WO2005082496A1 - Modul für die mikro-bzw. ultrafiltration - Google Patents

Modul für die mikro-bzw. ultrafiltration Download PDF

Info

Publication number
WO2005082496A1
WO2005082496A1 PCT/EP2005/001610 EP2005001610W WO2005082496A1 WO 2005082496 A1 WO2005082496 A1 WO 2005082496A1 EP 2005001610 W EP2005001610 W EP 2005001610W WO 2005082496 A1 WO2005082496 A1 WO 2005082496A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter module
tube
pipe
module
coupling
Prior art date
Application number
PCT/EP2005/001610
Other languages
English (en)
French (fr)
Inventor
Jens Knittel
Ulrich Meyer-Blumenroth
Original Assignee
Microdyn-Nadir Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102004008814A external-priority patent/DE102004008814A1/de
Priority claimed from DE200420002835 external-priority patent/DE202004002835U1/de
Application filed by Microdyn-Nadir Gmbh filed Critical Microdyn-Nadir Gmbh
Publication of WO2005082496A1 publication Critical patent/WO2005082496A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/20Accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/04Hollow fibre modules comprising multiple hollow fibre assemblies
    • B01D63/046Hollow fibre modules comprising multiple hollow fibre assemblies in separate housings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/06Tubular membrane modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/06Tubular membrane modules
    • B01D63/061Manufacturing thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/20Specific housing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/20Specific housing
    • B01D2313/206Specific housing characterised by the material
    • B01D2313/2061Organic, e.g. polymeric material

Definitions

  • the invention relates to a module for micro or ultrafiltration, which is specially adapted for installation in a metal pipe system.
  • Both the module housing and its interior (membranes) are preferably made of polypropylene. This guarantees high chemical resistance
  • Micro and ultra filtration is a common process and has long been used in a wide variety of areas, such as in the food and pharmaceutical industries and in water / wastewater treatment, to name just a few.
  • filtration modules are used. These are usually elongated hollow cylinders, which filtration membranes, e.g. in the form of porous plastic tubes.
  • a filtration module is then integrated into a pipeline through which the medium to be filtered flows.
  • several such modules are connected in parallel in a frame in order to increase the capacity.
  • Filtration modules as used in the present invention are known.
  • the product information for the KOCH Romicon ® hollow fiber modules (at http://www.abcor.de) describes such modules.
  • Frames (racks) for accommodating filtration modules are also known as such and, for example, are also described in the product information of the KOCH Romicon ® hollow fiber modules.
  • this document does not provide any information on solving the problem of different material expansion when using plastic modules in the temperature interval of 40 ° C and more.
  • a device consisting of a tubular filter module consisting predominantly of plastic, at least one tube end of this filter module tube being provided with a tube coupling which can absorb axial forces in the longitudinal direction of the tube and is arranged above or in the filter module tube.
  • Both pipe ends of the filter module are preferably equipped with this pipe coupling. Furthermore, the pipe coupling is preferably arranged above the filter module pipe.
  • “Mainly made of plastic” means that at least the housing of the filter module (which does not include any fastening means) is made of plastic, such as PVC, PP polysulfone, etc., in particular polypropylene.
  • the filter membranes arranged in the housing and their fastening devices are also preferably made of plastic, in particular Polypropylene or polyethylene, suitable Filter modules of this type are described, for example, in the product information for the KOCH Romicon ® hollow fiber modules.
  • the pipe ends of the filter module housing are no longer installed in the metal pipe system using a flange or clamp connection or a screw connection, but rather using pipe couplings attached on one or both sides.
  • These pipe couplings are commercially available (for example, type Combi Grip, from Straub, Wangs, Switzerland) and produce a tensile connection that is nevertheless suitable for absorbing axial forces between metal and plastic.
  • the pipe couplings should expediently withstand an operating pressure of at least 6, preferably 16 bar.
  • the operating temperature range should be between -20 ° C and + 80 ° C, preferably 0 ° C and 60 ° C.
  • the pipe couplings should allow the filter module to extend in the longitudinal axis by several millimeters, preferably 3-8 mm, in particular 4-6 mm.
  • the module housing is also provided with a fixed bearing, as a result of which only the ends of the module housing can expand.
  • “Fixed bearing” in the sense according to the invention means a fastening device which is permanently and non-detachably connected to the module or its housing and with which the module can be firmly mounted at this point, for example on a frame or in a frame.
  • This fixed bearing is expediently symmetrical to half the tube length of the The module housing is positioned and welded in. This fixed bearing in the middle of the module halves the length for the coupling selection, since the housing can only expand at the ends.
  • FIG. 1 shows an arrangement of two filter modules (1) in a frame (4).
  • the modules (1) are mounted vertically in the frame (4).
  • the modules are firmly connected to a cross member of the frame (4) via two different fixed bearing brackets (3) attached in the middle of the module tube.
  • This mounting arrangement has the advantage that the filter module can be calculated exactly according to its expansion. With a module length of 1550 mm and a temperature difference of 45 ° C, the module housing would expand by approx. 9 mm or 4.5 mm at the ends.
  • Combi Grip (5) commercially available pipe couplings (from Straub, Wangs, Switzerland) can accommodate this longitudinal axial pipe expansion. The prerequisite for this is that the space required for the expansion is taken into account in the construction. It must also be taken into account for the corresponding gap in the coupling between the metal pipe end (6) and the filter module (1) so that the housing can expand within the coupling.
  • the seats of the permeate drains (2) have to be considered constructively.
  • the filter module (1) migrates axially along with it and can collide with the end of the coupling (5), which can lead to the permeate outlet connector (2) being torn off.
  • the nozzles must be arranged further in the middle with respect to the transverse axis (7) of the filter module. This has the advantage that additional space is created inside the filter module at the head ends, which can be used for a more stable fastening of the membranes in the module - for example by potting.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

Die Erfindung betrifft eine Vorrichtung, bestehend aus einem rohrförmigen, überwiegend aus Kunststoff bestehenden Filtermodul, wobei mindestens ein Rohrende dieses Filtermodulrohrs mit einer Rohrkupplung versehen ist, die axial Kräfte in Längsrichtung des Rohres aufnehmen kann und über oder in dem Filtermodulrohr angeordnet ist.

Description

Modul für die Mikro- bzw. Ultrafiltration
Die Erfindung betrifft ein Modul für die Mikro- bzw. Ultrafiltration, welches speziell für den Einbau in ein Metallrohrsystem angepasst ist. Sowohl das Modulgehäuse als auch dessen Innenleben (Membranen) bestehen bevorzugt aus Polypropylen. Dies garantiert eine hohe chemische Beständigkeit
Die Mikro- sowie die Ultrafiitration ist ein gängiges Verfahren und wird seit längerem in den verschiedensten Breichen, wie in der Lebensmittel- und Pharmaindustrie sowie in der Wasser-/Abwasseraufbereitung, um nur einige zu nennen, eingesetzt. Hierbei verwendet man sogenannte Filtrationsmodule. Das sind üblicherweise längliche Hohlzylinder, welche Filtrationsmembranen, z.B. in Form von porösen Kunststoffschläuchen, enthalten. In der Regel wird ein solches Filtrationsmodul dann in eine Rohrleitung, durch die das zu filtrierende Medium fließt, eingebunden. Zweckmäßigerweise werden zur Kapazitätserhöhung mehrere solcher Module in einem Gestell parallel geschaltet. Da üblicherweise unterschiedliche Materialien für Rohrleitung und Modul eingesetzt werden, kann es - insbesondere bei hohen Temperaturdifferenzen - zu Spannungen innerhalb des Modulgehäuses kommen, die im ungünstigsten Fall zu einer Zerstörung des Moduls bzw. des Modul- Innenlebens, wie Schweißnähte etc. führen. Die Spannung treten durch die unterschiedlichen Längenänderungskoeffizienten zwischen der Rohrleitung und dem Modul auf. In der Regel wird als Rohrleitung Stahl bzw. Edelstahl eingesetzt, und die Module bestehen gewöhnlich aus Kunststoff, bspw. Polypropylen. Bei einer Temperaturdifferenz von ca. 40°C bis 50°C, was durchaus realistisch z.B. bei der Abwasseraufbereitung in der Erdgasförderung ist, würde sich Polypropylen um 0,2 mm pro Kelvin und Meter ausdehnen, der Edelstahl jedoch nur bis zu 16 μm pro Kelvin und Meter.
Filtrationsmodule, wie sie in der vorliegenden Erfindung eingesetzt werden, sind bekannt. Beispielsweise beschreibt die Produktinformation der KOCH Romicon ® Hohlfasermodule (auf http://www.abcor.de) solche Module. Eine Lösung, wie solche Module - insbesondere in einer Mehrfachanordnung - in eine Metallrohrleitung eingebunden werden können, ohne dass durch die temperaturbedingten Spannungen, die Anordnung zerstört wird, wird in der Produktinformation nicht beschrieben.
Gestelle (Racks) zur Aufnahme von Filtrationsmodulen, wie sie in der vorliegenden Erfindung eingesetzt werden, sind als solche ebenfalls bekannt und beispielsweise ebenfalls beschrieben in der Produktinformation der KOCH Romicon ® Hohlfasermodule. Ein Hinweis zur Lösung des Problems der unterschiedlichen Materialausdehnung bei Einsatz von Kunststoff-Modulen im Temperaturintervall von 40°C und mehr ist dieser Schrift aber nicht zu entnehmen.
Es bestand demnach die Aufgabe, ein überwiegend aus Kunststoff, insbesondere Polypropylen, aufgebautes Filtermodul so in ein mehr oder weniger fest angeordnetes Metallrohrleitungssystem einzuschleifen, dass durch die temperaturbedingten unterschiedlichen Ausdehnungen der Materialien, das Gefüge des Metallrohrleitungssystem nicht beschädigt oder gar zerstört wird. Insbesondere soll eine Mehrfachanordnung von Filtermodulen im Parallelbetrieb, zweckmäßigerweise in einem Gestell (Rack) diese Aufgabe erfüllen.
Diese Aufgabe wird gelöst durch eine Vorrichtung, bestehend aus einem rohrförmigen, überwiegend aus Kunststoff bestehenden Filtermodul, wobei mindestens ein Rohrende dieses Filtermodulrohrs mit einer Rohrkupplung versehen ist, die axial Kräfte in Längsrichtung des Rohres aufnehmen kann und über oder in dem Filtermodulrohr angeordnet ist.
Bevorzugt sind beide Rohrenden des Filtermoduls mit dieser Rohrkupplung ausgerüstet. Weiterhin bevorzugt ist die Rohrkupplung über dem Filtermodulrohr angeordnet.
„Überwiegend aus Kunststoff" bedeutet, dass zumindest das Gehäuse des Filtermoduls (zu dem keine Befestigungsmittel zählen) aus Kunststoff, wie PVC, PP Polysulfon etc, insbesondere Polypropylen besteht. Bevorzugt bestehen auch die in dem Gehäuse angeordneten Filtermembranen und deren Befestigungsvorrichtungen aus Kunststoff, insbesondere Polypropylen oder Polyethylen. Geeignete Filtermodule dieser Art sind beispielsweise beschrieben in der Produktinformation der KOCH Romicon ® Hohlfasermodule.
Die Rohrenden des Filtermodulgehäuses werden nicht mehr mittels Flansch- bzw. Clampverbindung oder einer Verschraubung in das Metallrohrleitungssystem montiert, sonder mittels einseitig oder beidseitig aufgebrachter Rohrkupplungen. Diese Rohrkupplungen sind kommerziell erhältlich (bspw. Typ Combi Grip, Fa. Straub, Wangs, Schweiz) und stellen eine zugfeste, aber dennoch zur Aufnahme von axialen Kräften geeignete Verbindung zwischen Metall und Kunststoff her. Die Rohrkupplungen sollten zweckmäßigerweise einen Betriebsdruck von mindestens 6, bevorzugt 16 bar aushalten. Der Betriebstemperaturbereich sollte zwischen -20°C und +80°C, bevorzugt 0°C und 60°C liegen. Weiterhin sollen die Rohrkupplungen, eine Ausdehnung des Filtermoduls in Längsachse von mehren Millimetern, bevorzugt 3-8 mm, insbesondere 4-6 mm, zulassen.
Als besonders zweckmäßig hat es sich erwiesen, wenn über die oben genannten Maßnahmen hinaus das Modulgehäuse noch mit einem Festlager versehen wird, wodurch sich nur noch die Enden des Modulgehäuses ausdehnen können. „Festlager" im erfindungsgemäßen Sinn bedeutet eine fest und unlösbar mit dem Modul bzw. dessen Gehäuse verbundene Befestigungsvorrichtung, mit der das Modul an dieser Stelle beispielsweise auf einem Gestell oder in einem Rahmen fest montiert werden kann. Zweckmäßigerweise wird dieses Festlager symmetrisch zur halben Rohrlänge des Modulgehäuses positioniert und fest verschweißt. Durch dieses Festlager in der Mitte des Moduls halbiert sich die Längenausdehnung für die Kupplungsauswahl, da das Gehäuse sich nur noch an den Enden ausdehnen kann.
Die Erfindung wird im Folgenden anhand einer Zeichnung näher erläutert. Figur 1 zeigt eine Anordnung von zwei Filtermodulen (1) in einem Gestell (4). Die Module (1) sind hierbei senkrecht in das Gestell (4) montiert. Die Module sind über zwei in der Modulrohrmitte angebrachte verschiedene Festlagerhalterung (3) fest mit einem Querträger des Gestells (4) verbunden. Diese Montageanordnung hat den Vorteil, dass das Filtermodul entsprechend seiner Ausdehnung exakt berechnet werden kann. So würde sich bei einer Modullänge von 1550 mm und einer Temperaturdifferenz von 45°C das Modulgehäuse um ca. 9 mm ausdehnen bzw. 4,5 mm an den Enden. Handelsübliche Rohrkupplungen (5) vom Typ Combi Grip (Fa. Straub, Wangs, Schweiz) können diese längsaxiale Rohrausdehnung aufnehmen. Voraussetzung hierfür ist, dass der Platzbedarf der Ausdehnung bei der Konstruktion beachtet wird. Es muss für den entsprechenden Spalt in der Kupplung zwischen Metallrohrende (6) und Filtermodul (1) mitberücksichtigt werden, damit sich das Gehäuse innerhalb der Kupplung ausdehnen kann.
Konstruktiv müssen die Sitze der Permeatabläufe (2) beachtet werden. Bei Ausdehnung des Filtermoduls (1) wandern diese längsaxial mit und können mit dem Ende der Kupplung (5) kollidieren, was zum Abriss des Permeatablaufstutzens (2) führen kann. Um dies zu verhindern müssen die Stutzen weiter mittig, bezogen auf die Querachse (7) des Filtermoduls, angeordnet werden. Dies hat den Vorteil, dass zusätzlicher Raum innerhalb des Filtermoduls an den Kopfenden entsteht, der für eine stabilere Befestigung der Membranen in dem Modul - beispielsweise durch Vergießen - genutzt werden kann.

Claims

Patentansprüche
1. Vorrichtung, bestehend aus einem rohrförmigen, überwiegend aus Kunststoff bestehenden Filtermodul, dadurch gekennzeichnet, dass mindestens ein Rohrende dieses Filtermodulrohrs mit einer Rohrkupplung versehen ist, die axial Kräfte in Längsrichtung des Rohres aufnehmen kann und über oder in dem Filtermodulrohr angeordnet ist.
2. Vorrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass beide Rohrenden des Filtermodulrohrs mit einer Rohrkupplung versehen sind.
Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Rohrkupplung über dem Filtermodulrohr angeordnet ist.
Vorrichtung nach Anspruch 1 , 2 oder 3, dadurch gekennzeichnet, dass auf dem Filtermodulrohr ein Festlager angebracht ist, welches fest und unlösbar mit dem Filtermodulrohr verbunden ist.
5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass das Festlager symmetrisch zur halben Rohrlänge des Filtermodulrohrs angebracht ist.
6. Vorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Rohrkupplung einen Betriebsdruck von mindestens 6 bar aushält.
7. Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Rohrkupplung einen Betriebstemperaturbereich von -20°C bis +80°C aufweist. Vorrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Rohrkupplung eine Ausdehnung des Filtermodulrohrs in Längsachse von 3-8 mm zulässt.
* * * * *
PCT/EP2005/001610 2004-02-20 2005-02-17 Modul für die mikro-bzw. ultrafiltration WO2005082496A1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102004008814.4 2004-02-20
DE102004008814A DE102004008814A1 (de) 2004-02-20 2004-02-20 Modul für die Mikro- bzw. Ultrafiltration
DE200420002835 DE202004002835U1 (de) 2004-02-20 2004-02-20 Modul für die Mikro- bzw. Ultrafiltration
DE202004002835.2 2004-02-20

Publications (1)

Publication Number Publication Date
WO2005082496A1 true WO2005082496A1 (de) 2005-09-09

Family

ID=34913331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/001610 WO2005082496A1 (de) 2004-02-20 2005-02-17 Modul für die mikro-bzw. ultrafiltration

Country Status (1)

Country Link
WO (1) WO2005082496A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9821275B2 (en) 2011-12-16 2017-11-21 Meurer Reseach, Inc. Method and system for cleaning membrane filters

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4131407A1 (de) * 1991-09-20 1993-04-01 Fraunhofer Ges Forschung Modulkonstruktion mit anorganischen membranen
EP1067320A2 (de) * 1999-07-07 2001-01-10 Air Products And Chemicals, Inc. Nachgiebige, hochtemperaturbeständige Dichtungen für unterschiedliche Materialien
US6247221B1 (en) * 1992-09-17 2001-06-19 Coors Tek, Inc. Method for sealing and/or joining an end of a ceramic filter
US20020000404A1 (en) * 2000-03-17 2002-01-03 Michael Mutsakis Filtration element for severe service applications
US6716275B1 (en) * 2001-12-11 2004-04-06 Sandia Corporation Gas impermeable glaze for sealing a porous ceramic surface

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4131407A1 (de) * 1991-09-20 1993-04-01 Fraunhofer Ges Forschung Modulkonstruktion mit anorganischen membranen
US6247221B1 (en) * 1992-09-17 2001-06-19 Coors Tek, Inc. Method for sealing and/or joining an end of a ceramic filter
EP1067320A2 (de) * 1999-07-07 2001-01-10 Air Products And Chemicals, Inc. Nachgiebige, hochtemperaturbeständige Dichtungen für unterschiedliche Materialien
US20020000404A1 (en) * 2000-03-17 2002-01-03 Michael Mutsakis Filtration element for severe service applications
US6716275B1 (en) * 2001-12-11 2004-04-06 Sandia Corporation Gas impermeable glaze for sealing a porous ceramic surface

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9821275B2 (en) 2011-12-16 2017-11-21 Meurer Reseach, Inc. Method and system for cleaning membrane filters
US10080994B2 (en) 2011-12-16 2018-09-25 Meurer Research, Inc. Method and system for cleaning membrane filters
US10307714B2 (en) 2011-12-16 2019-06-04 Meurer Research, Inc. Method and system for cleaning membrane filters
US10722846B2 (en) 2011-12-16 2020-07-28 Meurer Research, Inc. Method and system for cleaning membrane filters

Similar Documents

Publication Publication Date Title
EP2135662B2 (de) Komprimierbares Filterelement mit zueinander geneigten Endkappen
EP1268043B1 (de) Filtermodul
WO2003053552A1 (de) Verfahren zur membranfiltration in flüssigkeiten
DE60313849T2 (de) Auffangsammler und membranmoduleinheit
DE10323440B4 (de) Membran-Rohrmodul
EP1015095A1 (de) Filterelement mit kunststoff-filtermantel
DE2529515B2 (de) Poröses Rohr aus Faservliesmaterial
EP3680003B1 (de) Filterpatrone mit venturi-düse
EP3019793B1 (de) Hitzeschutzeinsatz für eine brennstoffleitung
WO2007033971A1 (de) Vorrichtung zum tangentialen einleiten eines gasbeladenen flüssigkeitsstroms in den kopf einer kolonne
DE102019115265A1 (de) Membranfilter
WO2005082496A1 (de) Modul für die mikro-bzw. ultrafiltration
DE10343456B3 (de) Filtermedium
EP2461887B1 (de) Filtereinrichtung und Verwendung eines Wickelfilterelements
DE202004002835U1 (de) Modul für die Mikro- bzw. Ultrafiltration
WO2000040325A1 (de) Membranmodul
WO2012013256A1 (de) Vorrichtung und verfahren zur entgasung wässriger medien
DE102004008814A1 (de) Modul für die Mikro- bzw. Ultrafiltration
EP0902722B1 (de) Einrichtung zur lenkung, steuerung, regelung, messung und überwachung von flüssigkeitsströmen und wasseraufbereitungsanlage
WO2009092489A1 (de) Filtereinrichtung, insbesondere zur filtration gasförmiger fluide
DE20319486U1 (de) Vorrichtung zum Befestigen von Motorkrümmern
DE19818094C2 (de) Membrantrenneinrichtung zum Filtern und Trennen von Strömungsmedien mit wenigstens einem Permeatauslaß
DE10101828B4 (de) Partikelfilter
DE102020204845A1 (de) Indirekter Ladeluftkühler
DE2653875B2 (de) Vorrichtung für die Ultrafiltration

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase