WO2005090692A1 - Fiber-reinforced soil construction method and fiber-reinforced soil structure - Google Patents

Fiber-reinforced soil construction method and fiber-reinforced soil structure Download PDF

Info

Publication number
WO2005090692A1
WO2005090692A1 PCT/JP2004/003870 JP2004003870W WO2005090692A1 WO 2005090692 A1 WO2005090692 A1 WO 2005090692A1 JP 2004003870 W JP2004003870 W JP 2004003870W WO 2005090692 A1 WO2005090692 A1 WO 2005090692A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
soil
reinforced soil
fibers
construction method
Prior art date
Application number
PCT/JP2004/003870
Other languages
French (fr)
Japanese (ja)
Inventor
Naoki Horie
Original Assignee
Nittoc Construction Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittoc Construction Co., Ltd. filed Critical Nittoc Construction Co., Ltd.
Priority to PCT/JP2004/003870 priority Critical patent/WO2005090692A1/en
Priority to TW093110974A priority patent/TW200532074A/en
Publication of WO2005090692A1 publication Critical patent/WO2005090692A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D17/00Excavations; Bordering of excavations; Making embankments
    • E02D17/20Securing of slopes or inclines
    • E02D17/207Securing of slopes or inclines with means incorporating sheet piles or piles
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D17/00Excavations; Bordering of excavations; Making embankments
    • E02D17/20Securing of slopes or inclines

Definitions

  • the present invention relates to a fiber reinforced soil construction method for blowing fibers and sand or sand or similar to sand (hereinafter referred to as sandy soil) to a site to be reinforced, and a fiber reinforced soil construction constructed by the construction method.
  • sandy soil a fiber reinforced soil construction method for blowing fibers and sand or sand or similar to sand
  • Fig. 1 As shown in Fig.18 and Fig.18, as shown in Fig.18, after placing the main anchors 1 pin 4 8a and the auxiliary anchors 1 pin 4 8b by steel rods etc. in a skewer-like manner on the slope 3 1 Spraying soil or mortar alone or spraying material such as customer soil or mortar while the lath wire mesh 47 is stretched on the slope 31 is carried out.
  • this method has limitations in terms of strength. For example, rainfall immediately after spraying, snow melting water, etc. caused erosion of the spray material 61 due to runoff collapse and erosion of the greening base material.
  • the growth base material for apricot growth 3 to 2 to 1 O cm thick is used to support the growth of plants. There is a limit and it is not enough for plants to grow persistently and healthy.
  • a pot-like greening block 50 prepared by filling soil or the like in a container having an open top on foundation concrete 51 is stepped along the slope. It is known how to plant plants 52 in soil that is slightly exposed to the top of greening blocks 50. However, this method can not green the entire slope, which is not desirable in terms of landscape.
  • a main anchor pin 4 8 a and an auxiliary anchor pin 4 8 b are driven to form a wire mesh.
  • a lath wire mesh 47 is stretched in the frame to form a growth base material 54 with a thickness of 3 to 10 cm.
  • Methods of spray construction are also known.
  • the growth base material for vegetation with a thickness of 3 to L 0 cm has a limit to support the growth of plants, and is insufficient for the plants to grow persistently and healthy. is there.
  • the entire slope can not be greened because it becomes green in the lattice frame, which is not preferable in terms of landscape.
  • E-fibers be mixed as a ground stabilization method by mixing in E-fibers, as described in Japanese Patent Publication No. 5 3 4 7 6 0 2 or Japanese Patent 5 5-1 6 7 1 7 0 etc.
  • the continuous fiber By mixing the continuous fiber into the spray material, the effect of preventing the runoff of the spray material is enhanced, and the reinforcing effect by the pseudo-adhesive force of the continuous fiber is obtained.
  • a soil stabilization method has been proposed, which is characterized in that it is made to intersect with the flow of the material based on the agate improvement material, and the discharged fiber yarn is carried on the flow of the above-mentioned material and sprayed onto the surface to be improved as an integral material.
  • the improved material is pumped by a pump.
  • the spray material main body is pumped through a hose 102 by a pressure feed pump and sprayed from a spray nozzle 101 at the tip onto a target surface, for example, a slope surface.
  • continuous fiber yarn 103 such as polypropylene is introduced into the fiber nozzle 104, and is ejected from its tip by compressed air by the compressor.
  • the fiber nozzle 104 is integrated with the spray nozzle 101 by the stopper 105, and the jet direction of the fiber nozzle 104 intersects with the jet direction of the spray material from the spray nozzle 1. It is supposed to
  • the strength against shear force differs depending on the direction, and depending on the laying direction, sufficient strength as reinforced soil may not be obtained.
  • the object of the present invention is to create a reinforced soil by intermingling and mixing fibers with sandy soil continuously.
  • the fiber reinforced soil construction method by laying the fibers in such a way that the mixture of fibers in the reinforced soil is appropriate, reinforced soil with sufficient strength can be obtained, and fiber with good workability and uniform working quality can be obtained. It is an object of the present invention to withdraw a fiber reinforced soil construction method, and to construct a fiber reinforced soil construction which can be constructed by the construction method with good workability and which is homogeneous and has sufficient strength. Disclosure of the invention
  • the present invention means sandy soil (an object similar to sand or sand, for example, mountain sand, river sand, sea sand, masa soil, soil, etc.). ) Using a fiber-reinforced soil device equipped with a sandy soil conveying device that carries out a thigh) and a fiber feeding device that supplies fibers continuously, a fiber feeding device to the sandy soil that is transported from the sandy soil transportation device In the fiber reinforced soil construction method, in which fibers drawn out from the fiber are entangled and mixed to form a reinforced soil, the fibers are continuous fibers, and the point is that the fibers are linearly oriented to the sandy soil.
  • the fibers are continuous fibers, and the sandy soil and the fibers can be uniformly dispersed and mixed by linearly orienting to the sandy soil. As a result, the development of strength as a fiber tension reinforcement is obtained.
  • the jet ejector which jets and delivers the fiber together with high pressure water or compressed air is connected to a high pressure water or compressed air supply pipe, and the ejector is used to connect fibers from the fiber supply device.
  • the fibers are discharged with the ejector separately from spraying of the sandy soil. Since the mixing direction of the fibers from the fiber supply device to the sandy soil is made to be a receiving plate, the fibers do not flow and the shear strength can be secured. .
  • the present invention according to claim 3 is characterized in that the ejector is provided with a plurality of injection nozzles.
  • the sandy soil and the fibers can be uniformly distributed by injecting the fibers from the plurality of jet nozzles.
  • the ejector resonator is constituted by a combination of a header provided with a plurality of injection nozzles and a peristaltic means of the header.
  • the fibers can be laid in a uniformly tensioned state, and the tension of the fibers can be increased to reinforce the soil. It is possible to ensure uniform tackiness due to fiber tension in the
  • the tip of the spray nozzle is automatically moved within the area where the sandy soil is discharged. Therefore, the worker only needs to have the ejector, and there is no need to shake it, so the workability is good, and the load on the operator is large and the worker is required to swing the ejector manually.
  • iiiS makes up for the disadvantage that it is also difficult to do, and it has good workability.
  • the fibers do not become flow-like and shear strength can be secured.
  • the gist of the present invention according to claim 5 is characterized in that the receiving plate has a height angle of 7 ° to 20 ° with respect to the horizontal plane intersecting with the slope which forms the reinforced soil.
  • the required shear strength can be obtained with certainty. That is, when a fiber reinforced soil is to be built on the slope for slope protection, the thickness of the buildup is the integrity of the soil structure, the mixability of sandy soil and fibers, and the vegetation base. From the point of view as a smooth slope, the minimum thickness is 15 cm. According to the invention as set forth in claim 5, in addition to the ffS action, the so-called fiber mixing direction is received against the slope. If it is assumed to have a height angle of 7 ° to 20 ° with respect to the horizontal line that intersects the slope, the slope will be 1: 1.5 to 1: 0.8: ⁇ The horizontal thickness is approximately 30 cm in thickness, and 15 cm or more of construction thickness can be secured.
  • the invention according to claim 6 is characterized in that the jet velocity of the fiber is from 3 0 0 m to 1 0 0 0 m / min.
  • the gist of the invention is to make the peristaltic angle of the header 10 to 30 degrees.
  • the fiber injection velocity is set to 3 0 Om to l, 0 0 O m / min,
  • the fibers can be blended with the sandy soil on average when the shaking angle of the header is 10 degrees to 30 degrees.
  • the gist of the present invention according to claim 7 is characterized in that a rigid fiber is placed on a slope which is to be reinforced, and the upper end of the body projecting from the slope is covered with the reinforcement.
  • the fibers in the reinforced soil are rigid. Reinforcement with the body Improves the integrity of the soil and the slope of the ground, making it less likely to slip or collapse.
  • a well-known ground anchor method or a lock bolt method can be used as a method of placing one end of an I-shaped penetrator on a slope to form reinforced soil and projecting it from the slope.
  • the gist of the present invention according to claim 8 is that the fiber reinforced soil construction is constructed by the method according to claim 1.
  • the fibers are arranged in a receiving disk shape in the reinforcing soil, so that the fibers do not flow and the shear strength can be secured, and the fibers are in a tensioned state.
  • the fiber reinforced soil structure can be made homogeneous and have sufficient strength due to pseudo adhesion.
  • FIG. 1 is an explanatory view showing one embodiment B of the fiber reinforced soil construction method of the present invention.
  • FIG. 2 is an explanatory view of strength calculation of the fiber reinforced soil method of the present invention.
  • FIG. 3 is a schematic view of the construction of the fiber reinforced soil construction method of the present invention.
  • FIG. 4 is an explanatory view of a form of the fiber reinforced soil method of the present invention.
  • FIG. 5A is a longitudinal cross-sectional view showing one embodiment of a slope-protected type construction constructed by the fiber reinforced soil method of the present invention.
  • FIG. 5B is a partially cut away plan view showing one embodiment of the construction of the slope protection rope constructed by the fiber reinforced soil method of the present invention.
  • FIG. 6 is a longitudinal side view showing an embodiment of a retaining wall shape type construction created by the fiber reinforced soil method of the present invention.
  • Fig. 7A is a plan view of the ejector.
  • FIG. 7B is a front view of the ejector.
  • FIG. 8 is an operation explanatory diagram of one ejector.
  • FIG. 9 is an explanatory view of a process of creating reinforced soil in the embodiment of the fiber reinforced soil construction method of the present invention.
  • FIG. 10 is an explanatory view of a completion state of reinforcement soil creation in the embodiment of the fiber reinforced soil construction method of the present invention.
  • FIG. 11 is an explanatory view showing a state in which continuous fibers are built so as to have a receiving disc shape in one embodiment of the fiber reinforced earth construction method according to the present invention in comparison with a state in which the continuous fibers are built in a flow disc shape.
  • FIG. 12 is an explanatory view showing the relationship between the slope slope and the slope of the finished surface in the fiber reinforced soil construction method of the present invention.
  • FIG. 13 is an explanatory view showing a completed state of a planting hole in the embodiment of the fiber reinforced soil construction method of the present invention.
  • FIG. 14 is an explanatory view showing a state of planting seedlings in the embodiment of the fiber reinforced soil construction method of the present invention.
  • FIG. 15 is an explanatory view showing a state in which the thick layer base material is sprayed in the embodiment of the fiber reinforced soil construction method of the present invention.
  • Fig. 16 is a perspective view of a case where a rigid body is placed on the slope to construct reinforced soil.
  • Figure 17 A is a perspective view of the pin.
  • Figure 17B is a cross-sectional plan view of the pin.
  • Fig. 18 A is a longitudinal cross-sectional view showing an example of a structure created by the «method of construction.
  • Fig. 18 B is a partially cutaway plan view showing an example of a construction constructed by the conventional method.
  • FIG. 19 is a longitudinal side view showing another example of the construction constructed by the conventional method.
  • FIG. 20 is a longitudinal side view showing still another example of the construction constructed by the conventional method o
  • Fig. 21 A is a longitudinal side view showing still another example of the construction constructed by the conventional method.
  • Fig. 21 B is a partially cut away plan view showing still another example of the construction constructed by the conventional method.
  • Figure 22 is an explanation showing one of the fine examples of the fiber reinforced soil method.
  • FIG. 23 is a graph showing the relationship between the tension of fibers and the shear resistance angle and pseudo adhesion.
  • a fiber reinforced soil 55 with a substantially uniform thickness on the slope according to the slope of the ground 41 (hereinafter, Retaining wall prison type).
  • Back surface drainage is carried out by laying back surface drainage material 81 with a porous mat with a thickness of about 1 to 3 cm, as shown in Fig. 5B.
  • the anchor with a plate with a plate 40 is cast by a rock bolt (rebar insertion bar), for example, after a grout injection consisting of cement milk with IJ hole, water cement ratio 50% of water cement ratio by a hammer drill.
  • rebar insertion bar for example, after a grout injection consisting of cement milk with IJ hole, water cement ratio 50% of water cement ratio by a hammer drill.
  • At least the plate 4 0 a protrudes from the ground 4 1 with the plate anchor 40 provided with 4 0 a Insert it into the hole drilled by and fix it.
  • 1 is a fiber feeding device, and the high-pressure water sent from the water tube 3 through the high-pressure pump 4 through the feeding pipe 5 is fed from the fiber feeding device 1 It consists of an ejector 17 that ejects from the injection nozzle 6 using the above, and this is combined with a sandy soil supply device 8.
  • sandy soil refers to sand or sand-like material, for example, mountain sand, river sand, sea sand, masa soil, soil, and gravel.
  • the sandy soil feeder 8 comprises a scale 11 having a hopper 10 connected to a belt conveyor 9a, and a sprayer 12 connected to the scale 11 via a belt conveyor 9b.
  • 13 indicates a tractor-excavator that performs sand or sand-like objects from sandhill 14 and 15 indicates a compressor that supplies compressed air to sprayer 12.
  • the material hose 3 3 is connected to the sprayer 12, and the tip thereof is sand or a jet nozzle of an object similar to sand.
  • reference numeral 16 denotes a power supply ⁇ 1, serving as a power source for the measuring instrument 11, etc.
  • 17 denotes a distribution board
  • 18 denotes a measuring device for measuring the amount of fiber delivered from the fiber supply device 1.
  • the fiber feeder 1 comprises a portable bobbin case 21 having a single guide stage 20 for bundling and feeding the fibers 2 from a plurality of (four in the illustrated example) yarn rods 19.
  • the ejector 7 comprises a combination of the header 22 and the peristaltic means 23.
  • the fiber 22 from the fiber feeding device 1 It has four fiber guides 24 and a jet nozzle 6 for jetting this fiber 2 together with high pressure water or compressed air.
  • the pivoting means 23 pivots the cylinder 2 7 obliquely upward to the other end of the arm 2 9 whose one end is attached to the base 30, and the tip of the piston 2 8 of the cylinder 2 7
  • the upper end was pivotally mounted, the lower end of the swing arm 26 was fixed to the pivoting tube 25, and the pivoting tube 25 was coaxially connected to the header 12.
  • the high pressure water can be Which supply pipe 5 to connect.
  • 32 is an operation unit.
  • each bobbin case 2 1 of the fiber supply device 1 4 fibers 2 drawn out from the yarn rod 1 9 are bundled into one, and it comes out from the discharge port 35 and the guide stay 20, and the ejector 1 is removed.
  • the jet nozzle 6 is inserted through the fiber guide 24 of 7.
  • the feed rate of fiber 2 is detected by a load cell 34 and measured by a weighing device 18.
  • the pivoting tube 25 pivots integrally with the lower end of the pivoting arm 26. This pivoting motion is transmitted to the coaxial header 12 and the header 12 also pivots. As a result, the injection nozzle 6 provided in the header 22 moves in an arc shape.
  • the injection nozzle 6 automatically oscillates without moving the hand, and the injection destinations of the fiber 2 and the jet water reciprocate automatically, and each part becomes uniform. Mix with sand or something similar to sand.
  • the ejector 7 may be one that jets from the jet nozzle 6 using compressed air instead of high pressure water.
  • the number of oscillations used in the ejector 1 is the oscillation angle of 28 degrees.
  • the installation time was 3 m 3 and the installation quantity was 5 to 6 times / sec, and the installation quantity of time 6 m 3 was 7: L 0 times / sec.
  • the header 22 is rotated by the reciprocating motion of the piston 28 of the cylinder 27 as described above, whereby the injection nozzle 6 provided on the header 122 is curved in an arc-like lS. Although it moves, as the injection nozzle 6 swings, the injection destination of the fiber 2 and jet water automatically reciprocates.
  • the continuous fibers 2 can be linearly oriented to the sandy soil, and the fibers can be jetted evenly to the sand as a whole or to a thing similar to sand.
  • the fiber is injected with the jet water, and the amount of the fiber mixed in the fiber reinforced soil, which is mixed with sandy soil, is secured at 3.3 kg / m 3 .
  • the direction of mixing of the fibers from the fiber supply device 1 into the sand is made a receiving plate, and the receiving plate is a slope protection type.
  • the height angle is 7 ° to 20 °, preferably 15 ° or more, with respect to the horizontal plane X intersecting the slope 31.
  • (b) is the case where the fiber direction is flow-shaped.
  • the constructed structure can obtain sufficient strength.
  • rt my is an example, and the value changes according to the situation.
  • the conduits having a length of 10 cm or less are stirred together with the sandy soil in a stirring apparatus, and the sand soil is sprayed before being pumped. To Mix short fiber.
  • the staple fiber various fibers such as natural fiber and synthetic fiber can be used, but vinylon fiber and steel fiber can increase the strength of the fiber reinforced soil, and they have excellent permeability and air permeability. Water and oxygen can be supplied to the roots of plants, such as (1) and (2).
  • the presence of short fibers makes the reinforced soil bulky and increases the air layer in the reinforced soil, so that it becomes easy to supply oxygen to plant roots when applied 3 ⁇ 4 ⁇ , which can promote plant growth . Furthermore, the fibers mixed in the reinforcing soil do not prevent the growth of plant roots, and in addition to strengthening the reinforcing effect of the soil by being entangled with the roots, by combining the continuous fibers and the short fibers, the short fibers become entangled with the continuous fibers. Can be expected to strengthen the reinforcement effect.
  • fiber reinforced soil 3 ⁇ 4K production is good and 1 0 one 2 ⁇ 1 0 _ 3 cmZs, sometimes it is difficult to keep the moisture and nutrients always performs E as shown in FIG. 9, 1 0 In some cases, it is desirable to embed a material that has both sex and fertilization properties near the surface of the reinforced soil.
  • a pot 4 3 for holes such as a void tube in proximity to the material 4 2 having fck property and fertilization property, while making the tip of the pot 4 3 for planting holes come out of the surface of the reinforced soil, ⁇ Create a fiber reinforced soil 55 on a material 4 2 and a hole-porting material 4 3 having elasticity and fertility.
  • a commercially available material (for example, trade name "Green bullet No. 4") is used as the material 42 having water retention and fertilization properties, and a material having fcK properties and fertilizer retention and 42 for leakage holes Arrange the ports 4 3 at an interval of 2 pcs / m 2 .
  • the material with fcK properties and fertilizer-retaining property is formed mainly of the organic material base material by peat moss and park compost, and for example, the prepared product is peat moss 3, pak-teok moon cake 5, Permikiyu light shall be compressed at a ratio of 0.5, Zeolite 0.5, Bentonite 0.5, Pearlite 0.5.
  • the entire bowl may be in the form of a cylindrical square or the like. The size is about a height of 8 (cm), a diameter of 010 to 18 (cm), and a weight of about 400 to 1,300 (g).
  • the ground slope is reinforced by fibers substantially uniformly with a thickness of 30 cm or more.
  • a concrete construction method such as concrete beam together with other constructions when there is a slight steep ⁇ as 0.8> N 5 0.5, and use the slope protection type.
  • I will make a retaining wall shape i dog type that will make the buttocks thicker.
  • fiber reinforced soil is created with a thickness of 30 cm or more from the viewpoint of strength. Also, as shown in Fig. 12, the slope slope of the ground slope is steep, and in the case of 0.5> N 0 0. 3 (eg 1: 0. 35), The slope of the finished surface of the fiber reinforced soil 55 is made to be less than 1: 0.5 by setting it as a retaining wall type.
  • the thickness of reinforced soil that can be grown continuously varies, so 30 cm for grasses and 45 cm or more for shrubs and trees with medium height. It is preferable to use 60 cm or more as a standard for woody products.
  • Thick-layer substrate spraying is performed by spraying a ffi ⁇ substrate to a thickness of 3 to 10 cm using a pump or a mortar gun, and the method may be artificial soil or organic powder (soil, wood fiber, raw water, Beat moss etc).
  • composition of thick-layer ax 46 per 1 m 3 is organic vegetation change 2000 liters, chemical 3k, slow-acting fertilizer 3 kg, resin-based powder 1 kg as an erosion inhibitor, Blend plant seeds according to greening goals.
  • the mulching material 39 is a natural fiber jut cloth backing a kraft paper, and has a ground temperature stability and feK property comparable to that of a laying straw, saves time for drying and watering, and prevents rising above the ground. Excellent.
  • a mesh 70 such as a wire mesh or synthetic resin net is laid on the upper surface of the fiber reinforced soil 55.
  • the mesh 70 is locked at the hook 7 1 a of the head of the pin 7 1 which is inserted into the fiber reinforced soil 5 5.
  • the outline of pin 7 la is shown in Fig. 17 A. It is made of fine material, has a pointed end, and the main body has a vertical lip that protrudes from the center as a cross-section cross-shaped or character-shaped. 7 1 b is provided, and upward ridges 71 c are formed at the upper and lower intervals at the side end of the longitudinal rib 7 lb.
  • a cross section is shown in Fig. 17 B.
  • the pin 70 is light if it is made of synthetic resin and has a pointed tip so that it can be easily inserted.
  • the main body is provided with a longitudinal rib that protrudes in a square shape from the center, such as a cross-shaped cross section. Therefore, the longitudinal ribs serve as reinforcements, and furthermore, the upward ridges entangle with the fibers, making it difficult to remove them.
  • a flat portion 7 I d for impact receiving is formed at the top of the pin 7 1 so that it can be driven.
  • the pin 71 is arranged, for example, 1 8/1 O m 2 about interval.
  • Pin 71 lays net 70 on fiber reinforced soil 55, and then inserts it in fiber reinforced soil 55, and finally locks mesh 7 1 a of net 4 on the head.
  • the bifurcated fibers of the fiber reinforced soil 5 5 are entangled with the ridges 7 1 c of the pin 7 1 and the pin 7 1 can be prevented from coming out, and the mesh 70 and the fiber reinforced soil 5 5
  • the integral connection through the pin 8 and the reinforcement by the mesh 70 ensure stability against the crane section.
  • the net 70 is floated a little on the fiber reinforced soil 5 and laid in the thick layer base 46 70 may enter.
  • the material having the water retention ability and the fertilizer retention ability gradually supplies water and fertilizer to the plants, and the plants can grow well.
  • the reinforced soil of the construction constructed in this way has a thickness of 30 cm or more and the finishing slope slope is less than 1: 0.5 which is the growth limit slope of 3 ⁇ 44, the plant is healthy. It can grow on In addition, by the presence of an appropriate amount of fibers, it is possible to maintain the strength due to the cohesion and reinforce the ground.
  • a rock bolt 90 is placed as a rigid body on the slope to create the fiber reinforced soil 55, and the upper end of the lock bolt 90 protruding from the slope is reinforced Covering with soil
  • the so-called rock bolt is applied, and the rock bolt 90 is used to stabilize the ground and the end of the rock bolt 90 has one end placed on the slope to construct the fiber reinforced soil 55. Since the fiber is covered with a fiber reinforced soil 55, the fibers in the fiber reinforced soil 55 are entwined in the rock bolt 90 to improve the integrity of the reinforced soil and the ground slope, causing slippage and collapse. It becomes difficult to happen. Industrial applicability
  • the fiber reinforced soil construction method of the present invention in the fiber reinforced soil construction method in which the reinforced soil is constructed by entangled and mixed the fibers with the sandy soil, the mixing state of the fibers in the reinforced soil is appropriate. By laying the fibers in such a way, reinforced soil with sufficient strength can be obtained, and the working efficiency can be improved.
  • the fiber reinforced soil construction of the present invention can be constructed with good workability, and is homogeneous and has sufficient strength.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)

Abstract

A fiber-reinforced soil construction method spraying multiple pieces of continuous fibers and sandy soil onto a construction area to be reinforced for building up reinforced soil by continuously entwining and mixing the fibers with the sandy soil and a fiber-reinforced soil structure with uniform quality and sufficient strength built up by the construction method. The construction method can provide the reinforced soil with sufficient strength by jetting and mixing the fibers so that the fibers can be properly mixed in the reinforced soil and uniformize the quality of work with excellent workability. The construction method builds up the reinforced soil by entwining and mixing the fibers delivered from a fiber supply device with the sandy soil carried from a sandy soil carrying device by using a fiber-reinforced soil device having the sandy soil carrying device for carrying the sandy soil and the fiber supply device for continuously supplying the fibers. The fibers are continuous ones, and linearly oriented in the sandy soil. The mixing direction of the fibers from the fiber supply device in the sandy soil through an ejector is formed in a receiving panel shape.

Description

明 細 書  Specification
繊維補強土工法及び纏補強土構築物 技術分野  Fiber reinforced soil method and fence reinforced soil construction
本発明は、 繊維と砂または砂に類似したもの (以下砂質土という) とを補強すべき施 ェ個所に吹付ける繊維補強土工法及び該工法により造成した繊維補強土構築物に関するも のである。 背景技術  The present invention relates to a fiber reinforced soil construction method for blowing fibers and sand or sand or similar to sand (hereinafter referred to as sandy soil) to a site to be reinforced, and a fiber reinforced soil construction constructed by the construction method. Background art
以前より、 法面等の; βを強ィ匕する方法として、 法面上にコンクリートプロヅクを積 み上げるなどして剛性の構築物により覆っていたが、 これは景観上好ましくなく、 近年は 景観にも配慮した: «強化が望まれている。  In the past, as a method to strengthen β; on slopes, etc., it was covered with a rigid structure by piling up concrete plans on slopes, etc. Also considered: «Strengthening is desired.
そこで «έ¾、 法面等の: «を強ィ匕しつつその表面を により緑化し修景する方法と して、 法面 3 1の勾配が比較的緩やかな場合には、 一例として、 図 1 8 Α、 図 1 8 Β、 に 示すように、 鋼棒等による主アンカ一ピン 4 8 a及び補助アンカ一ピン 4 8 bを法面 3 1 に串刺し状に打設した後に その上に直接客土やモルタル類を単独で吹き付け、 または、 法面 3 1にラス金網 4 7を張設した状態で客土やモルタル類等の吹き付け材料 6 1の吹き 付けを行うことがおこなわれている。  Therefore, as a method of greening the surface by means of «and«, while making the slope of the slope 31 relatively gentle, as an example, Fig. 1 As shown in Fig.18 and Fig.18, as shown in Fig.18, after placing the main anchors 1 pin 4 8a and the auxiliary anchors 1 pin 4 8b by steel rods etc. in a skewer-like manner on the slope 3 1 Spraying soil or mortar alone or spraying material such as customer soil or mortar while the lath wire mesh 47 is stretched on the slope 31 is carried out.
また、 法面 3 1の勾配が比較的急な には、 一例として、 図 1 9に示すように、 基 礎コンクリート 5 1上に石材 4 9等のプロックを積み上げる。 または、 図示は省略するが 金網張りしてモルタルを吹き付ける。 いずれの場合も、 その後に 3〜: L 0 cm程度の厚さ の植生用生育基盤材 6 2を吹き付け造成する方法が行われていた。  Also, if the slope of slope 31 is relatively steep, as an example, as shown in Fig. 19, a block of stone 49 etc. is piled up on foundation concrete 51. Or, although not shown, wire-gray and spray mortar. In each case, the method of spraying and forming the growth base material 62 for vegetation having a thickness of about 3 to about L 0 cm was subsequently performed.
しかし、 この方法では強度の面で限界があり、 例えば、 吹き付け直後の降雨や融雪水 などにより吹き付け材料 6 1の流亡崩壊および緑化基盤材の流亡による浸食などが発生し ていた。 また、 3〜1 O cm厚さの輕用生育基盤材 6 2では、 植物の成長を支えるのに 限界があり、 植物が永続的に健全に生育するためには不十分である。 However, this method has limitations in terms of strength. For example, rainfall immediately after spraying, snow melting water, etc. caused erosion of the spray material 61 due to runoff collapse and erosion of the greening base material. In addition, the growth base material for apricot growth 3 to 2 to 1 O cm thick is used to support the growth of plants. There is a limit and it is not enough for plants to grow persistently and healthy.
また、 他の例として、 図 2 0に示すように、 基礎コンクリート 5 1上に上面が開口 した器に土壌などを充填して作成したポヅト状の緑化ブロック 5 0を法面に沿って階段状 に積み上げ、 緑化ブロック 5 0上面にわずかに露出した土壌に植物 5 2を植える方法が知 られている。 しかし、 この方法では法面全体を緑化することはできず、 景観の点において 好ましくない。  As another example, as shown in FIG. 20, a pot-like greening block 50 prepared by filling soil or the like in a container having an open top on foundation concrete 51 is stepped along the slope. It is known how to plant plants 52 in soil that is slightly exposed to the top of greening blocks 50. However, this method can not green the entire slope, which is not desirable in terms of landscape.
また、 図 2 1 A、 図 2 1 Bに示すように、 図 1 8 A、 図 1 8 Bと同じように、 主ァ ンカーピン 4 8 a及び補助アンカーピン 4 8 bを打設して、 金網で枠囲いした部分にモル タル類を吹き付けて形成する法枠 5 3を造成した後、 枠内にラス金網 4 7を張設して 3〜 1 0 cm厚さの 用生育基盤材 5 4を吹き付け造成する方法も知られている。 しかし、 この方法でも厚さ 3〜: L 0 cmの植生用生育基盤材 5 4では、 植物の成長を支えるのに限 界があり、 植物が永続的に健全に生育するためには不十分である。 さらにこれに加えて、 格子枠内の緑ィ匕となる為、 法面全体を緑化することはできず、 景観の点において好ましく ない。  Also, as shown in Fig. 21 A, Fig. 21 B, in the same way as Fig. 18 A, Fig. 18 B, a main anchor pin 4 8 a and an auxiliary anchor pin 4 8 b are driven to form a wire mesh. After forming a legal frame 53 formed by spraying a mortar onto the frame-enclosed part, a lath wire mesh 47 is stretched in the frame to form a growth base material 54 with a thickness of 3 to 10 cm. Methods of spray construction are also known. However, even with this method, the growth base material for vegetation with a thickness of 3 to L 0 cm has a limit to support the growth of plants, and is insufficient for the plants to grow persistently and healthy. is there. In addition to this, the entire slope can not be greened because it becomes green in the lattice frame, which is not preferable in terms of landscape.
そこで、 地盤安定化工法として吹き付け材料としてのモルタル等の中に連镜する; E繊 維を混入することが、 日本国特許公報の特公昭 5 3 - 4 7 6 0 2号公報や特開昭 5 5 - 1 6 7 1 7 0号などに開示されている。 吹き付け材料中に連続する繊維を混入することによ り、 吹き付け材料の流亡を防止する効果が大きくなるとともに、 連続する繊維の擬似粘着 力による補強効果が得られる。 その結果、 吹き付け材料におけるセメント等の接合材の使 用割合を減少させることが出来、 吹き付け材料と連続する繊維により造成した補強土自体 を植物の生育基盤とすることができる。 すなわち、 補強土による法面全体を緑化すること ができ、 景観の点で優れる。  Therefore, it is recommended that E-fibers be mixed as a ground stabilization method by mixing in E-fibers, as described in Japanese Patent Publication No. 5 3 4 7 6 0 2 or Japanese Patent 5 5-1 6 7 1 7 0 etc. By mixing the continuous fiber into the spray material, the effect of preventing the runoff of the spray material is enhanced, and the reinforcing effect by the pseudo-adhesive force of the continuous fiber is obtained. As a result, it is possible to reduce the use ratio of cement and other bonding materials in the spray material, and make it possible to use the reinforced soil itself created by the spray material and continuous fibers as the plant growth base. That is, it is possible to green the entire slope of reinforced soil, which is excellent in terms of landscape.
しかし、 繊維の混入状態によっては補強土としての充分な強度が得られない場合があ り、 特にこの場合に、 後に; ¾ェを行うために補強土を厚く造成すると、 補強土が更に崩 れやすくなつてしまう。 . 例えば、 日本国特許公報第 2 8 7 9 4 7 7号では、 應 3夂良材料主体を一方の中空圧 送導路内を搬送してその先端またはその先端に設けた吹付ノズルから噴出させるとともに 、 他の中空圧送導路内をその内部に吹き込む圧空による空気の流れに連綜繊維糸条を乗せ て、 前言 BJi送導路またはその先端に設けた吹付ノズルから吐出させ、 かっこの吐出方向を ΙίίΚ改良材料主体の流れに対して交差させ、 吐出された繊維糸条を前記改良材料の流れに 乗せて一体の材料として改良対象面に吹き付けることを特徴とする地盤安定化工法が提案 され、 改良材料主体はポンプにより圧送する。 However, depending on the mixed state of fibers, sufficient strength as reinforcing soil may not be obtained. In this case, particularly, if the reinforcing soil is made thicker to perform later, the reinforcing soil is further broken. It becomes easy. For example, in Japanese Patent Publication No. 2 879 4 7 7, the main body of the third material is transported in one hollow pressure-feeding channel and jetted from a spray nozzle provided at its tip or at its tip. At the same time, the continuous fiber yarn is put on the air flow by air pressure blowing inside the other hollow pumping conduit, and it is discharged from the above-mentioned BJi feeding conduit or the spray nozzle provided at the tip, and the discharge direction of the bracket. A soil stabilization method has been proposed, which is characterized in that it is made to intersect with the flow of the material based on the agate improvement material, and the discharged fiber yarn is carried on the flow of the above-mentioned material and sprayed onto the surface to be improved as an integral material. The improved material is pumped by a pump.
図 2 2に示すように、 吹付材料主体は圧送ポンプによりホース 1 0 2中を圧送さ 先端の吹付ノズル 1 0 1から対象面たとえば法面に吹き付けられる。  As shown in FIG. 22, the spray material main body is pumped through a hose 102 by a pressure feed pump and sprayed from a spray nozzle 101 at the tip onto a target surface, for example, a slope surface.
一方、 ポリプロピレンなどの連綜繊維糸条 1 0 3は繊維ノズル 1 0 4に導入され、 コ ンプレッサ一による圧空によりその先端から噴出される。繊維ノズル 1 0 4は、 吹付ノズ ル 1 0 1に対して止め具 1 0 5により一体化されており、 繊維ノズル 1 0 4の噴出方向は 、 吹付ノズル 1からの吹付材料の噴出方向と交差するようになっている。  On the other hand, continuous fiber yarn 103 such as polypropylene is introduced into the fiber nozzle 104, and is ejected from its tip by compressed air by the compressor. The fiber nozzle 104 is integrated with the spray nozzle 101 by the stopper 105, and the jet direction of the fiber nozzle 104 intersects with the jet direction of the spray material from the spray nozzle 1. It is supposed to
補強土中の繊維の緊張度に着目すると、 図 2 3に示すように、 繊維の緊張度を高める ことにより補強土の擬似粘着力 C ' が著しく増加することが認められる。 なお、 繊維の緊 張度は、 繊維の敷設速度を Vma x、 繊維の送出速度を Vとすると、 Vma x/Vであり 、 この値が 0から 1に近づくほど繊維の緊張度合いは高まり、 1のとき繊維はたるむこと なく敷設される。繊維の補強効果を充分に発揮するには、 繊維の緊張度が支配的要因にな るので、 できるだけ繊維の緊張度を高く確保するような施工方法を工夫することが重要で ある。  Focusing on the degree of tension of fibers in reinforced soil, as shown in Fig. 23, it can be seen that the pseudo-cohesion C 'of reinforced soil is significantly increased by increasing the degree of tension of fibers. Assuming that the fiber laying speed is Vmax and the fiber feeding speed is V, the fiber tension is Vmax / V. The degree of tensioning of the fiber increases as this value approaches 0 to 1, 1 At the time, fibers are laid without slack. In order to fully exert the reinforcing effect of the fiber, it is important to devise a construction method that secures as high a fiber tension as possible since the fiber tension is the dominant factor.
前記図 2 2に示すような、 束ねた繊維を一箇所のノズルから吐出させる方法では均一 に分散させることが難しく、 カール状または団子状となり、 強度には疑問がある。  It is difficult to uniformly disperse the bundled fibers as shown in FIG. 22 by means of the method of discharging the bundled fibers from one nozzle, resulting in curling or dumpling, and the strength is questionable.
また、 補強土中の繊維の敷設方向に着目すると、 方向によりせん断力に対する強度が 異なり、 敷設方向によっては補強土としての充分な強度が得られない可能性もある。  Also, focusing on the laying direction of fibers in reinforced soil, the strength against shear force differs depending on the direction, and depending on the laying direction, sufficient strength as reinforced soil may not be obtained.
したがって、 本発明の目的は、 砂質土に対し繊維を連镜的に絡めて混合し補強土を造 成する繊維補強土工法において、 補強土中の繊維の混入状態が適正になるように繊維を敷 設することにより充分な強度の補強土が得ら 作業性が良く作業の質を均一にできる繊 維補強土工法を撤すること、 及び、 該工法により造成した、 作業性良く造成でき、 均質 且つ充分な強度を有する繊維補強土構築物を することにある。 発明の開示 Therefore, the object of the present invention is to create a reinforced soil by intermingling and mixing fibers with sandy soil continuously. In the fiber reinforced soil construction method, by laying the fibers in such a way that the mixture of fibers in the reinforced soil is appropriate, reinforced soil with sufficient strength can be obtained, and fiber with good workability and uniform working quality can be obtained. It is an object of the present invention to withdraw a fiber reinforced soil construction method, and to construct a fiber reinforced soil construction which can be constructed by the construction method with good workability and which is homogeneous and has sufficient strength. Disclosure of the invention
前記目的を達成するため、 請求項 1記載の本発明は、 砂質土 (砂または砂に類似した 物、例えば、山砂、川砂、海砂、マサ土、、 ス土、 少などをいう。 )を腿する砂質土搬送装置 と、 繊維を連続的に供給する繊維供給装置とを備えた繊維補強土装置を用いて、 砂質土搬 送装置から搬送される砂質土に繊維供給装置から繰り出す繊維を絡ませ混合して補強土と する繊維補強土工法において、 繊維は連镜した繊維であり、 砂質土へ直線的に配向するこ とを要旨とするものである。  In order to achieve the above object, the present invention according to claim 1 means sandy soil (an object similar to sand or sand, for example, mountain sand, river sand, sea sand, masa soil, soil, etc.). ) Using a fiber-reinforced soil device equipped with a sandy soil conveying device that carries out a thigh) and a fiber feeding device that supplies fibers continuously, a fiber feeding device to the sandy soil that is transported from the sandy soil transportation device In the fiber reinforced soil construction method, in which fibers drawn out from the fiber are entangled and mixed to form a reinforced soil, the fibers are continuous fibers, and the point is that the fibers are linearly oriented to the sandy soil.
請求項 1記載の本発明によれば、 繊維は連続した繊維であり、 砂質土へ直線的に配 向することで砂質土と繊維を均一に分散混合することができる。 その結果として繊維の引 張り補強材としての強度の発現が得られる。  According to the present invention as set forth in claim 1, the fibers are continuous fibers, and the sandy soil and the fibers can be uniformly dispersed and mixed by linearly orienting to the sandy soil. As a result, the development of strength as a fiber tension reinforcement is obtained.
請求項 2記載の本発明は、 高圧水または圧縮空気とともに繊維を噴射して繰り出す ェジェク夕一を高圧水または圧縮空気の供給管に接続し、 このェジェクタ一を介して繊維 供給装置からの繊維の砂質土への混入方向を受け盤状にすることを要旨とするものである 請求項 2記載の本発明によれば、 ェジェクタ一をもって繊維を吐出することで砂質 土の吹付けとは別系統の 2ショットのものとなり、 しカゝも、 繊維供給装置からの繊維の砂 質土への混入方向は受け盤状にすることで、 繊維が流れ盤状とならず、 せん断強度を確保 できる。  According to the second aspect of the present invention, the jet ejector which jets and delivers the fiber together with high pressure water or compressed air is connected to a high pressure water or compressed air supply pipe, and the ejector is used to connect fibers from the fiber supply device. According to the present invention, it is another object of the present invention according to the second aspect of the present invention that the fibers are discharged with the ejector separately from spraying of the sandy soil. Since the mixing direction of the fibers from the fiber supply device to the sandy soil is made to be a receiving plate, the fibers do not flow and the shear strength can be secured. .
請求項 3記載の本発明は、 ェジェクタ一は、 複数の噴射ノズルを設けることを要旨 とするものである。 請求項 3記載の本発明によれば、 繊維を複数の噴射ノズルから噴射させることで、 さらに、 砂質土と繊維を均一に分謝昆合することができる。 The present invention according to claim 3 is characterized in that the ejector is provided with a plurality of injection nozzles. According to the third aspect of the present invention, the sandy soil and the fibers can be uniformly distributed by injecting the fibers from the plurality of jet nozzles.
請求項 4記載の本発明は、 ェジヱクタ一は、 複数の噴射ノズルを設けたヘッダーと このヘッダーの搖動手段との組み合わせで構成することを要旨とするものである。  According to a fourth aspect of the present invention, the ejector resonator is constituted by a combination of a header provided with a plurality of injection nozzles and a peristaltic means of the header.
請求項 4記載の本発明によれば、 ェジェクタ一のヘッダーが搖動手段によって揺動す るから、 繊維を均一に緊張させた状態で敷設することができ、 繊維の緊張度を高め、 補強 土中における繊維の緊張による擬似粘着力を満遍なく確保することができる。  According to the fourth aspect of the present invention, since the header of the ejector is swung by means of the peristaltic means, the fibers can be laid in a uniformly tensioned state, and the tension of the fibers can be increased to reinforce the soil. It is possible to ensure uniform tackiness due to fiber tension in the
また、 ェジヱクタ一のヘッダーが搖動手段によって自動的に搖動することで、 砂質土 を吐出した範囲内で噴射ノズルの先が自動的に移動する。 よって、 作業者はェジェクタ一 を持っているだけでよく、 これを振り回す必要がないから、 作業性がよく、 手動でェジェ クタ一を揺動させるように作業者に対して負荷が大きく、 均一に iiiSすることも困難であ るという欠点を補い、 作業性がよい。  Also, as the header of the ejector is automatically oscillated by the peristaltic means, the tip of the spray nozzle is automatically moved within the area where the sandy soil is discharged. Therefore, the worker only needs to have the ejector, and there is no need to shake it, so the workability is good, and the load on the operator is large and the worker is required to swing the ejector manually. iiiS makes up for the disadvantage that it is also difficult to do, and it has good workability.
更に 繊維供給装置からの繊維の砂質土への混入方向は受け盤状にすることで繊維が 流れ盤状とならず、 せん断強度を確保できる。  Furthermore, by making the mixing direction of the fibers from the fiber supply device into the sandy soil be like a receiving plate, the fibers do not become flow-like and shear strength can be secured.
請求項 5記載の本発明は、 受け盤状は、 補強土を造成する法面と交差する水平面に 対して 7 ° 〜2 0 ° の高さ角度をもってなることを要旨とするものである。  The gist of the present invention according to claim 5 is characterized in that the receiving plate has a height angle of 7 ° to 20 ° with respect to the horizontal plane intersecting with the slope which forms the reinforced soil.
請求項 5記載の本発明によれば、 必要とされるせん断強度を確実に得ることができ る。 つまり、 法面保護のために繊維補強土を法面上に造成する場合に、 その造成厚さは、 土構造物としての一体性、 砂質土と繊維との混合性施工性、 および植生基盤としての観点 から平滑な法面では、 1 5 c mが最小厚さとされるところ、 請求項 5記載の本発明によれ ば、 ffS作用に加えて、 繊維の混入方向を法面に対していわゆる受け盤状とするのに法面 と交差する水平線に対して 7 ° 〜2 0 ° の高さ角度をもってなることにすれば、 法面勾配 が 1 : 1 . 5 ~ 1 : 0 . 8の:^、 水平厚さで約 3 0 cm程度の造成厚さとなり、施工厚 さ 1 5 cm以上を確保することができる。  According to the present invention as set forth in claim 5, the required shear strength can be obtained with certainty. That is, when a fiber reinforced soil is to be built on the slope for slope protection, the thickness of the buildup is the integrity of the soil structure, the mixability of sandy soil and fibers, and the vegetation base. From the point of view as a smooth slope, the minimum thickness is 15 cm. According to the invention as set forth in claim 5, in addition to the ffS action, the so-called fiber mixing direction is received against the slope. If it is assumed to have a height angle of 7 ° to 20 ° with respect to the horizontal line that intersects the slope, the slope will be 1: 1.5 to 1: 0.8: ^ The horizontal thickness is approximately 30 cm in thickness, and 15 cm or more of construction thickness can be secured.
請求項 6記載の本発明は、 繊維の噴射速度を 3 0 0 m〜 1, 0 0 0 m/m i nに対し て、 ヘッダーの摇動角度を 1 0度〜 3 0度とすることを要旨とするものである。 The invention according to claim 6 is characterized in that the jet velocity of the fiber is from 3 0 0 m to 1 0 0 0 m / min. The gist of the invention is to make the peristaltic angle of the header 10 to 30 degrees.
請求項 6記載の本発明によれば、 何種類かの揺動角度で実験した結果からの経験的 数値から、 繊維の噴射速度を 3 0 Om〜l, 0 0 O m/m i nに対して、 ヘッダーの摇動 角度を 1 0度〜 3 0度とした場合が砂質土に対して平均的に繊維を配合できる。  According to the present invention as set forth in claim 6, from the empirical values from the results of experiments at several types of swing angles, the fiber injection velocity is set to 3 0 Om to l, 0 0 O m / min, The fibers can be blended with the sandy soil on average when the shaking angle of the header is 10 degrees to 30 degrees.
請求項 7記載の本発明は、 補強土を造成する法面に剛性の繊体を打設し、 法面よ り突出するこの 体の上端を補強土で覆うことを要旨とするものである。  The gist of the present invention according to claim 7 is characterized in that a rigid fiber is placed on a slope which is to be reinforced, and the upper end of the body projecting from the slope is covered with the reinforcement.
請求項 7記載の本発明によれば、 補強土を造成する法面に一端を打設した剛性の棒 状体のllli耑を補強土で覆うようにしたから、 補強土中の繊維が剛性の 体に絡んで補強 土と地山法面との一体性が向上し、 すべりや崩れが起こりにくくなる。補強土を造成する 法面に I 性の徹体の一端を打設し、 法面より突出する方法としては、 公知のグラウンド アンカ一工法又はロックボルト工法などが使用できる。  According to the present invention as set forth in claim 7, since the rigid rod-like body llli 耑 having one end placed on the slope of the reinforced soil is covered with the reinforced soil, the fibers in the reinforced soil are rigid. Reinforcement with the body Improves the integrity of the soil and the slope of the ground, making it less likely to slip or collapse. A well-known ground anchor method or a lock bolt method can be used as a method of placing one end of an I-shaped penetrator on a slope to form reinforced soil and projecting it from the slope.
請求項 8記載の本発明は、 繊維補強土構築物は、 請求項 1に記載の工法により造成 したことを要旨とするものである。  The gist of the present invention according to claim 8 is that the fiber reinforced soil construction is constructed by the method according to claim 1.
請求項 8記載の本発明によれば、 補強土中において繊維が受け盤状に配設されてい るから、 繊維が流れ盤状とならず、 せん断強度を確保できるとともに、 繊維が緊張した状 態で均一に配設されているから、 均質且つ充分な擬似粘着力による強度を有する繊維補強 土構築物とすることができる。 図面の簡単な説明  According to the present invention as set forth in claim 8, the fibers are arranged in a receiving disk shape in the reinforcing soil, so that the fibers do not flow and the shear strength can be secured, and the fibers are in a tensioned state. The fiber reinforced soil structure can be made homogeneous and have sufficient strength due to pseudo adhesion. Brief description of the drawings
図 1は、 本発明の繊維補強土工法の 1実施 B態を示す説明図である。  FIG. 1 is an explanatory view showing one embodiment B of the fiber reinforced soil construction method of the present invention.
2は、 本発明の繊維補強土工法の強度計算の説明図である。 FIG. 2 is an explanatory view of strength calculation of the fiber reinforced soil method of the present invention.
図 3は、 本発明の繊維補強土工法の実 «態の施工概要図である。  FIG. 3 is a schematic view of the construction of the fiber reinforced soil construction method of the present invention.
図 4は、 本発明の繊維補強土工法の 形態の説明図である。  FIG. 4 is an explanatory view of a form of the fiber reinforced soil method of the present invention.
図 5 Aは、 本発明の繊維補強土工法により造成した法面保護タイプの構築物の 1実 膽態を示す縦断側面図である。 図 5 Bは、 本発明の繊維補強土工法により造成した法面保護夕ィプの構築物の 1実 施形態を示す一部切欠 、た平面図である FIG. 5A is a longitudinal cross-sectional view showing one embodiment of a slope-protected type construction constructed by the fiber reinforced soil method of the present invention. FIG. 5B is a partially cut away plan view showing one embodiment of the construction of the slope protection rope constructed by the fiber reinforced soil method of the present invention.
図 6は、 本発明の繊維補強土工法により造成した擁壁形状タイプの構築物の 1実施 形態を示す縦断側面図である。  FIG. 6 is a longitudinal side view showing an embodiment of a retaining wall shape type construction created by the fiber reinforced soil method of the present invention.
図 7 Aは、 ェジェクタ一の平面図である。  Fig. 7A is a plan view of the ejector.
図 7 Bは、 ェジェクタ一の正面図である。  FIG. 7B is a front view of the ejector.
図 8は、 ェジェクタ一の操作説明図である。  FIG. 8 is an operation explanatory diagram of one ejector.
図 9は、 本発明の繊維補強土工法の実施形態における補強土の造成過程の説明図で ある。  FIG. 9 is an explanatory view of a process of creating reinforced soil in the embodiment of the fiber reinforced soil construction method of the present invention.
図 1 0は、 本発明の繊維補強土工法の実施形態における補強土の造成完了状態の説 明図である。  FIG. 10 is an explanatory view of a completion state of reinforcement soil creation in the embodiment of the fiber reinforced soil construction method of the present invention.
図 1 1は、 本発明の繊維補強土工法の 1実施形態において連続繊維が受け盤状にな るよう造成した状態を、 流れ盤状に造成した状態と比較して示す説明図である。  FIG. 11 is an explanatory view showing a state in which continuous fibers are built so as to have a receiving disc shape in one embodiment of the fiber reinforced earth construction method according to the present invention in comparison with a state in which the continuous fibers are built in a flow disc shape.
図 1 2は、 本発明の繊維補強土工法における地山勾配と仕上がり表面の勾配との関 係を示す説明図である。  FIG. 12 is an explanatory view showing the relationship between the slope slope and the slope of the finished surface in the fiber reinforced soil construction method of the present invention.
図 1 3は、 本発明の繊維補強土工法の実施形態における植栽用穴の完成状態を示す 説明図である。  FIG. 13 is an explanatory view showing a completed state of a planting hole in the embodiment of the fiber reinforced soil construction method of the present invention.
図 1 4は、 本発明の繊維補強土工法の実施形態における苗木を植えた状態を示す説 明図である。  FIG. 14 is an explanatory view showing a state of planting seedlings in the embodiment of the fiber reinforced soil construction method of the present invention.
図 1 5は、 本発明の繊維補強土工法の実施形態における厚層基材吹き付けを行った 状態を示す説明図である。  FIG. 15 is an explanatory view showing a state in which the thick layer base material is sprayed in the embodiment of the fiber reinforced soil construction method of the present invention.
図 1 6は、 補強土を造成する法面に剛性の 体を打設する場合の斜視図である。 図 1 7 Aは、 ピンの斜視図である。  Fig. 16 is a perspective view of a case where a rigid body is placed on the slope to construct reinforced soil. Figure 17 A is a perspective view of the pin.
図 1 7 Bは、 ピンの横断平面図である。  Figure 17B is a cross-sectional plan view of the pin.
図 1 8 Aは、 «の工法により造成した構築物の 1例を示す縦断側面図である。 図 1 8 Bは、 従来の工法により造成した構築物の 1例を示す一部切欠いた平面図で ある。 Fig. 18 A is a longitudinal cross-sectional view showing an example of a structure created by the «method of construction. Fig. 18 B is a partially cutaway plan view showing an example of a construction constructed by the conventional method.
図 1 9は、 従来の工法により造成した構築物の他の例を示す縦断側面図である。 図 2 0は、 従来の工法により造成した構築物の更に他の例を示す縦断側面図である o  FIG. 19 is a longitudinal side view showing another example of the construction constructed by the conventional method. FIG. 20 is a longitudinal side view showing still another example of the construction constructed by the conventional method o
図 2 1 Aは、 従来の工法により造成した構築物の更に他の例を示す縦断側面図であ る。  Fig. 21 A is a longitudinal side view showing still another example of the construction constructed by the conventional method.
図 2 1 Bは、 従来の工法により造成した構築物の更に他の例を示す一部切欠いた平 面図である。  Fig. 21 B is a partially cut away plan view showing still another example of the construction constructed by the conventional method.
図 2 2は、 繊維補強土工法の微例の 1つを示す説明である。  Figure 22 is an explanation showing one of the fine examples of the fiber reinforced soil method.
図 2 3は、 繊維の緊張度とせん断抵抗角及び擬似粘着力との関係を示すグラフ図で ある。 発明を実施するための最良の形態  FIG. 23 is a graph showing the relationship between the tension of fibers and the shear resistance angle and pseudo adhesion. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面に従って本発明の «の形態を詳細に説明する。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
図 5 A、 図 5 B、 図 6に示すように、 切土法面又は盛土法面に対してプレート 4 0 a を設けたプレート付きアンカ一 4 0を打設及び裏面排水ェを行った後、 地山 4 1の法面勾 配に合わせて、 法面上にほぼ均一厚さに繊維補強土 5 5を造成する (以下、 法面保護タイ プ図 5 A、 図 5 B) か、 法尻側をより厚くして擁壁を形成するようにして繊維補強土 5 5 を造成する (以下、 擁壁獄タイプ) ものとする。  As shown in Fig. 5A, Fig. 5B, and Fig. 6, after placing an anchor with plate 40 provided with a plate 40 a against the sloped slope or embankment slope and after performing drainage and back surface drainage Create a fiber reinforced soil 55 with a substantially uniform thickness on the slope according to the slope of the ground 41 (hereinafter referred to as slope protection type diagram 5A, 5B), or Fiber reinforced soil 5 5 shall be created by making the butt side thicker to form a retaining wall (hereinafter, Retaining wall prison type).
なお、 裏面排水ェは、 図 5 Bに示すように、 厚さ 1〜 3 c m程度の多孔質状マット による裏面排水材 8 1を敷設することで行う。 また、 プレート付きアンカ一 4 0の打設は のロヅクボルトェ (鉄筋挿入ェ) によるもので、 例えば、 ハンマードリルにて肖 IJ孔、 水セメント比 5 0 %のセメントミルクからなるグラウト注入の後、 プレート 4 0 aを設け たプレート付きアンカー 4 0を、 少なくともプレート 4 0 aが地山 4 1より突出した状態 で削孔した孔に挿入し定着させる。 Back surface drainage is carried out by laying back surface drainage material 81 with a porous mat with a thickness of about 1 to 3 cm, as shown in Fig. 5B. In addition, the anchor with a plate with a plate 40 is cast by a rock bolt (rebar insertion bar), for example, after a grout injection consisting of cement milk with IJ hole, water cement ratio 50% of water cement ratio by a hammer drill. At least the plate 4 0 a protrudes from the ground 4 1 with the plate anchor 40 provided with 4 0 a Insert it into the hole drilled by and fix it.
次に、 本発明にかかる繊維補強土工法の実施の形態において使用する装置の概要及 びその動作を以下に説明する。  Next, an outline of the apparatus used in the embodiment of the fiber reinforced soil construction method according to the present invention and the operation thereof will be described below.
図 3、 図 4に示すように、 1は繊維の供給装置で、 この繊維の供給装置 1から繰り 出される繊維 2を水夕ンク 3から高圧ポンプ 4を介して供給管 5で送られる高圧水を利用 して噴射ノズル 6から噴射するェジェクタ一 7とからなり、 これに砂質土の供給装置 8を 組み合わせる。 ここで砂質土とは、 砂または砂に類似した物、例えば、山砂、川砂、海砂、マ サ土、 ス土、卿などをいう。  As shown in Fig. 3 and Fig. 4, 1 is a fiber feeding device, and the high-pressure water sent from the water tube 3 through the high-pressure pump 4 through the feeding pipe 5 is fed from the fiber feeding device 1 It consists of an ejector 17 that ejects from the injection nozzle 6 using the above, and this is combined with a sandy soil supply device 8. Here, sandy soil refers to sand or sand-like material, for example, mountain sand, river sand, sea sand, masa soil, soil, and gravel.
砂質土の供給装置 8は、 ホッパー 1 0にベルトコンベア 9 aを連結した計量器 1 1と 、 該計量器 1 1にベルトコンベア 9 bを介して連結する吹き付け機 1 2とで構成される。 図中 1 3は砂山 1 4から砂または砂に類似した物を するトラクタ一ショベル、 1 5は 吹き付け機 1 2に圧縮空気を供給するコンプレッサーを示す。 吹き付け機 1 2にはマテリ アルホース 3 3が接続され、 その先端が砂または砂に類似した物の噴射ノズルとなる。  The sandy soil feeder 8 comprises a scale 11 having a hopper 10 connected to a belt conveyor 9a, and a sprayer 12 connected to the scale 11 via a belt conveyor 9b. . In the figure, 13 indicates a tractor-excavator that performs sand or sand-like objects from sandhill 14 and 15 indicates a compressor that supplies compressed air to sprayer 12. The material hose 3 3 is connected to the sprayer 12, and the tip thereof is sand or a jet nozzle of an object similar to sand.
また、 1 6は計量器 1 1などの電源となる発 β¾、 1 7は分電盤、 1 8は繊維の供 給装置 1から繰り出される繊維の量を計測する計量装置を示す。  Further, reference numeral 16 denotes a power supply β 1, serving as a power source for the measuring instrument 11, etc., 17 denotes a distribution board, and 18 denotes a measuring device for measuring the amount of fiber delivered from the fiber supply device 1.
繊維の供給装置 1は、 複数 (図示の例では 4個) の糸卷 1 9からの繊維 2を束ねて 送り出す 1本のガイドステ一 2 0を有する可搬式のボビンケース 2 1からなる。  The fiber feeder 1 comprises a portable bobbin case 21 having a single guide stage 20 for bundling and feeding the fibers 2 from a plurality of (four in the illustrated example) yarn rods 19.
かかる構成の繊維配設装置において、 図 7A、 図 7 Bに示すようにェジェク夕一 7は ヘッダー 2 2と搖動手段 2 3との組み合わせで構成さ ヘッダー 2 2は繊維の供給装置 1からの繊維 2を弓 Iき入れる 4本の繊維ガイド 2 4と、 高圧水または圧縮空気とともにこ の繊維 2を噴射する 4本の噴射ノズル 6とを有する。  In the fiber arrangement device of this configuration, as shown in FIG. 7A and FIG. 7B, the ejector 7 comprises a combination of the header 22 and the peristaltic means 23. The fiber 22 from the fiber feeding device 1 It has four fiber guides 24 and a jet nozzle 6 for jetting this fiber 2 together with high pressure water or compressed air.
搖動手段 2 3は、 基台 3 0に一端を取り付けたアーム 2 9の他端にシリンダー 2 7 を斜め上方に向けて枢着し、 シリンダー 2 7のピストン 2 8の先端に搖動アーム 2 6の上 端を回動自在に軸着し、 該搖動アーム 2 6の下端を回動管 2 5に固定し、 該回動管 2 5を ヘッダ一 2 2に同軸上で接続した。 そして、 この回動管 2 5を回動継手を介して高圧水な どの供給管 5に接続する。 図中 3 2は操作部である。 The pivoting means 23 pivots the cylinder 2 7 obliquely upward to the other end of the arm 2 9 whose one end is attached to the base 30, and the tip of the piston 2 8 of the cylinder 2 7 The upper end was pivotally mounted, the lower end of the swing arm 26 was fixed to the pivoting tube 25, and the pivoting tube 25 was coaxially connected to the header 12. And, the high pressure water can be Which supply pipe 5 to connect. In the figure, 32 is an operation unit.
動作を説明すると、 法面 3 1などの施工現場にボビンケース 2 1を搬入し、 適宜場 所に移設する。繊維の供給装置 1の各ボビンケース 2 1では、 糸卷 1 9から繰り出された 繊維 2は、 4本が 1本に束ねられ、 繰り出し口 3 5、 ガイドステー 2 0から出て、 ェジェ クタ一 7の繊維ガイド 2 4を介して噴射ノズル 6に挿通される。繊維 2の供給量はロード セル 3 4で検出さ 計量装置 1 8で計量される。  To explain the operation, carry in the bobbin case 21 to the construction site such as slope 31 and move it to the appropriate place. In each bobbin case 2 1 of the fiber supply device 1, 4 fibers 2 drawn out from the yarn rod 1 9 are bundled into one, and it comes out from the discharge port 35 and the guide stay 20, and the ejector 1 is removed. The jet nozzle 6 is inserted through the fiber guide 24 of 7. The feed rate of fiber 2 is detected by a load cell 34 and measured by a weighing device 18.
そして、 ェジェクタ一 7では水タンク 3から高圧ポンプ 4を介して供給管 5で送ら れる高圧水が噴射ノズル 6から噴射されると iB繊維 2も吐出さ 吹き付け機 1 2のマ テリアルホース 3 3の先端の噴射ノズルから法面の地盤上に噴出する砂または砂に類似し た物と地盤上で直接噴射 ·混合される。  When the high pressure water fed from the water tank 3 through the high pressure pump 4 is jetted from the jet nozzle 6 from the water tank 3 in the ejector 1, the iB fiber 2 is also discharged. Sprayer 1 2 The material hose 3 3 It is directly injected and mixed on the ground with sand or sand-like material that is ejected from the tip injection nozzle onto the slope ground.
このとき、 ェジェクタ一 7の操作部 3 2を操作することで、 シリンダー 2 7のビス トン 2 8が往 動し、 これにともないピストン 2 8の先端に取り付けた摇動アーム 2 6 の上端が円弧状の軌跡をえがいて移動し、 下端が回動管 2 5との固定部で回動する。  At this time, by operating the operation part 32 of the ejector 7, the piston 27 of the cylinder 27 goes forward, and the upper end of the swing arm 2 6 attached to the tip of the piston 28 is circled accordingly. The arc-shaped locus is moved to move, and the lower end is rotated at the fixed part with the rotating pipe 25.
その結果、 回動管 2 5が揺動アーム 2 6の下端と一体となって回動し、 この回動運 動が同軸上のヘッダ一 2 2に伝わり、 ヘッダ一 2 2も回動する。 これにより、 ヘッダー 2 2に設けた噴射ノズル 6が円弧状の を描いて移動する。  As a result, the pivoting tube 25 pivots integrally with the lower end of the pivoting arm 26. This pivoting motion is transmitted to the coaxial header 12 and the header 12 also pivots. As a result, the injection nozzle 6 provided in the header 22 moves in an arc shape.
よって、 作業者はェジヱクタ一 7を手で持っていれば、 手を動かさずに噴射ノズル 6が自動的に揺動し、 繊維 2とジェット水の噴射先が自動的に往復移動し、 各部均一に砂 または砂に類似した物と混合する。  Therefore, if the operator holds the ejector ector 7 by hand, the injection nozzle 6 automatically oscillates without moving the hand, and the injection destinations of the fiber 2 and the jet water reciprocate automatically, and each part becomes uniform. Mix with sand or something similar to sand.
なお、 ェジェクタ一 7は高圧水ではなく、 圧縮空気を利用して噴射ノズル 6から噴 射するものでもよい。  The ejector 7 may be one that jets from the jet nozzle 6 using compressed air instead of high pressure water.
図 8に示すように、 ェジェクタ一 7についてシリンダーストローク長とアーム部長 さを変ィ匕させて高さ l mとした場合、 ェジェクタ一 7に使用されている揺動回数は、 摇動 角度 2 8度、 時間 3 m3の施工数量で 5〜 6回/秒、 時間 6 m3の施工数量で 7〜: L 0回 /秒であった。 また、 ェジェク夕一 7は前記のごとく、 シリンダー 2 7のピストン 2 8の往復運動 によりヘッダー 2 2が回動し、 これによりヘッダ一 2 2に設けた噴射ノズル 6が円弧状の lSをえがいて移動するが、 噴射ノズル 6の揺動にともなって繊維 2とジエツト水の噴射 先が自動的に往復移動する。 As shown in FIG. 8, when the cylinder stroke length and arm length of the ejector 1 are changed to obtain the height lm, the number of oscillations used in the ejector 1 is the oscillation angle of 28 degrees. The installation time was 3 m 3 and the installation quantity was 5 to 6 times / sec, and the installation quantity of time 6 m 3 was 7: L 0 times / sec. Further, as described above, the header 22 is rotated by the reciprocating motion of the piston 28 of the cylinder 27 as described above, whereby the injection nozzle 6 provided on the header 122 is curved in an arc-like lS. Although it moves, as the injection nozzle 6 swings, the injection destination of the fiber 2 and jet water automatically reciprocates.
これにより、 連镜した繊維 2は、 砂質土へ直線的に配向することができ、 全体として 砂または砂に類似した物に対して均等に繊維の噴射を行える。  As a result, the continuous fibers 2 can be linearly oriented to the sandy soil, and the fibers can be jetted evenly to the sand as a whole or to a thing similar to sand.
このようにして、 繊維と砂質土を噴射しながら、 地山 4 1より突出するプレート付 きアンカ一 4 0を覆うように補強土を造成していく。  In this way, while spraying fibers and sandy soil, reinforced soil is created so as to cover the anchor with a plate that protrudes from the ground 41.
また、 繊維をジェット水と一緒に噴射し、 砂質土と混合した繊維補強土には繊維の設 計混入量 3. 3 k g/m3を確保する。 In addition, the fiber is injected with the jet water, and the amount of the fiber mixed in the fiber reinforced soil, which is mixed with sandy soil, is secured at 3.3 kg / m 3 .
さらに、 使用する砂質土の規格としては、 碎砂の他に、 シラス台地のシラスや花崗 岩地帯のマサなどの土砂をも使用することができ、 各種のものが使用できる。 シラスやマ サ土を切り崩してそのまま使用とすると、 ねばり気がおおくてマテリアルホース 3 3内で 詰まり、 空気圧送できないという問題を生じるが、 これらに界面活性剤を混入してマテリ アルホース 3 3内を空^ EE睡することによれば、 シラスまたはマサ等のねばりのある現 地発生土でもマテリアルホース 3 3内を詰まることなく空気圧搬送でき、 繊維補強土工法 が可能となる。 また、 篩いにかけて粒度調整を行い用いることも可能である。  Furthermore, as the standard of sandy soil to be used, in addition to borax, it is also possible to use soil such as shirasu of Shirasu plateau or Masa of granite area, and various types of soil can be used. If you cut down Shirasu or Masa soil and use it as it is, it will cause problems such as stagnation, clogging in the material hose 3 3, and inability to send air pressure, but mixing these with surfactant will make the material hose 3 3 According to the empty EE coma, even tough local generated soil such as shiras or masa can be pneumatically transported without clogging inside the material hose 33, and fiber reinforced soil construction method becomes possible. In addition, it is also possible to use a sieve to adjust the particle size.
このようにして繊維補強土 5 5を造成する際、 繊維の供給装置 1からの繊維の砂へ の混入方向は受け盤状にすることとし、 しかも、 この受け盤状は、 法面保護タイプの場合 は、 法面 3 1と交差する水平面 Xに対して 7 ° 〜2 0 ° の高さ角度、 望ましくは 1 5 °以 上の高さ角度 (ひ) をもってなることした。 図 1 1において (b) は繊維の方向が流れ盤 状の場合である。  In this way, when the fiber reinforced soil 55 is formed, the direction of mixing of the fibers from the fiber supply device 1 into the sand is made a receiving plate, and the receiving plate is a slope protection type. In the case, the height angle is 7 ° to 20 °, preferably 15 ° or more, with respect to the horizontal plane X intersecting the slope 31. In Fig. 11, (b) is the case where the fiber direction is flow-shaped.
このように受け盤状になるように繊維補強土 5 5を造成するようにした結果、 造成 した構築物は充分な強度を得ることができる。  As a result of constructing the fiber reinforced soil 55 so as to have a receiving plate shape as described above, the constructed structure can obtain sufficient strength.
—例として、 繊維が法面と交差する水平面に対して 1 5 ° の高さ角度をもってなる 受け盤状になるように繊維補強土 55を造成した場合を図 2を参照して、 以下に強度率に ついて計算すると、 -As an example, it has a height angle of 15 ° to the horizontal plane where the fiber intersects the slope When the fiber reinforced soil 55 is constructed so as to become a receiving plate, referring to FIG.
a:繊維の打設勾配とせん断面のなす角度  a: The angle between the placement slope of the fiber and the shear plane
Ω:水平面とせん断面のなす角度  Ω: angle between horizontal plane and shear plane
15度:繊維の打設勾配  15 degrees: fiber placement slope
である。 It is.
法面勾配が 1 : 0. 8の場合についてみると、  When the slope slope is 1: 0.8,
ひ = Ω+15=15 + 15=30度 = = Ω + 15 = 15 + 15 = 30 degrees
W=W1+W2 W = W1 + W2
= {(hxd/2) xァ t+Lxt xァ tGEO} xDx 1/2  = {(hxd / 2) x t + L x t x tGEO} x D x 1/2
= {(1.09X1.88/2) X 18.00 +3.00 X 0.20 X 18.00 } X1.5 X 1/2  = {(1.09 x 1.88 / 2) x 18.00 + 3.00 x 0.20 x 18.00} x 1.5 x 1/2
=21.93 KN  = 21.93 KN
R=Wsin33.7 R = Wsin 33.7
=21.93sdn33.7  = 21.93 sdn 33.7
= 12.17 KN  = 12.17 KN
S=Rcosl8.7 S = Rcosl 8.7
= 12.17cosl8.7  = 12.17 cosl 8.7
= 11.53 KN  = 11.53 KN
N = Rsdnl8.7 N = Rsdnl 8.7
= 12.17sinl8.7  = 12.17 sinl 8.7
=3.90KN F= (D X CGEO X 1 +N xtan ^GEO)/S = 3.90 KN F = (DX CGEO X 1 + N x tan ^ GEO) / S
= (1.5 X 30.7X0.34+3.90 Xtan36.4)/ll.53  = (1.5 x 30.7 x 0.34 + 3.90 x tan 36.4) / ll. 53
= 1.61>1.5(Fs) OK w :全体重量  = 1.61> 1.5 (Fs) OK w: Overall weight
Wl :表層土のすり抜け重量  Wl: Slip-through weight of surface soil
W2 :連緣繊維補強土の重量  W2: Weight of continuous fiber reinforced soil
t :施工厚さ  t: Construction thickness
7t :地山の単位ィ機重量  7t: Unit of machine weight
7 t GEO:連德繊維補強土の単位術貴重量  7 t GEO: A unit operation valuable amount of continuous fiber reinforced soil
R:外力  R: External force
S:連続繊維補強土のすべり面に作用するせん断力  S: Shear force acting on the sliding surface of continuous fiber reinforced soil
N:連 繊維補強土の垂直分力 N: Vertical component force of continuous fiber reinforced soil
βΈ,ο :連 繊維補強土の内部摩擦角  βΈ, :: Internal friction angle of continuous fiber reinforced soil
CGEO:連 繊維補強土の粘着力  CGEO: Adhesive strength of fiber reinforced soil
L:法長方向の補強鉄筋ピヅチ  L: Reinforcing bar reinforcement in the longitudinal direction
D:水平方向の補強鉄筋ピッチ (上記計算では l.5mピッチで算 ) F:安全率 D: Horizontal reinforcing bar pitch (calculated with l. 5 m in the above calculation) F: Safety factor
F s:設計安全率  F s: Design safety factor
である。 It is.
また、 同様に法面勾配が 1: 1. 4の場合についても下記の通りとなる。 α = Ω+15 = 15+ =30度  The same applies to the case where the slope slope is 1: 1.4. α = Ω + 15 = 15 + = 30 degrees
W=W1+W2 W = W1 + W2
= {(hxd/2) Xyt+Lxtxァ tGEO} Dx 1/2  = {(hxd / 2) Xyt + Lxtx tGEO} Dx 1/2
= {(0.11X2.40/2) X 18.00 +3.00 0.20 18.00 } X1.5 X 1/2 = 9·88ΚΝ = {(0.11 X 2.40 / 2) X 18.00 + 3.00 0.20 18.00} X 1.5 X 1/2 = 9 · 88ΚΝ
R=Wsin33.7 R = Wsin 33.7
= 0.99sin33.7  = 0.99 sin 33.7
= 5.48 KN  = 5.48 KN
S=Rcosl8.7 S = Rcosl 8.7
= 5.48cosl8.7  = 5.48 cosl 8.7
= 5.19KN  = 5.19 KN
N = Rsdnl8.7 N = Rsdnl 8.7
= 5.48sinl8.7  = 5.48 sinl 8.7
= 1.76KN F= (DXCGEO 1+Nxtan <^GEO)/S  = 1.76 KN F = (DXCGEO 1 + Nxtan <^ GEO) / S
= (1.5 X 30.7 X 0.57+ 1.76 Xtan36.4)/5.19  = (1.5 x 30.7 x 0.57 + 1.76 x tan 36.4) /5.19
=5.31>1.5(Fs) OK そして、 前記のように、 砂質土 lm3に対して、 絡ませ混合する繊維の質量は 3. 3 kgであり、 2. 0〜5. 0kgの範囲で充分な補強土の強度が得られるから、 これ以上 の繊維を使用する必要がなく、 更に多くの繊維を使用するのに比べ工費を抑えることが出 来る。= 5.31> 1.5 (Fs) OK And, as mentioned above, the mass of fiber to be entangled and mixed with sandy soil lm 3 is 3.3 kg, and it is sufficient in the range of 2. 0-5.0 kg Because the strength of the reinforced soil is obtained, there is no need to use more fibers, and the cost can be reduced compared to using more fibers.
rt己の例は、 一例であり、 状況に応じてその数値は変動する。  The example of rt my is an example, and the value changes according to the situation.
更に、 図示はしないが、 砂質土をホッパー 10に投入する前又は後に、 砂質土ととも に長さ 10 c m以下の通維を撹拌装置において撹拌し、 砂質土に対して吹付圧送前に予 め短繊維を混入する。 Furthermore, although not shown, before or after the sandy soil is introduced into the hopper 10, the conduits having a length of 10 cm or less are stirred together with the sandy soil in a stirring apparatus, and the sand soil is sprayed before being pumped. To Mix short fiber.
短繊維は天然繊維や合成繊維をはじめ種々の繊維を使用することができるが、 ビニロ ン繊維や鋼繊維などは繊維補強土の強さの増加が図れ、 又、 ί¾τΚ性や通気性に優れるピー トモスゃミズゴケなどは、 植物の根に水分と酸素を供給することが出来、 ■である。  As the staple fiber, various fibers such as natural fiber and synthetic fiber can be used, but vinylon fiber and steel fiber can increase the strength of the fiber reinforced soil, and they have excellent permeability and air permeability. Water and oxygen can be supplied to the roots of plants, such as (1) and (2).
短繊維の存在により補強土が嵩高となり、 補強土中に空気の層が増えるので、 ¾ ^ェ を施した際に植物の根に酸素を供給しやすくなり、 植物の成長を促進することが出来る。 更に 補強土に混入した繊維は植物の根の成長を妨げず、 根と絡んで更に土壌の補強効果 を強めることに加えて、 連 繊維と短繊維を組み合わせることにより、 短繊維が連続繊維 に絡んで補強効果が強まる可能性も期待できる。  The presence of short fibers makes the reinforced soil bulky and increases the air layer in the reinforced soil, so that it becomes easy to supply oxygen to plant roots when applied 3⁄4 ^, which can promote plant growth . Furthermore, the fibers mixed in the reinforcing soil do not prevent the growth of plant roots, and in addition to strengthening the reinforcing effect of the soil by being entangled with the roots, by combining the continuous fibers and the short fibers, the short fibers become entangled with the continuous fibers. Can be expected to strengthen the reinforcement effect.
なお、 セメント系や樹脂系、 石灰系などの各種接合材についても、 地山法面の状況及 び'使用する砂質土により必要であれば短繊維とともに予め砂質土に添加するが、 添加量は 砂質土 l m3に対し 5 O k g以下とし、 必要でなければあえて添加しなくてもよい。 In addition, with regard to various bonding materials such as cement type, resin type and lime type, if necessary depending on the condition of the ground slope and the sandy soil to be used, it is added to the sandy soil in advance together with short fibers. The amount should be 5 O kg or less per 1 m 3 of sandy soil, and it may not be added if it is not necessary.
繊維補強土は ¾K生が 1 0一2〜 1 0 _3 cmZsと良好である反面、 水分や養分を常 に保つことが難しい場合もあり、 図 9、 図 1 0に示すように ェを施す場合には 性と保肥性をもった材料 4 2を補強土の表面近くに埋設することが望ましい。 Although fiber reinforced soil ¾K production is good and 1 0 one 2 ~ 1 0 _ 3 cmZs, sometimes it is difficult to keep the moisture and nutrients always performs E as shown in FIG. 9, 1 0 In some cases, it is desirable to embed a material that has both sex and fertilization properties near the surface of the reinforced soil.
更にfck性と保肥性をもった材料 4 2に近接させてボイド管等の 穴用ポット 4 3 を配置し、 植栽穴用ポット 4 3の先端が補強土の表面から出るようにしながら、 {¾7性と 保肥性をもった材料 4 2及び 穴用ポヅト 4 3上に繊維補強土 5 5を造成する。  Furthermore, place a pot 4 3 for holes such as a void tube in proximity to the material 4 2 having fck property and fertilization property, while making the tip of the pot 4 3 for planting holes come out of the surface of the reinforced soil, {Create a fiber reinforced soil 55 on a material 4 2 and a hole-porting material 4 3 having elasticity and fertility.
この保水性と保肥性をもった材料 4 2としては市販のもの (例えば、 商品名 「緑弾 4号」) を使用し、 fcK性と保肥性をもった材料 4 2及び漏穴用ポヅト 4 3を 2個/ m2 の間隔で配置する。A commercially available material (for example, trade name "Green bullet No. 4") is used as the material 42 having water retention and fertilization properties, and a material having fcK properties and fertilizer retention and 42 for leakage holes Arrange the ports 4 3 at an interval of 2 pcs / m 2 .
fcK性と保肥性をもった材料 4 2は、 ピートモスやパーク堆肥による有機物基盤材を 主材として成形したものであり、 一例として、 したプロヅク体はピートモス 3、 パ一 ク堆月巴 5、 パーミキユライト 0. 5、 ゼォライト 0 . 5、 ベントナイト 0 . 5、 パーライ ト 0 . 5、 の割合で圧縮 するものとする。全体开娥は円筒开 角筒形等を問わない。 大きさは、 高さ 8 (cm)程度、 直径 010〜18 (cm)、 重量 400〜1, 300 ( g)程度のものである。 The material with fcK properties and fertilizer-retaining property is formed mainly of the organic material base material by peat moss and park compost, and for example, the prepared product is peat moss 3, pak-teok moon cake 5, Permikiyu light shall be compressed at a ratio of 0.5, Zeolite 0.5, Bentonite 0.5, Pearlite 0.5. The entire bowl may be in the form of a cylindrical square or the like. The size is about a height of 8 (cm), a diameter of 010 to 18 (cm), and a weight of about 400 to 1,300 (g).
なお、 このようにして造成される構築物の形状は、 地山勾配 1: Nについて N≥0. 8と緩やかな場合には、 地山法面を 30 cm以上の厚さでほぼ均一に繊維補強土で覆う法 面保護タイプとし、 0. 8>N≥0. 5とやや急な^には、 その他の状況に合わせてコ ンクリート梁等の補助工法を併用した上で法面保護タイプとするか、 法尻をより厚く造成 する擁壁形 i犬タイプとする。  In addition, when the shape of the structure created in this way is as gentle as N≥0.8 for ground slope 1: N, the ground slope is reinforced by fibers substantially uniformly with a thickness of 30 cm or more. For slope protection type covered with soil, use a concrete construction method such as concrete beam together with other constructions when there is a slight steep ^ as 0.8> N 5 0.5, and use the slope protection type. Or, I will make a retaining wall shape i dog type that will make the buttocks thicker.
なお、 この場合も強度の面から 30 cm以上の厚さで繊維補強土を造成する。 また、 図 12に示すように、 地山法面の法面勾配が急であり、 0. 5>N≥0. 3 (例えば 1: 0. 35)の^には、 法尻をより厚く造成する擁壁开狱タイプとすることにより、 繊維 補強土 55の仕上がり表面の法面勾配が 1 : 0. 5より緩くなるようにする。  Also in this case, fiber reinforced soil is created with a thickness of 30 cm or more from the viewpoint of strength. Also, as shown in Fig. 12, the slope slope of the ground slope is steep, and in the case of 0.5> N 0 0. 3 (eg 1: 0. 35), The slope of the finished surface of the fiber reinforced soil 55 is made to be less than 1: 0.5 by setting it as a retaining wall type.
また、 植物の種類によっては持続して生育することが可能な補強土の厚さが異なるた め、 芝'草本類では 30 cm、 低木の木本類では 45 cm以上、 中程度の高さの木本類で は 60 cm以上を目安とすることが好ましい。  In addition, depending on the type of plant, the thickness of reinforced soil that can be grown continuously varies, so 30 cm for grasses and 45 cm or more for shrubs and trees with medium height. It is preferable to use 60 cm or more as a standard for woody products.
繊維補強土 55の造成後は、 図 13、 14に示すように、 植栽穴用ポット 43を除 去して形成した穴 45に隙間を残さないようにして植物の苗木 44を植える。繊維補強土 55を造成した後に苗木を植えるための穴を掘るのは困難であるが、 このようにすれば、 苗木用の穴 45を容易に作ることができる。  After the formation of the fiber reinforced soil 55, as shown in FIGS. 13 and 14, plant seedlings 44 are planted without leaving any gaps in the holes 45 formed by removing the pot 43 for planting holes. After creating fiber reinforced soil 55, it is difficult to dig a hole for planting seedlings, but in this way, holes 45 for seedlings can be easily made.
そして更に図 15に示すように、 繊維補強土 55表面に残った砂を清掃除去した後 に厚層基材吹付ェを施す。  Further, as shown in FIG. 15, after removing the sand remaining on the surface of the fiber reinforced soil 55, a thick layer substrate spraying is applied.
厚層基材吹付ェは、 ポンプまたはモルタルガンを用いて ffi ^基犲を廩さ 3〜 10 cm に吹き付けるもので、 ½謝は人工土壌または有機質謝など(土、 木質繊維、 ノ 一ク , ビートモスなど) である。  Thick-layer substrate spraying is performed by spraying a ffi ^ substrate to a thickness of 3 to 10 cm using a pump or a mortar gun, and the method may be artificial soil or organic powder (soil, wood fiber, raw water, Beat moss etc).
例えば、 厚層謝 46の 1 m3当りの配合は、 有機質系の植生翻' 2000リットル 、 化磡巴料 3k 遅効性肥料 3kg,侵食防止剤としての樹脂系粉末 1 k g その他、 緑化目標にあわせて植物の種子を配合する。 For example, the composition of thick-layer ax 46 per 1 m 3 is organic vegetation change 2000 liters, chemical 3k, slow-acting fertilizer 3 kg, resin-based powder 1 kg as an erosion inhibitor, Blend plant seeds according to greening goals.
また、 種子の配合によっては苗木 4 4を被圧する場合があるので、 マルチング材 3 9の併用を検討する。 マルチング材 3 9は天然繊維のジュ一トクロス素材にクラフト紙を 裏打ちしてなるものであり、 敷きワラに匹敵する地温安定性と feK性があり、 乾燥防止や 灌水の手間を省き、 地上上昇防止に優れたものである。  In addition, depending on the composition of the seed, it may cover the seedlings 44, so consider using mulching material 39 in combination. The mulching material 39 is a natural fiber jut cloth backing a kraft paper, and has a ground temperature stability and feK property comparable to that of a laying straw, saves time for drying and watering, and prevents rising above the ground. Excellent.
厚層繊 4 6を施して緑化を図るに先立ち、 繊維補強土 5 5の上面に金網、 合纖脂 製ネヅト等の網体 7 0を敷設する。  Prior to greening by applying thick fiber 46, a mesh 70 such as a wire mesh or synthetic resin net is laid on the upper surface of the fiber reinforced soil 55.
網体 7 0は、 これを繊維補強土 5 5に差し込むピン 7 1の頭部の鉤 7 1 aで係止 する。 図 1 7 Aにピン 7 l aの概要を示すと、 合 細旨製で、 先端を尖り状とし、 また、 本体は横断断面十文字形や人文字形として中心から方謝状に突設する縦リプ 7 1 bを設け 、 この縦リブ 7 l bの側端に上向きの髭状突起 7 1 cを上下に間隔を存して形成する。 図 1 7 Bに断面を示す。  The mesh 70 is locked at the hook 7 1 a of the head of the pin 7 1 which is inserted into the fiber reinforced soil 5 5. The outline of pin 7 la is shown in Fig. 17 A. It is made of fine material, has a pointed end, and the main body has a vertical lip that protrudes from the center as a cross-section cross-shaped or character-shaped. 7 1 b is provided, and upward ridges 71 c are formed at the upper and lower intervals at the side end of the longitudinal rib 7 lb. A cross section is shown in Fig. 17 B.
ピン 7 0は、 合成樹脂製とすれば、 軽いものであり、 先端を尖り状としたので差込み 易く、 また、 本体は横断断面十文字形など中心から方姊 ί状に突出する縦リブを設けたので この縦リブが補強として強度もあり、 さらに、 上向きの髭状突起が繊維と絡み、 抜け難い ものとなる。  The pin 70 is light if it is made of synthetic resin and has a pointed tip so that it can be easily inserted. The main body is provided with a longitudinal rib that protrudes in a square shape from the center, such as a cross-shaped cross section. Therefore, the longitudinal ribs serve as reinforcements, and furthermore, the upward ridges entangle with the fibers, making it difficult to remove them.
さらに、 ピン 7 1の最頂部には打撃受け用の平坦部 7 I dを形成して打ち込めるよう にする。 このピン 7 1は例えば 1 8本 / 1 O m2程度の間隔で配設した。 Furthermore, a flat portion 7 I d for impact receiving is formed at the top of the pin 7 1 so that it can be driven. The pin 71 is arranged, for example, 1 8/1 O m 2 about interval.
ピン 7 1は網体 7 0を繊維補強土 5 5に敷設してから繊維補強土 5 5に差し込み、 最 終的に頭部の鉤 7 1 a網体 4を係止する。 このようにすれば、 ピン 7 1の髭状突起 7 1 c に繊維補強土 5 5の連線繊維が絡み付き、 ピン 7 1の抜け出しが防止できるとともに、 網 体 7 0と繊維補強土 5 5がピン 8を介して一体的に結合され、 網体 7 0による補強ェによ つて、 鶴部に対して安定性が確保できる。  Pin 71 lays net 70 on fiber reinforced soil 55, and then inserts it in fiber reinforced soil 55, and finally locks mesh 7 1 a of net 4 on the head. In this way, the bifurcated fibers of the fiber reinforced soil 5 5 are entangled with the ridges 7 1 c of the pin 7 1 and the pin 7 1 can be prevented from coming out, and the mesh 70 and the fiber reinforced soil 5 5 The integral connection through the pin 8 and the reinforcement by the mesh 70 ensure stability against the crane section.
なお、 厚層謝 4 6を繊維補強土 5 5の上に施す場合は、 網体 7 0は繊維補強土 5 5 の上に少し浮かして敷設し、 厚層基材 4 6の中に網体 7 0が入り込むようにしてもよい。 以上の繊維補強土工法により造成した構築物においては、 保水性と保肥性をもった 材料が徐々に水分と肥料を植物に供給し、 植物が良好に生育できることとなる。 In addition, when thick laver 46 is applied on the fiber reinforced soil 55, the net 70 is floated a little on the fiber reinforced soil 5 and laid in the thick layer base 46 70 may enter. In the construction constructed by the above-mentioned fiber reinforced soil construction method, the material having the water retention ability and the fertilizer retention ability gradually supplies water and fertilizer to the plants, and the plants can grow well.
このようにして造成した構築物の補強土は 3 0 c m以上の厚さであり、 且つ、 仕上 がり法面勾配が ¾4の生育限界勾配である 1 : 0 . 5より緩やかであるから、 植物が健全 に生育できる。 また、 適正量の繊維の存在により擬似粘着力による強度を維持して地山の «を補強することができる。  Since the reinforced soil of the construction constructed in this way has a thickness of 30 cm or more and the finishing slope slope is less than 1: 0.5 which is the growth limit slope of 3⁄44, the plant is healthy. It can grow on In addition, by the presence of an appropriate amount of fibers, it is possible to maintain the strength due to the cohesion and reinforce the ground.
さらに、 図 1 6に示すように、 繊維補強土 5 5を造成する法面に剛性の;^体とし てロックボルト 9 0を打設し、 法面より突出するロックボルト 9 0の上端を補強土で覆う いわゆるロックボルトェを施すもので、 ロックボルト 9 0で地山の安定を図るとと もに、 繊維補強土 5 5を造成する法面に一端を打設したロックボルト 9 0の上端を繊維補 強土 5 5で覆うようにしたから、 繊維補強土 5 5中の繊維がロックボルト 9 0に絡んで補 強土と地山法面との一体性が向上し、 すべりや崩れが起こりにくくなる。 産業上の利用可能性  Furthermore, as shown in Fig. 16, a rock bolt 90 is placed as a rigid body on the slope to create the fiber reinforced soil 55, and the upper end of the lock bolt 90 protruding from the slope is reinforced Covering with soil The so-called rock bolt is applied, and the rock bolt 90 is used to stabilize the ground and the end of the rock bolt 90 has one end placed on the slope to construct the fiber reinforced soil 55. Since the fiber is covered with a fiber reinforced soil 55, the fibers in the fiber reinforced soil 55 are entwined in the rock bolt 90 to improve the integrity of the reinforced soil and the ground slope, causing slippage and collapse. It becomes difficult to happen. Industrial applicability
以上述べたように、 本発明の繊維補強土工法は、 砂質土に対し繊維を纖的に絡めて 混合した補強土を造成する繊維補強土工法において、 補強土中の繊維の混入状態が適正に なるように繊維を敷設することにより充分な強度の補強土が得ら 作業性が良く作業の 質を均一にできる。 また、 本発明の繊維補強土構築物は、 作業性良く造成でき、 均質且つ 充分な強度を有する。  As described above, in the fiber reinforced soil construction method of the present invention, in the fiber reinforced soil construction method in which the reinforced soil is constructed by entangled and mixed the fibers with the sandy soil, the mixing state of the fibers in the reinforced soil is appropriate. By laying the fibers in such a way, reinforced soil with sufficient strength can be obtained, and the working efficiency can be improved. In addition, the fiber reinforced soil construction of the present invention can be constructed with good workability, and is homogeneous and has sufficient strength.

Claims

請 求 の 範 囲 The scope of the claims
1 . 砂質土を搬送する砂質土搬送装置と、 繊維を連続的に供給する繊維供給装置とを備え た繊維補強土装置を用いて、 砂質土 装置から搬送される砂質土に繊維供給装置から繰 り出す繊維を絡ませ混合して補強土とする繊維補強土工法において、 繊維は 镜した繊維 であり、 砂質土へ直線的に配向することを特徴とした繊維補強土工法。 1. Fiber using the fiber reinforced soil device equipped with a sandy soil transfer device for transferring sandy soil and a fiber supply device for supplying fibers continuously, the fiber is transferred to the sandy soil transferred from the sandy soil device In the fiber reinforced soil construction method, in which fibers are unwound from a feeder and mixed to form a reinforced soil, the fibers are entangled fibers, and the fiber reinforced soil construction method is characterized by linear orientation to sandy soil.
2. 高圧水または圧縮空気とともに繊維を噴射して繰り出すェジェクタ一を高圧水または 圧縮空気の供給管に接続し、 このェジェクタ一を介して繊維供給装置からの繊維の砂質土 への混入方向を受け盤状にすることを 数とした請求項 1記載の繊維補強土工法。  2. Connect the ejector that injects the fiber with high pressure water or compressed air and feeds it out to the high pressure water or compressed air supply pipe, and through this ejector, the direction of the fiber mixing from the fiber supply device to the sandy soil The fiber reinforced soil construction method according to claim 1, wherein the number is to be made into a receiving plate shape.
3. ェジェクタ一は、 複数の噴射ノズルを設ける請求項 2記載の繊維補強土工法。 3. The fiber reinforced soil construction method according to claim 2, wherein the ejector is provided with a plurality of jet nozzles.
4. ェジェクタ一) は、 複数の噴射ノズルを設けたヘッダ一とこのへヅダ一の搖動手段と の組み合わせで構成する請求項 3記載の繊維補強土工法。  4. The fiber reinforced soil construction method according to claim 3, wherein the ejector comprises a combination of a header provided with a plurality of jet nozzles and a peristaltic means of the ejector.
5 . 受け盤状は、 補強土を造成する法面と交差する水平面に対して 7 °〜2 0 ° の高さ角 度をもってなる請求項 3記載の繊維補強土工法。  5. The fiber reinforced earth construction method according to claim 3, wherein the receiving board has a height angle of 7 ° to 20 ° with respect to a horizontal plane intersecting the slope on which the reinforced soil is formed.
6 . 繊維の噴射速度を 3 0 0 π!〜 1 , 0 0 0 m/m i nに対して、 へヅダ一の揺動角度を 1 0度〜 3 0度とする請求項 4記載の繊維補強土工法。 6. The jet speed of the fiber is 3 0 0 π! The fiber reinforced earth construction method according to claim 4, wherein the swing angle of the slider is 10 degrees to 30 degrees with respect to 1 to 1000 m / min.
7. 補強土を造成する法面に剛性の繊体を打設し、 法面より突出するこの献体の上端 を補強土で覆う請求項 1記載の繊維補強土工法。  7. A fiber reinforced soil construction method according to claim 1, wherein a rigid fiber is placed on a slope to construct a reinforced soil, and the upper end of the body projecting from the slope is covered with the reinforced soil.
8. 請求項 1に記載の工法により造成した繊維補強土構築物。  8. A fiber reinforced soil structure constructed by the method according to claim 1.
PCT/JP2004/003870 2004-03-22 2004-03-22 Fiber-reinforced soil construction method and fiber-reinforced soil structure WO2005090692A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2004/003870 WO2005090692A1 (en) 2004-03-22 2004-03-22 Fiber-reinforced soil construction method and fiber-reinforced soil structure
TW093110974A TW200532074A (en) 2004-03-22 2004-04-20 Fiber-reinforced soil construction method and fiber-reinforced soil structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/003870 WO2005090692A1 (en) 2004-03-22 2004-03-22 Fiber-reinforced soil construction method and fiber-reinforced soil structure

Publications (1)

Publication Number Publication Date
WO2005090692A1 true WO2005090692A1 (en) 2005-09-29

Family

ID=34993745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/003870 WO2005090692A1 (en) 2004-03-22 2004-03-22 Fiber-reinforced soil construction method and fiber-reinforced soil structure

Country Status (2)

Country Link
TW (1) TW200532074A (en)
WO (1) WO2005090692A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11229390A (en) * 1998-02-16 1999-08-24 Kumagai Gumi Co Ltd Pneumatic transportation method for soil-containing fine grain, and method for forming layer of soil reinforced by continuous thread
JP2003129482A (en) * 2001-10-24 2003-05-08 Jomo Ryokusan Kogyo Kk Sprayer used at high places in greening slope face
JP2003301439A (en) * 2002-04-08 2003-10-24 Nittoc Constr Co Ltd Revetment structure
JP3466978B2 (en) * 1999-12-16 2003-11-17 ライト工業株式会社 Method for forming anchor pin and fiber mixed layer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11229390A (en) * 1998-02-16 1999-08-24 Kumagai Gumi Co Ltd Pneumatic transportation method for soil-containing fine grain, and method for forming layer of soil reinforced by continuous thread
JP3466978B2 (en) * 1999-12-16 2003-11-17 ライト工業株式会社 Method for forming anchor pin and fiber mixed layer
JP2003129482A (en) * 2001-10-24 2003-05-08 Jomo Ryokusan Kogyo Kk Sprayer used at high places in greening slope face
JP2003301439A (en) * 2002-04-08 2003-10-24 Nittoc Constr Co Ltd Revetment structure

Also Published As

Publication number Publication date
TW200532074A (en) 2005-10-01

Similar Documents

Publication Publication Date Title
CN108755717A (en) A kind of hard rigid slope supported habitat builds structure and its construction method
JP2018059336A (en) Surface layer collapse prevention mat, surface layer collapse prevention combined greening structure and surface layer collapse prevention combined greening method
CN109503052A (en) Raw celluar concrete of a plant and preparation method and application
TW200540313A (en) Vegetation block and covering block for vegetation block
JPH0259458A (en) Construction process for reinforcing solid particle layer
JPH0149661B2 (en)
JP2007297889A (en) Slope planting method
WO2005090692A1 (en) Fiber-reinforced soil construction method and fiber-reinforced soil structure
KR20060127379A (en) Methods and structure for using a fiber reinforcement ground
JP2003301439A (en) Revetment structure
WO2005088017A1 (en) Fiber-reinforced earth work method and construct formed by this method
KR20060121086A (en) Methods and structure for using a fiber reinforcement ground
WO2005090691A1 (en) Method of fiber-reinforcement earthwork and construct obtained by the earthwork method
KR20070017890A (en) Methods for using a fiber reinforce ground and structure of a fiber reinforcement ground
JPS5841119A (en) Sheathing method and fence used with said method
CN220202702U (en) Rock slope protection and spray-seeding greening structure
CN217231876U (en) Rock slope vegetation system
JPH07158072A (en) Planting method using wing lock bolt
JPH01310019A (en) Greening foundation creation construction method and spray nozzle for mud-state borrowed-soil base material, used to the construction
CN217500264U (en) Highway, railway or massif bank protection structure
JP2005023722A (en) Slope greening method
JP2912992B2 (en) Greening method of hard slope
JP2002004290A (en) Greening and reinforcing method for slope face
CN219508637U (en) Ecological concrete protection system on cast-in-place concrete basal plane
JPH07116712B2 (en) Planting mechanism and method of plant growth difficult slope

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020057025518

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP