WO2005094894A1 - 細胞に核酸を導入するための製剤 - Google Patents

細胞に核酸を導入するための製剤 Download PDF

Info

Publication number
WO2005094894A1
WO2005094894A1 PCT/JP2005/006370 JP2005006370W WO2005094894A1 WO 2005094894 A1 WO2005094894 A1 WO 2005094894A1 JP 2005006370 W JP2005006370 W JP 2005006370W WO 2005094894 A1 WO2005094894 A1 WO 2005094894A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
cell
nucleic acid
spermine
pullulan
Prior art date
Application number
PCT/JP2005/006370
Other languages
English (en)
French (fr)
Inventor
Yasuhiko Tabata
Original Assignee
Medgel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medgel Corporation filed Critical Medgel Corporation
Priority to US11/547,103 priority Critical patent/US20090117657A1/en
Priority to JP2006511825A priority patent/JPWO2005094894A1/ja
Priority to EP05727376A priority patent/EP1738769A4/en
Publication of WO2005094894A1 publication Critical patent/WO2005094894A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/61Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule the organic macromolecular compound being a polysaccharide or a derivative thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B35/00Preparation of derivatives of amylopectin
    • C08B35/04Ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0009Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Glucans, e.g. polydextrose, alternan, glycogen; (alpha-1,4)(alpha-1,6)-D-Glucans; (alpha-1,3)(alpha-1,4)-D-Glucans, e.g. isolichenan or nigeran; (alpha-1,4)-D-Glucans; (alpha-1,3)-D-Glucans, e.g. pseudonigeran; Derivatives thereof
    • C08B37/0018Pullulan, i.e. (alpha-1,4)(alpha-1,6)-D-glucan; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0009Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Glucans, e.g. polydextrose, alternan, glycogen; (alpha-1,4)(alpha-1,6)-D-Glucans; (alpha-1,3)(alpha-1,4)-D-Glucans, e.g. isolichenan or nigeran; (alpha-1,4)-D-Glucans; (alpha-1,3)-D-Glucans, e.g. pseudonigeran; Derivatives thereof
    • C08B37/0021Dextran, i.e. (alpha-1,4)-D-glucan; Derivatives thereof, e.g. Sephadex, i.e. crosslinked dextran
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H1/00Macromolecular products derived from proteins
    • C08H1/06Macromolecular products derived from proteins derived from horn, hoofs, hair, skin or leather
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08L3/14Amylose derivatives; Amylopectin derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/02Dextran; Derivatives thereof

Definitions

  • the present invention relates to a preparation having a polysaccharide power for introducing a nucleic acid into cells.
  • Examples of the drinking action include the use as a carrier of nucleic acids such as cationic polymers or ribosomes. This is to neutralize the negative charge of the nucleic acid with a polyion complex and reduce its molecular size in order to allow the negatively charged nucleic acid to interact with cells having a negatively charged surface and to be taken into the cell. Is the basic idea. However, in this method, high uptake cannot be expected because the uptake into cells depends on the mechanism of phagocytosis. Some methods such as the calcium phosphate method This method is also basically the same mechanism as that of the Zionyidori carrier, and its efficiency is not high.
  • a nucleic acid carrier in which a monosaccharide molecule or a disaccharide molecule is chemically bonded to a water-soluble polymer is synthesized.
  • a monosaccharide molecule, a disaccharide molecule, or a trisaccharide molecule themselves bind to each other while the polymerized polysaccharide enhances the uptake of nucleic acid into cells.
  • sugar recognition receptors present on the cell surface depending on the types of sugar molecules that can be recognized.
  • glucose is an essential substance for the survival of cells, and many cells have glucose-recognizing receptors on their surfaces for the purpose of efficiently taking them up.
  • Immunocompetent cells such as macrophages, monocytes, lymphocytes, and dendritic cells have the ability to recognize galactose or mannose. Putter is known to exist! / Puru.
  • these sugar-recognition receptors are known to be present on the cell surface, there are no reports on the use of polysaccharides to incorporate nucleic acids into cells via these receptors. Since the type of sugar receptor varies from cell to cell, it is possible to take advantage of this difference to incorporate nucleic acids into specific cells.
  • parenchymal cells of the liver have galactose recognition receptors on their cell surfaces. It has been reported that pullulan, a polysaccharide recognized by the galactose recognition receptor, has the ability to target nucleic acids to the liver in the body. This report reports the specific accumulation of intravenously administered pullulan in the liver using the property of pullulan interacting with the galactose residue recognition receptor.
  • the increased expression of the biological action of nucleic acids in the liver is due to the fact that nucleic acids complexed with pullulan are targeted to the liver, and pullulans enhance the uptake of nucleic acids into cells. That's what I mean! /.
  • Stem cells for example, hematopoietic stem cells, undifferentiated mesenchymal stem cells collected from bone marrow, or tissues such as fat, skin, muscle, nerve, liver, spleen, etc.
  • somatic cells it is known that the efficiency of nucleic acid uptake is low.
  • nucleic acid carriers using cationized polymers or cationized ribosomes have been researched and developed, and are commercially available.
  • attempts to introduce nucleic acids into stem cells using these carriers have yielded little good results. The reason for the difference in transfection efficiency between normal cells and stem cells is currently unknown.
  • stem cells are more susceptible to weakening and death when cultured with a cationized carrier than normal cells. This is thought to be because the negative charge on the cell surface interacts with the positive charge of the nucleic acid carrier complex, so that the fluidity of the cell membrane deteriorates and the cells are likely to die. In contrast, the interaction between the nucleic acid carrier and the cell via the receptor and the uptake have a small effect on the fluidity of the cell membrane, and as a result, the cytotoxicity is low. Forces that attempt to temporarily increase the permeability of the cell membrane to nucleic acids by applying electric pulses, ultrasonic irradiation, etc., and to enhance the introduction of nucleic acids into cells.These physical stimuli also damage cells. The problem is that the viability of the highly viable cells is low.
  • Prior art document information related to the present invention includes the following: WO01Z34206 And JP 2003-104914.
  • An object of the present invention is to provide a novel preparation for efficiently introducing a nucleic acid into cells.
  • the inventor of the present invention introduced a nucleic acid into a cell by using a macromolecule in which a sugar molecule itself recognized by a sugar recognition receptor is bound, that is, a polysaccharide, thereby introducing the nucleic acid into the cell. He saw the efficiency increase and started.
  • the present invention provides a composition comprising a polysaccharide for promoting the introduction of a nucleic acid into a cell.
  • the present invention also provides a method for introducing a nucleic acid into a cell, the method comprising forming a polyion complex of the nucleic acid and a polysaccharide, and incorporating the polyion complex into the cell.
  • the cells are selected from bone marrow mesenchymal stem cells, neural cell lines, adipose tissue-derived stem cells, immune cells, neural cells, chondrocytes, epithelial cells, primary cultured cells and cancer cells.
  • the polysaccharide is a cationized pullulan derivative, a cationized dextran derivative, or a cationized mannan derivative.
  • FIG. 1 shows luciferase activity by luciferase gene transfer into undifferentiated mesenchymal stem cells.
  • FIG. 2 shows luciferase activity by luciferase gene transfer into a nerve-derived cell line.
  • FIG. 3 shows luciferase activity by luciferase gene transfer into human adipose tissue-derived stem cells.
  • FIG. 4 shows the results of FACS analysis of the expression efficiency of the EGFP gene introduced into human dendritic cells.
  • FIG. 5 shows the luciferase activity by luciferase gene transfer into mouse bone marrow stem cells (MSCs).
  • FIG. 6 shows luciferase activity when the amount of the luciferase gene was changed and introduced.
  • Fig. 7 shows the case where luciferase gene was introduced using pullulan of different molecular weight. 3 shows the luciferase activity of the luciferase.
  • FIG. 8 shows the luciferase activity when the luciferase gene was introduced by changing the spermine introduction rate into pullulans having different molecular weights.
  • FIG. 9 shows luciferase activity by luciferase gene transfer into cancer cells.
  • FIG. 10 shows luciferase activity by introducing a luciferase gene into cancer cells.
  • FIG. 11 shows luciferase activity by introducing a luciferase gene into cancer cells.
  • FIG. 12 shows luciferase activity by introducing a luciferase gene into stem cells.
  • FIG. 13 shows luciferase activity by introducing a luciferase gene into primary cultured cells.
  • FIG. 14 shows luciferase activity by luciferase gene transfer into alveolar epithelium typell RLE6TN.
  • FIG. 15 shows luciferase activity by luciferase gene transfer into mouse peritoneal macrophages.
  • FIG. 16 shows luciferase activity by luciferase gene transfer into rat peritoneal macrophages.
  • FIG. 17 shows luciferase activity by introducing a luciferase gene into mouse ES cells.
  • the sugar-recognition receptors are roughly classified into three types, which recognize sugar chains such as glucose, mannose and galactose.
  • Examples of the polysaccharide to be bound to these receptors include, for example, amylose, amylopectin or dextran, dalcomannan, and pullulan, which are polymers to which the respective saccharides are bound, and various derivatives thereof.
  • the polysaccharide used is recognized by the sugar recognition receptor, the physical properties of the polysaccharide itself, such as solubility and branching, such as water-solubility and water-insolubility, are considered Is not a condition for selecting.
  • nucleic acid carrier of the present invention even a gene product related to the origin of a polysaccharide such as an animal, a plant, or a microorganism or a gene product can be used as the nucleic acid carrier of the present invention.
  • the polysaccharide is cationized by chemically reacting the polysaccharide with a diamine conjugate and introducing an amino group.
  • a known reaction technique can be used. That is, a 1, 2, 3 or quaternary amino group is chemically introduced into the polysaccharide to form a polyion complex with the negative charge of the nucleic acid.
  • hyaluronic acid, chitin, chitosan, or the like can be used as a nucleic acid carrier.
  • the polysaccharide carrier a plurality of the above-mentioned polysaccharides or derivatives thereof may be mixed or used as a composite. Whether the polysaccharide-nucleic acid polyion complex is taken up into the cell via the sugar recognition receptor depends on whether the recognized monosaccharide or the substance is used to treat the cell and block the sugar recognition receptor. After that, it can be confirmed by evaluating whether the uptake of the nucleic acid decreases.
  • the polysaccharide includes a water-soluble polysaccharide pullulan.
  • Pullulan is an a-glucan that is fermented and produced by Aureobasidium pullulans using partially hydrolyzed starch syrup as a raw material, and is a linear chain of maltotriose consisting of three glucoses linked by ⁇ -1,6 bonds. It is a water-soluble polymer. It is known that pullulan is taken up into cells via an asia oral glycoprotein receptor expressed on the cell surface. Products of various molecular weights are commercially available!
  • the molecular weight of the pullulan used / is preferably ⁇ , about 2,000-500,000, and more preferably ⁇ , about 20,000-100,000. Even if the type of polysaccharide is changed, the preferred molecular weight is in the above-mentioned range.
  • a cationic dextran derivative in which a cationic group is introduced into pullulan in order to form a polyion complex with a nucleic acid, a cationic dextran derivative in which a cationic group is introduced into pullulan, a cationized dextran derivative in which a dextrin is introduced into dextran, Alternatively, a cationized mannan derivative in which a cation group is introduced into mannan is used.
  • the step of cationization is not particularly limited as long as it can introduce a functional group that cationizes under physiological conditions.
  • the hydroxyl group on the pullulan molecule can be replaced with a primary, secondary or tertiary amino group or an ammonium salt.
  • Alkyldiamines such as ethylenediamine, N, N dimethyl-1,3 diaminopropane, trimethylammo-dimethylacethydrazide, spermine
  • Introduction rate of the force thione group used Te Contact ⁇ the present invention, with respect to hydroxyl groups present in the polysaccharide, expressed as a percentage of spermine was introduced (mol 0/0 ratio), preferably 2% - 90% , More preferably 5% to 60%, and still more preferably 10% to 30%. Even if the kind of the polysaccharide is changed, the preferable mol% ratio is in the above-mentioned range.
  • the nucleic acids used in the present invention include DNA, RNA, dsRNA, DNA-RNA complex, PNA, and derivatives thereof having a modification in sugar, phosphate or base.
  • examples of the nucleic acid include a gene encoding a protein or the like useful for treating various diseases, a vector containing the gene, an antisense DNA, an siRNA, and a decoy DNA.
  • Genes encoding proteins required for the treatment of diseases include low molecular weight peptides such as hormones, interferons, interleukins, cytokins, chemokines, cell growth factors, and matrix meta-oral proteases (MMPs).
  • Examples include proteins, partial peptides of the physiologically active sites of these proteins, and the like, or genes such as neutralizing antibodies and receptors for these proteins and peptides.
  • the low-molecular-weight peptide such as a hormone is not particularly limited as long as it is particularly suitable for treatment, but includes IFN and the like.
  • Examples of cell growth factors include hGH, EGF, NGF, HGF, FGF, HB-EGF, IGF and the like, and fragments thereof, for example, NK4 which is an intramolecular fragment of HGF.
  • the DNA encoding the protein may be obtained by cloning from a genomic or cDNA library based on a known sequence, or may be produced by chemical synthesis.
  • DNA that encodes a protein can express the function of that protein in the transfected cells. It is used by introducing it into a plasmid vector as possible.
  • Plasmid vectors contain a promoter region, start codons, stop codons and one terminator region, arranged in a manner such that the DNA is transcribed in the cell and the protein encoded therein is properly expressed.
  • Such a plasmid vector can be easily prepared by inserting a desired DNA into an expression vector available in the art using an appropriate restriction enzyme site. It can also be prepared by synthetic or semi-synthetic means based on the base sequence of the DNA to be introduced.
  • the type of promoter, start codon, stop codon, and terminator region in the plasmid vector are not particularly limited.
  • the protein expressed from the nucleic acid used in the present invention has a desired activity, even if one or more amino acids in its amino acid sequence are substituted, deleted, Z- or added.
  • the sugar chain may be substituted, deleted, Z- or added.
  • it may be produced as a fusion protein with another protein or a fragment thereof. Accordingly, the DNA may encode such a modified protein. Methods for producing DNA encoding such a modified protein by site-directed mutagenesis, gene recombination, or synthesis are well known in the art.
  • nucleic acid In order to incorporate a nucleic acid into cells using a polysaccharide, it is necessary to prepare a complex of both.
  • the method for producing the complex is not particularly limited as long as the complex remains capable of interacting with the sugar recognition receptor on the cell surface by forming the complex.
  • polysaccharides and nucleic acids are complexed via a polyion complex utilizing the interaction between positive and negative charges, or through physical interaction such as hydrogen bonding, hydrophobic interaction, and coordination bond. You can get the body.
  • the polyion complex is a complex formed by binding to a nucleic acid through a water-soluble polysaccharide ionic bond.
  • the polyion complex of a nucleic acid and a cationized pullulan derivative, a cationized dextran derivative or a cationized mannane derivative is prepared by mixing a nucleic acid with a cationized pullulan derivative, a cationized dextran derivative or a cationized mannan derivative in an appropriate buffer solution. Then, it can be formed by leaving it for a predetermined time. The reaction can be performed at room temperature. The formation of the polyion complex is mixed The turbidity of the combined liquid can be measured as an index.
  • the properties of the polyion complex can be adjusted by choosing the molecular weight and degree of cationization of the pullulan used.
  • the degree of cationization can be measured using the ratio of the number of moles of amino groups in the cationization pullulan derivative, the cationization dextran derivative or the cationized mannan derivative to the number of moles of phosphate groups in the nucleic acid as an index.
  • the optimal molecular weight and degree of cationization for uptake into cells can be selected.
  • a cationic diversion dextran derivative or a cationic diversion mannan derivative By forming a polyion complex of a nucleic acid and a cationic diversion pullulan derivative, a cationic diversion dextran derivative or a cationic diversion mannan derivative according to the present invention, the negative charge of the nucleic acid is neutralized and the electrical repulsion is reduced. A reduction in molecular size occurs. Also, the nucleic acid is stabilized in the formulation. Furthermore, the high affinity between pullulan and the ash mouth glycoprotein receptor on the cell surface allows the nucleic acid to be taken up into cells with high efficiency.
  • the cells are cultured in an appropriate medium, and then the polyion complex is added to the medium. Incubate at 37 ° C for an additional 2 hours and 2 days.
  • the amount, concentration, and culture conditions of the polyion complex to be added can be appropriately selected depending on the properties of the cells to be used.
  • composition of the present invention can be used to introduce nucleic acids into cells not only in an in vitro culture system but also in a living body.
  • an aqueous solution of a nucleic acid and a polyion complex of a cationized pullulan derivative, a cationized dextran derivative, or a cationized mannan derivative is administered to an animal's foot muscles or nerves.
  • the expression of biological activity due to the introduction of the nucleic acid into the nerve cells around or proximal to the administration site is measured.
  • the nucleic acid can also be introduced into cells in the tissue around the administration.
  • Administration sites include, but are not limited to, subcutaneous, intradermal, intravascular, intramuscular, intrathoracic, intracardiac, intraperitoneal, intramedullary, intratracheal, intrabronchial, intranasal, intracerebral, cancer, intestinal Intravaginal, intravaginal, intravesical, urinary tract, lymph, intrauterine, subretinal, etc.
  • the dosage form is not limited, but may be in the form of an aqueous solution or dispersion, or mixed with a carrier such as particles, solids, rods, granules, and films.
  • a carrier such as particles, solids, rods, granules, and films.
  • the preparation of the cationized pullulan derivative was carried out by introducing N, N, monobis (3-aminopropyl) -1,4-butanediamine (spermine) into the hydroxyl group of pullulan.
  • Pullulan (weight average molecular weight 48,000 or 100,000, Showa Denko) was dissolved in dehydrated dimethyl sulfoxide (10 mgZml).
  • 0.252M N, N'-carbodiimidazole (CDI, Nacalai Tester) and 2.52M spermine (Sigma) were added and stirred at room temperature for 20 hours.
  • the reaction solution was dialyzed against distilled water for 2 days and freeze-dried to obtain a spermine-introduced cationized pullulan derivative (spermine-pullulane).
  • Amine conjugate was added at a molar equivalent of 50 times the carboxyl group of the gelatin, and the pH of the aqueous solution was adjusted to 5 with concentrated hydrochloric acid (Nacalai Tester), and then 1-ethyl-3- (3-dimethylaminopropyl) was added. 5.) Carbodiimide hydrochloride (EDC; Nacalai Tester) was added in an amount of 5.35 g (3 molar equivalents based on the carboxyl group of gelatin). After adding 0.1 M phosphate buffer to make the total volume 500 ml (final gelatin concentration 0.02 gZml), the mixture was reacted at 37 ° C for 18 hours with stirring.
  • EDC Carbodiimide hydrochloride
  • the solution was dialyzed against distilled water for 2 days and freeze-dried to obtain a cationic diagonal gelatin.
  • the expression of the cationic dianiline is ethylenediamine, spermidine, and spermine according to the introduced amine disulfide. , SD 50, shown as SM50).
  • Plasmid DNA (pCMV-luc) containing a gene encoding luciferase was used as the plasmid DNA. After transforming pCMV-luc containing the ampicillin resistance gene into E. coli, the cells were cultured in an LB medium containing ampicillin at 37 ° C for 18 hours. The grown E. coli was recovered by centrifugation, and plasmid DNA was extracted by the alkali-SDS method. As a plasmid DNA purity evaluation, the ratio of the obtained plasmid DNA aqueous solution to 260 nm to 280 nm was measured and found to be 1.8 to 2.0.
  • the spermine incorporation rate of the spermine-introduced cationized pullulan derivative was calculated by quantifying the amino group using the 2,4,6-trinitrobenzenesulfonic acid (TNBS) method. That is, 100 ⁇ l of 0.2 M phosphate buffered saline (PBS, pH 7.4), 200 ⁇ l of 4 wt% aqueous sodium bicarbonate solution, 100 ⁇ l of 0.1 wt% TNBS aqueous solution were added to spermine pullulan solution 100 1 The solution 200 1 was prepared and reacted at 37 ° C. for 2 hours. The absorbance at 415 nm of this reaction solution was measured.
  • TNBS 2,4,6-trinitrobenzenesulfonic acid
  • the introduction rate of spermine per hydroxyl group of pullulan having a molecular weight of 48,000 and 100,000 was calculated to be 28.9 ⁇ 0.08% and 32.3%, respectively. ⁇ 0.18%.
  • the introduction rate of the amine in the cation gel was calculated by the TNBS method, and the introduction rate of the amine conjugate to the lipoxyl group of the gelatin was calculated.
  • E50, SD50, and SM50 [Kotsu! / 47.8%, was 45.9 0/0 and 49.0 0/0.
  • a cationized gelatin aqueous solution (E50 (0.92 mgZml), SD50 (1.18 mgZml) and SM50 (0.85 mg / ml) and pCMV-luc PBS solution (200 ⁇ g / ml) were made the same volume (25 The mixture was mixed in 1) and allowed to stand at room temperature for 15 minutes to form a poly complex of cationic DNA and plasmid DNA.
  • isolated undivided mesenchymal stem cells (passage number 2) were used. Bone marrow was washed from the femur and tibia of F344 rats (3 weeks old, male) with 1 ml of PBS, and supplemented with 5 ml of 15 vol% fetal calf serum (FCS). — In addition to T25 culture flasks (Corning) containing FCS, Gibco), the medium was changed every three days, and the cells were passaged as soon as they became confluent. Further, the medium was changed every three days, and the confluent cells were used in the experiment. Inoculate 1 x 10 4 cells / cm 2 (l x 10 5 cells / well) on a 6-well plate (Costar), and in ⁇ -FCS, 5% CO-95% air, 3
  • the cells were cultured at 7 ° C for 24 hours. After changing to serum-free ⁇ MEM medium, pCMV-luc (100 ⁇ l) or its polyion complex with spermine pullulan, cationized gelatin, and Lipofect Amine® (1001, 501 and 2001, respectively) ) was added, and the cells were further cultured for 6 hours. Next, the medium was changed to a MEM-FCS, and the culture was continued for another 24 hours.
  • the cell lysate (25 mM Tris-phosphate buffer ( ⁇ 7.8), 2 mM dithiothreitol, 2 mM 1,2-diaminocyclohexane-N, N , ⁇ ', ⁇ , tetraacetic acid, 10% glycerol, 1% Triton® X-100) were lysed and the cells were lysed.
  • Gene expression was quantified by measuring the chemiluminescence of the luciferase protein in the cell lysate. Further, the total amount of protein in the cell lysate was measured by the Bicinc honinate (BCA) method.
  • BCA Bicinc honinate
  • FIG. 1 shows the results of luciferase gene transfer into undifferentiated mesenchymal stem cells.
  • the black bar shows no addition of ash mouth huetuin
  • the white bar shows the addition of ash mouth futuin
  • gene expression was enhanced when pCMV-luc and spermine-purulane were combined. Has been shown to be able to be further enhanced.
  • PC 12 cells 4 ⁇ 10 4 cells / cm 2 (4 ⁇ 10 5 cells / well) of PC 12 cells were seeded on a 6-well plate (Costar), and 10 vol% of fetal calf serum (FCS) was added. The cells were cultured in a medium (MEM-FCS) at 5% CO—95% air at 37 ° C. for 24 hours. Contains no serum
  • the cell lysate (25 mM Tris-phosphate buffer (pH 7.8), 2 mM dithiothreitol, 2 mM, 2-diaminocyclohexane-N, N, ⁇ ', ⁇ , monoacetic acid, 10 ⁇ / ⁇ glycerol, l% Triton® X-100) were added to lyse the cells.
  • Gene expression was quantified by measuring the chemiluminescence of the luciferase protein in the cell lysate.
  • the total amount of protein in the cell lysate was measured by the Bicinchoninate (BCA) method. The result is shown in figure 2.
  • the black bar indicates no addition of ash-mouth futuin
  • the white bar indicates addition of ash-mouth futuin
  • * indicates p ⁇ 0.05.
  • indicates that the molecular weight is 100,000 and the value of lipofectamine is p-0.05.
  • Human adipose tissue-derived stem cells (passage number 2) were used as cells. After obtaining breast cancer with the patient's consent, the human adipose tissue (5 ml) collected at the time of resection is minced with a scissor, and then in a 2 mg Zml aqueous collagenase S1 (provided by Nitta Gelatin Co., Ltd.) aqueous solution at 37 ° C. Tissue was digested and degraded by processing for 15-20 minutes. Tissue digest was filtered through a nylon mesh (200-m pore) and centrifuged (4 ° C, 1, OOOrpm, 5 minutes) to obtain cell components including human adipose tissue-derived stem cells. .
  • the obtained cells were washed twice with Mediuml99Medium (Mediuml99-FCS) supplemented with 15 vol% FCS, and then seeded on a T25 culture flask.
  • the cells were cultured in Mediuml99-FCS containing bFGF (0.1 ⁇ g / ml), the medium was changed every three days, and the cells were passaged as soon as they became confluent. Further, the medium was exchanged every three days, and the confluent cells were used in the experiment. Seed 1 ⁇ 10 4 cells / cm 2 (l ⁇ 10 5 cells / well) in a 6-well plate and in Mediuml99-FCS, 5% CO-95% air, 37 ° C for 24 hours And cultured. Medium 1 without serum
  • the supernatant containing the floating cells was aspirated off, and RPMI1640-FCSlOml supplemented with 50 ng / ml rhIL-4 and 50 ng / ml rhGM-CSF was added to the adherent cells.
  • RPMI1640-FCSlOml supplemented with 50 ng / ml rhIL-4 and 50 ng / ml rhGM-CSF was added to the adherent cells.
  • Those cultivated for 7 days were used for experiments.
  • the supernatant of the flask cultured for 5 to 7 days was collected by suction, and after centrifugation, undifferentiated human dendritic cells were collected.
  • PCMV-luc (1001) was introduced into the collected chondrocytes, and the expression of the gene was examined.
  • LipofectAmine registered trademark
  • pCMV-luc (1001) was introduced into cultured corneal epithelial cells, and the expression of the gene was examined.
  • spermine pullulan was used, it was compared with LipofectAmine (registered trademark). And the expression was strong.
  • pCMV-luc 100 1
  • spermine pullulan was used, the expression was compared with that of LipofectAmine (registered trademark). And the expression was strong.
  • pCMV-luc dOO / z 1 was introduced into cultured tubular epithelial cells, and the expression of the gene was examined. As a result, when spermine pullulan was used, it was compared with LipofectAmine (registered trademark). And the expression was strong.
  • pCMV-luc (1001) was introduced into cultured ear hair cells, and the expression of the gene was examined.
  • spermine pullulan was used, the expression was compared with that of LipofectAmine (registered trademark). Expression was high.
  • pCMV-luc (1001) was introduced into cultured keratinocytes, and the expression of the gene was examined.
  • spermine pullulan was used, the expression was higher than that of LipofectAmine (registered trademark). But I got high strength.
  • pCMV-luc 100 1
  • spermine-pullulane it was confirmed that LipofectAmine (registered trademark) was used. In comparison, expression was high.
  • pCMV-luc (1001) was introduced into cultured dermal papilla cells, and the expression of the gene was examined.
  • spermine pullulan was used, compared with LipofectAmine (registered trademark). Expression was high.
  • pCMV-luc (1001) was introduced into cultured hair matrix cells, and the expression of the gene was examined.
  • LipofectAmine registered trademark
  • Example 22 In the same manner as in Example 5, pCMV-luc (1001) was introduced into cultured melanoma cancer cells, and the expression of the gene was examined. As a result, when spermine pullulan was used, compared with LipofectAmine (registered trademark). Expression was high.
  • pCMV-luc 1001
  • LipofectAmine registered trademark
  • aqueous solution of a polyion complex of a cationized pullulan derivative and a nucleic acid was administered to the thigh muscle of a mouse. Two days later, nerve cells in the muscle and the proximal nerve cells connected to the nerve were collected and examined for gene expression. As a result, when spermine pullulan was used, a significantly higher expression level was confirmed as compared to LipofectAmine (registered trademark).
  • aqueous solution of a polyion complex of a cationized polysaccharide (spermine-pullulane, spermine-dextran, spermine-mannan, spermine amylopectin) and a nucleic acid was prepared.
  • spermine was introduced into pullulan, dextran, mannan and amylopectin.
  • the spermine introduction rates were pullulan (12.3%), dextran (9.51%), mannan (13.3%) and amylopectin (12.3%).
  • an aqueous solution of Kayidani polysaccharide having a concentration shown in the following table was prepared.
  • This aqueous solution and a plasmid solution dissolved at 100 ⁇ g / ml in PBS were mixed in equal amounts, and allowed to stand at room temperature for 15 minutes.
  • a predetermined amount of this polyion complex was added to a culture of mouse bone marrow stem cells (MSCs) and introduced into the cells by incubating in a serum-free medium for 6 hours and then in a medium containing serum for 24 hours.
  • MSCs mouse bone marrow stem cells
  • NZP ratio 3 Compared to FuGENE6 (registered trademark) when using spermine-pullulan (NZP ratio 3) The expression was significantly higher than that of LipofectAmine2000 (registered trademark) and SuperFect (registered trademark).
  • the expression of spermine-dextran and spermine-mannan was significantly higher at a NZP ratio of 3 as compared to LipofectAmine2000 (registered trademark).
  • spermine pullulan (pullulan molecular weight 47,300, CDI 3.0, NZP ratio 3, spermine incorporation ratio 20.4%) was used to vary the amount of pCMV-luc dOO / zl) and introduced.
  • the expression of the gene was examined, the expression was highest when the DNA amount was 2.5 ⁇ g Zwell (FIG. 6).
  • sunoremine mupnorellan (Punorelane molecular weight 5900 ⁇ 212000, CDI 1.5, NZP ratio 3, ratio of spermine: 5900; 12.9%, 11800; 12.3%, 228 00; 11.0% 47300; 12.3%, 112000; 10.7%, 212000; 9.74%) to introduce pCMV-luc (100 ⁇ l) and examine gene expression As a result, when the pullulan molecular weight was 47,300, the highest expression was observed (FIG. 7).
  • the spermine introduction ratio was changed, and five types of spermine-pullulane (15 / ⁇ ratio: 3) were produced.
  • the spermine introduction rates are as follows.
  • Example 23 In the same manner as in Example 23, an aqueous solution of a polyion complex of spermine pullulan, spermine-dextran and pCMV-luc was introduced into cancer cells, and gene expression was examined (FIG. 911). As shown in FIG. 911, when nucleic acid was introduced into Lewis Lung carcinoma, the expression was significantly higher when spermine-dextran was used than when LipofectAmine (registered trademark) was used.
  • spermine pullulan was expressed by about half as compared to LipofectAmine (registered trademark).
  • the expression was significantly higher when spermine pullulan was used than when LipofectAmine (registered trademark) was used.
  • the nucleic acid was introduced into human lung cancer cell line A549, the expression was significantly higher when spermine-pullulane was used as compared to LipofectAmine and LipofectAmine2000 (registered trademark).
  • Example 23 In the same manner as in Example 23, an aqueous solution of a polyion complex of spermine pullulan, spermine-dextran and pCMV-luc was introduced into stem cells, and gene expression was examined.
  • spermine-pullulane showed significantly higher expression compared to LipofectAmine2000 (registered trademark). I got it.
  • nucleic acid was transfected into mouse ES cells, the expression of spermine-dextran was significantly higher than that of LipofectAmine2000 (registered trademark) than that of spermine-pullulane.
  • Example 23 In the same manner as in Example 23, an aqueous solution of a polyion complex of spermine pullulan, spermine-dextran and pCMV-luc was introduced into primary culture cells, and gene expression was examined.
  • Mouse _ ⁇ DNA3 ⁇ 4A to macrophages In the same manner as in Example 23, pCMV-luc (1001) was introduced into mouse peritoneal macrophages, and gene expression was examined. As shown in FIG. 15, the expression was significantly higher when using spermine-dextran and spermine-mannan as compared to LipofectAmine2000 (registered trademark).
  • pCMV-luc (1001) was introduced into rat peritoneal macrophages, and gene expression was examined. As shown in FIG. 16, when spermine-mannan was used, the expression was significantly higher than that of LipofectAmine 2000 (registered trademark), and significantly higher when spermine-dextran was used.
  • pCMV-luc (1001) was introduced into mouse ES cells, and gene expression was examined. As shown in FIG. 17, when spermine pullulan and spermine-dextran were used, the expression was significantly higher than that of LipofectAmine2000 (registered trademark).
  • compositions and methods of the present invention for introducing nucleic acids into cells are useful for gene therapy, cell transplantation therapy and regenerative medicine, and for basic biomedical research.

Abstract

 本発明は、多糖類からなる、細胞への核酸の導入を促進するための組成物を提供する。本発明はまた、細胞に核酸を導入する方法であって、前記核酸と多糖類とのポリイオンコンプレックスを形成し、前記ポリイオンコンプレックスを前記細胞に取り込ませることを含む方法を提供する。好ましくは、細胞は、骨髄間葉系幹細胞、神経系細胞株、脂肪組織由来幹細胞、免疫細胞、神経細胞、および軟骨細胞から選択される。また好ましくは、多糖類はカチオン化プルラン誘導体、カチオン化デキストラン誘導体またはカチオン化マンナン誘導体である。    

Description

細胞に核酸を導入するための製剤
技術分野
[0001] 本発明は、細胞に核酸を導入するための多糖類力もなる製剤に関する。
背景技術
[0002] 細胞内への核酸の導入、その発現を高める技術は、基礎生物医学研究だけでは なぐ遺伝子治療、細胞移植治療のための細胞の遺伝子改変、再生医療などに対し ても重要である。これまで、細胞への核酸の導入方法には、大きく分けて、ウィルスを 用いる方法と用いない方法がある。ウィルスは、自らの生存のために、細胞内に取り 込まれやすい、あるいは積極的に取り込まれるための特性を持っている。この特性を 利用して、ウィルスを担体とした核酸の細胞内への取り込みが行われ、その高い取り 込み効率が得られている。し力しながら、ウィルス自身のもつ免疫原性、毒性などに 問題がある。そこで、ウィルスを用いない方法で、核酸を細胞内に取り込ませることが 試みられている。
[0003] 物質の細胞内への取り込みには 2つのメカニズムがある。 1つは、細胞自身が定常 的に液体を取り込む (ピノサイトシス、飲作用)によって、細胞周辺の液体中に存在し ている物質が細胞内に取り込まれるものである。もう 1つは、細胞表面に存在している 特定分子を認識して取り込むレセプター介在の取り込みメカニズムである。物質の取 り込み効率の点では、後者が前者に比べて有意に高 、ことが知られて 、る。
[0004] 飲作用の例としては、カチオンィ匕された高分子あるいはリボソームなどの核酸の担 体としての利用がある。これは、負電荷をもつ核酸を負電荷表面をもつ細胞と相互作 用させ、細胞内部へ取り込ませることを目的として、ポリイオンコンプレックスにより核 酸の負電荷を中和、その分子サイズを下げることが、その基本アイデアである。しかし ながら、この方法では、細胞内への取り込みは、飲作用メカニズムによっているため、 高い効率は望めない。リン酸カルシウム法などもある力 この方法も、基本的には、力 チオンィ匕担体と同じメカニズムであり、効率も高くない。
[0005] そこで、取り込み効率を上げるため、種々の物理刺激により、細胞膜の透過性を高 めることが試みられている。例えば、エレクト口ポレーシヨン、ソノポレーシヨンなど、電 気刺激、超音波照射の利用により取り込み効率の向上が報告されている。また、遺 伝子銃、マイクロインジェクションなどの利用も報告されている。これらの試みは、ある 程度の取り込み増強効果を示してはいる力 すべての細胞に対して有効ではなぐ 特に胚体あるいは組織などの増殖 ·分ィ匕能力の優れた幹細胞および前駆細胞、ある いは、免疫細胞、神経細胞、軟骨細胞などのような特定の生物機能をもっているよう な細胞には、ほとんど効果がない。カロえて、前述の非ウィルス性のカチオン化高分子 およびリボソーム担体を利用しても、核酸を細胞内に導入することは難しい。
[0006] そのため、非ウィルス担体の開発研究の方向性として、飲作用に比べて、取り込み 効率の高い細胞表面レセプターの利用が考えられている。このレセプターには大きく 分けて 2つの種類がある。その 1つは、タンパク質の特定アミノ酸配列を認識するもの であり、もう 1つは糖分子を認識するものである。
[0007] アミノ酸配列を認識するレセプターを利用した核酸の細胞内への取り込み促進に ついての研究は多い。レセプターに認識されるアミノ酸配列を水溶性高分子、リポソ ーム、粒子、高分子ミセルなどの核酸担体に化学導入することで、担体のアミノ酸認 識レセプターを介した核酸の細胞内の取り込みの増強が報告されている。またアミノ 酸配列自身を結合させ高分子化した物質が細胞表面レセプターに効率よく相互作 用することも知られている。
[0008] 一方、糖分子を認識するレセプターについては、単糖分子あるいは二糖分子を水 溶性高分子に化学結合した核酸担体が合成され、糖認識レセプターを介した担体の 取り込みによる核酸の取り込みの増強についての報告がある。し力しながら、単糖分 子、二糖分子、三糖分子自身を結合させ、高分子化した多糖が核酸の細胞内への 取り込みを増強させることは、これまでには全く報告されていない。細胞表面に存在 する糖認識レセプターは、認識できる糖分子の種類により多くのタイプが存在する。 例えば、グルコースは、細胞の生存に必須の物質であるため、それを効率よく取り込 む目的で、多くの細胞の表面にはグルコースを認識するレセプターが存在している。 マクロファージ、単球、リンパ球、榭状細胞などの免疫担当細胞には、ガラクトースぁ るいはマンノースなどを認識するレセプター力 骨髄細胞にはガラクトース認識レセ プターが存在することが知られて!/ヽる。これらの糖認識レセプターが細胞表面に存在 していることが知られているにもかかわらず、多糖を利用してそれらのレセプターを介 した核酸の細胞内への取り込みに関する報告はない。糖レセプターのタイプは細胞 によって異なるため、この違いを利用して核酸を特定の細胞内に取り込ませることが 可能となる。例えば、肝の実質細胞はその細胞表面にガラクトース認識レセプターを もっている。ガラクトース認識レセプターに認識される多糖類であるプルラン力 体内 における核酸の肝臓へのターゲテイング能力をもつことが報告されている。これは、 プルランがガラクトース残基認識レセプターと相互作用する性質を使用して、静脈内 に投与されたプルランを肝臓へ特異的に集積 (ターゲティング)する報告である。肝 臓における核酸の生物作用の発現の増強は、プルランと複合体化された核酸が肝 臓へターゲテイングされたことが理由であり、プルランによって、核酸の細胞内への取 り込みが増強されたことにつ!/、ては言及して 、な!/、。
[0009] 幹細胞、例えば、骨髄から採取できる造血系幹細胞、未分化間葉系幹細胞、ある いは脂肪、皮膚、筋肉、神経、肝臓、脾臓などの組織'臓器から採取できる組織幹細 胞などは、体細胞とは異なり、核酸の取り込みの効率が低いことが知られている。現 在まで、カチオンィ匕高分子あるいはカチオン化リボソームを用いた核酸担体が研究 開発され、市販されている。し力しながら、通常の細胞とは違って、これらの担体を利 用して幹細胞への核酸の導入を試みても、ほとんどよい結果が得られていない。通 常の細胞と幹細胞との間で導入効率の違いがある理由については、現在よくわかつ ていない。もう 1つは、通常細胞に比べて、幹細胞はカチオン化担体と培養した場合 に、弱りやすく死にやすい。これは、細胞表面の負電荷と核酸 担体複合体の正電 荷が相互作用するため、細胞膜の流動性が悪くなり、細胞が死にやすいと考えられ る。これに比べて、レセプターを介した核酸 担体と細胞との相互作用、取り込みで は、細胞膜の流動性に与える影響は少なぐその結果として、細胞毒性は低くなる。 電気パルス、超音波照射などを与えて、細胞膜の核酸透過性を一過性に上昇させ、 核酸の細胞内への導入を増強させる試みが行われている力 これらの物理的刺激も 細胞に対する傷害性が高ぐ細胞の生存率が低いことが問題となっている。
[0010] 本発明に関連する先行技術文献情報としては以下のものがある: WO01Z34206 、特開 2003— 104914。
[0011] 本発明は、細胞に核酸を効率的に導入するための新規な製剤を提供することを目 的とする。
発明の開示
[0012] 本発明者は、糖認識レセプターに認識される糖分子自身が結合してなる高分子、 すなわち多糖類を用いて、細胞内へ核酸を導入することにより、細胞への核酸の取 込効率が高まることを見 、だした。
[0013] 本発明は、多糖類カゝらなる、細胞への核酸の導入を促進するための組成物を提供 する。本発明はまた、細胞に核酸を導入する方法であって、前記核酸と多糖類とのポ リイオンコンプレックスを形成し、前記ポリイオンコンプレックスを前記細胞に取り込ま せることを含む方法を提供する。好ましくは、細胞は、骨髄間葉系幹細胞、神経系細 胞株、脂肪組織由来幹細胞、免疫細胞、神経細胞、軟骨細胞、上皮細胞、初代培 養細胞および癌細胞から選択される。また好ましくは、多糖類はカチオンィ匕プルラン 誘導体、カチオン化デキストラン誘導体、またはカチオン化マンナン誘導体である。 図面の簡単な説明
[0014] [図 1]図 1は、未分化間葉系幹細胞へのルシフェラーゼ遺伝子導入によるルシフェラ ーゼ活性を示す。
[図 2]図 2は、神経由来細胞株へのルシフェラーゼ遺伝子導入によるルシフェラーゼ 活性を示す。
[図 3]図 3は、ヒト脂肪組織由来幹細胞へのルシフェラーゼ遺伝子導入によるルシフエ ラーゼ活性を示す。
[図 4]図 4は、ヒト榭状細胞に導入した EGFP遺伝子の発現効率を FACSで解析した 結果である。
[図 5]図 5は、マウス骨髄幹細胞(MSC)へのルシフェラーゼ遺伝子導入によるルシフ エラーゼ活性を示す。
[図 6]図 6は、ルシフェラーゼ遺伝子の量を変化させ導入した場合のルシフェラーゼ 活性を示す。
[図 7]図 7は、異なる分子量のプルランを用いてルシフェラーゼ遺伝子を導入した場 合のルシフェラーゼ活性を示す。
[図 8]図 8は、異なる分子量のプルランにスペルミンの導入率を変化させ、ルシフェラ ーゼ遺伝子を導入した場合のルシフェラーゼ活性を示す。
[図 9]図 9は、癌細胞へのルシフェラーゼ遺伝子導入によるルシフェラーゼ活性を示 す。
[図 10]図 10は、癌細胞へのルシフェラーゼ遺伝子導入によるルシフェラーゼ活性を 示す。
[図 11]図 11は、癌細胞へのルシフェラーゼ遺伝子導入によるルシフェラーゼ活性を 示す。
[図 12]図 12は、幹細胞へのルシフェラーゼ遺伝子導入によるルシフェラーゼ活性を 示す。
[図 13]図 13は、初代培養細胞へのルシフェラーゼ遺伝子導入によるルシフェラーゼ 活性を示す。
[図 14]図 14は、肺胞上皮 typell RLE6TNへのルシフェラーゼ遺伝子導入によるルシ フェラーゼ活性を示す。
[図 15]図 15は、マウス腹腔マクロファージへのルシフェラーゼ遺伝子導入によるルシ フェラーゼ活性を示す。
[図 16]図 16は、ラット腹腔マクロファージへのルシフェラーゼ遺伝子導入によるルシ フェラーゼ活性を示す。
[図 17]図 17は、マウス ES細胞へのルシフェラーゼ遺伝子導入によるルシフェラーゼ 活性を示す。
発明を実施するための最良の形態
糖認識レセプターは、大きく分けて、グルコース、マンノースおよびガラクトースなど の糖鎖を認識する 3つが特によく知られている。これらのレセプターに結合させるため の多糖としては、例えば、それぞれの糖が結合した高分子であるアミロース、アミロぺ クチンあるいはデキストラン、ダルコマンナン、およびプルラン、ならびにこれらの各種 誘導体などが考えられる。また、用いる多糖が糖認識レセプターに認識されれば、多 糖自体の水溶性、非水溶性などの溶解性、分枝などの物理ィ匕学的な性質は、多糖 を選択する際の条件にはならない。また、動物、植物、微生物などの多糖の由来に 関係なぐあるいは遺伝子産物であっても、本発明の核酸担体として用いることがで きる。これらの多糖に核酸を結合させる方法としては、例えば、多糖にジァミンィ匕合物 を化学反応させて、アミノ基を導入することで、多糖をカチオン化する。この結合反応 は公知の反応技術を利用することができる。すなわち、核酸の負電荷とポリイオンコ ンプレックスを形成するような、 1, 2, 3あるいは 4級アミノ基を多糖に化学導入する。 ヒアルロン酸レセプター(CD44)あるいはァセチルダルコサミンレセプターを介した細 胞内への導入を期待する場合には、核酸担体としてヒアルロン酸あるいはキチン、キ トサンなどを使うことができる。多糖担体としては、上述の多糖あるいはその誘導体を 複数混合して、あるいは複合物として利用することもできる。多糖—核酸ポリイオンコ ンプレックスが糖認識レセプターを介して細胞内に取り込まれているカゝ否かは、認識 される単糖ある 、は物質で細胞を処理し、糖認識レセプターをあら力じめブロックした 後、核酸の取り込みが減少するか否かを評価することで確認できる。
[0016] 本発明においては、いずれの多糖も用いることができる。以下の記載に特に限定さ れるわけではないが、例えば、多糖として水溶性多糖類のプルランがある。プルラン は、デンプンの部分カ卩水分解物を原料として Aureobasidium pullulans菌により発酵 産生される a—グルカンであり、ブドウ糖 3個よりなるマルトトリオースが α— 1, 6結合 で連鎖した直鎖状の水溶性高分子である。プルランは、細胞表面上に発現している ァシァ口糖タンパク質レセプターを介して細胞内に取り込まれることが知られている。 種々の分子量の製品が市販されて!ヽるが、本発明にお!/ヽて用いられるプルランの分 子量は、好まし <は、約 2, 000- 500, 000、より好まし <は約 20, 000—100, 000 である。多糖の種類が変わっても、好ましい分子量は前述の範囲である。
[0017] 本発明にお 、て特に好ましくは、核酸とのポリイオンコンプレックスを形成させるた めに、プルランにカチオン基を導入したカチオンィ匕プルラン誘導体、デキストランに力 チオン基を導入したカチオン化デキストラン誘導体、またはマンナンにカチオン基を 導入したカチオンィ匕マンナン誘導体を用いる。カチオンィ匕の工程は、生理条件下で カチオンィ匕する官能基を導入し得る方法であれば特に限定されな 、が、プルラン分 子上の水酸基に 1、 2または 3級のアミノ基またはアンモ-ゥム基を温和な条件下で導 入する方法が好ましい。例えばエチレンジァミン、 N, N ジメチルー 1, 3 ジァミノ プロパン等のアルキルジァミンや、トリメチルアンモ -ゥムァセトヒドラジド、スペルミン
、スペルミジンまたはジェチルアミド塩ィ匕物等を、種々の縮合剤、例えば 1—ェチル - 3- (3—ジメチルァミノプロピル)カルボジイミド塩酸塩、塩化シァヌル、 N, N,—力 ルボジイミダゾール、臭化シアン、ジエポキシ化合物、トシルク口ライド、ジェチルトリア ミン N, N, Ν' , Ν" , Ν" ペンタン酸ジ無水物等のジ無水物化合物、トリシルク 口リド等を用いて反応させることができる。特に、エチレンジァミンまたはスペルミンを 反応させる方法が簡便且つ汎用性があり好適である。本発明にお ヽて用いられる力 チオン基の導入率は、多糖類に存在する水酸基に対して、スペルミンが導入された 割合 (モル0 /0比)で表すと、好ましくは 2%— 90%、より好ましくは 5%— 60%、さらに 好ましくは 10%— 30%である。多糖の種類が変わっても、好ましいモル%比は前述 の範囲である。
[0018] 本発明において用いる核酸には、 DNA、 RNA、 dsRNA、 DNA— RNA複合体、 PNA、ならびに、糖、リン酸または塩基に修飾を有するこれらの誘導体が含まれる。 核酸の例としては、種々の疾患の治療に有用なタンパク質等をコードする遺伝子、こ れを含有するベクター、アンチセンス DNA、 siRNA、およびデコイ DNAを挙げること ができる。疾患の治療に必要なタンパク質等をコードする遺伝子としては、ホルモン 等の低分子量ペプチド、あるいはインターフェロン、インターロイキン、サイト力イン、 ケモカイン、細胞成長因子ある 、はマトリックスメタ口プロテアーゼ (MMP)類等のタ ンパク質、これらのタンパク質の生理活性部位の部分ペプチド等、またはこれらタン パク質およびペプチドの中和抗体およびレセプターのァゴ-スト等の遺伝子が挙げ られる。ホルモン等の低分子量ペプチドとしては、特に治療に好適なものであれば限 定するものではないが、 IFN等のものが挙げられる。細胞成長因子の例としては、 hG H、 EGF、 NGF、 HGF、 FGF、 HB— EGF、 IGF等、およびこれらのフラグメント、例 えば HGFの分子内断片である NK4が挙げられる。
[0019] タンパク質をコードする DNAは、既知の配列に基づいてゲノムまたは cDNAライブ ラリからクロー-ングにより入手してもよぐ化学合成により製造してもよい。タンパク質 をコードする DNAは、導入された細胞内でそのタンパク質の機能が発現されることが できるようにプラスミドベクター中に導入して用いる。プラスミドベクターは、細胞内で DNAが転写され、それにコードされるタンパク質が適切に発現されるような様式で配 列された、プロモーター領域、開始コドン、終止コドンおよびターミネータ一領域等を 含む。このようなプラスミドベクターは、当分野において入手可能な発現ベクターに所 望の DNAを適当な制限酵素部位を利用して挿入することによって容易に調製するこ とができる。また、導入すべき DNAの塩基配列に基づいて、合成、半合成の手段に より調製することも可能である。プラスミドベクター中のプロモーターの種類、開始コド ン、終止コドン、ターミネータ領域は特に限定されるものではない。
[0020] 本発明にお ヽて用いられる核酸から発現されるタンパク質は、所望の活性を有する 限り、そのアミノ酸配列中の 1若しくは複数のアミノ酸が置換、欠失及び Z又は付加さ れていてもよぐまた同様に糖鎖が置換、欠失及び Z又は付加されていてもよい。さ らに、別のタンパク質またはそのフラグメントとの融合タンパク質として産生されてもよ い。したがって、 DNAはそのような改変型のタンパク質をコードするものであってもよ い。このような改変型タンパク質をコードする DNAを部位特異的突然変異法、遺伝 子組換え法または合成法により作成する方法は当該技術分野においてよく知られて いる。
[0021] 多糖を利用して核酸を細胞内に取り込ませるためには、両者の複合体を作製する ことが必要である。この複合体の作製方法は、複合体の形成によって、多糖が細胞 表面の糖認識レセプターと相互作用する性質が残っていれば、特に限定されること はない。例えば、正電荷と負電荷の相互作用を利用したポリイオンコンプレックス、あ るいは水素結合、疎水性相互作用、配位結合などの物理ィ匕学的な相互作用を介し て、多糖と核酸との複合体を得ることができる。
[0022] ポリイオンコンプレックスは、核酸と水溶性多糖類力イオン結合により結合することに より形成される複合体である。核酸とカチオン化プルラン誘導体、カチオンィ匕デキスト ラン誘導体またはカチオンィ匕マンナン誘導体とのポリイオンコンプレックスは、核酸と カチオン化プルラン誘導体、カチオンィ匕デキストラン誘導体またはカチオンィ匕マンナ ン誘導体とを、適当な緩衝溶液中で混合し、所定の時間放置することにより形成する ことができる。反応は室温で行うことができる。ポリイオンコンプレックスの形成は、混 合液の濁度を指標として測定することができる。ポリイオンコンプレックスの特性は、 用いるプルランの分子量およびカチオン化の程度を選択することにより調節すること ができる。カチオンィ匕の程度は、カチオンィ匕プルラン誘導体、カチオンィ匕デキストラン 誘導体またはカチオン化マンナン誘導体中のアミノ基のモル数と核酸中のリン酸基 のモル数との比率を指標として測定することができる。用いる細胞および核酸に応じ て、細胞中への取込に最適な分子量およびカチオンィ匕の程度を選択することができ る。本発明にしたがって核酸とカチオンィ匕プルラン誘導体、カチオンィ匕デキストラン誘 導体またはカチオンィ匕マンナン誘導体とのポリイオンコンプレックスを形成することに より、核酸の負電荷が中和されるとともに、その電気的反発の緩和による分子サイズ の減少が生じる。また、製剤中で核酸が安定化される。さら〖こ、プルランと細胞表面の ァシァ口糖タンパク質レセプターとの高い親和性により、核酸を高い効率で細胞に取 り込ませることがでさる。
[0023] 核酸とカチオンィ匕プルラン誘導体、カチオン化デキストラン誘導体またはカチオン 化マンナン誘導体とのポリイオンコンプレックスを細胞に導入するためには、細胞を 適当な培地で培養した後、培地にポリイオンコンプレックスを加えて、 37°Cでさらに 2 時間 2日間培養する。加えるポリイオンコンプレックスの量、濃度、培養条件につい ては、用いる細胞の性質に応じて適宜選択することができる。
[0024] 本発明の組成物は、インビトロ培養系のみならず、生体内においても核酸を細胞内 に導入するために用いることができる。例えば、核酸とカチオン化プルラン誘導体、力 チオンィ匕デキストラン誘導体またはカチオン化マンナン誘導体のポリイオンコンプレツ タスの水溶液を、動物の足の筋肉、神経近傍に投与する。 1 2日後、投与部位周辺 あるいはその近位側の神経細胞への核酸の導入による生物活性発現を測定する。
[0025] ポリイオンコンプレックス水溶液を体内に投与することにより、その投与周辺組織内 において、細胞に核酸を導入することもできる。投与する部位としては、限定されない 力 皮下、皮内、血管内、筋肉内、胸腔内、心腔内、腹腔内、骨髄内、気道内、気管 支内、鼻腔内、脳内、癌内、腸内、膣内、膀胱内、尿路内、リンパ内、確子体内、網 膜下などが挙げられる。投与形態としては、限定されないが、水溶液または分散液と して、あるいは粒子、固形状、ロッド状、顆粒状、フィルム状などの担体と混合または 複合ィ匕したものが挙げられる。
[0026] 本明細書において明示的に引用される全ての特許および参考文献の内容は全て 本明細書の一部としてここに引用する。また,本出願が有する優先権主張の基礎とな る出願である日本特許出願 2004— 103568号の明細書および図面に記載の内容 は全て本明細書の一部としてここに引用する。
[0027] 以下に実施例により本発明をより詳細に説明するが、本発明はこれらの実施例によ り限定されるものではない。
実施例 1
[0028] カチオン化プルラン謙 体: よびカチオン化ゼラチンの作製
カチオン化プルラン誘導体の作製は、プルランの水酸基への N, N,一ビス(3—ァ ミノプロピル)— 1, 4—ブタンジァミン (スペルミン)の導入反応により行った。プルラン (重量平均分子量 48, 000または 100, 000、昭和電工)を脱水ジメチルスルホキシ ドに溶解させた(10mgZml)。次に、 0. 252Mの N, N'—カルボ-ルジイミダゾー ル(CDI、ナカライテスタ)、および 2. 52Mのスペルミン(シグマ)をカ卩え、室温で 20時 間撹拌した。反応溶液を蒸留水に対して 2日間透析し、凍結乾燥することにより、ス ペルミン導入カチオン化プルラン誘導体 (スペルミン—プルラン)を得た。
[0029] ゼラチン(Mw= 100, 000、等電点 = 9. 0、豚皮コラーゲン由来酸処理、新田ゼラ チン)のカルボキシル基に、エチレンジァミン、スペルミジン、スペルミンなどのアミン 化合物を化学導入することにより、カチオンィ匕ゼラチンを作製した。詳細には、 10gの ゼラチンに 250mlの 0. 1Mリン酸緩衝液 (pH = 5)をカ卩え、 40°Cで 1時間撹拌し、ゼ ラチン水溶液を得た。ゼラチンのカルボキシル基に対して 50倍モル当量のアミンィ匕 合物を加え、濃塩酸 (ナカライテスタ)にて水溶液の pHを 5に調整した後、 1—ェチル — 3— (3—ジメチルァミノプロピル)カルボジイミド塩酸塩 (EDC;ナカライテスタ)を 5 . 35g (ゼラチンのもつカルボキシル基に対して 3倍モル当量)加えた。 0. 1Mリン酸 緩衝液を加え、全量を 500ml (最終ゼラチン濃度 0. 02gZml)とした後、 37°Cで 18 時間、撹拌下反応させた。反応後、蒸留水に対して 2日間透析し、凍結乾燥すること により、カチオンィ匕ゼラチンを得た (カチオンィ匕ゼラチンの表記は、導入したアミンィ匕 合物にしたがって、エチレンジァミン、スペルミジン、スペルミンをそれぞれ E50、 SD 50、 SM50として示す)。
実施例 2
[0030] プラスミド DNAの調製
プラスミド DNAとしてルシフェラーゼをコードする遺伝子を含むプラスミド DNA(pC MV-luc)を用いた。アンピシリン耐性遺伝子を含む pCMV— lucを大腸菌にトラン スフオームした後、アンピシリン含有 LB培地にて、 37°Cで 18時間培養した。増殖し た大腸菌を遠心分離により回収し、アルカリ— SDS法によりプラスミド DNAを抽出し た。プラスミド DNAの純度評価として、得られたプラスミド DNA水溶液の 280nmに 対する 260nmの比を測定したところ、 1. 8— 2. 0であった。
実施例 3
[0031] ァミノ某の導入率の測定
スペルミン導入カチオン化プルラン誘導体のスペルミンの導入率は、 2, 4, 6—トリ ニトロベンゼンスルホン酸 (TNBS)法を用いたァミノ基の定量によって算出した。す なわち、スペルミンプルラン溶液 100 1に、 0. 2Mリン酸緩衝生理食塩水(PBS, p H7. 4) 100 μ 1、 4wt%の炭酸水素ナトリウム水溶液 200 μ 1、 0. lwt%の TNBS水 溶液 200 1をカ卩え、 37°Cで 2時間反応させた。この反応溶液の 415nmにおける吸 光度を測定した。この吸光度値と j8—ァラニンを用いた検量線から、分子量 48, 000 および 100, 000のプルランの水酸基あたりのスペルミンの導入率を算出したところ、 それぞれ 28. 9±0. 08%および 32. 3±0. 18%であった。
[0032] カチオンィ匕ゼラチンのァミンの導入率も同様に TNBS法により算出し、ゼラチンの力 ルポキシル基に対するアミンィ匕合物の導入率を算出したところ、 E50、 SD50および SM50【こつ!/、てそれぞれ 47. 8%, 45. 90/0および 49. 00/0であった。
実施例 4
[0033] ポリイ才ンコンプレックス形成
スペルミンプルラン水溶液(分子量 48, 000 : 0. 21mg/mU分子量 100, 000 : 0 . 20mg/ml)と pCMV— lucの PBS溶液(100 μ g/ml)とを同体積(50 μ 1)で混合 し、室温で 15分間静置することにより、カチオン化プルラン誘導体とプラスミド DNAと のポリィ才ンコンプレックスを形成させた。 [0034] カチオン化ゼラチン水溶液(E50 (0. 92mgZml)、 SD50 (1. 18mgZml)および SM50 (0. 85mg/ml)と pCMV— lucの PBS溶液(200 μ g/ml)とを同体積(25 1)で混合し、室温で 15分間静置することにより、カチオンィ匕ゼラチンとプラスミド D NAとのポリィ才ンコンプレックスを形成させた。
[0035] LipofectAmine (登録商標) (0. lmg/ml)と pCMV—lucの PBS溶液(50 μ g/ ml)とを同体積(100 μ 1)で混合し、室温で 15分間静置することにより、 LipofectAm ine (登録商標)とプラスミド DNAとのポリイオンコンプレックスを形成させた。
実施例 5
[0036] 去分化間 細胞への DNA 人
細胞としては、単離した未分ィ匕間葉系幹細胞 (継代数 2)を用いた。 F344ラット(3 週齢、雄)の大腿骨、脛骨から、 1mlの PBSにて骨髄を洗い出し、 5mlの 15vol%の 仔ゥシ胎児血清(FCS)を添カ卩した最小必須培地アルファ( α MEM— FCS、 Gibco )の入った T25培養フラスコ(Corning)に加え、それぞれ 3日ごとに培地交換を行い 、コンフルェントになり次第継代した。さらに 3日ごとに培地交換を行い、コンフルェン トになった細胞を実験に用いた。 6ゥエルプレート(Costar)に、 1 X 104個 Zcm2 ( l X 105個 Zゥエル)の細胞を播種し、 α ΜΕΜ—FCSにて、 5%CO—95%空気、 3
2
7°Cで 24時間培養した。血清を含まない α MEM培地に交換した後、 pCMV— luc ( 100 ΐ)あるいはそのスペルミン プルラン、カチオン化ゼラチン、および Lipofect Amine (登録商標)とのポリイオンコンプレックス(それぞれ 100 1、 50 1および 20 0 1)を加えて、さらに 6時間培養した。次に、培地を a MEM— FCSに交換し、さら に 24時間培養を続けた。培地を除去し、細胞を PBSでよく洗浄した後、細胞溶解液 (25mMトリス—リン酸緩衝液(ρΗ7. 8)、 2mMジチオスレィトール、 2mM 1, 2— ジアミノシクロへキサン一 N, N, Ν' , Ν,一四酢酸、 10%グリセロール、 l%Triton ( 登録商標) X— 100)をカ卩え、細胞を溶解させた。細胞溶解液中のルシフェラーゼタ ンパク質の化学発光を測定することによって、遺伝子発現を定量した。また、 Bicinc honinate (BCA)法にて細胞溶解液中の総タンパク質量を測定した。
[0037] 未分化間葉系幹細胞へのルシフェラーゼ遺伝子導入の結果を図 1に示す。図中、 黒のバーはァシァ口フエチュイン無添加、白のバーはァシァ口フエチュイン添加、 * は p< 0. 05を示す。 pCMV—lucとカチオン化ゼラチンとの複合体、および pCMV lucと LipofectAmine (登録商標)との複合体において、遺伝子発現が増強され た力 pCMV— lucとスペルミン一プルランとを複合ィ匕すると、遺伝子発現をさらに増 強することができることが示された。
[0038] また、ァシァ口糖タンパク質レセプターに結合するァシァ口フエチュイン( lmgZml) をポリイオンコンプレックスと同時に添加すると、有意に遺伝子発現量が減少した。骨 髄組織中にァシァ口糖タンパク質レセプターが存在することが知られて!/ヽることから、 この結果は、スペルミン プルランとプラスミド DNAとのポリイオンコンプレックスがァ シァロ糖タンパク質レセプターを介して未分ィ匕間葉系幹細胞内に取り込まれているこ とを示唆する。なお、カチオン化ゼラチンである E50、 SD50、 SM50は、遺伝子発 現はきわめて低 、レベルであった。
実施例 6
[0039] 神経由 細胞株への DNA導入
6ゥエルプレート(Costar製)に、 4 X 104細胞/ cm2 (4 X 105細胞/ゥエル)の PC 12細胞を播種し、 10vol%仔ゥシ胎児血清 (FCS)を添加した最小必須培地(MEM -FCS)中にて、 5%CO—95%空気、 37°Cで 24時間、培養した。血清を含まない
2
Opti - MEM (Gibco製)培地へ交換した後、 pCMV— luc ( 100 1)あるいはそのス ペルミン一プルラン、および LipofectAmine (それぞれ 100および 200 μ 1)とのポリ イオンコンプレックス(DNA量 5 /z gZゥエル)をカ卩えて、 6時間、培養した。次に、培 地を MEM— FCSに交換し、さらに 42時間、培養を続けた。培地を除去、細胞を PB Sでよく洗浄した後、細胞溶解液(25mMトリス—リン酸緩衝液 (pH7. 8)、 2mMジチ オスレィトール、 2mMl, 2—ジァミノシクロへキサン一 N, N, Ν' , Ν,一四酢酸、 10 ο/οグリセロール、 l%Triton (登録商標) X— 100)を加え、細胞を溶解させた。細胞 溶解液中のルシフェラーゼタンパク質の化学発光を測定することによって、遺伝子発 現を定量した。また、 Bicinchoninate (BCA)法にて細胞溶解液中の総タンパク質 量を測定した。結果を図 2に示す。図中、黒のバーはァシァ口フエチュイン無添加、 白のバーはァシァ口フエチュイン添加、 *は p< 0. 05を示す。†は分子量 100, 000 およびリポフエクタミンの値に対して pく 0. 05であることを示す。 実施例 7
[0040] ヒト脂肪組織由 榦細朐への DNA導入
細胞としてヒト脂肪組織由来幹細胞 (継代数 2)を用いた。患者の同意を得て乳癌 切除時に採取されたヒト脂肪組織(5ml)をノ、サミで細切した後、 2mgZmlの濃度の コラゲナーゼ S1 (新田ゼラチン株式会社から供与)水溶液中で 37°C、 15〜20分間 、処理することによって組織を消化分解した。組織消化物をナイロンメッシュ(200 mの孔)にて濾別した後、遠心分離 (4°C、 1, OOOrpm、 5分)することによって、ヒト脂 肪組織由来幹細胞を含む細胞成分を得た。得られた細胞は 15vol%FCSを添加し た Mediuml99Medium (Mediuml99—FCS)で 2回洗浄した後、 T25培養フラス コに播種した。 bFGF (0. 1 μ g/ml)を含む Mediuml99— FCSにて培養、それぞ れ 3日ごとに培地交換を行い、コンフルェントになり次第継代した。さらに 3日ごとに培 地交換を行い、コンフルェントになった細胞を実験に用いた。 6ゥエルプレートに、 1 X 104細胞/ cm2 (l X 105細胞/ゥエル)の細胞を播種し、 Mediuml99—FCS中 にて、 5%CO— 95%空気、 37°Cで 24時間、培養した。血清を含まない Medium 1
2
99Mediumへ交換した後、 pCMV— luc lOO /z l)あるいはそのスペルミン一プルラ ン、および LipofectAmine (登録商標)とのポリイオンコンプレックス(それぞれ 100 および 200 1) (DNA量 5 /z gZゥエル)をカ卩えて、 6時間、培養した。次に、培地を Mediuml99— FCSに交換し、さらに 24時間、培養を続けた。培地を除去、細胞を PBSでよく洗浄した後、細胞溶解液を加え、細胞を溶解させた。細胞溶解液中のル シフェラーゼタンパク質の化学発光を測定することによって、遺伝子発現を定量した 。また、 BCA法にて細胞溶解液中の総タンパク質量を測定した。結果を図 3に示す。 図中、黒のバーはァシァ口フエチュイン無添加、白のバーはァシァ口フエチュイン添 カロ、 *は p< 0. 05を示す。
実施例 8
[0041] ヒト榭状細胞への DNA導入
細胞としてヒト榭状細胞を用いた。すなわち、健常人より末梢血 15mlをへパリン採 血し、 PBSにて 2倍希釈後、 15mlの Ficoll— Paque液にゆっくりと重層させた。 800 gで 15分間遠心後、中間層(単核球)を滅菌のピペットで採取し、 RPMI1640で洗浄 、遠心して細胞を回収した。 T25培養フラスコに 1 X 107ずつ単核球細胞を、 10%F CS入り RPMI1640培地(RPMI1640—FCS) 10mlに浮遊させた。 2時間以上経 過後、浮遊細胞を含む上清を吸引除去して、付着細胞に rhIL— 4を 50ngZml、 rh GM— CSFを 50ng/ml添カ卩した RPMI1640— FCSlOmlをカ卩え、 5力ら 7日間培 養したものを実験に使用した。 5から 7日間培養したフラスコの上清を吸引回収し、遠 心後、未分化のヒト榭状細胞を回収した。
6ゥエルプレートに 3力 5 X 105Zゥエルとなるように RPMI1640にヒト榭状細胞を 播種、 200 iu gZmlのpEGFP (50 iu l)と0. 4mgZmlのスペルミン一プルラン(50 1)とのポリイオンコンプレックス(100 μ 1) (DNA量 5 μ g/ゥエル)を加え、 200gで 10 分遠心した。 2から 6時間後に RPMI1640— FCSに交換した。 EGFPの発現はフロ 一サイトメトリ(FACS)にて解析した。すなわち、遺伝子導入後 24から 48時間後に細 胞を吸引回収して、 PBSで一回洗浄し、 PE標識した HLA— DRや CD80抗体を添 加した。暗室に 4°C、 30分おいた後、再度 PBSで洗浄し解析した。 GFPは FL1、 PE は FL2で検出した。結果を図 4に示す。 pEGFPとスペルミン一プルランとを複合ィ匕す ると、発現効率が 24— 30%となった。 LipofectAmine (登録商標)では 0%であった 。また、 LipofectAmine (登録商標)では、ほとんどの細胞が死んでいたのに対して 、スペルミン プルランでは細胞はほとんど死んで 、なかった。
実施例 9
[0042] 軟骨細胞への DNA導入
実施例 5と同様にして、ゥサギ関節軟骨力 採取した軟骨細胞に pCMV— luc (10 0 1)を導入し、遺伝子の発現を調べたところ、スペルミン一プルランを用いた場合に 、 LipofectAmine (登録商標)に比較して、発現が高力つた。
実施例 10
[0043] 皮膚卜.皮細胞への DNA導入
実施例 5と同様にして、培養皮膚上皮細胞に pCMV— luc dOO /z l)を導入し、遺 伝子の発現を調べたところ、スペルミン プルランを用いた場合に、 LipofectAmin e (登録商標)に比較して、発現が高力つた。
実施例 11 [0044] 角膜上皮細胞への DNA導入
実施例 5と同様にして、培養角膜上皮細胞に pCMV— luc (100 1)を導入し、遺 伝子の発現を調べたところ、スペルミン プルランを用いた場合に、 LipofectAmin e (登録商標)に比較して、発現が高力つた。
実施例 12
[0045] 色素卜.皮細胞への DNA導人
実施例 5と同様にして、培養色素上皮細胞に pCMV— luc (100 1)を導入し、遺 伝子の発現を調べたところ、スペルミン プルランを用いた場合に、 LipofectAmin e (登録商標)に比較して、発現が高力つた。
実施例 13
[0046] 尿細管卜.皮細胞への DNA導入
実施例 5と同様にして、培養尿細管上皮細胞に pCMV— luc dOO /z 1)を導入し、 遺伝子の発現を調べたところ、スペルミン プルランを用いた場合に、 LipofectAmi ne (登録商標)に比較して、発現が高力つた。
実施例 14
[0047] 耳の有毛細胞への DNA導入
実施例 5と同様にして、培養耳有毛細胞に pCMV— luc (100 1)を導入し、遺伝 子の発現を調べたところ、スペルミン プルランを用いた場合に、 LipofectAmine ( 登録商標)に比較して、発現が高力つた。
実施例 15
[0048] ケラチノサイトへの DNA導入
実施例 5と同様にして、培養ケラチノサイトに pCMV— luc (100 1)を導入し、遺伝 子の発現を調べたところ、スペルミン プルランを用いた場合に、 LipofectAmine ( 登録商標)に比較して、発現が高力つた。
実施例 16
[0049] メサンギゥム細胞への DNA導入
実施例 5と同様にして、培養メサンギゥム細胞に pCMV— luc dOO /z 1)を導入し、 遺伝子の発現を調べたところ、スペルミン プルランを用いた場合に、 LipofectAmi ne (登録商標)に比較して、発現が高力つた。
実施例 17
[0050] 糸球体外メサンギゥム細胞への DNA導人
実施例 5と同様にして、培養糸球体外メサンギゥム細胞に pCMV—luc (100 1)を 導入し、遺伝子の発現を調べたところ、スペルミン—プルランを用いた場合に、 Lipof ectAmine (登録商標)に比較して、発現が高力つた。
実施例 18
[0051] 毛乳頭細胞への DNA導入
実施例 5と同様にして、培養毛乳頭細胞に pCMV— luc (100 1)を導入し、遺伝 子の発現を調べたところ、スペルミン プルランを用いた場合に、 LipofectAmine ( 登録商標)に比較して、発現が高力つた。
実施例 19
[0052] 毛母某底細胞への DNA導入
実施例 5と同様にして、培養毛母基底細胞に pCMV— luc (100 1)を導入し、遺 伝子の発現を調べたところ、スペルミン プルランを用いた場合に、 LipofectAmin e (登録商標)に比較して、発現が高力つた。
実施例 20
[0053] 毛包某底細胞への DNA導入
実施例 5と同様にして、培養毛包基底細胞に pCMV— luc (100 1)を導入し、遺 伝子の発現を調べたところ、スペルミン プルランを用いた場合に、 LipofectAmin e (登録商標)に比較して、発現が高力つた。
実施例 21
[0054] メラノーマ癌細胞への DNA導人
実施例 5と同様にして、培養メラノーマ癌細胞に pCMV— luc (100 1)を導入し、 遺伝子の発現を調べたところ、スペルミン プルランを用いた場合に、 LipofectAmi ne (登録商標)に比較して、発現が高力つた。 実施例 22
[0055] インビボでの神経細胞への DNA導入
カチオン化プルラン誘導体と核酸とのポリイオンコンプレックスの水溶液を、マウス 大腿筋肉に投与した。 2日後、筋肉内の神経細胞およびその神経につながる近位側 の神経細胞を採取し、遺伝子の発現を調べた。その結果、スペルミン プルランを用 いた場合に、 LipofectAmine (登録商標)に比較して、有意に高い発現レベルが確 れ 。
実施例 23
[0056] マウス骨髄幹細胞への DNA導入
カチオン化多糖 (スペルミン一プルラン、スペルミン一デキストラン、スペルミン一マ ンナン、スペルミン アミロぺクチン)と核酸とのポリイオンコンプレックスの水溶液を 作製した。実施例 1と同様にして、プルラン、デキストラン、マンナンおよびアミロぺク チンにスペルミンを導入した。スペルミンの導入率は、プルラン(12.3%)、デキストラン (9.51%)、マンナン(13.3%)およびアミロぺクチン(12.3%)であった。次に、下記の表に 示される濃度のカチオンィ匕多糖水溶液を作製した。
[表 1] カチオン化多糖の濃度 ( g/ml)
Figure imgf000020_0001
この水溶液と PBS中に 100 μ g/mlで溶解したプラスミド溶液とを等量で混合し、室温 で 15分間静置した。このポリイオンコンプレックスの所定量をマウス骨髄幹細胞(MS C)の培養物にカ卩え、血清なしの培地で 6時間、次に血清入りの培地で 24時間インキ ュペートすることにより細胞に導入し、遺伝子の発現を調べた(図 5)。スペルミン—プ ルラン (NZP比 3)を用いた場合に、 FuGENE6 (登録商標)に比較して、同程度の 発現であり、 LipofectAmine2000 (登録商標)と SuperFect (登録商標)に比較し て、有意に発現が高力 た。また、スペルミン一デキストラン、スペルミン一マンナンと も、 NZP比 3の場合、 LipofectAmine2000 (登録商標)に比較して、有意に発現 が高かった。
実施例 24
[0057] DNAの量による導入効率の栾化
実施例 23と同様にして、スペルミン プルラン(プルラン分子量 47300、 CDI3. 0 、 NZP比 3、スペルミン導入率 20. 4%)を用いて、 pCMV—luc dOO /z l)の量を変 化させて導入し、遺伝子の発現を調べたところ、 DNA量が 2. 5 μ gZwellの場合に 、もっとも発現が高力つた(図 6)。
実施例 25
[0058] 異なる分子量のプルランによる導入効率の変化
実施 f列 23と同様にして、スぺノレミンープノレラン(プノレラン分子量 5900力ら 212000 、CDI1. 5、 NZP比 3、スペルミン導入率: 5900 ; 12. 9%, 11800 ; 12. 3%, 228 00 ; 11. 0%47300 ; 12. 3%, 112000 ; 10. 7%, 212000 ; 9. 74%)を用いて、 p CMV— luc (100 μ 1)を導入し、遺伝子の発現を調べたところ、プルラン分子量が 47 300の場合に、もっとも発現が高力つた(図 7)。
実施例 26
[0059] 異なるスペルミンの導入率による DNA導入の変化
分子量 22800、 47300、 112000の 3種類のプルランに対して、スペルミン導入率 を変化させ、それぞれ 5種類、計 15のスペルミン—プルラン (Ν/Ρ比 3)を作製した。 スペルミンの導入率は以下のとおりである。
[表 2] モル比 0.5 1.0 1.5 3.0 5.0
22800 2.69% 5.60% 11.0¾ 23.0% 32.5%
47300 1.07% 5.95% 12.3% 20.4% 32.9%
112000 2.19% 7.35% 10.7% 26.3% 33.1% 実施例 23と同様にして、 pCMV— luc (100 1)を導入し、遺伝子の発現を調べた ところ、プルラン分子量が 22800の場合には CDIZOHのモル比が 3 (スペルミン導 入率 23. 0%)の場合に、プルラン分子量力 7300の場合には CDIZOHのモル比 が 1. 5 (スペルミン導入率 12. 3%)の場合に、プルラン分子量が 112000の場合に は CDIZOHのモル比が 1. 5 (スペルミン導入率 10. 7%)の場合に、それぞれ発現 が高かった。その中で、プルラン分子量力 7300、 CDI/OHのモル比が 1. 5 (スぺ ルミン導入率 12. 3%)の場合に、最も発現が高力つた(図 8)。
実施例 27
癌細胞への DNA導人
実施例 23と同様にして、スペルミン プルラン、スペルミンーデキストランと pCMV —lucとのポリイオンコンプレックスの水溶液を、癌細胞に導入し、遺伝子の発現を調 ベた(図 9 11)。図 9 11に示すように、 Lewis Lung carcinomaに核酸導入した場 合、スペルミンーデキストランを用いると、 LipofectAmine (登録商標)に比較して、 有意に発現が高力つた。
膀胱癌細胞株 EJ、 T24、 UMUC3、 RT4に核酸導入した場合、 LipofectAmine (登 録商標)では、ほとんど導入が見られな力つた力 スペルミン一デキストランを用いると 、有意に発現が高力つた。
前立腺癌 DU145、 PC3、 LNCaPに核酸導入した場合、 DU145ではスペルミン—プル ランを用いると、 LipofectAmine (登録商標)に比較して、有意に発現が高力つた。 PC3では、 LipofectAmine (登録商標)が、有意に発現が高かった。 LNCaPでは、 Li pofectAmine (登録商標)と同程度の発現であった。
前立腺肥大症 BPH-1に核酸導入した場合、スペルミン プルランは LipofectAmi ne (登録商標)に比較して、半分程度の発現であった。肝癌細胞株 HepG2に核酸導 入した場合、スペルミン プルランを用いると、 LipofectAmine (登録商標)に比較 して、有意に発現が高力つた。ヒト肺癌細胞株 A549に核酸導入した場合、スペルミン —プルランを用いると、 LipofectAmine, LipofectAmine2000 (登録商標)に比較 して、有意に発現が高力つた。
実施例 28 [0061] 幹細胞への DNA導入
実施例 23と同様にして、スペルミン プルラン、スペルミンーデキストランと pCMV —lucとのポリイオンコンプレックスの水溶液を、幹細胞に導入し、遺伝子の発現を調 ベた。
図 12に示すように、ラット骨髄未分化間葉系幹細胞、ヒト脂肪前駆細胞に核酸導入 した場合、スペルミン—プルランを用いると、 LipofectAmine2000 (登録商標)に比 較して、有意に発現が高力つた。マウス ES細胞に核酸導入した場合、スペルミン- デキストランを用いると、スペルミン一プルランよりも LipofectAmine2000 (登録商 標)に比較して、有意に発現が高力つた。
実施例 29
[0062] 初代培着細胞への DNA導入
実施例 23と同様にして、スペルミン プルラン、スペルミンーデキストランと pCMV —lucとのポリイオンコンプレックスの水溶液を、初代培養細胞に導入し、遺伝子の発 現を調べた。
図 13に示すように、ラット膀胱平滑筋細胞に核酸導入した場合、スペルミン プル ランを用いると、 LipofectAmine2000 (登録商標)に比較して、有意に発現が高か つた。ゥサギ膝関節軟骨細胞に核酸導入した場合、スペルミンーデキストランを用い ると、 LipofectAmine2000 (登録商標)に比較して、半分程度の発現であった。マ ウス腹腔マクロファージ、ラット腹腔マクロファージに核酸導入した場合、スペルミン一 デキストランを用いると、 LipofectAmine 2000 (登録商標)に比較して、有意に発現 が高かった。
実施例 30
[0063] 肺朐ト.皮 tvDell RLE6TNへの DNA導人
実施例 23と同様にして、肺胞上皮 typell RLE6TNに pCMV— luc (100 μ 1)を導 入し、遺伝子の発現を調べた。図 14に示すように、スペルミン—プルランを用いた場 合に、 LipofectAmine (登録商標)に比較して、有意に発現が高力つた。
実施例 31
[0064] マウス _ ^マクロファージへの DNA¾A 実施例 23と同様にして、マウス腹腔マクロファージに pCMV— luc (100 1)を導入 し、遺伝子の発現を調べた。図 15に示すように、スペルミン—デキストランおよびスぺ ルミン—マンナンを用いた場合に、 LipofectAmine2000 (登録商標)に比較して、 有意に発現が高力つた。
実施例 32
[0065] ラット朥腔マクロファージへの DNA導人
実施例 23と同様にして、ラット腹腔マクロファージに pCMV— luc (100 1)を導入 し、遺伝子の発現を調べた。図 16に示すように、スペルミン—マンナンを用いた場合 に、 LipofectAmine 2000 (登録商標)に比較して同程度に、またスペルミンーデキ ストラン用いた場合に、有意に発現が高力つた。
実施例 33
[0066] マウス ES細胞への DNA導入
実施例 23と同様にして、マウス ES細胞に pCMV— luc (100 1)を導入し、遺伝子 の発現を調べた。図 17に示すように、スペルミン プルランおよびスペルミンーデキ ストランを用いた場合に、 LipofectAmine2000 (登録商標)に比較して、有意に発 現が高力つた。
産業上の利用可能性
[0067] 細胞内に核酸を導入するための本発明の組成物および方法は、伝子治療、細胞 移植治療および再生医療に、ならびに基礎生物医学研究に有用である。

Claims

請求の範囲
[1] 多糖類力もなる、細胞への核酸の導入を促進するための組成物。
[2] 細胞が、骨髄間葉系幹細胞、神経系細胞株、脂肪組織由来幹細胞、免疫細胞、神 経細胞、軟骨細胞、上皮細胞、初代培養細胞および癌細胞力 選択される、請求項
1記載の組成物。
[3] 多糖類がカチオンィ匕プルラン誘導体、カチオンィ匕デキストラン誘導体またはカチオン 化マンナン誘導体である、請求項 1または 2に記載の組成物。
[4] 細胞に核酸を導入する方法であって、前記核酸と多糖類とのポリイオンコンプレック スを形成し、前記ポリイオンコンプレックスを前記細胞に取り込ませることを含む方法
[5] 細胞が、骨髄間葉系幹細胞、神経系細胞株、脂肪組織由来幹細胞、免疫細胞、神 経細胞、軟骨細胞、上皮細胞、初代培養細胞および癌細胞力 選択される、請求項 4記載の方法。
[6] 多糖類がカチオンィ匕プルラン誘導体、カチオンィ匕デキストラン誘導体またはカチオン 化マンナン誘導体である、請求項 4または 5に記載の方法。
PCT/JP2005/006370 2004-03-31 2005-03-31 細胞に核酸を導入するための製剤 WO2005094894A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/547,103 US20090117657A1 (en) 2004-03-31 2005-03-31 Preparation For Transferring Nucleic Acid Into Cell
JP2006511825A JPWO2005094894A1 (ja) 2004-03-31 2005-03-31 細胞に核酸を導入するための製剤
EP05727376A EP1738769A4 (en) 2004-03-31 2005-03-31 PREPARATION FOR THE TRANSFER OF NUCLEIC ACID INTO A CELL

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-103568 2004-03-31
JP2004103568 2004-03-31

Publications (1)

Publication Number Publication Date
WO2005094894A1 true WO2005094894A1 (ja) 2005-10-13

Family

ID=35063541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/006370 WO2005094894A1 (ja) 2004-03-31 2005-03-31 細胞に核酸を導入するための製剤

Country Status (4)

Country Link
US (1) US20090117657A1 (ja)
EP (1) EP1738769A4 (ja)
JP (1) JPWO2005094894A1 (ja)
WO (1) WO2005094894A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007117054A (ja) * 2005-10-31 2007-05-17 Medgel Corp 核酸とカチオン化多糖とのポリイオンコンプレックスを用いるリバーストランスフェクション

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LT2825565T (lt) 2012-03-15 2019-07-10 Aziende Chimiche Riunite Angelini Francesco A.C.R.A.F. S.P.A. Katijoninis polimeras glikogeno pagrindu
CA2931862C (en) 2013-11-08 2024-01-23 Carlos Filipe Method of stabilizing molecules without refrigeration using water soluble polymers and applications thereof in performing chemical reactions
CN113786392A (zh) * 2021-09-30 2021-12-14 四川大学 一种纳米颗粒及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001199903A (ja) * 1999-11-09 2001-07-24 Eizo Mori 核酸含有複合体
WO2002072152A1 (fr) * 2001-03-13 2002-09-19 Japan Science And Technology Corporation Supports de gene mettant en oeuvre un polysaccharide et leur procede de production
JP2002272470A (ja) * 2001-03-21 2002-09-24 Takashi Nakamura リジルオキシダーゼ関連タンパク質をコードする核酸
JP2003104914A (ja) * 2001-09-28 2003-04-09 Yasuhiko Tabata Dna−金属−水溶性高分子複合体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001199903A (ja) * 1999-11-09 2001-07-24 Eizo Mori 核酸含有複合体
WO2002072152A1 (fr) * 2001-03-13 2002-09-19 Japan Science And Technology Corporation Supports de gene mettant en oeuvre un polysaccharide et leur procede de production
JP2002272470A (ja) * 2001-03-21 2002-09-24 Takashi Nakamura リジルオキシダーゼ関連タンパク質をコードする核酸
JP2003104914A (ja) * 2001-09-28 2003-04-09 Yasuhiko Tabata Dna−金属−水溶性高分子複合体

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CONSTANTIN M. ET AL: "Aminated Polysaccharide Microspheres as DNA Delivery Systems", DRUG DELIVERY, vol. 10, no. 3, 2003, pages 139 - 149, XP008111024 *
FERDOUS A. ET AL: "Poly (L-lysine)-graft-dextran copolymer: amazing effects on triplex stabilization under physiological pH and ionic conditions (in vitro)", NUCLEIC ACIDS RES., vol. 26, no. 17, September 1998 (1998-09-01), pages 3949 - 3954, XP008111354 *
HOSSEINKHANI H. ET AL: "Dextran-spermine polycation: an efficient nonviral vector for in vitro and in vivo gene transfection", GENE THERAPY, vol. 11, no. 2, January 2004 (2004-01-01), pages 194 - 203, XP008111352 *
HOSSEINKHANI H. ET AL: "Tumor targeting of gene expression through metal-coordinated conjugation with dextran", J. CONTROL RELEASE, vol. 88, no. 2, March 2003 (2003-03-01), pages 297 - 312, XP004412771 *
See also references of EP1738769A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007117054A (ja) * 2005-10-31 2007-05-17 Medgel Corp 核酸とカチオン化多糖とのポリイオンコンプレックスを用いるリバーストランスフェクション

Also Published As

Publication number Publication date
JPWO2005094894A1 (ja) 2008-02-14
EP1738769A4 (en) 2011-03-09
EP1738769A1 (en) 2007-01-03
US20090117657A1 (en) 2009-05-07

Similar Documents

Publication Publication Date Title
Huh et al. Polysaccharide-based nanoparticles for gene delivery
US8021350B2 (en) Hydroxyphenyl cross-linked macromolecular network and applications thereof
Gao et al. Arginine-chitosan/DNA self-assemble nanoparticles for gene delivery: In vitro characteristics and transfection efficiency
KR101179471B1 (ko) 자기 집합체 고분자 나노입자를 이용한 siRNA 전달 시스템
Nuñez-Rivera et al. Brome mosaic virus-like particles as siRNA nanocarriers for biomedical purposes
AU2005265326A1 (en) Hydroxyphenyl cross-linked macromolecular network and applications thereof
EP2070970B1 (en) Transfection Reagent
KR20140119513A (ko) 히알루론산을 포함하는 핵산전달용 조성물
US8138265B2 (en) Hydroxyphenyl cross-linked macromolecular network and applications thereof
CA2994809A1 (en) Silica-based biomolecule carrier, pharmaceutical composition comprising the same, preparation method and use thereof
KR101223484B1 (ko) 사람 혈청 알부민-siRNA 나노입자 전달체
WO2005094894A1 (ja) 細胞に核酸を導入するための製剤
EP3568404A1 (en) Star-like (guanidyl)x-oligosaccharidic compounds and conjugates or complexes thereof
CN106727323B (zh) 一种透明质酸纳米囊泡及其制备方法和应用
JP2003231748A (ja) 医用高分子及びその用途
KR101006755B1 (ko) 활성산소를 감지하는 히알루론산 금 나노입자 및 이의제조방법
KR101605528B1 (ko) 신규한 히알루론산 기반 하이드로겔 및 이의 용도
Zhang et al. A zwitterionic polymer-inspired material mediated efficient CRISPR-Cas9 gene editing
CN107226844A (zh) 增强整合素受体亲和力及靶细胞摄取能力的结构分子及其应用
JP6868306B2 (ja) 細胞導入剤
KR101357899B1 (ko) 간세포 표적 유전자 전달체로서 갈락토실화 폴리에틸렌글리콜-키토산-그라프트-스페르민 공중합체 및 이를 이용한 유전자 치료
US7550512B2 (en) Medical polymers and uses thereof
KR101841111B1 (ko) 히알루론산 유도체 및 이를 이용한 세포 표면 개질용 조성물
JP2004107272A (ja) 遺伝子治療剤
JPWO2020013265A1 (ja) 高分子化合物及びそれを用いた細胞内化合物導入促進剤

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006511825

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2005727376

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005727376

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11547103

Country of ref document: US