WO2008117571A1 - Process for producing nitride single crystal - Google Patents

Process for producing nitride single crystal Download PDF

Info

Publication number
WO2008117571A1
WO2008117571A1 PCT/JP2008/051894 JP2008051894W WO2008117571A1 WO 2008117571 A1 WO2008117571 A1 WO 2008117571A1 JP 2008051894 W JP2008051894 W JP 2008051894W WO 2008117571 A1 WO2008117571 A1 WO 2008117571A1
Authority
WO
WIPO (PCT)
Prior art keywords
growth
single crystal
temperature
pressure
nitrogen
Prior art date
Application number
PCT/JP2008/051894
Other languages
French (fr)
Japanese (ja)
Inventor
Yusuke Mori
Mikiya Ichimura
Katsuhiro Imai
Takayuki Hirao
Takatomo Sasaki
Fumio Kawamura
Original Assignee
Ngk Insulators, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ngk Insulators, Ltd. filed Critical Ngk Insulators, Ltd.
Priority to JP2009506234A priority Critical patent/JPWO2008117571A1/en
Publication of WO2008117571A1 publication Critical patent/WO2008117571A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/02Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B9/00Single-crystal growth from melt solutions using molten solvents
    • C30B9/04Single-crystal growth from melt solutions using molten solvents by cooling of the solution
    • C30B9/08Single-crystal growth from melt solutions using molten solvents by cooling of the solution using other solvents
    • C30B9/12Salt solvents, e.g. flux growth

Definitions

  • the present invention relates to a method for producing a nitride single crystal.
  • Gallium nitride III-V nitride is attracting attention as an excellent blue light emitting device, and has been put to practical use as a material for light emitting diodes and semiconductor laser diodes.
  • a method for growing a group III nitride single crystal using 7 Lux has been reported by each organization (Japanese Patent Laid-Open No. 2000-29, 6 9-6, Japanese Patent Laid-Open No. 2000-29) No. 24 00, WO 2 0 0 5—0 9 5 6 8 2 Al, WO 2 0 0 6—0 3 0 7 1 8).
  • the temperature and pressure are classified into four regions A to D according to the growth mode of the GaN single crystal, and a plurality of regions among the four regions are used to make III
  • a method for growing a group nitride crystal is claimed [claim 9]. By growing using a plurality of regions, it is possible to grow a crystal having a plurality of forms [0068].
  • the present inventor has kept the growth temperature and pressure in the region B in Japanese Patent Laid-Open No. 2 0 0 3-2 924 00, and Japanese Patent Laid-Open No. 2 0 3-2 9 2 4 0 0
  • the generation of miscellaneous crystals was suppressed, and it was confirmed that GaN crystals grew only on the seed crystals.
  • the start of GaN crystal growth was confirmed more than 50 hours after holding the temperature and pressure in region B, and no clear growth was confirmed only by holding for 24 hours.
  • the growth of GaN crystals that do not generate miscellaneous crystals requires a long period of time, so the productivity is low.
  • Japanese Patent Laid-Open No. 2 00 3-2 924 0 0 describes that crystal growth having a plurality of forms is possible by using a plurality of regions among the four regions A to D. However, there is no description of what form of crystal can be obtained by using multiple regions. Moreover, there is no description about the growth rate in addition to the crystal form.
  • An object of the present invention is to suppress the generation of miscellaneous crystals and improve the productivity per unit time of a nitride single crystal when growing a nitride single crystal on a seed crystal substrate.
  • the present invention is a method of immersing a seed crystal substrate in a melt containing a flux and a single crystal raw material in a growth vessel, and growing a nitride single crystal on the growth surface of the seed crystal substrate,
  • the present inventor has conceived of performing the main growth process after the initial process for dissolving nitrogen.
  • the melting is performed at a higher temperature, a higher pressure, or a higher temperature and pressure than in the main growing step, and the dissolution of nitrogen into the melt is advanced.
  • the growth of GaN crystals should not start when the nitrogen concentration is saturated (see Figure 5).
  • the growth of single crystals is carried out at a temperature and pressure at which no miscellaneous crystals are generated. As a result, the production of single crystals per unit time required for growth was significantly improved while suppressing the generation of miscellaneous crystals.
  • the horizontal axis of FIG. 1 is 100 K / T, and T is the absolute temperature of the melt (unit is K).
  • the vertical axis is P / MPa, and P is the pressure of nitrogen applied to the melt (unit: MPa).
  • Equation (3) corresponds to the condition of R ⁇ l.1, where R is (Nitrogen dissolution rate in the melt in the nitrogen dissolution process) / (Nitrogen in the melt in this growth step) Dissolution rate). Specifically, R is expressed by the following formula. Also, the nitrogen dissolution rate X increases as the pressure and temperature increase.
  • Nitrogen dissolution rate X increases at high temperature and pressure ⁇
  • (T 1 ⁇ T 2) must be at least 10 ° C and (PI—P 2) must be at least 0.5 MPa, and by satisfying equation (3), It is necessary to make the nitrogen dissolution rate larger than the nitrogen dissolution rate in this growth process. As a result, the amount of nitrogen dissolved in the melting step can be increased and the productivity of single crystals can be improved. At the same time, it is necessary to set (T 1 ⁇ T 2) to 60 ° C or less and (P 1 ⁇ P 2) to 5. OMPa or less. If (T 1 – T 2) exceeds 60 ° C, a mechanism to prevent evaporation and diffusion of flux materials such as Na is required, which complicates equipment and processes. If (1? 2) exceeds 5.0 MPa, a container with high pressure resistance is required, which is a cost-up factor.
  • P1, P2, T1, and T2 satisfy the following relational expressions (4) and / or (5).
  • Figure 1 1,? 2 is a graph schematically illustrating the relationship between Ding 1 and Ding 2.
  • Figure 2 1,? 2 is a graph schematically illustrating the relationship between Ding 1 and Ding 2.
  • Figure 3 1,? 2 is a graph schematically illustrating the relationship between Ding 1 and Ding 2.
  • Fig. 4 is a diagram schematically showing the relationship between the growth time and the nitrogen dissolution amount of GaN growth in the prior art.
  • FIG. 5 is a diagram schematically showing the relationship between the growth time and the amount of growth of nitrogen dissolving gan in the present invention.
  • FIG. 6 is a schematic block diagram of a single crystal growth apparatus that can be used in the present invention.
  • FIG. 7 is a schematic diagram showing single crystal growth in a growth vessel.
  • Fig. 8 is a photograph of the growth container taken out from the atmosphere control container observed from above.
  • Fig. 9 is a photograph showing the GaN single crystal taken out from the growth vessel.
  • Figure 10 is a photograph showing the surface of a GaN single crystal observed with a microscope.
  • Figure 11 is a graph showing the relationship between the total growth time and the G a N weight.
  • FIG. 12 is a graph showing the relationship between the temperature and pressure in Examples and Comparative Examples and the regions A to D in Patent Document 2.
  • the holding time in the nitrogen dissolving step is preferably 5 hours or more and 60 hours or less. If the holding time is too short, the amount of nitrogen dissolved in the melt is small, and it becomes difficult to improve the productivity of the single crystal. On the other hand, there is no particular upper limit. However, since there is a tendency for single crystal growth to start in about 60 hours from the start of the growth process even without the nitrogen dissolution process, if the holding time in the nitrogen dissolution process exceeds 60 hours, the production according to the present invention The benefits of improved performance are reduced.
  • the growth temperature and pressure in this growth process should be determined according to the type of nitride single crystal to be grown. Should be selected.
  • the temperature T 2 and the pressure P 2 in the main growing process satisfy the following relational expressions (6) and (7).
  • the temperature T 1 and the pressure P 1 of the nitrogen dissolving step may exist in the region C or may exist in the region B. But especially preferred is 1 chopstick 1 also satisfies the following equations (8) and (9). That is, it exists in area B.
  • a plurality of heating elements 6 ⁇ , 6 ⁇ , and 6 C are installed in the vertical direction, and the heating value is controlled independently for each heating element.
  • multi-zone control is performed in the vertical direction.
  • the material of the heating element is not particularly limited, but alloy heating elements such as iron-chromium-aluminum and nickel-chromium, refractory metal heating elements such as platinum, molybdenum, tantalum and tandastain, silicon carbide, molybdenum silicate Non-metallic heating elements such as carbon can be exemplified.
  • an apparatus for heating the raw material mixture to generate a melt is not particularly limited.
  • This device is a hot isostatic press
  • other atmospheric pressure heating furnaces may be used.
  • the flux for producing the melt is not particularly limited, but one or more metals selected from the group consisting of Al-rich metal and Al-rich earth metal or alloys thereof are preferable.
  • the metal include lithium, sodium, potassium, norevidium, cesium, beryllium, magnesium, calcium, strontium, and palium, and lithium, sodium, and calcium are particularly preferable. Sodium is most preferred.
  • the material of the growth vessel for carrying out the reaction is not particularly limited as long as it is a material that is durable under the intended heating and pressurizing conditions.
  • These materials include high melting point metals such as metal tantalum, tungsten, and molybdenum, oxides such as alumina, sapphire, and yttrium, nitride ceramics such as aluminum nitride, titanium nitride, zirconium nitride, and boron nitride, Examples include carbides of refractory metals such as tungsten carbide and tantanore carbide, and pyrolysis products such as p-BN (pyrolytic BN) and p-Gr (pyrolytic graphite).
  • a single crystal of gallium nitride can be grown using a flux containing at least sodium metal. This flux dissolves the gallium source material.
  • gallium simple metal, gallium alloy and gallium compound can be applied, but gallium simple metal is also preferable in terms of handling.
  • This flux can contain metals other than sodium, such as lithium.
  • the usage ratio of the raw material of the gallium and the flux raw material such as sodium may be appropriate, but in general, the use of an excess amount of sodium is considered. Of course, this is not limiting.
  • Gas other than nitrogen in the atmosphere is not limited, but inert gas is preferable, Argon, helium and neon are particularly preferred.
  • the material of the growth substrate for epitaxial growth of gallium nitride crystal is not limited, but sapphire, A 1 N template, GaN template, silicon single crystal, SiC single crystal, MgO single Perovsky such as crystals, spinel (Mg A l 2 0 4 ), L i A 1 0 2 , L i G a 0 2 , L a A 1 O 3 , L a G a O 3, N d G a 0 3 Can be exemplified.
  • Perovskite structure complex oxides can also be used. Further, SCAM (ScAlMg0 4) can also be used.
  • GaN single crystals were grown according to the method described with reference to Figs. 1, 2, and 5.
  • a growth vessel 7 As shown in FIG.
  • the seed crystal 9 was a gallium nitride single crystal thin film epitaxially grown on sapphire.
  • This growth vessel 7 was placed and sealed in an atmosphere control vessel 4 having a gas inlet. A series of operations were performed in an inert gas atmosphere to prevent oxidation of raw materials and flux. 5 is a melt.
  • the gas tank 1 was connected to the gas inlet through the pressure controller 2.
  • GaN single crystals were grown at the main growth process temperature of 890 ° C.
  • the nitrogen gas pressure was kept constant at 3 ⁇ 9 MPa.
  • the total training time (initial process 20 hours + main training process time) was 150 hours.
  • the growth container was taken out of the cooled atmosphere control container, and the flux was reacted with ethanol to remove the GaN single crystal grown on the seed crystal.
  • Figure 8 shows the observation of the growth container taken out from the atmosphere control container from above.
  • Figure 9 shows the GaN single crystal taken out from the growth vessel.
  • Fig. 10 shows the surface of a GaN single crystal observed with a microscope. There were no miscellaneous crystals at the gas-liquid interface, and no miscellaneous crystals adhered to the GaN single crystal. The crystal surface was smooth. The weight of the grown GaN single crystal was 1.08 g.
  • the training preparation was performed in the same manner as in Example 1. After maintaining the initial process pressure at 4.3 MPa for 20 hours, GaN single crystals were grown at the main growth process pressure of 3.9 MPa. The temperature was kept constant at 890 ° C. The total training time (initial process 20 hours + main training process time) was 150 hours. After the growth process was completed, GaN single crystals were collected. The GaN single crystal weight was 0.98 g.
  • the training preparation was performed in the same manner as in Example 1.
  • a GaN single crystal was grown at a constant temperature of 890 ° C and a pressure of 3.9 MPa.
  • the training time was 150 hours.
  • GaN single crystals were collected.
  • the GaN single crystal weight was 0.54 g.
  • Example 2 Under the same conditions as in Example 1, only the total growth time (initial process 20 hours + main growth process time) was changed, and a GaN single crystal was grown.
  • the weight of the grown GaN single crystal grown at the total growth time of 50, 75, 100, 125 hours is They were 0.11, 0.28, 0.55, and 0.73 g, respectively.
  • a GaN single crystal was grown under the same conditions as in Comparative Example 1 while changing only the growth time.
  • the weight of the grown GaN single crystal grown at the growth time of 25, 50, 75, 100, and 125 hours is 0.0C! 0.00, 0.02, 0.10, 0.30g
  • FIG. 12 is a graph showing the relationship between the temperature and pressure in each example and the regions A to D in Patent Document 2.
  • the temperature and pressure conditions in the examples and comparative examples are all within the region B.
  • Table 1 shows the range where R (nitrogen dissolution rate in the melt in the nitrogen dissolution process) / (nitrogen dissolution rate in the melt in the main growth process) is 1.1 or more.
  • the activation energy E of nitrogen dissociation and dissolution was used after calculating a value of 2.8 eV by cluster model simulation. As a result, it can be seen that R is 1.1 or more within the range of Eq. (3).

Abstract

A seed crystal substrate is immersed in a melt containing a flux and a single crystal raw material in a growth vessel, and a nitride single crystal is grown on the growth surface of the seed crystal substrate. The process comprises the preparatory step for dissolving nitrogen in the above melt at temperature T1 (K) under pressure P1 (MPa) and the principal growing step for growing a nitride single crystal on the growth surface of the seed crystal substrate at temperature T2 (K) under pressure P2 (MPa). These P1, P2, T1 and T2 satisfy the formulae: T2-10 ≤ T1 ≤ T2+60 (1) P2-0.5 ≤ P1 ≤ P2+5.0 (2), and P1 ≥ 1.1 x P2 x (T1/T2)0.5exp[(E/k)•[(1/T1)-(1/T2)]] (3).

Description

明細書  Specification
窒化物単結晶の製造方法 発明の属する技術分野 本発明は、 窒化物単結晶の製造方法に関するものである。 背景技術  TECHNICAL FIELD The present invention relates to a method for producing a nitride single crystal. Background art
窒化ガリウム系 III - V窒化物は、 優れた青色発光素子として注目を集 めており、 発光ダイオードや半導体レーザーダイオード用材科として実 用化されている。: 7ラックスを用いた III族窒化物単結晶の育成方法が、 各機関より報告されている (特開 2 0 0 2— 2 9 3 6 9 6号公報、 特開 2 0 0 3— 2 9 24 0 0号公報、 WO 2 0 0 5— 0 9 5 6 8 2 A l、 WO 2 0 0 6— 0 3 0 7 1 8)。特開 2 0 0 3— 2 9 24 0 0号公報では、 GaN単結晶の成長形態によって温度圧力を 4つの領域 A〜Dに分類し、 4 つの領域の内、 複数の領域を利用して III族窒化物結晶を成長させる方 法を請求している [請求項 9]。 複数の領域を利用して成長させる事で、 複数の形態を有する結晶成長が可能となる [0068]。  Gallium nitride III-V nitride is attracting attention as an excellent blue light emitting device, and has been put to practical use as a material for light emitting diodes and semiconductor laser diodes. : A method for growing a group III nitride single crystal using 7 Lux has been reported by each organization (Japanese Patent Laid-Open No. 2000-29, 6 9-6, Japanese Patent Laid-Open No. 2000-29) No. 24 00, WO 2 0 0 5—0 9 5 6 8 2 Al, WO 2 0 0 6—0 3 0 7 1 8). In Japanese Patent Laid-Open No. 2000-29 24 0 0, the temperature and pressure are classified into four regions A to D according to the growth mode of the GaN single crystal, and a plurality of regions among the four regions are used to make III A method for growing a group nitride crystal is claimed [claim 9]. By growing using a plurality of regions, it is possible to grow a crystal having a plurality of forms [0068].
また、 種結晶として、 基板上に堆積させた GaN薄膜または A1N薄膜を 用いて、 核発生箇所を制御する方法が報告されている (特開 2 00 0— 3 2 7 4 9 5) 発明の開示  In addition, a method for controlling the nucleation site by using a GaN thin film or an A1N thin film deposited on a substrate as a seed crystal has been reported (Japanese Patent Laid-Open No. 2000-0-3 2 7 4 9 5)
特開 2 0 0 0— 3 2 7 4 9 5記載の方法では、 Naバ Na+ Ga)比 0.4、 温度保持時間 24時間、窒素圧力 100気圧で育成温度 800°C、700C、600°C、 500°Cで育成した結果、 600°C以上で A1N薄膜上に GaN結晶成長が起った と記述されている。 しかしながら、 この温度圧力域は、 特開 2 0 0 3— 2 9 2 4 0 0号公報に記述されているように、 板状の GaN結晶が支配的 に結晶成長する領域 Dであり、 種結晶上のみに GaN結晶が支配的に成長 する領域 Bではない。 このため、 種結晶以外にも多数の雑晶が発生する ことが確認されている。 In the method described in Japanese Patent Laid-Open No. 2 00 0-3-2 7 4 9 5, the ratio of Na + Na + Ga) is 0.4, the temperature holding time is 24 hours, the nitrogen pressure is 100 atm, and the growth temperature is 800 ° C, 700C, 600 ° C, 500 As a result of growth at ° C, GaN crystal growth occurred on the A1N thin film at 600 ° C or higher. It is described. However, this temperature and pressure range is a region D where the plate-like GaN crystal grows predominantly as described in Japanese Patent Laid-Open No. 2000-29-2400, and the seed crystal It is not region B where GaN crystals grow predominantly only on the top. For this reason, it has been confirmed that many miscellaneous crystals are generated in addition to seed crystals.
そこで、 本発明者は、 育成温度おょぴ圧力を特開 2 0 0 3— 2 9 24 0 0号公報における領域 Bに保持した所、 特開 2 0 0 3— 2 9 2 4 0 0 号公報で主張されているように、 雑晶発生は抑制され、 種結晶上にのみ GaN結晶が育成することが確認できた。 しかしながら、 GaN結晶の成長開 始が確認されたのは、温度圧力を領域 Bに保持してから 50時間以上後で あり、 24時間保持しただけでは、 明確な成長は確認されなかった。 以上 のように雑晶を発生させない GaN結晶育成には、 長時間保持が必要とな る為に、 生産性が低い。  In view of this, the present inventor has kept the growth temperature and pressure in the region B in Japanese Patent Laid-Open No. 2 0 0 3-2 924 00, and Japanese Patent Laid-Open No. 2 0 3-2 9 2 4 0 0 As claimed in the gazette, the generation of miscellaneous crystals was suppressed, and it was confirmed that GaN crystals grew only on the seed crystals. However, the start of GaN crystal growth was confirmed more than 50 hours after holding the temperature and pressure in region B, and no clear growth was confirmed only by holding for 24 hours. As described above, the growth of GaN crystals that do not generate miscellaneous crystals requires a long period of time, so the productivity is low.
特開 2 0 0 3— 2 9 24 0 0号公報では、 4領域 A〜Dのうち複数の 領域を利用して成長させる事で、 複数の形態を有する結晶成長が可能と なると記述しているが、 具体的にどのように複数の領域を利用すると、 如何なる形態の結晶が得られるかについての記述がない。 また、 結晶形 態の他、 成長速度に関する記述もない。  Japanese Patent Laid-Open No. 2 00 3-2 924 0 0 describes that crystal growth having a plurality of forms is possible by using a plurality of regions among the four regions A to D. However, there is no description of what form of crystal can be obtained by using multiple regions. Moreover, there is no description about the growth rate in addition to the crystal form.
本発明の課題は、 種結晶基板上に窒化物単結晶を育成する時に、 雑晶 の発生を抑制し、 かつ窒化物単結晶の単位時間当たりの生産性を向上さ せることである。  An object of the present invention is to suppress the generation of miscellaneous crystals and improve the productivity per unit time of a nitride single crystal when growing a nitride single crystal on a seed crystal substrate.
本発明は、 育成容器内でフラックスおよび単結晶原料を含む融液に種 結晶基板を浸漬し、 この種結晶基板の育成面上に窒化物単結晶を育成す る方法であって、  The present invention is a method of immersing a seed crystal substrate in a melt containing a flux and a single crystal raw material in a growth vessel, and growing a nitride single crystal on the growth surface of the seed crystal substrate,
温度 T l (K) および圧力 P I (MP a ) で融液に窒素を溶解させる ための窒素溶解工程、 および 温度 T 2 (Κ) および圧力 Ρ 2 (MP a ) で種結晶基板の育成面上に 窒化物単結晶を成長させる本育成工程 A nitrogen dissolution process for dissolving nitrogen in the melt at temperature T l (K) and pressure PI (MP a), and Full growth process of growing a nitride single crystal on the growth surface of the seed crystal substrate at temperature T 2 (Κ) and pressure Ρ 2 (MP a)
を備えており、 P l、 P 2、 T l、 Τ 2が以下の関係式 (1 )、 ( 2 ) お よび (3 ) を満足することを特徴とする。 And P 1, P 2, T 1 and Τ 2 satisfy the following relational expressions (1), (2) and (3).
Τ 2— 1 0 ≤ Τ 1 ≤ Τ 2 + 6 0 ( 1 ) Τ 2— 1 0 ≤ Τ 1 ≤ Τ 2 + 6 0 (1)
Ρ 2 - 0. 5 ≤ Ρ 1 ≤ Ρ 2 + 5. 0 ( 2)Ρ 2-0. 5 ≤ Ρ 1 ≤ Ρ 2 + 5. 0 (2)
Ρ 1 ≥ 1. 1 X Ρ 2 X (Τ 1 /Ύ 2 ) 0 ' 5 exp [ ( Ε / k ) · [ ( 1 / Τ 1 ) 一 ( 1 /T 2)]] ( 3 ) Ρ 1 ≥ 1. 1 X Ρ 2 X (Τ 1 / Ύ 2) 0 ' 5 exp [(Ε / k) · [(1 / Τ 1) one (1 / T 2)]] (3)
(Eは、 2. 8 e Vであり、  (E is 2.8 e V,
kは、 ボルツマン定数 ( 1. 3 8 X 1 0— " J/K) である)  k is Boltzmann constant (1. 3 8 X 1 0— "J / K)
本発明者は、 窒素溶解のための初期プロセスの後に本育成プロセスを 行なうことを想到した。 そして、 窒素溶解工程では、 本育成工程よりも 高温、 高圧、 または高温高圧とし、 窒素の融液への溶解を進行させる。 この段階では、 窒素濃度が飽和に逢して GaN結晶の育成が始まらないよ うにする (図 5参照)。 本育成工程では、 雑晶の発生しない温度および圧 力とし、 単結晶の育成を進行させる。 これによつて、 雑晶の発生を抑制 しつつ、 育成に要する単位時間当たりの単結晶の生産性を顕著に向上さ せることに成功した。  The present inventor has conceived of performing the main growth process after the initial process for dissolving nitrogen. In the nitrogen dissolving step, the melting is performed at a higher temperature, a higher pressure, or a higher temperature and pressure than in the main growing step, and the dissolution of nitrogen into the melt is advanced. At this stage, the growth of GaN crystals should not start when the nitrogen concentration is saturated (see Figure 5). In this growth process, the growth of single crystals is carried out at a temperature and pressure at which no miscellaneous crystals are generated. As a result, the production of single crystals per unit time required for growth was significantly improved while suppressing the generation of miscellaneous crystals.
従来技術では、 図 4に示すように、 窒素ガスの融液内での飽和までに 時間がかかり、 それまでは窒化物の析出が始まらないために、 実効的な 成長時間が短く、 生産性が低かった。  In the conventional technology, as shown in Fig. 4, it takes time to saturate the nitrogen gas in the melt, and until then, precipitation of nitrides does not start, so the effective growth time is short and productivity is low. It was low.
ここで、図 1の横軸は 1 0 0 0 K/Tであり、 Tは融液の絶対温度(単 位は K) である。 縦軸は P/MP aであり、 Pは融液に加わる窒素の圧 力である (単位は MP a )。  Here, the horizontal axis of FIG. 1 is 100 K / T, and T is the absolute temperature of the melt (unit is K). The vertical axis is P / MPa, and P is the pressure of nitrogen applied to the melt (unit: MPa).
図 1において、 Oは、 本育成工程の温度 T 2および圧力 P 2を示す。 そして、 ( 1 )式の(T 2— 1 0 )、 (T 2 + 6 0 ). ( 2 )式の(P 2— 0. 5)、 (P 2 + 5. 0) が示されている。 更に、 図 1の直線 Vは、 (3) 式 の条件を示すものである。 (3) 式は、 R≥ l . 1の条件に該当するもの であり、 Rは、 (窒素溶解工程での融液への窒素溶解速度) / (本育成ェ 程での融液への窒素溶解速度) である。 具体的には、 Rは以下の数式に よって現される。 また、 窒素溶解速度 Xは、 圧力、 温度が高いほど、 大 きくなる。 In FIG. 1, O indicates the temperature T 2 and the pressure P 2 in the main growth process. (T 2—1 0), (T 2 +6 0). (P 2— 0. 5), (P 2 + 5. 0) is shown. Furthermore, the straight line V in Fig. 1 shows the condition of Eq. (3). Equation (3) corresponds to the condition of R≥l.1, where R is (Nitrogen dissolution rate in the melt in the nitrogen dissolution process) / (Nitrogen in the melt in this growth step) Dissolution rate). Specifically, R is expressed by the following formula. Also, the nitrogen dissolution rate X increases as the pressure and temperature increase.
Figure imgf000006_0001
Figure imgf000006_0001
ただし  However,
E:窒素の解離溶解の活性化工ネルギ- :ポルッマン定数  E: Activation energy of dissociation and dissolution of nitrogen-: Pollmmann constant
窒素溶解速度 Xは高温 ·高圧時に大きくなる <
Figure imgf000006_0002
Nitrogen dissolution rate X increases at high temperature and pressure <
Figure imgf000006_0002
(T 1—T 2) を一 1 0 °C以上、 (P I— P 2) を一 0. 5MP a以上 とすることが必要であり、 かつ (3) 式を満足することによって、 溶解 工程における窒素溶解速度を、 本育成工程における窒素溶解速度よりも 大きくすることが必要である。 これによつて、 溶解工程での窒素溶解量 を大きく し、 単結晶の生産性を向上させることができる。 これと共に、 (T 1—T 2) を 6 0°C以下とし、 (P 1—P 2) を 5. OMP a以下とすることが必要である。 (T 1—T 2)が 6 0°Cを超える と、 Naなどのフラックス材料の蒸発及び拡散を防止するための機構が必 要になり、 装置やプロセスが複雑化する。 また、 ( 1ー? 2) が 5. 0 MP aを超えると、 耐圧性の高い容器が必要になり、 コス トアップ要因 となる。 (T 1−T 2) must be at least 10 ° C and (PI—P 2) must be at least 0.5 MPa, and by satisfying equation (3), It is necessary to make the nitrogen dissolution rate larger than the nitrogen dissolution rate in this growth process. As a result, the amount of nitrogen dissolved in the melting step can be increased and the productivity of single crystals can be improved. At the same time, it is necessary to set (T 1−T 2) to 60 ° C or less and (P 1−P 2) to 5. OMPa or less. If (T 1 – T 2) exceeds 60 ° C, a mechanism to prevent evaporation and diffusion of flux materials such as Na is required, which complicates equipment and processes. If (1? 2) exceeds 5.0 MPa, a container with high pressure resistance is required, which is a cost-up factor.
上のような観点からは、 P 1、 P 2、 T 1、 T 2が以下の関係式(4) および/または (5) を満足することが更に好ましい。  From the above viewpoint, it is more preferable that P1, P2, T1, and T2 satisfy the following relational expressions (4) and / or (5).
Τ 2 ≤ Τ 1 ≤ Τ 2 + 4 0 (4)  Τ 2 ≤ Τ 1 ≤ Τ 2 + 4 0 (4)
Ρ 2 ≤ Ρ 1 ≤ Ρ 2 + 3. 0 ( 5) 図面の簡単な説明  Ρ 2 ≤ Ρ 1 ≤ Ρ 2 + 3.0 (5) Brief description of the drawings
図 1は、 ? 1、 ? 2、 丁 1、 丁 2の関係を模式的に示すグラフである。 図 2は、 ? 1、 ? 2、 丁 1、 丁 2の関係を模式的に示すグラフである。 図 3は、 ? 1、 ? 2、 丁 1、 丁 2の関係を模式的に示すグラフである。 図 4は、 従来技術における育成時間と窒素溶解おょぴ G a N成長量の 関係を模式的に示す図である。  Figure 1 1,? 2 is a graph schematically illustrating the relationship between Ding 1 and Ding 2. Figure 2 1,? 2 is a graph schematically illustrating the relationship between Ding 1 and Ding 2. Figure 3 1,? 2 is a graph schematically illustrating the relationship between Ding 1 and Ding 2. Fig. 4 is a diagram schematically showing the relationship between the growth time and the nitrogen dissolution amount of GaN growth in the prior art.
図 5は、 本発明における育成時間と窒素溶解おょぴ G a N成長量の関 係を模式的に示す図である。  FIG. 5 is a diagram schematically showing the relationship between the growth time and the amount of growth of nitrogen dissolving gan in the present invention.
図 6は、 本発明で使用可能な単結晶育成装置の模式的ブロック図であ る。  FIG. 6 is a schematic block diagram of a single crystal growth apparatus that can be used in the present invention.
図 7は、 育成容器における単結晶の育成を示す模式図である。  FIG. 7 is a schematic diagram showing single crystal growth in a growth vessel.
図 8は、 雰囲気制御用容器から取り出した育成容器を上部から観察し た写真である。  Fig. 8 is a photograph of the growth container taken out from the atmosphere control container observed from above.
図 9は、 育成容器から取り出した GaN単結晶を示す写真である。  Fig. 9 is a photograph showing the GaN single crystal taken out from the growth vessel.
図 1 0は、 G a N単結晶表面を顕微鏡で観察した様子を示す写真であ る。 Figure 10 is a photograph showing the surface of a GaN single crystal observed with a microscope. The
図 1 1は、 総育成時間と G a N重量との関係を示すグラフである。 図 1 2は、 実施例、 比較例における温度および圧力と、 特許文献 2に おける領域 A〜Dとの関係を示すグラフである。 発明を実施するための最良の形態  Figure 11 is a graph showing the relationship between the total growth time and the G a N weight. FIG. 12 is a graph showing the relationship between the temperature and pressure in Examples and Comparative Examples and the regions A to D in Patent Document 2. BEST MODE FOR CARRYING OUT THE INVENTION
窒素溶解工程での保持時間は、 5時間以上、 6 0時間以下が好ましい。 この保持時間が短すぎると、 融液への窒素溶け込み量が少なく、 単結晶 の生産性を向上させることが難しくなる。 一方、 この上限は特にない。 しかし、窒素溶解工程なしでも、育成工程の開始から 60時間程度で単結 晶成長が始まる結晶育成が開始する傾向があるので、 窒素溶解工程での 保持時間が 60 時間を超えると本発明による生産性向上の利点が少なく なってくる。  The holding time in the nitrogen dissolving step is preferably 5 hours or more and 60 hours or less. If the holding time is too short, the amount of nitrogen dissolved in the melt is small, and it becomes difficult to improve the productivity of the single crystal. On the other hand, there is no particular upper limit. However, since there is a tendency for single crystal growth to start in about 60 hours from the start of the growth process even without the nitrogen dissolution process, if the holding time in the nitrogen dissolution process exceeds 60 hours, the production according to the present invention The benefits of improved performance are reduced.
本育成工程における育成温度および圧力は、 育成されるべき窒化物単 結晶の種類によって決定するべきものであり、 雑晶が発生しにく く、 単 結晶の成長速度の早い育成温度おょぴ圧力を選定すればよい。  The growth temperature and pressure in this growth process should be determined according to the type of nitride single crystal to be grown. Should be selected.
好適な実施形態においては、 本育成工程における温度 T 2および圧力 P 2が以下の関係式 (6) および (7) を満足する。  In a preferred embodiment, the temperature T 2 and the pressure P 2 in the main growing process satisfy the following relational expressions (6) and (7).
l o g P 2≥ (- 5. 4 0 Χ10 /T 2 + 4. 8 3 l o g P 2≥ (-5. 4 0 Χ10 / T 2 + 4. 8 3
(6) l o g P 2≤ (- 5. 5 9 X103) /T 2 + 5. 4 7 (6) log P 2≤ (-5.5 9 X10 3 ) / T 2 + 5. 4 7
(7)  (7)
この温度および圧力領域を図 2、 図 3に例示する。 L 1は (6) 式に 'あたり、 L 2は (7) 式にあたる。 (6) 式と (7) 式との間が領域 Bで あり、 領域 B内の温度おょぴ圧力で本育成工程を実施する。 図 2の例で は、 P 2 = 3. 9MP a、 T 2 = 1 1 6 3 K (8 9 0 °C) の例を示し、 図 3の例では、 P 2 = 2. 5MP a、 T 2 = 1 1 7 3 K (9 0 0 °C) の 例を示す。 領域 A、 B、 Cは特許文献 2と同じである。 This temperature and pressure range is illustrated in Figs. L 1 is equivalent to Eq. (6) and L 2 is Eq. (7). Region B is between (6) and (7). Yes, this growth process is carried out at the temperature and pressure in area B. The example in Fig. 2 shows an example of P 2 = 3.9 MPa, T 2 = 1 1 6 3 K (8 90 ° C), and in the example in Fig. 3, P 2 = 2.5 MPa, T An example of 2 = 1 1 7 3 K (9 0 0 ° C) is shown. Regions A, B, and C are the same as in Patent Document 2.
この実施形態においては、窒素溶解工程の温度 T 1および圧力 P 1は、 領域 Cに存在していしてよく、領域 B内に存在していてもよい。しかし、 特に好ましくは、 ? 1ぉょぴ丁 1も、 下記の (8) および (9) 式を満 足する。 つまり、 領域 B内に存在する。  In this embodiment, the temperature T 1 and the pressure P 1 of the nitrogen dissolving step may exist in the region C or may exist in the region B. But especially preferred is 1 chopstick 1 also satisfies the following equations (8) and (9). That is, it exists in area B.
l o g P 1≥ (— 5. 4 0 X103) /T 1 + 4. 8 3 log P 1≥ (— 5. 4 0 X10 3 ) / T 1 + 4. 8 3
(8)  (8)
l o g P 1≤ (一 5. 5 9 X 103) /T 1 + 5. 4 7 log P 1≤ (one 5. 5 9 X 10 3 ) / T 1 + 5. 4 7
好適な実施形態においては、 図 6に模式的に示すように、 複数の発熱 体 6 Α、 6 Β、 6 Cを上下方向に設置し、 発熱体ごとに発熱量を独立し て制御する。 つまり、 上下方向へと向かって多ゾーン制御を行なう。 各 発熱体を発熱させ、 気体タンク 1、 圧力制御装置 2、 配管 3を通して、 雰囲気制御用容器 4内の育成容器 7へと窒素含有雰囲気を流し、 加熱お よび加圧すると、 育成容器 7内で混合原料がすべて溶解し、 融液を生成 する。 In a preferred embodiment, as schematically shown in FIG. 6, a plurality of heating elements 6 Α, 6 Β, and 6 C are installed in the vertical direction, and the heating value is controlled independently for each heating element. In other words, multi-zone control is performed in the vertical direction. When each heating element is heated, a nitrogen-containing atmosphere flows through the gas tank 1, the pressure control device 2, and the piping 3 to the growth vessel 7 in the atmosphere control vessel 4, and when heated and pressurized, the inside of the growth vessel 7 All the mixed raw materials are melted to produce a melt.
発熱体の材質は特に限定されないが、鉄-クロム-アルミ系、ニッケル - クロム系などの合金発熱体、 白金、 モリブデン、 タンタル、 タンダステ ンなどの高融点金属発熱体、 炭化珪素、 モリブデンシリサイ ト、 カーボ ンなどの非金属発熱体を例示できる。  The material of the heating element is not particularly limited, but alloy heating elements such as iron-chromium-aluminum and nickel-chromium, refractory metal heating elements such as platinum, molybdenum, tantalum and tandastain, silicon carbide, molybdenum silicate Non-metallic heating elements such as carbon can be exemplified.
本発明の単結晶育成装置において、 原料混合物を加熱して融液を生成 させるための装置は特に限定されない。 この装置は熱間等方圧プレス装 置が好ましいが、 それ以外の雰囲気加圧型加熱炉であってもよい。 In the single crystal growth apparatus of the present invention, an apparatus for heating the raw material mixture to generate a melt is not particularly limited. This device is a hot isostatic press However, other atmospheric pressure heating furnaces may be used.
融液を生成するためのフラックスは特に限定されないが、 アル力リ金 属およびアル力リ土類金属からなる群より選ばれた一種以上の金属また はその合金が好ましい。 この金属としては、 例えば、 リチウム、 ナトリ ゥム、 カリ ウム、 ノレビジゥム、 セシウム、 ベリ リ ゥム、 マグネシウム、 カルシウム、 ス トロンチウム、 パリ ゥムが例示でき、 リチウム、 ナトリ ゥム、 カルシウムが特に好ましく、 ナトリ ウムが最も好ましい。  The flux for producing the melt is not particularly limited, but one or more metals selected from the group consisting of Al-rich metal and Al-rich earth metal or alloys thereof are preferable. Examples of the metal include lithium, sodium, potassium, norevidium, cesium, beryllium, magnesium, calcium, strontium, and palium, and lithium, sodium, and calcium are particularly preferable. Sodium is most preferred.
反応を行なうための育成容器の材質は特に限定されず、 目的とする加 熱および加圧条件において耐久性のある材料であればよい。 こう した材 料としては、 金属タンタル、 タングステン、 モリブデンなどの高融点金 属、 アルミナ、 サファイア、 イッ トリアなどの酸化物、 窒化アルミユウ ム、 窒化チタン、 窒化ジルコニウム、 窒化ホウ素などの窒化物セラミッ クス、 タングステンカーバイ ド、 タンタノレカーバイ ドなどの高融点金属 の炭化物、 p— BN (パイロリティック BN)、 p — Gr (パイロリティック グラフアイ ト) などの熱分解生成体が挙げられる。  The material of the growth vessel for carrying out the reaction is not particularly limited as long as it is a material that is durable under the intended heating and pressurizing conditions. These materials include high melting point metals such as metal tantalum, tungsten, and molybdenum, oxides such as alumina, sapphire, and yttrium, nitride ceramics such as aluminum nitride, titanium nitride, zirconium nitride, and boron nitride, Examples include carbides of refractory metals such as tungsten carbide and tantanore carbide, and pyrolysis products such as p-BN (pyrolytic BN) and p-Gr (pyrolytic graphite).
本発明を利用し、 少なく ともナトリ ゥム金属を含むフラックスを使用 して窒化ガリ ウム単結晶を育成できる。 このフラックスには、 ガリ ウム 原料物質を溶解させる。ガリ ゥム原料物質としては、ガリ ゥム単体金属、 ガリ ウム合金、 ガリ ウム化合物を適用できるが、 ガリ ウム単体金属が取 扱いの上からも好適である。  By using the present invention, a single crystal of gallium nitride can be grown using a flux containing at least sodium metal. This flux dissolves the gallium source material. As the raw material of gallium, gallium simple metal, gallium alloy and gallium compound can be applied, but gallium simple metal is also preferable in terms of handling.
このフラックスには、 ナトリ ゥム以外の金属、 例えばリチウムを含有 させることができる。 ガリ ウム原料物質とナトリ ウムなどのフラックス 原料物質との使用割合は、 適宜であってよいが、 一般的には、 ナトリ ウ ム過剰量を用いることが考慮される。 もちろん、 このことは限定的では ない。  This flux can contain metals other than sodium, such as lithium. The usage ratio of the raw material of the gallium and the flux raw material such as sodium may be appropriate, but in general, the use of an excess amount of sodium is considered. Of course, this is not limiting.
雰囲気中の窒素以外のガスは限定されないが、不活性ガスが好ましく、 アルゴン、 ヘリ ウム、 ネオンが特に好ましい。 Gas other than nitrogen in the atmosphere is not limited, but inert gas is preferable, Argon, helium and neon are particularly preferred.
窒化ガリ ゥム結晶をェピタキシャル成長させるための育成用基板 の材質は限定されないが、 サファイア、 A 1 Nテンプレート、 G a Nテ ンプレート、 シリ コン単結晶、 S i C単結晶、 Mg O単結晶、 スピネル (Mg A l 24)、 L i A 1 02、 L i G a〇2、 L a A 1 O 3 , L a G a O 3 , N d G a〇 3等のぺロブスカイ ト型複合酸化物を例示できる。 また組成式 〔 A丄一, ( S r ! _ x B a x) ,J The material of the growth substrate for epitaxial growth of gallium nitride crystal is not limited, but sapphire, A 1 N template, GaN template, silicon single crystal, SiC single crystal, MgO single Perovsky such as crystals, spinel (Mg A l 2 0 4 ), L i A 1 0 2 , L i G a 0 2 , L a A 1 O 3 , L a G a O 3, N d G a 0 3 Can be exemplified. In addition, the composition formula [A 丄 ichi, (S r! _ X B a x ), J
C(A 1 ! _ z G a z ) ! _ u - D u) O 3 (Aは、 希土類元素である ; D は、 ニオブおょぴタンタルからなる群より選ばれた一種以上の元素であ る ; y = 0. 3〜0. 9 8 ; x = 0〜 l ; z = 0〜 l ; u = 0. 1 5〜 0. 4 9 ; X + z = 0. 1〜2) の立方晶系のぺロブスカイ ト構造複合 酸化物も使用できる。 また、 SCAM (ScAlMg04) も使用できる。 実施例 ! C (! A 1 _ z G a z) _ u - D u) O 3 (A is a rare earth element; D is one or more elements Der selected from the group consisting of niobium Contact Yopi tantalum Y = 0. 3 to 0.98; x = 0 to l; z = 0 to l; u = 0. 1 5 to 0.49; X + z = 0.1 to 2) Perovskite structure complex oxides can also be used. Further, SCAM (ScAlMg0 4) can also be used. Example
(実施例 1 )  (Example 1)
図 1、 図 2、 図 5を参,照しつつ説明した方法に従い、 G a N単結晶を 育成した。  GaN single crystals were grown according to the method described with reference to Figs. 1, 2, and 5.
具体的には、 III族原料として金属ガリウム(Ga)を 3g、 フラックスと して金属ナトリゥム(Na)を 4g、 種結晶 9と共に、 図 7に示すように、 育 成容器 7内に秤量した。 種結晶 9にはサファイア上にェピタキシャル成 長させた窒化ガリウム単結晶薄膜を用いた。 この育成容器 7を、 ガス導 入口をもつ雰囲気制御用容器 4内に配置し密封した。 一連の作業は原料 およぴフラックス等の酸化を防ぐ為、 不活性ガス雰囲気中で行なった。 5は融液である。 上記密封容器を発熱体 6 A〜 6 Cを持つ電気炉内に配 置した後、 ガス導入口に圧力制御装置 2を介して気体タンク 1を接続し た。 初期プロセス温度 920°Cで 20 時間保持した後、 本育成プロセス温度 890°Cで GaN単結晶の育成を行なった。窒素ガス圧は 3· 9M P aで一定に 保持した。 総育成時間 (初期プロセス 20時間 +本育成プロセス時間) は 150 時間とした。 本育成プロセス終了後、 冷却した雰囲気制御用容器か ら育成容器を取り出し、 フラックスをエタノールと反応させ除去する事 により、 種結晶上に成長した G a N単結晶の回収を行なった。 Specifically, 3 g of metal gallium (Ga) as a Group III material, 4 g of metal sodium (Na) as a flux, and a seed crystal 9 were weighed in a growth vessel 7 as shown in FIG. The seed crystal 9 was a gallium nitride single crystal thin film epitaxially grown on sapphire. This growth vessel 7 was placed and sealed in an atmosphere control vessel 4 having a gas inlet. A series of operations were performed in an inert gas atmosphere to prevent oxidation of raw materials and flux. 5 is a melt. After the sealed container was placed in an electric furnace having heating elements 6 A to 6 C, the gas tank 1 was connected to the gas inlet through the pressure controller 2. After maintaining the initial process temperature at 920 ° C for 20 hours, GaN single crystals were grown at the main growth process temperature of 890 ° C. The nitrogen gas pressure was kept constant at 3 · 9 MPa. The total training time (initial process 20 hours + main training process time) was 150 hours. After the growth process was completed, the growth container was taken out of the cooled atmosphere control container, and the flux was reacted with ethanol to remove the GaN single crystal grown on the seed crystal.
図 8には、 雰囲気制御用容器から取り出した育成容器を上部から観察 した様子を示す。図 9には、育成容器から取り出した GaN単結晶を示す。 図 1 0には、 GaN 単結晶表面を顕微鏡で観察した様子を示す。 気液界面 での雑晶は発生しておらず、 GaN 単結晶上への雑晶の付着も無かった。 結晶表面は平滑であった。 成長した GaN単結晶重量は 1. 08gであつ'た。  Figure 8 shows the observation of the growth container taken out from the atmosphere control container from above. Figure 9 shows the GaN single crystal taken out from the growth vessel. Fig. 10 shows the surface of a GaN single crystal observed with a microscope. There were no miscellaneous crystals at the gas-liquid interface, and no miscellaneous crystals adhered to the GaN single crystal. The crystal surface was smooth. The weight of the grown GaN single crystal was 1.08 g.
(実施例 2 )  (Example 2)
育成準備を実施例 1 と同様に行なった。 初期プロセス圧力 4. 3MPa で 20時間保持した後、 本育成プロセス圧力 3. 9MPaで GaN単結晶の育成を 行なった。 温度は 890°Cで一定に保持した。 総育成時間 (初期プロセス 20時間 +本育成プロセス時間) は 150時間とした。 本育成プロセス終了 後、 GaN単結晶の回収を行なった。 GaN単結晶重量は 0. 98gであった。  The training preparation was performed in the same manner as in Example 1. After maintaining the initial process pressure at 4.3 MPa for 20 hours, GaN single crystals were grown at the main growth process pressure of 3.9 MPa. The temperature was kept constant at 890 ° C. The total training time (initial process 20 hours + main training process time) was 150 hours. After the growth process was completed, GaN single crystals were collected. The GaN single crystal weight was 0.98 g.
(比較例 1 )  (Comparative Example 1)
育成準備を実施例 1 と同様に行なった。 温度 890°C、 圧力 3. 9MPaで一 定に保持して GaN単結晶の育成を行なった。育成時間は 150時間とした。 育成終了後、 GaN単結晶の回収を行なった。 GaN単結晶重量は 0. 54gであ つた。  The training preparation was performed in the same manner as in Example 1. A GaN single crystal was grown at a constant temperature of 890 ° C and a pressure of 3.9 MPa. The training time was 150 hours. After the growth was completed, GaN single crystals were collected. The GaN single crystal weight was 0.54 g.
(実施例 3 )  (Example 3)
実施例 1 と同様の条件で総育成時間 (初期プロセス 20時間 +本育成プ ロセス時間) のみを変化させて GaN単結晶の育成を行なった。 総育成時 間 50、 75、 100、 125時間において成長した成長した GaN単結晶重量はそ れぞれ、 0.11、 0.28、 0.55、 0.73 gであった。 Under the same conditions as in Example 1, only the total growth time (initial process 20 hours + main growth process time) was changed, and a GaN single crystal was grown. The weight of the grown GaN single crystal grown at the total growth time of 50, 75, 100, 125 hours is They were 0.11, 0.28, 0.55, and 0.73 g, respectively.
(比較例 2 )  (Comparative Example 2)
比較例 1 と同様の条件で育成時間のみを変化させて GaN単結晶の育成 を行なった。 育成時間 25、 50、 75、 100、 125時間において成長した成長 した GaN単結晶重量はそれぞれ、 0.0C!、 0.00、 0.02、 0.10、 0.30gであ つた  A GaN single crystal was grown under the same conditions as in Comparative Example 1 while changing only the growth time. The weight of the grown GaN single crystal grown at the growth time of 25, 50, 75, 100, and 125 hours is 0.0C! 0.00, 0.02, 0.10, 0.30g
実施例 1, 2, 3及び比較例 1,2の結果をまとめて図 1 1に示す。 高温 · 高圧の初期プロセスを用いる事により、 GaN 結晶の育成開始までの時間 を短縮する事に成功した。 その結果、 GaN 育成にかける総時間を一定と した場合の総成長量が増加した。  The results of Examples 1, 2, and 3 and Comparative Examples 1 and 2 are collectively shown in FIG. By using an initial process of high temperature and high pressure, we succeeded in shortening the time to start the growth of GaN crystals. As a result, the total growth increased when the total time for GaN growth was constant.
図 1 2は、 各例での温度、 圧力と、 特許文献 2における領域 A〜Dと の関係を示すグラフである。 実施例、 比較例の温度、 圧力条件は、 いず れも領域 B内のものである。  FIG. 12 is a graph showing the relationship between the temperature and pressure in each example and the regions A to D in Patent Document 2. The temperature and pressure conditions in the examples and comparative examples are all within the region B.
R (窒素溶解工程での融液への窒素溶解速度) / (本育成工程での融 液への窒素溶解速度) が 1. 1以上となる範囲を表 1に示す。 この例で は、 T 2 = 8 9 0°C、 P 2 = 3. 9MP aとする。 窒素の乖離溶解の活 十生化エネルギー Eは、 クラスタモデルシミュレーションで 2. 8 e Vの 値を算出し、 使用した。 この結果、 式 (3) の範囲内で Rが 1. 1以上 となることがわかる。 Table 1 shows the range where R (nitrogen dissolution rate in the melt in the nitrogen dissolution process) / (nitrogen dissolution rate in the melt in the main growth process) is 1.1 or more. In this example, T 2 = 8 90 ° C and P 2 = 3.9 MPa. The activation energy E of nitrogen dissociation and dissolution was used after calculating a value of 2.8 eV by cluster model simulation. As a result, it can be seen that R is 1.1 or more within the range of Eq. (3).
Figure imgf000014_0001
Figure imgf000014_0001
本発明の特定の実施形態を説明してきたけれども、 本発明はこれら特 定の実施形態に限定されるものではなく、 請求の範囲の範囲から離れる ことなく、 種々の変更や改変を行いながら実施できる。 Although specific embodiments of the present invention have been described, the present invention is not limited to these specific embodiments and can be implemented with various changes and modifications without departing from the scope of the claims. .

Claims

請求の範囲 The scope of the claims
1. 育成容器内でフラッタスおよび単結晶原料を含む融液に種結晶基板 を浸漬し、 この種結晶基板の育成面上に窒化物単結晶を育成する方法で あって、 1. A method in which a seed crystal substrate is immersed in a melt containing flatts and a single crystal raw material in a growth vessel, and a nitride single crystal is grown on a growth surface of the seed crystal substrate,
温度 T l (K) および圧力 P I (MP a ) で前記融液に窒素を溶解さ せるための窒素溶解工程、 および  A nitrogen dissolving step for dissolving nitrogen in the melt at temperature T l (K) and pressure P I (MP a); and
温度 T 2 (K) および圧力 P 2 (MP a ) で前記種結晶基板の前記育 成面上に窒化物単結晶を成長させる本育成工程  A main growth step of growing a nitride single crystal on the growth surface of the seed crystal substrate at a temperature T 2 (K) and a pressure P 2 (MP a)
を備えており、 P l、 P 2、 T l、 Τ 2が以下の関係式 (1 )、 (2) お よび (3) を満足することを特徴とする、 窒化物単結晶の製造方法。And P 1, P 2, T 1, and 満 足 2 satisfy the following relational expressions (1), (2), and (3):
Τ 2 - 1 0 ≤ Τ 1 ≤ Τ 2 + 6 0 ( 1 )Τ 2-1 0 ≤ Τ 1 ≤ Τ 2 + 6 0 (1)
Ρ 2 - 0. 5 ≤ Ρ 1 ≤ Ρ 2 + 5. 0 ( 2)Ρ 2-0. 5 ≤ Ρ 1 ≤ Ρ 2 + 5. 0 (2)
Ρ 1≥ 1. 1 X Ρ 2 X (Τ 1 /Τ 2 ) 0 - 5 exp [(E/k) - [( 1 / T - ( 1 /T 2)]] (3) Ρ 1≥ 1. 1 X Ρ 2 X (Τ 1 / Τ 2) 0 - 5 exp [(E / k) - [(1 / T - (1 / T 2)]] (3)
(Eは、 2. 8 e Vであり、  (E is 2.8 e V,
kは、 ボルツマン定数 (1. 3 8 X 1 0— 2 3 J/K) であ k is the Boltzmann constant (1. 3 8 X 1 0— 2 3 J / K)
2. T l、 Τ 2が以下の関係式 (4) を満足することを特徴とする、 請求項 1記載の方法。 ' 2. The method according to claim 1, wherein T 1 and 、 2 satisfy the following relational expression (4). '
Τ 2 ≤ Τ 1 ≤ Τ 2 + 4 0 (4)  Τ 2 ≤ Τ 1 ≤ Τ 2 + 4 0 (4)
3. P l、 Ρ 2が以下の関係式 (5) を満足することを特徴とする、 請求項 1記載の方法。 3. The method according to claim 1, wherein P 1 and Ρ 2 satisfy the following relational expression (5).
Ρ 2 ≤ Ρ 1 ≤ Ρ 2 + 3. 0 ( 5) Ρ 2 ≤ Ρ 1 ≤ Ρ 2 + 3. 0 (5)
4. 前記窒素溶解工程の時間が 5時間以上、 6 0時間以下であること を特徴とする、 請求項 1〜 3のいずれか一つの請求項に記載の方法。 4. The method according to any one of claims 1 to 3, wherein a time of the nitrogen dissolving step is 5 hours or more and 60 hours or less.
5. 前記本育成工程における温度 T 2および圧力 P 2が以下の関係式 ( 6 ) および (7) を満足することを特徴とする、 請求項 1〜4のいず れか一つの請求項に記載の方法。 5. The temperature T 2 and the pressure P 2 in the main growth process satisfy the following relational expressions (6) and (7), according to any one of claims 1 to 4: The method described.
l o g P 2 ≥ (— 5. 4 0 Χ10°) /Ύ 2 + 4. 8 3  l o g P 2 ≥ (— 5. 4 0 Χ10 °) / Ύ 2 + 4. 8 3
(6 ) l o g P 2 ≤ (一 5. 5 9 X10°) /Ύ 2 + 5. 4 7  (6) l o g P 2 ≤ (one 5.59 X10 °) / Ύ 2 + 5. 4 7
( 7 )  (7)
PCT/JP2008/051894 2007-03-26 2008-01-30 Process for producing nitride single crystal WO2008117571A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009506234A JPWO2008117571A1 (en) 2007-03-26 2008-01-30 Method for producing nitride single crystal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-079010 2007-03-26
JP2007079010 2007-03-26

Publications (1)

Publication Number Publication Date
WO2008117571A1 true WO2008117571A1 (en) 2008-10-02

Family

ID=39788311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/051894 WO2008117571A1 (en) 2007-03-26 2008-01-30 Process for producing nitride single crystal

Country Status (2)

Country Link
JP (1) JPWO2008117571A1 (en)
WO (1) WO2008117571A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003292400A (en) * 2002-01-29 2003-10-15 Ricoh Co Ltd Group iii nitride crystal growth method, group iii nitride crystal growth apparatus, group iii nitride crystal, and semiconductor device
JP2004231447A (en) * 2003-01-29 2004-08-19 Ricoh Co Ltd Method for growing group iii nitride crystal, group iii nitride crystal, and semiconductor device
JP2005154254A (en) * 2003-10-31 2005-06-16 Sumitomo Electric Ind Ltd Group iii nitride crystal, its manufacturing method, and manufacturing device of group iii nitride crystal
WO2005095681A1 (en) * 2004-03-31 2005-10-13 Matsushita Electric Industrial Co., Ltd. Method for producing iii group element nitride crystal, production apparatus for use therein, and semiconductor element produced thereby

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003292400A (en) * 2002-01-29 2003-10-15 Ricoh Co Ltd Group iii nitride crystal growth method, group iii nitride crystal growth apparatus, group iii nitride crystal, and semiconductor device
JP2004231447A (en) * 2003-01-29 2004-08-19 Ricoh Co Ltd Method for growing group iii nitride crystal, group iii nitride crystal, and semiconductor device
JP2005154254A (en) * 2003-10-31 2005-06-16 Sumitomo Electric Ind Ltd Group iii nitride crystal, its manufacturing method, and manufacturing device of group iii nitride crystal
WO2005095681A1 (en) * 2004-03-31 2005-10-13 Matsushita Electric Industrial Co., Ltd. Method for producing iii group element nitride crystal, production apparatus for use therein, and semiconductor element produced thereby

Also Published As

Publication number Publication date
JPWO2008117571A1 (en) 2010-07-15

Similar Documents

Publication Publication Date Title
KR101235772B1 (en) Method for growing silicon carbide single crystal
JP5665094B2 (en) n-type group III nitride compound semiconductor
JP4827107B2 (en) Method for producing nitride single crystal
JP4561000B2 (en) Method for producing silicon carbide (SiC) single crystal
EP2071062A1 (en) Process for producing group iii elment nitride crystal, and group iii element nitride crystal
JP2004002173A (en) Silicon carbide single crystal and its manufacturing method
US20080003447A1 (en) Materials and methods for the manufacture of large crystal diamonds
KR101152857B1 (en) Method for growing silicon carbide single crystal
JP4861953B2 (en) Method for producing nitride single crystal
US20090004093A1 (en) Materials and methods for the manufacture of large crystal diamonds
WO2008117564A1 (en) Method for manufacturing nitride single crystal
WO2010140665A1 (en) Process and apparatus for production of crystals of compound of metal belonging to group-13 on periodic table
JP7147644B2 (en) Method for manufacturing group III nitride semiconductor
JP4908467B2 (en) Method for producing group III nitride compound semiconductor crystal
WO2008117571A1 (en) Process for producing nitride single crystal
JP5289982B2 (en) Method for growing gallium nitride single crystal
JP2018043891A (en) Production method of gallium nitride laminate
JP4876002B2 (en) Melt composition for growing gallium nitride single crystal and method for growing gallium nitride single crystal
JP4817099B2 (en) Carbide single crystal and manufacturing method thereof
JP4707148B2 (en) Silicon carbide single crystal substrate and method for manufacturing the same
JP2010024125A (en) Method for growing group iii nitride crystal
WO2007144955A1 (en) Single crystal of nitride of group iii element and method of growing the same
JP2009137771A (en) Method for growing group iii nitride crystal
JP2011079698A (en) Method for producing aluminum nitride single crystal
JP2017178673A (en) Production method of silicon carbide single crystal ingot

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08710826

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009506234

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08710826

Country of ref document: EP

Kind code of ref document: A1