JPH107496A - Production of nitride crystal and production unit therefor - Google Patents

Production of nitride crystal and production unit therefor

Info

Publication number
JPH107496A
JPH107496A JP16481196A JP16481196A JPH107496A JP H107496 A JPH107496 A JP H107496A JP 16481196 A JP16481196 A JP 16481196A JP 16481196 A JP16481196 A JP 16481196A JP H107496 A JPH107496 A JP H107496A
Authority
JP
Japan
Prior art keywords
group iii
crystal
raw material
nitride
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16481196A
Other languages
Japanese (ja)
Inventor
Masatomo Shibata
真佐知 柴田
Takashi Furuya
貴士 古屋
Tsunehiro Unno
恒弘 海野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP16481196A priority Critical patent/JPH107496A/en
Publication of JPH107496A publication Critical patent/JPH107496A/en
Pending legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PROBLEM TO BE SOLVED: To facilitate the growth of a large-sized bulk single crystal of a group III element nitride such as GaN which has not been available so far. SOLUTION: A group III element feedstock is charged into a quartz vessel 1, heated by a heater 2 and melted. The resultant melt 3 is then fed with a nitrogen-contg. material such as ammonia gas via a gas charge piping 4 to carry out a reaction and dissolve the resultant nitride in the melt 3. While continuing the feed and reaction, the melt 3 is cooled to effect deposition of the nitride crystal. The above dissolution process and deposition process are then repeated alternately, thus obtaining the objective large-sized nitride crystal.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、窒化物結晶の製造
方法およびその装置に係り、特に従来大形結晶を得るの
が困難であったGaN、AlN、InN等のIII 族元素
の窒化物結晶の製造に好適なものに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for producing a nitride crystal, and more particularly to a nitride crystal of a group III element such as GaN, AlN, InN, etc., in which it was conventionally difficult to obtain a large crystal. And a material suitable for the production of

【0002】[0002]

【従来の技術】GaNの結晶粉末を製造する方法として
は、Ga2 3 等のGaの酸化物をアンモニアと反応さ
せて製造するCVD法、HVPE法、MOVPE法が実
用化されており、これによって製造された粉末が試薬用
に市販されている。これ以外のGaNの結晶を製造する
方法としては、S.Porowski(文献1)、D.Elwell(文献
2)らによって発表されている。
2. Description of the Related Art As a method for producing a GaN crystal powder, CVD, HVPE and MOVPE methods for producing by reacting a Ga oxide such as Ga 2 O 3 with ammonia have been put into practical use. Are commercially available for reagents. Other methods for producing GaN crystals are disclosed by S. Porowski (Reference 1), D. Elwell (Reference 2), and others.

【0003】文献1のものは、高窒素ガス圧の下でIII
族原料を融解してIII 族の窒化物結晶を成長するもの
で、非常に高い圧力を必要とするため、結晶の製造が危
険且つ困難であり、その割りに得られた結晶のサイズは
数mm程度と小さい。
[0003] Document 1 describes that under high nitrogen gas pressure, III
A group III material is melted to grow a group III nitride crystal, and a very high pressure is required. Therefore, the production of the crystal is dangerous and difficult, and the size of the obtained crystal is several mm. About small.

【0004】また、文献2のものは、ガリウム等のIII
族原料の融液にアンモニア等の窒素を含有する物質を反
応させてIII 族の窒化物が飽和に達するまで溶解させ、
この飽和溶液を冷却することで、III 族元素の窒化物結
晶を析出させる方法であるが、これも得られる結晶のサ
イズは小さい。
[0004] Also, the one disclosed in Reference 2 is based on III such as gallium.
Reacting a nitrogen-containing substance such as ammonia with the melt of the group raw material and dissolving until the group III nitride reaches saturation,
A method of precipitating a nitride crystal of a group III element by cooling the saturated solution, but the size of the obtained crystal is also small.

【0005】文献1:"Prospects for high-pressure c
rystal growth of III-V nitrides"S.Porowski,J.Jun,
P.Perlin,I.Grzegory,H.Teisseyre and T.Suski,Inst.P
hys.Conf.Ser.No.137:Chapter 4 Paper presented at t
he 5th SiC and Related Materials Conf.,Washington,
DC,1993 文献2:Journal of Crystal Growth 66(1984)45-54"Cr
ystal Growth of GaNby the Reaction Between Ga and
NH 3 " D.Elwell et.al等
Reference 1: "Prospects for high-pressure c"
rystal growth of III-V nitrides "S.Porowski, J.Jun,
P.Perlin, I.Grzegory, H.Teisseyre and T.Suski, Inst.P
hys.Conf.Ser.No.137: Chapter 4 Paper presented at t
he 5th SiC and Related Materials Conf., Washington,
DC, 1993 Reference 2: Journal of Crystal Growth 66 (1984) 45-54 "Cr
ystal Growth of GaNby the Reaction Between Ga and
NH 3 "D. Elwell et.al etc.

【0006】[0006]

【発明が解決しようとする課題】一般に窒化物の溶解度
は非常に小さいため、上述した文献1、文献2の方法で
は結晶の収率が低すぎて、実用的な大きさの結晶を得る
ことはできなかった。したがって、いまだに大形のIII
族窒化物結晶を容易に製造することのできる方法は存在
せず、その結果、次のような問題が生じていた。
Generally, since the solubility of nitride is very small, the yields of crystals are too low in the methods of the above-mentioned documents 1 and 2 to obtain crystals of a practical size. could not. Therefore, still large III
There is no method capable of easily producing a group nitride crystal, and as a result, the following problems have occurred.

【0007】(1) GaNに代表されるIII 族元素の窒化
物結晶は、青色発光素子用の材料として注目を集めてい
る。素子を作成するためには、基板の上に例えばGaN
結晶等をエピタキシャル成長させる必要がある。このエ
ピタキシャル成長においては、成長する結晶中の歪の発
生を防止するために、基板となる結晶の格子定数や熱膨
張率が、その上に成長する結晶と同一であることが理想
的であるが、これまで大形のGaN結晶を製造すること
ができなかったために、やむなくサファイア基板などで
代用してきた。
(1) A nitride crystal of a group III element represented by GaN has attracted attention as a material for a blue light emitting device. To create a device, for example, GaN
It is necessary to epitaxially grow a crystal or the like. In this epitaxial growth, in order to prevent the occurrence of strain in the growing crystal, it is ideal that the lattice constant and the coefficient of thermal expansion of the crystal serving as the substrate are the same as those of the crystal grown thereon. Until now, large GaN crystals could not be produced, so sapphire substrates had to be substituted.

【0008】(2) GaAsやGaP等の半導体結晶中に
窒素をドープすることが要請される場合があるが、窒素
をドープする場合、GaN等の窒化物結晶をドーパント
として用いると、ドープ効率が向上することが知られて
いる。しかし、従来市販されていたGaN結晶はCVD
法等で作られる粉末状のものが主流で、高価な割りに純
度が低く、またその形状に起因して半導体融液に溶けに
くいといった問題があった。
(2) There is a case where it is required to dope nitrogen into a semiconductor crystal such as GaAs or GaP. In the case of doping with nitrogen, if a nitride crystal such as GaN is used as a dopant, the doping efficiency is increased. It is known to improve. However, GaN crystals conventionally available on the market
Powdered materials produced by a method or the like are mainly used, and there are problems in that the purity is low in spite of being expensive, and the shape is difficult to dissolve in a semiconductor melt.

【0009】本発明の目的は、上述した従来技術の問題
点を解消し、GaN等のIII 族元素の窒化物結晶、特
に、これまで得られなかった大形のバルク単結晶を容易
に成長させることのできる窒化物結晶の製造方法および
その装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the prior art and to easily grow a nitride crystal of a group III element such as GaN, particularly a large bulk single crystal which has not been obtained before. It is an object of the present invention to provide a method and an apparatus for producing a nitride crystal which can be used.

【0010】また、本発明は、青色発光素子用の基板、
および安価で純度が高く半導体融液に溶けやすいドーパ
ントを実現可能にする窒化物結晶の製造方法およびその
装置を提供することにある。
Further, the present invention provides a substrate for a blue light emitting device,
It is another object of the present invention to provide a method of manufacturing a nitride crystal and an apparatus therefor, which can realize a dopant which is inexpensive, has high purity and is easily soluble in a semiconductor melt.

【0011】[0011]

【課題を解決するための手段】本発明は、文献2に示さ
れたD.Elwellらの方法に着目し、飽和溶液の冷却と昇温
を繰り返せば大きな結晶を得ることができるとの知見を
得て創案されたものである。
The present invention pays attention to the method of D. Elwell et al. Shown in Reference 2 and finds that a large crystal can be obtained by repeating cooling and heating of a saturated solution. It was invented.

【0012】請求項1に記載の発明は、III 族原料を加
熱、融解し、これに窒素原子を含有する物質を供給反応
させて、III 族原料融液中にその窒化物を溶解させる工
程と、上記反応を継続しつつIII 族原料融液を冷却して
窒化物結晶を析出させる工程とを交互に繰り返すことを
特徴とする窒化物結晶の製造方法である。
[0012] The invention according to claim 1 comprises a step of heating and melting a group III raw material, supplying a nitrogen atom-containing substance to the group III material, and dissolving the nitride in the group III raw material melt. And cooling the group III raw material melt to precipitate nitride crystals while continuing the above-mentioned reaction. The method is alternately repeated.

【0013】本発明の製造方法のように、融液温度を繰
り返し昇降させると、析出結晶を大形にすることができ
るので、窒化物の溶解度が小さくても、結晶の収率を高
くすることができ、実用的な結晶を得ることができる。
この場合、窒化物の飽和溶液を冷却して析出させた結晶
は、溶媒であるIII 族原料融液を再度昇温する際に、再
び溶解してしまうおそれがあるため、融液を昇温させて
いる間にもIII 族原料融液にアンモニア等の物質を反応
させ続けることで、一旦析出した結晶が再溶解するのを
防いでいる。これを可能とするのは、結晶が融液に溶解
する速度が、アンモニア等のガスが融液と反応して窒化
物を溶解させる速度に比べ十分に遅いため、結晶が再溶
解する量は無視できるほど少ないからである。
When the temperature of the melt is repeatedly raised and lowered as in the production method of the present invention, the size of the precipitated crystal can be increased. Therefore, even if the solubility of the nitride is small, the yield of the crystal can be increased. And a practical crystal can be obtained.
In this case, the crystal precipitated by cooling the saturated solution of the nitride may be dissolved again when the temperature of the group III raw material melt as the solvent is raised again. During this time, a substance such as ammonia is continuously reacted with the group III raw material melt, thereby preventing the crystal once deposited from being redissolved. This is possible because the rate at which the crystal dissolves in the melt is sufficiently slower than the rate at which gas such as ammonia reacts with the melt to dissolve the nitride, so the amount of crystal re-dissolution is ignored. Because it is as small as possible.

【0014】請求項2に記載の発明は、請求項1に記載
の発明において、III 族原料融液中に温度勾配を設けた
ことを特徴とする窒化物結晶の製造方法である。III 族
原料融液中に温度勾配を設けた場合には、III 族原料融
液の低温部で窒化物結晶を優先的に成長させることがで
きる。
According to a second aspect of the present invention, there is provided a method for producing a nitride crystal according to the first aspect, wherein a temperature gradient is provided in the group III raw material melt. When a temperature gradient is provided in the group III raw material melt, nitride crystals can be preferentially grown in a low temperature portion of the group III raw material melt.

【0015】請求項3に記載の発明は、請求項2に記載
の発明において、III 族原料融液中に温度勾配を設け、
温度勾配を設けたIII 族原料融液中の低温部に種結晶を
配したことを特徴とする窒化物結晶の製造方法である。
III 族原料融液中に温度勾配を設けて、その低温部に種
結晶を配した場合には、種結晶に窒化物結晶が析出し、
それを核に容易に窒化物結晶が成長していくので、窒化
物結晶をより大きく成長させることができる。
According to a third aspect of the present invention, in the second aspect, a temperature gradient is provided in the group III raw material melt,
A method for producing a nitride crystal, characterized in that a seed crystal is arranged in a low-temperature portion of a group III raw material melt provided with a temperature gradient.
When a temperature gradient is provided in the group III raw material melt and a seed crystal is arranged in the low temperature part, nitride crystals precipitate on the seed crystal,
Since the nitride crystal grows easily using the nucleus as a nucleus, the nitride crystal can be grown larger.

【0016】請求項4に記載の発明は、請求項1ないし
3に記載の発明において、III 族原料がAl、Ga、I
nのうちのいずれかであり、且つ窒素原子を含有する物
質がアンモニアガス(NH3 )またはヒドラジンガス
(N2 4 )である窒化物結晶の製造方法である。窒素
原子を含有する物質がアンモニアガスまたはヒドラジン
ガスである場合には、危険な原料を使用する必要もな
く、安全である。
According to a fourth aspect of the present invention, in the first to third aspects, the group III raw material is Al, Ga, I
n is a method for producing a nitride crystal in which the substance containing a nitrogen atom is ammonia gas (NH 3 ) or hydrazine gas (N 2 H 4 ). When the substance containing a nitrogen atom is ammonia gas or hydrazine gas, it is safe because there is no need to use dangerous raw materials.

【0017】請求項5に記載の発明は、III 族原料を収
納する容器と、容器内のIII 族原料を加熱して融解させ
ると共に、III 族原料融液中に温度勾配を形成する加熱
手段と、温度勾配を形成したIII 族原料融液中の低温部
に種結晶を支持する結晶支持棒と、容器内のIII 族原料
融液に窒素原子を含有する物質を供給する供給手段と、
容器内に供給された窒素原子を含有する物質のうち、II
I 族原料融液と反応しなかった余剰分を排気する排気手
段とを備えた窒化物結晶の製造装置である。
According to a fifth aspect of the present invention, there is provided a container for accommodating a group III raw material, and heating means for heating and melting the group III raw material in the container and forming a temperature gradient in the group III raw material melt. A crystal supporting rod for supporting a seed crystal in a low temperature part of the group III raw material melt having a temperature gradient, a supply means for supplying a nitrogen atom-containing substance to the group III raw material melt in the container,
Of the nitrogen-containing substances supplied into the container, II
An exhaust device for exhausting a surplus that has not reacted with the group I raw material melt.

【0018】本発明の製造装置の作用を説明すると、ま
ず、III 族原料を容器に収納し、加熱手段により容器内
のIII 族原料を加熱して融解させる。このとき加熱手段
の加熱量を不均一にしてIII 族原料融液中に温度勾配を
形成してやる。結晶支持棒に種結晶を支持して温度勾配
を形成したIII 族原料融液中の低温部に種結晶を配す
る。次に、供給手段から容器内の原料融液に窒素原子を
含有する物質を供給する。窒素原子を含有する物質を供
給すると、原料融液と窒素原子とが反応してIII族原料
融液中にその窒化物が溶解する。この供給反応を継続し
ながら、加熱手段の加熱を停止して、III 族原料融液を
冷却して窒化物結晶を析出させる。上記した加熱と冷却
による窒化物の溶解と窒化物の析出を交互に繰り返すこ
とにより窒化物結晶を種結晶上に析出していく。この過
程で、容器内に供給される窒素原子を含有する物質のう
ち、原料融液と反応しなかった余剰分を排気手段から排
気する。
The operation of the manufacturing apparatus of the present invention will be described. First, a group III raw material is housed in a container, and the group III raw material in the container is heated and melted by a heating means. At this time, the heating amount of the heating means is made non-uniform to form a temperature gradient in the group III raw material melt. The seed crystal is placed in a low temperature part of the group III raw material melt in which a temperature gradient is formed by supporting the seed crystal on the crystal support rod. Next, a substance containing nitrogen atoms is supplied from the supply means to the raw material melt in the container. When a substance containing a nitrogen atom is supplied, the raw material melt reacts with the nitrogen atom to dissolve the nitride in the group III raw material melt. While continuing this supply reaction, the heating of the heating means is stopped, and the group III raw material melt is cooled to precipitate nitride crystals. By alternately repeating the dissolution of the nitride and the precipitation of the nitride by heating and cooling as described above, the nitride crystal is deposited on the seed crystal. In this process, of the nitrogen-containing material supplied into the container, an excess that has not reacted with the raw material melt is exhausted from the exhaust means.

【0019】請求項6に記載の発明は、請求項5に記載
の発明において、上記結晶支持棒を冷却する冷却手段を
加えた窒化物結晶の製造装置である。結晶支持棒を冷却
する冷却手段を加えると、結晶支持棒に支持された種結
晶がより一層有効に冷却されるので、結晶の収率を格段
と高くすることができる。
According to a sixth aspect of the present invention, there is provided the apparatus for producing a nitride crystal according to the fifth aspect of the invention, further comprising a cooling means for cooling the crystal supporting rod. When a cooling means for cooling the crystal support rod is added, the seed crystal supported by the crystal support rod is more effectively cooled, so that the yield of the crystal can be significantly increased.

【0020】[0020]

【発明の実施の形態】以下に本発明の実施の形態を説明
する。
Embodiments of the present invention will be described below.

【0021】(実施例1)本発明の一実施例として、図
1に示すような窒化物結晶の製造装置を製作した。これ
はIII 族原料を収納する石英容器1と、石英容器1の底
部を含む外周に設けられ石英容器1内のIII 族原料を加
熱して融解させる加熱ヒータ2と、石英容器1内のIII
族原料融液3に窒素原子を含有する物質を供給するガス
導入配管4と、石英容器1内に供給される窒素原子を含
有する物質のうち、III 族原料融液3と反応しなかった
余剰分を排気する排気配管5とを備えて構成される。
Example 1 As an example of the present invention, an apparatus for manufacturing a nitride crystal as shown in FIG. 1 was manufactured. The quartz container 1 contains a group III raw material, a heater 2 provided on the outer periphery including the bottom of the quartz container 1 for heating and melting the group III raw material in the quartz container 1, and a III container in the quartz container 1.
A gas introduction pipe 4 for supplying a substance containing nitrogen atoms to the group 3 raw material melt 3, and a surplus of the nitrogen containing substances supplied to the quartz container 1 which did not react with the group III raw material melt 3. And an exhaust pipe 5 for exhausting air.

【0022】この装置を用いて、GaN結晶の成長を行
った例を述べる。内径70mm、高さ150mmの石英容器
1にGaを3000g収納し、加熱ヒータ2でGaを5
0℃まで加熱してGa融液3を形成した。続いて、ガス
導入配管4を使ってGa融液3中にアンモニアガスを
1.01/minの流量で吹き込みながら、Ga融液3
を1000℃まで昇温した。融液3に吹き込まれたガス
は、一部融液と反応して溶解するが、反応に寄与しなか
った余剰のアンモニアガス9は、泡となって融液3内を
通過し、石英容器1上部の空間に出て、排気配管5を通
じて石英容器1外に排出される。排出されたアンモニア
ガスは、湿式の除外装置を通して大気放出する。
An example in which a GaN crystal is grown using this apparatus will be described. 3000 g of Ga is stored in a quartz container 1 having an inner diameter of 70 mm and a height of 150 mm.
By heating to 0 ° C., a Ga melt 3 was formed. Then, while blowing ammonia gas at a flow rate of 1.01 / min into the Ga melt 3 using the gas introduction pipe 4, the Ga melt 3
Was raised to 1000 ° C. The gas blown into the melt 3 partially dissolves by reacting with the melt, but surplus ammonia gas 9 that has not contributed to the reaction passes through the melt 3 as bubbles to form the quartz container 1. The gas exits the upper space and is discharged out of the quartz container 1 through the exhaust pipe 5. The discharged ammonia gas is released to the atmosphere through a wet exclusion device.

【0023】結晶成長は、融液3を1000℃の状態で
2時間保持した後、融液温度を−100℃/hrの速度
で800℃まで降温し、引続き20℃/minの速度で
1000℃まで昇温した。この昇降温を1サイクルとし
て、これを10サイクル連続して行った後、加熱ヒータ
2による加熱を中止して融液3を室温まで冷却した。こ
の間、アンモニアガスは初期の流速のまま流し続けた。
In the crystal growth, the melt 3 is held at 1000 ° C. for 2 hours, then the temperature of the melt is lowered to 800 ° C. at a rate of −100 ° C./hr, and then 1000 ° C. at a rate of 20 ° C./min. Temperature. The heating and cooling was performed as one cycle, and the heating and cooling by the heater 2 was stopped and the melt 3 was cooled to room temperature. During this time, the ammonia gas was kept flowing at the initial flow rate.

【0024】冷却したGa融液3を石英容器1から取り
出し、塩酸にGaを溶かして濾紙で濾したところ、直径
0.5〜6mmのGaN単結晶の粒が大量に得られた。得
られたGaNの総重量は61gであった。
The cooled Ga melt 3 was taken out of the quartz container 1, and Ga was dissolved in hydrochloric acid and filtered with filter paper. As a result, a large amount of GaN single crystal grains having a diameter of 0.5 to 6 mm was obtained. The total weight of the obtained GaN was 61 g.

【0025】(実施例2)実施例1と同様の装置を用
い、同様の方法で、昇降温の速度だけを次のように変え
て結晶成長を行った。1000℃に加熱するまでは実施
例1と同じであるが、融液3を1000℃の状態で2時
間保持した後は、融液温度を−20℃/hrの速度で8
00℃まで冷却した。その後、20℃/minの速度で
1000℃まで昇温した。この昇降温を1サイクルとし
て、これを3サイクル連続して行った後、加熱ヒータ2
による加熱を中止して融液3を室温まで冷却した。
(Example 2) Crystal growth was performed using the same apparatus as in Example 1 and in the same manner, changing only the rate of temperature rise and fall as follows. The procedure is the same as in Example 1 until heating to 1000 ° C., but after maintaining the melt 3 at 1000 ° C. for 2 hours, the melt temperature is increased at a rate of −20 ° C./hr to 8 ° C.
Cooled to 00 ° C. Thereafter, the temperature was raised to 1000 ° C. at a rate of 20 ° C./min. This heating / cooling was defined as one cycle, and the heating / cooling was performed three consecutive times.
And the melt 3 was cooled to room temperature.

【0026】冷却したGa融液3を石英容器1から取り
出し、塩酸にGaを溶かして濾紙で濾したところ、直径
4〜20mmの平板なGaN単結晶が多数得られた。得ら
れたGaNのうち、最大のものは、19mm×22mm×
2.1mmの六角平板状であった。
The cooled Ga melt 3 was taken out of the quartz container 1, and Ga was dissolved in hydrochloric acid and filtered with filter paper to obtain a large number of flat GaN single crystals having a diameter of 4 to 20 mm. Among the obtained GaN, the largest one was 19 mm × 22 mm ×
It was a hexagonal flat plate of 2.1 mm.

【0027】(実施例3)実施例3として、図2に示す
ような装置を製作してGaN結晶を成長した例を述べ
る。装置構造は上述した実施例1および実施例2で示し
たもの(図1)と基本的には同じであるが、異なる点が
2点ある。1つは、石英容器1と加熱ヒータ2の位置関
係を調節することで、Ga融液3内の深さ方向に温度分
布をもたせ、Ga融液深さが浅くなるにしたがって温度
が低くなるようにした点である。融液3内の深さ方向の
温度分布は図3に示すようになっている。2つは、冷却
器7のついた結晶支持棒6を設けた点であり、Ga融液
3内の上方に、予め成長させておいたGaN結晶の粒を
種結晶8として保持しておくことのできる結晶支持棒6
を設け、この支持棒6は冷却器7によって冷却されてお
り、支持棒6の先端に取り付けられた種結晶8がGa融
液3内で常に最も低い温度に保たれるようにしている。
(Embodiment 3) As Embodiment 3, an example in which an apparatus as shown in FIG. 2 is manufactured and a GaN crystal is grown will be described. The device structure is basically the same as that shown in the first and second embodiments (FIG. 1), but there are two differences. One is to adjust the positional relationship between the quartz container 1 and the heater 2 so that a temperature distribution is provided in the depth direction within the Ga melt 3 so that the temperature decreases as the Ga melt depth decreases. It is a point that was made. The temperature distribution in the depth direction in the melt 3 is as shown in FIG. The second point is that a crystal support rod 6 with a cooler 7 is provided, and a GaN crystal grain that has been grown in advance is held as a seed crystal 8 above the Ga melt 3. Crystal support rod 6
The support rod 6 is cooled by a cooler 7 so that the seed crystal 8 attached to the tip of the support rod 6 is always kept at the lowest temperature in the Ga melt 3.

【0028】この装置を用いて、実施例2に示した条件
で融液に温度サイクルを与えて、結晶成長を行った。本
装置を用いると、結晶は、最低温部におかれた種結晶8
上に優先的に成長するため、1個の大形単結晶を育成す
ることができる。この実施例では、36mm×36mm×1
9mm、重量16.1gの六角柱状結晶を成長することが
できた。
Using this apparatus, a crystal was grown by giving a temperature cycle to the melt under the conditions shown in Example 2. With this apparatus, the seed crystal 8
Since it grows preferentially on the top, one large single crystal can be grown. In this embodiment, 36 mm × 36 mm × 1
Hexagonal columnar crystals weighing 9 mm and weighing 16.1 g could be grown.

【0029】上述したように、実施例1〜3によれば純
度の高い大形のGaN結晶を得ることができるので、こ
の結晶を基板に用いれば、青色発光ダイオードの高効率
化や長寿命化に有効なだけでなく、未だ実用化に至って
いない青色発光レーザダイオードの実用化を推進する上
にも大きく貢献できる。
As described above, according to the first to third embodiments, a large-sized GaN crystal with high purity can be obtained. Therefore, if this crystal is used for the substrate, the efficiency and the life of the blue light emitting diode can be increased. Not only is this effective, but it can also contribute significantly to promoting the practical use of blue-emitting laser diodes that have not yet been put to practical use.

【0030】また、実施例により得られるGaN結晶
は、安価で純度が高く、また半導体融液に溶けやすい形
状をしているので、GaAsやGaP等の半導体結晶中
に窒素をドープするドーパントとして最適であり、ドー
プ効率を向上することができる。
The GaN crystal obtained by the embodiment is inexpensive, has high purity, and has a shape easily soluble in a semiconductor melt. Therefore, the GaN crystal is optimal as a dopant for doping nitrogen into a semiconductor crystal such as GaAs or GaP. And the doping efficiency can be improved.

【0031】なお、上述した実施例1〜3において、G
a中のGaNの飽和モル濃度は、正確には求められてい
ないが、概算で1000℃において3.51×10-3
ol/dm3 、800℃において3.52×10-4mo
l/dm3 程度であり、Ga融液を800℃から100
0℃の間で昇温させれば、Ga融液を3000g使用し
たとき、一回の昇降温で理論的には約11g、実際の成
長でも数gのGaN結晶を得ることができる。
In the first to third embodiments described above, G
Although the saturated molar concentration of GaN in a is not exactly determined, it is estimated at 3.51 × 10 −3 m at 1000 ° C.
ol / dm 3 , 3.52 × 10 −4 mo at 800 ° C.
l / dm 3 , and the Ga melt is heated from 800 ° C. to 100 ° C.
If the temperature is raised between 0 ° C., when 3000 g of Ga melt is used, about 11 g can be theoretically obtained by one temperature rise and fall, and several g of GaN crystal can be obtained even by actual growth.

【0032】Ga融液の温度をもっと上げることができ
れば、GaNの飽和濃度も大きくなり、一度に多量の結
晶を析出させることができるようになるが、融液を収納
する容器材質や加熱用のヒータ材質(または、加熱方法
そのもの)に制限が加わるため、現実的には、高くても
1200℃程度が実用的な上限であろう。降温時に融液
を何度にまで冷却するかに関しては、800℃程度が適
当であると考えられる。それ以上下げても結晶の析出量
はさほど増えず、却って次の昇温時に無駄な時間と電力
を消費するだけになってしまうからである。
If the temperature of the Ga melt can be further raised, the saturation concentration of GaN will increase, and a large amount of crystals can be deposited at one time. Since the heater material (or the heating method itself) is restricted, the practical upper limit is about 1200 ° C. at the highest. It is considered that about 800 ° C. is appropriate as to how many times the melt is cooled when the temperature is lowered. If the temperature is further reduced, the amount of precipitated crystals does not increase so much, but rather wastes time and power at the next temperature rise.

【0033】以上のような理由で実施例では昇降温範囲
を800℃〜1000℃としたが、原理的には温度の最
適値を一義的に決めることはできない。また、昇降温の
速度に関しては、降温速度が遅いほど成長する結晶の核
析出数が少なく、結晶粒径は大きくなる傾向にあるが、
成長装置の容量によっても冷却速度と析出結晶径の関係
は大きく変るので、装置毎に所望の結晶サイズに合わせ
て設定する必要がある。なお、容器内の雰囲気圧力は、
高い程窒化物の溶解度が増すため、結晶の収率がよくな
るが、従来の文献1のような高圧は必要としないもの
の、特に最適値が決められるものではない。
Although the temperature rise and fall range is set to 800 ° C. to 1000 ° C. in the embodiment for the above reasons, the optimum value of the temperature cannot be determined in principle. As for the rate of temperature rise and fall, the slower the temperature drop rate, the smaller the number of crystal nuclei that grow and the larger the crystal grain size tends to be.
Since the relationship between the cooling rate and the diameter of the precipitated crystal greatly changes depending on the capacity of the growth apparatus, it is necessary to set the crystal size for each apparatus in accordance with the desired crystal size. The atmosphere pressure in the container is
The higher the solubility of the nitride is, the higher the yield of the crystal becomes. Therefore, the high pressure as in the conventional literature 1 is not required, but the optimum value cannot be determined.

【0034】なお、上記実施例1〜3では、本発明の要
点部分を示す石英容器周りだけについて説明したが、石
英容器1の周辺機器として、ガス流量を調節するマスフ
ローコントローラや加熱ヒータ2の温度を自動的にプロ
グラム制御することのできる温調器を組合わせたシステ
ムを構築すると、より結晶成長の制御が容易になる。
In the first to third embodiments, only the surroundings of the quartz container showing the essential part of the present invention have been described. However, peripheral devices of the quartz container 1 include a mass flow controller for adjusting a gas flow rate and the temperature of the heater 2. By constructing a system in which a temperature controller capable of automatically controlling the crystal growth is constructed, it becomes easier to control the crystal growth.

【0035】[0035]

【発明の効果】本発明の窒化物結晶の製造方法による
と、特に従来成長させることができなかった大形のバル
ク単結晶を容易かつ安価に成長させることができる。そ
の結果、青色発光素子用の基板、および安価で純度が高
く半導体融液に溶けやすい窒化物結晶ドーパントを実現
できる。また、従来HVPEで使用されてきた塩素など
のガスや、MOVPE法で使用されている有機金属など
の危険な原料を使用する必要もなく安全である。
According to the method for manufacturing a nitride crystal of the present invention, a large bulk single crystal, which could not be grown conventionally, can be grown easily and inexpensively. As a result, a substrate for a blue light emitting element and a nitride crystal dopant that is inexpensive, has high purity, and is easily soluble in a semiconductor melt can be realized. In addition, it is safe because it is not necessary to use gases such as chlorine conventionally used in HVPE and dangerous raw materials such as organic metals used in MOVPE.

【0036】また、本発明の窒化物の製造装置による
と、III 族の窒化物結晶を簡単な装置によって適切に得
るができる。
Further, according to the nitride manufacturing apparatus of the present invention, a group III nitride crystal can be appropriately obtained by a simple apparatus.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1および第2の実施例にかかるGa
N結晶の製造装置の断面模式図である。
FIG. 1 shows Ga according to first and second embodiments of the present invention.
It is a cross section of an apparatus for manufacturing an N crystal.

【図2】本発明の第3の実施例にかかるGaN結晶の製
造装置の断面模式図である。
FIG. 2 is a schematic sectional view of an apparatus for manufacturing a GaN crystal according to a third embodiment of the present invention.

【図3】第3の実施例にかかる融液内の温度分布を示す
図である。
FIG. 3 is a diagram showing a temperature distribution in a melt according to a third embodiment.

【符号の説明】[Explanation of symbols]

1 石英容器 2 加熱ヒータ 3 III 族原料融液(Ga融液) 4 ガス導入配管 5 排気配管 6 結晶支持棒 7 冷却器 8 GaN種結晶 DESCRIPTION OF SYMBOLS 1 Quartz container 2 Heater 3 Group III raw material melt (Ga melt) 4 Gas introduction pipe 5 Exhaust pipe 6 Crystal support rod 7 Cooler 8 GaN seed crystal

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】III 族原料を加熱、融解し、これに窒素原
子を含有する物質を供給反応させて、III 族原料融液中
にその窒化物を溶解させる工程と、上記反応を継続しつ
つIII 族原料融液を冷却して窒化物結晶を析出させる工
程とを交互に繰り返すことを特徴とする窒化物結晶の製
造方法。
A step of heating and melting a group III raw material, supplying a nitrogen atom-containing substance to the group III raw material, and dissolving the nitride in the group III raw material melt; A method for producing a nitride crystal, comprising alternately repeating a step of cooling a group III raw material melt to precipitate a nitride crystal.
【請求項2】請求項1に記載の窒化物結晶の製造方法に
おいて、III 族原料融液中に温度勾配を設けたことを特
徴とする窒化物結晶の製造方法。
2. The method for producing a nitride crystal according to claim 1, wherein a temperature gradient is provided in the group III raw material melt.
【請求項3】請求項2に記載の窒化物結晶の製造方法に
おいて、温度勾配を設けたIII 族原料融液中の低温部に
種結晶を配したことを特徴とする窒化物結晶の製造方
法。
3. The method for producing a nitride crystal according to claim 2, wherein a seed crystal is arranged in a low temperature part of the group III raw material melt provided with a temperature gradient. .
【請求項4】III 族原料がAl、Ga、Inのうちのい
ずれかであり、且つ窒素原子を含有する物質がアンモニ
アガスまたはヒドラジンガスである請求項1ないし3の
いずれかに記載の窒化物結晶の製造方法。
4. The nitride according to claim 1, wherein the group III raw material is any one of Al, Ga, and In, and the substance containing a nitrogen atom is ammonia gas or hydrazine gas. Method for producing crystals.
【請求項5】III 族原料を収納する容器と、 容器内のIII 族原料を加熱して融解させると共に、III
族原料融液中に温度勾配を形成する加熱手段と、温度勾
配を形成したIII 族原料融液中の低温部に種結晶を支持
する結晶支持棒と、容器内のIII 族原料融液に窒素原子
を含有する物質を供給する供給手段と、容器内に供給さ
れた窒素原子を含有する物質のうち、III 族原料融液と
反応しなかった余剰分を排気する排気手段とを備えた窒
化物結晶の製造装置。
5. A container for accommodating a group III raw material, a group III raw material in the container is heated and melted, and
A heating means for forming a temperature gradient in the group III raw material melt, a crystal support rod for supporting a seed crystal in a low temperature part of the group III raw material melt having the temperature gradient, and a nitrogen support for the group III raw material melt in the container. A nitride comprising: a supply unit that supplies a substance containing atoms; and an exhaust unit that exhausts a surplus of the nitrogen-containing substance supplied into the container that has not reacted with the group III raw material melt. Crystal manufacturing equipment.
【請求項6】上記結晶支持棒を冷却する冷却手段を加え
た請求項5に記載の窒化物結晶の製造装置。
6. The apparatus for producing a nitride crystal according to claim 5, further comprising cooling means for cooling said crystal support rod.
JP16481196A 1996-06-25 1996-06-25 Production of nitride crystal and production unit therefor Pending JPH107496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16481196A JPH107496A (en) 1996-06-25 1996-06-25 Production of nitride crystal and production unit therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16481196A JPH107496A (en) 1996-06-25 1996-06-25 Production of nitride crystal and production unit therefor

Publications (1)

Publication Number Publication Date
JPH107496A true JPH107496A (en) 1998-01-13

Family

ID=15800375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16481196A Pending JPH107496A (en) 1996-06-25 1996-06-25 Production of nitride crystal and production unit therefor

Country Status (1)

Country Link
JP (1) JPH107496A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998055671A1 (en) * 1997-06-05 1998-12-10 Centrum Badan Wysokocisnieniowych Polskiej Akademii Nauk THE METHOD OF FABRICATION OF HIGHLY RESISTIVE GaN BULK CRYSTALS
US6270569B1 (en) * 1997-06-11 2001-08-07 Hitachi Cable Ltd. Method of fabricating nitride crystal, mixture, liquid phase growth method, nitride crystal, nitride crystal powders, and vapor phase growth method
WO2003035945A2 (en) * 2001-10-26 2003-05-01 Ammono Sp. Zo.O. Substrate for epitaxy
US6656615B2 (en) 2001-06-06 2003-12-02 Nichia Corporation Bulk monocrystalline gallium nitride
WO2004003261A1 (en) * 2002-06-26 2004-01-08 Ammono Sp. Z O.O. Process for obtaining of bulk monocrystallline gallium-containing nitride
WO2004053206A1 (en) * 2002-12-11 2004-06-24 Ammono Sp. Z O.O. Process for obtaining bulk monocrystalline gallium-containing nitride
WO2005095681A1 (en) * 2004-03-31 2005-10-13 Matsushita Electric Industrial Co., Ltd. Method for producing iii group element nitride crystal, production apparatus for use therein, and semiconductor element produced thereby
US7057211B2 (en) 2001-10-26 2006-06-06 Ammono Sp. Zo.O Nitride semiconductor laser device and manufacturing method thereof
US7081162B2 (en) 2001-06-06 2006-07-25 Nichia Corporation Method of manufacturing bulk single crystal of gallium nitride
US7250640B2 (en) 1999-06-09 2007-07-31 Ricoh Company, Ltd. Production of a GaN bulk crystal substrate and a semiconductor device formed on a GaN bulk crystal substrate
JP2008001593A (en) * 1999-06-09 2008-01-10 Ricoh Co Ltd Crystal manufacturing apparatus
US7335262B2 (en) 2002-05-17 2008-02-26 Ammono Sp. Z O.O. Apparatus for obtaining a bulk single crystal using supercritical ammonia
JP2008056558A (en) * 2000-10-24 2008-03-13 Ricoh Co Ltd Group-iii nitride crystal, its production method, growth apparatus and semiconductor device
JP2009091225A (en) * 2007-10-12 2009-04-30 Ngk Insulators Ltd Method for manufacturing nitride single crystal
JP2010229031A (en) * 2010-07-08 2010-10-14 Ricoh Co Ltd Method of manufacturing group iii nitride substrate and group iii nitride crystal substrate
JP2011073968A (en) * 1999-06-09 2011-04-14 Ricoh Co Ltd Apparatus for producing crystal
JP2011088822A (en) * 2011-01-28 2011-05-06 Ricoh Co Ltd Method for producing group iii nitride crystal
WO2011020912A3 (en) * 2009-08-21 2011-05-19 Loughborough University A method, apparatus, computer readable storage medium and computer program for forming an object
US8186414B2 (en) 2009-08-21 2012-05-29 Loughborough University Method for forming an object
JP2013129598A (en) * 2013-03-22 2013-07-04 Ricoh Co Ltd Method of producing group-iii nitride crystal
US8562737B2 (en) 2000-10-19 2013-10-22 Ricoh Company, Ltd. Crystal growth method, crystal growth apparatus, group-III nitride crystal and group III nitride semiconductor device

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6273948B1 (en) 1997-06-05 2001-08-14 Centrum Badan Wysokocisnieniowych Polskiej Akademii Nauk Method of fabrication of highly resistive GaN bulk crystals
WO1998055671A1 (en) * 1997-06-05 1998-12-10 Centrum Badan Wysokocisnieniowych Polskiej Akademii Nauk THE METHOD OF FABRICATION OF HIGHLY RESISTIVE GaN BULK CRYSTALS
US6270569B1 (en) * 1997-06-11 2001-08-07 Hitachi Cable Ltd. Method of fabricating nitride crystal, mixture, liquid phase growth method, nitride crystal, nitride crystal powders, and vapor phase growth method
US7250640B2 (en) 1999-06-09 2007-07-31 Ricoh Company, Ltd. Production of a GaN bulk crystal substrate and a semiconductor device formed on a GaN bulk crystal substrate
US9869033B2 (en) 1999-06-09 2018-01-16 Ricoh Company, Ltd. Production of a GaN bulk crystal substrate and a semiconductor device formed on a GaN bulk crystal substrate
JP2015017038A (en) * 1999-06-09 2015-01-29 株式会社リコー Crystal production apparatus
US8591647B2 (en) 1999-06-09 2013-11-26 Ricoh Company, Ltd. Production of a GaN bulk crystal substrate and a semiconductor device formed thereon
JP2013227221A (en) * 1999-06-09 2013-11-07 Ricoh Co Ltd Method for producing crystal of group iii nitride
JP2011073968A (en) * 1999-06-09 2011-04-14 Ricoh Co Ltd Apparatus for producing crystal
US7508003B2 (en) 1999-06-09 2009-03-24 Ricoh Company, Ltd. Production of a GaN bulk crystal substrate and a semiconductor device formed thereon
JP2008001593A (en) * 1999-06-09 2008-01-10 Ricoh Co Ltd Crystal manufacturing apparatus
US8562737B2 (en) 2000-10-19 2013-10-22 Ricoh Company, Ltd. Crystal growth method, crystal growth apparatus, group-III nitride crystal and group III nitride semiconductor device
JP2008056558A (en) * 2000-10-24 2008-03-13 Ricoh Co Ltd Group-iii nitride crystal, its production method, growth apparatus and semiconductor device
US7081162B2 (en) 2001-06-06 2006-07-25 Nichia Corporation Method of manufacturing bulk single crystal of gallium nitride
US6656615B2 (en) 2001-06-06 2003-12-02 Nichia Corporation Bulk monocrystalline gallium nitride
US7160388B2 (en) 2001-06-06 2007-01-09 Nichia Corporation Process and apparatus for obtaining bulk monocrystalline gallium-containing nitride
US7252712B2 (en) 2001-06-06 2007-08-07 Ammono Sp. Z O.O. Process and apparatus for obtaining bulk monocrystalline gallium-containing nitride
US7422633B2 (en) 2001-06-06 2008-09-09 Ammono Sp. Zo. O. Method of forming gallium-containing nitride bulk single crystal on heterogeneous substrate
US7374615B2 (en) 2001-06-06 2008-05-20 Ammono.Sp.Zo.O Method and equipment for manufacturing aluminum nitride bulk single crystal
US7057211B2 (en) 2001-10-26 2006-06-06 Ammono Sp. Zo.O Nitride semiconductor laser device and manufacturing method thereof
AU2002347692C1 (en) * 2001-10-26 2008-03-06 Ammono Sp. Zo.O. Bulk monocrystalline gallium nitride
US7420261B2 (en) 2001-10-26 2008-09-02 Ammono Sp. Z O.O. Bulk nitride mono-crystal including substrate for epitaxy
US7132730B2 (en) 2001-10-26 2006-11-07 Ammono Sp. Z.O.O. Bulk nitride mono-crystal including substrate for epitaxy
WO2003035945A3 (en) * 2001-10-26 2003-10-16 Ammono Sp Zoo Substrate for epitaxy
AU2002347692B2 (en) * 2001-10-26 2007-08-02 Ammono Sp. Zo.O. Bulk monocrystalline gallium nitride
WO2003035945A2 (en) * 2001-10-26 2003-05-01 Ammono Sp. Zo.O. Substrate for epitaxy
US7335262B2 (en) 2002-05-17 2008-02-26 Ammono Sp. Z O.O. Apparatus for obtaining a bulk single crystal using supercritical ammonia
US7364619B2 (en) 2002-06-26 2008-04-29 Ammono. Sp. Zo.O. Process for obtaining of bulk monocrystalline gallium-containing nitride
WO2004003261A1 (en) * 2002-06-26 2004-01-08 Ammono Sp. Z O.O. Process for obtaining of bulk monocrystallline gallium-containing nitride
WO2004053206A1 (en) * 2002-12-11 2004-06-24 Ammono Sp. Z O.O. Process for obtaining bulk monocrystalline gallium-containing nitride
US7794539B2 (en) 2004-03-31 2010-09-14 Panasonic Corporation Method for producing III group element nitride crystal, production apparatus for use therein, and semiconductor element produced thereby
JP4819677B2 (en) * 2004-03-31 2011-11-24 パナソニック株式会社 Group III element nitride crystal manufacturing method, manufacturing apparatus used therefor, and semiconductor device obtained thereby
WO2005095681A1 (en) * 2004-03-31 2005-10-13 Matsushita Electric Industrial Co., Ltd. Method for producing iii group element nitride crystal, production apparatus for use therein, and semiconductor element produced thereby
EP1736573A4 (en) * 2004-03-31 2010-09-15 Panasonic Corp Method for producing iii group element nitride crystal, production apparatus for use therein, and semiconductor element produced thereby
EP1736573A1 (en) * 2004-03-31 2006-12-27 Matsushita Electric Industries Co., Ltd. Method for producing iii group element nitride crystal, production apparatus for use therein, and semiconductor element produced thereby
JP2009091225A (en) * 2007-10-12 2009-04-30 Ngk Insulators Ltd Method for manufacturing nitride single crystal
WO2011020912A3 (en) * 2009-08-21 2011-05-19 Loughborough University A method, apparatus, computer readable storage medium and computer program for forming an object
US8186414B2 (en) 2009-08-21 2012-05-29 Loughborough University Method for forming an object
US8347940B2 (en) 2009-08-21 2013-01-08 Loughborough University Method for forming an object
JP2010229031A (en) * 2010-07-08 2010-10-14 Ricoh Co Ltd Method of manufacturing group iii nitride substrate and group iii nitride crystal substrate
JP2011088822A (en) * 2011-01-28 2011-05-06 Ricoh Co Ltd Method for producing group iii nitride crystal
JP2013129598A (en) * 2013-03-22 2013-07-04 Ricoh Co Ltd Method of producing group-iii nitride crystal

Similar Documents

Publication Publication Date Title
JPH107496A (en) Production of nitride crystal and production unit therefor
JP4647525B2 (en) Method for producing group III nitride crystal
CN1282771C (en) Method for mfg. aluminum nitride bulk single crystal
JP4403067B2 (en) Bulk single crystal production facility using supercritical ammonia
JP4113837B2 (en) Method for growing gallium-containing nitride single crystals on different substrates
EP1490537B1 (en) High pressure high temperature growth of crystalline group iii metal nitrides
JP4489446B2 (en) Method for producing gallium-containing nitride single crystal
JP2003277197A (en) CdTe SINGLE CRYSTAL, CdTe POLYCRYSTAL AND METHOD FOR PRODUCING THE SINGLE CRYSTAL
JPH11189498A (en) Production of nitride crystal, mixture, liquid phase growth, nitride crystal, nitride crystal powder, and vapor growth
JP2006347865A (en) Container for growing compound semiconductor single crystal, compound semiconductor single crystal and manufacturing method of compound semiconductor single crystal
JP2008247706A (en) Method for growing corundum single crystal, corundum single crystal and corundum single crystal wafer
JP2004189549A (en) Method of manufacturing aluminum nitride single crystal
CN100472000C (en) Process for obtaining of bulk monocrystalline gallium-containing nitride
EP1114884A1 (en) Process for producing compound semiconductor single crystal
JP2020125217A (en) Manufacturing method and manufacturing apparatus of group iii nitride crystal
JP2004099390A (en) Method of manufacturing compound semiconductor single crystal and compound semiconductor single crystal
JP2004203721A (en) Apparatus and method for growing single crystal
JP3633212B2 (en) Single crystal growth method
JP2005132717A (en) Compound semiconductor single crystal and its manufacturing method
JP2001089299A (en) Method of producing compound semiconductor
JP2004269274A (en) Vessel for growing semiconductor single-crystal, and method for manufacturing compound semiconductor single crystal