WO2005084707A1 - うつ病、不安神経症、薬物依存症、およびこれらに類似した精神疾患治療のための有機カチオントランスポーターoct3関連分子の利用法 - Google Patents

うつ病、不安神経症、薬物依存症、およびこれらに類似した精神疾患治療のための有機カチオントランスポーターoct3関連分子の利用法 Download PDF

Info

Publication number
WO2005084707A1
WO2005084707A1 PCT/JP2005/003042 JP2005003042W WO2005084707A1 WO 2005084707 A1 WO2005084707 A1 WO 2005084707A1 JP 2005003042 W JP2005003042 W JP 2005003042W WO 2005084707 A1 WO2005084707 A1 WO 2005084707A1
Authority
WO
WIPO (PCT)
Prior art keywords
oct3
gene
protein
organic cation
compound
Prior art date
Application number
PCT/JP2005/003042
Other languages
English (en)
French (fr)
Inventor
Kiyoyuki Kitaichi
Original Assignee
Biostation Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biostation Inc. filed Critical Biostation Inc.
Priority to JP2006510650A priority Critical patent/JPWO2005084707A1/ja
Priority to EP05719492A priority patent/EP1736172A4/en
Publication of WO2005084707A1 publication Critical patent/WO2005084707A1/ja
Priority to US10/592,154 priority patent/US20070136828A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • A61K31/135Amines having aromatic rings, e.g. ketamine, nortriptyline
    • A61K31/138Aryloxyalkylamines, e.g. propranolol, tamoxifen, phenoxybenzamine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/18Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/22Anxiolytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/24Antidepressants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/30Drugs for disorders of the nervous system for treating abuse or dependence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/30Drugs for disorders of the nervous system for treating abuse or dependence
    • A61P25/36Opioid-abuse
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1138Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against receptors or cell surface proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/8509Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5082Supracellular entities, e.g. tissue, organisms
    • G01N33/5088Supracellular entities, e.g. tissue, organisms of vertebrates
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/05Animals comprising random inserted nucleic acids (transgenic)
    • A01K2217/054Animals comprising random inserted nucleic acids (transgenic) inducing loss of function
    • A01K2217/058Animals comprising random inserted nucleic acids (transgenic) inducing loss of function due to expression of inhibitory nucleic acid, e.g. siRNA, antisense
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/105Murine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • A01K2267/035Animal model for multifactorial diseases
    • A01K2267/0356Animal model for processes and diseases of the central nervous system, e.g. stress, learning, schizophrenia, pain, epilepsy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/11Antisense

Definitions

  • OCT3-related molecules for the treatment of depression, anxiety, drug dependence and similar psychiatric disorders
  • the present invention relates to the use of the organic cation transporter OCT3 for treating mental disorders such as depression, anxiety, and drug dependence.
  • OCT organic cation transporter
  • OCT3 was cloned from the rat placenta in 1998 as a transporter highly homologous to OCT1 (see Non-Patent Document 8).
  • OCT3 was identified pharmacologically in the early 1990s from the gene sequence and pharmacological properties, and uptake2 or extracellular neuronal monoamine transporter (EMT) clawed from human myocardium almost simultaneously with OCT3.
  • EMT extracellular neuronal monoamine transporter
  • OCT3 is localized in the proximal tubule in the kidney, and is currently considered to be one of the most important transporters for excretion of cationic drugs in the kidney (see Non-Patent Document 13) .
  • OCT3 is significantly different from other OCTs in substrate specificity.
  • OCT3 has the transport activity of dopamine neurotoxin MPP +, noradrenaline, serotonin, dopamine, stimulants, antidepressants, etc., but it is known that these are not transported by other OCTs! /, (See Non-Patent Document 10).
  • OCT3 in the brain was found only in the last cortex in in situ hybridization, and its expression in other sites was low. Therefore, OCT3 is considered to be important for controlling vomiting, appetite, and cardiovascular function! / Puru (see Non-Patent Document 14),
  • OCT3 is present in glial cells and astrocytes, which are neural support cells, and plays an important role in regulating monoamine concentration in the brain (see Non-Patent Document 15).
  • OCT3 may be involved in acute bronchoconstriction through suppression of norepinephrine uptake by inhaled steroids (see Non-Patent Documents 16 and 17).
  • OCT3 is important for uptake of 1-methytri-4-phenylpyridinium (MPP +) in cerebellar granule cells (see Non-Patent Document 19).
  • OCT3 expression is reduced by drug administration (see Non-Patent Document 20), 7) It has been shown that, in animals lacking the serotonin transporter, the expression of OCT3, which has the activity of transporting monoamines containing serotonin, is increased in some brain regions (see Non-Patent Document 21).
  • kidney-derived HEK293 cells that express OCT3 / EMT that they have the transport activity of agmatine (Agmatine) that can be a parent compound of OCT3 and OCT2 dependent therapeutic agents (see Non-Patent Document 22).
  • OCT3 / EMT is expressed in astrocytes, which are human neural support cells, and plays an important role in the uptake of monoamine drugs and the like (see Non-Patent Documents 24 and 25).
  • OCT3 is expressed and functions in ganglion cells in the upper part of the cervix! /, (See Non-Patent Document 26)
  • OCT3 / EMT is expressed on the brush border membrane side in Caco-2 cells derived from the small intestine and plays an important role in the uptake of substrates into cells (see Non-Patent Documents 27 and 28).
  • OCT1 and OCT3 are involved in quantitative control of acetylcholine in human placenta (see Non-Patent Document 29),
  • OCT2 and OCT3 are expressed in the choroid plexus of the brain where the blood-cerebrospinal fluid barrier exists, and OCT2 is important for choline transport at this site (see Non-Patent Document 31).
  • the cation transport system is important for incorporation of agmatine in SK-MG-1 derived from human glioma, but it is highly likely that it is not via OCT3 (see Non-Patent Document 33).
  • OCT3 ORCT3 in mouse
  • MAO-A a monoamine metabolizing enzyme
  • Rat OCT3 consists of 11 ethathons and 10 introns. Mouse OCT3 has 86% homology with human OCT3. Considering the immunohistological findings that OCT3 is located in the proximal tubule, OCT3 is thought to play an important role in excretion of cationic drugs in the kidney (see Non-Patent Document 13).
  • OCT3 is expressed in rat astrocytes (see Non-Patent Document 37).
  • OCT3 is identical to the extracellular monoamine transporter uptake2 and is widely distributed throughout the brain, including the hippocampus, cerebral cortex, and cerebellum (see Non-Patent Document 40).
  • OCT3 / EMT is present in human glial cells (see Non-Patent Document 44).
  • l, l'-Diisopropyl-2,4'-cyanine (disprocynium24) i is a potent inhibitor of CT3 / uptake2, and its intravenous administration strongly inhibits urinary excretion of monoamines (non- (See Patent Document 45),
  • Uptake2 plays an important role in noradrenaline uptake into rat cardiomyocytes (see Non-Patent Document 46).
  • OCT3 / EMT / uptake2 is a transporter found in rat cardiomyocytes and uses a monoamine such as dopamine, serotonin, and noradrenaline as a substrate. Since it is localized in cells other than nerve cells, it has been assumed that it is an important transporter for removing noradrenaline released during peripheral nerve stimulation.
  • OCT3 may use an antidepressant as a substrate.
  • antidepressants have excellent inhibitory activity on the transport of the MPT + substrate of OCT3. This is due to the fact that some of the structures of antidepressants resemble monoamines and that antidepressants have strong potency. It is derived from the fact that it is a highly cationic drug. Therefore, this drug tropism does not suggest a link between OCT3 and depression.
  • the relationship between OCT3 and its medicinal properties has been aimed at, as a beta-blocker, which is a hypotensive drug.
  • a beta-blocker a hypotensive agent similar in structure to monoamine, has the property of being transported to OCT3, and OCT3 is well expressed in the heart. (However, they all dropped out in the early 90's). This suggests that the expression of the transporter was consistent with the type of the substrate, and that power was also noted.
  • Kekuda et al. who first closed OCT3, reported that OCT3 expression was highest in the heart and then in the lungs and kidneys, and that expression in the brain was extremely low. Later, Wu et al. Of the same group reported OCT3 expression in the brain, and several groups reported OCT3 expression in neural supporting cells such as glial cells. It has been considered that it is meaningless to evaluate the function in the center of OCT3 that is not expressed in the injured nerve V, and it has not been studied so far.
  • Non-Patent Document 1 Sumio Otsuki and 2 other authors, "Molecular Mechanisms of Drug Penetration and Elimination at the Blood-Brain Barrier-Central Support Defense System", Nippon Pharmacological Magazine, 2003, Vol. -64
  • Non-Patent Document 2 Hitoshi Endo, ⁇ Molecular Mechanism of Drug Transport '', Nippon Pharmacological Magazine, 2000, Vol.116, p.114-124
  • Non-patent Literature 3 Koepsell H, 2nd arr., "Molecular pharmacology of organic cation transporters in kidney. J, J Membr Biol, 1999, Vol.167, p.103-117.
  • Non-patent document 4 Grundemann D, 4 other authors, ⁇ Drug excretion mediated by a new prototype of polyspecific transporter. '', Nature, 1994, Vol.372, p.549-552
  • Non-patent document 5 Okuda M, 4 Excellent book, ⁇ cDNA cloning and functional expression of a novel rat kidney organic cation transporter, OCT2. '', Biochem.Biophys.Res.Commun., 1996, Vol.224, p.500-507.
  • Non-patent document 6 Pritchard JB and Miller DS, "Mechanisms mediating renal secretion of organic anions and cations.”, Physiol. Rev., 1993, Vol. 73, p. 765-96
  • Non-patent document 7 Gorboulev V, 9 other authors, ⁇ Cloning and characterization of two human polyspecific organic cation transporters. '', DNA Cell Biol, 1997, Vol. 16, p. 87 1-881
  • Non-Patent Document 8 Kekuda R, 6 others, ⁇ Cloning and functional characterization of a potential-sensitive, polyspecific organic cation transporter (OCT3) most abundantly expressed in placenta. '', J. Biol. Chem., 1998, Vol. 273, p.15971-15979
  • Non-Patent Document 9 Grundemann D, 3 other authors, ⁇ Molecular identification of the corticosterone—sensitive extraneuronal catecholamine transporter. '', Nat Neurosci, 1998, Vol.1, p.349-351.
  • Non-Patent Document 10 Wu X, 7 other authors, ridentity of the organic cation transporter OCT3 as the extraneuronal monoamine transporter (uptake2) and evidence for the expression of the transporter in the brain.J, J. Biol. Chem. ⁇ 1998, Vol.273, p.32776-32786
  • Non-Patent Document 11 Inazu M, 6 other authors, ⁇ Pharmacological characterization of dopamine transport in cultured rat astrocytes. '', Life Sci., 1999, Vol. 64, p. 2239-2245
  • Non-Patent Document 12 Kentaro Wakayama, Outside 3 authors, ⁇ Brain barrier excretion mechanism of 1-Mety 4-phenylpyridinium (MPP +) '', 123rd Annual Meeting of the Pharmaceutical Society of Japan, 2003, Abstracts 4, P64
  • Non-Patent Document 13 Wu X, Outside 7th, ⁇ Structure, function, and regional distribution of the organic cation transporter OCT3 in the kidney. '', Am J Physiol Renal Physiol. 2000 Sep, Vol.279 (3), F449 -58
  • Non-Patent Document l4 Haag C, 5 others, ⁇ The localization of the extraneuronal monoamine transporter (EMT) in rat brain. '', J Neurochem. 2004 Jan, Vol.88 (2), p.291-7
  • Patent Document 15 Inazu M, 2 other authors, ⁇ The role of glial monoamine transporters in the central nervous system '', Nihon Shinkei Seishin Yakurigaku Zasshi., 2003 Aug, Vol.23 (4), p.171-8
  • Patent Literature lb Horvath G, 5 other authors, ⁇ Norepinephrine transport by the
  • Non-Patent Document 18 Lazar A, 5 other authors, ⁇ Genetic variability of the extraneuronal monoamine transporter EMT (SLC22A3). '', J Hum Genet. ⁇ 2003, Vol.48 (5), p.226-30
  • Non-Patent Document 19 Shang T, 4 other authors, ⁇ 1- Methy 4-phenylphenylidinium accumulates in cerebellar granule neurons via organic cation transporter 3. '', J Neurochem., 2003 Apr ⁇ 85 (2), p. 358—67
  • Non-special reference literature 20 Kitaichi K, 7 other authors, ⁇ Increased plasma concentration and brain penetration of methamphetamine in behaviorally sensitized rats.J, Eur J Pharmacol., 2003 Mar7, Vol.464 (l), p.39-48
  • Non-special reference literature 21 Schmitt A, 7 others, ⁇ Organic cation transporter capable of transporting serotonin is up-regulated in serotonin transporter-deficient mice. '', J Neurosci Res., 2003 Marl, Vol. 71 (5), p.701-9
  • Non-special reference 23 LeazerTM, and Klaassen CD., ⁇ The presence of xenobiotic transporters in rat placenta. '', Drug Metab Dispos., 2003 Feb, Vol.31 (2), p.153-67.
  • Non-patent Document 26 Kritok D, 3 other authors, ⁇ Organic cation transporter mRNA and function in the rat superior cervical ganglion. '', J Physiol., 2002 Augl5,
  • Non-Patent Document 27 Martel F, 3 other authors, ⁇ Uptake of (3) H-l-methy 4-phenylphenylidinium ((3) H-MPP (+)) by human intestinal Caco- 2 cells is regulated by
  • Non-special reference literature 28 Martel F, 3 others, "Apical uptake of organic cations by human intestinal Caco— 2 cells: putative involvement of ASF transporters.”, Naunyn Schmiedebergs Arch Pharmacol., 2001 Jan ⁇ Vol.363 (l), p.40-9
  • Non-Patent Document 29 Wessler I, 6 other authors, ⁇ Release of non- neuronal acetylcholine from the isolated human placenta is mediated by organic cation transporters. '', Br J Pharmacol., 2001 Nov ⁇ 134 (5), p. .951— 6
  • Non-Patent Document 30 Shu Y, 4 other authors, ⁇ Functional characteristics and steroid
  • Non-Patent Document 32 Martel F, 3 other authors, ⁇ Effect of P-glycoprotein modulators on the human extraneuronal monoamine transporter. '', Eur J Pharmacol., 2001 Jun 22, Vol.422 (l-3), p.31 -7
  • Non-Patent Document 33 Molderings GJ, 3 other authors, ⁇ Agmatine and putrescine uptake in the human glioma cell line SK-MG-1. '', Naunyn Schmiedebergs Arch Pharmacol., 2001 Jun ⁇ Vol. 363 (6), p. 671-9
  • Patent Document 34 Friednch A, 4 other authors, ⁇ Transport of choline and its relationship to the expression of the organic cation transporters in a rat brain microvessel endothelial cell line (RBE4). '', Biochim Biophys Acta., 2001 Jun 6, Vol.1512 (2), p.299-307
  • Non-Patent Document 35 Zwart R, 4 other authors, "Impaired activity of the extraneuronal monoamine transporter system known as uptake—2 in Orct3 / Slc22a3—deficient mice.”, Mol Cell Biol., 2001 Jul, Vol. 21 (13 ), P.4188-96
  • Non-Patent Document 3b Verhaagh S, 2 other authors, ⁇ The extraneuronal monoamine transporter Slc22a3 / Orct3 co-localizes with the Maoa metabolizing enzyme in mouse placenta. '' ⁇ Mech Dev. ⁇ 2001 Jan ⁇ Vol. L00 (l), p .127-30
  • Non-Patent Document 37 Inazu M, 6 other authors, "Pharmacological characterization of dopamine transport in cultured rat astrocytes.”, Life Sci., 1999, Vol.64 (24), p.2239-45
  • Non-Patent Document 38 Martel F, 3 other authors, ⁇ Comparison between uptake2 and rOCTl: effects of catecholamines, metanephrines and corticosterone.J, Naunyn
  • Non-Patent Document 39 Dynarowicz I and Watkowski T., ⁇ The effect of oestradio 17 beta and progesterone on uptake 1, uptake2 and on release of noradrenaline in the uterine artery of ovariectomized pigs. '', Arch Vet Pol., 1993 , Vol.33 (3-4), p.249-58
  • Non-Patent Document 40 Wu X, 7 other authors, ridentity of the organic cation transporter OCT3 as the extraneuronal monoamine transporter (uptake2) and evidence for the expression of the transporter in the brain.J, J Biol Chem. ⁇ 1998 Dec4,
  • Non-Patent Document 41 Martel F, 3 other authors, "Uptake of [3H] -adrenaline by freshly isolated rat hepatocytes: putative involvement of P—glycoprotein.”, J Auton Pharmacol., Feb. 1998, Vol. 18 (1 ), P.57-64
  • Non-Patent Document 42 Page G, 5 other authors, "Possiole relationship between changes in [3H] DA uptake and autoxidation in rat striatal slices.”, Exp Neurol., 1998 Jul, Vol.l52 (l), p.88 -94
  • Non-Patent Document 43 Kekuda R, 6 other authors, ⁇ Shi loning and functional characterization of a potential-sensitive, polyspecific organic cation transporter (OCT3) most abundantly expressed in placenta.J, J Biol Chem. ⁇ 1998 Jun26, Vol. 273 (26), p.15971-9
  • Non-Patent Document 44 Schomig E, 5 other authors, "The extraneuronal monoamine transporter exists in human central nervous system glia.”, Adv Pharmacol., 1998, Vol.42, p. 356-9
  • Non-Patent Document 45 Graefe KH, 5 other authors, ⁇ 1,1'-Diisopropy 2,4'-cyanine
  • Non-Patent Document 46 Obst OO and 2 other authors, ⁇ Characterization of catecholamine uptake2 in isolated cardiac myocytes. ", Mol Cell Biochem. ⁇ 1996 Oct—November Vol.163—164, p.181-3
  • Non-Patent Document 47 Wieland A, 3 other authors, ⁇ Analysis of the gene structure of the human (SLC22A3) and murine (Slc22a3) extraneuronal monoamine transporter. '', J Neural Transm., 2000, Vol. L07 (10), p.1149-57
  • Non-Patent Document 48 Lazar A, 5 other authors, "Genetic variability of the extraneuronal monoamine transporter EMT (SLC22A3) .J, J Hum Genet, 2003, Vol.48, p.226-230.
  • Non-Patent Document 49 J Pharmacol Exp Ther., 2004 Jan, Vol.308 (l), p.2-9
  • the present invention has been made in view of such circumstances, and an object of the present invention is to clarify the relationship between OCT3 and mental disorders such as depression, anxiety, or drug dependence.
  • An object of the present invention is to provide a drug for treating a mental illness and a method for screening the drug. Means for solving the problem
  • the present inventors attempted to produce a mouse in which OCT3 expression was suppressed by directly administering an antisense to OCT3 into the brain. Potential for various sites in the target site of antisense In this experiment, a sequence containing the OCT3 start codon of the target gene was used. In addition, the present inventor has established a blood-cerebrospinal fluid barrier, which is a contact point between the ventricle and blood. Focusing on the finding that OCT3 is expressed, the ventricle was selected as the brain site to which the antisense was administered.
  • antisense generally adds sulfur to the phosphoric acid in the sequence to prevent degradation of the base sequence.
  • Phosphorothioate is often used!
  • the inventor of the present invention considered that the toxicity is actually expressed as the phosphorothioate body and that tissue necrosis often involves difficulties in experiments, and therefore, the inventor devised antisense administration into the ventricle.
  • mice prepared as described above were subjected to a forced swimming test and observation of exploratory behavior. As a result, it was found that the mice exhibited an antidepressant effect due to the disappearance of the immobility during swimming, and also exhibited an anxiolytic effect due to enhanced exploratory behavior. In addition, it was confirmed that 0CT3 expression was significantly reduced in these mice.
  • the present inventors further examined the effect of suppressing the expression of the 0CT3 gene and the effect of using the antidepressant in combination. As a result, they have newly found that suppressing the expression of 0CT3 enhances the action of antidepressants. That is, it was shown that a compound that regulates OCT3 expression is useful as a concomitant drug with an antidepressant.
  • the present inventors have also found that a low-molecular compound targeting OCT3 actually has the same action as an antidepressant. That is, it was shown that a compound targeting OCT3 actually has a therapeutic effect on mental disorders such as depression.
  • the above results show that by suppressing the expression of a single gene (OCT3), it was possible to actually produce an animal exhibiting a phenotype easily distinguishable from a wild type. It is something.
  • OCT3 single gene
  • the present inventors succeeded for the first time in producing an animal that can be easily distinguished from a wild-type animal by suppressing the expression of the OCT3 gene, and completed the present invention.
  • the animal of the present invention is a very useful animal that actually exhibits a phenotype associated with mental disorders such as depression and anxiety.
  • the above-described OCT3 gene knockout animal of the present invention is very useful for, for example, screening for a therapeutic agent for a psychiatric disorder or identifying a causative substance causing a psychiatric disorder. Since the substance obtained (identified) by the above-mentioned method (ie, the compound) can actually change (enhance or eliminate) the phenotype of the animal of the present invention, it has a therapeutic effect on mental illness, Or, it can be said that it is a substance with a very high probability of causing mental illness.
  • the mouse in which the expression of OCT3 was suppressed awakened and showed an increase in drug-induced locomotor activity. That is, despite the single administration of the stimulant, the same behavior as the reverse tolerance phenomenon caused by repeated administration of the stimulant was observed.
  • the present invention has succeeded in producing a mouse exhibiting a stimulant reverse resistance phenomenon, ie, exhibiting an increase in stimulant spontaneous motor activity, without repeated administration of the stimulant.
  • These animals are useful for analyzing the mechanism of formation of drug dependence. Further, the above animal can be suitably used for screening a therapeutic drug for stimulant dependence.
  • the present invention relates to an OCT3 knockout animal exhibiting a phenotype associated with a mental disorder such as depression, anxiety, and stimulant dependence, a drug for treating the mental disorder, and a method for screening the drug. , And more specifically,
  • a drug for treating mental illness which comprises an organic cation transporter OCT3 gene expression inhibitor as an active ingredient;
  • an agent for suppressing the expression of the organic cation transporter OCT3 protein which is a compound selected from the group consisting of the following (a) and (c):
  • Organic cation transporter OCT3 protein function inhibitor Including, remedies for mental illness,
  • a stimulant-dependent drug comprising an organic cation transporter OCT3 protein expression enhancer or a function enhancer as an active ingredient
  • a method for screening a drug for treating stimulant dependence comprising the following steps (a) to (c):
  • a method for screening a drug for treating stimulant dependence comprising the following steps (a) to (c):
  • a method for screening a drug for treating stimulant dependence comprising the following steps (a) to (c):
  • an antidepressant action enhancer comprising, as an active ingredient, an organic cation transporter OCT3 gene expression inhibitor
  • an antidepressant-enhancing agent comprising an organic cation transporter OCT3 protein function inhibitor as an active ingredient
  • an antidepressant action enhancer which is a compound of the following (a) or (b):
  • the present invention [27] A method for preventing and / or treating a mental illness, comprising a step of administering an organic cation transporter OCT3 gene expression inhibitor or an OCT3 protein function inhibitor to an individual (eg, a patient or the like),
  • (28) a method for preventing and / or treating stimulant dependence, comprising a step of administering an organic cation transporter OCT3 gene expression enhancer or OCT3 protein function enhancer to an individual (for example, a patient or the like);
  • FIG. 1 is a graph showing the effect of continuous intracerebral infusion of antisense to OCT3 and the synergistic effect of antisense to low dose OCT3 and low dose antidepressant imipramine in a depression model.
  • a p ⁇ 0.01 vs. solvent group
  • b p ⁇ 0.01 vs. OCT3-ScrAS
  • c p ⁇ 0.01 vs. (OCT—AS 0 + IMI 0)
  • d p ⁇ 0.01 vs.
  • OCT—AS 0 + IMI 4 IMI 4
  • e p ⁇ 0.01 vs.
  • OCT—AS 0.075 + IMI 0 IMI 0
  • FIG. 2 is a graph showing the effect of continuous intracerebral infusion of normetanephrine relatively selectively transported to OCT3 in a depression model.
  • a p ⁇ 0.01 vs. solvent group.
  • FIG. 3 is a graph showing a decrease in OCT3 protein expression in rats to which antisense to OCT3 was continuously injected into the brain.
  • a p ⁇ 0.01 vs. solvent group
  • b p ⁇ 0.01 vs. solvent group
  • FIG. 4 is a graph showing the effect of continuous antisense intracerebral injection on OCT3 in stimulant-induced locomotor activity.
  • FIG. 5 is a graph showing the effect of continuous infusion of antisense to OCT3 in the brain on anxiety activity.
  • the graph on the left shows the number of standing actions as a result of taking place search actions.
  • the graph on the right shows the number of spontaneous movements.
  • OCT3 organic cation transporter OCT3
  • depression depression
  • anxiety neuroopathy
  • OCT3 protein a therapeutic agent for a psychiatric disorder, which comprises a substance that suppresses the expression (expression) of the OCT3 gene or OCT3 protein, or the function (activity) of the protein encoded by the OCT3 gene (OCT3 protein).
  • a therapeutic drug for psychiatric disorders (a drug / pharmaceutical composition for treating psychiatric disorders), which comprises, as an active ingredient, a substance that suppresses the expression of OCT3 gene.
  • OCT3 in the present invention is known to exist in various organisms.
  • the OCT3 of the present invention includes OCT3 in various organisms.
  • Examples of the OCT3 of the present invention include human OCT3, mouse OCT3, rat OCT3 and the like.
  • the nucleotide sequences of these OCT3-encoding genes are shown in SEQ ID NOs: 1 (human), 3 (mouse), and 5 (rat), respectively.
  • the amino acid sequence of the protein encoded by the nucleotide sequence is shown in SEQ ID NOs: 2 (human), 4 (mouse), and 6 (rat), respectively.
  • proteins for example, have high homology (usually 70% or more, preferably 80% or more, more preferably 90% or more, and most preferably 95% or more) with the sequences described in the above sequence listing.
  • a protein having the function of OCT3 (for example, the function as an organic transporter) is included in OCT3 of the present invention.
  • the protein is, for example, a protein consisting of an amino acid sequence in which one or more amino acids are added, deleted, substituted, or inserted in the amino acid sequence of the protein described in any of SEQ ID NOs: 2, 4, and 6.
  • the number of changed amino acids is within 30 amino acids, preferably within 10 amino acids, more preferably within 5 amino acids, and most preferably within 3 amino acids.
  • examples of the "mental illness” for which a therapeutic effect is expected include depression, anxiety, mania, manic depression, schizophrenia, hyperactivity disorder (ADHD) and the like.
  • the “mental disorder” in the present invention preferably, depression, anxiety, etc. can be mentioned.
  • Depression is a temporary psyche that is generally characterized by sadness, loneliness, despair, and self-respect A condition or chronic mental disorder that refers to a disorder with psychomotor arrest, infrequent irritation, withdrawal from society, and plant neurological symptoms such as decreased appetite and insomnia.
  • Anxiety disorder generally refers to a disease mainly caused by suddenly occurring anxiety attacks. Usually, during a seizure, palpitations are accompanied by symptoms such as tachycardia, dyspnea, dizziness, and trembling. Further, so-called “panic disorder” is also included in the aforementioned anxiety neurosis.
  • OCT3 gene expression suppressors include, for example, substances that inhibit the transcription of OCT3 or the translation from the transcript.
  • Preferred embodiments of the above-mentioned expression-suppressing substance of the present invention include, for example, compounds (nucleic acids) selected from the group consisting of the following (a) to (c).
  • nucleic acid in the present invention means RNA or DNA.
  • chemically synthesized nucleic acid analogs such as so-called PNA (peptide nucleic acid) are also included in the nucleic acid of the present invention.
  • PNA is a product in which the pentasaccharide 'phosphate skeleton, which is the basic skeleton structure of nucleic acids, is replaced with a polyamide skeleton containing glycine as a unit, and has a three-dimensional structure very similar to nucleic acids.
  • a method using antisense technology is well known to those skilled in the art.
  • the action of the antisense nucleic acid to inhibit the expression of the target gene has several factors as follows. That is, inhibition of transcription initiation due to triplex formation, transcription inhibition by hybridization with a site where an open loop structure was locally formed by RNA polymerase, transcription inhibition by hybridization with RNA that is undergoing synthesis, intron Inhibition by splicing at spliceosome formation site, inhibition of splicing by splicosome formation site, inhibition of splicing by hybridization with mRNA, inhibition of translocation to nuclear force cytoplasm by hybridization with mRNA, cabbing site and poly (A) Splicing inhibition by hybridization with the addition site, translation initiation inhibition by hybridization with the translation initiation factor binding site, translation inhibition by hybridization with the ribosome binding site near the initiation codon, interaction with the mRNA translation region and polysome binding site Due to hybrid formation Out
  • antisense nucleic acids inhibit target gene expression by inhibiting various processes such as transcription, splicing and translation (Hirashima and Inoue, Shinsei Kagaku Kenkyusho 2 Replication and Expression of Nucleic Acid IV Genes, Japan Ed. Biochemical Society, Tokyo Kagaku Dojin, 1993, 319-347.)
  • the antisense nucleic acid used in the present invention may inhibit OCT3 gene expression by any of the above actions.
  • designing an antisense sequence complementary to the untranslated region near the 5 ′ end of the OCT3 gene mRNA would be effective in inhibiting translation of the gene.
  • a sequence complementary to the coding region or the 3 ′ untranslated region can also be used.
  • a nucleic acid containing an antisense sequence of not only the translated region but also the untranslated region of the OCT3 gene is included in the antisense nucleic acid used in the present invention.
  • the antisense nucleic acid used is ligated downstream of a suitable promoter, and preferably a sequence containing a transcription termination signal is ligated on the 3 'side.
  • the nucleic acid thus prepared can be transformed into a desired animal by using a known method.
  • the sequence of the antisense nucleic acid is preferably a sequence complementary to the endogenous OCT3 gene of the animal to be transformed or a part thereof, but is completely complementary as long as gene expression can be effectively suppressed. It is not necessary.
  • the transcribed RNA has preferably 90% or more, most preferably 95% or more complementarity to the transcript of the target gene.
  • the length of the antisense nucleic acid is preferably at least 15 bases and less than 25 bases. Is not necessarily limited to this length.
  • the antisense of the present invention is not particularly limited.
  • the 388-408th nucleotide sequence of the rat OCT3 gene obtained with GenBank accession number NM_019230, or GenBank accession number NM—0111395 Can be prepared based on the nucleotide sequence at positions 377-397 of the mouse OCT3 gene.
  • an RNA complementary to the sequence of 5′-tggtcgaacgtgggcatggtg-3 ′ SEQ ID NO: 7 can be mentioned.
  • Inhibition of OCT3 gene expression can be accompanied by ribozyme or ribozyme-encoding
  • Ribozyme refers to an RNA molecule having catalytic activity. Enzymes that cleave RNA even in the presence of ribozymes with various activities Research focused on ribozymes as elements has enabled the design of ribozymes that cleave RNA site-specifically. Some ribozymes have a size of 400 nucleotides or more, such as the group I intron type and Ml RNA contained in RNase P, while others have an active domain of about 40 nucleotides called hammerhead type or hairpin type. (Makoto Koizumi and Eiko Otsuka, Protein Nucleic Acid Enzyme, 1990, 35, 2191.)
  • the self-cleaving domain of the hammerhead ribozyme is capable of cleaving the 3 'side of C15 in the sequence G13U14C15. Its activity is based on base pairing between U14 and A9.
  • U15 can also be cleaved (Koizumi, M. et al, FEBS Lett, 1988, 228, 228.).
  • a ribozyme whose substrate binding site is complementary to the RNA sequence near the target site, it is possible to create a restriction-enzymatic RNA-cleaving ribozyme that recognizes the sequence UC, UU or UA in the target RNA (Koizumi, M.
  • Hairpin ribozymes are also useful for the purpose of the present invention.
  • This ribozyme is found, for example, on the minus strand of satellite RNA of tobacco ring spot virus (Buzayan, JM., Nature, 1986, 323, 349.). It has been shown that target-specific RNA-cleaving ribozymes can also be produced from hairpin ribozymes (Kikuchi, Y. & Sasaki, N., Nucl Acids Res, 1991, 19, 6751. 1992, 30, 112.).
  • hairpin ribozymes Karlin, JM., Nature, 1986, 323, 349.
  • target-specific RNA-cleaving ribozymes can also be produced from hairpin ribozymes (Kikuchi, Y. & Sasaki, N., Nucl Acids Res, 1991, 19, 6751. 1992, 30, 112.).
  • RNA interference RNA interference
  • siRNA RNA interference
  • RNAi reduces the destruction of target gene mRNA by introducing double-stranded RNA consisting of sense RNA, which has sequence power homologous to target gene mRNA, and antisense RNA, which has complementary sequence power, into cells and the like. It is a phenomenon that can induce and suppress the expression of target genes.
  • RNAi can suppress the expression of a target gene, so a simple gene knockout method can replace the complicated and inefficient method of gene disruption by homologous recombination. It has attracted attention as a method or as a method applicable to gene therapy.
  • the RNA used for RNAi need not be completely identical to the OCT3 gene or a partial region of the gene, but preferably has complete homology.
  • RNAi RNA interference
  • a double-stranded RNA comprising a sense RNA and an antisense RNA corresponding to the partial sequence of the base sequence described in any of SEQ ID NOs: 1, 3, and 5 can be mentioned.
  • DICER a member of the RNase III nuclease family
  • the double-stranded RNA having the RNAi effect in the present invention also includes the double-stranded RNA before being degraded by DICER. In other words, even a long-chain RNA that does not have the RNAi effect if it has the same length is expected to be degraded into siRNA having the RNAi effect in cells, so that the present invention
  • the length of double-stranded RNA is not particularly limited
  • long double-stranded RNA corresponding to the full-length or almost full-length region of the OCT3 gene mRNA of the present invention is, for example, previously degraded by DICER, and the degradation product is used as a therapeutic drug for mental disorders. It is possible.
  • This degradation product is expected to include a double-stranded RNA molecule (siRNA) having an RNAi effect.
  • siRNA double-stranded RNA molecule
  • the region on the mRNA expected to have the RNAi effect does not need to be particularly selected. That is, the region on the mRNA of the OCT3 gene of the present invention having the RNAi effect does not necessarily need to be precisely defined.
  • the present invention also includes a molecule having a structure in which one end of the RNA molecule is closed, for example, an siRNA (shRNA) having a hairpin structure. That is, a single-stranded RNA molecule capable of forming a double-stranded RNA structure in the molecule is also included in the present invention.
  • siRNA siRNA
  • the “double-stranded RNA that can be suppressed by the RNAi effect” of the present invention is appropriately prepared by those skilled in the art based on the base sequence of the OCT3 gene of the present invention, which is the target of the double-stranded RNA.
  • the double-stranded RNA of the present invention can be prepared based on the nucleotide sequence described in any one of SEQ ID NOs: 1, 3, and 5. That is, based on the base sequence described in any of SEQ ID NOs: 1, 3, and 5, an arbitrary continuous RNA region of mRNA which is a transcript of the sequence is selected, and the region corresponding to this region is selected.
  • double-stranded RNA can be appropriately performed by those skilled in the art within the scope of ordinary trials. Further, those skilled in the art can also appropriately select a siRNA sequence having a stronger RNAi effect from an mRNA sequence that is a transcript of the sequence by a known method. Also, if one strand (for example, the base sequence described in any of SEQ ID NOs: 1, 3, or 5) is found out, it is easy for those skilled in the art to! (Complementary strand) base sequence. Those skilled in the art can appropriately produce siRNA using a commercially available nucleic acid synthesizer. For synthesis of a desired RNA, a general synthesis service can be used.
  • a DNA (vector) capable of expressing the above-mentioned RNA of the present invention is also included in a preferred embodiment of the compound capable of suppressing the expression of the OCT3 gene of the present invention.
  • the DNA (vector) capable of expressing the double-stranded RNA of the present invention includes a DNA encoding one strand of the double-stranded RNA and a DNA encoding the other strand of the double-stranded RNA, respectively. It is DNA having a structure linked to a promoter so that it can be expressed.
  • the above-mentioned DNA of the present invention can be appropriately prepared by those skilled in the art by general genetic engineering techniques. More specifically, the expression vector of the present invention can be prepared by appropriately inserting a DNA encoding the RNA of the present invention into various known expression vectors.
  • the expression-suppressing substance of the present invention includes, for example, a compound that suppresses OCT3 expression by binding to an OCT3 expression regulatory region (eg, a promoter region).
  • the compound can be obtained, for example, using a promoter DNA fragment of OCT3 and a screening method using the binding activity to the DNA fragment as an index.
  • those skilled in the art can appropriately determine whether or not the desired compound has the ability to suppress the expression of OCT3 of the present invention by a known method, for example, a reporter-assay method or the like.
  • the present invention also relates to a substance that suppresses the function of the organic cation transporter OCT3 protein.
  • a drug for treating a psychiatric disorder which comprises an active ingredient.
  • the transport of organic cations, including neurotransmitters is inhibited and the function of neurotransmitters is increased, which is thought to be effective in treating mental illness.
  • a substance that suppresses the function is considered to be effective as a therapeutic drug for mental disorders.
  • Examples of the OCT3 protein function inhibitor in the present invention include the following compounds (a) and (b).
  • Antibodies that bind to OCT3 protein can be prepared by methods known to those skilled in the art.
  • a polyclonal antibody can be obtained, for example, as follows. Immunization of a natural OCT3 protein or a recombinant (recombinant) OCT3 protein or a partial peptide thereof expressed in a microorganism such as Escherichia coli as a fusion protein with GST or a partial peptide thereof is performed on small animals such as egrets to obtain serum.
  • This is prepared by, for example, purification using ammonium sulfate precipitation, protein A, protein G columns, DEAE ion exchange chromatography, an affinity column to which OCT3 protein or a synthetic peptide is coupled, or the like.
  • a monoclonal antibody for example, a small animal such as a mouse is immunized with the OCT3 protein or a partial peptide thereof, the spleen is excised from the mouse, and the spleen is crushed to separate cells. The cells are fused with a reagent such as polyethylene glycol, and a clone producing an antibody that binds to the OCT3 protein is selected from the resulting fused cells (hybridomas).
  • the obtained hybridoma was transplanted into the abdominal cavity of a mouse, ascites was recovered from the mouse, and the obtained monoclonal antibody was subjected to, for example, ammonium sulfate precipitation, protein A, protein G column, DEAE ion exchange chromatography, OCT3 protein.
  • it can be prepared by purification using an affinity column to which a synthetic peptide has been coupled.
  • the form of the antibody of the present invention is not particularly limited as long as it binds to the OCT3 protein of the present invention.
  • a human antibody a humanized antibody obtained by genetic recombination, and Antibody fragments and modified antibodies are also included.
  • the OCT3 protein of the present invention used as a sensitizing antigen for obtaining an antibody is not limited with respect to the animal species from which the OCT3 protein is derived, but proteins derived from mammals such as mice and humans are preferred, and human-derived OCT3 proteins are particularly preferred. Proteins are preferred.
  • a human-derived protein can be appropriately obtained by those skilled in the art using the gene sequence or the amino acid sequence disclosed herein.
  • the protein used as a sensitizing antigen may be a complete protein or a partial peptide of the protein.
  • the partial peptide of the protein include an amino group (N) terminal fragment and a carboxy (C) terminal fragment of the protein.
  • antibody refers to an antibody that reacts with the full length or fragment of a protein.
  • human lymphocytes for example, human lymphocytes infected with EB virus
  • the sensitized lymphocytes can be fused with human-derived myeloma cells having permanent dividing ability, for example, U266, to obtain a hybridoma that produces a desired human antibody having a protein binding activity.
  • the antibody against the OCT3 protein of the present invention inhibits the function of the OCT3 protein by binding to the OCT protein, and is expected to have, for example, a therapeutic or ameliorating effect on psychiatric disorders.
  • a human antibody or a humanized antibody is preferred in order to reduce immunogenicity.
  • the present invention further includes a low molecular weight substance (low molecular weight compound) that binds to the OCT3 protein as a substance that can inhibit the function of the OCT3 protein.
  • the low molecular weight substance that binds to the OCT3 protein of the present invention may be a natural or artificial compound. Usually, it is a compound that can be produced or obtained by using a method known to those skilled in the art. The compound of the present invention can also be obtained by the screening method described below.
  • a compound serving as a substrate of the OCT3 protein may competitively inhibit the activity of OCT3 as a transporter.
  • blockers such as propranolol (therapeutic agents for heart failure and the like) are known to be transported by OCT3.
  • 8 Blockers are unable to cross the blood-brain barrier, but are analogous, centrally translocating, and Substances that competitively inhibit sporter activity are expected to inhibit the function of the OCT3 protein in the brain. That is, the inhibitor is also included in the low molecular weight compound of the present invention.
  • the low molecular weight compound that binds to the OCT3 protein of the above (b) includes, for example, a compound having a high affinity for OCT3.
  • Specific examples of the compound include normetanephrine, which is an inactive metabolite of noradrenaline. Normethanephrine was confirmed to actually have an antidepressant action, as shown in the Examples below, and thus it can be said that the above low-molecular compound is a preferred example.
  • Some of the above compounds do not target only OCT3, but have various pharmacological actions via other targets.
  • 3-methoxyisoprenaline, 3-0-methyl isoprenaiine, CarteoloU,-) isoprenaline, and (-) adrenalinei have a lowering ratio
  • Sar and NUii anti-swelling effects disopyramide, lidocaine, and procainamide have ⁇ arrhythmic effects
  • corticosterone and estradiol has a steroid hormone-like action.
  • l-methyl-4-phenylpyridinium (MPP +) is known as a dopamine neurotoxin.
  • disprocynium24, decynium 22, and cyanine 863 are potent OCT3 inhibitors, but also have potent inhibitory effects on other OCT subtypes.
  • an OCT3 protein mutant having a dominant negative property with respect to the OCT3 protein can be mentioned.
  • "An OCT3 protein mutant having a dominant negative property with respect to the OCT3 protein” is a function that eliminates or reduces the activity of an endogenous wild-type protein by expressing a gene encoding the protein. Refers to a protein having
  • the function-suppressing substance of the present invention can be appropriately obtained by the screening method of the present invention using the cation transporter activity of OCT3 as an index.
  • the present invention also provides a therapeutic agent for drug awakening, comprising a substance that enhances the expression of the organic cation transporter OCT3 protein or a substance that enhances (activates) function as an active ingredient.
  • a therapeutic agent for drug awakening comprising a substance that enhances the expression of the organic cation transporter OCT3 protein or a substance that enhances (activates) function as an active ingredient.
  • the “enhancement of protein expression” includes enhancement of transcription from a gene, enhancement of translation from the transcription product, and the like.
  • stimulants are a general term of central nervous system stimulants used to wake up drowsiness and remove fatigue, and generally refer to methamphetamine or a synthetic drug similar to methamphetamine.
  • the stimulant of the present invention includes compounds other than the above-mentioned methamphetamine, and further includes stimulant analogs and the like.
  • stimulants other than methamphetamine include amphetamine and MDMA.
  • Examples of the stimulant-like drug include methyl phenate (drug name: Ritalin).
  • Amphetamine and methamphetamine have very similar chemical structures and exhibit similar pharmacological effects.
  • most stimulants whose abuse has become a problem in Japan are catalysed fuetamine, which is usually abused in the form of hydrochloride.
  • Methane with methyl group Fuetamin has stronger pharmacological action.
  • stimulants When stimulants are used, the heart rate, respiration, and blood pressure increase, the pupils are dilated, and appetite is decreased. Stimulants produce addiction after repeated use, and symptoms include sweating, headache, blurred vision, dizziness, insomnia, anxiety, as well as hypersensitivity to stimulants (reverse tolerance). The reverse resistance phenomenon persists for a long period of time, and stimulants are easily expressed even if taken for a long time after continuous use, and cannot be treated with existing psychiatric drugs, resulting in irreversible changes in neurological function Is interpreted as Repeated administration of stimulants in experimental animals also leads to an increase in stimulant-induced locomotor activity, which cannot be treated with existing drugs for treating psychiatric disorders.
  • a substance capable of increasing spontaneous motor activity instead of a stimulant is effective as a drug for treating stimulant dependence.
  • a behavior similar to the reverse tolerance phenomenon caused by repeated administration of a stimulant was observed. That is, an OCT3 protein expression enhancer or a function (activity) enhancer is awake! And is effective as a drug for treating drug dependence.
  • the OCT3 gene expression inhibitor and OCT3 protein function inhibitor according to the present invention each have a therapeutic effect on psychiatric disorders such as depression and anxiety neurosis. When used in combination with a drug, it also has the effect of enhancing the action of antidepressants.
  • the present invention provides an antidepressant action enhancer (an antidepressant drug concomitant) comprising, as an active ingredient, an OCT3 gene expression inhibitor or an OCT3 protein function inhibitor.
  • an antidepressant action enhancer an antidepressant drug concomitant
  • the present invention also relates to a pharmaceutical composition comprising an antidepressant and the antidepressant action enhancer of the present invention as active ingredients.
  • Examples of the antidepressant whose action (effect) is enhanced when used in combination with the antidepressant action enhancer of the present invention include imibramine and tricyclic antidepressants having a structure similar to that of imibramine. Include classical antidepressants, selective serotonin reuptake inhibitors (SSRIs), serotonin, noradrenaline reuptake inhibitors (SNRIs), and the like. Further, the present invention provides an OCT3 gene knockout non-human animal (hereinafter referred to as “OCT3 gene knockout non-human animal”) characterized in that the expression of the organic cation transporter OCT3 gene is artificially suppressed. Knockout non-human animals ”or simply“ animals ”).
  • the non-human gene knockout animal of the present invention can be used, for example, for screening a drug for treating a psychiatric disorder such as depression and anxiety. It is also very useful as a disease model animal for studying the mechanisms of each of the above diseases.
  • the knockout animals of the present invention also include so-called “knockdown animals” in which gene expression is suppressed by the action of antisense RNA or siRNA.
  • the expression of the OCT3 gene is artificially suppressed includes, for example, (l) a gene such as nucleotide insertion, deletion, or substitution in one or both of the OCT3 gene pairs.
  • a state in which the expression of the gene is suppressed by having a mutation includes, and (2) a state in which the expression of the gene is suppressed by the action of the nucleic acid of the present invention (eg, antisense RNA or siRNA). be able to.
  • suppression in the present invention includes the case where the expression of the OCT3 gene is completely suppressed and the expression level of the OCT3 in the animal of the present invention as compared with the expression level of the OCT3 gene in the wild-type animal. If significantly reduced, then included.
  • the above (1) includes a case where the expression of only one gene of the OCT3 gene pair is suppressed.
  • the site where the gene mutation is present in the present invention is not particularly limited as long as expression of the gene is suppressed, and examples thereof include an exon site and a promoter site.
  • the gene knockout animal of the present invention can be prepared by those skilled in the art by generally known genetic engineering techniques.
  • a gene knockout mouse can be prepared as follows. First, a DNA containing the exon portion of the OCT3 gene of the present invention is isolated from the mouse, and a suitable marker gene is inserted into this DNA fragment to construct a targeting vector. This targeting vector is introduced into a mouse ES cell line by electoporation or the like, and a cell line in which homologous recombination has occurred is selected.
  • the marker gene to be inserted includes an antibiotic resistance gene such as a neomycin resistance gene. Is preferred.
  • a cell line in which homologous recombination has occurred can be selected only by culturing in a medium containing the antibiotic.
  • a thymidine kinase gene or the like can be linked to a targeting vector.
  • a homologous recombinant is assayed by PCR and Southern blot to improve the efficiency of obtaining a cell line in which one of the gene pairs of the gene of the present invention is inactivated.
  • chimera may be prepared using a plurality of clones in addition to the homologous recombination site, since there is a risk of unknown gene disruption due to gene insertion. Preferred ⁇ .
  • the obtained ES cell line is injected into mouse blastoderm to obtain a chimeric mouse.
  • a mouse obtained by inactivating one of the gene pairs of the OCT3 gene of the present invention can be obtained.
  • a mouse in which both of the gene pair of the gene of the present invention are inactivated can be obtained.
  • Gene modification can also be performed in animals other than mice in which ES cells have been established by the same method.
  • the knockout animal of the present invention is preferably characterized in that expression of the OCT3 gene is suppressed by introducing the nucleic acid of the present invention into a non-human animal, whereby knockout (knockdown) is performed. ) Animals.
  • the above-mentioned knockdown animal can also be produced by introducing a vector having a structure capable of expressing the nucleic acid (antisense RNA or siRNA) of the present invention into a non-human animal.
  • a preferred embodiment of the present production method is a method for producing a knockout non-human animal, which comprises a step of administering the nucleic acid of the present invention into the brain of the animal of the present invention. More specifically, for example, a method comprising a step of administering an antisense nucleic acid against a transcript of the OCT gene or a part thereof into the brain of the animal of the present invention, preferably into the ventricle. Administration can be performed, for example, by the method described in the Examples.
  • the antisense nucleic acid of the present invention is not particularly limited, but for example, those designed as follows are preferable. (1) Set the start codon of the target gene OCT3 Antisense sequence. (2) The optimal length of antisense is 18-25mer. (3) The upstream of the initiation codon should not be taken too long because there is a possibility that the transcription regulatory region may be forced. (4) Avoid designs in which the antisense itself is a monomer (a single strand binds itself) or a dimer (a bond between two antisenses).
  • the type of the knockout animal of the present invention is not particularly limited as long as it is a non-human animal, but is usually a mammal, and preferably a primate. More specifically, the animal of the present invention is preferably a rodent (eg, rodent) such as a mouse, a rat, or a hamster, or a monkey, and more preferably a mouse or a monkey.
  • rodent eg, rodent
  • the knockout non-human animal of the present invention is not particularly limited, but the expression of the OCT3 gene is suppressed by the action of any of the following nucleic acids (a) to (c): Being an animal.
  • the OCT3 gene knockout (knockdown) non-human animal of the present invention is an animal characterized by exhibiting a phenotype associated with a mental disorder such as depression, anxiety, wakefulness, and drug dependence. More specifically, the animal of the present invention is, for example, a gene knockout non-human animal characterized by exhibiting at least one of the following phenotypes (a) to (c).
  • the above-mentioned animal of the present invention is very useful for, for example, screening for a therapeutic agent for a mental disease, identification of a causative substance causing a mental disease, and analysis of a mechanism of drug dependence formation.
  • the present invention also provides a method for screening a drug for treating a mental disorder (eg, depression, anxiety, etc.) or treating a stimulant-dependent drug, and a method for identifying a causative compound of a mental disorder.
  • a drug for treatment includes a concomitant drug with a therapeutic drug (therapeutic drug action enhancer).
  • a concomitant drug for example, a therapeutic agent action enhancer
  • psychiatric disorders for example, depression, anxiety, etc.
  • stimulant dependence for example, depression, anxiety, etc.
  • the screening method of the present invention is preferred! /
  • the method is a method using binding to an organic cation transporter OCT3 protein or a partial peptide thereof as an index.
  • a compound that binds to the OCT3 protein or a partial peptide thereof is expected to have an effect of inhibiting the function of the OCT3 protein.
  • the above method of the present invention is a method including the following steps (a) to (c).
  • an OCT3 protein or a partial peptide thereof is The test compound is brought into contact.
  • the OCT3 protein or a partial peptide thereof may be, for example, a purified form, an intracellularly or extracellularly expressed form, or an affinity form of the OCT3 protein or a partial peptide thereof according to an index for detecting binding to a test compound. It may be in a form bound to a tea column.
  • the test compound used in this method can be appropriately labeled and used as necessary. Examples of the label include a radiolabel, a fluorescent label and the like.
  • the binding activity between the OCT3 protein or its partial peptide and the test compound is measured in the following manner.
  • the binding between the OCT3 protein or its partial peptide and the test compound can be detected, for example, by labeling the test compound bound to the OCT3 protein or its partial peptide.
  • a change in the activity of the OCT3 protein caused by the binding of the test compound to the OCT3 protein or its partial peptide expressed in or outside the cell can be detected as an index.
  • test compound that binds to the OCT3 protein or a partial peptide thereof is selected in the following steps.
  • the compound selected (obtained) by this method is expected to have an OCT3 protein inhibitory effect.
  • a drug for treating a mental disease for example, a therapeutic drug or a therapeutic drug action enhancer
  • a mental disease for example, a therapeutic drug or a therapeutic drug action enhancer
  • Another embodiment of the screening method of the present invention is a method using the OCT3 gene expression level as an index.
  • Compounds that decrease the expression level of the OCT3 gene are expected to be drugs for treating mental illness.
  • compounds that increase the expression level of the OCT3 gene are expected to be drugs for the treatment of stimulant dependence.
  • the method of the present invention is, for example, a method for screening a drug for treating a psychiatric disorder, comprising the following steps (a) to (c).
  • the above-mentioned method of the present invention is, for example, a method for screening a drug for treating a stimulant-dependent disease, comprising the following steps (a) to (c).
  • a test compound is brought into contact with cells expressing the OCT3 gene.
  • the origin of the "cells” used includes cells derived from humans, mice, rats, and the like, but is not limited to cells derived from these.
  • cells expressing the endogenous OCT3 gene or cells into which the exogenous OCT3 gene has been introduced and expressing the gene can be used.
  • Cells expressing an exogenous OCT3 gene can be usually prepared by introducing an expression vector into which an OCT3 gene has been inserted into a host cell.
  • the expression vector can be prepared by a general genetic technology.
  • test compound used in the present method is not particularly limited.
  • a single compound such as a natural compound, an organic compound, an inorganic compound, a protein, or a peptide, and an expression product of a compound library or a gene library , A cell extract, a cell culture supernatant, a fermented microorganism product, a marine organism extract, a plant extract, and the like.
  • the "contact" of a test compound with cells expressing the OCT3 gene is usually performed by adding the test compound to a culture solution of cells expressing the OCT3 gene, but is not limited to this method.
  • the test compound is a protein or the like
  • “contact” can be performed by introducing a DNA vector expressing the protein into the cell.
  • the expression level of the OCT3 gene is then measured.
  • expression of a gene includes both transcription and translation.
  • the measurement of the expression level of the gene can be performed by a method known to those skilled in the art.
  • the cellular ability to express the OCT3 gene is also extracted from mRNA according to a standard method, and the transcription level of the gene is measured by performing Northern hybridization or RT-PCR using the mRNA as a type II. Settings can be made.
  • the protein fraction can be collected from cells expressing the OCT3 gene, and the expression level of the OCT3 protein can be detected by electrophoresis such as SDS-PAGE to measure the translation level of the gene.
  • the level of translation of the gene can be measured by detecting the expression of the OCT3 protein by detecting the expression of the protein by performing a Western blotting method using an antibody against the protein.
  • the antibody used for detecting the OCT3 protein is not particularly limited as long as it is a detectable antibody. For example, both a monoclonal antibody and a polyclonal antibody can be used.
  • a compound that decreases the expression level or a compound that increases the expression level is selected as compared to the case where the test compound is not contacted (comparison).
  • Another embodiment of the screening method of the present invention is a method of identifying a compound that decreases or increases the expression level of the organic cation transporter-OCT3 gene of the present invention using the expression of the reporter gene as an index. .
  • the above-mentioned method of the present invention is, for example, a method for screening a drug for treating a mental disease, comprising the following steps (a) to (c).
  • the above method of the present invention is, for example, a method for screening a drug for treating a stimulant-dependent disease, comprising the following steps (a) to (c).
  • a test compound is contacted with a cell or cell extract containing DNA having a structure in which a transcription regulatory region of the OCT3 gene and a reporter gene are functionally linked.
  • “functionally linked” means that the transcription factor binds to the transcription control region of the OCT3 gene, so that the expression of the reporter gene is induced by the transcription factor binding to the transcription control region of the OCT3 gene. And are combined. Therefore, even when the reporter gene is linked to another gene and forms a fusion protein with another gene product, the fusion factor is linked to the transcription regulatory region of the OCT3 gene by the transcription factor. If the expression of the protein is induced, it is included in the meaning of the above “functionally linked”. Based on the cDNA base sequence of the OCT3 gene, those skilled in the art can obtain the transcription regulatory region of the OCT3 gene present in the genome by a known method.
  • the reporter gene used in this method is not particularly limited as long as its expression can be detected. Examples include the CAT gene, lacZ gene, luciferase gene, and GFP gene.
  • Cells containing DNA having a structure in which the transcription control region of the OCT3 gene and the reporter gene are functionally linked include, for example, cells into which a vector having such a structure inserted is introduced. Such a vector can be prepared by a method well known to those skilled in the art. The vector can be introduced into cells by a general method, for example, a calcium phosphate precipitation method, an electric pulse perforation method, a ribofuethamine method, a microinjection method, or the like.
  • Cells containing DNA having a structure in which the transcription regulatory region of the OCT3 gene and the reporter gene are functionally linked also include cells in which the structure is inserted into a chromosome. Insertion of a DNA structure into a chromosome can be performed by a method generally used by those skilled in the art, for example, a gene transfer method utilizing homologous recombination.
  • the "cell extract containing DNA having a structure in which the transcription regulatory region of the OCT3 gene and the reporter gene are functionally linked” refers to, for example, a cell extract contained in a commercially available in vitro transcription / translation kit.
  • the transcriptional regulatory region of the OCT3 gene and the reporter gene are functional To which DNA having a structure bound to the DNA is added.
  • the "contacting" in the present method includes adding a test compound to a culture solution of "a cell containing a DNA having a structure in which a transcription regulatory region of the OCT3 gene is functionally linked to a reporter gene", or It can be carried out by adding a test compound to the above-mentioned commercially available cell extract containing DNA.
  • the test compound is a protein
  • the test can be carried out by introducing a DNA vector expressing the protein into the cells.
  • the expression level of the reporter gene is then measured.
  • the expression level of the reporter gene can be measured by a method known to those skilled in the art according to the type of the reporter gene.
  • the expression level of the reporter gene can be measured by detecting acetylamyl chloram phenochol by the gene product.
  • the reporter gene is the lacZ gene
  • the color of the dye compound is detected by the catalytic action of the gene expression product
  • the reporter gene is the luciferase gene
  • the fluorescence is due to the catalytic action of the gene expression product.
  • the expression level of the reporter gene can be measured by detecting the fluorescence of the compound and, if it is a GFP gene, by detecting the fluorescence of the GFP protein.
  • the measured expression level of the reporter gene is then decreased (suppressed) or increased (increased) as compared to the case where the expression level is measured in the absence of the test compound.
  • Select compounds A compound that decreases (suppresses) is a drug for the treatment of mental illness, and a compound that increases (increases) is a drug for the treatment of stimulant dependence.
  • Another embodiment of the screening method of the present invention is a method using the activity of the organic cation transporter OCT3 protein as an indicator.
  • the method of the present invention is, for example, a method for screening a drug for treating a psychiatric disorder, comprising the following steps (a) to (c).
  • the method of the present invention is, for example, a method for screening a drug for treating a stimulant-dependent disease, comprising the following steps (a) to (c).
  • test compound is brought into contact with an OCT3 protein or a cell or a cell extract expressing the protein.
  • OCT3 protein activity includes, for example, the transport activity of monoamines and their related drugs. More specifically, transport activities of dopamine, serotonin, noradrenaline, dopamine neurotoxin MPP +, stimulants and the like can be mentioned. Measurement of these activities can be performed by a method known to those skilled in the art.
  • the regulation of the transport activity of the above-mentioned monoamine and its related drug is carried out by labeling the above-mentioned substance which can be transported by OCT3 with a radioisotope, exposing it to a test compound and OCT3-expressing cells, and It can be evaluated later by comparing the radioactivity of the radiolabeled substance incorporated into the cells. Even if radiolabeling is not possible, it is possible to evaluate the transport activity of the above-mentioned monoamine and its related drugs using a measuring instrument such as high-performance liquid chromatography (HPLC) if the intracellular concentration of the substance is sufficient. It is.
  • HPLC high-performance liquid chromatography
  • a compound that reduces (suppresses) or increases (increases) the activity of the protein as compared with the case where the measurement is performed in the absence of the test compound is selected.
  • a compound that decreases (suppresses) becomes a drug for the treatment of mental illness, while a compound that increases (increases) becomes a drug for treating drug dependence.
  • the present invention also provides a method for identifying a causative compound of a psychiatric disorder using the above-mentioned animal of the present invention.
  • the present invention also relates to a screening method for a drug (stimulant drug) for treating stimulant dependence.
  • the method of the present invention is, for example, a method for identifying a causative compound of a mental disease, comprising the following steps (a) to (c).
  • the above-mentioned method of the present invention is a method for identifying a causative compound of a psychiatric disorder, using a behavior depending on the phenotype of the animal of the present invention as an index.
  • test compound is administered to the above-described gene knockout non-human animal.
  • the test compound can be administered by oral or parenteral administration, preferably by parenteral administration.
  • parenteral administration preferably by parenteral administration.
  • injection, nasal, pulmonary, transdermal Dosage forms and the like can be mentioned.
  • the injection form include systemic or local administration, for example, by intravenous injection, intramuscular injection, intraperitoneal injection, subcutaneous injection and the like.
  • a viral vector such as a retrovirus, an adenovirus, or a Sendai virus, or a non-viral vector such as a ribosome
  • a non-viral vector such as a ribosome
  • the administration method include an in vivo method and an ex vivo method.
  • the phenotype of a non-human animal in which the OCT gene has been knocked out is, for example, preferably one that exhibits the above-mentioned (a) antidepressant-like action or (c) anxiolytic action.
  • a compound that eliminates these phenotype-dependent behaviors is further selected.
  • the selected compound is determined to be a causative compound of the mental illness. This These identified compounds causing mental disorders are useful, for example, as reagents for elucidating the mechanism of mental disorders.
  • the method of the present invention is, for example, a method for screening a drug for treating stimulant dependence, which comprises the following steps (a) to (c).
  • the compound selected in the above step (c) is determined to be a drug for the treatment of stimulant dependence.
  • the drug of the present invention or the therapeutic compound is used as a drug
  • the drug or compound itself is directly administered to a patient, and the drug or compound itself is used as a pharmaceutical composition formulated by a known pharmaceutical method. It is also possible to administer.
  • the drug or compound of the present invention can be obtained, for example, by mixing with a pharmacologically acceptable carrier (excipient, binder, disintegrant, flavoring agent, flavoring agent, emulsifier, diluent, solubilizing agent, etc.).
  • compositions or tablets, pills, powders, granules, capsules, troches, syrups, solutions, emulsions, suspensions, injections (solutions, suspensions, etc.), suppositories, inhalants It can be in a form suitable for oral or parenteral use as a preparation such as a skin absorbent, eye drops, eye ointment and the like.
  • the present invention also relates to a method for treating or preventing a psychiatric disorder, which comprises administering the therapeutic agent for a psychiatric disorder or the antidepressant-enhancing agent of the present invention to an individual (eg, a patient or the like).
  • a method for treating or preventing stimulant dependence which comprises administering the therapeutic agent for stimulant dependence of the present invention to an individual (eg, a patient or the like).
  • the individual in the treatment method of the present invention usually refers to a patient with the above-mentioned disease, and is not particularly limited, but is preferably a human.
  • administration to a patient can be performed by methods known to those skilled in the art, such as, for example, intraarterial injection, intravenous injection, and subcutaneous injection.
  • the dose varies depending on the weight and age of the patient, the administration method, and the like, but those skilled in the art can appropriately select an appropriate dose.
  • the compound can be encoded by DNA, the DNA is treated with a gene. Incorporation into a therapeutic vector to perform gene therapy is also conceivable.
  • Examples of the vector for gene therapy include a viral vector such as a retrovirus vector, an adenovirus vector, an adeno-associated virus vector, and a non-viral vector such as a ribosome.
  • the target DNA can be administered to a patient by an ex vivo method or an in vivo method using the vector.
  • the present invention further relates to the use of an OCT3 expression inhibitor or a function inhibitor in the production of a therapeutic agent for psychiatric disorders or an antidepressant drug enhancer.
  • mice Male ddY mice were used in the experiment. Mice bred for 3 days or more after purchase
  • OCT3 antisense generated from the OCT3 gene sequence was continuously injected into the ventricle using an osmotic pump based on a previous report (J. Chem. Neuroanat. 2000 20: 375-87). .
  • Ringer's solution which is a solvent for antisense (solvent group)
  • a group that injects a cDNA sequence that has the same base as antisense and has no homology to the existing gene was also prepared.
  • One week after injection was again swam in the beaker for 300 seconds and the immobility time was measured.
  • the antidepressant imipramine was administered intraperitoneally 30 minutes before the start of the test.
  • mice Male ddY mice were used in the experiment. Mice bred for 3 days or more after purchase were divided into two groups, and one group contained antisense (OCT3 antisense) prepared from the OCT3 gene sequence in a previous report (J. Chem. Neuroanat. 2000 20: 375-87). Based on this, it was continuously injected into the ventricle using an osmotic pump. Another group performed sham operations. One week after the injection, the stimulant methamphetamine (1 mg / kg) was administered, and the stimulant-induced locomotor activity was measured.
  • OCT3 antisense antisense prepared from the OCT3 gene sequence in a previous report (J. Chem. Neuroanat. 2000 20: 375-87). Based on this, it was continuously injected into the ventricle using an osmotic pump. Another group performed sham operations. One week after the injection, the stimulant methamphetamine (1 mg / kg) was administered, and the stimulant-induced locomotor activity was measured
  • mice injected with OCT3 antisense showed waking and increased drug-induced spontaneous locomotor activity. Behavior similar to the reverse tolerance phenomenon was observed (Fig. 4).
  • the intracerebroventricular injection of OCT3 antisense (1-2 weeks) reduced the brain OCT3 expression by about 30% compared to the sham operation group. This is almost the same as the previously reported antisense intraventricular injection. It was the effect of.
  • mice Male ddY mice were used for the experiment. Mice bred for 3 days or more after purchase were divided into two groups, and one group contained antisense (OCT3 antisense) prepared from the OCT3 gene sequence in a previous report (J. Chem. Neuroanat. 2000 20: 375-87). Based on this, it was continuously injected into the ventricle using an osmotic pump. Another group performed sham operations. One week after injection, the animals were placed in new wide cages and their relocation and standing behaviors were measured for 90 minutes.
  • OCT3 antisense prepared from the OCT3 gene sequence in a previous report (J. Chem. Neuroanat. 2000 20: 375-87). Based on this, it was continuously injected into the ventricle using an osmotic pump. Another group performed sham operations. One week after injection, the animals were placed in new wide cages and their relocation and standing behaviors were measured for 90 minutes.
  • the OCT3 gene knockout animal created for the first time by the present inventors exhibits a phenotype associated with a mental illness that is easily distinguishable from a wild-type animal.
  • a compound related to a psychiatric disorder such as depression, anxiety neurosis, and drug dependence, or a therapeutic drug for the disease.
  • the compound obtained by the screening method of the present invention is expected to be a highly effective drug because it actually has the effect of causing a change in phenotype at the animal level.
  • the above-mentioned animal of the present invention is extremely useful as a pathological model animal for elucidating the mechanisms of various mental illnesses.
  • the antidepressant effect of the mouse exhibiting the antidepressant phenotype of the present invention is dramatic (for example, it swims for 5 minutes or more in a forced swimming test) and is extremely useful as a disease model animal.
  • the substance of the present invention that suppresses OCT3 expression has the effect of enhancing the action of an antidepressant. It was found that there was. That is, the substance functions as an antidepressant action enhancer, and is very useful as a concomitant drug with existing antidepressants. Even in the case of a low dose in which the existing antidepressant drug is not sufficiently effective, it is possible to exert an antidepressant effect by using the antidepressant action enhancer of the present invention in combination. is there.
  • a combined use of the antidepressant drug-enhancing effect of the present invention provides a low dose that reduces the side effect.
  • a desired effect can be exhibited.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Epidemiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Environmental Sciences (AREA)
  • Psychiatry (AREA)
  • Hematology (AREA)
  • Cell Biology (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Urology & Nephrology (AREA)
  • Addiction (AREA)
  • Toxicology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Food Science & Technology (AREA)

Abstract

 OCT3遺伝子のアンチセンスを脳へ投与することにより、OCT3の発現が抑制されたマウスの作製に成功した。OCT3の発現が抑制された該マウスは、抗うつ作用、抗不安作用等の精神疾患に関連する表現型を呈することから、精神疾患の治療薬のスクリーニングに利用することができる。併せて、OCT3の発現もしくは機能の抑制物質が、うつ症状、不安神経症の治療薬として実際に有効であることが示された。

Description

明 細 書
うつ病、不安神経症、薬物依存症、およびこれらに類似した精神疾患治 療のための有機カチオントランスポーター OCT3関連分子の利用法
技術分野
[0001] 本発明は、うつ病、不安神経症、薬物依存症等の精神疾患治療のための有機カチ オントランスポーター OCT3の用途に関する。
背景技術
[0002] 薬物治療においては様々な薬剤が用いられている力 そのうちのいくつかは生体 条件下で陽イオン (カチオン)となる。近年、細胞膜に存在し、薬剤を能動的に輸送 することにより、薬剤の組織移行、吸収、腎排泄、胆汁排泄に寄与するトランスポータ 一 (輸送蛋白質)の研究が飛躍的に進んできており(非特許文献 1および 2参照)、同 時にイオン性薬物の輸送を司る有機イオントランスポーターの遺伝子クロー-ングと、 構造 ·機能解析も著しく進展してきた。
[0003] このうちカチオン性薬剤を輸送するのに重要なトランスポーターは、有機カチオント ランスポーター(OCT)である(非特許文献 3参照)。このうち OCT1が 1994年に (非特 許文献 4参照)、 OCT2が 1996年 (非特許文献 5参照)にそれぞれクローユングされて いる。かねてより、腎臓の近位尿細管細胞が有機カチオンを尿中に排泄することで、 これらの毒性を低減させるのに重要な役割を果たして 、ることが知られて 、た (非特 許文献 6参照)。 OCT1および OCT2は、いずれも腎臓に発現していることから、この 両者のうちのどちらかが重要であることが想定されたが、免疫組織学的検討によりそ の可能性が否定され (非特許文献 4および 7参照)、別の OCTが重要である可能性が 示唆されてきた。
[0004] OCT3は 1998年にラット胎盤より、 OCT1に相同性の高いトランスポーターとしてクロ 一ユングされた (非特許文献 8参照)。なお、遺伝子配列と薬理学的特性より、 OCT3 は 1990年代初頭に薬理学的にその存在が明らかにされ、 OCT3とほぼ同時期にヒト 心筋よりクローユングされた uptake2あるいは神経細胞外モノアミントランスポーター (EMT)と呼ばれるトランスポーターと同一であることが明らかになった (非特許文献 9 参照)。
[0005] 一連の検討により、 0CT3のカチオン輸送活性や組織分布が他の OCTとは異なつ ていることも明らかになった。すなわち免疫組織学的検討により、 OCT1が肝臓、腎臓 、 OCT2が腎臓に特異的に局在しているのに対し、 OCT3は胎盤だけでなく腎臓、小 腸、肺、心臓、脳に存在していることが明らかになった (非特許文献 10参照)。なお、 脳では神経細胞ではなぐァストロサイト (非特許文献 11参照)のような神経支持細胞 やあるいは血液-脳脊髄液関門(非特許文献 12参照)に存在することも明らかになつ た。また、 OCT3は腎臓では近位尿細管に局在していることが明らかとなり、現状では 腎臓におけるカチオン性薬剤の排出に最も重要なトランスポーターの一つと考えられ ている (非特許文献 13参照)。
[0006] また、 OCT3は他の OCTとは基質特異性が大きく異なる。 OCT3はドパミン神経毒 MPP+、ノルアドレナリン、セロトニン、ドパミン、覚せい剤、抗うつ薬などの輸送活性を 有して 、るが、これらは他の OCTでは輸送されな!、ことが知られて!/、る(非特許文献 10参照)。
[0007] 上述以外にも、これまでのところ、以下に示すような知見が報告されて 、る。
1)脳における OCT3は、 in situハイブリダィゼーシヨンでは最後野のみに見られ、 他の部位での発現は低力つた。よって OCT3は嘔吐や食欲、心血管機能の制御に重 要と考えられて!/ヽる (非特許文献 14参照)、
2)神経支持細胞であるグリア細胞、ァストロサイトに OCT3が存在し、脳内のモノアミ ン濃度調節に重要な役割を果たしている (非特許文献 15参照)、
3)気管支平滑筋に OCT3と OCT1が発現している力 このうち OCT3が吸入ステロイ ドによるノルェピネフリン取り込み抑制を介した急性的な気管支収縮への関与が考え られる(非特許文献 16および 17参照)、
4)ヒト OCT3 (別名 EMT)に *1力 *12までのハプロタイプがあることが、白人にて確 認された (非特許文献 18参照)、
5)小脳顆粒細胞における 1- Methy卜 4- phenylpyridinium (MPP+)の取り込みには OCT3が重要であることが示唆された (非特許文献 19参照)、
6)覚せ 、剤投与により OCT3の発現が低下する (非特許文献 20参照)、 7)セロトニントランスポーター欠損動物で、代償的にセロトニンを含むモノアミン輸 送活性を有する OCT3の発現が一部の脳部位で増加して 、ることが示された (非特 許文献 21参照)、
8) OCT3および OCT2に依存治療薬の母化合物になりうるァグマチン (Agmatine)の 輸送活性があること力 OCT3/EMTを発現させた腎由来 HEK293細胞で確認された ( 非特許文献 22参照)、
9)胎盤には様々なトランスポーターが存在する力 OCT3もその一つである(非特 許文献 23参照)、
10)ヒトの神経支持細胞であるァストロサイトに OCT3/EMTが発現しており、モノアミ ンゃ薬剤などの取り込みに重要な役割を果たして 、る(非特許文献 24および 25参 照)、
11)子宮頸部上部の神経節細胞にぉ 、て OCT3が発現、機能して!/、る(非特許文 献 26参照)、
12)小腸由来の Caco-2細胞で OCT3/EMTが刷子縁膜側に発現し、基質の細胞内 への取り込みに重要な役割を果たしている(非特許文献 27および 28参照)、
13)ヒト胎盤におけるアセチルコリンの量的制御に OCT1と OCT3が関与している( 非特許文献 29参照)、
14)培養細胞系の Madin- Darby canine kidney (MDCK)細胞は OCT2のみを発現し 、 OCT1および OCT3が検出されない細胞である(非特許文献 30参照)、
15)血液-脳脊髄液関門が存在する脳の脈絡叢に OCT2と OCT3が発現しており、 この部位でのコリンの輸送には OCT2が重要である(非特許文献 31参照)、
16) OCT3/EMTを発現させた腎由来 HEK293細胞では一部の P糖蛋白基質の曝露 により、 OCT3/EMT基質 MPP+の輸送能が低下する(非特許文献 32参照)、
17)ヒトグリオ一マ由来 SK-MG-1におけるのァグマチンの取り込みにはカチオン輸 送系が重要であるが、それは OCT3を介していない可能性が高い (非特許文献 33参 照)、
18)ラットの脳微小血管細胞 RBE4細胞ではコリンの取り込みが観察されるが、 OCT3は発現しておらず、未同定のカチオン輸送系の関与が考えられる(非特許文 献 34参照)、
19)遺伝子改変により作製した OCT3欠損マウスでは、心臓における OCT3/EMT基 質 MPP+の取り込みが著明に低下した力 他の組織では変化が見られな力つた (非特 許文献 35参照)、
20)マウスの胎盤では OCT3 (マウスでは ORCT3)とモノアミン代謝酵素の MAO- A が同一部位に存在している(非特許文献 36参照)、
21)ラット OCT3は 11個のエタソンと 10個のイントロンよりなる。また、マウス OCT3はヒ ト OCT3と 86%の相同性を有している。 OCT3が近位尿細管に局在するという免疫組織 学的所見力も考えると OCT3は腎臓におけるカチオン性薬剤の排出に重要な役割を 果たしていると考えられる (非特許文献 13参照)、
22)ラットの培養ァストロサイトには OCT3が発現して 、る (非特許文献 37参照)、
23) OCT3を持つ腎臓由来 Caki-1細胞と OCT1を持つ初代培養肝細胞における MPP+の取り込み特性は完全に異なる。 Cald-1細胞においてコルチコステロン( corticosterone)は MPP+の取り込みを抑制したが、ストレス時の血中コルチコステロン の上昇による OCT3の機能低下力 モノアミンの取り込み変化に与える影響は小さ!/ヽ と考えられる (非特許文献 38参照)、
24)性ホルモンであるエストラジオールやプロゲステロンは、培養ブタ尿細管細胞 におけるノルアドレナリンの取り込みを著明に減弱させる(非特許文献 39参照)、
25) OCT3は神経細胞外モノアミントランスポーター uptake2と同一であり、海馬、大 脳皮質、小脳を含む脳内全般に広く分布している (非特許文献 40参照)、
26)初代培養肝細胞におけるアドレナリンの細胞内への取り込みには、
OCT3/uptake2と P糖蛋白質が関与している(非特許文献 41参照)、
27)酸化ストレスによる脳組織へのドパミン取り込み低下には、神経細胞に存在す るモノアミン輸送系 (uptakel)と OCT3/uptake2の両方の取り込み機能低下が関与して いる (非特許文献 42参照)、
28)ラット胎盤より電位感受性のカチオン輸送蛋白 OCT3が単離された (非特許文 献 43参照)、
29) OCT3/EMTはヒトのグリア細胞に存在する(非特許文献 44参照)、 30) l,l'-Diisopropyl-2,4'— cyanine (disprocynium24)iま〇CT3/ uptake2の強力な阻 害剤であり、その静脈内投与はモノアミンの尿中排泄を強力に抑制する (非特許文 献 45参照)、
31)ラット心筋細胞へのノルアドレナリン取り込みには uptake2が重要な役割を果た して ヽる(非特許文献 46参照)、
32) OCT3と同じく有機カチオン輸送担体である OCTl,OCT2の性質、組織分布な どが総説されて ヽる (非特許文献 49参照)。
[0008] また、ヒトおよびマウスの OCT3遺伝子を比較し、発見されていない OCT3の遺伝子 多型と精神疾患との間で、何らかの関連性がある可能性が指摘されているが、具体 的なデータは全く提示されて ヽな 、 (非特許文献 47参照)。
[0009] また、 OCT3/EMT/uptake2はラット心筋細胞より見出されたトランスポーターであり、 ドパミン、セロトニン、ノルアドレナリンのようなモノアミンを基質とする。神経細胞以外 の細胞に局在することから、末梢における神経刺激の際に遊離されるノルアドレナリ ンの除去に重要なトランスポーターであると想定されてきた。
[0010] 一方、 OCT3は抗うつ剤を基質とする可能性がこれまでに報告されている。しかしな がら、抗うつ剤は OCT3の基質 MPP+の輸送に対して優れた阻害活性を有する力 こ れは抗うつ剤の構造の一部がモノアミンに類似していることと、抗うつ剤が強力なカチ オン性薬剤であることに由来している。従って、この薬剤指向性が OCT3とうつ病の関 連を示唆するものではな 、。
[0011] 別の例として、 OCT3と薬効の関係が取りざたされたものとしては降圧薬である β遮 断薬がある。これはモノアミンに構造の類似した降圧薬である β遮断薬が OCT3に輸 送される特性を持ち、 OCT3が心臓によく発現しているからである。(ただし、すべて 90年代初頭一半ばにドロップアウトした)。これは基質の種類とトランスポーターの発 現が一致して 、た力も注目されたと 、える。
[0012] 一方、最初に OCT3をクローユングした Kekudaらは OCT3の発現は心臓で最も多ぐ ついで肺、腎臓であるとされ、脳の発現は極めて少ないと報告している。後に同じグ ループの Wuらが OCT3の脳内発現を報告し、いくつかのグループがグリア細胞など の神経支持細胞における OCT3の発現を報告している力 脳における発現量が少な ぐ神経に発現のない OCT3の中枢における機能を評価することはこれまで意義がな V、と考えられ、検討が行われて 、なかったのが現状である。
[0013] また、 OCT3欠損動物で脳における MPP+の取り込みには差がないこと、 OCT3欠損 動物の行動に異常がないことが報告された。この結果もまた、 OCT3とうつ、不安など の関与に関する研究が進展しな力つた理由であると考えられる。
[0014] 非特許文献 1 :大槻 純男、外 2名著、「血液脳関門の薬物透過と排出の分子機構- 中枢支援防御システム—」、日本薬理学雑誌、 2003年、 Vol.122, p.55-64
非特許文献 2 :遠藤 仁著、「薬物輸送の分子機構」、 日本薬理学雑誌、 2000年、 Vol.116, p.114-124
非特干文献 3: Koepsell H、外 2名着、「Molecular pharmacology of organic cation transporters in kidney. J , J Membr Biol、 1999年、 Vol.167, p.103— 117
非特許文献 4 : Grundemann D、外 4名著、「Drug excretion mediated by a new prototype of polyspecific transporter.」、 Nature、 1994年、 Vol.372、 p.549 - 552 非特許文献 5 : Okuda M、外 4名著、「cDNA cloning and functional expression of a novel rat kidney organic cation transporter, OCT2.」、 Biochem. Biophys. Res. Commun.、 1996年、 Vol.224, p.500-507
非特許文献 6 : Pritchard JBおよび Miller DS著、「Mechanisms mediating renal secretion of organic anions and cations.」、 Physiol. Rev.、 1993年、 Vol.73、 p.765- 96 非特許文献 7: Gorboulev V、外 9名著、「Cloning and characterization of two human polyspecific organic cation transporters.」、 DNA Cell Biol、 1997年、 Vol.16、 p.87 1-881
非特許文献 8: Kekuda R、外 6名 、「Cloning and functional characterization of a potential-sensitive, polyspecific organic cation transporter (OCT3) most abundantly expressed in placenta.」、 J. Biol. Chem.、 1998年、 Vol.273, p.15971- 15979 非特許文献 9 : Grundemann D、外 3名著、「Molecular identification of the corticosterone— sensitive extraneuronal catecholamine transporter.」、 Nat Neurosci、 1998年、 Vol.1, p.349-351
非特許文献 10 : Wu X、外 7名著、 ridentity of the organic cation transporter OCT3 as the extraneuronal monoamine transporter (uptake2) and evidence for the expression of the transporter in the brain. J、 J. Biol. Chem.ゝ 1998年、 Vol.273、 p.32776-32786
非特許文献 11 : Inazu M、外 6名著、「Pharmacological characterization of dopamine transport in cultured rat astrocytes.」、 Life Sci.、 1999年、 Vol.64, p.2239-2245 非特許文献 12 :若山健太郎、外 3名著、「1-Mety卜 4-phenylpyridinium (MPP+)の脳 関門排出機構」、第 123回年会日本薬学会、 2003年、要旨集 4、 P64
非特許文献 13 : Wu X、外 7名着、「Structure, function, and regional distribution of the organic cation transporter OCT3 in the kidney.」、 Am J Physiol Renal Physiol. 2000 Sep, Vol.279(3)、 F449- 58
非特許文献 l4 : Haag C、外 5名 、「The localisation of the extraneuronal monoamine transporter (EMT) in rat brain.」、 J Neurochem. 2004年 Jan、 Vol.88(2)、 p.291-7
特許文献 15 : Inazu M、外 2名著、「The role of glial monoamine transporters in the central nervous system」、 Nihon Shinkei Seishin Yakurigaku Zasshi.、 2003年 Aug、 Vol.23(4)、 p.171-8
特許文献 lb : Horvath G、外 5名著、「Norepinephrine transport by the
extraneuronal monoamine transporter in human bronchial arterial smooth muscle cells.」、 Am J Physiol Lung Cell Mol Physiol.、 2003年 Oct、 Vol. 285(4)、 L829-37 非特許文献 17 : Horvath G、外 4名著、「Steroid sensitivity of norepinephrine uptake by human bronchial arterial and rabbit aortic smooth muscle cells.」、 Am J Respir Cell Mol Biol.、 2001年 Oct、 Vol. 25(4)、 p.500-6.
非特許文献 18 : Lazar A、外 5名著、「Genetic variability of the extraneuronal monoamine transporter EMT (SLC22A3).」、 J Hum Genet.ゝ 2003年、 Vol.48(5)、 p.226-30
非特許文献 19 : Shang T、外 4名著、「1— Methyト 4— phenylpyridinium accumulates in cerebellar granule neurons via organic cation transporter 3.」、 J Neurochem.、 2003 年 Aprゝ Vol.85(2)、 p.358— 67 非特言午文献 20 : Kitaichi K、外 7名著、「Increased plasma concentration and brain penetration of methamphetamine in behaviorally sensitized rats.J、 Eur J Pharmacol. 、 2003年 Mar7、 Vol.464(l)、 p.39-48
非特言午文献 21 : Schmitt A、外 7名 、「Organic cation transporter capable of transporting serotonin is up-regulated in serotonin transporter-deficient mice.」、 J Neurosci Res., 2003年 Marl、 Vol.71(5)、 p.701-9
特言午文献 22 : Grundemann D、外 3名著、「Agmatine is efficiently transported by non— neuronal monoamine transporters extraneuronal monoamine transporter (EMT) and organic cation transporter 2 (OCT2).」、 J Pharmacol Exp Ther.、 2003年 Feb、 Vol.304(2)、 p.810-7
非特言午文献 23 : Leazer TM,および Klaassen CD.著、「The presence of xenobiotic transporters in rat placenta.」、 Drug Metab Dispos.、 2003年 Feb、 Vol.31(2)、 p.153-67
非特言午文献 24 : Inazu M、外 2名著、「Expression and functional characterization of the extraneuronal monoamine transporter in normal human astrocytes.」、 J
Neurochem.、 2003年 Jan、 Vol.84(l)、 p. 43-52
^^特言午文献 25 : Takeda H、外 2名著、「Astroglial dopamine transport is mediated by norepinephrine transporter^、 Naunyn Schmiedebergs Arch Pharmacol.、 2002年 Dec ゝ Vol. 366(6)、 p.620-3
非特許文献 26 : Kristufek D、外 3名著、「Organic cation transporter mRNA and function in the rat superior cervical ganglion.」、 J Physiol.、 2002年 Augl5、
Vol.543(Pt 1)、 p.117-34
非特許文献 27 : Martel F、外 3名著、「Uptake of (3)H-l-methy卜 4- phenylpyridinium ((3)H-MPP(+)) by human intestinal Caco- 2 cells is regulated by
phosphorylation/dephosphorylation mechanisms.」、 Biochem Pharmacol.、 2002年 Aprl5、 Vol.63(8)、 p.1565-73
非特言午文献 28 : Martel F、外 3名 、「Apical uptake of organic cations by human intestinal Caco— 2 cells: putative involvement of ASF transporters.」、 Naunyn Schmiedebergs Arch Pharmacol.、 2001年 Janゝ Vol.363(l)、 p.40- 9
非特許文献 29 :Wessler I、外 6名著、「Release of non- neuronal acetylcholine from the isolated human placenta is mediated by organic cation transporters.」、 Br J Pharmacol.、 2001年 Novゝ Vol.134(5), p.951— 6
非特許文献 30 : Shu Y、外 4名著、「Functional characteristics and steroid
hormone-mediated regulation of an organic cation transporter in Madin— Darby canine kidney cells. J , J Pharmacol Exp Ther.ゝ 2001年 Octゝ Vol.299(l)、 p.392— 8 特許文献 31 : Sweet DH、外 3名 、「Ventricular choline transport: a role for organic cation transporter 2 expressed in choroid plexus -」、 J Biol Chem.ゝ 2001年 Nov9、 Vol.276(45)、 p.41611-9
非特許文献 32 : Martel F、外 3名著、「Effect of P- glycoprotein modulators on the human extraneuronal monoamine transporter.」、 Eur J Pharmacol.、 2001年 Jun 22、 Vol.422(l- 3)、 p.31-7
非特許文献 33 : Molderings GJ、外 3名著、「Agmatine and putrescine uptake in the human glioma cell line SK— MG— 1.」、 Naunyn Schmiedebergs Arch Pharmacol.、 2001 年 Junゝ Vol.363(6)、 p.671-9
特許文献 34: Friednch A、外 4名著、「Transport of choline and its relationship to the expression of the organic cation transporters in a rat brain microvessel endothelial cell line (RBE4).」、 Biochim Biophys Acta., 2001年 Jun 6、 Vol.1512(2), p.299-307
非特許文献 35: Zwart R、外 4名著、「Impaired activity of the extraneuronal monoamine transporter system known as uptake— 2 in Orct3/Slc22a3— deficient mice. 」、 Mol Cell Biol.、 2001年 Jul、 Vol.21(13)、 p.4188-96
非特許文献 3b : Verhaagh S、外 2名著、「The extraneuronal monoamine transporter Slc22a3/ Orct3 co-localizes with the Maoa metabolizing enzyme in mouse placenta.」 ゝ Mech Dev.ゝ 2001年 Janゝ Vol.l00(l)、 p.127-30
非特許文献 37 : Inazu M、外 6名著、「Pharmacological characterization of dopamine transport in cultured rat astrocytes.」、 Life Sci.、 1999年、 Vol.64(24)、 p.2239— 45 非特許文献 38 : Martel F、外 3名著、「Comparison between uptake2 and rOCTl: effects of catecholamines, metanephrines and corticosterone.J、 Naunyn
Schmiedebergs Arch Pharmacol.、 1999年 Aprゝ Vol.359(4)、 p.303- 9
非特許文献 39 : Dynarowicz Iおよび Watkowski T.著、「The effect of oestradio卜 17 beta and progesterone on uptake 1, uptake2 and on release of noradrenaline in the uterine artery of ovariectomized pigs.」、 Arch Vet Pol.、 1993年、 Vol.33(3- 4)、 p.249-58
非特許文献 40 : Wu X、外 7名著、 ridentity of the organic cation transporter OCT3 as the extraneuronal monoamine transporter (uptake2) and evidence for the expression of the transporter in the brain. J、 J Biol Chem.ゝ 1998年 Dec4、
Vol.273(49)、 p.32776-86
非特許文献 41 : Martel F、外 3名著、「Uptake of [3 H]- adrenaline by freshly isolated rat hepatocytes: putative involvement of P— glycoprotein.」、 J Auton Pharmacol.、 1998年 Feb、 Vol.18(1)、 p.57-64
非特許文献 42: Page G、外 5名著、「Possiole relationship between changes in [3H] DA uptake and autoxidation in rat striatal slices.」、 Exp Neurol.、 1998年 Jul、 Vol.l52(l)、 p.88-94
非特許文献 43: Kekuda R、外 6名著、「し loning and functional characterization of a potential-sensitive, polyspecific organic cation transporter (OCT3) most abundantly expressed in placenta. J , J Biol Chem.ゝ 1998年 Jun26、 Vol.273(26)、 p.15971-9 非特許文献 44: Schomig E、外 5名著、「The extraneuronal monoamine transporter exists in human central nervous system glia.」、 Adv Pharmacol.、 1998年、 Vol.42、 p.356-9
非特許文献 45 : Graefe KH、外 5名著、「1,1'- Diisopropy卜 2,4'- cyanine
(disprocynium24) , a potent uptake2 blocker, inhibits the renal excretion of catecholamines.」、 Naunyn Schmiedebergs Arch Pharmacol.、 1997牛 jul、 Vol.356(1)、 p.115-25
非特許文献 46 : Obst OO外 2名著、「Characterization of catecholamine uptake2 in isolated cardiac myocytes.」、 Mol Cell Biochem.ゝ 1996年 Oct— Novゝ Vol.163— 164、 p.181-3
非特許文献 47 : Wieland A、外 3名著、「Analysis of the gene structure of the human (SLC22A3) and murine (Slc22a3) extraneuronal monoamine transporter.」、 J Neural Transm.、 2000年、 Vol.l07(10)、 p.1149-57
非特許文献 48: Lazar A、外 5名著、「Genetic variability of the extraneuronal monoamine transporter EMT (SLC22A3).J , J Hum Genet, 2003年、 Vol.48, p.226-230
非特許文献 49 : J Pharmacol Exp Ther.、 2004年 Jan, Vol.308(l)、 p.2- 9
発明の開示
発明が解決しょうとする課題
[0015] 本発明はこのような状況に鑑みてなされたものであり、その目的は、うつ、不安、ま たは薬物依存症等の精神疾患と OCT3との関連を明らかにすることにより、該精神疾 患の治療のための薬剤、および該薬剤のスクリーニング方法を提供することにある。 課題を解決するための手段
[0016] 上述のように、野生型と比較して行動に変化が見られる OCT3欠損動物は、これま でのところ報告されていない。本発明者は、セロトニントランスポーター欠損動物では 代償的にセロトニンを含むモノアミン輸送活性を有する OCT3の発現力 一部の脳部 位で増加しているとの知見から、次のような仮説を想起した。即ち、上記 OCT3欠損 動物では、他のモノアミン輸送活性をもつトランスポーターが動物の成長過程にお ヽ て過剰発現し、 OCT3の機能を代償しているものと考えた。そして本発明者は、成熟 した動物の脳内の OCT3の発現を抑制させることによって、行動に変化が見られる動 物の作製が可能であるものと想到した。本発明者は、 OCT3の発現が抑制され、行動 に変化を呈するマウスを作製すベぐ鋭意研究を行った。
[0017] 本発明者は、 OCT3に対するアンチセンスを脳内へ直接投与することにより、 OCT3 の発現が抑制されたマウスの作製を試みた。アンチセンスの標的部位には種々の部 位が考えられる力 本実験においては、標的遺伝子の OCT3の開始コドンを含む配 列を使用した。また本発明者は、脳室と血液の接点となる血液-脳脊髄液関門に OCT3が発現しているという知見に着目し、上記アンチセンスの投与脳部位として脳 室を選択した。通常、脳実質に標的がある場合は直接、標的糸且織にアンチセンスを 入れる方法もあるが、アンチセンスは一般的に塩基配列の分解阻止を目的に配列内 のリン酸に硫黄をつけた phosphorothioate体を用いることが多!、。しかしながら本発明 者は、実際は上記 phosphorothioate体として毒性が発現し、組織が壊死することが多 ぐ実験の際に困難を伴うものと考え、脳室内へのアンチセンス投与という創意 ·工夫 を施した。
[0018] 本発明者は、上述のように作製されたマウスについて、各種精神疾患との関連を調 ベるために、うつ病様症状に対する効果、および不安症状に対する効果について検 討を行った。より具体的には、上記マウスについて強制水泳試験、および探索行動 の観察を行った。その結果、上記マウスは、遊泳中の無動状態が消失し抗うつ作用 を呈すること、並びに探索行動が亢進し抗不安作用を呈することを見出した。また、こ れらマウスにぉ 、て 0CT3の発現が有意に低下して 、ることを確認した。
[0019] 上述の結果は、 0CT3遺伝子の発現を抑制する物質 (例えば、アンチセンス核酸等 )が、各種精神疾患に対して実際に有効であることを、動物実験レベルで証明するも のである。即ち、 0CT3の発現を抑制することによって、抗うつ作用、または抗不安作 用が動物の行動の変化として観察された今回の知見により、 0CT3の発現もしくは機 能の抑制物質が、うつ症状、不安神経症の治療薬として実際に有効であることが示さ れた。
[0020] さらに本発明者は、 0CT3遺伝子の発現抑制の効果と抗うつ薬との併用効果につ いて検討した。その結果、 0CT3の発現を抑制することにより、抗うつ薬の作用が増強 されることを新たに見出した。即ち、 OCT3の発現を調節する化合物は、抗うつ薬との 併用剤として有用であることが示された。
[0021] また本発明者は、 OCT3を標的とする低分子化合物が実際に抗うつ薬と同様の作 用を有することを見出した。即ち、 OCT3を標的とする化合物が、実際にうつ病等の精 神疾患に対して治療効果を有することが示された。
[0022] さらに上述の結果は、単独の遺伝子 (OCT3)の発現を抑制することにより、野生型と 容易に識別可能な表現型を呈する動物を、実際に作製することに成功したことを示 すものである。上記の如く本発明者は、 OCT3遺伝子の発現を抑制することによって 、野生型動物と容易に識別可能な動物を作製することに初めて成功し、本発明を完 成させた。本発明の動物は、実際に、うつ、不安等の精神疾患と関連する表現型を 呈する、非常に有用な動物である。
[0023] 本発明の上記の OCT3遺伝子ノックアウト動物は、例えば、精神疾患の治療薬のス クリーニング、あるいは、精神疾患を引き起こす原因物質の同定に非常に有用である 。上記方法によって取得(同定)される物質 (ィ匕合物)は、本発明の動物の表現型を 実際に変化 (亢進または消失)させ得る物質であることから、精神疾患に治療効果を 有する、もしくは精神疾患の原因物質である蓋然性の非常に高い物質であると言うこ とがでさる。
[0024] また上記の OCT3の発現が抑制されたマウスは、覚せ 、剤誘発自発運動量の亢進 が見られた。即ち、覚せい剤の単回投与にも関わらず、覚せい剤反復投与による逆 耐性現象と同様の行動が観察された。本発明によって、覚せい剤の反復投与をせず に、覚せい剤の逆耐性現象を呈する、即ち、覚せい剤自発運動量の亢進が見られる マウスの作製に成功した。上記動物は、薬物依存症の形成メカニズムの解析に有用 である。さらに上記動物は、覚せい剤依存症のための治療薬のスクリーニングに好適 に使用することができる。
[0025] 本発明は、うつ、不安等、覚せい剤依存症等の精神疾患と関連する表現型を呈す る OCT3ノックアウト動物、および該精神疾患の治療のための薬剤、および該薬剤の スクリーニング方法に関し、より具体的には、
〔1〕 有機カチオントランスポーター OCT3遺伝子の発現抑制物質を有効成分として 含む、精神疾患治療薬、
〔2〕 有機カチオントランスポーター OCT3タンパク質の発現抑制物質力 以下の(a )一(c)力もなる群より選択される化合物である、〔1〕に記載の精神疾患治療薬、
(a) OCT3遺伝子の転写産物またはその一部に対するアンチセンス核酸
(b) OCT3遺伝子の転写産物を特異的に開裂するリボザィム活性を有する核酸
(c) OCT3遺伝子の発現を RNAi効果による阻害作用を有する核酸
〔3〕 有機カチオントランスポーター OCT3タンパク質の機能抑制物質を有効成分と して含む、精神疾患治療薬、
〔4〕 有機カチオントランスポーター OCT3タンパク質の機能抑制物質力 以下の(a )または (b)の化合物である、〔3〕に記載の精神疾患治療薬、
(a)有機カチオントランスポーター OCT3タンパク質に結合する抗体
(b)有機カチオントランスポーター OCT3タンパク質に結合する (親和性を有する) 低分子化合物
[5] 精神疾患が、うつ病または不安神経症である、〔1〕一〔4〕のいずれかに記載の 治療薬、
[6] 有機カチオントランスポーター OCT3タンパク質の発現亢進物質、もしくは機能 亢進物質を有効成分として含む、覚せい剤依存症治療薬、
[7] 有機カチオントランスポーター OCT3遺伝子の発現が人為的に抑制されている ことを特徴とする、遺伝子ノックアウト非ヒト動物、
〔8〕 以下の(a)—(c)のいずれかの核酸の作用により、前記 OCT3遺伝子の発現が 抑制されている、〔7〕に記載の遺伝子ノックアウト非ヒト動物、
(a) OCT3遺伝子の転写産物またはその一部に対するアンチセンス核酸
(b) OCT3遺伝子の転写産物を特異的に開裂するリボザィム活性を有する核酸
(c) OCT3遺伝子の発現を RNAi効果による阻害作用を有する核酸
〔9〕 以下の(a)—(c)の 、ずれかの表現型を示す、〔7〕に記載の遺伝子ノックアウト 非ヒト動物、
(a)抗うつ様作用
(b)覚せ 、剤誘発自発運動の亢進
(c)抗不安作用
〔10〕 非ヒト動物がげつ歯類である、〔7〕一〔9〕のいずれかに記載の遺伝子ノックァ ゥト非ヒト動物、
〔11〕 以下の(a)— (c)の工程を含む、精神疾患治療のための薬剤のスクリーニング 方法、
(a)有機カチオントランスポーター OCT3タンパク質またはその部分ペプチドと被検 化合物を接触させる工程 (b)該タンパク質またはその部分ペプチドと被検化合物との結合活性を測定するェ 程
(c)有機カチオントランスポーター OCT3タンパク質またはその部分ペプチドと結合 する化合物を選択する工程
〔12〕 以下の(a)— (c)の工程を含む、精神疾患治療のための薬剤のスクリーニング 方法、
(a)有機カチオントランスポーター OCT3遺伝子を発現する細胞と、被検化合物を 接触させる工程
(b)該有機カチオントランスポーター OCT3遺伝子の発現レベルを測定する工程
(c)被検化合物の非存在下にお ヽて測定した場合と比較して、該発現レベルを低 下させる化合物を選択する工程
〔13〕 以下の(a)— (c)の工程を含む、精神疾患治療のための薬剤のスクリーニング 方法、
(a)有機カチオントランスポーター OCT3遺伝子の転写調節領域とレポーター遺伝 子とが機能的に結合した構造を有する DNAを含む細胞と、被検化合物を接触させる 工程
(b)該レポーター遺伝子の発現レベルを測定する工程
(c)被検化合物の非存在下にお ヽて測定した場合と比較して、該発現レベルを低 下させる化合物を選択する工程
〔14〕 以下の(a)— (c)の工程を含む、精神疾患治療のための薬剤のスクリーニング 方法、
(a)有機カチオントランスポーター OCT3タンパク質、または該タンパク質を発現す る細胞もしくは細胞抽出液と、被検化合物を接触させる工程
(b)該タンパク質の活性を測定する工程
(c)被検化合物の非存在下にお!、て測定した場合と比較して、該タンパク質の活 性を低下させる化合物を選択する工程
〔15〕 以下の (a)—(c)の工程を含む、精神疾患の原因化合物の同定方法、
(a)〔7〕一〔10〕のいずれかに記載の遺伝子ノックアウト非ヒト動物に被検化合物を 投与する工程
(b)前記非ヒト動物の有する表現型に依存する行動を観察する工程
(c)前記表現型に依存する行動を消失させる化合物を、精神疾患の原因化合物で あるものと判定する工程
〔16〕 精神疾患が、うつ病または不安神経症である、〔11〕一〔15〕のいずれかに記 載の方法、
〔17〕 以下の(a)— (c)の工程を含む、覚せい剤依存症治療のための薬剤のスクリ 一ユング方法、
(a)有機カチオントランスポーター OCT3遺伝子を発現する細胞と、被検化合物を 接触させる工程
(b)該有機カチオントランスポーター OCT3遺伝子の発現レベルを測定する工程
(c)被検化合物の非存在下にお ヽて測定した場合と比較して、該発現レベルを上 昇させる化合物を選択する工程
〔18〕 以下の(a)— (c)の工程を含む、覚せい剤依存症治療のための薬剤のスクリ 一ユング方法、
(a)有機カチオントランスポーター OCT3遺伝子の転写調節領域とレポーター遺伝 子とが機能的に結合した構造を有する DNAを含む細胞と、被検化合物を接触させる 工程
(b)該レポーター遺伝子の発現レベルを測定する工程
(c)被検化合物の非存在下にお ヽて測定した場合と比較して、該発現レベルを上 昇させる化合物を選択する工程
〔19〕 以下の(a)— (c)の工程を含む、覚せい剤依存症治療のための薬剤のスクリ 一ユング方法、
(a)有機カチオントランスポーター OCT3タンパク質、または該タンパク質を発現す る細胞もしくは細胞抽出液と、被検化合物を接触させる工程
(b)該タンパク質の活性を測定する工程
(c)被検化合物の非存在下にお!、て測定した場合と比較して、該タンパク質の活 性を上昇させる化合物を選択する工程 〔20〕 以下の(a)— (c)の工程を含む、覚せい剤依存症治療のための薬剤のスクリ 一ユング方法、
(a)〔7〕一〔10〕のいずれかに記載の遺伝子ノックアウト非ヒト動物に被検化合物を 投与する工程
(b)前記非ヒト動物の有する表現型に依存する覚せ!、剤誘発自発運動を観察する 工程
(c)前記運動を消失させる化合物を選択する工程
〔21〕 非ヒト動物の脳内へ OCT3遺伝子の転写産物またはその一部に対するアン チセンス核酸を投与する工程を含む、〔7〕に記載のノックアウト非ヒト動物の作製方法
[22] 有機カチオントランスポーター OCT3遺伝子の発現抑制物質を有効成分とし て含む、抗うつ薬作用増強剤、
〔23〕 有機カチオントランスポーター OCT3タンパク質の発現抑制物質力 以下の( a)一 (c)力もなる群より選択される化合物である、 [22]に記載の抗うつ薬作用増強剤
(a) OCT3遺伝子の転写産物またはその一部に対するアンチセンス核酸
(b) OCT3遺伝子の転写産物を特異的に開裂するリボザィム活性を有する核酸
(c) OCT3遺伝子の発現を RNAi効果による阻害作用を有する核酸
〔24〕 有機カチオントランスポーター OCT3タンパク質の機能抑制物質を有効成分 として含む、抗うつ薬作用増強剤、
〔25〕 有機カチオントランスポーター OCT3タンパク質の機能抑制物質力 以下の( a)または (b)の化合物である、〔24〕に記載の抗うつ薬作用増強剤、
(a)有機カチオントランスポーター OCT3タンパク質に結合する抗体
(b)有機カチオントランスポーター OCT3タンパク質に結合する低分子化合物 〔26〕 抗うつ薬、および、請求項 22— 25のいずれかに記載の抗うつ薬作用増強剤 を有効成分として含有する抗うつ作用を有する医薬組成物
を、提供するものである。
さらに本発明は、 [27] 有機カチオントランスポーター OCT3遺伝子の発現抑制物質あるいは OCT3 タンパク質の機能抑制物質を個体 (例えば、患者等)へ投与する工程を含む、精神 疾患を予防および Zまたは治療する方法、
〔28〕 有機カチオントランスポーター OCT3遺伝子の発現亢進物質あるいは OCT3 タンパク質の機能亢進物質を個体 (例えば、患者等)へ投与する工程を含む、覚せ い剤依存症の予防および Zまたは治療する方法、
〔29〕 有機カチオントランスポーター OCT3遺伝子の発現抑制物質あるいは OCT3 タンパク質の機能抑制物質の精神疾患治療薬の製造における使用、
〔30〕 有機カチオントランスポーター OCT3遺伝子の発現亢進物質あるいは OCT3 タンパク質の機能亢進物質の覚せい剤依存症治療薬の製造における使用、 を、提供するものである。
図面の簡単な説明
[図 1]うつ病モデルにおける、 OCT3に対するアンチセンス脳内持続注入の効果およ び低用量の OCT3に対するアンチセンスと低用量の抗ぅつ薬イミプラミンとの相乗効 果を示すグラフである。 a:p< 0.01 vs.溶媒群、 b :p< 0.01 vs. OCT3- ScrAS、 c :p< 0.01 vs. (OCT— AS 0 + IMI 0)、 d:pく 0.01 vs. (OCT— AS 0 + IMI 4)、 e:pく 0.01 vs. (OCT— AS 0.075 + IMI 0)。
[図 2]うつ病モデルにおける、 OCT3に比較的選択的に輸送されるノルメタネフリンの 脳内持続注入の効果を示すグラフである。 a:p< 0.01 vs.溶媒群。
[図 3]OCT3に対するアンチセンスを脳内に持続注入したラットにおける OCT3タンパ ク質の発現低下を示すグラフである。 a:p< 0.01 vs.溶媒群、 b :pく 0.01 vs.
OCT3- ScrAS。
[図 4]覚醒剤誘発自発運動における、 OCT3に対するアンチセンス脳内持続注入の 効果を示すグラフである。
[図 5]不安活性に対する OCT3に対するアンチセンス脳内持続注入の効果を示すグ ラフである。左側グラフは、場所探索行動をとつた結果の立ち上がり行動の回数を示 す。右側グラフは、自発運動量の回数を示す。
発明を実施するための最良の形態 [0028] 本発明者によって、有機カチオントランスポーター OCT3 (本明細書にぉ 、ては、単 に「OCT3」と記載する場合あり)の発現を抑制する物質は、うつ (病)、不安 (神経症) 等の精神疾患に対して、治療効果を有することが示された。従って本発明は、 OCT3 遺伝子もしくは OCT3タンパク質の発現、または、 OCT3遺伝子によってコードされる タンパク質 (OCT3タンパク質)の機能 (活性)を抑制する物質を含む、精神疾患治療 薬に関する。
[0029] 本発明の好ましい態様においては、まず、 OCT3遺伝子の発現の発現抑制物質を 有効成分として含む、精神疾患治療薬 (精神疾患治療のための薬剤 ·医薬組成物) を提供する。
[0030] 本発明における OCT3は、種々の生物において存在することが知られている。本発 明の OCT3には、種々の生物における OCT3が含まれる。本発明の OCT3として例え ば、ヒト OCT3、マウス OCT3、ラット OCT3等が挙げられる。これらの OCT3をコードす る遺伝子の塩基配列をそれぞれ配列番号: 1 (ヒト)、 3 (マウス)、 5 (ラット)に示す。ま た、該塩基配列によってコードされるタンパク質のァミノ配列をそれぞれ、配列番号: 2 (ヒト)、 4 (マウス)、 6 (ラット)に示す。これら以外のタンパク質であっても、例えば、 上記配列表に記載された配列と高い相同性 (通常 70%以上、好ましくは 80%以上、より 好ましくは 90%以上、最も好ましくは 95%以上)を有し、かつ、 OCT3が有する機能 (例 えば、有機トランスポーターとしての機能)を持つタンパク質は、本発明の OCT3に含 まれる。上記タンパク質とは、例えば、配列番号: 2、 4または 6のいずれかに記載のタ ンパク質のアミノ酸配列において、 1以上のアミノ酸が付加、欠失、置換、挿入された アミノ酸配列からなるタンパク質であって、通常、変化するアミノ酸数は、 30アミノ酸以 内、好ましくは、 10アミノ酸以内、より好ましくは 5アミノ酸以内、最も好ましくは 3ァミノ 酸以内である。
[0031] 本発明の上記治療薬において、治療効果が期待される「精神疾患」としては、例え ば、うつ病、不安神経症、躁病、躁うつ病、統合失調症、多動症 (ADHD)等が挙げら れる。本発明における「精神疾患」としては、好ましくは、うつ病、または不安神経症 等を挙げることができる。
[0032] うつ (鬱)病とは一般的に、悲しみ、孤独、絶望、自責感を特徴とする一時的な精神 状態ないし慢性的な精神障害で、精神運動制止、頻回ではない焦燥、社会からの引 きこもり、食欲低下や不眠などの植物神経症状などの徴候を伴う疾患を指す。また、 不安神経症とは一般的に、急激に引き起こる不安発作を主症状とする疾患を言う。 通常、発作中は、心悸亢進 '頻脈 ·呼吸困難 ·めまい ·ふるえ等の症状を伴う。また、 所謂「パニック障害」も、上記不安神経症に含まれる。
[0033] 本発明において OCT3遺伝子の発現抑制物質には、例えば、 OCT3の転写もしくは 該転写産物からの翻訳を阻害する物質が含まれる。本発明の上記発現抑制物質の 好ましい態様として、例えば、以下の (a)—(c)からなる群より選択される化合物 (核 酸)を挙げることができる。
(a) OCT3遺伝子の転写産物またはその一部に対するアンチセンス核酸
(b) OCT3遺伝子の転写産物を特異的に開裂するリボザィム活性を有する核酸
(c) OCT3遺伝子の発現を RNAi効果による阻害作用を有する核酸
[0034] 本発明における「核酸」とは RNAまたは DNAを意味する。また、所謂 PNA (peptide nucleic acid)等の化学合成核酸アナログも、本発明の核酸に含まれる。 PNAは、核酸 の基本骨格構造である五単糖'リン酸骨格を、グリシンを単位とするポリアミド骨格に 置換したもので、核酸によく似た 3次元構造を有する。
[0035] 特定の内在性遺伝子の発現を阻害する方法としては、アンチセンス技術を利用す る方法が当業者によく知られている。アンチセンス核酸が標的遺伝子の発現を阻害 する作用としては、以下のような複数の要因が存在する。即ち、三重鎖形成による転 写開始阻害、 RNAポリメラーゼによって局部的に開状ループ構造が作られた部位と のハイブリッド形成による転写阻害、合成の進みつつある RNAとのハイブリッド形成に よる転写阻害、イントロンとエタソンとの接合点におけるハイブリッド形成によるスプラ イシング阻害、スプライソソーム形成部位とのノ、イブリツド形成によるスプライシング阻 害、 mRNAとのハイブリッド形成による核力 細胞質への移行阻害、キヤッビング部位 やポリ (A)付加部位とのハイブリッド形成によるスプライシング阻害、翻訳開始因子結 合部位とのハイブリッド形成による翻訳開始阻害、開始コドン近傍のリボソーム結合 部位とのハイブリッド形成による翻訳阻害、 mRNAの翻訳領域やポリソーム結合部位 とのハイブリッド形成によるペプチド鎖の伸長阻害、および核酸とタンパク質との相互 作用部位とのハイブリッド形成による遺伝子発現阻害などである。このようにアンチセ ンス核酸は、転写、スプライシングまたは翻訳など様々な過程を阻害することで、標 的遺伝子の発現を阻害する (平島および井上,新生化学実験講座 2核酸 IV遺伝子 の複製と発現, 日本生化学会編,東京化学同人, 1993, 319-347.)。
[0036] 本発明で用いられるアンチセンス核酸は、上記のいずれの作用により OCT3遺伝子 の発現を阻害してもよい。一つの態様としては、 OCT3遺伝子の mRNAの 5'端近傍の 非翻訳領域に相補的なアンチセンス配列を設計すれば、遺伝子の翻訳阻害に効果 的と考えられる。また、コード領域もしくは 3'側の非翻訳領域に相補的な配列も使用 することができる。このように、 OCT3遺伝子の翻訳領域だけでなく非翻訳領域の配列 のアンチセンス配列を含む核酸も、本発明で利用されるアンチセンス核酸に含まれる 。使用されるアンチセンス核酸は、適当なプロモーターの下流に連結され、好ましく は 3'側に転写終結シグナルを含む配列が連結される。このようにして調製された核酸 は、公知の方法を用いることで、所望の動物へ形質転換できる。アンチセンス核酸の 配列は、形質転換される動物が持つ内在性 OCT3遺伝子またはその一部と相補的な 配列であることが好ましいが、遺伝子の発現を有効に抑制できる限りにおいて、完全 に相補的でなくてもよい。転写された RNAは、標的遺伝子の転写産物に対して好まし くは 90%以上、最も好ましくは 95%以上の相補性を有する。アンチセンス核酸を用い て標的遺伝子 (OCT3)の発現を効果的に抑制するには、アンチセンス核酸の長さは 少なくとも 15塩基以上 25塩基未満であることが好ましいが、本発明のアンチセンス核 酸は、必ずしもこの長さに限定されない。
[0037] 本発明のアンチセンスは、特に制限されないが、例えば、 GenBankのァクセッション 番号 NM_019230で取得されるラット OCT3遺伝子の 388-408番目の塩基配列、または GenBankのァクセッション番号 NM— 011395のマウス OCT3遺伝子の 377-397番目の塩 基配列等を基に作成することができる。一例を示せば、 5'- tggtcgaacgtgggcatggtg -3' (配列番号: 7)の配列に相補的な RNAを挙げることができる。
[0038] また、 OCT3遺伝子の発現の阻害は、リボザィム、またはリボザィムをコードする
DNAを利用して行うことも可能である。リボザィムとは触媒活性を有する RNA分子を指 す。リボザィムには種々の活性を有するものが存在する力 中でも RNAを切断する酵 素としてのリボザィムに焦点を当てた研究により、 RNAを部位特異的に切断するリボ ザィムの設計が可能となった。リボザィムには、グループ Iイントロン型や RNase Pに含 まれる Ml RNAのように 400ヌクレオチド以上の大きさのものもあるが、ハンマーヘッド 型やヘアピン型と呼ばれる 40ヌクレオチド程度の活性ドメインを有するものもある(小 泉誠および大塚栄子,タンパク質核酸酵素, 1990, 35, 2191.)。
[0039] 例えば、ハンマーヘッド型リボザィムの自己切断ドメインは、 G13U14C15という配列 の C15の 3'側を切断する力 その活性には U14と A9との塩基対形成が重要とされ、 C15の代わりに A15または U15でも切断され得ることが示されている(Koizumi, M. et al, FEBS Lett, 1988, 228, 228.)。基質結合部位が標的部位近傍の RNA配列と相補 的なリボザィムを設計すれば、標的 RNA中の UC、 UUまたは UAという配列を認識する 制限酵素的な RNA切断リボザィムを作出することができる(Koizumi, M. et al, FEBS Lett, 1988, 239, 285.、小泉誠および大塚栄子,タンパク質核酸酵素, 1990, 35, 2191.、 Koizumi, M. et al., Nucl Acids Res, 1989, 17, 7059.)。
[0040] また、ヘアピン型リボザィムも本発明の目的に有用である。このリボザィムは、例え ばタバコリングスポットウィルスのサテライト RNAのマイナス鎖に見出される(Buzayan, JM., Nature, 1986, 323, 349.)。ヘアピン型リボザィムからも、標的特異的な RNA切断 リボザィムを作出できることが示されている(Kikuchi, Y. & Sasaki, N., Nucl Acids Res, 1991, 19, 6751.、菊池洋,化学と生物, 1992, 30, 112.)。このように、リボザィムを用 いて本発明における OCT3遺伝子の転写産物を特異的に切断することで、該遺伝子 の発現を阻害することができる。
[0041] 内在性遺伝子の発現の阻害は、さらに、標的遺伝子配列と同一もしくは類似した配 列を有する二本鎖 RNAを用いた RNA干渉(RNA interferance; RNAi)によっても行うこ とができる。本発明の RNAi効果による阻害作用を有する核酸は、一般的に siRNAとも 言われる。 RNAiは、標的遺伝子の mRNAと相同な配列力 なるセンス RNAとこれと相 補的な配列力 なるアンチセンス RNAとからなる二本鎖 RNAを細胞等に導入すること により、標的遺伝子 mRNAの破壊を誘導し、標的遺伝子の発現を抑制し得る現象で ある。このように RNAiは、標的遺伝子の発現を抑制し得ることから、従来の煩雑で効 率の低い相同組み換えによる遺伝子破壊方法に代わる簡易な遺伝子ノックアウト方 法として、または、遺伝子治療への応用可能な方法として注目を集めている。 RNAiに 用いる RNAは、 OCT3遺伝子もしくは該遺伝子の部分領域と必ずしも完全に同一で ある必要はな 、が、完全な相同性を有することが好ま 、。
[0042] 本発明の上記(c)の核酸の好まし!/、態様として、 OCT3遺伝子に対して RNAi (RNA interference; RNA干渉)効果を有する二本鎖 RNA (siRNA)を挙げることができる。より 具体的には、配列番号: 1、 3、または 5のいずれかに記載の塩基配列の部分配列に 対するセンス RNAおよびアンチセンス RNAからなる二本鎖 RNA(siRNA)を挙げることが できる。
[0043] RNAi機構の詳細については未だに不明な部分もある力 DICERといわれる酵素( RNase III核酸分解酵素ファミリーの一種)が二本鎖 RNAと接触し、二本鎖 RNAが small interfering RNAまたは siRNAと呼ばれる小さな断片に分解されるものと考えられ ている。本発明における RNAi効果を有する二本鎖 RNAには、このように DICERによつ て分解される前の二本鎖 RNAも含まれる。即ち、そのままの長さでは RNAi効果を有さ な 、ような長鎖の RNAであっても、細胞にお!、て RNAi効果を有する siRNAへ分解さ れることが期待されるため、本発明における二本鎖 RNAの長さは、特に制限されない
[0044] 例えば、本発明の OCT3遺伝子の mRNAの全長もしくはほぼ全長の領域に対応す る長鎖二本鎖 RNAを、例えば、予め DICERで分解させ、その分解産物を精神疾患治 療薬として利用することが可能である。この分解産物には、 RNAi効果を有する二本鎖 RNA分子 (siRNA)が含まれることが期待される。この方法によれば、 RNAi効果を有す ることが期待される mRNA上の領域を、特に選択しなくともよい。即ち、 RNAi効果を有 する本発明の OCT3遺伝子の mRNA上の領域は、必ずしも正確に規定される必要は ない。
[0045] なお、上記 RNA分子において一方の端が閉じた構造の分子、例えば、ヘアピン構 造を有する siRNA(shRNA)も本発明に含まれる。即ち、分子内において二本鎖 RNA構 造を形成し得る一本鎖 RNA分子もまた本発明に含まれる。
[0046] 本発明の上記「RNAi効果により抑制し得る二本鎖 RNA」は、当業者においては、該 二本鎖 RNAの標的となる本発明の OCT3遺伝子の塩基配列を基に、適宜作製するこ とができる。一例を示せば、配列番号: 1、 3、または 5のいずれかに記載の塩基配列 をもとに、本発明の二本鎖 RNAを作製することができる。即ち、配列番号:1、 3、また は 5の 、ずれかに記載の塩基配列をもとに、該配列の転写産物である mRNAの任意 の連続する RNA領域を選択し、この領域に対応する二本鎖 RNAを作製することは、 当業者においては、通常の試行の範囲内において適宜行い得ることである。また、 該配列の転写産物である mRNA配列から、より強!、RNAi効果を有する siRNA配列を 選択することも、当業者においては、公知の方法によって適宜実施することが可能で ある。また、一方の鎖 (例えば、配列番号: 1、 3、または 5のいずれかに記載の塩基配 列)が判明して!/、れば、当業者にお!、ては容易に他方の鎖 (相補鎖)の塩基配列を 知ることができる。 siRNAは、当業者においては市販の核酸合成機を用いて適宜作 製することが可能である。また、所望の RNAの合成については、一般の合成受託サ 一ビスを利用することができる。
[0047] さらに、本発明の上記 RNAを発現し得る DNA (ベクター)もまた、本発明の OCT3遺 伝子の発現を抑制し得る化合物の好ましい態様に含まれる。例えば、本発明の上記 二本鎖 RNAを発現し得る DNA (ベクター)は、該ニ本鎖 RNAの一方の鎖をコードする DNA、および該ニ本鎖 RNAの他方の鎖をコードする DNA力 それぞれ発現し得るよう にプロモーターと連結した構造を有する DNAである。本発明の上記 DNAは、当業者 においては、一般的な遺伝子工学技術により、適宜作製することができる。より具体 的には、本発明の RNAをコードする DNAを公知の種々の発現ベクターへ適宜挿入す ることによって、本発明の発現ベクターを作製することが可能である。
[0048] また、本発明の発現抑制物質には、例えば、 OCT3の発現調節領域 (例えば、プロ モーター領域)と結合することにより、 OCT3の発現を抑制する化合物が含まれる。該 化合物は、例えば、 OCT3のプロモーター DNA断片を用いて、該 DNA断片との結合 活性を指標とするスクリーニング方法により、取得することが可能である。また、当業 者においては、所望の化合物について、本発明の OCT3の発現を抑制する力否かの 判定を、公知の方法、例えば、レポーターアツセィ法等により適宜実施することができ る。
[0049] また本発明は、有機カチオントランスポーター OCT3タンパク質の機能抑制物質を 有効成分として含む精神疾患治療薬を提供する。 OCT3タンパク質の有機カチオント ランスポーターとしての機能を抑制することにより、神経伝達物質を含む有機カチォ ンの輸送が阻害され、神経伝達物質の機能が増加し、精神疾患の治療に有効であ ると考えられる。また該機能を抑制する物質は、精神疾患治療薬として有効であるも のと考えられる。
[0050] 本発明における OCT3タンパク質の機能抑制物質としては、例えば、以下の(a)ま たは (b)の化合物を挙げることができる。
(a)有機カチオントランスポーター OCT3タンパク質に結合する抗体
(b)有機カチオントランスポーター OCT3タンパク質に結合する低分子化合物
[0051] OCT3タンパク質に結合する抗体 (抗 OCT3抗体)は、当業者に公知の方法により調 製することが可能である。ポリクローナル抗体であれば、例えば、次のようにして得る ことができる。天然の OCT3タンパク質、あるいは GSTとの融合タンパク質として大腸 菌等の微生物において発現させたリコンビナント (組み換え) OCT3タンパク質、また はその部分ペプチドをゥサギ等の小動物に免疫し血清を得る。これを、例えば、硫安 沈殿、プロテイン A、プロテイン Gカラム、 DEAEイオン交換クロマトグラフィー、 OCT3タ ンパク質や合成ペプチドをカップリングしたァフィユティーカラム等により精製すること により調製する。また、モノクローナル抗体であれば、例えば、 OCT3タンパク質若しく はその部分ペプチドをマウスなどの小動物に免疫を行い、同マウスより脾臓を摘出し 、これをすりつぶして細胞を分離し、該細胞とマウスミエローマ細胞とをポリエチレング リコール等の試薬を用いて融合させ、これによりできた融合細胞 (ハイブリドーマ)の 中から、 OCT3タンパク質に結合する抗体を産生するクローンを選択する。次いで、 得られたハイプリドーマをマウス腹腔内に移植し、同マウスより腹水を回収し、得られ たモノクローナル抗体を、例えば、硫安沈殿、プロテイン A、プロテイン Gカラム、 DEAEイオン交換クロマトグラフィー、 OCT3タンパク質や合成ペプチドをカップリング したァフィユティーカラム等により精製することで、調製することが可能である。
[0052] 本発明の抗体の形態には、特に制限はなぐ本発明の OCT3タンパク質に結合する 限り、上記ポリクローナル抗体、モノクローナル抗体のほかに、ヒト抗体、遺伝子組み 換えによるヒト型化抗体、さらにその抗体断片や抗体修飾物も含まれる。 [0053] 抗体取得の感作抗原として使用される本発明の OCT3タンパク質は、その由来とな る動物種について制限されないが、哺乳動物、例えばマウス、ヒト由来のタンパク質 が好ましぐ特にヒト由来のタンパク質が好ましい。ヒト由来のタンパク質は、当業者に おいては、本明細書に開示される遺伝子配列又はアミノ酸配列を用いて、適宜、取 得することができる。
[0054] 本発明において、感作抗原として使用されるタンパク質は、完全なタンパク質あるい はタンパク質の部分ペプチドであってもよい。タンパク質の部分ペプチドとしては、例 えば、タンパク質のアミノ基 (N)末端断片やカルボキシ (C)末端断片が挙げられる。 本明細書における「抗体」とはタンパク質の全長又は断片に反応する抗体を意味す る。
[0055] また、ヒト以外の動物に抗原を免疫して上記ハイプリドーマを得る他に、ヒトリンパ球 、例えば EBウィルスに感染したヒトリンパ球を in vitroでタンパク質、タンパク質発現細 胞又はその溶解物で感作し、感作リンパ球をヒト由来の永久分裂能を有するミエロー マ細胞、例えば U266と融合させ、タンパク質への結合活性を有する所望のヒト抗体を 産生するハイプリドーマを得ることもできる。
[0056] 本発明の OCT3タンパク質に対する抗体は、 OCTタンパク質と結合することにより、 OCT3タンパク質の機能を阻害し、例えば、精神疾患の治療や改善効果が期待され る。得られた抗体を人体に投与する目的 (抗体治療)で使用する場合には、免疫原 性を低下させるため、ヒト抗体やヒト型抗体が好ま 、。
[0057] さらに本発明は、 OCT3タンパク質の機能を阻害し得る物質として、 OCT3タンパク 質に結合する低分子量物質 (低分子化合物)も含有する。本発明の OCT3タンパク質 に結合する低分子量物質は、天然または人工の化合物であってもよい。通常、当業 者に公知の方法を用いることによって製造または取得可能な化合物である。また本 発明の化合物は、後述のスクリーニング方法によって、取得することも可能である。
[0058] また、 OCT3タンパク質の基質となる化合物は、 OCT3のトランスポーターとしての活 性を競合的に阻害する可能性が考えられる。例えば、プロプラノロール等の 遮断 薬 (心不全等の治療薬)は、 OCT3によって輸送されることが知られている。 |8遮断薬 は血液脳関門を通過できないが、類似物質で中枢移行性があり、かつ OCT3のトラン スポーター活性を競合的に阻害する物質は、脳内で上記 OCT3タンパク質の機能を 阻害することが期待される。即ち、該阻害物質もまた、本発明の上記低分子化合物 に含まれる。
[0059] 上記 (b)の OCT3タンパク質に結合する低分子化合物には、例えば、 OCT3に対し て親和性が高い化合物が含まれる。該化合物の具体例としては、ノルアドレナリンの 不活性代謝物であるノルメタネフリンを挙げることができる。ノルメタネフリンは後述の 実施例で示すように、実際に抗うつ作用を有することが確認されたことから、上記低 分子化合物の好ま 、一例と言える。
[0060] また、 OCT3に対して親和性を有する低分子化合物としては、ノルメタネフリン以外 にも、 f列 ば、 3— methoxyisoprenaline、 3—0— methyl isoprenaline、 carteolol、 、- )isoprenaline、 (-) adrenaline、 1 -methyl-4-phenylpyndinium (MPP+)、
(2- chloroethyl)- 3- sarcosinamide- 1 -nitrosourea (SarCNU)、
1, 1'— Dusopropyl— 2,4'— cyanine (disprocynium24)、 decynium 22、 cyanine 863、 corticosterone、 estradiol、 disopyramide、 lidocaine、 procainamide等のィ匕合物を挙げ ることがでさる。
[0061] また、上記化合物の中には OCT3のみを標的とせず、他の標的を介した多彩な薬 理作用を有するものが含まれている。例えば、 3-methoxyisoprenaline, 3-0- methyl isoprenaiine、 CarteoloU、— )isoprenaline、および (―) adrenalineiま降比作用、 Sarし NUii 抗腫揚作用、 disopyramide、 lidocaine、および procainamideは饥不整脈作用、 corticosteroneおよび estradiolはステロイドホルモン様作用を有する。また、 l-methyl-4-phenylpyridinium (MPP+)はドパミン神経毒として知られている。また、 disprocynium24、 decynium 22、および cyanine 863は強力な OCT3阻害薬であるが、 同時に他の OCTサブタイプに対しても強力な阻害作用を示す。
[0062] 従って、ノルメタネフリン以外の上記化合物を本発明の薬剤として使用する場合に は、例えば、上記化合物の誘導体化を行い、 OCT3以外の標的への親和性をなくす ことが好ましい。このように上述の種々の化合物の誘導体もまた、本発明の低分子化 合物として有用である。
[0063] 本発明の好ましい態様においては、 OCT3に対して親和性を有する、ノルメタネフリ ン、 3-methoxyisoprenaline ^ 3-0- methyl isoprenaline^ carteoloU (-) isoprenaline、
(-) adrenaline、 1- methyト 4- phenylpyridinium (MPP+)、
(2- chloroethyl)- 3- sarcosinamide- 1 -nitrosourea (SarCNU)、
1, 1'— Dusopropyl— 2,4'— cyanine (disprocynium24)、 decynium 22、 cyanine 863、 corticosterone、 estradiol、 disopyramide、 lidocaine、および procainamide力らな 群よ り選択される化合物、もしくは該化合物の誘導体を有効成分として含有する精神疾患 治療薬を提供する。
[0064] さらに、本発明の OCT3タンパク質の機能を阻害し得る物質として、 OCT3タンパク 質に対してドミナントネガティブの性質を有する OCT3タンパク質変異体を挙げること 力 Sできる。「OCT3タンパク質に対してドミナントネガティブの性質を有する OCT3タン ノ ク質変異体」とは、該タンパク質をコードする遺伝子を発現させることによって、内 在性の野生型タンパク質の活性を消失もしくは低下させる機能を有するタンパク質を 指す。
[0065] また、本発明の機能抑制物質は、本発明の OCT3のカチオントランスポーター活性 を指標とするスクリーニング方法により、適宜、取得することができる。
[0066] また本発明は、有機カチオントランスポーター OCT3タンパク質の発現亢進物質、も しくは機能亢進 (活性化)物質を有効成分として含む、覚せ!ゝ剤依存症治療薬を提 供する。上記「タンパク質の発現亢進」には、遺伝子からの転写の亢進、および該転 写産物からの翻訳の亢進、等が含まれる。
[0067] 一般的に覚せい剤とは、眠気を覚まし、疲労感を除去する目的で用いられる中枢 神経興奮剤の総称であり、通常、メタンフェタミン、またはメタンフェタミンに類似した 合成薬物を指す。本発明の覚せい剤には、上記メタンフェタミン以外の化合物も含ま れ、さらに、覚せい剤類似薬等も包含される。例えば、メタンフェタミン以外の覚せい 剤として、アンフェタミン、 MDMA等が挙げられる。また、覚せい剤類似薬としては、例 えば、メチルフエ-デート (薬品名リタリン)等が挙げられる。
[0068] アンフェタミンおよびメタンフェタミンは、非常に類似した化学構造を有し、同様の薬 理効果を発現する。現在日本で乱用が問題となっている覚せい剤のほとんどカ タン フエタミンであり、通常塩酸塩の状態で密売乱用されている。メチル基のついたメタン フエタミンの方が薬理作用が強 、。
[0069] 覚せい剤を使用すると、心拍数、呼吸、血圧が上昇し、瞳孔が散大し、食欲が減退 する。覚せい剤は連用すると依存症を発現するが、その症状には、発汗、頭痛、かす み目、めまい、不眠、不安などのほかに、覚せい剤に対する感受性亢進 (逆耐性)が 含まれる。逆耐性現象は長期間持続し、覚せい剤は連用後、長期間休薬をしても容 易に発現し、既存の精神疾患治療薬では治療できないことから、不可逆的な神経機 能変化の結果であると解釈されている。実験動物においても覚せい剤を反復投与す ると、覚せい剤誘発自発運動量の亢進が観察され、この現象は既存の精神疾患治 療薬では治療できない。従って、覚せい剤に代わって、自発運動量を亢進可能な物 質は、覚せい剤依存症を治療する薬剤として有効であるといえる。本発明の OCT3タ ンパク質は、マウスにおいて発現を抑制することにより、覚せい剤反復投与による逆 耐性現象と同様の行動が観察された。すなわち、 OCT3タンパク質の発現亢進物質 もしくは機能 (活性)亢進物質は覚せ!、剤依存症治療薬として有効である。
[0070] 本発明の上記機能亢進物質は、当業者においては、上述のようにレポーターアツ セィ、または OCT3のトランスポーター活性を指標とする方法により、適宜、取得するこ とが可能である。
[0071] また本発明の OCT3遺伝子の発現抑制物質、および OCT3タンパク質の機能抑制 物質は、それ自体がうつ病や不安神経症等の精神疾患に対して治療効果を有する 力 例えば、既知の抗うつ薬と併用した際に、抗うつ薬の作用を増強させる効果も併 せ持つ。
[0072] 従って本発明は、 OCT3遺伝子の発現抑制物質、または OCT3タンパク質の機能抑 制物質を有効成分として含有する、抗うつ薬作用増強剤 (抗うつ薬併用剤)を提供す る。また本発明は、抗うつ薬と本発明の抗うつ薬作用増強剤とを有効成分として含有 する医薬組成物に関する。
[0073] 本発明の抗うつ薬作用増強剤と併用した際に作用(効果)が増強される抗うつ剤と しては、例えば、イミブラミン、イミブラミンと構造が類似する三環系抗うつ薬を含む古 典的抗うつ薬、選択的セロトニン再取り込み阻害薬(SSRI)、セロトニン、ノルアドレナ リン再取り込み阻害薬 (SNRI)等を挙げることができる。 [0074] さらに本発明は、有機カチオントランスポーター OCT3遺伝子の発現が人為的に抑 制されて 、ることを特徴とする、 OCT3遺伝子ノックアウト非ヒト動物 (本明細書にお!ヽ ては、「ノックアウト非ヒト動物」、あるいは、単に「動物」と記載する場合あり)を提供す る。
[0075] 本発明の遺伝子ノックアウト非ヒト動物は、例えば、うつ病、不安神経症等の精神疾 患治療のための薬剤のスクリーニングに用いることが可能である。また、上記各疾患 のメカニズム解明の研究のための病態モデル動物として、非常に有用である。
[0076] 本発明におけるノックアウト動物には、アンチセンス RNAもしくは siRNAの作用により 遺伝子の発現が抑制された所謂「ノックダウン動物」も含まれる。
[0077] 本発明において「OCT3遺伝子の発現が人為的に抑制されている」には、例えば、( l) OCT3遺伝子の遺伝子対の一方または双方に、ヌクレオチドの挿入、欠失、置換 等の遺伝子変異を有することにより該遺伝子の発現が抑制されている状態、(2)本 発明の核酸 (例えば、アンチセンス RNAまたは siRNA等)の作用により遺伝子の発現 が抑制されて 、る状態、等を挙げることができる。
[0078] 本発明における「抑制」には、 OCT3遺伝子の発現が完全に抑制されている場合、 および、本発明の動物における OCT3の発現量が野生型動物における OCT3遺伝子 の発現量と比較して有意に低下している場合、が含まれる。
[0079] 上記(1)には、 OCT3遺伝子の遺伝子対の一方の遺伝子の発現のみが抑制されて いる場合も含まれる。本発明における遺伝子変異の存在する部位は、該遺伝子の発 現が抑制されるような部位であれば特に制限されず、例えばェクソン部位、プロモー ター部位等を挙げることができる。
[0080] 本発明の遺伝子ノックアウト動物は、当業者においては一般的に公知の遺伝子ェ 学技術により作製することができる。例えば、以下のようにして遺伝子ノックアウトマウ スを作製することができる。まず、マウス力も本発明の OCT3遺伝子のェクソン部分を 含む DNAを単離し、この DNA断片に適当なマーカー遺伝子を挿入し、ターゲッティン グベクターを構築する。このターゲッティングベクターをエレクト口ポレーシヨン法など によりマウスの ES細胞株に導入し、相同組み換えを生じた細胞株を選抜する。挿入 するマーカー遺伝子としては、ネオマイシン耐性遺伝子などの抗生物質耐性遺伝子 が好ましい。抗生物質耐性遺伝子を挿入した場合には、抗生物質を含む培地で培 養するだけで相同組み換えを生じた細胞株を選抜することができる。また、より効率 的な選抜を行うためには、ターゲッティングベクターにチミジンキナーゼ遺伝子などを 結合させておくことも可能である。これにより、非相同組み換えを起こした細胞株を排 除することができる。また、 PCRおよびサザンブロットにより相同組み換え体の検定を 行い、本発明の遺伝子の遺伝子対の一方が不活性化された細胞株を効率よく得るこ とちでさる。
[0081] 相同組み換えを生じた細胞株を選抜する場合、相同組み換え箇所以外にも、遺伝 子挿入による未知の遺伝子破壊の恐れがあることから、複数のクローンを用いてキメ ラ作製を行うことが好まし ヽ。得られた ES細胞株をマウス胚盤葉にインジェクションし、 キメラマウスを得ることができる。このキメラマウスを交配させることで、本発明の OCT3 遺伝子の遺伝子対の一方を不活性ィ匕したマウスを得ることができる。さらに、このマウ スを交配させることで、本発明の遺伝子の遺伝子対の双方を不活性ィ匕したマウスを 取得することができる。マウス以外の ES細胞が榭立された動物においても、同様の手 法により、遺伝子改変を行うことができる。
[0082] 本発明の上記ノックアウト動物は、好ましくは、本発明の上記核酸を非ヒト動物へ導 入することによって OCT3遺伝子の発現が抑制されて 、ることを特徴とする、ノックァゥ ト(ノックダウン)動物である。
[0083] 上記ノックダウン動物は、本発明の核酸 (アンチセンス RNAまたは siRNA等)を発現 し得る構造のベクターを、非ヒト動物へ導入することによつても作製することができる。
[0084] また、上記のようにして作製される本発明のノックアウト非ヒト動物の作製方法もまた 、本発明に含まれる。本作製方法の好ましい態様としては、本発明の動物の脳内へ、 本発明の核酸を投与する工程を含む、ノックアウト非ヒト動物の作製方法である。より 詳しくは、例えば、本発明の動物の脳内、好ましくは脳室内へ、 OCT遺伝子の転写 産物またはその一部に対するアンチセンス核酸を投与する工程を含む方法である。 投与は、例えば、実施例に記載の方法によって行うことができる。
[0085] 本発明の上記アンチセンス核酸は、特に制限されるものではないが、例えば、以下 のようにして設計されたものが好ま 、。 (1)標的遺伝子である OCT3の開始コドンを 含むアンチセンス配列である。(2)アンチセンスの全長は 18-25 merが至適である。 ( 3)転写調節領域に力かってしまう可能性があるため、開始コドン上流はあまり長く取 らな 、。(4)アンチセンスそのものがモノマー(一本鎖がそれ自体で結合してしまう)、 ダイマー(2本のアンチセンス同士で結合する)となるような設計は避ける。
[0086] 本発明のノックアウト動物の種類は、非ヒト動物であれば特に制限されないが、通常 、哺乳類であり、好ましくは霊長類である。より具体的には、本発明の動物として、好 ましくはマウス、ラット、ハムスター等のげつ歯類 (ネズミ目)、またはサルであり、より好 ましくは、マウスもしくはサルである。
[0087] 好ましい態様においては、本発明のノックアウト非ヒト動物は、特に限定されるもの ではないが、以下の(a)—(c)のいずれかの核酸の作用により、 OCT3遺伝子の発現 が抑制されて 、る動物である。
(a) OCT3遺伝子の転写産物またはその一部に対するアンチセンス核酸
(b) OCT3遺伝子の転写産物を特異的に開裂するリボザィム活性を有する核酸
(c) OCT3遺伝子の発現を RNAi効果による阻害作用を有する核酸
[0088] 本発明の OCT3遺伝子ノックアウト(ノックダウン)非ヒト動物は、うつ病、不安神経症 、覚せ 、剤依存症等の精神疾患に関連する表現型を示すことを特徴とする動物であ る。より詳しくは、本発明の動物は、例えば、以下の(a)—(c)のいずれか少なくとも一 つの表現型を示すことを特徴とする、遺伝子ノックアウト非ヒト動物である。
(a)抗うつ様作用
(b)覚せ 、剤誘発自発運動の亢進
(c)抗不安作用
[0089] 足がつかず、這 、上がることができな 、容器内で遊泳させた実験動物を再度、同じ 容器で遊泳させる(強制遊泳試験)と動物は絶望状態に陥り、実験時間中のほとんど で無動状態を呈する。このような状態は「うつ状態」であるものと考えられる。この無動 状態(「うつ状態」)が緩和した動物、あるいは、完全に消失した動物は、本発明の上 記 (a)「抗うつ様作用」の表現型を示す動物の一例と言える。
[0090] また、覚せい剤は連用すると依存症を発現するが、その症状には、覚せい剤に対 する感受性亢進 (逆耐性)が含まれる。実験動物にお!ヽても覚せ!ヽ剤を反復投与す ると覚せい剤誘発自発運動量の亢進が観察される。この状態を呈する動物は、本発 明の上記 (b)「覚せ 、剤誘発自発運動量の亢進」の表現型を示す動物の一例である
[0091] また、動物は新規な広い場所に曝露されると当初は探索行動 (移所運動、立ち上 力 Sり行動)を行うが、時間経過と共にその行動は減少していく。このような行動が解除 され探索行動が維持される動物は、本発明の上記 (c)「抗不安作用」の表現型を示 す動物の一例である。
[0092] 本発明の上記動物は、例えば、精神疾患の治療薬のスクリーニング、精神疾患を 引き起こす原因物質の同定、および、薬物依存症形成のメカニズムの解析に非常に 有用である。
[0093] また本発明は、精神疾患治療 (例えば、うつ病、不安神経症等)または覚せい剤依 存症治療のための薬剤のスクリーニング方法、並びに、精神疾患の原因化合物の同 定方法を提供する。なお、上記の「治療のための薬剤」には、治療薬との併用薬 (治 療薬作用増強剤)も含まれる。従って、本発明の一つの態様としては、精神疾患治療 (例えば、うつ病、不安神経症等)または覚せい剤依存症治療に用いるための併用 薬 (例えば、治療薬作用増強剤)のスクリーニング方法に関する。
[0094] 本発明のスクリーニング方法の好まし!/、態様にぉ ヽては、有機カチオントランスポ 一ター OCT3タンパク質またはその部分ペプチドとの結合を指標とする方法である。 通常、 OCT3タンパク質またはその部分ペプチドと結合する化合物は、 OCT3タンパク 質の機能を阻害する効果を有することが期待される。
[0095] 本発明の上記方法は、より詳しくは、以下の(a)— (c)の工程を含む方法である。
(a)有機カチオントランスポーター OCT3タンパク質またはその部分ペプチドと被検 化合物を接触させる工程
(b)該タンパク質またはその部分ペプチドと被検化合物との結合活性を測定するェ 程
(c)有機カチオントランスポーター OCT3タンパク質またはその部分ペプチドと結合 する化合物を選択する工程
[0096] 本発明の上記方法においては、まず、 OCT3タンパク質またはその部分ペプチドと 被検化合物を接触させる。 OCT3タンパク質またはその部分ペプチドは、被検化合物 との結合を検出するための指標に応じて、例えば、 OCT3タンパク質またはその部分 ペプチドの精製された形態、細胞内または細胞外に発現した形態、あるいはァフィ二 ティーカラムに結合した形態であり得る。この方法に用 、る被検化合物は必要に応じ て適宜標識して用いることができる。標識としては、例えば、放射標識、蛍光標識等 を挙げることができる。
[0097] 本方法にお!、ては、次 、で、 OCT3タンパク質またはその部分ペプチドと被検化合 物との結合活性を測定する。 OCT3タンパク質またはその部分ペプチドと被検化合物 との結合は、例えば、 OCT3タンパク質またはその部分ペプチドに結合した被検化合 物に付された標識によって検出することができる。また、細胞内または細胞外に発現 している OCT3タンパク質またはその部分ペプチドへの被検化合物の結合により生じ る OCT3タンパク質の活性の変化を指標として検出することもできる。
[0098] 本方法にお!、ては、次 、で、 OCT3タンパク質またはその部分ペプチドと結合する 被検化合物を選択する。
[0099] 本方法により選択 (取得)される化合物は、 OCT3タンパク質の阻害作用を有するこ とが期待され、例えば、精神疾患を治療するための薬剤 (例えば、治療薬もしくは治 療薬作用増強剤)として期待される。
[0100] 本発明のスクリーニング方法の他の態様は、 OCT3遺伝子の発現レベルを指標とす る方法である。 OCT3遺伝子の発現レベルを低下させる化合物は、精神疾患治療の ための薬剤となることが期待される。反対に OCT3遺伝子の発現レベルを上昇させる 化合物は、覚せい剤依存症治療のための薬剤となることが期待される。
[0101] 本発明の上記方法は、例えば、以下の(a)— (c)の工程を含む、精神疾患治療の ための薬剤のスクリーニング方法である。
(a)有機カチオントランスポーター OCT3遺伝子を発現する細胞と、被検化合物を接 触させる工程
(b)該有機カチオントランスポーター OCT3遺伝子の発現レベルを測定する工程
(c)被検化合物の非存在下にお ヽて測定した場合と比較して、該発現レベルを低下 させる化合物を選択する工程 [0102] また、本発明の上記方法は、例えば、以下の (a)—(c)の工程を含む、覚せい剤依 存症治療のための薬剤のスクリーニング方法である。
(a)有機カチオントランスポーター OCT3遺伝子を発現する細胞と、被検化合物を接 触させる工程
(b)該有機カチオントランスポーター OCT3遺伝子の発現レベルを測定する工程
(c)被検化合物の非存在下にお ヽて測定した場合と比較して、該発現レベルを上昇 させる化合物を選択する工程
[0103] 本方法においては、まず OCT3遺伝子を発現する細胞に、被検化合物を接触させ る。用いられる「細胞」の由来としては、ヒト、マウス、ラット等に由来する細胞が挙げら れるが、これらに由来する細胞に制限されない。「OCT3遺伝子を発現する細胞」とし ては、内因性の OCT3遺伝子を発現している細胞、または外来性の OCT3遺伝子が 導入され、該遺伝子が発現している細胞を利用することができる。外来性の OCT3遺 伝子が発現した細胞は、通常、 OCT3遺伝子が挿入された発現ベクターを宿主細胞 へ導入することにより作製することができる。該発現べクタ一は、一般的な遺伝子ェ 学技術によって作製することができる。
[0104] 本方法に用いる被検化合物としては、特に制限されないが、例えば、天然化合物、 有機化合物、無機化合物、タンパク質、ペプチドなどの単一化合物、並びに、化合物 ライブラリー、遺伝子ライブラリーの発現産物、細胞抽出物、細胞培養上清、発酵微 生物産生物、海洋生物抽出物、植物抽出物等が挙げられる。
[0105] OCT3遺伝子を発現する細胞への被検化合物の「接触」は、通常、 OCT3遺伝子を 発現する細胞の培養液に被検化合物を添加することによって行うが、この方法に限 定されない。被検化合物がタンパク質等の場合には、該タンパク質を発現する DNA ベクターを、該細胞へ導入することにより、「接触」を行うことができる。
[0106] 本方法においては、次いで、該 OCT3遺伝子の発現レベルを測定する。ここで「遺 伝子の発現」には、転写および翻訳の双方が含まれる。遺伝子の発現レベルの測定 は、当業者に公知の方法によって行うことができる。例えば、 OCT3遺伝子を発現す る細胞力も mRNAを定法に従って抽出し、この mRNAを铸型としたノーザンハイブリダ ィゼーシヨン法または RT-PCR法を実施することによって該遺伝子の転写レベルの測 定を行うことができる。また、 OCT3遺伝子を発現する細胞からタンパク質画分を回収 し、 OCT3タンパク質の発現を SDS-PAGE等の電気泳動法で検出することにより、遺 伝子の翻訳レベルの測定を行うこともできる。さらに、 OCT3タンパク質に対する抗体 を用いて、ウェスタンブロッテイング法を実施することにより該タンパク質の発現を検出 することにより、遺伝子の翻訳レベルの測定を行うことも可能である。 OCT3タンパク質 の検出に用いる抗体としては、検出可能な抗体であれば、特に制限はないが、例え ばモノクローナル抗体、またはポリクローナル抗体の両方を利用することができる。
[0107] 本方法にお!、ては、次 、で、被検化合物を接触させな 、場合 (対照)と比較して、 該発現レベルを低下させる化合物あるいは上昇させる化合物を選択する。低下させ る化合物は、精神疾患治療のための薬剤となり、反対に上昇させる化合物は覚せい 剤依存症治療のための薬剤となる。
[0108] 本発明のスクリーニング方法の他の態様は、本発明の有機カチオントランスポータ 一 OCT3遺伝子の発現レベルを低下ある 、は上昇させる化合物を、レポーター遺伝 子の発現を指標として同定する方法である。
[0109] 本発明の上記方法は、例えば、以下の(a)— (c)の工程を含む、精神疾患治療の ための薬剤のスクリーニング方法である。
(a)有機カチオントランスポーター OCT3遺伝子の転写調節領域とレポーター遺伝 子とが機能的に結合した構造を有する DNAを含む細胞と、被検化合物を接触させる 工程
(b)該レポーター遺伝子の発現レベルを測定する工程
(c)被検化合物の非存在下にお ヽて測定した場合と比較して、該発現レベルを低下 させる化合物を選択する工程
[0110] また、本発明の上記方法は、例えば、以下の (a)—(c)の工程を含む、覚せい剤依 存症治療のための薬剤のスクリーニング方法である。
(a)有機カチオントランスポーター OCT3遺伝子の転写調節領域とレポーター遺伝 子とが機能的に結合した構造を有する DNAを含む細胞と、被検化合物を接触させる 工程
(b)該レポーター遺伝子の発現レベルを測定する工程 (c)被検化合物の非存在下にお ヽて測定した場合と比較して、該発現レベルを上昇 させる化合物を選択する工程
[0111] 本方法においては、まず、 OCT3遺伝子の転写調節領域とレポーター遺伝子とが 機能的に結合した構造を有する DNAを含む細胞または細胞抽出液と、被検化合物 を接触させる。ここで「機能的に結合した」とは、 OCT3遺伝子の転写調節領域に転 写因子が結合することにより、レポーター遺伝子の発現が誘導されるように、 OCT3遺 伝子の転写調節領域とレポーター遺伝子とが結合していることをいう。従って、レポ 一ター遺伝子が他の遺伝子と結合しており、他の遺伝子産物との融合タンパク質を 形成する場合であっても、 OCT3遺伝子の転写調節領域に転写因子が結合すること によって、該融合タンパク質の発現が誘導されるものであれば、上記「機能的に結合 した」の意に含まれる。 OCT3遺伝子の cDNA塩基配列に基づいて、当業者において は、ゲノム中に存在する OCT3遺伝子の転写調節領域を周知の方法により取得する ことが可能である。
[0112] 本方法に用いるレポーター遺伝子としては、その発現が検出可能であれば特に制 限はなぐ例えば、 CAT遺伝子、 lacZ遺伝子、ルシフェラーゼ遺伝子、および GFP遺 伝子等が挙げられる。「OCT3遺伝子の転写調節領域とレポーター遺伝子とが機能 的に結合した構造を有する DNAを含む細胞」として、例えば、このような構造が挿入 されたベクターを導入した細胞が挙げられる。このようなベクターは、当業者に周知の 方法により作製することができる。ベクターの細胞への導入は、一般的な方法、例え ば、リン酸カルシウム沈殿法、電気パルス穿孔法、リボフエタミン法、マイクロインジェ クシヨン法等によって実施することができる。「OCT3遺伝子の転写調節領域とレポ一 ター遺伝子とが機能的に結合した構造を有する DNAを含む細胞」には、染色体に該 構造が挿入された細胞も含まれる。染色体への DNA構造の挿入は、当業者に一般 的に用いられる方法、例えば、相同組み換えを利用した遺伝子導入法により行うこと ができる。
[0113] 「OCT3遺伝子の転写調節領域とレポーター遺伝子とが機能的に結合した構造を 有する DNAを含む細胞抽出液」とは、例えば、市販の試験管内転写翻訳キットに含 まれる細胞抽出液に、 OCT3遺伝子の転写調節領域とレポーター遺伝子とが機能的 に結合した構造を有する DNAを添加したものを挙げることができる。
[0114] 本方法における「接触」は、「OCT3遺伝子の転写調節領域とレポーター遺伝子とが 機能的に結合した構造を有する DNAを含む細胞」の培養液に被検化合物を添加す る、または該 DNAを含む上記の市販された細胞抽出液に被検化合物を添加すること により行うことができる。被検化合物がタンパク質の場合には、例えば、該タンパク質 を発現する DNAベクターを、該細胞へ導入することにより行うことも可能である。
[0115] 本方法においては、次いで、該レポーター遺伝子の発現レベルを測定する。レポ 一ター遺伝子の発現レベルは、該レポーター遺伝子の種類に応じて、当業者に公知 の方法により測定することができる。例えば、レポーター遺伝子が CAT遺伝子である 場合には、該遺伝子産物によるクロラムフエ-コールのァセチルイ匕を検出することに よって、レポーター遺伝子の発現量を測定することができる。レポーター遺伝子が lacZ遺伝子である場合には、該遺伝子発現産物の触媒作用による色素化合物の発 色を検出することにより、また、ルシフェラーゼ遺伝子である場合には、該遺伝子発 現産物の触媒作用による蛍光化合物の蛍光を検出することにより、さらに、 GFP遺伝 子である場合には、 GFPタンパク質による蛍光を検出することにより、レポーター遺伝 子の発現量を測定することができる。
[0116] 本方法においては、次いで、測定したレポーター遺伝子の発現レベルを、被検化 合物の非存在下にお 、て測定した場合と比較して、低下 (抑制)あるいは上昇 (亢進 )させる化合物を選択する。低下 (抑制)させる化合物は、精神疾患治療のための薬 剤となり、反対に上昇 (亢進)させる化合物は覚せい剤依存症治療のための薬剤とな る。
[0117] 本発明のスクリーニング方法の他の態様は、有機カチオントランスポーター OCT3タ ンパク質の活性を指標とする方法である。
[0118] 本発明の上記方法は、例えば、以下の(a)— (c)の工程を含む、精神疾患治療の ための薬剤のスクリーニング方法である。
(a)有機カチオントランスポーター OCT3タンパク質、または該タンパク質を発現する 細胞もしくは細胞抽出液と、被検化合物を接触させる工程
(b)該タンパク質の活性を測定する工程 (c)被検化合物の非存在下にお!ヽて測定した場合と比較して、該タンパク質の活性 を低下させる化合物を選択する工程
[0119] また、本発明の上記方法は、例えば、以下の (a)—(c)の工程を含む、覚せい剤依 存症治療のための薬剤のスクリーニング方法である。
(a)有機カチオントランスポーター OCT3タンパク質、または該タンパク質を発現する 細胞もしくは細胞抽出液と、被検化合物を接触させる工程
(b)該タンパク質の活性を測定する工程
(c)被検化合物の非存在下にお!ヽて測定した場合と比較して、該タンパク質の活性 を上昇させる化合物を選択する工程
[0120] 本方法においては、まず、 OCT3タンパク質または該タンパク質を発現する細胞もし くは細胞抽出液と、被検化合物を接触させる。
[0121] 次いで OCT3タンパク質の活性を測定する。 OCT3タンパク質の活性としては、例え ばモノアミンおよびその関連薬剤の輸送活性が挙げられる。より具体的には、ドパミン 、セロトニン、ノルアドレナリン、ドパミン神経毒 MPP+、覚せい剤等の輸送活性を挙げ ることができる。これらの活性の測定は当業者に公知の手法によって行うことができる
[0122] 例えば、上記モノアミンおよびその関連薬剤の輸送活性の調節は、上記した OCT3 によって輸送されうる物質を放射性同位元素で標識し、それを被検化合物と OCT3発 現細胞に暴露し、一定時間後に細胞内に取り込まれた放射性標識物質の放射活性 を比較することにより評価することが可能である。なお、放射性標識が不可能な場合 でも、当該物質の細胞内濃度が十分であれば高速液体クロマトグラフィー(HPLC)な どの測定機器で上記モノアミンおよびその関連薬剤の輸送活性を評価することが可 能である。
[0123] さらに、被検化合物の非存在下において測定した場合と比較して、該タンパク質の 活性を低下 (抑制)あるいは上昇 (亢進)させる化合物を選択する。低下 (抑制)させる 化合物は精神疾患治療のための薬剤となり、反対に上昇 (亢進)させる化合物は覚 せ 、剤依存症治療のための薬剤となる。
[0124] また本発明は、本発明の上記動物を利用した精神疾患の原因化合物の同定方法 、並びに、覚せい剤依存症治療のための薬剤 (覚せい剤依存症治療薬)のスクリー ユング方法に関する。
[0125] 本発明の方法は、例えば、以下の (a)— (c)の工程を含む、精神疾患の原因化合 物の同定方法である。
(a)本発明の遺伝子ノックアウト非ヒト動物に被検化合物を投与する工程
(b)前記非ヒト動物の有する表現型に依存する行動を観察する工程
(c)前記表現型に依存する行動を消失させる化合物を、精神疾患の原因化合物で あるものと判定する工程
[0126] 本発明の上記方法は、本発明の動物の有する表現型に依存する行動を指標とした 、精神疾患の原因化合物の同定方法である。
[0127] まず、上記した遺伝子ノックアウト非ヒト動物に被検化合物を投与する。被検化合物 の投与は、経口、非経口投与のいずれでも可能である力 好ましくは非経口投与で あり、具体的には、注射剤型、経鼻投与剤型、経肺投与剤型、経皮投与型等が挙げ られる。注射剤型の例としては、例えば、静脈内注射、筋肉内注射、腹腔内注射、皮 下注射などにより全身または局部的に投与することができる。
[0128] 被検化合物が DNAである場合、生体内に投与する場合には、レトロウイルス、アデ ノウィルス、センダイウィルスなどのウィルスベクターやリボソームなどの非ウィルスべ クタ一を利用することができる。投与方法としては、 in vivo法および ex vivo法を例示 することができる。
[0129] 本方法においては次いで、 OCT遺伝子をノックアウトした非ヒト動物の有する表現 型に依存する行動を観察する。 OCT遺伝子をノックアウトした非ヒト動物の有する表 現型とは、例えば、上記の(a)抗うつ様作用、または (c)抗不安作用を好適に示すこ とがでさる。
[0130] 即ち、上記方法において、「前記表現型に依存する行動を消失させる」とは、例え は、強制水泳試験における無動状態の消失、新規な場所における探索行動 (移所運 動や立ち上がり行動など)の維持等が挙げられる。
[0131] 本方法においては、さらに、これらの表現型に依存する行動を消失させる化合物を 選択する。選択された化合物は、精神疾患の原因化合物であるものと判定される。こ れらの同定された精神疾患の原因化合物は、例えば、精神疾患のメカニズム解明の ための試薬として有用である。
[0132] また、本発明の方法は、例えば、以下の (a)—(c)の工程を含む、覚せい剤依存症 治療のための薬剤のスクリーニング方法である。
(a)本発明の遺伝子ノックアウト非ヒト動物に被検化合物を投与する工程
(b)前記非ヒト動物の有する表現型に依存する覚せい剤誘発自発運動を観察するェ 程
(c)前記運動を消失 (低下)させる化合物を選択する工程
[0133] 上記工程 (c)によって選択される化合物は、覚せい剤依存症治療のための薬剤で あるものと判定される。
[0134] 本発明の薬剤、または治療用化合物を医薬品として用いる場合には、該薬剤もしく は化合物自体を直接患者に投与する以外に、公知の製剤学的方法により製剤化し た医薬組成物として投与を行うことも可能である。本発明の薬剤または化合物は、例 えば、薬理学上許容しうる担体 (賦形剤、結合剤、崩壊剤、矯味剤、矯臭剤、乳化剤 、希釈剤、溶解補助剤等)と混合して得られる医薬組成物または錠剤、丸剤、散剤、 顆粒剤、カプセル剤、トローチ剤、シロップ剤、液剤、乳剤、懸濁剤、注射剤 (液剤、 懸濁剤等)、坐剤、吸入剤、経皮吸収剤、点眼剤、眼軟膏等の製剤として、経口また は非経口に適した形態とすることができる。
[0135] また本発明は、本発明の精神疾患治療薬もしくは抗うつ薬作用増強剤を個体 (例 えば、患者等)へ投与することを特徴とする、精神疾患の治療もしくは予防方法に関 する。さらに本発明は、本発明の覚せい剤依存症治療薬を個体 (例えば、患者等)へ 投与することを特徴とする、覚せい剤依存症の治療もしくは予防方法に関する。
[0136] 本発明の治療方法における個体とは、通常、上記疾患の患者を指し、特に制限さ れないが、好ましくはヒトである。
[0137] 患者への投与は、一般的には、例えば、動脈内注射、静脈内注射、皮下注射など 当業者に公知の方法により行うことができる。投与量は、患者の体重や年齢、投与方 法などにより変動するが、当業者であれば適当な投与量を適宜選択することが可能 である。また、該化合物が DNAによりコードされうるものであれば、該 DNAを遺伝子治 療用ベクターに組込み、遺伝子治療を行うことも考えられる。
[0138] 遺伝子治療用ベクターとしては、例えば、レトロウイルスベクター、アデノウイルスべ クタ一、アデノ随伴ウィルスベクターなどのウィルスベクターやリボソームなどの非ウイ ルスベクターなどを例示することができる。該ベクターを利用して、 ex vivo法や in vivo 法などにより患者へ目的の DNAの投与を行うことができる。
[0139] さらに本発明は、 OCT3の発現抑制物質もしくは機能抑制物質の、精神疾患治療 薬もしくは抗うつ薬作用増強剤の製造における使用に関する。
[0140] なお本明細書において引用された全ての先行技術文献は、参照として本明細書に 組み入れられる。
実施例
[0141] 以下、本発明を実施例により詳細に説明するが、本発明はこれら実施例に制限さ れるものではない。
〔実施例 1〕 OCT3発現調節のうつ病様症状に対する効果
足がつかず這 、上がることができな 、容器内で遊泳させた実験動物を再度、同じ 容器で遊泳させると、動物は絶望状態に陥り、実験時間中のほとんどで無動状態を 呈する。この無動状態は抗うつ薬の投与で短縮する(例:クロルジァゼポキシド 100mg/kg、イミプラミン 16mg/kgなど)ことから、本実験(強制水泳試験)はうつ病薬の スクリーニングによく用いられている (Behav Brain Res. 73, 43-46, 1996)。そこで本発 明者は本モデルにおける OCT3発現調節の効果および抗うつ薬イミブラミンとの併用 効果につ 1、て検討を行った。
[0142] 実験には ddY系雄性マウスを使用した。購入より 3日以上飼育したマウスはビーカー
(直径 15cm、深さ 20cm)内で 300秒間遊泳させ、無動時間を測定し、無動時間の平均 値がほぼ同一になるように各群に振り分けた。遊泳翌日に OCT3の遺伝子配列より作 成したアンチセンス(OCT3アンチセンス)を、既報(J. Chem. Neuroanat. 2000 20:375-87)に基づき、浸透圧ポンプで持続的に脳室内に注入した。また、アンチセ ンスの溶媒であるリンゲル液を注入する群 (溶媒群)、アンチセンスと同じ塩基を持つ 力 ランダムに配列させ既存の遺伝子とは相同性を持たな ヽ cDNA配列を注入する 群 (スクランブル OCT3アンチセンス群)もあわせて準備した。注入より 1週間後にマウ スを再度ビーカー内で 300秒間遊泳させ、無動時間を測定した。なお、抗うつ薬イミ プラミンは試験開始の 30分前に腹腔内に投与した。
[0143] 結果、溶媒群ではうつ病様症状が惹起され、 300秒間の遊泳中のほとんどで無動 状態を呈した(平均値: 234 ±9秒)(図 1A)。 OCT3アンチセンス(0.25 μ g/0.25 μ 1/hr )を持続注入したマウスではこの無動状態は有意に短縮した(平均値: 69± 13秒)。な お、スクランブル OCT3アンチセンス群は効果を示さなかった(平均値: 236 ±6秒)(図 1A)。
[0144] さらに、抗うつ薬との併用効果に関して検討を行った。低用量の抗うつ薬イミプラミ ン (4mg/kg)あるいは低用量の OCT3アンチセンス(0.075 μ g/0.25 μ 1/hr)は強制水泳 試験では溶媒群(平均値: 242 ±4秒)に比して差が見られな 、が [イミプラミン
(4mg/kg)平均値: 245士 15秒; OCT3アンチセンス (0.075 μ g/0.25 μ 1/hr)平均値: 241 ±6秒]、両者の併用は無動状態を有意に短縮させた (平均値: 123±33秒)(図 1 B)。
[0145] 次に、 OCT3に対して親和性が高いノルメタネフリンの効果を検討した。ノルメタネフ リンは先のアンチセンスの実験と同様に、 1回目の強制水泳試験の翌日よりノルメタネ フリン (2.5 g/0.25 1/hr)を脳室内に持続注入した。そして、注入より 1週間後にマ ウスを再度ビーカー内で遊泳させ、無動時間を測定した。その結果、溶媒群 (平均値 : 228± 13秒)に比してノルメタネフリンは有意に無動時間を短縮した(平均値: 108士 29秒)(図 2)。
[0146] なお、 OCT3アンチセンスの脳室内注入(1-2週間)は、脳における OCT3の発現を 偽手術群に比して約 30%低下させていた力 これは既報のアンチセンス脳室内注入と ほぼ同等の効果であった(図 3)。スクランブル OCT3アンチセンス群は OCT3発現に は影響をおよぼさな力つた(図 3)。
[0147] 〔実施例 2〕 OCT3発現調節の薬物依存症様症状に対する効果
覚せい剤は連用すると依存症を発現するが、その症状には覚せい剤に対する感受 性亢進 (逆耐性)が含まれる。逆耐性現象は長期間持続し、覚せい剤は連用後、長 期間休薬をしても容易に発現し、既存の精神疾患治療薬では治療できないことから、 不可逆的な神経機能変化の結果であると解釈されている。実験動物においても覚せ い剤を反復投与すると、覚せい剤誘発自発運動量の亢進が観察され、この現象は既 存の精神疾患治療薬では治療できない。したがって、実験動物における覚せい剤の 反復投与による覚せ 、剤誘発自発運動量の亢進は薬物依存症の形成のメカニズム 解析によく用いられている。そこで本発明者は本モデルにおける OCT3発現調節の 効果につ 1、て検討を行った。
[0148] 実験には ddY系雄性マウスを使用した。購入より 3日以上飼育したマウスを 2群に分 割し、一群は OCT3の遺伝子配列より作成したアンチセンス(OCT3アンチセンス)を、 既報(J. Chem. Neuroanat. 2000 20:375-87)に基づき、浸透圧ポンプで持続的に脳 室内に注入した。別の一群は偽手術を行った。注入 1週間後より、覚せい剤メタンフ エタミン (1 mg/kg)を投与し、覚せい剤誘発自発運動量の測定を行った。
[0149] その結果、偽手術群に比べて、 OCT3アンチセンスを注入したマウスでは覚せ 、剤 誘発自発運動量の亢進が見られ、覚せい剤の単回投与にも関わらず、覚せい剤反 復投与による逆耐性現象と同様の行動が観察された(図 4)。なお、 OCT3アンチセン スの脳室内注入(1-2週間)は、脳における OCT3の発現を偽手術群に比して約 30% 低下させていた力 これは既報のアンチセンス脳室内注入とほぼ同等の効果であつ た。
[0150] 〔実施例 3〕 OCT3発現調節の不安および新規場所探索行動に対する効果
動物は新規な広い場所に曝露されると、当初は探索行動 (移所運動、立ち上がり行 動)を行うが、時間経過と共にその行動は減少していく。このような行動は抗不安薬の 投与により解除され、動物の探索行動は維持されることから、抗不安薬のスクリーニン グに使用される。そこで本発明者は本モデルにおける OCT3発現調節の効果につい て検討を行った。
[0151] 実験には ddY系雄性マウスを使用した。購入より 3日以上飼育したマウスを 2群に分 割し、一群は OCT3の遺伝子配列より作成したアンチセンス(OCT3アンチセンス)を、 既報(J. Chem. Neuroanat. 2000 20:375-87)に基づき、浸透圧ポンプで持続的に脳 室内に注入した。別の一群は偽手術を行った。注入より 1週間後に動物を新規な広 いケージに置き、その移所運動と立ち上がり行動を 90分間測定した。
[0152] その結果、偽手術群では時間と共に移所運動が減少した力 OCT3アンチセンスを 注入したマウスではケージに入れた直後より、有意な移所運動の増加が見られ、そ れは 90分間にわたり持続した(図 5右)。また、別の探索行動の指標である立ち上がり 行動もまた、 OCT3アンチセンスを注入したマウスで有意な増加が観察された(図 5左 )。なお、 OCT3アンチセンスの脳室内注入 (1-2週間)は脳における OCT3の発現を偽 手術群に比して約 30%低下させていた力 これは既報のアンチセンス脳室内注入とほ ぼ同等の効果であった。 産業上の利用の可能性
[0153] 本発明者によって初めて作製された OCT3遺伝子ノックアウト動物は、野生型動物 と容易に区別可能な精神疾患に関連する表現型を呈する。本発明の該動物を用い ることにより、うつ病、不安神経症、薬物依存症等の精神疾患に関連する化合物、あ るいは、該疾患の治療薬のスクリーニングを行うことができる。本発明の該スクリー- ング方法によって取得される化合物は、実際に、動物レベルで表現型に変化をもた らす作用を有することから、実効性の高い薬剤となることが期待される。
[0154] また、本発明の上記動物は、各種精神疾患のメカニズムを解明するための病態モ デル動物として、大いに有用である。本発明の抗うつ作用の表現型を呈するマウスの 抗うつ効果は劇的なもの(例えば、強制遊泳試験により、 5分以上遊泳する)であり、 病態モデル動物として、極めて有用である。
[0155] さらに本発明によって、 OCT3の発現を制御する物質は、実際に上記疾患に対する 治療効果を有することが、動物実験レベルで示された。即ち、 OCT3の発現をアンチ センス、ベクターによる遺伝子導入で制御すること、 OCT3の機能を特異性の高い低 分子化合物により制御することは上記疾患の治療に有用である。
[0156] うつ、不安などの精神疾患では遺伝子要因の他にもストレスなどの環境要因の関与 が強く示唆されており、健常人であった人でも過酷なストレスにさらされると発症してし まう疾患である。従って、正常な動物においてアンチセンス投与して標的分子 OCT3 発現を低下させた結果、抗不安、抗うつ効果が得られたという本発明者によって見出 された知見は、環境素因が大きいうつや不安に OCT3の機能調節が如何に重要であ ると 、うことを示した貴重な知見であると 、える。
[0157] さらに本発明の OCT3の発現を抑制する物質は、抗うつ薬の作用を増強させる効果 があることが見出された。即ち、該物質は抗うつ薬作用増強剤として機能し、既存の 抗うつ薬との併用剤として非常に有用である。既存の抗うつ薬が効果を十分に発揮さ れないような低用量の場合であっても、本発明の抗うつ薬作用増強剤を併用すること により、抗うつ作用を発揮させることが可能である。例えば、既存の抗うつ薬が副作用 を伴うことから十分量の投与が困難である場合には、本発明の抗うつ薬増強作用を 併用することにより、該副作用が軽減するような低用量にて、所望の効果を発揮させ ることが可能である。

Claims

請求の範囲
[1] 有機カチオントランスポーター OCT3遺伝子の発現抑制物質を有効成分として含 む、精神疾患治療薬。
[2] 有機カチオントランスポーター OCT3タンパク質の発現抑制物質力 以下の(a)— ( c)からなる群より選択される化合物である、請求項 1に記載の精神疾患治療薬。
(a) OCT3遺伝子の転写産物またはその一部に対するアンチセンス核酸
(b) OCT3遺伝子の転写産物を特異的に開裂するリボザィム活性を有する核酸
(c) OCT3遺伝子の発現を RNAi効果による阻害作用を有する核酸
[3] 有機カチオントランスポーター OCT3タンパク質の機能抑制物質を有効成分として 含む、精神疾患治療薬。
[4] 有機カチオントランスポーター OCT3タンパク質の機能抑制物質力 以下の(a)ま たは (b)の化合物である、請求項 3に記載の精神疾患治療薬。
(a)有機カチオントランスポーター OCT3タンパク質に結合する抗体
(b)有機カチオントランスポーター OCT3タンパク質に結合する低分子化合物
[5] 精神疾患が、うつ病または不安神経症である、請求項 1一 4の 、ずれかに記載の治 療薬。
[6] 有機カチオントランスポーター OCT3タンパク質の発現亢進物質、もしくは機能亢 進物質を有効成分として含む、覚せい剤依存症治療薬。
[7] 有機カチオントランスポーター OCT3遺伝子の発現が人為的に抑制されていること を特徴とする、遺伝子ノックアウト非ヒト動物。
[8] 以下の(a)—(c)のいずれかの核酸の作用により、前記 OCT3遺伝子の発現が抑 制されている、請求項 7に記載の遺伝子ノックアウト非ヒト動物。
(a) OCT3遺伝子の転写産物またはその一部に対するアンチセンス核酸
(b) OCT3遺伝子の転写産物を特異的に開裂するリボザィム活性を有する核酸
(c) OCT3遺伝子の発現を RNAi効果による阻害作用を有する核酸
[9] 以下の(a)— (c)の 、ずれかの表現型を示す、請求項 7に記載の遺伝子ノックアウト 非ヒト動物。
(a)抗うつ様作用 (b)覚せ 、剤誘発自発運動の亢進
(c)抗不安作用
[10] 非ヒト動物がげつ歯類である、請求項 7— 9のいずれかに記載の遺伝子ノックアウト 非ヒト動物。
[11] 以下の(a)— (c)の工程を含む、精神疾患治療のための薬剤のスクリーニング方法
(a)有機カチオントランスポーター OCT3タンパク質またはその部分ペプチドと被検 化合物を接触させる工程
(b)該タンパク質またはその部分ペプチドと被検化合物との結合活性を測定するェ 程
(c)有機カチオントランスポーター OCT3タンパク質またはその部分ペプチドと結合 する化合物を選択する工程
[12] 以下の(a)— (c)の工程を含む、精神疾患治療のための薬剤のスクリーニング方法
(a)有機カチオントランスポーター OCT3遺伝子を発現する細胞と、被検化合物を接 触させる工程
(b)該有機カチオントランスポーター OCT3遺伝子の発現レベルを測定する工程
(c)被検化合物の非存在下にお ヽて測定した場合と比較して、該発現レベルを低下 させる化合物を選択する工程
[13] 以下の(a)— (c)の工程を含む、精神疾患治療のための薬剤のスクリーニング方法
(a)有機カチオントランスポーター OCT3遺伝子の転写調節領域とレポーター遺伝 子とが機能的に結合した構造を有する DNAを含む細胞と、被検化合物を接触させる 工程
(b)該レポーター遺伝子の発現レベルを測定する工程
(c)被検化合物の非存在下にお ヽて測定した場合と比較して、該発現レベルを低下 させる化合物を選択する工程
[14] 以下の(a)— (c)の工程を含む、精神疾患治療のための薬剤のスクリーニング方法 (a)有機カチオントランスポーター OCT3タンパク質、または該タンパク質を発現する 細胞もしくは細胞抽出液と、被検化合物を接触させる工程
(b)該タンパク質の活性を測定する工程
(c)被検化合物の非存在下にお!ヽて測定した場合と比較して、該タンパク質の活性 を低下させる化合物を選択する工程
[15] 以下の (a)— (c)の工程を含む、精神疾患の原因化合物の同定方法。
(a)請求項 7— 10のいずれかに記載の遺伝子ノックアウト非ヒト動物に被検化合物を 投与する工程
(b)前記非ヒト動物の有する表現型に依存する行動を観察する工程
(c)前記表現型に依存する行動を消失させる化合物を、精神疾患の原因化合物で あるものと判定する工程
[16] 精神疾患が、うつ病または不安神経症である、請求項 11一 15のいずれかに記載 の方法。
[17] 以下の(a)—(c)の工程を含む、覚せい剤依存症治療のための薬剤のスクリーニン グ方法。
(a)有機カチオントランスポーター OCT3遺伝子を発現する細胞と、被検化合物を接 触させる工程
(b)該有機カチオントランスポーター OCT3遺伝子の発現レベルを測定する工程
(c)被検化合物の非存在下にお ヽて測定した場合と比較して、該発現レベルを上昇 させる化合物を選択する工程
[18] 以下の(a)—(c)の工程を含む、覚せい剤依存症治療のための薬剤のスクリーニン グ方法。
(a)有機カチオントランスポーター OCT3遺伝子の転写調節領域とレポーター遺伝 子とが機能的に結合した構造を有する DNAを含む細胞と、被検化合物を接触させる 工程
(b)該レポーター遺伝子の発現レベルを測定する工程
(c)被検化合物の非存在下にお ヽて測定した場合と比較して、該発現レベルを上昇 させる化合物を選択する工程
[19] 以下の(a)—(c)の工程を含む、覚せい剤依存症治療のための薬剤のスクリーニン グ方法。
(a)有機カチオントランスポーター OCT3タンパク質、または該タンパク質を発現する 細胞もしくは細胞抽出液と、被検化合物を接触させる工程
(b)該タンパク質の活性を測定する工程
(c)被検化合物の非存在下にお!ヽて測定した場合と比較して、該タンパク質の活性 を上昇させる化合物を選択する工程
[20] 以下の(a)—(c)の工程を含む、覚せい剤依存症治療のための薬剤のスクリーニン グ方法。
(a)請求項 7— 10のいずれかに記載の遺伝子ノックアウト非ヒト動物に被検化合物を 投与する工程
(b)前記非ヒト動物の有する表現型に依存する覚せい剤誘発自発運動を観察するェ 程
(c)前記運動を消失させる化合物を選択する工程
[21] 非ヒト動物の脳内へ OCT3遺伝子の転写産物またはその一部に対するアンチセン ス核酸を投与する工程を含む、請求項 7に記載のノックアウト非ヒト動物の作製方法。
[22] 有機カチオントランスポーター OCT3遺伝子の発現抑制物質を有効成分として含 む、抗うつ薬作用増強剤。
[23] 有機カチオントランスポーター OCT3タンパク質の発現抑制物質力 以下の(a)— ( c)からなる群より選択される化合物である、請求項 22に記載の抗うつ薬作用増強剤
(a) OCT3遺伝子の転写産物またはその一部に対するアンチセンス核酸
(b) OCT3遺伝子の転写産物を特異的に開裂するリボザィム活性を有する核酸
(c) OCT3遺伝子の発現を RNAi効果による阻害作用を有する核酸
[24] 有機カチオントランスポーター OCT3タンパク質の機能抑制物質を有効成分として 含む、抗うつ薬作用増強剤。
[25] 有機カチオントランスポーター OCT3タンパク質の機能抑制物質力 以下の(a)ま たは (b)の化合物である、請求項 24に記載の抗うつ薬作用増強剤。
(a)有機カチオントランスポーター OCT3タンパク質に結合する抗体
(b)有機カチオントランスポーター OCT3タンパク質に結合する低分子化合物 抗うつ薬、および、請求項 22— 25のいずれかに記載の抗うつ薬作用増強剤を有 効成分として含有する杭うつ作用を有する医薬組成物。
PCT/JP2005/003042 2004-03-09 2005-02-24 うつ病、不安神経症、薬物依存症、およびこれらに類似した精神疾患治療のための有機カチオントランスポーターoct3関連分子の利用法 WO2005084707A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006510650A JPWO2005084707A1 (ja) 2004-03-09 2005-02-24 うつ病、不安神経症、薬物依存症、およびこれらに類似した精神疾患治療のための有機カチオントランスポーターoct3関連分子の利用法
EP05719492A EP1736172A4 (en) 2004-03-09 2005-02-24 METHOD OF USING ORGANIC CATION TRANSPORTER OCT3 MOLECULAR FOR THE TREATMENT OF MENTAL DISEASES SUCH AS DEPRESSION, ANIMAL FEARNESS, DRUG DEPENDENCE, AND THE SAME
US10/592,154 US20070136828A1 (en) 2004-03-09 2006-02-24 Methods of using molecules related to organic cation transporter 3 (oct3) for treating depression, anxiety neuroses, drug dependencies, and other similar mental disorders

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-065051 2004-03-09
JP2004065051 2004-03-09

Publications (1)

Publication Number Publication Date
WO2005084707A1 true WO2005084707A1 (ja) 2005-09-15

Family

ID=34918215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/003042 WO2005084707A1 (ja) 2004-03-09 2005-02-24 うつ病、不安神経症、薬物依存症、およびこれらに類似した精神疾患治療のための有機カチオントランスポーターoct3関連分子の利用法

Country Status (5)

Country Link
US (1) US20070136828A1 (ja)
EP (1) EP1736172A4 (ja)
JP (1) JPWO2005084707A1 (ja)
CN (1) CN1964741A (ja)
WO (1) WO2005084707A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014103801A1 (ja) 2012-12-28 2014-07-03 株式会社新日本科学 イミダゾピリジン誘導体を有効成分として含むoct3活性阻害剤又はoct3検出剤
WO2015002150A1 (ja) 2013-07-03 2015-01-08 株式会社新日本科学 新規化合物,有機カチオントランスポーター3の検出剤及び活性阻害剤
JP2017501995A (ja) * 2013-12-06 2017-01-19 ノビミューン エスアー 抗tlr4抗体およびその使用方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090221552A1 (en) * 2006-02-28 2009-09-03 The Mclean Hospital Corporation Methods for the Treatment of ADHD and Related Disorders
WO2009134877A2 (en) * 2008-04-29 2009-11-05 Board Of Regents, The University Of Texas System Therapeutics for treatment resistant mental disorders
CN102181449B (zh) * 2011-03-06 2013-04-10 浙江大学 表达人有机阳离子转运体1的细胞模型构建及应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001036634A1 (fr) * 1999-11-18 2001-05-25 Center For Advanced Science And Technology Incubation, Ltd. Nouveaux recepteurs couples a la proteine g, genes desdits recepteurs et leur utilisation
JP2002233383A (ja) * 2001-02-09 2002-08-20 Locomogene Inc ニューロトニンおよびその利用
WO2003018804A1 (fr) * 2001-08-27 2003-03-06 Japan Science And Technology Agency Proteines pouvant commander la migration cellulaire et la mort cellulaire
WO2003039462A2 (en) * 2001-11-02 2003-05-15 Tanox, Inc. B-cell lymphoma specific antigen for use in diagnosis and treatment of b-cell malignancies

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6277565B1 (en) * 1997-11-06 2001-08-21 Millennium Pharmaceuticals, Inc. OCT-3 gene encoding transporter-like molecules
US6403645B2 (en) * 2000-03-16 2002-06-11 President And Fellows Of Harvard College Antidepressant effect of norepinephrine uptake 2 inhibitors and combined medications including them

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001036634A1 (fr) * 1999-11-18 2001-05-25 Center For Advanced Science And Technology Incubation, Ltd. Nouveaux recepteurs couples a la proteine g, genes desdits recepteurs et leur utilisation
JP2002233383A (ja) * 2001-02-09 2002-08-20 Locomogene Inc ニューロトニンおよびその利用
WO2003018804A1 (fr) * 2001-08-27 2003-03-06 Japan Science And Technology Agency Proteines pouvant commander la migration cellulaire et la mort cellulaire
WO2003039462A2 (en) * 2001-11-02 2003-05-15 Tanox, Inc. B-cell lymphoma specific antigen for use in diagnosis and treatment of b-cell malignancies

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
KEKUDA R. ET AL: "Cloning and Functional Characterization of a Potential-sensitive, Polyspecific Organic Cation Transporter (OCT3) Most Abundantly Expressed in Placenta", J. BIOL.CHEM., vol. 273, no. 26, 1998, pages 15971 - 15979, XP002996655 *
KITAICHI K. ET AL: "Gyakutaisei Dobutsu Model ni okeru Methamphetamine no Seitainai Kyodo Henka", JPN. J. NEUROPSYCHOPHARMACOL., vol. 21, 2001, pages 133 - 144, XP002996652 *
NUMACHI Y. ET AL: "Kakuseizai no Tainai Dotai to Nonai Bunpu", CLIN. NEUROSCI., vol. 22, no. 6, 2004, pages 693 - 695, XP002996656 *
OTSUKI S. ET AL: "Nokanmon o Kaishita 1-methyl-4-phenylpyridinium (MPP+) Haishutsu Kiko", JOURNAL OF PHARMACEUTICAL SCIENCE AND TECHNOLOGY, vol. 63, no. 1, 2003, pages 173, XP002996654 *
See also references of EP1736172A4 *
SHANG T. ET AL: "1-Methyl-4-phenylpyridinium accumulates in cerebellar granule neurons via organic cation transporter 3", J. NEUROCHEM., vol. 85, 2003, pages 358 - 367, XP002996653 *
VIALOU V. ET AL: "Toward a physiological role for organic cation transporters in the central nervous system", RECENT RES. DEVEL. NEUROCHEM., vol. 6, 2003, pages 53 - 63, XP002996651 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014103801A1 (ja) 2012-12-28 2014-07-03 株式会社新日本科学 イミダゾピリジン誘導体を有効成分として含むoct3活性阻害剤又はoct3検出剤
US10149840B2 (en) 2012-12-28 2018-12-11 Shin Nippon Biomedical Laboratories, Ltd. OCT3 activity inhibitor containing imidazopyridine derivative as active component, and OCT3 detection agent
WO2015002150A1 (ja) 2013-07-03 2015-01-08 株式会社新日本科学 新規化合物,有機カチオントランスポーター3の検出剤及び活性阻害剤
JPWO2015002150A1 (ja) * 2013-07-03 2017-02-23 株式会社新日本科学 新規化合物,有機カチオントランスポーター3の検出剤及び活性阻害剤
US9745274B2 (en) 2013-07-03 2017-08-29 Shin Nippon Biomedical Laboratories, Ltd. Compound, organic cation transporter 3 detection agent, and organic cation transporter 3 activity inhibitor
JP2017501995A (ja) * 2013-12-06 2017-01-19 ノビミューン エスアー 抗tlr4抗体およびその使用方法

Also Published As

Publication number Publication date
EP1736172A1 (en) 2006-12-27
JPWO2005084707A1 (ja) 2007-11-29
CN1964741A (zh) 2007-05-16
EP1736172A4 (en) 2009-08-12
US20070136828A1 (en) 2007-06-14

Similar Documents

Publication Publication Date Title
US11680263B2 (en) Micro-RNAS and compositions comprising same for the treatment and diagnosis of serotonin-, adrenalin-, noradrenalin-, glutamate-, and corticotropin-releasing hormone- associated medical conditions
Quintana et al. Lack of GPR88 enhances medium spiny neuron activity and alters motor-and cue-dependent behaviors
Krus et al. Loss of Stathmin-2, a hallmark of TDP-43-associated ALS, causes motor neuropathy
Smith et al. Sigma 1 receptor: A novel therapeutic target in retinal disease
McConoughey et al. Inhibition of transglutaminase 2 mitigates transcriptional dysregulation in models of Huntington disease
Gallardo et al. An α2-Na/K ATPase/α-adducin complex in astrocytes triggers non–cell autonomous neurodegeneration
ES2632212T3 (es) miR-135 y composiciones que lo comprenden para el tratamiento de afecciones médicas asociadas con la serotonina
Abumaria et al. Effect of chronic citalopram on serotonin-related and stress-regulated genes in the dorsal raphe nucleus of the rat
Bandtlow et al. Increased expression of Nogo‐A in hippocampal neurons of patients with temporal lobe epilepsy
US20120328629A1 (en) Therapeutic Applications Targeting SARM1
Zimmer et al. Chronic activation of anti‐oxidant pathways and iron accumulation in epileptogenic malformations
Steinlein Ion channel mutations in neuronal diseases: a genetics perspective
WO2005084707A1 (ja) うつ病、不安神経症、薬物依存症、およびこれらに類似した精神疾患治療のための有機カチオントランスポーターoct3関連分子の利用法
US20230046305A1 (en) Peptides and other agents for treating pain and increasing pain sensitivity
Stavrou et al. CMT1A current gene therapy approaches and promising biomarkers
Kim et al. Baiap3 regulates depressive behaviors in mice via attenuating dense core vesicle trafficking in subsets of prefrontal cortex neurons
Han et al. SVCT2–mediated ascorbic acid uptake buffers stress responses via DNA hydroxymethylation reprogramming of S100 calcium-binding protein A4 gene
Riad et al. Unchanged density of 5-HT1A autoreceptors on the plasma membrane of nucleus raphe dorsalis neurons in rats chronically treated with fluoxetine
Baby et al. Differential expression of utrophin‐A and‐B promoters in the central nervous system (CNS) of normal and dystrophic mdx mice
US20140107104A1 (en) Combination medicine for treatment of depression
CN115006534A (zh) 钾离子通道Kir4.1抑制剂治疗抑郁症的用途和药物组合物
Rohn et al. Intranasal delivery of shRNA to knockdown the 5HT-2A receptor enhances memory and alleviates anxiety
Zhang et al. A novel antidepressant acting via allosteric inhibition of GluN2D-incorporated NMDA receptors at GABAergic interneurons
Stepanova Effects of CDNF in experimental models of Huntington’s disease
Tan The role of Fragile X Mental Retardation Protein in Parkinson’s disease

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006510650

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2005719492

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580014743.3

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2005719492

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007136828

Country of ref document: US

Ref document number: 10592154

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10592154

Country of ref document: US