料調製容器部 47には、その下部(原料 調製容器兼結晶成長容器 15の底面付近)にその先端が位置するように、ガス導入 管 23が配置されている。また、前記蓋 44には、原料調製容器部 47および結晶成長 容器部 46にそれぞれ対応するように孔 48および 49が形成されており、この孔 48か ら、原料調製容器兼結晶成長容器 15内の窒素含有ガス等が排出可能である。前記 結晶成長容器部 46の蓋 44に形成された孔 49は、圧力容器 53の気圧と、結晶成長 容器部 46の圧力とを均一にするためのものである。 FIG. 15 shows an example of the configuration of the raw material preparation container and the crystal growth container 15. As shown in the figure, the upper part of the raw material preparation container / crystal growth container 15 can be closed by a lid 44. The inside of the raw material preparation container and crystal growth container 15 is separated by a partition plate 43 into a crystal growth container. It has a double structure divided into a part 46 and a raw material preparation container part 47, and a seed crystal 45 can be arranged in the crystal growth container part 46. Holes 42 are formed in the lower part of the partition plate 43 (near the bottom surface of the raw material preparation container and the crystal growth container 15) so that the melt in the raw material preparation container portion 47 can be transferred to the crystal growth container portion 46. . The gas introduction pipe 23 is disposed in the raw material preparation container part 47 so that the tip thereof is located at a lower portion (near the bottom surface of the raw material preparation container / crystal growth container 15). In addition, holes 48 and 49 are formed in the lid 44 so as to correspond to the raw material preparation container part 47 and the crystal growth container part 46, respectively. Nitrogen-containing gas and the like can be discharged. The hole 49 formed in the lid 44 of the crystal growth vessel section 46 is for making the pressure of the pressure vessel 53 and the pressure of the crystal growth vessel section 46 uniform.
図 14および図 15に示す装置を用いた、 III族元素窒化物結晶の製造について、以 下に説明する。予め、原料調製容器兼結晶成長容器 15内に、アルカリ金属およびァ ルカリ土類金属の少なくとも一方と、 III族元素とを配置する。加熱用ヒータ 30および 圧力調整器 24を用いて、原料調製容器兼結晶成長容器 15を加圧加熱し、アルカリ 金属およびアルカリ土類金属の少なくとも一方と III族元素とを含む融液を調製する。 この際、原料調製容器部 47の温度が、結晶成長容器部 46の温度よりも、例えば、数 °C〜数十。 C高い状態となるように設定する。次に、ガス導入管 23を通じて窒素含有 ガスをパブリングすることにより、原料調製容器部 47内の融液中で、前記融液に窒素 を溶解させて原料液を調製する。原料調製容器部 47内の融液の窒素濃度の上昇お よびパブリング等により、原料調製容器部 47内の窒素を含む融液 (原料液) 、孔 4 2を通じて、結晶成長容器部 46に拡散する。この例においては、この孔 42が、前記 原料移送手段となる。結晶成長容器部 46の温度は、前述の通り、原料調製容器部 4 7の温度よりも低いため、前記窒素を含む融液は過飽和状態となり、シード結晶 45表 面で結晶成長が開始する。このように、原料調製容器部 47と結晶成長容器部 46とを 1つの容器とすることにより、装置をコンパクトにすることができ、かつ、融液の移送が 、極めて容易になる。また、結晶成長容器部 46の下側から、高濃度の窒素を含む融 液 (原料液)を移送することにより、融液と仕切り板 43との界面、融液の液面等におけ る窒素濃度を低くすることができ、その結果、不均一核の発生を、より一層低減できる 。なお、本実施形態ではシード結晶 45を立てた状態で配置したが、これに限定され るものではなぐシード結晶 45を横にした状態で結晶成長容器部 46の底面に配置し もよレ、し、シード結晶 45を斜めに配置してもよレ、。 The production of a group III element nitride crystal using the apparatus shown in FIGS. 14 and 15 will be described below. In advance, at least one of an alkali metal and an alkaline earth metal and a Group III element are arranged in a raw material preparation container and a crystal growth container 15. The raw material preparation container and the crystal growth container 15 are heated under pressure using the heater 30 and the pressure regulator 24 to prepare a melt containing at least one of an alkali metal and an alkaline earth metal and a Group III element. At this time, the temperature of the raw material preparation container part 47 is, for example, several degrees C to several tens of degrees higher than the temperature of the crystal growth container part 46. C Set to be high. Next, by bubbling a nitrogen-containing gas through the gas introduction pipe 23, nitrogen is dissolved in the melt in the melt in the raw material preparation container unit 47 to prepare a raw material liquid. The nitrogen-containing melt (raw material liquid) in the raw material preparation container part 47 diffuses into the crystal growth container part 46 through the holes 42 due to an increase in the nitrogen concentration of the melt in the raw material preparation container part 47 and publishing. . In this example, the holes 42 serve as the raw material transfer means. As described above, since the temperature of the crystal growth container 46 is lower than the temperature of the raw material preparation container 47, the melt containing nitrogen becomes supersaturated, and crystal growth starts on the surface of the seed crystal 45. As described above, by using the raw material preparation container part 47 and the crystal growth container part 46 as one container, the apparatus can be made compact and the transfer of the melt becomes extremely easy. Further, by transferring a melt (raw material solution) containing high-concentration nitrogen from the lower side of the crystal growth vessel section 46, nitrogen at the interface between the melt and the partition plate 43, the liquid level of the melt, and the like can be obtained. The concentration can be reduced, and as a result, the generation of heterogeneous nuclei can be further reduced. . In the present embodiment, the seed crystal 45 is arranged in an upright state. However, the present invention is not limited to this. The seed crystal 45 may be arranged on the bottom surface of the crystal growth vessel 46 with the seed crystal 45 laid down. The seed crystal 45 may be arranged diagonally.
[0061] 以下に、本発明の III族元素窒化物半導体素子について、実施例を用いて説明す る。 Hereinafter, the group III element nitride semiconductor device of the present invention will be described with reference to examples.
実施例 1  Example 1
[0062] 本発明の方法で作製した結晶を基板として用い、半導体レーザを作製した。半導 体レーザ 90の構造を図 16に示す。  A semiconductor laser was manufactured using the crystal manufactured by the method of the present invention as a substrate. FIG. 16 shows the structure of the semiconductor laser 90.
[0063] まず、前記実施形態 1と同様にして作製した GaN結晶を基板 91として用レ、、その基 板 91上に、キャリア濃度が 5 X 1018cm— 3以下(例えば 0. 7 X 1018cm— 3)になるようにド 一パントとして Siを添加した n形 GaN層 92を形成した。 GaN系の結晶(Gaと Nとを含 む結晶)では、ドーパントとして Siを添加した場合、 Gaの空孔が増加する傾向がある 。この Gaの空孔は容易に拡散するため、この上にデバイスを作製すると寿命などの 点で悪影響を与える。したがって、キャリア濃度が 5 X 1018cm— 3以下になるようにドー パントの量を制御し、信頼性の高レ、デバイスを作製した。 First, a GaN crystal produced in the same manner as in the first embodiment is used as a substrate 91, and a carrier concentration of 5 × 10 18 cm− 3 or less (for example, 0.7 × 10 An n-type GaN layer 92 to which Si was added as a dopant was formed to a thickness of 18 cm- 3 ). In GaN-based crystals (crystals containing Ga and N), when Si is added as a dopant, Ga vacancies tend to increase. Since the Ga vacancies are easily diffused, fabrication of a device on the Ga vacancies adversely affects the life and the like. Therefore, the amount of dopant was controlled so that the carrier concentration was 5 × 10 18 cm− 3 or less, and a highly reliable device was fabricated.
[0064] 次に、 n形 GaN層 92上に、 n形 Al Ga N力 なるクラッド層 93と n形 GaN力 な る光ガイド層 94とを形成した。ついで、 Ga In Nからなる井戸層(厚さ約 3nm)と Ga Next, on the n-type GaN layer 92, a cladding layer 93 having an n-type AlGaN force and a light guide layer 94 having an n-type GaN force were formed. Next, a well layer (about 3 nm thick) consisting of Ga In N and Ga
Nからなるバリア層(厚さ 6nm)とによって構成された多重量子井戸(MQW)を活性 層 95として形成した。そして、 p形 GaNからなる光ガイド層 96と p形 Al Ga Nから なるクラッド層 97と、 p形 GaNからなるコンタクト層 98とを形成した。これらの層は公知 の方法(例えば、 MOCVD法)で形成できた。半導体レーザ 90はダブルへテロ接合 型の半導体レーザであり、 MQW活性層におけるインジウムを含む井戸層のエネル ギーギャップが、アルミニウムを含む n形および p形クラッド層のエネルギーギャップよ りも小さい。一方、光の屈折率は、活性層 95の井戸層が最も大きぐ以下、光ガイド 層、クラッド層の順に小さかった。 A multiple quantum well (MQW) constituted by an N barrier layer (thickness: 6 nm) was formed as the active layer 95. Then, an optical guide layer 96 made of p-type GaN, a cladding layer 97 made of p-type AlGaN, and a contact layer 98 made of p-type GaN were formed. These layers can be formed by a known method (for example, MOCVD method). The semiconductor laser 90 is a double heterojunction semiconductor laser. The energy gap of the well layer containing indium in the MQW active layer is smaller than the energy gap of the n-type and p-type cladding layers containing aluminum. On the other hand, the refractive index of the light was smaller than the largest in the well layer of the active layer 95, and was smaller in the order of the light guide layer and the cladding layer.
[0065] コンタクト層 98の上部には、幅が 2 μ m程度の電流注入領域を構成する絶縁膜 99 が形成した。 p形のクラッド層 97の上部および p形のコンタクト層 98には、電流狭窄部 となるリッジ部を形成した。 p形のコンタクト層 98の上側には、コンタクト層 98とォーミツ ク接触する P側電極 100を形成した。 n形 GaN基板 91には、 n形 GaN基板 91とォー ミック接触する n側電極 101を形成した。 An insulating film 99 forming a current injection region having a width of about 2 μm was formed on the contact layer 98. A ridge portion serving as a current confinement portion was formed on the p-type cladding layer 97 and the p-type contact layer 98. Above the p-type contact layer 98, the contact layer 98 A P-side electrode 100 was formed to make contact. On the n-type GaN substrate 91, an n-side electrode 101 was formed which was in ohmic contact with the n-type GaN substrate 91.
[0066] 前記方法で製造した半導体レーザのデバイス評価を行った。その結果、得られた 半導体レーザに対して、 p側電極と n形電極との間に順方向の所定の電圧を印加す ると、 MQW活性層に p側電極から正孔、 n側電極から電子が注入され、 MQW活性 層におレ、て再結合し光学利得を生じて、発振波長 404nmでレーザ発振を起こした。 本発明の製造法により得られる GaN結晶は、欠陥密度が小さいので信頼性が高ぐ 強レ、光出力でも素子劣化のなレ、発光素子が実現できる。  The device evaluation of the semiconductor laser manufactured by the above method was performed. As a result, when a predetermined forward voltage is applied between the p-side electrode and the n-type electrode to the obtained semiconductor laser, the MQW active layer has holes from the p-side electrode and holes from the n-side electrode. The electrons were injected and recombined in the MQW active layer to produce an optical gain, which caused laser oscillation at an oscillation wavelength of 404 nm. The GaN crystal obtained by the manufacturing method of the present invention has a low defect density and thus has high reliability.
[0067] なお、本実施例では、 GaN単結晶基板を用いて半導体装置を作成したが、基板上 に作製する光デバイスの使用波長に対して吸収の少ない基板を供給することが望ま しい。そのため、紫外線領域の半導体レーザや発光ダイオード用基板としては、 A1が 多く含まれ短波長域の光吸収が少ない Al Ga Ν (0≤χ≤1 )単結晶を形成すること  In this example, a semiconductor device was manufactured using a GaN single-crystal substrate. However, it is desirable to supply a substrate that absorbs less with respect to the operating wavelength of an optical device manufactured on the substrate. Therefore, as a substrate for semiconductor lasers and light emitting diodes in the ultraviolet region, it is necessary to form Al Ga Ν (0≤χ≤1) single crystals that contain a large amount of A1 and have low light absorption in the short wavelength region.
1  1
が好ましい。本発明では、 Gaの一部を他の III族元素に置き換えることによって、この ような III族元素窒化物結晶を形成することも可能である。  Is preferred. In the present invention, such a group III element nitride crystal can be formed by replacing a part of Ga with another group III element.
産業上の利用可能性  Industrial applicability
[0068] 以上説明したように、本発明によれば、結晶成長時間を短縮でき、高品質で低コス トな基板を提供できる。また、本発明の製造方法および製造装置により得られる GaN 単結晶基板は、気相成長 (例えば、 HVPE)等で作製した基板と比較して転位密度 が小さぐ半導体レーザの高出力化や長寿命化に極めて有利となる。 As described above, according to the present invention, a crystal growth time can be reduced, and a high-quality and low-cost substrate can be provided. In addition, the GaN single-crystal substrate obtained by the manufacturing method and the manufacturing apparatus of the present invention has a lower dislocation density than a substrate manufactured by vapor phase growth (for example, HVPE) or the like. This is extremely advantageous for the production.

Claims

請求の範囲 The scope of the claims
[1] アルカリ金属およびアルカリ土類金属の少なくとも一方と m族元素と窒素とを含む原 料液中において、窒素含有ガス雰囲気下、加圧加熱して前記原料液中の窒素と m 族元素とを反応させ結晶を成長させる結晶成長工程を有する III族元素窒化物結晶 の製造方法であって、前記結晶成長工程に先立ち、さらに、原料調製工程を有し、 前記原料調製工程が、窒素含有ガス雰囲気下、雰囲気温度および雰囲気圧力の少 なくとも一方を前記結晶成長工程の条件よりも高く設定して、アルカリ金属およびァ ルカリ土類金属の少なくとも一方と m族元素とを含む融液中に窒素を溶解させて前 記原料液を調製する工程である製造方法。  [1] In a raw material liquid containing at least one of an alkali metal and an alkaline earth metal, a m-group element, and nitrogen, nitrogen and a m-group element in the raw material liquid are heated under pressure under a nitrogen-containing gas atmosphere. A method for producing a group III element nitride crystal having a crystal growth step of reacting and growing a crystal, comprising a raw material preparation step prior to the crystal growth step, wherein the raw material preparation step includes a nitrogen-containing gas. Under an atmosphere, at least one of the atmosphere temperature and the atmosphere pressure is set higher than the condition of the crystal growth step, and nitrogen is contained in the melt containing at least one of the alkali metal and the alkaline earth metal and the m group element. Is a process for preparing the raw material liquid by dissolving
[2] 前記原料調製工程から前記結晶成長工程に切り替えた後、前記結晶成長工程の 雰囲気温度を徐々に降下させることにより所定の結晶成長の温度に設定する請求項 1記載の製造方法。  2. The production method according to claim 1, wherein, after switching from the raw material preparation step to the crystal growth step, a predetermined crystal growth temperature is set by gradually lowering an ambient temperature in the crystal growth step.
[3] 前記雰囲気温度の降下速度を、 0. 05°C/時間〜 30°C/時間の範囲に設定する請 求項 2記載の製造方法。  [3] The method according to claim 2, wherein the rate of decrease in the ambient temperature is set in a range of 0.05 ° C / hour to 30 ° C / hour.
[4] 前記原料調製工程から前記結晶成長工程に切り替えた後、前記結晶成長工程の 雰囲気圧力を徐々に上昇させることにより所定の結晶成長の圧力に設定する請求項[4] After switching from the raw material preparation step to the crystal growth step, a predetermined crystal growth pressure is set by gradually increasing an atmospheric pressure in the crystal growth step.
1記載の製造方法。 The production method according to 1.
[5] 前記雰囲気圧力の上昇速度を、 0. Olatm/時間〜 0. 3atm/時間(0. 01 X 1. 01 [5] The rise rate of the atmospheric pressure is set to a value within a range from 0.3 Olatm / hour to 0.3 atm / hour (0.01 X 1.01
3 X 105Pa/時間〜 0. 3 X 1. 013 X 105Pa/時間)の範囲に設定する請求項 4記載の 製造方法。 5. The production method according to claim 4, wherein the temperature is set in a range of 3 X 10 5 Pa / hour to 0.3 X 1.013 X 10 5 Pa / hour).
[6] 前記原料調製工程において、その雰囲気温度を 800°C〜1100°Cの範囲に設定し 、その雰囲気圧力を 2atm〜100atm (2 X l . 013 X 105Pa〜: 100 X 1. 013 X 105P a)の範囲に設定し、前記結晶成長工程において、その雰囲気温度を 600°C〜1000 °Cの範囲に設定し、その雰囲気圧力を 2atm〜: 100atm (2 X l . 013 X 105Pa〜: 10 O X 1. 013 X 105Pa)に設定する請求項 1記載の製造方法。 [6] In the raw material preparation step, it sets its ambient temperature in the range of 800 ° C~1100 ° C, the atmospheric pressure 2atm~100atm (2 X l 013 X 10 5 Pa~:. 100 X 1. 013 set in the range of X 10 5 P a), in the crystal growth process, to set the ambient temperature in the range of 600 ° C~1000 ° C, 2atm~ the ambient pressure:. 100atm (2 X l 013 X 10 5 Pa~: 10 OX 1. the process according to claim 1, wherein the set X 10 5 Pa) 013.
[7] 前記原料調製工程において、前記原料液を、前記 III族元素窒化物結晶の未飽和 状態にしておく請求項 1記載の製造方法。  7. The production method according to claim 1, wherein, in the raw material preparation step, the raw material liquid is in an unsaturated state of the group III element nitride crystal.
[8] 前記原料調製工程の前記融液の液面において、前記窒素含有ガスをフローさせる 請求項 1記載の製造方法。 [8] The nitrogen-containing gas is caused to flow on the liquid surface of the melt in the raw material preparation step. The production method according to claim 1.
[9] 前記原料調製工程において、前記融液中で前記窒素含有ガスをパブリングさせる 請求項 1記載の製造方法。 9. The production method according to claim 1, wherein in the raw material preparation step, the nitrogen-containing gas is bubbled in the melt.
[10] 前記原料調製工程において、前記融液中でマイクロバブルの前記窒素含有ガスを パブリングさせる請求項 1記載の製造方法。 10. The production method according to claim 1, wherein in the raw material preparation step, the nitrogen-containing gas in microbubbles is bubbled in the melt.
[11] 前記原料調製工程において、前記融液に超音波を印加する請求項 9記載の製造 方法。 11. The method according to claim 9, wherein in the raw material preparation step, ultrasonic waves are applied to the melt.
[12] 結晶成長工程の実施前に加え、結晶成長工程の実施中および実施後の少なくとも 一方において、前記原料調製工程を実施する請求項 1記載の製造方法。  12. The production method according to claim 1, wherein the raw material preparation step is performed before or during the crystal growth step and / or during or after the crystal growth step.
[13] 前記結晶成長工程では、結晶成長容器内で結晶成長を行い、前記原料調製工程 では、原料調製容器内で、前記アルカリ金属およびアルカリ土類金属の少なくとも一 方と III族元素とを含む融液への窒素の溶解を行って原料液を調製し、前記原料調製 容器から前記結晶成長容器に前記原料液を移送し、ここで結晶成長させる請求項 1 記載の製造方法。  [13] In the crystal growth step, crystal growth is performed in a crystal growth vessel, and in the raw material preparation step, at least one of the alkali metal and the alkaline earth metal and a group III element are contained in the raw material preparation vessel. The production method according to claim 1, wherein a raw material liquid is prepared by dissolving nitrogen in the melt, and the raw material liquid is transferred from the raw material preparation container to the crystal growth container, where the crystal is grown.
[14] 前記原料調製容器と前記結晶成長容器とが一体化している請求項 13記載の製造 方法。  14. The method according to claim 13, wherein the raw material preparation container and the crystal growth container are integrated.
[15] 前記 III族元素が、 Al、 Gaおよび Inからなる群から選択される少なくとも一つである 請求項 1記載の製造方法。  15. The production method according to claim 1, wherein the group III element is at least one selected from the group consisting of Al, Ga, and In.
[16] 前記 III族元素が、 Gaであり、前記 III族元素窒化物結晶が、 GaN結晶である請求項 [16] The group III element is Ga, and the group III element nitride crystal is a GaN crystal.
1記載の製造方法。  The production method according to 1.
[17] ΙΠ族元素窒化物結晶の製造装置であって、加熱手段、加圧手段、窒素含有ガス供 給手段、結晶成長容器、原料調製容器および原料移送手段を有し、前記結晶成長 容器および前記原料調製容器は、前記原料移送手段を介して連結され、前記結晶 成長容器および前記原料調製容器には、それぞれ、前記加熱手段、前記加圧手段 および前記窒素含有ガス供給手段が配置されており、前記原料調製容器内を、前記 加熱手段、前記加圧手段および前記窒素含有ガス供給手段により、窒素含有ガス 雰囲気下、加圧加熱し、前記原料調製容器内において、 ΠΙ族元素とアルカリ金属お よびアルカリ土類金属の少なくとも一方とを含む融液を調製し、前記融液中への窒素 の溶解を行って原料液を調製し、この原料液を、前記原料移送手段により、前記原 料調製容器から前記結晶成長容器に移送し、前記結晶成長容器内を、前記加熱手 段、前記加圧手段および前記窒素含有ガス供給手段により、窒素含有ガス雰囲気 下、加圧加熱し、前記原料液中の窒素と ΠΙ族元素とを反応させ、 III族元素窒化物結 晶を成長させて製造し、前記原料調製容器内の雰囲気温度および雰囲気圧力の少 なくとも一方が、前記結晶成長容器よりも高く設定される製造装置。 [17] An apparatus for producing a Group IV element nitride crystal, comprising a heating means, a pressurizing means, a nitrogen-containing gas supply means, a crystal growth vessel, a raw material preparation vessel and a raw material transfer means, The raw material preparation container is connected via the raw material transfer means, and the crystal growth container and the raw material preparation container are respectively provided with the heating means, the pressurizing means, and the nitrogen-containing gas supply means. Then, the inside of the raw material preparation container is heated under pressure in a nitrogen-containing gas atmosphere by the heating means, the pressurizing means, and the nitrogen-containing gas supply means. And a melt containing at least one of an alkaline earth metal and nitrogen in the melt. The raw material liquid is prepared by dissolving the raw material. The raw material liquid is transferred from the raw material preparation container to the crystal growth container by the raw material transfer means, and the inside of the crystal growth container is heated by the heating means and the heating unit. Pressure means and the nitrogen-containing gas supply means, pressurizing and heating under a nitrogen-containing gas atmosphere to cause the nitrogen in the raw material liquid to react with the group III element, thereby growing a group III element nitride crystal. A production apparatus in which at least one of the ambient temperature and the atmospheric pressure in the raw material preparation container is set higher than the crystal growth container.
[18] さらに、第 1の圧力容器と、第 2の圧力容器とを有し、前記第 1の圧力容器内には前 記結晶成長容器が配置され、前記第 2の圧力容器内には前記原料調製容器が配置 されている請求項 17記載の製造装置。  [18] The apparatus further includes a first pressure vessel and a second pressure vessel, wherein the crystal growth vessel is disposed in the first pressure vessel, and the crystal growth vessel is disposed in the second pressure vessel. 18. The production apparatus according to claim 17, wherein a raw material preparation container is arranged.
[19] さらに、温度調整手段および圧力調整手段の少なくとも一方を有する請求項 17記 載の製造装置。  [19] The manufacturing apparatus according to claim 17, further comprising at least one of a temperature adjusting unit and a pressure adjusting unit.
[20] さらに、ガスフロー手段を有し、これにより、前記原料調製容器の融液液面におい て、前記窒素含有ガスをフローさせることが可能である請求項 17記載の製造装置。  [20] The production apparatus according to claim 17, further comprising gas flow means, whereby the nitrogen-containing gas can be caused to flow on the melt surface of the raw material preparation container.
[21] 前記原料調製容器を複数有し、これにより、前記原料調製容器の融液と前記窒素 含有ガスとが接触する面積を大きくする請求項 17記載の製造装置。 [21] The production apparatus according to claim 17, comprising a plurality of the raw material preparation containers, thereby increasing an area of contact between the melt of the raw material preparation container and the nitrogen-containing gas.
[22] さらに、ガスパブリング手段を有し、これにより、前記原料調製容器の融液中におい て、前記窒素含有ガスをパブリングさせることが可能である請求項 17記載の製造装 置。 22. The production apparatus according to claim 17, further comprising gas publishing means, whereby the nitrogen-containing gas can be published in the melt of the raw material preparation container.
[23] 前記ガスパブリング手段により、前記原料調製容器の融液中において、マイクロバ ブルの窒素含有ガスをパブリングさせることが可能である請求項 22記載の製造装置  23. The production apparatus according to claim 22, wherein the gas publishing unit can publish a microbubble nitrogen-containing gas in the melt of the raw material preparation container.
[24] さらに、超音波発生手段を有し、前記超音波発生手段が前記原料調製容器に配 置されてレ、る請求項 22記載の製造装置。 24. The production apparatus according to claim 22, further comprising an ultrasonic generator, wherein the ultrasonic generator is disposed in the raw material preparation container.
[25] さらに、撹拌手段を有し、これにより、前記原料調製容器の融液中において、融液 を撹拌可能である請求項 17記載の製造装置。 25. The production apparatus according to claim 17, further comprising a stirring means, whereby the melt can be stirred in the melt in the raw material preparation container.
[26] 前記原料調製容器および前記結晶成長容器として、前記原料調製容器と前記結 晶成長容器とが一体化した原料調製容器兼結晶成長容器を有し、前記原料調製容 器兼結晶成長容器は、原料調製容器部と結晶成長容器部とに区切られ、前記原料 移送手段として、原料調製容器部と結晶成長容器部との間に貫通孔が形成され、前 記貫通孔により原料が移送される請求項 17記載の製造装置。 [26] The raw material preparation container and the crystal growth container include a raw material preparation container and a crystal growth container in which the raw material preparation container and the crystal growth container are integrated. Divided into a raw material preparation container part and a crystal growth container part, 18. The production apparatus according to claim 17, wherein a through hole is formed between the raw material preparation container portion and the crystal growth container portion as the transfer means, and the raw material is transferred by the through hole.
[27] 請求項 1記載の製造方法により得られた結晶を含む III族元素窒化物半導体素子。 [27] A group III element nitride semiconductor device including a crystal obtained by the production method according to claim 1.
[28] 発光デバイスである請求項 27記載の III族元素窒化物半導体素子。 [28] The group III element nitride semiconductor device according to claim 27, which is a light emitting device.
PCT/JP2005/006365 2004-03-31 2005-03-31 Method for producing iii group element nitride crystal, production apparatus for use therein, and semiconductor element produced thereby WO2005095681A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006519467A JP4819677B2 (en) 2004-03-31 2005-03-31 Group III element nitride crystal manufacturing method, manufacturing apparatus used therefor, and semiconductor device obtained thereby
EP05727620A EP1736573A4 (en) 2004-03-31 2005-03-31 Method for producing iii group element nitride crystal, production apparatus for use therein, and semiconductor element produced thereby
US10/599,501 US7794539B2 (en) 2004-03-31 2005-03-31 Method for producing III group element nitride crystal, production apparatus for use therein, and semiconductor element produced thereby

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004106676 2004-03-31
JP2004-106676 2004-03-31

Publications (1)

Publication Number Publication Date
WO2005095681A1 true WO2005095681A1 (en) 2005-10-13

Family

ID=35063809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/006365 WO2005095681A1 (en) 2004-03-31 2005-03-31 Method for producing iii group element nitride crystal, production apparatus for use therein, and semiconductor element produced thereby

Country Status (5)

Country Link
US (1) US7794539B2 (en)
EP (1) EP1736573A4 (en)
JP (1) JP4819677B2 (en)
CN (1) CN100494520C (en)
WO (1) WO2005095681A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007117032A1 (en) * 2006-04-07 2007-10-18 Toyoda Gosei Co., Ltd. Method and apparatus for producing group iii nitride based compound semiconductor
WO2008117571A1 (en) * 2007-03-26 2008-10-02 Ngk Insulators, Ltd. Process for producing nitride single crystal
JP2009091226A (en) * 2007-10-12 2009-04-30 Ngk Insulators Ltd Manufacturing method of nitride single crystal
JP2009091225A (en) * 2007-10-12 2009-04-30 Ngk Insulators Ltd Method for manufacturing nitride single crystal
JP2009263169A (en) * 2008-04-25 2009-11-12 Panasonic Corp Manufacturing device of group iii nitride crystal and manufacturing method using the same
JP2011190126A (en) * 2010-03-12 2011-09-29 Ngk Insulators Ltd Method and apparatus for producing nitride crystal
CN101558187B (en) * 2006-12-15 2012-10-17 丰田合成株式会社 Method for producing group iii nitride-based compound semiconductor crystal
WO2017014314A1 (en) * 2015-07-23 2017-01-26 昭栄化学工業株式会社 Nanocrystal production method and nanocrystal production device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4819677B2 (en) * 2004-03-31 2011-11-24 パナソニック株式会社 Group III element nitride crystal manufacturing method, manufacturing apparatus used therefor, and semiconductor device obtained thereby
JP5015417B2 (en) * 2004-06-09 2012-08-29 住友電気工業株式会社 GaN crystal manufacturing method
EP1775356A3 (en) * 2005-10-14 2009-12-16 Ricoh Company, Ltd. Crystal growth apparatus and manufacturing method of group III nitride crystal
JP5446622B2 (en) * 2009-06-29 2014-03-19 住友電気工業株式会社 Group III nitride crystal and method for producing the same
JP2012012259A (en) * 2010-07-01 2012-01-19 Ricoh Co Ltd Nitride crystal and method for producing the same
US20130183225A1 (en) * 2012-01-18 2013-07-18 The Regents Of The University Of California Crystal growth using non-thermal atmospheric pressure plasmas
CN102660282A (en) * 2012-03-23 2012-09-12 中国科学院苏州纳米技术与纳米仿生研究所 Preparation method and apparatus for rare earth element dopped gallium nitride powder material
CN103603049B (en) * 2013-12-06 2016-04-20 北京大学东莞光电研究院 A kind of multiple-piece nitride single crystal Material growth device and method
CN104131351B (en) * 2014-07-29 2017-12-15 北京大学东莞光电研究院 A kind of industrialized unit and method for preparing nitride single crystal material
CN104894644B (en) * 2015-06-29 2017-04-26 北京大学东莞光电研究院 Nitride crystal growing device and method
CN114934311A (en) * 2022-05-09 2022-08-23 华厦半导体(深圳)有限公司 Gallium nitride liquid phase growth device of ultrasonic wave stirring

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH107496A (en) * 1996-06-25 1998-01-13 Hitachi Cable Ltd Production of nitride crystal and production unit therefor
JPH11292679A (en) * 1998-04-03 1999-10-26 Hitachi Cable Ltd Crystal growth
JP2001102316A (en) * 1999-09-29 2001-04-13 Ricoh Co Ltd Method and device for crystal growth and iii group nitride crystal and semiconductor device
JP2002241112A (en) * 2000-12-11 2002-08-28 Nichia Chem Ind Ltd Method for manufacturing group xiii nitride crystal

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5954874A (en) 1996-10-17 1999-09-21 Hunter; Charles Eric Growth of bulk single crystals of aluminum nitride from a melt
US6270569B1 (en) * 1997-06-11 2001-08-07 Hitachi Cable Ltd. Method of fabricating nitride crystal, mixture, liquid phase growth method, nitride crystal, nitride crystal powders, and vapor phase growth method
US6592663B1 (en) 1999-06-09 2003-07-15 Ricoh Company Ltd. Production of a GaN bulk crystal substrate and a semiconductor device formed on a GaN bulk crystal substrate
JP4094780B2 (en) * 1999-08-24 2008-06-04 株式会社リコー Crystal growth method, crystal growth apparatus, group III nitride crystal production method, and crystal production apparatus
JP2000233997A (en) 2000-01-24 2000-08-29 Natl Inst For Res In Inorg Mater Device for producing single crystal by pulling-up method
US6780239B2 (en) * 2000-10-19 2004-08-24 Ricoh Company, Ltd. Crystal growth method, crystal growth apparatus, group-III nitride crystal and group-III nitride semiconductor device
JP2002293696A (en) 2001-03-29 2002-10-09 Japan Science & Technology Corp METHOD OF MANUFACTURING CaN SINGLE CRYSTAL
US7001457B2 (en) * 2001-05-01 2006-02-21 Ricoh Company, Ltd. Crystal growth method, crystal growth apparatus, group-III nitride crystal and group-III nitride semiconductor device
PL219109B1 (en) 2001-06-06 2015-03-31 Ammono Spółka Z Ograniczoną Odpowiedzialnością Process and apparatus for obtaining bulk monocrystalline gallium-containing nitride
PL207400B1 (en) * 2001-06-06 2010-12-31 Ammono Społka Z Ograniczoną Odpowiedzialnością Method of and apparatus for obtaining voluminous, gallium containing, monocrystalline nitride
JP4094878B2 (en) 2002-04-04 2008-06-04 株式会社リコー Group III nitride crystal production method and group III nitride crystal production apparatus
US7364619B2 (en) * 2002-06-26 2008-04-29 Ammono. Sp. Zo.O. Process for obtaining of bulk monocrystalline gallium-containing nitride
EP1590509B1 (en) * 2002-12-11 2014-02-12 Ammono S.A. Process for obtaining bulk monocrystalline gallium-containing nitride
US7221037B2 (en) * 2003-01-20 2007-05-22 Matsushita Electric Industrial Co., Ltd. Method of manufacturing group III nitride substrate and semiconductor device
US7255742B2 (en) * 2003-07-02 2007-08-14 Matsushita Electric Industrial Co., Ltd. Method of manufacturing Group III nitride crystals, method of manufacturing semiconductor substrate, Group III nitride crystals, semiconductor substrate, and electronic device
JP4819677B2 (en) * 2004-03-31 2011-11-24 パナソニック株式会社 Group III element nitride crystal manufacturing method, manufacturing apparatus used therefor, and semiconductor device obtained thereby
JP5024898B2 (en) * 2006-02-13 2012-09-12 日本碍子株式会社 Method for recovering sodium metal from flux

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH107496A (en) * 1996-06-25 1998-01-13 Hitachi Cable Ltd Production of nitride crystal and production unit therefor
JPH11292679A (en) * 1998-04-03 1999-10-26 Hitachi Cable Ltd Crystal growth
JP2001102316A (en) * 1999-09-29 2001-04-13 Ricoh Co Ltd Method and device for crystal growth and iii group nitride crystal and semiconductor device
JP2002241112A (en) * 2000-12-11 2002-08-28 Nichia Chem Ind Ltd Method for manufacturing group xiii nitride crystal

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ONDA M. ET AL: "Influence of pressure control on the growth of bulk GaN single crystal using a Na flux.", JOURNAL OF CRYSTAL GROWTH., vol. 237-239, 2002, pages 2112 - 2115, XP004356319 *
See also references of EP1736573A4 *
SONG Y. ET AL: "Bulk GaN single crystals: growth conditions by flux method.", JOURNAL OF CRYSTAL GROWTH., vol. 247, 2003, pages 275 - 278, XP004398155 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007277058A (en) * 2006-04-07 2007-10-25 Toyoda Gosei Co Ltd Method and apparatus for manufacturing group iii nitride compound semiconductor
WO2007117032A1 (en) * 2006-04-07 2007-10-18 Toyoda Gosei Co., Ltd. Method and apparatus for producing group iii nitride based compound semiconductor
US8123856B2 (en) 2006-04-07 2012-02-28 Toyoda Gosei Co., Ltd. Method and apparatus for producing group III nitride based compound semiconductor
CN101558187B (en) * 2006-12-15 2012-10-17 丰田合成株式会社 Method for producing group iii nitride-based compound semiconductor crystal
WO2008117571A1 (en) * 2007-03-26 2008-10-02 Ngk Insulators, Ltd. Process for producing nitride single crystal
JP2009091226A (en) * 2007-10-12 2009-04-30 Ngk Insulators Ltd Manufacturing method of nitride single crystal
JP2009091225A (en) * 2007-10-12 2009-04-30 Ngk Insulators Ltd Method for manufacturing nitride single crystal
JP2009263169A (en) * 2008-04-25 2009-11-12 Panasonic Corp Manufacturing device of group iii nitride crystal and manufacturing method using the same
JP2011190126A (en) * 2010-03-12 2011-09-29 Ngk Insulators Ltd Method and apparatus for producing nitride crystal
WO2017014314A1 (en) * 2015-07-23 2017-01-26 昭栄化学工業株式会社 Nanocrystal production method and nanocrystal production device
JPWO2017014314A1 (en) * 2015-07-23 2018-07-26 昭栄化学工業株式会社 Nanocrystal manufacturing method and nanocrystal manufacturing apparatus
US10640882B2 (en) 2015-07-23 2020-05-05 Shoei Chemical Inc. Method for producing nanocrystals and nanocrystal production device
US10745822B2 (en) 2015-07-23 2020-08-18 Shoei Chemical Inc. Method for producing metal oxide nanocrystals, method for producing multi-element oxide nanocrystals, and metal oxide nanocrystals

Also Published As

Publication number Publication date
EP1736573A4 (en) 2010-09-15
EP1736573A1 (en) 2006-12-27
JPWO2005095681A1 (en) 2008-02-21
JP4819677B2 (en) 2011-11-24
US20070272941A1 (en) 2007-11-29
CN100494520C (en) 2009-06-03
US7794539B2 (en) 2010-09-14
CN1938458A (en) 2007-03-28

Similar Documents

Publication Publication Date Title
JP4819677B2 (en) Group III element nitride crystal manufacturing method, manufacturing apparatus used therefor, and semiconductor device obtained thereby
JP4790607B2 (en) Group III element nitride crystal production apparatus and group III element nitride crystal production method
JP3929657B2 (en) Crystal growth method and group III nitride crystal production method
JP4801315B2 (en) Method for producing group III nitride crystal
US7435295B2 (en) Method for producing compound single crystal and production apparatus for use therein
EP2071062B1 (en) Process for producing group iii element nitride crystal
WO2004083498A1 (en) Method for producing group iii nitride single crystal and apparatus used therefor
JP4489446B2 (en) Method for producing gallium-containing nitride single crystal
JP4216612B2 (en) Method for producing group III nitride crystal
JP2003313098A (en) Method and apparatus for growing group iii nitride crystal
JP4055110B2 (en) Method for producing group III nitride crystal
JP4245822B2 (en) Method for producing group III nitride crystal
JP2010052967A (en) Method for production of group iii element nitride crystal, group iii element nitride crystal, substrate for fabricating semiconductor device, and semiconductor device
JP2005225681A (en) Production method of group iii nitride substrate, group iii nitride substrate produced thereby, and semiconductor device and production method thereof
JP2002068897A (en) Method and device for growing group iii nitride crystal, the group iii nitride crystal and semiconductor element
JP4414253B2 (en) Group III nitride crystal manufacturing method
JP4053336B2 (en) Group III nitride crystal production method and group III nitride crystal production apparatus
JP5000187B2 (en) Method for producing group III nitride crystal
JP4560287B2 (en) Group III nitride crystal manufacturing method
JP2004277224A (en) Method for growing group iii nitride
JP2011006309A (en) Method for manufacturing sapphire single crystal
JPWO2008029827A1 (en) Method for producing AlN crystal
JP4298153B2 (en) Method for producing group III nitride crystal
JP4956515B2 (en) Method for producing group III nitride crystal
JP2006182596A (en) Method for manufacturing nitride crystal of group iii element, nitride crystal of group iii element obtained by the method, and semiconductor device including the nitride crystal

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2006519467

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10599501

Country of ref document: US

Ref document number: 200580010595.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2005727620

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005727620

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10599501

Country of ref document: US