WO2005081034A1 - Two-dimensional light modulation device, exposure apparatus, and exposure method - Google Patents

Two-dimensional light modulation device, exposure apparatus, and exposure method Download PDF

Info

Publication number
WO2005081034A1
WO2005081034A1 PCT/JP2005/002940 JP2005002940W WO2005081034A1 WO 2005081034 A1 WO2005081034 A1 WO 2005081034A1 JP 2005002940 W JP2005002940 W JP 2005002940W WO 2005081034 A1 WO2005081034 A1 WO 2005081034A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimming
signal
dimensional
light
light control
Prior art date
Application number
PCT/JP2005/002940
Other languages
French (fr)
Japanese (ja)
Inventor
Naomasa Shiraishi
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to JP2006510297A priority Critical patent/JPWO2005081034A1/en
Publication of WO2005081034A1 publication Critical patent/WO2005081034A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70358Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • G02B27/0037Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration with diffracting elements
    • G02B27/0043Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration with diffracting elements in projection exposure systems, e.g. microlithographic systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4205Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant
    • G02B27/4222Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant in projection exposure systems, e.g. photolithographic systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70283Mask effects on the imaging process
    • G03F7/70291Addressable masks, e.g. spatial light modulators [SLMs], digital micro-mirror devices [DMDs] or liquid crystal display [LCD] patterning devices

Definitions

  • Two-dimensional light control device, exposure apparatus, and exposure method Two-dimensional light control device, exposure apparatus, and exposure method
  • the present invention relates to an exposure technique used in a lithographic process for manufacturing various devices such as a semiconductor integrated circuit (LSI or the like), an image sensor, or a liquid crystal display, for example.
  • the present invention relates to a so-called maskless exposure technique in which exposure is performed using a variable-shaped mask without using a photomask on which a pattern is drawn.
  • the present invention also relates to a device manufacturing technique using the exposure technique.
  • a projection optical system to a photosensitive film (photoresist) on a wafer (or glass plate, etc.) as a substrate to be exposed, and is exposed and transferred.
  • the method is used.
  • a static exposure type projection exposure apparatus such as a stepper and a scanning exposure type projection exposure apparatus such as a scanning stepper are used.
  • the original pattern is drawn on a photomask by an electron beam drawing apparatus or a laser drawing apparatus based on design data of the pattern.
  • the size of an original pattern on a photomask is also becoming finer, and the amount of patterns to be drawn is also increasing.
  • the time required for drawing an original pattern on a photomask and for inspecting the pattern after the drawing increases, and the manufacturing cost of the photomask increases.
  • Patent Document 1 U.S. Patent Application Publication No. 2003 / 0081303A1
  • Patent Document 2 US Patent Application Publication No. 2003 / 0202233A1
  • Non-noon literature 1 T. Sandstrome et al .: “igmailOO, a new architecture for laser pattern generators for 130nm and beyond", SPIE (USA) Vol.4409, PP 270-276 (2001)
  • Non-patent literature 2 Luberek et al .: “Controlling CD variations in a massively parallel pattern generator”, SPIE (USA) Vol.4691, PP 671-678 (2002)
  • variable shaping mask In an exposure apparatus using the above-mentioned variable shaping mask (maskless exposure apparatus), a two-dimensional dimming device such as a multi-mirror device in which angle-variable minute mirror elements are two- dimensionally arranged is variably shaped. It is assumed to be used as a mask.
  • the throughput processing capacity
  • the throughput generally increases as the area of the pattern that can be variably formed on the variable-shaped mask in terms of the substrate to be exposed increases.
  • the above-mentioned increase in the pattern area requires an increase in the number of micro-mirror elements formed on the multi-mirror device, and furthermore, a large amount of driving signals ( It becomes necessary to supply a dimming signal according to the shape of the pattern) to the multi-mirror device at high speed.
  • the present invention has been made in view of such a problem, and even in an exposure apparatus using a variable shaping mask having a large number of mirror elements and the like, a driving signal necessary for driving the mirror elements and the like is required.
  • the first is to provide a low-cost, high-throughput maskless exposure apparatus and maskless exposure method that achieves high-speed driving of mirror elements and the like while achieving a significant reduction and simplifies the signal transmission system. Aim.
  • a first two-dimensional dimming device (VM1) of the present invention provides a signal holding element (BD) for holding a dimming signal and a light beam to be irradiated based on the dimming signal.
  • BD signal holding element
  • LC, RC signal supply mechanism
  • the second two-dimensional dimming device of the present invention provides a signal holding element (BD) for holding a dimming signal and a dimming device that illuminates the irradiated light beam based on the dimming signal.
  • a signal transfer mechanism (XC) for sequentially transferring a signal to a signal holding element in the light control element adjacent in the first direction, and the light control mechanism arranged at at least one end in the first direction.
  • the signal holding element in the optical element has a signal supply mechanism (LC, RC) for supplying the dimming signal
  • the dimming element includes a mirror (10a), and the dimming is performed by the illuminated light beam. Is reflected in a predetermined direction by changing the inclination angle of the reflection surface of the mirror.
  • the signal transfer mechanism (XC) To the signal holding element (BD) in the adjacent dimming element (MU) along the first direction.
  • This sequentially transfers the dimming state of the irradiation light (incident light) to the dimming element (49) to the adjacent dimming element (49) along the first direction.
  • the distribution of each dimming state formed on the dimming elements (49) arranged two-dimensionally is moved along the first direction while substantially maintaining its shape. Becomes possible. Then, when the distribution of each dimming state moves along the first direction, the signal supply mechanism (LC, RC) uses the two-dimensionally distributed dimming element (MU) of the dimming element (MU).
  • the light control signal may be supplied only to the signal holding element (BD) in the light control element (MU) arranged at one end in the first direction.
  • the supply amount of the dimming signal and the time required to supply the dimming signal are greatly reduced as compared with the case where the dimming signal is supplied to all of the signal holding elements (BD) in each dimming element during the movement. It is possible to reduce the processing time.
  • the two-dimensional dimming device (VM1) of the present invention is configured such that the two-dimensional array of the dimming elements constituting the dimming element array has a coordinate axis parallel to the first direction and the second coordinate axis. They can be arranged on grid points of a rectangular grid on an orthogonal coordinate system determined by a coordinate axis perpendicular to the direction of 1.
  • the signal transfer mechanism (XC) of the two-dimensional dimming device of the present invention may include, for example, a charge coupling element.
  • the signal supply mechanism (LC, RC) can include, for example, a charge-coupled device.
  • the configuration of the signal supply mechanism can be simplified.
  • the two-dimensional light control device of the present invention may have a structure in which the signal transfer mechanism (XC) and the light control element array (11) are stacked. This makes it possible to reduce the size of the two-dimensional dimming device, and to manufacture the two-dimensional dimming device at low cost by applying existing manufacturing techniques for semiconductor integrated circuits and the like.
  • the dimming of the dimming element of the two-dimensional dimming device can be a change in the amplitude transmittance of the dimming element.
  • the dimming element (49) of the two-dimensional dimming device includes, as an example, a mirror (10a), and the dimming is a change in the efficiency of reflecting the irradiated light beam in a predetermined direction.
  • S power As an example, the efficiency can be changed by changing the inclination angle of the reflection surface of the mirror (10a).
  • the dimming The phase of the light reflected by the mirror can be changed.
  • a first exposure apparatus of the present invention is an exposure apparatus for exposing a desired pattern on a substrate to be exposed (W), and includes a first or second two-dimensional light control device ( VM1), a shape signal processing system (21) that supplies the dimming signal to the two-dimensional dimming device, and illumination optics that illuminates the two-dimensional dimming device with illumination light (IL0) from the light source (1) System (2, 3, 4a, 6, 7, 8), a projection optical system (13) for guiding the illumination light modulated by the two-dimensional dimming device onto the substrate, and the substrate And the first direction in the two-dimensional dimming device (VM1) according to the present invention can run in a second direction which is a direction projected onto the substrate to be exposed by the projection optical system. And a substrate stage (14).
  • the first exposure apparatus of the present invention provides a pattern based on each dimming state formed on each of two-dimensionally arranged dimming elements (49) constituting the two-dimensional dimming device.
  • the two-dimensional light control device (VM1) since the two-dimensional light control device (VM1) according to the present invention is used, the two-dimensionally arranged light control elements constituting the two-dimensional light control device are used.
  • the distribution of each dimming state formed in (49) can be moved along the first direction while maintaining its shape.
  • the signal supply mechanism (LC, RC) causes the dimming element (MU) of the two-dimensionally arranged dimming element (MU) to move.
  • the dimming signal may be supplied only to the signal holding element (BD) in the dimming element (MU) arranged at one end in the first direction.
  • the amount of dimming signals to be supplied is greatly reduced as compared with the case where new dimming signals are supplied to all the signal holding elements in each dimming element during scanning exposure, and the amount of dimming signals to be supplied is greatly reduced.
  • the time required for supply can be significantly reduced.
  • the speed of movement in the first direction can be increased, and the processing time required for exposing the substrate can be shortened, thereby realizing a low-cost, high-throughput maskless exposure apparatus.
  • a second exposure apparatus of the present invention is an exposure apparatus for exposing a desired pattern on a substrate to be exposed (W), and is a first two-dimensional dimming device (VM1) according to the present invention.
  • the second two-dimensional dimming device of the present invention a shape signal processing system (21) for supplying the dimming signal to the two-dimensional dimming device, and a light source ( The illumination optical system (9b, etc.) that irradiates the illumination light (I L0) from 1) to the two-dimensional light control device, and the illumination light (IL6) reflected by the two-dimensional light control device is applied to the substrate to be exposed.
  • the projection optical system (13) and the substrate to be exposed are held, and the first direction of the two-dimensional dimming device (VM1) according to the present invention is projected onto the substrate by the projection optical system.
  • a substrate stage (14) movable in a second direction, the illumination optical system including the illumination optical system.
  • the optical axis of the projection optical system light to (AX), and inclined at a predetermined angle as a whole, is to irradiate on the two-dimensional light modulating device.
  • the two-dimensional dimming device by using the two-dimensional dimming device according to the present invention, similarly to the first exposing apparatus of the present invention, the two-dimensional dimming device is formed on the two-dimensional dimming device. It is possible to move the distribution of the dimming state at high speed along the first direction, shorten the processing time required for exposure of the substrate, and achieve a low-cost, high-throughput maskless An exposure apparatus can be realized.
  • the illumination light (IL5) for the two-dimensional dimming device (VM1) is tilted as a whole with respect to the optical axis (AX) of the projection optical system (13). Therefore, it is easy to separate the illumination light (IL5) from the reflected light (IL6) modulated by the two-dimensional light control device, so that the configuration of the exposure apparatus can be simplified and the cost of the exposure apparatus can be reduced. .
  • the two-dimensional dimming device is configured in synchronization with a change in the position of the substrate stage in the second direction.
  • the signal transfer by the signal transfer mechanism (XC) can be performed.
  • the light source (1) is a pulsed light source, and the two-dimensional dimming device is synchronized with the pulsed light emission.
  • the signal transfer can be performed by the signal transfer mechanism (XC) that constitutes the above.
  • the illumination light (IL2) is applied to the variable shaping mask (VM1).
  • a first or second two-dimensional dimming device (VM1) is used, and the dimming element (MU) in the dimming element array (11) holds a dimming signal corresponding to a desired pattern.
  • a dimming distribution corresponding to the desired pattern is formed in the dimming element array.
  • the dimming signal held by the signal holding element (BD) in the dimming element (MU) is converted by the signal transfer mechanism (XC) into the adjacent dimming element along the first direction.
  • the signal is sequentially transferred to the signal holding element (BD) in the child (MU), and the dimming distribution formed on the dimming element array (11) is moved in the first direction. Further, in accordance with this, the exposed substrate (W) is moved along the second direction whose first direction is the direction projected onto the exposed substrate by the projection optical system (13). Exposure is performed while moving relatively to the projection optical system.
  • the time required to supply a dimming signal is greatly reduced as compared with a case where a new dimming signal is supplied to all of the signal holding elements in each dimming element during scanning exposure.
  • the speed of the movement in the direction of the direction can be improved, and the processing time required for exposing the substrate can be shortened.
  • a low-cost, high-throughput maskless exposure method can be provided.
  • the illumination light (IL5) is irradiated on the variable shaping mask (VM1), and the illumination light (IL6) modulated by the variable shaping mask is projected onto the projection optical system (IL6).
  • the second two-dimensional light control device of the present invention is used.
  • the dimming element (MU) in the dimming element array (11) by causing the dimming element (MU) in the dimming element array (11) to hold a dimming signal corresponding to a desired pattern, the dimming element array is formed into the desired pattern. A corresponding dimming distribution is formed. Then, the dimming signal held in the signal holding element (BD) in the dimming element (MU) is converted by the signal transfer mechanism (XC) into the adjacent dimming element (XC) along the first direction. MU), and sequentially transfers the dimming distribution formed on the dimming element array (11) in the first direction. Move. Further, in accordance with this, the exposed substrate (W) is moved along the second direction, the first direction of which is the direction projected onto the exposed substrate by the projection optical system (13).
  • Exposure is performed while moving relative to the projection optical system, and irradiation of the illumination light (IL5) to the two-dimensional dimming device (VM1) is performed by the light of the projection optical system. It is performed by inclining at a predetermined angle with respect to the axis (AX) as a whole.
  • the time required to supply a dimming signal is greatly reduced as compared with a case where a new dimming signal is supplied to all of the signal holding elements in each dimming element during scanning exposure.
  • the speed of movement along the direction (1) can be improved, and the processing time required for exposing the substrate can be reduced.
  • a low-cost, high-throughput maskless exposure method can be provided.
  • the signal transfer is performed in synchronization with a change in the position of the substrate to be exposed (W) in the second direction.
  • the projection optics of the dimming distribution corresponding to the desired pattern formed on the dimming element array (11) of the two-dimensional dimming device (VM1) and the substrate (W) to be exposed are obtained. Exposure can be performed while maintaining the positional relationship via the system (13) with high accuracy.
  • the illumination light is a pulse light generated from a pulse light source (1), and the signal transfer is performed in synchronization with the emission of the pulse light. Can be performed. Thus, it is possible to prevent the image of the pattern exposed on the substrate to be exposed (W) from deteriorating.
  • the illumination light (IL2) is irradiated on the variable shaping mask (VM1), and the illumination light adjusted by the variable shaping mask is projected onto the projection optical system ( 13)
  • a device manufacturing method including an exposure step of irradiating a substrate to be exposed (W) on which a device is to be formed through the step (13).
  • a dimming distribution corresponding to the desired pattern is formed on the ray, and the dimming signal held in the signal holding element (BU) in the dimming element is converted into the dimming signal by the signal transfer mechanism (XC).
  • a signal is sequentially transferred to a signal holding element in the dimming element adjacent along the first direction, and the dimming distribution formed on the dimming element array is moved in the first direction and the dimming distribution is moved in the first direction.
  • the substrate to be exposed is moved relative to the projection optical system along a second direction in which the first direction is the direction projected onto the substrate by the projection optical system. Exposure is performed.
  • the illumination light (IL2) is irradiated on the variable shaping mask (VM1), and the illumination light adjusted by the variable shaping mask is projected onto the projection optical system (13). ).
  • VM1 having a mirror (10a) or using the second two-dimensional dimming device of the present invention, and using the dimming element (MU) in the dimming element array (11) with a desired pattern.
  • a dimming distribution corresponding to the desired pattern is formed in the dimming element array by holding the dimming signal corresponding to the light, and the dimming signal is held by the signal holding element (BU) in the dimming element.
  • the dimming signal is transmitted along the first direction by the signal transfer mechanism (XC).
  • the signal is sequentially transferred to a signal holding element in the light control element adjacent to the light control element, the light control distribution formed in the light control element array is moved in the first direction, and the substrate to be exposed is moved to the first position. Exposure is performed while moving relative to the projection optical system along a second direction in which the direction 1 is projected onto the substrate to be exposed by the projection optical system, and the two-dimensional Irradiation of the illumination light to the dimming device is performed at a predetermined angle with respect to the optical axis of the projection optical system as a whole.
  • the device manufacturing method of the present invention since it is not necessary to manufacture a large number of masks, a device can be manufactured at low cost and with high throughput.
  • the signal transfer may be performed in synchronization with a change in the position of the substrate to be exposed (W) in the second direction.
  • the illumination light is pulsed light generated from a pulsed light source, and the signal transfer is performed in synchronization with the emission of the pulsed light. You can do it.
  • the time for supplying a dimming signal corresponding to the pattern to the variable shaping mask is significantly reduced. can do.
  • the processing capability (throughput) of the maskless exposure method and the maskless exposure apparatus can be greatly improved, and the exposure apparatus and the exposure method with high productivity can be realized.
  • FIG. 1 is a diagram showing a two-dimensional light control device VM1 according to a first embodiment of the two-dimensional light control device of the present invention.
  • FIG. 2 is a diagram showing a control circuit mechanism 12 constituting the two-dimensional light control device VM1 of the present invention.
  • FIG. 3 (A) is a plan view showing a charge-coupled element MU which is a component of the two-dimensional dimming device VM1 of the present invention
  • FIG. 3 (B) is a cross-sectional view thereof along line AA ′.
  • Yes is a cross-sectional view along the line BB ′.
  • FIG. 4 is a diagram showing a dimming element MU and a charge coupling element MU constituting a two-dimensional dimming device VM1 of the present invention.
  • FIG. 5A is a diagram showing two-dimensional light control data SD corresponding to a light control distribution to be formed on the light control element array 11 of the two-dimensional light control device VM1 of the present invention
  • FIG. FIG. 7 is a diagram illustrating an example of a dimming state distribution VD1 formed on the dimming element array 11
  • FIG. 7C is a diagram illustrating another example of a dimming state distribution VD2 formed on the dimming element array 11. It is.
  • FIG. 6 is a diagram illustrating an exposure apparatus according to a first embodiment of the present invention including a two-dimensional light control device VM1 of the present invention as a variable shaping mask.
  • FIG. 7 Two-dimensional light control provided with the two-dimensional light control device VM1 of the present invention as a variable shaping mask
  • FIG. 8 is a diagram illustrating a part of an exposure apparatus according to a second embodiment of the present invention, in which illumination light IL5 is incident on a device VM1 at an angle.
  • FIG. 8A is a plan view showing a dimming element MU2 which is a part of a two-dimensional dimming device VM2 according to a second embodiment of the two-dimensional dimming device of the present invention
  • FIG. I s a cross-sectional view along the line A-A '
  • (C) is a cross-sectional view along the line B-B'.
  • FIG. 9 is a view showing a dimming element formed above the opening 55 and in the vicinity thereof in the second embodiment of the two-dimensional dimming device of the present invention shown in FIG.
  • FIG. 10 A second embodiment of the present invention including the two-dimensional light control device VM2 of the present invention as a variable shaping mask.
  • FIG. 13 is a diagram illustrating an exposure apparatus according to a third embodiment.
  • FIG. 11 illustrates a device manufacturing method of the present invention.
  • VM1, VM2 two-dimensional dimming device, MU, MU2: dimming element, 11: dimming element array, 12: control circuit mechanism, 120: signal holding transmission mechanism, XC 'XCCD (charge in X direction To CCD), LC: Left YCCD (CCD to transfer charge in Y direction), RC: Right YCC D (CCD to transfer charge in Y direction), 121: Signal processing system, CU: Charge coupled element, A1 1-5: 1st phase X transfer electrode, B15: 2nd phase X transfer electrode, C15: 3rd phase X transfer electrode, PA, PB, PC: transfer signal line, D3—5 , BD: signal holding element, 50: semiconductor substrate, 10a: micro mirror, 43: control transistor, 1: light source, 8: relay lens, IL0-10: illumination light, 13: projection optical system, 14 ... Substrate stage, 20 ... Main control system, 21 ... Shape signal processing system, 62 ... Transparent substrate,
  • FIG. 1 is a bird's-eye view showing the whole of the two-dimensional dimming device VM1 of the present embodiment.
  • the two-dimensional dimming device VM1 has two-dimensionally arranged dimming elements MU including micromirrors and the like.
  • the light control element array 11 is provided.
  • Each dimming element MU is arranged, for example, on a grid point of a rectangular grid on a rectangular coordinate system formed by orthogonal X axis and ⁇ axis in the figure.
  • the rectangular lattice is equally spaced at the first interval in the X-axis direction.
  • the grids are arranged at regular intervals, and are arranged at equal intervals with a second interval in the Y-axis direction.
  • a signal line Sig is connected to the control circuit mechanism 12, and a shape signal (pattern) serving as a source of a dimming distribution to be formed on the two-dimensional dimming device VM1 from a signal processing device (not shown) via the signal line Sig. (Shape signal) is supplied.
  • control circuit mechanism 12 constituting the two-dimensional light control device VM1 of the present invention will be described with reference to FIG.
  • the control circuit mechanism 12 includes a signal processing system 121 and a signal holding / transmission mechanism 120 including a charge-coupled device (hereinafter, referred to as “CCD”).
  • the signal holding / transmitting mechanism 120 is formed on a semiconductor substrate (not shown), and has a CCD (Y CCD) for transferring charges in the Y direction at one end (left side) in the X direction.
  • the right YCCD (RC), which is a CCD that transfers electric charge in the Y direction, is provided at the + side (right) end of the CCD.
  • a plurality of CCDs, which transfer electric charge in the X direction, are arranged in parallel in the center in the X direction.
  • XCCD (XC) which is arranged in a matrix.
  • the left YCCD is composed of a left Y transmission line DL provided on a semiconductor substrate (not shown), a first phase left Y transfer electrode Fl, F2, F3, F4, F5, and a second phase left Y formed thereon.
  • Y transfer signal line that supplies signals to transfer electrodes G1, G2, G3, G4, G5, third phase left Y transfer electrode HI, H2, H3, H4, H5, and the first phase left Y transfer electrode F115 Q1, a Y transfer signal line Q2 for supplying a signal to the second phase left Y transfer electrode G1-5, and a Y transfer signal line Q3 for supplying a signal to the third phase left Y transfer electrode HI-5.
  • the right YCCD is composed of a right Y transmission line DR provided on a semiconductor substrate (not shown) and a first phase right Y transfer line 3 ⁇ 4J1, J2, J3, J4, J5, formed thereon.
  • 2nd phase right Y transfer electrode Kl, ⁇ 2, ⁇ 3, ⁇ 4, ⁇ 5, 3rd phase right ⁇ transfer electrode LI, L2, L3, L4, L5, and the above 1st phase right Y transfer electrode ⁇ Transfer signal line Q4 supplies the signal to the second phase right Y transfer electrode K15.
  • Y transfer signal line Q5 supplies the signal to the third phase right Y transfer electrode L15.
  • Y transfer It consists of signal line Q6.
  • the XCCD includes a plurality of X transmission paths D3, D4, D5, and the like provided on a semiconductor substrate (not shown) parallel to the X direction, and a plurality of X transmission paths formed thereon in parallel to the Y direction.
  • X-transfer signal line PA for supplying signals to X-transfer electrode A1-5
  • X-transfer signal line PB for supplying signals to second-phase X-transfer electrode Bl5
  • X-transfer electrode C3 for third-phase It consists of an X transfer signal line PC that supplies signals to 5.
  • the left Y transmission line DL and the X transmission line D35 and the like, and the right Y transmission line DR and the X transmission line D3-5 and the like are interconnected as shown in FIG. 2, and are held in each transmission line.
  • the charged charges can move with each other.
  • the region surrounded by the dashed lines VI and V2 includes the X transfer electrode C5 and the right Y transmission line. Force indicating a part of the transfer electrode L5 or the like deleted and displayed. Needless to say, these electrodes should be actually formed in the region surrounded by the dashed lines VI and V2.
  • a shape signal externally supplied to the two-dimensional dimming device VM1 of the present invention via the signal line Sig is input to the signal processing system 121, where it is converted into a dimming signal and converted to the signal line S1 or S2.
  • the signal is supplied to the input section D0L of the left Y transmission path DL or the input section DOR of the right Y transmission path DR provided at both ends in the X direction of the signal holding / transmission mechanism 120 via.
  • the signal processing system 121 In synchronization with the dimming signal, the signal processing system 121 generates a three-phase Y clock signal, and converts the signals of each phase into Y transfer signal lines Ql, Q4, Y transfer signal lines Q2, Q5, Y Supply to transfer signal lines Q3 and Q6.
  • the signal processing system 121 also generates three-phase X clock signals PA, PB, and PC, and supplies them to the X transfer signal lines PA, PB, and PC, respectively.
  • the dimming signal is supplied to the signal line S1 or the signal line S1 according to the moving direction of the dimming distribution formed on the dimming element array 11, which is a feature of the two-dimensional dimming device VM1 of the present invention. Can be supplied to one of both input sections D0L and DOR via one of S2. The details will be described later.
  • the dimming signal is supplied to the input unit D0L of the left YCCD (LC) via the signal line S1.
  • a negative first charge is formed in the input section D0L as an example corresponding to the dimming signal.
  • This first charge is transferred to the first :! phase left Y transfer electrode F1 by the Y transfer signal line Q1. Due to the positive potential Y clock signal supplied to the left Y transfer path DL, it moves right below the first phase left Y transfer electrode F1 in the left Y transfer path DL. At this time, ⁇ ⁇ a weak positive potential is applied to the transfer signal line Q2. 0A 0 potential is applied to the transfer signal line Q3.
  • the ⁇ direction clock signal supplied from the signal processing system 121 sequentially changes, 0 the 0 potential is applied to the transfer signal line Q1, ⁇ the positive potential force S is applied to the transfer signal line Q2, and the Y potential is weak to the Y transfer signal line Q3. A positive potential is applied respectively.
  • the first charge immediately below the first left Y transfer electrode F1 moves right below the second phase left Y transfer electrode G1.
  • a 0 potential is applied to the Y transfer signal line Q2 and a positive potential is applied to the Y transfer signal line Q3, the first charge is generated. Moves right below the third phase left Y transfer electrode FH.
  • a predetermined dimming signal is sequentially input to the input section D0L via the signal line S1, thereby forming the left YCCD (LC). Electric charges corresponding to a predetermined dimming signal can be sequentially formed immediately below the one-phase left Y transfer electrode F1-5 or the second phase left Y transfer electrode G1-5.
  • the signal processing system 121 changes the XCCD (XC).
  • Driving the above-mentioned electric charges (light control signal) held in the left YCCD (LC) are transferred and supplied to the inside of the XCCD (XC).
  • XCCD is also a charge-coupled device
  • three-phase X clock signals that sequentially change in the same manner as in the example shown in the left YCCD (LC) above are sequentially applied to the X transfer signal lines PA, PB, and PC. It is needless to say that by applying the voltage, the charge (light control signal) held immediately below the X transfer electrode A1 on each of the transmission paths D3-5 can be sequentially moved in the + X direction. Not even.
  • the portion capable of holding one independent dimming signal is a region shown by a broken line in FIG. This is a region including a portion where one X transmission line D5 such as CU0 intersects one of the first to third phase X transfer electrodes (Al, Bl, C1).
  • the one charge-coupled element CU0 has a function of holding a dimming signal at three locations on the X transmission path D5 immediately below the X transfer electrodes Al, Bl, and CI.
  • the dimming elements in the dimming element array 11 are controlled based on a dimming signal held immediately below the second-phase X transfer electrode B1. Therefore, each region formed at the intersection of the X transmission path D3-5 and the second-phase X transfer electrode B1-5 in each charge-coupled element is hereinafter referred to as a "signal holding element".
  • XCCD is a signal holding element array in which signal holding elements having a charge (signal) holding function are two-dimensionally arranged, and charges (light control signals) held in the signal holding elements are stored. It functions as a signal transfer mechanism that transfers signals to adjacent signal holding elements along the X direction. In this case, the X direction can be regarded as the first direction. Further, the left YCCD (LC) functions as a signal supply mechanism that supplies a signal to each signal holding element arranged at the end in the ⁇ X direction in the XCCD (XC).
  • the number of charge-coupled elements is limited to five in the X-direction and five in the Y-direction for a total of 25, due to space limitations. It goes without saying that the number of elements should be overwhelmingly greater. It is desirable that the number of arrays be, for example, at least 1000 columns in at least one of the X direction and the Y direction.
  • FIG. 3 (A) is a view in which the X transmission line D3 in FIG. 2 and one of the X-transfer electrodes (A3, B3, C3) of the first to third phases are formed at positions where they cross each other.
  • FIG. 2 shows an enlarged view of a charge-coupled element CU and its surrounding charge-coupled element indicated by broken lines.
  • FIG. 3B is a cross-sectional view taken along a line A—A ′ in FIG. 3A, which is a plan view
  • FIG. 3C is a sectional view taken along a line B—B ′ in FIG. 3A.
  • a cross-sectional view is shown.
  • the directions of the XYZ coordinates shown in FIGS. 3 (A), 3 (B), and 3 (C) are equivalent to those shown in FIG.
  • a semiconductor substrate 50 such as a silicon wafer
  • X transmission paths D2, D3, D4 and insulating regions El, E2, E3, E4 and a force S are formed in parallel with the X-axis direction.
  • the X transmission line D24 is formed of the semiconductor substrate 50 itself, while the insulating region E14 is formed by processing the semiconductor substrate 50 to form an insulating layer such as an oxide film.
  • Phase X transfer electrodes A2, A3, A4, the second phase X transfer electrodes B2, B3, B4, and the third phase X transfer electrodes C2, C3, C4 are parallel to the Y direction. Formed.
  • An insulating film such as a silicon oxide film (silicon dioxide film) is formed between each of the X transfer electrodes A2-4, B2-4, C2-4 and the transmission line D2-4. — 4, B2— 4, Ensure insulation between C2—4 and transmission line D2—4.
  • the signal holding element BD as described above. This is also true for other charge-coupled elements.
  • an opening 51 as a path for extracting a signal held by each charge-coupled element BD1 or the like is provided.
  • the electrodes B2c and B2d, the electrodes B3c and B3d, and the electrodes B4c and B4d in FIG. 3 (B) are portions of the second phase X transfer electrode B24 located at both ends of the openings 54, 55, and 56, respectively.
  • the charge-coupled element CU can be manufactured by a lithographic process. Since the manufacturing method is almost the same as a general CCD manufacturing method, a detailed description is omitted.
  • FIG. 4 is an enlarged view of one light control element MU included in the light control element array 11.
  • the signal holding element BD which is a part of the charge coupled element CU and the like also constitutes a part of the dimming element MU
  • FIG. 4 also shows the charge coupled element CU.
  • the light control element MU is composed of a micro mirror (mirror) 10a, drive electrodes 33a and 33b, base plate 32, connection electrodes 36, 37, 38, 39, 40, 41, Ehara Tori Line 42, and Ground Tori Izumi 46 , A dimming element 49 including a control transistor 43, a connection plug 48, and the like, and the signal holding element BD in the charge-coupled element CU.
  • a dimming element 49 including a control transistor 43, a connection plug 48, and the like, and the signal holding element BD in the charge-coupled element CU.
  • a dimming element similar to the dimming element 49 is also formed on the other charge-coupled elements two-dimensionally arranged in the XCCD (XC) shown in FIG. It goes without saying that the dimming element array 11 arranged two-dimensionally is formed. Therefore, in this example, the signal transfer mechanism XCCD (XC) and the dimming element array 11 have a stacked structure.
  • connection plug 48 the force drawn without connecting the lower end surface 48a of the connection plug 48 to the semiconductor substrate 50 is actually connected as shown by the arrow in the figure.
  • the lower surface 38a of the connection electrode 38 and the end 44 of the control transistor 43, and the lower surface 41a of the connection electrode 41 and the connection portion 47 that is a part of the ground wiring 46 are also illustrated separately. As shown by the arrows, these components are also connected to each other.
  • the configuration of the light control element MU will be described together with an example of a method of manufacturing the same.
  • a first insulating film (not shown) made of silicon dioxide or the like is formed on the semiconductor substrate 50 on which the charge-coupled element CU1 is formed, and a first insulating film is formed at a position corresponding to the opening 55 in the first insulating film. Form one opening. Then, polysilicon (polycrystalline silicon) or the like is buried in the first opening to form a connection plug 48. Then, a silicon oxide film 45 is formed by oxidizing the upper end of the connection plug 48 or the like.
  • a material made of polysilicon or the like is formed (deposited) over the entire surface of the connection plug 48 and the first insulating film, and the power supply wiring 42, the ground wiring 46, and the control transistor 43 are formed.
  • the polysilicon is removed, leaving only the parts to be removed.
  • a second insulating layer (not shown) made of a silicon oxide film or the like is formed on the power supply wiring 42, the ground wiring 46, the control transistor 43, and the like.
  • a second opening is formed at a position corresponding to the end 44 of the transistor 43 and the connection 47 of the ground electrode 46.
  • a first wiring material such as a metal or a low-resistance semiconductor is formed on the second insulating layer.
  • connection electrodes 38 and 41 are formed.
  • connection electrodes 37 and 40 are formed by removing, by etching or the like, portions other than predetermined portions of the first wiring material formed on the second insulating layer.
  • a third insulating layer (not shown) made of a silicon oxide film or the like is further formed on the substrate 50 on which the connection electrodes 37 and 40 are formed, and an insulating material made of, for example, silicon nitride or the like is further formed thereon.
  • the base material 32 is formed.
  • a third opening is formed at a predetermined position of the base plate 32 and the third insulating layer, and a second wiring material such as a metal or a low-resistance semiconductor is formed on the base plate 32 in this state. .
  • the second wiring material is buried in the third opening, and the connection electrodes 36 and 39 are formed.
  • a portion other than a predetermined portion is removed by etching or the like, so that the drive electrode 33a, the drive electrode 33b, and the conductive line 34 are formed.
  • a high-resistance wiring material is formed on the base plate 32, and the high-resistance wiring 35 is formed by patterning.
  • the drive electrode 33a and the drive electrode 33b are electrically connected by the high resistance wiring 35.
  • the high-resistance wiring 35 can also be formed from the second wiring material at the same time as the processing of the drive electrodes 33a and b. In this case, by making the line width of the high-resistance wiring 35 narrower than the line width of the drive electrodes 33a, b, the electric resistance can be increased.
  • a fourth insulating layer made of a silicon oxide film or the like is formed on the base plate 32 on which the driving electrodes 33a, b and the like are formed, and the fourth insulating layer is formed at a predetermined position on the fourth insulating layer.
  • An opening is formed.
  • the support portion 31 is formed in the fourth opening, and a silicon film constituting the mirror 10a is formed on the upper surface of the fourth insulating layer.
  • a high-reflectance metal such as aluminum or a dielectric multilayer film is formed on the silicon film to secure a high reflectivity on the surface of the mirror 10a.
  • the silicon film is patterned to form individual mirrors 10a.
  • the fourth insulating layer is removed by etching with hydrofluoric acid or the like to form a space between the base plate 32 and the mirror 1 Oa that allows the mirror 10a to tilt.
  • the first to third insulating layers shown in the drawing are components of the light control element MU as insulating members that do not need to be removed.
  • the dimming device MU is completed.
  • the method of manufacturing the light control element 49 and the light control element MU is not limited to the above example, and it goes without saying that the light control element 49 and the light control element MU can be manufactured using other methods.
  • the base plate 32, the power supply wiring 42, and the ground wiring 46 are connected to other dimming elements MU constituting the dimming element array 11 which are not closed components in one dimming element MU. It is the combined component.
  • the power wiring 42 is connected to the power wiring of another dimming element MU adjacent in the X direction at each end 42a, 42b. That is, the power supply wiring 42 constitutes a wiring in the X direction that connects a group of dimming elements arranged in the X direction at the same Y position among the dimming elements MU configuring the dimming element array 11, and has a terminating end.
  • a predetermined power supply potential is supplied to a power supply circuit (not shown).
  • the ground wiring 46 is connected to the ground wiring of another dimming element MU adjacent in the X direction and each end.
  • 46a and 46b are connected to each other, and constitute a wiring in the X direction that connects a group of dimming elements arranged in the X direction at the same Y position, and the terminating end thereof is connected to a ground circuit (not shown) and a predetermined ground potential is formed. Supplied. Then, the insulating base plate 32 is connected to the dimming element 49 and the base plate in another dimming element MU adjacent in the X and Y directions.
  • connection electrode 39 is connected to the drive electrode 33 b, and is connected (conductive) to the connection portion 47 on the ground wiring 46 via the connection electrodes 40 and 41.
  • a predetermined ground potential is always supplied to the drive electrode 33b via the ground line 46.
  • the micromirror 10a is electrically connected to the drive electrode 33b via the conductive line 34 via the support 31, the potential is always kept at the ground potential.
  • the drive electrode 33a is connected to the power supply electrode 42 via the connection electrodes 36, 37, 38 and the control transistor 43, and is also connected to the drive electrode 33b via the high-resistance wiring 35.
  • the control transistor 43 is made of an n-type semiconductor or a p-type semiconductor, and constitutes a field-effect transistor (FET) having the upper end of a connection plug 48 connected via an insulating film 45 as a gate electrode.
  • FET field-effect transistor
  • One end is connected to a power supply wiring 42 to supply a predetermined power supply potential, and the other end is connected to a connection electrode 38 via an end 44. Accordingly, the potential of the drive electrode 33a can be made variable by controlling the conduction or non-conduction of the control transistor 43.
  • the control transistor 43 when the control transistor 43 is made conductive, the drive electrode 33a is made conductive with the power supply electrode 42, and the power supply potential is supplied from this. On the other hand, if the control transistor 43 is turned off, the conduction between the drive electrode 33a and the power supply electrode 42 is cut off, and the drive electrode 33a is connected to the drive electrode 33b via the high-resistance wiring 35. The potential of a becomes the ground potential similarly to the drive electrode 33b.
  • the control transistor 43 when the power supply potential is positive and the ground potential is negative, when the control transistor 43 is conducting, the potential of the drive electrode 33a is positive, and the potentials of the drive electrode 33b and the micromirror 10a are negative. It becomes. At this time, an electrostatic attraction is generated between the driving electrode 33a and the micro mirror 10a, and an electrostatic repulsion is generated between the driving electrode 33b and the micro mirror 10a. As a result, the micromirror 1 Oa is inclined, and the normal direction of the reflection surface changes from the + Z direction to the + X direction in the figure.
  • the control transistor 43 when the control transistor 43 is non-conductive, the potentials of the drive electrode 33a, the drive electrode 33b and the micro mirror 10a are all negative, and the potential between the drive electrode 33a and the micro mirror 10a and between the drive electrode 33b and the micro mirror During 10a, electrostatic repulsion is generated. Therefore, due to the balance of the electrostatic repulsion, the reflection surface of the micromirror 10a is oriented in a direction whose normal direction coincides with the + Z direction in the figure.
  • the conduction and non-conduction of the control transistor 43 is determined by the polarity (or 0) of the charge generated in the connection plug 48, that is, by the polarity of the charge held in the charge coupling element CU.
  • the tilt angle of the micromirror 10a can be controlled by the positive or negative sign of the charge held in the signal holding element BD in the charge-coupled element CU (0).
  • the setting of the positive and negative of the power supply potential and the ground potential is not limited to the above example. Needless to say, the positive and negative may be reversed or the other may be zero. ,.
  • the dimming element MU changes the angle of the micromirror 10a in the dimming element 49 according to the signal held in the signal holding element BD constituting the dimming element. That is, it is possible to change the reflection efficiency of the illumination light applied to the micromirror 10a in a predetermined direction, that is, to adjust the light.
  • the dimming element MU is formed on the entire charge transfer element CU on the XCCD (XC) shown in FIG.
  • the dimming device VM1 based on the dimming signal held in each signal holding element BD on the XCCD (XC), each dimming element MU on the dimming element array 11 has dimming with a desired distribution shape. A state can be formed.
  • FIG. 5 (A) is a diagram showing two-dimensional dimming data SD to be formed on each dimming element MU on the dimming element array 11, and 1-bit dimming represented by white or black in the figure.
  • the optical signal power is arranged in m rows in the X direction and n rows in the Y direction.
  • black and white for example, white corresponds to 1 and black corresponds to 0.
  • the two-dimensional light control data SD may be stored in the signal processing system 121 in the control circuit mechanism 12 constituting the two-dimensional light control device VM1, or may be two-dimensional light control data. It may be stored in a signal processing device (not shown) different from the device VM1, and supplied as a shape signal from the signal processing device via the signal line Sig.
  • the form of the storage may be an electric signal on one element of the memory or a signal such as a magnetic signal on a large-scale storage device.
  • the number n of the two-dimensional dimming data SD in the Y direction is the number of the dimming elements MU on the dimming element array 11 in the Y direction (that is, the charge coupling arranged on the XCCD (XC)).
  • the number m of arrays in the X direction which is equal to the number of arrays in the Y direction of the element CU, is greater than the number of arrays in the X direction of the dimmer MU (that is, the same as the number of arrays in the X direction of the charge-coupled element CU).
  • the signal processing system 121 first passes through the Y transfer signal line Q1-3 to the left Y transfer electrode F1-5, G1-5, F1-5 of the left YCCD (LC). Then, supply of the above-mentioned three-phase Y clock signal is started. Then, the signal processing system 121 converts the dimming data of the two-dimensional dimming data SD arranged on the right end in the X direction on the 1JX1 in the X direction into the Y direction positions Yl, Y2, Y3,. In synchronization with one cycle of the above change, one by one, as a dimming signal, is sequentially supplied to the input section DOL of the left YCCD (LC) via the signal line S1.
  • the dimming signal sent to the input unit DOL is, for example, a signal having a zero potential if the signal in the two-dimensional dimming data SD is 0, and a signal having a negative potential if 1 is present. I do.
  • the signal processing system 121 repeats the above-described signal transfer for m cycles to supply all dimming data arranged in the column XI on the two-dimensional signal SD to the left YCCD (LC), and then drives the XCCD as described above.
  • the dimming signal held in the left YCCD (LC) is transferred to the signal holding element BD in the charge-coupled element CU0 and the like arranged in the leftmost column in the XCCD (XC) and supplied.
  • the signal processing system 121 sequentially supplies the light control data arranged on the column X2 of the two-dimensional light control data SD to the input unit D0L as a light control signal in the same manner as described above. After repeating this process for m cycles, the signal processing system 121 drives the XCCD (XC) again to transfer the signal to the signal holding element BD in the charge-coupled element CU0 etc. arranged in the leftmost row on the XCCD (XC).
  • the held dimming signal sequence is transferred to the signal holding element BD in each charge-coupled element adjacent in the + X direction, and the new signal sequence held on the left YCCD (LC) is transferred to the XCCD ( XC) Transfer to and supply the signal holding element BD in the charge-coupled elements CU0 etc. arranged in the leftmost column on the top.
  • each charge-coupled element CU of XCCD (XC) is defined as q columns
  • a series of operations including the above-described XCCD (XC) driving is repeated q times to obtain each charge-coupled XCCD (XC).
  • the supply of the predetermined two-dimensional dimming data SD to all of the signal holding elements BD in the element CU is completed.
  • the signal holding element BD is also a part of each dimming element MU.
  • a dimming distribution corresponding to each dimming signal held in the signal holding element BD in each dimming element MU is formed in each dimming element MU on the two-dimensional dimming device VM1.
  • the two-dimensional light control device VM1 of the present invention maintains a predetermined two-dimensional light control shape distribution on the light control element array 11 while maintaining its shape as much as possible.
  • X direction That is, the present invention employs a CCD (XCCD (XC) described above) as the signal holding element BD in each dimming element MU and a signal supply mechanism to the signal holding element BD, so that this movement can be easily realized.
  • CCD XCCD (XC) described above
  • the dimming signal held on the signal holding element BD two-dimensionally arranged on the XCCD (XC) is changed to the signal holding element adjacent in the + X direction. Easy to move on BD. And, along with this, it is formed on the dimming element array 11. A predetermined two-dimensional dimming shape distribution can be easily moved in the + X direction.
  • the two-dimensional dimming data is transferred to the signal holding element BD in the charge-coupled element CU0 etc. arranged at the left end of the XCCD (XC) via the YCCD (LC). It goes without saying that a new dimming signal on SD is supplied.
  • the signal processing system 121 applies a positive potential to the second phase Y transfer electrode K15 in the right YCCDR C in synchronization with the transfer operation of the XCCD (XC), and The charge held on the element BD is removed in the right YCCD (RC). Then, the right YCCD (RC) is driven to sequentially move these charges to the discharge end DRE in the right transmission line DR.
  • a ground line (not shown) is connected to the discharge end DRE, and the electric charge is recovered to the signal processing system 121 by the ground line.
  • FIG. 5B is a diagram illustrating an example of the dimming state distribution VD 1 formed on the dimming element array 11.
  • the number of dimming elements MU in the dimming element array 11 is arranged in the X direction in q columns (B1 to Bq), and the number of Y dimming elements in the Y direction is arranged in n columns (D1 to Dn).
  • the white or black display in the dimming state distribution VD1 corresponds to the two-dimensional dimming data SD, and the reflectivity force in a predetermined direction by each dimming element 49. Indicates low in part.
  • the dimming state distribution VD1 is the dimming distribution corresponding to the dimming data arranged in the x-direction width q column centering on column Xj in the two-dimensional dimming data SD shown in Fig. 5 (A). Is formed around the column Be, which is the center of the dimming element array 11 in the X direction. In each dimming element MU on the dimming element array 11, a dimming state corresponding to the dimming data of the corresponding part on the two-dimensional dimming data SD is formed while maintaining the arrangement in the X and Y directions. You.
  • FIG. 5 (C) shows the dimming state distribution on dimming element array 11 after the above-mentioned driving of XCCD (XC) has been performed for three cycles from the state shown in FIG. 5 (B). It is a figure showing VD2. That is, the dimming state distribution VD2 on the dimming element array 11 is the dimming state distribution shown in FIG. 5 (B). Cloth Moved in + X direction by 3 elements compared to VD1. In addition, a new dimming distribution based on the two-dimensional dimming data SD in FIG. 5A is formed in the left three systems IJ of the dimming element array 11.
  • the two-dimensional dimming device VM1 of the present invention while maintaining its shape as much as possible to form a predetermined two-dimensional dimming state distribution on the dimming element array 11, it is maintained at a predetermined level. (X direction).
  • the dimming signal is supplied via the right YCCD (RC) to the rightmost charge-coupled element CU column in the XCCD (XC), and the phase change state of the X clock signal is changed to change the charge in the XCCD (RC).
  • RC right YCCD
  • XC XCCD
  • RC phase change state of the X clock signal
  • the charges held on the leftmost signal holding element BD in XCCD (XC) are discharged into left YCCD (LC), and then discharged from discharge end DLE in left transmission path DL. If it is collected in the signal processing system 121 by a ground wire (not shown).
  • the two-dimensional light control device VM1 of the present invention may only need to be able to move the light control distribution in one direction depending on its use.
  • both left YCCD (LC) and right YCCD (RC) are not always needed, but only one of them, which supplies the dimming signal to XCCD (XC), should be equipped.
  • the signal transfer mechanism XCCD (XC) and the left and right left YCCD (LC) and right YCCD (RC) serving as the signal supply mechanism are each composed of a charge-coupled device ( (CCD), but the realization means is not limited to this.
  • a charge-coupled device (CCD)
  • information stored in a predetermined storage element such as a magnetic bubble memory is stored in another storage element adjacent thereto along a predetermined direction.
  • Other elements that can transfer the data to the device can also be used.
  • a signal reading mechanism provided in the modulating element 49 for reading a signal held in the magnetic bubble memory is also provided by the connection plug 48 and the charge effect transistor.
  • a magnetic plug and a coil are used.
  • the exposure apparatus of the present embodiment irradiates the reflecting surface 10 composed of the micromirrors 10a in the reflective dimming element array 11 on the two-dimensional dimming device VM1 of the present invention with the illumination light IL2, and reflects the reflected light IL3
  • This is an exposure apparatus that exposes a substrate W to be exposed through a projection optical system 13, that is, a so-called scanning type maskless exposure apparatus.
  • Illumination light IL0 emitted from a laser such as an excimer laser or a harmonic conversion laser, or a light source 1 such as a mercury lamp or a light emitting diode is incident on the deflection element 4a via the shaping optical systems 2 and 3.
  • the deflecting element 4a is, for example, an optical element such as a diffraction grating.
  • the deflecting element 4a deflects the incident illuminating light IL0 in a predetermined direction as necessary, or deflects the light beam (synonymous with “light beam”) after dividing it. And inject.
  • the illumination light IL1 emitted from the deflection element 4a enters the optical integrator 7 such as a fly-eye lens via the relay lens 6.
  • the illumination light emitted from the optical integrator 7 enters the beam splitter 9 via the relay lens 8 and is reflected by the split surface 9a to become the illumination light IL2 on the two-dimensional dimming device VM1 as a variable shaping mask.
  • the light is applied to the reflective surface 10 of the reflective dimming element array 11.
  • the reflecting surface 10 is formed by two-dimensionally arranging micromirrors 10a in the dimming device MU.
  • the size of the reflecting surface of each micromirror 10a is, for example, about 5 to 20 ⁇ .
  • the illumination light IL3 modulated by the dimming element array 11 passes through the division surface 9a of the beam splitter 9, is condensed by the projection optical system 13, and is exposed to a substrate W such as a semiconductor wafer or a glass substrate. Irradiated on top. At this time, on the substrate W to be exposed, a light / dark distribution corresponding to the dimming distribution on the dimming element array 11 formed corresponding to the desired pattern shape described above, that is, an image corresponding to the desired pattern shape is formed. Is formed, and this is exposed.
  • each micromirror 10 a The direction of the reflection surface of each micromirror 10 a is determined based on the shape signal transmitted from the shape signal processing system 21 to the control circuit mechanism 12 via the signal line Sig. At this time, if the direction of the normal line of the micromirror 10a is parallel to the Z axis, the illumination light IL2 is reflected by the micromirror 10a in the + Z direction, so that the illumination light IL2 is exposed through the beam splitter 9 and the projection optical system 13. Projected onto substrate W.
  • the illumination light IL2 is transmitted by the micro mirror 10a in the Z direction, light The light is reflected in a direction different from the direction of the axis AX and does not reach the substrate W to be exposed without being incident on the projection optical system 13 or blocked by an aperture stop (not shown) of the projection optical system 13.
  • an illumination intensity distribution corresponding to the modulation state of each dimming element MU including the micromirror 10a on the dimming element array 11 is formed on the substrate W to be exposed, and this is exposed on the substrate W to be exposed. Is done.
  • the resolution of an image formed on the substrate W to be exposed is determined by the size of the micromirror 10 a included in the dimming element 49 constituting the dimming element array 11, the reduction magnification of the projection optical system 13, and its resolution. .
  • the resolution of the image formed on the substrate W to be exposed is equal to the pitch of the mirror (approximately two pitches).
  • the size is expected to be 400 nm, which is 40 ⁇ m multiplied by the reduction ratio. However, this is also restricted by the numerical aperture (NA) of the projection optical system 13 and the wavelength of the light source.
  • NA numerical aperture
  • the resolution of the projection optical system is determined substantially by ⁇ / ⁇ , and in order to obtain the above-mentioned 400 nm resolution on the substrate W to be exposed, a short wavelength light source and a large NA are required. It is necessary to use a projection optical system.
  • the above resolution can be achieved by using a projection optical system having a numerical aperture of about 0.48 or more. it can.
  • the arrangement pitch of the dimming elements MU on the dimming element array 11 and the resolution of the projection optical system 13 need not be set to be equal, but may be finer. Les ,.
  • a so-called modified illumination method can be applied to an exposure apparatus using a variable shaping mask. That is, the substantial resolution of the projection optical system 13 can be improved by changing the incident angle characteristics of the illumination light to the dimming element array 11.
  • a plurality of the above-described deflection elements 4a are arranged, for example, in a turret type so as to be exchangeable. Then, the turret member 5 is rotated in accordance with the shape of the pattern to be exposed on the substrate to be exposed, and the optimum deflecting element 4a is selected from the plurality of deflecting elements 4a, 4b, etc., and loaded into the illumination optical path. In addition, a desired deflection characteristic is given to the illumination light.
  • the replacement of the deflection element 4a changes the deflection characteristics of the illumination light IL1 emitted from the deflection element 4a.
  • the light intensity distribution of the illumination light IL1 incident on the optical integrator 7 is changed.
  • On the exit surface of the optical integrator 7, a light amount distribution substantially maintaining this light amount distribution is formed, and the illumination light IL2 is applied to the dimming element array 11 with an angular characteristic based on this light amount distribution.
  • modified illumination such as annular illumination is realized.
  • the deformed illumination is to divide the illumination light IL2 into a plurality of partial light beams and change the incident angle of each partial light beam to the dimming element array 11, and to adjust the illumination light IL2 as a whole. It does not change the angle of incidence on the optical element array 11. This is similar to the modified illumination in an exposure apparatus using a photomask.
  • the substrate W to be exposed is, for example, a semiconductor wafer having a diameter of about 300 mm, whereas the exposure field of view of the projection optical system 13 is generally considerably narrower. Therefore, in order to expose a desired pattern over the entire surface of the substrate W to be exposed, it is necessary to move the substrate W during exposure. Therefore, the substrate W to be exposed is mounted on the substrate stage 14, and is movable on the surface plate 17 in the X and Y directions in the figure by a driving mechanism (not shown). Then, the position is measured by the laser interferometer 16 via the position of the movable mirror 15 installed on the substrate stage 14, and transmitted to the stage control system 18.
  • FIG. 1 shows a movable mirror 15 for measuring the position in the X direction of the substrate stage 14 and a movable mirror and a laser for measuring the position in the Y direction in which only the laser interferometer 16 is displayed. It goes without saying that an interferometer will also be installed.
  • the exposure of the substrate W is performed while the substrate W is relatively scanned with respect to the projection optical system 13 and the two-dimensional light adjusting device VM1. Do.
  • the substrate W to be exposed is loaded on the substrate stage 14 by a substrate transport mechanism (not shown). Then, if necessary, the position of the existing circuit pattern is positioned on the substrate W to be exposed, and the position is measured by the microscope 19.
  • the main control system 20 moves the substrate stage 14 to the exposure preparation position via the substrate stage control system 18.
  • the exposure preparation position is based on the position information of the pattern to be exposed on the substrate W to be exposed and the position of the existing circuit pattern measured by the alignment microscope described above.
  • the main control system 20 is determined accordingly.
  • the main control system 20 issues a command to the substrate stage control system 18 to scan (scan) the substrate stage 14 at a substantially constant speed in the ⁇ X direction.
  • the positions of the substrate stage 14 in the X and Y directions are measured by the laser interferometer 16 and the like, and transmitted to the main control system 20 via the substrate stage control system 18.
  • the main control system 20 and the substrate stage control system 18 scan the substrate stage 14 in the 1X direction while maintaining the predetermined speed based on the measured position information.
  • the main control system 20 issues a command to the shape signal processing system 21 and variably shapes the shape signal relating to the pattern shape to be exposed on the substrate W to be exposed, which is stored in the shape signal processing system 21. Transmit to mask VM1.
  • the shape signal is transmitted to the control circuit mechanism 12 in the two-dimensional dimming device VM1 as a variable shaping mask, and is controlled by the function of the above-described variable shaping mask (two-dimensional dimming device VM1 of the present invention). A dimming distribution corresponding to the shape of the pattern to be exposed on the substrate to be exposed W is formed thereon.
  • the substrate W to be exposed is scanned in the 1X direction at a substantially constant speed, so that the light control distribution formed on the light control element array 11 is maintained in a predetermined positional relationship.
  • its dimming distribution also needs to be scanned in the + X direction.
  • the reason why the signs in the X direction are reversed is that the projection optical system 13 is assumed to be an optical system that forms a general inverted image.
  • the two-dimensional dimming device VM1 of the present invention has a function of moving the dimming distribution formed on the dimming element array 11 in the + X direction by driving the XCCD (XC). Therefore, this can be easily realized. Then, the main control system 20 sends a command to the two-dimensional dimming device VM1 via the shape signal processing system 21, and transmits the dimming distribution formed on the dimming element array 11 via the projection optical system 13. The substrate to be exposed is moved in the + X direction while maintaining an image forming relationship.
  • the dimming distribution corresponding to the new pattern is sequentially added to one end of the dimming element array 11 in the X direction as described above. It needs to be formed.
  • the signal processing system 121 in the control circuit mechanism 12 in the two-dimensional dimming device V Ml as a variable shaping mask is, as described above, a YCCD (LC, A new dimming signal is supplied to the signal holding element BD arranged at the X-direction end on XCCD (XC) via RC). Further, as required, the shape signal processing system 21 supplies a shape signal corresponding to the new pattern to the signal processing system 121 in the control circuit mechanism 12.
  • the scanning direction of the substrate W to be exposed and the scanning direction of the dimming distribution on the dimming element array 11 have the same sign.
  • the scanning direction of the substrate W to be exposed may not be parallel to the scanning direction of the dimming distribution on the dimming element array 11.
  • the installation direction of the two-dimensional dimming device VM1 and the installation direction of the substrate stage 14 are appropriately changed to change the running direction of the substrate stage 14, that is, the running direction of the substrate W to be exposed, as described above.
  • the direction may be configured such that the first direction, which is the running direction of the dimming distribution on the dimming element array 11, matches the direction projected onto the substrate W to be exposed via the projection optical system 13. Needless to say.
  • the main control system 20 issues a light emission command to the light source 1 when the substrate stage 14 reaches a predetermined position, based on position information from the laser interferometer 16 and the like. As a result, the emission of the illumination light IL0 from the light source 1 is started, and the dimming element array 11 is irradiated with the illumination light IL2. Then, the reflected light IL3 provided with the dimming distribution corresponding to the desired pattern shape is irradiated onto the substrate W to be exposed through the projection optical system 13, and the target shape W The pattern is exposed.
  • the main control system 20 issues a light emission stop command to the light source 1 to interrupt the exposure. Thereafter, the substrate stage 14 is driven in the Y direction or further in the X direction to move to another exposure preparation position, and the above-described exposure operation is repeated to expose a necessary portion on the substrate W to be exposed.
  • the exposure operation on the substrate to be exposed W is completed.
  • the substrate W to be exposed is removed from the substrate stage 14 by a substrate transport mechanism (not shown) and carried out of the exposure apparatus. If another substrate to be exposed (not shown) is to be continuously exposed, another substrate to be exposed is loaded on the substrate stage 14 by the substrate transport mechanism, and the same exposure operation as described above is repeated. .
  • the substrate stage 14 is always set in the same direction (for example, in the + X direction).
  • the processing capability can be improved by performing the scanning while the substrate stage 14 is alternately scanned in the + X direction and the 1X direction.
  • the two-dimensional dimming device VM1 which is a variable shaping mask of the exposure apparatus of the present invention, moves the dimming distribution formed on the dimming element array 11 as described above in both the + X direction and the 1X direction. Since a possible configuration can be adopted, running exposure performed while changing the running direction alternately can be easily realized.
  • variable shaping mask that has been conventionally proposed also includes, for example, a mirror array in which rotatable micromirrors are two-dimensionally arranged.
  • the rotation angle of each micromirror is determined in accordance with an electric signal held in a storage element such as a capacitor or a memory element formed correspondingly.
  • the conventional variable shaping mask does not have the signal transfer mechanism that is a feature of the present invention.
  • the signal stored in the storage element corresponding to each micromirror cannot be transferred to the adjacent storage element while maintaining its two-dimensional distribution shape. Therefore, even if the dimming distribution on the mirror array moves slightly in one direction, it is necessary to write all signals again to all the storage elements corresponding to all the micro mirrors that make up the mirror array. There is. Therefore, in the conventional variable shaping mask, the time required for moving the dimming distribution on the mirror array is relatively long, which limits the processing capability of the exposure apparatus.
  • the dimming signal held in the signal holding elements BD arranged two-dimensionally on the XCC D is transmitted in the X direction by the signal transfer mechanism (XCCD (XC)). It is possible to move at a high speed, whereby the light control distribution formed on the light control element array 11 can be moved at a high speed in the X direction. For this reason, the time required for moving the dimming distribution on the dimming element array 11 is short, so that the processing capability as an exposure apparatus can be greatly improved.
  • the signal supply mechanism that supplies the dimming signal to one row of the signal holding elements BD arranged at the end in the X direction in the signal transfer mechanism is as follows. Left and right YCCD (LC, RC) are used, and dimming signal supply to YCCD (LC, RC) is signal line It shall be supplied serially (serial) via SI or S2.
  • the signal supply mechanism is composed of a number of signal lines that connect the signal processing system 121 and the signal holding elements BD arranged at the left and right ends in the XCCD (XC), and the signal holding element BD
  • a configuration in which dimming signals are supplied to the parallel circuits in parallel (in parallel) can also be adopted.
  • the speed of supplying signals to the XCCD (XC) can be further increased, the time required for moving the dimming distribution on the dimming element array 11 is further shortened, and the processing capability as an exposure apparatus is further improved. To do it.
  • the position of the substrate stage 14 in the X direction and the position of the dimming distribution on the dimming element array 11 in the X direction are controlled independently of each other.
  • the X-direction position of the dimming distribution on the dimming element array 11 may be moved in synchronization with the X-direction position 14.
  • the XCCD (XC) in the two-dimensional dimming device VM1 is driven in synchronization with the fluctuation of the measured value by a predetermined amount.
  • the tilt angle of each micro mirror 10a on the dimming element array 11 is set to a predetermined angle during the pulse emission. It is necessary to be in the state that was done. If pulse emission is performed in the state where the tilt angle is being changed, a light and dark shape distribution different from a desired pattern is exposed on the substrate W to be exposed, and the formed image is deteriorated. is there.
  • the XCCD (XC) it is desirable to drive the XCCD (XC) in synchronization with the light emission timing of the pulse light source 1. That is, after the light source 1 of the pulse light emission type emits light, the XCCD (XC) is driven in synchronization with the light emission, and the signal transmission and the change of the inclination angle of each micromirror 10a are performed until the next pulse light emission. After the completion, the light emission of the pulse light source 1 may be performed again.
  • the XCCD (XC) is driven only for one cycle for each pulse emission, that is, the signals held in the signal holding element BD are arranged in one row in the signal holding element BD adjacent in the X direction. Not limited to transferring only minutes. Therefore, a plurality of cycles of XCC D (XC) are driven during each pulse emission, and the signal held in each signal holding element BD is The signal can be transferred to the signal holding element BD separated by a plurality of columns along the X direction.
  • the moving speed of the dimming distribution on the dimming element array 11 in the X direction can be increased, and the processing capability of the exposure apparatus can be improved. Can be maintained and improved.
  • phase shift mask that partially changes the phase (optical path length) of transmitted light is used as the photomask.
  • the two-dimensional light control device VM1 of the present invention can also be used as a mask having such a phase shift effect.
  • the micromirror 10a may be configured to be movable in the vertical direction (Z direction).
  • the illumination light reflected by the micromirror 10a has an optical path difference that is twice as large as the amount of movement of the micromirror 10a in the Z direction, so that the two-dimensional dimming device VM1 can be used as a phase shift mask.
  • An opening is formed in the base plate 32 near the conductive line 34.
  • the micromirror 10a can be moved up and down by the flexibility of the conductive line 34.
  • the drive electrodes 33a and 33b are formed integrally conductively, while at least one of the connection electrodes 39, 40 and 41 is formed of a high resistance material.
  • the phase shift mask As one form, a so-called halftone phase shift mask that reduces the transmittance of a given pattern on a mask not only by inverting the phase of transmitted light from that pattern with the transmitted light from another pattern, but also by using a so-called halftone phase shift mask It has been used to improve resolution and other effects.
  • a configuration equivalent in principle to this halftone phase shift mask can be realized and the same effect can be obtained by the following method.
  • this method uses a two-dimensional dimming device VM1 in which the micromirror 10a moves up and down in the Z direction as in the above-described modification, and combines a plurality of dimming elements MU. It is assumed that the light control is performed assuming that the light control element is one light control element. This means that, for example, the four adjacent light control elements MU are regarded as one light control element, and the micromirror 1 Oa in the three light control elements MU is arranged at a position above the Z direction and remains. One of them is placed at the original position (that is, the lower position in the Z direction). Then, the difference between the positions in the Z direction is set to 1/4 of the wavelength of the reflected light beam.
  • the amplitude reflectance of the reflected light flux from the micromirror 10a disposed at the lower position in the Z direction is +1 (reference)
  • the reflection by the micromirror 10a disposed at the upper position in the Z direction is assumed.
  • the amplitude reflectance of the light beam is -1.
  • the two light beams cancel each other out due to the interference, but the light beams having an amplitude reflectance of 1 with many mirrors remain, and the four dimming elements MU have a negative amplitude reflectance of 2 as a whole.
  • the pitch of the arrangement of the dimming elements MU on the dimming element array 11 is such that a change in dimming state between a plurality of adjacent dimming elements MU is not exposed to the substrate W to be exposed.
  • the beam is used to separate both light beams.
  • Splitter 9 required.
  • illumination of the two-dimensional light control device VM1 including the micromirror 10a, which is a variable shaping mask is performed.
  • An example in which the light IL2 is inclined at a predetermined angle will be described with reference to FIG.
  • the second embodiment of the exposure apparatus of the present invention is substantially common to the first embodiment of the exposure apparatus of the present invention in FIG. 6, and FIG. 7 shows only the changed portions.
  • the illumination light IL4 emitted from the relay lens 8 is reflected by the tilt mirror 9b to become the illumination light IL5, and is variably shaped with a predetermined tilt angle as a whole with respect to the optical axis AX of the projection optical system 13.
  • the two-dimensional light control device VM1 which is a mask, is irradiated. Therefore, if the normal direction of the reflecting surface of the micromirror 10a on the two-dimensional light control device VM1 is parallel to the Z axis, the reflected light is reflected as reflected light IL7 indicated by a broken line, and is reflected by the projection optical system 13. Does not enter.
  • the reflected light IL6 is reflected in a direction substantially parallel to the Z axis and projected.
  • the light enters the optical system 13 and reaches the substrate W to be exposed.
  • the exposure apparatus it is possible to spatially separate the light beam IL5 incident on the two-dimensional dimming device VM1 and the reflected light beam IL6 reaching the substrate W to be exposed, and the beam splitter 9 is unnecessary. There is an advantage that it becomes.
  • the above-described modified illumination can be used together.
  • the partial illumination light divided by the same polarizing element 4a as shown in FIG. 6 enters the two-dimensional dimming device VM1 at different incident angles, but in the present embodiment, each partial illumination The bright light as a whole enters the two-dimensional light control device VM1 with the above-mentioned predetermined inclination angle.
  • the problem is that the shape of the pattern on the photomask is partially deformed and is exposed and transferred onto the substrate to be exposed.
  • ⁇ PC optical proximity effect correction
  • the shape of the dimming distribution formed on the two-dimensional dimming device VM1 is partially deformed and the In this case, the dimming distribution formed on the variable shaping mask VM1 can be formed into a shape corrected from the desired pattern shape in consideration of the deformation.
  • This correction is performed based on, for example, data based on the shape of a desired pattern to be exposed on the substrate W to be exposed (data such as the two-dimensional light control data SD shown in FIG. 5A).
  • the processing can be performed by the signal processing system 21, or can be performed by the control circuit mechanism 12 in the two-dimensional dimming device VM1.
  • This correction is to be performed in advance by a data processing device outside the exposure apparatus, and such correction is not to be performed inside the exposure apparatus.
  • a liquid is filled between the projection optical system and the substrate to be exposed, and the wavelength of the exposure light (illumination light) incident on the substrate to be exposed is changed by the refractive index of the liquid.
  • a so-called immersion exposure method which is a method of improving the resolution by only reducing the size, has also been proposed.
  • This immersion exposure method is also applicable to the exposure apparatus and the exposure method of the present invention. That is, for example, pure water is locally provided between the substrate W to be exposed and the substrate stage 14 and the projection optical system 13.
  • the liquid immersion exposure method can be realized by supplying a liquid such as the above or by forcibly removing the liquid.
  • the two-dimensional light control device of the present invention is not limited to the above-mentioned reflection type, but may have a transmission type configuration.
  • a transmission type two-dimensional light control device (a second embodiment of the two-dimensional light control device of the present invention) will be described with reference to FIGS.
  • FIG. 8 (A) is a diagram showing a part of the two-dimensional dimming device VM2.
  • the dimming elements MU2 shown by broken lines in the drawing are three rows in the X direction and three rows in the Y direction. The arranged part It is the figure which expanded and represented.
  • FIG. 8B is a cross-sectional view of the two-dimensional dimming device VM2 taken along line A--A ′ in FIG. 8A passing through the center of the dimming element MU2, and
  • FIG. 8B is a cross-sectional view of the two-dimensional light control device VM2 taken along the line ⁇ _ ⁇ ′ in FIG. 8A passing through the end of the light control element MU2.
  • the transmission substrate 62 constituting the two-dimensional dimming device VM2 is made of a metal oxide, metal fluoride, or metal having a large band gap (forbidden band width) of magnesium oxide, zinc oxide, or the like and a good transmittance to ultraviolet rays. It is made of a semiconductor material composed of nitride or a mixture thereof. The longest wavelength (absorption edge wavelength) of light absorbed by a semiconductor material is determined by the band gap of the semiconductor. That is, by making the band gap of the transmission substrate 62 larger than the energy per photon of light (hereinafter referred to as “target light”) assumed to be used in the two-dimensional dimming device VM2, The transmission substrate 62 can be made transparent.
  • the semiconductor material forming the transmission substrate 62 is set so that its band gap has a slightly larger value with respect to the energy of the wavelength of the target light of the two-dimensional dimming device VM2.
  • the wavelength of the target light is ultraviolet light of 193 nm
  • the energy of one photon is 6.42 [eV]
  • the band gap of the material constituting the transmission substrate 62 is 6.43 to 6. This can be achieved, for example, by mixing magnesium oxide and zinc oxide.
  • control electrodes L22, L23, L24, L32, L33, L34, L42, L43 which have transmission through the target light corresponding to each dimming element MU2, respectively.
  • L44 is formed, and a light-shielding film 63 having a light-shielding property and an insulating property is formed in other portions.
  • a uniform counter electrode 64 having transparency to the target light is formed on the back surface of the transmissive substrate 62.
  • the Franz-Keldysh effect causes the absorption edge of the semiconductor material forming the transmissive substrate 62 to be absorbed. It is possible to shift the wavelength to the longer wavelength side so that it has absorption characteristics for the target light.
  • the two-dimensional light control device VM2 of the second embodiment utilizes this effect to control and control the transmittance and phase of each light control element MU2 (hereinafter collectively referred to as “amplitude transmittance”). It realizes an optical function.
  • the X transmission lines U2, U3, and U4 for holding the dimming signal and transmitting the dimming signal in the X direction are provided on the light shielding film 63 in the Y direction interval of the arrangement of the control electrodes L22 to L44.
  • Forming U5. This is performed by forming a semiconductor film such as silicon on the light-shielding film 63, or by polycrystallizing or single-crystallizing it by annealing (heat treatment) or the like. Then, the first phase X transfer electrodes R2, R3, R4, the second phase X transfer electrodes S2, S3, S4 and the third phase X transfer electrodes Tl, T2, T3, T4 are formed substantially parallel to the Y direction. I do.
  • a CCD (XCCD) for transferring charges in the X direction is formed on each transmission path U2-5, and the first, second, and third-phase X transfer electrodes R2-4, By sequentially applying a three-phase X clock signal to each electrode of S2-4, T1-4, each X transfer electrode R2-4, S2-4, T1-4 immediately below each transmission line U2-5 It is possible to transfer the retained charge in the X direction
  • a portion of the X transmission path D3 that is directly below the second phase X transfer electrode S2-4 is hereinafter referred to as a "signal holding element". This is a part corresponding to the signal holding elements BD2, BD3, BD4 in FIG. 3 (C). Also in the present embodiment, the openings 71, 72, 73, 74, 75, 76, 77, at the center of the second phase X transfer electrodes S2-4 at the positions where they intersect the X transmission path U2-5.
  • the electrodes S2c and S2d, the electrodes S3c and S3d, and the electrodes S4c and S4d in FIG. 8C are located at both ends of the openings 74, 75, and 76 in the second-phase X transfer electrode S2-4, respectively. Indicates the part that is located.
  • connection plug is formed at the position of the opening 75.
  • the lower end of this connection plug is connected directly to the signal holding element BD3 (see FIG. 8 (C)) or via an insulating film, and an insulating film such as a silicon oxide film is formed on the upper end of the connection plug.
  • control transistors 85 and 86, a power supply electrode 83, and a ground electrode 84 made of polysilicon or the like are formed. Note that these functions are the same as the functions of the corresponding members in the above-described first embodiment.
  • One end 85 of the control transistors 85 and 86 is connected to the power supply electrode 83, and the other end 86 is connected to the ground electrode 84 via a separately formed high resistance member 88.
  • a local wiring 87 is connected to the other ends 86 of the control transistors 85 and 86, and the other end of the local wiring 87 is connected to the control electrode L33.
  • the potential applied to the control electrode L33 can be changed according to the charge (light control signal) held in the signal holding element BD3 immediately below the connection plug. That is, the amplitude transmittance of each dimming element MU2 arranged in two dimensions can be changed according to the dimming signal held in the signal holding element BD3.
  • one of the dimming elements is a connection plug (not shown), a control transistor 85, 86, a high-resistance member 88, a local wiring 87, a control electrode L33, and a part facing the counter electrode 64. And a member such as a part of the transmission substrate 62 sandwiched between the control electrode L33 and the counter electrode 64.
  • One of the dimming elements MU2 is constituted by one of the dimming elements and the signal holding element BD3.
  • the dimming elements MU2 are two-dimensionally arranged on the transmission substrate 62 to form a dimming element array.
  • the signal holding elements BD3 are also arranged two-dimensionally, and the XCCD, which functions as a signal transfer mechanism, transfers the charges (light control signals) held in each signal holding element BD3 to each signal. It is possible to sequentially transfer the signal to the signal holding elements BD2 and BD4 adjacent to the holding element BD3 in the X direction.
  • the configuration other than the dimming element MU2 and the mechanism other than the signal transfer mechanism in the X direction is the same as the two-dimensional dimming device of the first embodiment. It can be configured in the same way as the dimming device VM1. That is, also in the two-dimensional light control device VM2 of the second embodiment, the control circuit mechanism has the control circuit device shown in FIG. Similarly to the configuration 12, a left YCCD (LC) and a right YCCD (RC) are provided as signal supply mechanisms at both ends of the dimming element array composed of the dimming element MU2, and a signal processing system 121 similar to FIG. It can be configured by providing.
  • LC left YCCD
  • RC right YCCD
  • the exposure apparatus of the present embodiment is also a so-called running type maskless exposure apparatus. Note that members denoted by the same reference numerals as those shown in FIG. 6 showing the first embodiment are the same members as those shown in the first embodiment, and a description thereof will be omitted.
  • the illumination light IL8 emitted from the relay lens 8 is reflected by the mirror 60 to become the illumination light IL9, and is incident on the above-described transmission type two-dimensional dimming device VM2.
  • the illumination light IL10 modulated by the amplitude transmittance distribution formed by the two-dimensional dimming device VM2 is applied to the substrate W to be exposed through the projection optical system 13, and thereby the two-dimensional dimming is performed on the substrate W to be exposed.
  • the illumination light having a desired intensity distribution formed by the device VM2 is exposed.
  • each dimming element MU2 on the two-dimensional dimming device VM2 is, for example, about 5 to 20 ⁇ angle, the wavelength of the illumination light IL8 and the aperture of the projection optical system 13.
  • the numbers are the same as in the exposure apparatus of the first embodiment.
  • the exposure operation on the substrate W to be exposed is the same as that of the exposure apparatus of the first embodiment and the exposure method of the first embodiment. While scanning the dimming distribution (amplitude transmittance distribution) to be formed in at least one of the + X direction and the 1X direction in the figure, the substrate stage 14 is exposed to light through the projection optical system 13 in the scanning direction. This is performed while running in the direction in which the substrate W is projected.
  • the shape signal processing system 21 transmits the shape of the pattern to be exposed on the substrate W to be exposed to the two-dimensional dimming device VM2 during the scanning exposure.
  • FIG. 11A is a cross-sectional view showing a substrate W to be exposed such as a semiconductor wafer where a pattern 91 such as a part of an integrated circuit is formed. Is formed with an insulating film such as a silicon oxide film.
  • an overlying film 92 such as an insulating film made of a silicon oxide film is further formed on the C layer. It is formed (deposited) by a VD method (chemical vapor deposition method) or the like, and a photoresist (photosensitive material) 93 is formed on the film to be processed 92 by spin coating or the like.
  • the substrate W to be exposed in this state is loaded into the exposure apparatus of the present invention, and a desired pattern shape is exposed by the above exposure.
  • the position of the existing circuit pattern 91 on the substrate to be exposed W is measured by the alignment microscope 19, and a desired pattern is exposed while maintaining a predetermined positional relationship with the existing pattern 91.
  • the photoresist 93 After this exposure, by developing the photoresist 93 on the substrate W to be exposed, as shown in FIG. 11B, the photoresist 93 becomes a resist corresponding to the portion where the desired pattern has been exposed. Processed into pattern 93p.
  • the photoresist 93 any of a positive type in which an exposed portion is removed and a negative type in which an unexposed portion is removed may be used.
  • the processing target layer 92 is etched, and as shown in FIG. 11C, the processing target layer 92 is processed into a pattern 92p following the shape of the resist pattern 93p. Thereafter, the resist pattern 93p is removed by a solvent or a photochemical reaction or the like, and the processing (patterning step) of the desired pattern 92p of the processing target layer 92 is completed.
  • the device is formed by repeating the above-described film forming and patterning steps.
  • the processed layer 92 may be a conductive layer of a metal, a semiconductor, or the like, which is not limited to the insulating film of the above example.
  • the layer to be added is not limited to the film formed on the substrate W to be exposed, and may include a step of processing the substrate W to be exposed into a predetermined shape.
  • the exposure method of the present invention can be used not only for manufacturing a device but also for manufacturing a photomask.
  • the present invention is not limited to the above-described embodiment, and can take various configurations without departing from the gist of the present invention.
  • the entire disclosure content of Japanese Patent Application No. 2004-048984 filed on Feb. 25, 2004, including the specification, claims, drawings, and abstracts, is incorporated in the present application by reference in its entirety. .
  • a two-dimensional light control distribution can be formed on the constituent light control element array, and the distribution can be moved in one direction at high speed.
  • its dimming distribution can be moved at high speed to the scanning method of the exposure apparatus, and the processing capability of the exposure apparatus can be increased. it can.
  • the exposure apparatus of the present invention in a scanning type maskless exposure apparatus, by using the two-dimensional dimming device of the present invention as a variable shaping mask, the exposure formed on the variable shaping mask.
  • the light distribution can be moved in one direction at high speed. Accordingly, the processing capability of the exposure apparatus can be improved, and the productivity of devices such as semiconductor integrated circuits can be improved.
  • the two-dimensional light control device of the present invention as a variable shaping mask, the light control distribution formed on the variable shaping mask can be changed in one direction. It is possible to move at high speed. Therefore, the processing capability of the exposure apparatus can be increased, and the productivity of devices such as semiconductor integrated circuits can be improved.
  • the productivity of the device can be improved and the production cost of the device can be reduced. It becomes possible. Further, the production cost of the device can be further reduced in combination with the effect of reducing the mask cost, which is a feature of the maskless exposure method.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

A scanning-type maskless exposure apparatus having, as a variable forming mask, a two-dimensional light modulation device capable of moving a formed modulated light distribution in one direction at a high speed. A two-dimensional light modulation device (VM1) is used as a variable forming mask of a scanning-type maskless exposure apparatus. The light modulation device (VM1) has a light modulation element array (11) where light modulation elements each composed of a signal holding element and a light modulation element are two dimensionally arranged and has a control circuit mechanism (12) capable of sequentially sending a light modulation signal, held by a signal holding element, in one direction to an adjacent signal holding element. A light modulation state distribution, as a pattern on the variable forming mask, capable of being sent in one direction is transferred, through a projection optical system (13), on a moving substrate (W) to be exposed.

Description

明 細 書  Specification
二次元調光デバイス、露光装置、及び露光方法  Two-dimensional light control device, exposure apparatus, and exposure method
技術分野  Technical field
[0001] 本発明は、例えば半導体集積回路 (LSI等)、撮像素子、又は液晶ディスプレイ等 の各種デバイスを製造するためのリソグラフイエ程で使用される露光技術に関し、更 に詳しくは、固定されたパターンの描画されたフォトマスクを用いることなぐ可変成形 マスクを用いて露光を行なう、いわゆるマスクレス露光技術に関する。また、本発明は その露光技術を用いるデバイス製造技術に関する。  The present invention relates to an exposure technique used in a lithographic process for manufacturing various devices such as a semiconductor integrated circuit (LSI or the like), an image sensor, or a liquid crystal display, for example. The present invention relates to a so-called maskless exposure technique in which exposure is performed using a variable-shaped mask without using a photomask on which a pattern is drawn. The present invention also relates to a device manufacturing technique using the exposure technique.
背景技術  Background art
[0002] 半導体集積回路又は液晶ディスプレイ等の電子デバイスを構成する微細パターン の形成に際しては、形成すべきパターンを 4一 5倍程度に比例拡大して透過性のガ ラス基板上に描画したフォトマスク(レチクル又は単にマスクともいう)を使用し、フォト マスク上の原版パターンを投影光学系により被露光基板としてのウェハ(又はガラス プレート等)上の感光膜 (フォトレジスト)に縮小して露光転写する方法が用いられて いる。そして、その露光転写に際して、ステッパー等の静止露光型及びスキャニング' ステッパー等の走查露光型の投影露光装置が用いられてレ、る。  [0002] When forming a fine pattern constituting an electronic device such as a semiconductor integrated circuit or a liquid crystal display, a photomask drawn on a transparent glass substrate by enlarging the pattern to be formed by about 415 times. Using a reticle or simply a mask, the original pattern on the photomask is reduced by a projection optical system to a photosensitive film (photoresist) on a wafer (or glass plate, etc.) as a substrate to be exposed, and is exposed and transferred. The method is used. At the time of the exposure transfer, a static exposure type projection exposure apparatus such as a stepper and a scanning exposure type projection exposure apparatus such as a scanning stepper are used.
[0003] フォトマスクへの上記原版パターンの描画は、パターンの設計データに基づいて、 電子線描画装置またはレーザー描画装置で行なわれてレ、る。半導体集積回路等の 微細化により、フォトマスク上の原版パターンのサイズも微細化し、かつ描画すべきパ ターンの量も増大している。その結果、フォトマスクへの原版パターンの描画及び描 画後のパターンの検査に要する時間が増大し、フォトマスクの製造コストが増大して いる。 [0003] The original pattern is drawn on a photomask by an electron beam drawing apparatus or a laser drawing apparatus based on design data of the pattern. With the miniaturization of semiconductor integrated circuits and the like, the size of an original pattern on a photomask is also becoming finer, and the amount of patterns to be drawn is also increasing. As a result, the time required for drawing an original pattern on a photomask and for inspecting the pattern after the drawing increases, and the manufacturing cost of the photomask increases.
[0004] そこで、ガラス基板に固定的にパターンが形成されたフォトマスクを使用することなく 、パターンの設計データに基づいて、その透過率または反射率を可変に設定するこ とが可能な「可変成形マスク」を使用してウェハ等への露光を行なう、いわゆる「マスク レス露光装置」「マスクレス露光方法」の提案も行なわれている(例えば、特許文献 1、 特許文献 2、非特許文献 1、及び非特許文献 2参照)。 特許文献 1 :米国特許出願公開第 2003/0081303A1号明細書 [0004] Therefore, without using a photomask in which a pattern is fixedly formed on a glass substrate, its transmittance or reflectance can be variably set based on pattern design data. So-called “maskless exposure apparatuses” and “maskless exposure methods” for exposing a wafer or the like using a “formed mask” have also been proposed (for example, Patent Document 1, Patent Document 2, Non-patent Document 1). And Non-Patent Document 2). Patent Document 1: U.S. Patent Application Publication No. 2003 / 0081303A1
特許文献 2:米国特許出願公開第 2003/0202233A1号明細書  Patent Document 2: US Patent Application Publication No. 2003 / 0202233A1
非特午文献 1: T. Sandstrome他: " igmailOO, a new architecture for laser pattern generators for 130nm and beyond", SPIE (米国) Vol.4409, PP 270- 276 (2001年) 非特許文献 2 : Luberek他: "Controlling CD variations in a massively parallel pattern generator", SPIE (米国) Vol.4691, PP 671-678 (2002年)  Non-noon literature 1: T. Sandstrome et al .: "igmailOO, a new architecture for laser pattern generators for 130nm and beyond", SPIE (USA) Vol.4409, PP 270-276 (2001) Non-patent literature 2: Luberek et al .: "Controlling CD variations in a massively parallel pattern generator", SPIE (USA) Vol.4691, PP 671-678 (2002)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] 上記可変成形マスクを用いた露光装置(マスクレス露光装置)では、角度可変の微 小ミラー要素が 2次元的に配列された如きマルチミラーデバイス等の二次元調光デ バイスを可変成形マスクとして使用することが想定される。そして、可変成形マスクを 原版として投影露光を行なう場合、一般に可変成形マスク上に可変形成できるパタ 一ンの被露光基板上換算での面積が大きい程、そのスループット(処理能力)は増 大する。 In an exposure apparatus using the above-mentioned variable shaping mask (maskless exposure apparatus), a two-dimensional dimming device such as a multi-mirror device in which angle-variable minute mirror elements are two- dimensionally arranged is variably shaped. It is assumed to be used as a mask. When projection exposure is performed using a variable-shaped mask as an original, the throughput (processing capacity) generally increases as the area of the pattern that can be variably formed on the variable-shaped mask in terms of the substrate to be exposed increases.
[0006] し力、しながら、上記パターン面積の増大は、マルチミラーデバイス上に構成する微 小ミラー要素数の増大を必要とし、さらには多量の微小ミラーを駆動するために大量 の駆動信号 (パターンの形状に応じた調光信号)を高速にマルチミラーデバイスに供 給する必要が生じる。  [0006] However, the above-mentioned increase in the pattern area requires an increase in the number of micro-mirror elements formed on the multi-mirror device, and furthermore, a large amount of driving signals ( It becomes necessary to supply a dimming signal according to the shape of the pattern) to the multi-mirror device at high speed.
このため、調光信号の伝達に長時間を要し、これ力 Sスループットを低下することや、 その信号処理系が大規模化かつ高価格化することにより、可変成形マスクを用いる 露光装置のコストの上昇が懸念される。  As a result, it takes a long time to transmit a dimming signal, which reduces the S throughput and increases the size and price of the signal processing system. Is likely to rise.
[0007] 本発明は、このような課題に鑑みてなされたものであり、多数のミラー要素等を備え る可変成形マスクを用いる露光装置においても、そのミラー要素等の駆動に必要な 駆動信号の大幅な削減を可能にしミラー要素等の高速な駆動を達成するとともに、 信号伝達系の簡素化を図り、低コストで高スループットのマスクレス露光装置及びマ スクレス露光方法を提供することを第 1の目的とする。  [0007] The present invention has been made in view of such a problem, and even in an exposure apparatus using a variable shaping mask having a large number of mirror elements and the like, a driving signal necessary for driving the mirror elements and the like is required. The first is to provide a low-cost, high-throughput maskless exposure apparatus and maskless exposure method that achieves high-speed driving of mirror elements and the like while achieving a significant reduction and simplifies the signal transmission system. Aim.
[0008] また、本発明は、当該マスクレス露光装置及びマスクレス露光方法で使用して好適 な二次元調光デバイスを提供することをも目的とする。 さらに、本発明は、上記露光技術を用いて、高性能のデバイスを製造できるデバィ ス製造技術を提供することをも目的とする。 [0008] It is another object of the present invention to provide a two-dimensional dimming device suitable for use in the maskless exposure apparatus and the maskless exposure method. Still another object of the present invention is to provide a device manufacturing technique capable of manufacturing a high-performance device using the above-described exposure technique.
課題を解決するための手段  Means for solving the problem
[0009] 以下の本発明の各要素に付した括弧付き符号は、後述の本発明の実施形態の構 成に対応するものである。し力、しながら、各符号はその要素の例示に過ぎず、各要素 をその実施形態の構成に限定するものではない。  [0009] The following reference numerals in parentheses attached to the respective elements of the present invention correspond to the configuration of an embodiment of the present invention described later. However, each reference numeral is merely an example of that element, and each element is not limited to the configuration of the embodiment.
上記課題の解決のために、本発明の第 1の二次元調光デバイス (VM1)は、調光 信号を保持する信号保持要素 (BD)と照射される光束をその調光信号に基づレ、て調 光する調光要素 (49)とからなる調光素子 (MU)が二次元に配列された調光素子ァ レイ(11)と、その調光素子 (MU)中の信号保持要素 (BD)に保持されたその調光信 号を、第 1の方向に沿って隣接するその調光素子 (MU)中の信号保持要素 (BD)に 順次信号転送する信号転送機構 (XC)と、その第 1の方向の少なくとも一方の端に配 歹 IJされるその調光素子 (MU)中の信号保持要素 (BD)にその調光信号を供給する 信号供給機構 (LC, RC)を有するものとした。  In order to solve the above-mentioned problems, a first two-dimensional dimming device (VM1) of the present invention provides a signal holding element (BD) for holding a dimming signal and a light beam to be irradiated based on the dimming signal. A dimming element array (11) in which dimming elements (MU) each comprising a dimming element (49) for dimming are arranged two-dimensionally, and a signal holding element (MU) in the dimming element (MU) A signal transfer mechanism (XC) for sequentially transferring the dimming signal held in the (BD) to the signal holding element (BD) in the adjacent dimming element (MU) along the first direction; Having a signal supply mechanism (LC, RC) for supplying the dimming signal to a signal holding element (BD) in the dimming element (MU) arranged at least at one end in the first direction And
[0010] また、本発明の第 2の二次元調光デバイスは、調光信号を保持する信号保持要素( BD)と照射される光束をその調光信号に基づレ、て調光する調光要素 (49)とからなる 調光素子 (MU)が二次元に配列された調光素子アレイ(11)と、その調光素子中の 信号保持要素 (BD)に保持されたその調光信号を、第 1の方向に沿って隣接するそ の調光素子中の信号保持要素に順次信号転送する信号転送機構 (XC)と、その第 1の方向の少なくとも一方の端に配列されるその調光素子中の信号保持要素に、そ の調光信号を供給する信号供給機構 (LC, RC)を有するとともに、その調光要素は ミラー(10a)を含み、その調光はその照射される光束を所定方向に反射する効率を 、そのミラーの反射面の傾き角を変更して行なうものとした。  [0010] Further, the second two-dimensional dimming device of the present invention provides a signal holding element (BD) for holding a dimming signal and a dimming device that illuminates the irradiated light beam based on the dimming signal. A dimming element array (11) in which dimming elements (MU) composed of optical elements (49) are two-dimensionally arranged, and a dimming signal held by a signal holding element (BD) in the dimming element A signal transfer mechanism (XC) for sequentially transferring a signal to a signal holding element in the light control element adjacent in the first direction, and the light control mechanism arranged at at least one end in the first direction. The signal holding element in the optical element has a signal supply mechanism (LC, RC) for supplying the dimming signal, the dimming element includes a mirror (10a), and the dimming is performed by the illuminated light beam. Is reflected in a predetermined direction by changing the inclination angle of the reflection surface of the mirror.
[0011] 従って、本発明の二次元調光デバイス (VM1)においては、信号転送機構 (XC)に よって、調光素子 (MU)中の信号保持要素 (BD)に保持されたその調光信号を、第 1の方向に沿って隣接する調光素子 (MU)中の信号保持要素 (BD)に順次信号転 送すること力 S可能となる。これにより、その調光要素 (49)へのその照射光 (入射光)に 対する調光状態を、その第 1の方向に沿って隣接する調光要素 (49)に順次転送す ること力 S可言 となる。 [0011] Therefore, in the two-dimensional dimming device (VM1) of the present invention, the dimming signal held by the signal holding element (BD) in the dimming element (MU) by the signal transfer mechanism (XC). To the signal holding element (BD) in the adjacent dimming element (MU) along the first direction. This sequentially transfers the dimming state of the irradiation light (incident light) to the dimming element (49) to the adjacent dimming element (49) along the first direction. S power
[0012] このため、その二次元に配列された調光要素 (49)に形成される各調光状態の分 布を、概ねその形状を保ったままその第 1の方向に沿って移動することが可能となる 。そして、この各調光状態の分布の、その第 1の方向に沿った移動に際しては、その 信号供給機構 (LC, RC)は、その二次元に配歹 1Jしたその調光素子(MU)のうちの、 その第 1の方向の一方の端に配列されるその調光素子 (MU)中の信号保持要素(B D)にのみ、その調光信号を供給すればよい。  [0012] For this reason, the distribution of each dimming state formed on the dimming elements (49) arranged two-dimensionally is moved along the first direction while substantially maintaining its shape. Becomes possible. Then, when the distribution of each dimming state moves along the first direction, the signal supply mechanism (LC, RC) uses the two-dimensionally distributed dimming element (MU) of the dimming element (MU). The light control signal may be supplied only to the signal holding element (BD) in the light control element (MU) arranged at one end in the first direction.
[0013] これにより、上記移動に際し各調光素子中の信号保持要素 (BD)の全てに調光信 号を供給する場合に比べ、調光信号の供給量及びその供給に要する時間を大幅に 短縮し、処理時間の短縮を図ることができる。  [0013] With this, the supply amount of the dimming signal and the time required to supply the dimming signal are greatly reduced as compared with the case where the dimming signal is supplied to all of the signal holding elements (BD) in each dimming element during the movement. It is possible to reduce the processing time.
また、本発明の二次元調光デバイス (VM1)は、一例として、その調光素子アレイを 構成するその調光素子のその二次元の配列は、その第 1の方向に平行な座標軸と その第 1の方向に垂直な座標軸とにより定まる直交座標系上における直方格子の格 子点上に配列されるものとすることができる。  In addition, as an example, the two-dimensional dimming device (VM1) of the present invention is configured such that the two-dimensional array of the dimming elements constituting the dimming element array has a coordinate axis parallel to the first direction and the second coordinate axis. They can be arranged on grid points of a rectangular grid on an orthogonal coordinate system determined by a coordinate axis perpendicular to the direction of 1.
[0014] また、本発明の二次元調光デバイスのその信号転送機構 (XC)は、一例として、電 荷結合素子を含むものとすることができる。  [0014] Further, the signal transfer mechanism (XC) of the two-dimensional dimming device of the present invention may include, for example, a charge coupling element.
また、その信号供給機構 (LC, RC)は、一例として、電荷結合素子を含むものとす ること力 Sできる。これにより、その信号供給機構の構成を簡素化することができる。 本発明の二次元調光デバイスは、その信号転送機構 (XC)とその調光素子アレイ( 11)とが、積層された構造であるものとすることができる。これにより、二次元調光デバ イスを小型化することが可能となり、かつ既存の半導体集積回路等の製造技術等を 応用して安価に二次元調光デバイスを製造することが可能となる。  Further, the signal supply mechanism (LC, RC) can include, for example, a charge-coupled device. Thus, the configuration of the signal supply mechanism can be simplified. The two-dimensional light control device of the present invention may have a structure in which the signal transfer mechanism (XC) and the light control element array (11) are stacked. This makes it possible to reduce the size of the two-dimensional dimming device, and to manufacture the two-dimensional dimming device at low cost by applying existing manufacturing techniques for semiconductor integrated circuits and the like.
[0015] また、本発明の第 1の二次元調光デバイスにおいて、二次元調光デバイスの調光 要素におけるその調光は、その調光要素の振幅透過率の変更とすることができる。 この場合、その二次元調光デバイスのその調光要素 (49)は、一例としてミラー(10 a)を含み、その調光は、その照射される光束を所定方向に反射する効率の変更とす ること力 Sできる。そして、一例として、その効率の変更はそのミラー(10a)の反射面の 傾き角を変更して行なうものとすることができる。また、一例として、その調光はそのミ ラーによる反射光の位相を変化させるものとすることができる。 In the first two-dimensional dimming device of the present invention, the dimming of the dimming element of the two-dimensional dimming device can be a change in the amplitude transmittance of the dimming element. In this case, the dimming element (49) of the two-dimensional dimming device includes, as an example, a mirror (10a), and the dimming is a change in the efficiency of reflecting the irradiated light beam in a predetermined direction. S power As an example, the efficiency can be changed by changing the inclination angle of the reflection surface of the mirror (10a). Also, as an example, the dimming The phase of the light reflected by the mirror can be changed.
[0016] 本発明の第 1の露光装置は、被露光基板 (W)上に所望のパターンを露光するため の露光装置であって、本発明による第 1又は第 2の二次元調光デバイス (VM1)と、 その二次元調光デバイスにその調光信号を供給する形状信号処理系(21)と、光源 (1)からの照明光(IL0)をその二次元調光デバイスに照射する照明光学系(2, 3, 4 a, 6, 7, 8)と、その二次元調光デバイスで調光された照明光をその被露光基板上に 導く投影光学系(13)と、その被露光基板を保持し、本発明による二次元調光デバイ ス (VM1)におけるその第 1の方向がその投影光学系によりその被露光基板上に投 影された方向である第 2の方向に走查可能な基板ステージ(14)とを備えるものであ る。  A first exposure apparatus of the present invention is an exposure apparatus for exposing a desired pattern on a substrate to be exposed (W), and includes a first or second two-dimensional light control device ( VM1), a shape signal processing system (21) that supplies the dimming signal to the two-dimensional dimming device, and illumination optics that illuminates the two-dimensional dimming device with illumination light (IL0) from the light source (1) System (2, 3, 4a, 6, 7, 8), a projection optical system (13) for guiding the illumination light modulated by the two-dimensional dimming device onto the substrate, and the substrate And the first direction in the two-dimensional dimming device (VM1) according to the present invention can run in a second direction which is a direction projected onto the substrate to be exposed by the projection optical system. And a substrate stage (14).
[0017] すなわち、本発明の第 1の露光装置は、その二次元調光デバイスを構成する二次 元的に配列された各調光要素 (49)に形成される各調光状態に基づくパターンを、 その被露光基板 (W)をその第 2の方向に走査しつつ露光する走査型の露光装置と すること力 Sできる。そして、その二次元的に配列された各調光要素に形成される各調 光状態を、その被露光基板のその走査に同期してその第 1の方向に走査しつつ、そ の露光を行なうことができる。  That is, the first exposure apparatus of the present invention provides a pattern based on each dimming state formed on each of two-dimensionally arranged dimming elements (49) constituting the two-dimensional dimming device. Can be used as a scanning type exposure apparatus for exposing while exposing the substrate to be exposed (W) in the second direction. The exposure is performed while scanning each dimming state formed on each of the dimming elements arranged two-dimensionally in the first direction in synchronization with the scanning of the substrate to be exposed. be able to.
[0018] 本発明の第 1の露光装置においては、本発明による二次元調光デバイス (VM1) を用いるため、その二次元調光デバイスを構成するその二次元的に配列された各調 光要素 (49)に形成される各調光状態の分布を、その形状を保ったままその第 1の方 向に沿って移動することが可能となる。そして、この各調光状態の分布のその第 1の 方向に沿った移動に際しては、その信号供給機構 (LC, RC)は、その二次元に配列 したその調光素子(MU)のうちのその第 1の方向の一方の端に配列されるその調光 素子 (MU)中の信号保持要素(BD)にのみ、その調光信号を供給すればよい。  In the first exposure apparatus of the present invention, since the two-dimensional light control device (VM1) according to the present invention is used, the two-dimensionally arranged light control elements constituting the two-dimensional light control device are used. The distribution of each dimming state formed in (49) can be moved along the first direction while maintaining its shape. Then, when the distribution of each dimming state moves along the first direction, the signal supply mechanism (LC, RC) causes the dimming element (MU) of the two-dimensionally arranged dimming element (MU) to move. The dimming signal may be supplied only to the signal holding element (BD) in the dimming element (MU) arranged at one end in the first direction.
[0019] これにより、走査露光に際して各調光素子中の信号保持要素の全てに新たに調光 信号を供給する場合に比べ、供給すべき調光信号の量を大幅に削減し調光信号の 供給に要する時間を大幅に短縮することが可能である。その結果、その第 1の方向に 沿った移動の速度を向上し、ひいてはその基板の露光に要する処理時間の短縮を 図ることができ、低コストで高スループットのマスクレス露光装置を実現することができ る。 [0019] With this, the amount of dimming signals to be supplied is greatly reduced as compared with the case where new dimming signals are supplied to all the signal holding elements in each dimming element during scanning exposure, and the amount of dimming signals to be supplied is greatly reduced. The time required for supply can be significantly reduced. As a result, the speed of movement in the first direction can be increased, and the processing time required for exposing the substrate can be shortened, thereby realizing a low-cost, high-throughput maskless exposure apparatus. Can The
[0020] 本発明の第 2の露光装置は、被露光基板 (W)上に所望のパターンを露光するため の露光装置であって、本発明による第 1の二次元調光デバイス (VM1)であってミラ 一(10a)を含むもの又は本発明の第 2の二次元調光デバイスと、その二次元調光デ バイスにその調光信号を供給する形状信号処理系(21)と、光源(1)からの照明光 (I L0)をその二次元調光デバイスに照射する照明光学系(9b等)と、その二次元調光 デバイスで反射された照明光 (IL6)をその被露光基板上に導く投影光学系(13)と、 その被露光基板を保持し、本発明による二次元調光デバイス (VM1)におけるその 第 1の方向がその投影光学系によりその被露光基板上に投影された方向である第 2 の方向に走查可能な基板ステージ(14)とを備えるものであって、その照明光学系は 、その照明光をその投影光学系の光軸 (AX)に対して、全体として所定角度傾けて、 その二次元調光デバイスに照射するものである。  A second exposure apparatus of the present invention is an exposure apparatus for exposing a desired pattern on a substrate to be exposed (W), and is a first two-dimensional dimming device (VM1) according to the present invention. And the second two-dimensional dimming device of the present invention, a shape signal processing system (21) for supplying the dimming signal to the two-dimensional dimming device, and a light source ( The illumination optical system (9b, etc.) that irradiates the illumination light (I L0) from 1) to the two-dimensional light control device, and the illumination light (IL6) reflected by the two-dimensional light control device is applied to the substrate to be exposed. The projection optical system (13) and the substrate to be exposed are held, and the first direction of the two-dimensional dimming device (VM1) according to the present invention is projected onto the substrate by the projection optical system. And a substrate stage (14) movable in a second direction, the illumination optical system including the illumination optical system. The optical axis of the projection optical system light to (AX), and inclined at a predetermined angle as a whole, is to irradiate on the two-dimensional light modulating device.
[0021] 本発明の第 2の露光装置においても、本発明による二次元調光デバイスを用いるこ とにより、本発明の第 1の露光装置と同様に、その二次元調光デバイス上に形成され る調光状態の分布を、第 1の方向に沿って高速に移動することが可能であり、その基 板の露光に要する処理時間の短縮を図ることができ、低コストで高スループットのマ スクレス露光装置を実現することができる。  [0021] Also in the second exposure apparatus of the present invention, by using the two-dimensional dimming device according to the present invention, similarly to the first exposing apparatus of the present invention, the two-dimensional dimming device is formed on the two-dimensional dimming device. It is possible to move the distribution of the dimming state at high speed along the first direction, shorten the processing time required for exposure of the substrate, and achieve a low-cost, high-throughput maskless An exposure apparatus can be realized.
[0022] また、本発明の第 2の露光装置においては、二次元調光デバイス (VM1)への照明 光 (IL5)を全体として投影光学系(13)の光軸 (AX)に対して傾けたため、その照明 光 (IL5)と二次元調光デバイスにより調光された反射光 (IL6)との分離が容易になり 、露光装置の構成を簡素化し露光装置のコストの削減を図ることができる。  In the second exposure apparatus of the present invention, the illumination light (IL5) for the two-dimensional dimming device (VM1) is tilted as a whole with respect to the optical axis (AX) of the projection optical system (13). Therefore, it is easy to separate the illumination light (IL5) from the reflected light (IL6) modulated by the two-dimensional light control device, so that the configuration of the exposure apparatus can be simplified and the cost of the exposure apparatus can be reduced. .
[0023] なお、本発明の第 1の露光装置および第 2の露光装置のいずれにおいても、その 基板ステージのその第 2の方向の位置の変化に同期して、その二次元調光デバイス を構成するその信号転送機構 (XC)によるその信号転送を行なうことができる。  In each of the first exposure apparatus and the second exposure apparatus of the present invention, the two-dimensional dimming device is configured in synchronization with a change in the position of the substrate stage in the second direction. The signal transfer by the signal transfer mechanism (XC) can be performed.
また、本発明の第 1の露光装置および第 2の露光装置のいずれにおいても、その光 源(1)をパルス発光型の光源とし、そのパルス発光に同期して、その二次元調光デ バイスを構成するその信号転送機構 (XC)によるその信号転送を行なうことができる。  In each of the first exposure apparatus and the second exposure apparatus of the present invention, the light source (1) is a pulsed light source, and the two-dimensional dimming device is synchronized with the pulsed light emission. The signal transfer can be performed by the signal transfer mechanism (XC) that constitutes the above.
[0024] 次に、本発明の第 1の露光方法は、照明光(IL2)を可変成形マスク (VM1)に照射 し、その可変成形マスクで調光されたその照明光 (IL3)を投影光学系(13)を介して 被露光基板 (W)に照射する露光方法であって、その可変成形マスクとして本発明の 第 1又は第 2の二次元調光デバイス (VM1)を用いるものであり、その調光素子アレイ (11)中のその調光素子 (MU)に所望のパターンに対応する調光信号を保持させる ことにより、その調光素子アレイにその所望のパターンに相当する調光分布を形成す る。そして、その調光素子 (MU)中の信号保持要素 (BD)に保持されたその調光信 号を、その信号転送機構 (XC)によりその第 1の方向に沿って隣接するその調光素 子 (MU)中の信号保持要素 (BD)に順次信号転送し、その調光素子アレイ(11)に 形成されたその調光分布を前記第 1の方向に移動する。さらに、これに伴ってその被 露光基板 (W)を、その第 1の方向がその投影光学系(13)によりその被露光基板上 に投影された方向である第 2の方向に沿って、その投影光学系に対して相対的に移 動させつつ露光を行なうものである。 Next, in the first exposure method of the present invention, the illumination light (IL2) is applied to the variable shaping mask (VM1). An exposure method for irradiating the substrate (W) to be exposed with the illumination light (IL3) adjusted by the variable shaping mask via the projection optical system (13). A first or second two-dimensional dimming device (VM1) is used, and the dimming element (MU) in the dimming element array (11) holds a dimming signal corresponding to a desired pattern. As a result, a dimming distribution corresponding to the desired pattern is formed in the dimming element array. Then, the dimming signal held by the signal holding element (BD) in the dimming element (MU) is converted by the signal transfer mechanism (XC) into the adjacent dimming element along the first direction. The signal is sequentially transferred to the signal holding element (BD) in the child (MU), and the dimming distribution formed on the dimming element array (11) is moved in the first direction. Further, in accordance with this, the exposed substrate (W) is moved along the second direction whose first direction is the direction projected onto the exposed substrate by the projection optical system (13). Exposure is performed while moving relatively to the projection optical system.
[0025] これにより、走査露光に際して各調光素子中の信号保持要素の全てに新たに調光 信号を供給する場合に比べ、調光信号の供給に要する時間を大幅に短縮し、その 第 1の方向に沿った移動の速度を向上し、ひいてはその基板の露光に要する処理時 間の短縮を図ることができる。その結果、低コストで高スループットのマスクレス露光 方法を提供することができる。  As a result, the time required to supply a dimming signal is greatly reduced as compared with a case where a new dimming signal is supplied to all of the signal holding elements in each dimming element during scanning exposure. The speed of the movement in the direction of the direction can be improved, and the processing time required for exposing the substrate can be shortened. As a result, a low-cost, high-throughput maskless exposure method can be provided.
[0026] 本発明の第 2の露光方法は、照明光(IL5)を可変成形マスク (VM1)に照射し、そ の可変成形マスクで調光されたその照明光 (IL6)を投影光学系(13)を介して被露 光基板 (W)に照射する露光方法であって、その可変成形マスクとして本発明の第 1 の二次元調光デバイス (VM1)であってミラー (10a)を有するもの又は本発明の第 2 の二次元調光デバイスを用いるものである。  In the second exposure method of the present invention, the illumination light (IL5) is irradiated on the variable shaping mask (VM1), and the illumination light (IL6) modulated by the variable shaping mask is projected onto the projection optical system (IL6). 13) An exposure method for irradiating a light-exposed substrate (W) through the first two-dimensional dimming device (VM1) of the present invention having a mirror (10a) as a variable shaping mask. Alternatively, the second two-dimensional light control device of the present invention is used.
[0027] そして、その調光素子アレイ(11)中のその調光素子(MU)に所望のパターンに対 応する調光信号を保持させることにより、その調光素子アレイにその所望のパターン に相当する調光分布を形成する。そして、その調光素子 (MU)中の信号保持要素( BD)に保持されたその調光信号を、その信号転送機構 (XC)によりその第 1の方向 に沿って隣接するその調光素子 (MU)中の信号保持要素 (BD)に順次信号転送し 、その調光素子アレイ(11)に形成されたその調光分布を前記第 1の方向に順次移 動する。さらに、これに伴ってその被露光基板 (W)を、その第 1の方向がその投影光 学系(13)によりその被露光基板上に投影された方向である第 2の方向に沿って、そ の投影光学系に対して相対的に移動させつつ露光を行なうものであり、かつ、その 照明光(IL5)のその二次元調光デバイス (VM1)への照射を、その投影光学系の光 軸 (AX)に対して、全体として所定角度傾けて行なうものである。 [0027] Then, by causing the dimming element (MU) in the dimming element array (11) to hold a dimming signal corresponding to a desired pattern, the dimming element array is formed into the desired pattern. A corresponding dimming distribution is formed. Then, the dimming signal held in the signal holding element (BD) in the dimming element (MU) is converted by the signal transfer mechanism (XC) into the adjacent dimming element (XC) along the first direction. MU), and sequentially transfers the dimming distribution formed on the dimming element array (11) in the first direction. Move. Further, in accordance with this, the exposed substrate (W) is moved along the second direction, the first direction of which is the direction projected onto the exposed substrate by the projection optical system (13). Exposure is performed while moving relative to the projection optical system, and irradiation of the illumination light (IL5) to the two-dimensional dimming device (VM1) is performed by the light of the projection optical system. It is performed by inclining at a predetermined angle with respect to the axis (AX) as a whole.
[0028] これにより、走查露光に際して各調光素子中の信号保持要素の全てに新たに調光 信号を供給する場合に比べ、調光信号の供給に要する時間を大幅に短縮し、その 第 1の方向に沿った移動の速度を向上し、ひいてはその基板の露光に要する処理時 間の短縮を図ることができる。その結果、低コストで高スループットのマスクレス露光 方法を提供することができる。  As a result, the time required to supply a dimming signal is greatly reduced as compared with a case where a new dimming signal is supplied to all of the signal holding elements in each dimming element during scanning exposure. The speed of movement along the direction (1) can be improved, and the processing time required for exposing the substrate can be reduced. As a result, a low-cost, high-throughput maskless exposure method can be provided.
また、これにより二次元調光デバイス (VM1)への照明光(IL5)と二次元調光デバ イスにより調光された反射光(IL6)との分離が容易になり、露光装置の低コストィ匕を 図り、より安価に高性能の露光方法を提供することが可能になる。  In addition, this makes it easy to separate the illumination light (IL5) to the two-dimensional dimming device (VM1) from the reflected light (IL6) dimmed by the two-dimensional dimming device, thereby reducing the cost of the exposure apparatus. Therefore, it is possible to provide a high-performance exposure method at a lower cost.
[0029] また、本発明の第 1及び第 2の露光方法は、その被露光基板 (W)のその第 2の方 向の位置の変化に同期して、その信号転送を行なうものとすることができる。これによ り、その二次元調光デバイス (VM1)のその調光素子アレイ(11)に形成されたその 所望のパターンに相当する調光分布とその被露光基板 (W)との前記投影光学系(1 3)を介した位置関係を、高精度に保ちながら露光を行なうことができる。  In the first and second exposure methods of the present invention, the signal transfer is performed in synchronization with a change in the position of the substrate to be exposed (W) in the second direction. Can be. Thereby, the projection optics of the dimming distribution corresponding to the desired pattern formed on the dimming element array (11) of the two-dimensional dimming device (VM1) and the substrate (W) to be exposed are obtained. Exposure can be performed while maintaining the positional relationship via the system (13) with high accuracy.
[0030] また、本発明の第 1及び第 2の露光方法は、その照明光がパルス発光型の光源(1 )から発生するパルス光であり、そのパルス光の発光に同期してその信号転送を行な うものとすることができる。これにより、被露光基板 (W)上に露光されるパターンの像 の劣化を防止することができる。  In the first and second exposure methods of the present invention, the illumination light is a pulse light generated from a pulse light source (1), and the signal transfer is performed in synchronization with the emission of the pulse light. Can be performed. Thus, it is possible to prevent the image of the pattern exposed on the substrate to be exposed (W) from deteriorating.
[0031] 次に、本発明の第 1のデバイス製造方法は、照明光(IL2)を可変成形マスク (VM1 )に照射し、その可変成形マスクで調光されたその照明光を投影光学系(13)を介し てデバイスを形成すべき被露光基板 (W)に照射する露光工程を含むデバイス製造 方法であって、その露光工程において、その可変成形マスクとして本発明の第 1又は 第 2の二次元調光デバイスを用い、その調光素子アレイ(11)中のその調光素子 (M U)に所望のパターンに対応する調光信号を保持させることにより、その調光素子ァ レイにその所望のパターンに相当する調光分布を形成し、かつその調光素子中の信 号保持要素 (BU)に保持されたその調光信号を、その信号転送機構 (XC)によりそ の第 1の方向に沿って隣接するその調光素子中の信号保持要素に順次信号転送し 、その調光素子アレイに形成されたその調光分布をその第 1の方向に移動するととも に、その被露光基板を、その第 1の方向がその投影光学系によりその被露光基板上 に投影された方向である第 2の方向に沿って、その投影光学系に対して相対的に移 動させつつ露光を行なうものである。 Next, in the first device manufacturing method of the present invention, the illumination light (IL2) is irradiated on the variable shaping mask (VM1), and the illumination light adjusted by the variable shaping mask is projected onto the projection optical system ( 13) A device manufacturing method including an exposure step of irradiating a substrate to be exposed (W) on which a device is to be formed through the step (13). By using a three-dimensional dimming device and causing the dimming element (MU) in the dimming element array (11) to hold a dimming signal corresponding to a desired pattern, A dimming distribution corresponding to the desired pattern is formed on the ray, and the dimming signal held in the signal holding element (BU) in the dimming element is converted into the dimming signal by the signal transfer mechanism (XC). A signal is sequentially transferred to a signal holding element in the dimming element adjacent along the first direction, and the dimming distribution formed on the dimming element array is moved in the first direction and the dimming distribution is moved in the first direction. The substrate to be exposed is moved relative to the projection optical system along a second direction in which the first direction is the direction projected onto the substrate by the projection optical system. Exposure is performed.
[0032] また、本発明の第 2のデバイス製造方法は、照明光(IL2)を可変成形マスク (VM1 )に照射し、その可変成形マスクで調光されたその照明光を投影光学系(13)を介し てデバイスを形成すべき被露光基板 (W)に照射する露光工程を含むデバイス製造 方法であって、その露光工程において、その可変成形マスクとして本発明の第 1の二 次元調光デバイス (VM1)であってミラー(10a)を有するもの又は本発明の第 2の二 次元調光デバイスを用い、その調光素子アレイ(11)中のその調光素子(MU)に所 望のパターンに対応する調光信号を保持させることにより、その調光素子アレイにそ の所望のパターンに相当する調光分布を形成し、かつその調光素子中の信号保持 要素 (BU)に保持されたその調光信号を、その信号転送機構 (XC)によりその第 1の 方向に沿って隣接するその調光素子中の信号保持要素に順次信号転送し、その調 光素子アレイに形成されたその調光分布をその第 1の方向に移動し、その被露光基 板を、その第 1の方向がその投影光学系によりその被露光基板上に投影された方向 である第 2の方向に沿って、その投影光学系に対して相対的に移動させつつ露光を 行なうとともに、その二次元調光デバイスへのその照明光の照射を、その投影光学系 の光軸に対して全体として所定角度傾けて行なうものである。  Further, in the second device manufacturing method of the present invention, the illumination light (IL2) is irradiated on the variable shaping mask (VM1), and the illumination light adjusted by the variable shaping mask is projected onto the projection optical system (13). ). (VM1) having a mirror (10a) or using the second two-dimensional dimming device of the present invention, and using the dimming element (MU) in the dimming element array (11) with a desired pattern. A dimming distribution corresponding to the desired pattern is formed in the dimming element array by holding the dimming signal corresponding to the light, and the dimming signal is held by the signal holding element (BU) in the dimming element. The dimming signal is transmitted along the first direction by the signal transfer mechanism (XC). The signal is sequentially transferred to a signal holding element in the light control element adjacent to the light control element, the light control distribution formed in the light control element array is moved in the first direction, and the substrate to be exposed is moved to the first position. Exposure is performed while moving relative to the projection optical system along a second direction in which the direction 1 is projected onto the substrate to be exposed by the projection optical system, and the two-dimensional Irradiation of the illumination light to the dimming device is performed at a predetermined angle with respect to the optical axis of the projection optical system as a whole.
[0033] これらの本発明のデバイス製造方法によれば、多数のマスクを製造する必要がない ため、安価にかつ高スループットでデバイスを製造できる。  According to the device manufacturing method of the present invention, since it is not necessary to manufacture a large number of masks, a device can be manufactured at low cost and with high throughput.
また、本発明の第 1及び第 2のデバイス製造方法は、その被露光基板 (W)のその 第 2の方向の位置の変化に同期して、その信号転送を行なうものとすることができる。 また、本発明の第 1及び第 2のデバイス製造方法は、その照明光がパルス発光型の 光源から発生するパルス光であり、そのパルス光の発光に同期してその信号転送を 行なうものとすることができる。 In the first and second device manufacturing methods of the present invention, the signal transfer may be performed in synchronization with a change in the position of the substrate to be exposed (W) in the second direction. In the first and second device manufacturing methods of the present invention, the illumination light is pulsed light generated from a pulsed light source, and the signal transfer is performed in synchronization with the emission of the pulsed light. You can do it.
発明の効果  The invention's effect
[0034] 本発明によれば、いわゆるマスクレス露光技術において、可変成形マスクに所望の パターンを形成するために可変成形マスクにそのパターンに応じた調光信号を供給 するための時間を大幅に削減することができる。  According to the present invention, in a so-called maskless exposure technique, in order to form a desired pattern on a variable shaping mask, the time for supplying a dimming signal corresponding to the pattern to the variable shaping mask is significantly reduced. can do.
従って、マスクレス露光方法およびマスクレス露光装置の処理能力(スループット) を大幅に向上することが可能となり、生産性の高い露光装置および露光方法を実現 すること力 Sできる。  Accordingly, the processing capability (throughput) of the maskless exposure method and the maskless exposure apparatus can be greatly improved, and the exposure apparatus and the exposure method with high productivity can be realized.
[0035] また、リソグラフイエ程において本発明の露光方法を用いることにより、高価なマスク を用いることなぐ半導体集積回路等のデバイスを高い生産性で製造することが可能 となり、デバイス製造コストの削減が達成できる。  Further, by using the exposure method of the present invention in the lithographic process, it becomes possible to manufacture a device such as a semiconductor integrated circuit with high productivity without using an expensive mask, thereby reducing device manufacturing costs. Can be achieved.
図面の簡単な説明  Brief Description of Drawings
[0036] [図 1]本発明の二次元調光デバイスの第 1の実施形態の二次元調光デバイス VM1 を表わす図である。  FIG. 1 is a diagram showing a two-dimensional light control device VM1 according to a first embodiment of the two-dimensional light control device of the present invention.
[図 2]本発明の二次元調光デバイス VM1を構成する制御回路機構 12を表わす図で ある。  FIG. 2 is a diagram showing a control circuit mechanism 12 constituting the two-dimensional light control device VM1 of the present invention.
[図 3] (A)は、本発明の二次元調光デバイス VM1の構成要素である電荷結合要素 MUを表わす平面図であり、(B)は、その A— A'線に沿う断面図であり、(C)は、その B-B '線に沿う断面図である。  FIG. 3 (A) is a plan view showing a charge-coupled element MU which is a component of the two-dimensional dimming device VM1 of the present invention, and FIG. 3 (B) is a cross-sectional view thereof along line AA ′. Yes, (C) is a cross-sectional view along the line BB ′.
[図 4]本発明の二次元調光デバイス VM1を構成する調光素子 MU及び電荷結合要 素 MUを表わす図である。  FIG. 4 is a diagram showing a dimming element MU and a charge coupling element MU constituting a two-dimensional dimming device VM1 of the present invention.
[図 5] (A)は、本発明の二次元調光デバイス VM1の調光素子アレイ 11上に形成す べき調光分布に対応する二次元調光データ SDを表わす図であり、 (B)は調光素子 アレイ 11上に形成された調光状態分布の一例 VD1を表わす図であり、 (C)は調光 素子アレイ 11上に形成された調光状態分布の他の例 VD2を表わす図である。  FIG. 5A is a diagram showing two-dimensional light control data SD corresponding to a light control distribution to be formed on the light control element array 11 of the two-dimensional light control device VM1 of the present invention, and FIG. FIG. 7 is a diagram illustrating an example of a dimming state distribution VD1 formed on the dimming element array 11, and FIG. 7C is a diagram illustrating another example of a dimming state distribution VD2 formed on the dimming element array 11. It is.
[図 6]可変成形マスクとして本発明の二次元調光デバイス VM1を備える本発明の第 1の実施形態の露光装置を表わす図である。  FIG. 6 is a diagram illustrating an exposure apparatus according to a first embodiment of the present invention including a two-dimensional light control device VM1 of the present invention as a variable shaping mask.
[図 7]可変成形マスクとして本発明の二次元調光デバイス VM1を備え、二次元調光 デバイス VM1への照明光 IL5が傾いて入射する、本発明の第 2の実施形態の露光 装置の一部を表わす図である。 [FIG. 7] Two-dimensional light control provided with the two-dimensional light control device VM1 of the present invention as a variable shaping mask FIG. 8 is a diagram illustrating a part of an exposure apparatus according to a second embodiment of the present invention, in which illumination light IL5 is incident on a device VM1 at an angle.
[図 8] (A)は、本発明の二次元調光デバイスの第 2の実施形態の二次元調光デバイ ス VM2の一部である調光素子 MU2を表わす平面図であり、(B)は、その A— A'線 に沿う断面図であり、 (C)はその B— B'線に沿う断面図である。  FIG. 8A is a plan view showing a dimming element MU2 which is a part of a two-dimensional dimming device VM2 according to a second embodiment of the two-dimensional dimming device of the present invention, and FIG. Is a cross-sectional view along the line A-A ', and (C) is a cross-sectional view along the line B-B'.
[図 9]図 8に示す本発明の二次元調光デバイスの第 2の実施形態において、開口 55 の上方及びその近傍に形成される調光要素を表わす図である。  FIG. 9 is a view showing a dimming element formed above the opening 55 and in the vicinity thereof in the second embodiment of the two-dimensional dimming device of the present invention shown in FIG.
[図 10]可変成形マスクとして本発明の二次元調光デバイス VM2を備える本発明の第 [FIG. 10] A second embodiment of the present invention including the two-dimensional light control device VM2 of the present invention as a variable shaping mask.
3の実施形態の露光装置を表わす図である。 FIG. 13 is a diagram illustrating an exposure apparatus according to a third embodiment.
[図 11]本発明のデバイス製造方法を説明する図である。  FIG. 11 illustrates a device manufacturing method of the present invention.
符号の説明  Explanation of symbols
[0037] VM1, VM2…二次元調光デバイス、 MU, MU2…調光素子、 11…調光素子ァ レイ、 12…制御回路機構、 120…信号保持伝送機構、 XC 'XCCD (電荷を X方向 に転送する CCD)、 LC…左 YCCD (電荷を Y方向に転送する CCD)、 RC…右 YCC D (電荷を Y方向に転送する CCD)、 121…信号処理系、 CU…電荷結合要素、 A1 一 5…第 1相 X転送電極、 B1 5…第 2相 X転送電極、 C1一 5…第 3相 X転送電極、 PA, PB, PC…転送信号線、 D3— 5· · ·Χ伝送路、 BD…信号保持要素、 50…半導 体基板、 10a…微小ミラー、 43…制 ί卸トランジスタ、 1…光?原、 8…リレーレンズ、 IL0 一 10…照明光、 13…投影光学系、 14…基板ステージ、 20…主制御系、 21…形状 信号処理系、 62…透過基板、 93…フォトレジスト、 92…被カロェ層  [0037] VM1, VM2: two-dimensional dimming device, MU, MU2: dimming element, 11: dimming element array, 12: control circuit mechanism, 120: signal holding transmission mechanism, XC 'XCCD (charge in X direction To CCD), LC: Left YCCD (CCD to transfer charge in Y direction), RC: Right YCC D (CCD to transfer charge in Y direction), 121: Signal processing system, CU: Charge coupled element, A1 1-5: 1st phase X transfer electrode, B15: 2nd phase X transfer electrode, C15: 3rd phase X transfer electrode, PA, PB, PC: transfer signal line, D3—5 , BD: signal holding element, 50: semiconductor substrate, 10a: micro mirror, 43: control transistor, 1: light source, 8: relay lens, IL0-10: illumination light, 13: projection optical system, 14 ... Substrate stage, 20 ... Main control system, 21 ... Shape signal processing system, 62 ... Transparent substrate, 93 ... Photoresist, 92 ... Carroe layer
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0038] 以下、本発明の二次元調光デバイスの好ましい第 1の実施形態について、図 1から 図 4を参照して説明する。 Hereinafter, a first preferred embodiment of the two-dimensional light control device of the present invention will be described with reference to FIGS. 1 to 4.
図 1は、本実施形態の二次元調光デバイス VM1の全体を示す鳥瞰図であり、この 図 1において、二次元調光デバイス VM1は、微小ミラー等からなる調光素子 MUが 二次元的に配列された調光素子アレイ 11を有するものである。各調光素子 MUは、 例えば図中の直交する X軸と Υ軸とで形成される直交座標系上における直方格子の 格子点上に配列される。ここで直方格子とは、 X軸方向には第 1の間隔を持って等間 隔で配列し、 Y軸方向には第 2の間隔を持って等間隔で配列する格子をいう。また、 上記第 1の間隔及び第 2の間隔は等しくても構わない。また、制御回路機構 12には 信号線 Sigが接続され、信号線 Sigを介して不図示の信号処理装置から二次元調光 デバイス VM1上に形成すべき調光分布の元になる形状信号 (パターン形状信号)が 供給される。 FIG. 1 is a bird's-eye view showing the whole of the two-dimensional dimming device VM1 of the present embodiment. In FIG. 1, the two-dimensional dimming device VM1 has two-dimensionally arranged dimming elements MU including micromirrors and the like. The light control element array 11 is provided. Each dimming element MU is arranged, for example, on a grid point of a rectangular grid on a rectangular coordinate system formed by orthogonal X axis and Υ axis in the figure. Here, the rectangular lattice is equally spaced at the first interval in the X-axis direction. The grids are arranged at regular intervals, and are arranged at equal intervals with a second interval in the Y-axis direction. Further, the first interval and the second interval may be equal. Further, a signal line Sig is connected to the control circuit mechanism 12, and a shape signal (pattern) serving as a source of a dimming distribution to be formed on the two-dimensional dimming device VM1 from a signal processing device (not shown) via the signal line Sig. (Shape signal) is supplied.
[0039] はじめに、本発明の二次元調光デバイス VM1を構成する制御回路機構 12につい て、図 2を用いて説明する。  First, the control circuit mechanism 12 constituting the two-dimensional light control device VM1 of the present invention will be described with reference to FIG.
図 2に示す通り、制御回路機構 12は、信号処理系 121と電荷結合素子(以降「CC D」と呼ぶ)からなる信号保持伝送機構 120から構成される。信号保持伝送機構 120 は、不図示の半導体基板上に形成され、その X方向の一側 (左側)端には電荷を Y方 向に転送する CCDである左 YCCD (LC)を、その X方向の +側(右側)端には電荷 を Y方向に転送する CCDである右 YCCD (RC)を、その X方向の中央部には電荷を X方向に転送する CCDが Y方向に複数個並列して配列されたものである XCCD (X C)を有するものである。  As shown in FIG. 2, the control circuit mechanism 12 includes a signal processing system 121 and a signal holding / transmission mechanism 120 including a charge-coupled device (hereinafter, referred to as “CCD”). The signal holding / transmitting mechanism 120 is formed on a semiconductor substrate (not shown), and has a CCD (Y CCD) for transferring charges in the Y direction at one end (left side) in the X direction. The right YCCD (RC), which is a CCD that transfers electric charge in the Y direction, is provided at the + side (right) end of the CCD. A plurality of CCDs, which transfer electric charge in the X direction, are arranged in parallel in the center in the X direction. XCCD (XC), which is arranged in a matrix.
[0040] これらの左 YCCD (LC)、右 YCCD (RC)、及び XCCD (XC)の構成は、通常の 3 相 CCDの構成と大きく異なる所は無い。  [0040] The configuration of these left YCCD (LC), right YCCD (RC), and XCCD (XC) does not differ significantly from the configuration of a normal three-phase CCD.
左 YCCD (LC)は、不図示の半導体基板上に設けられた左 Y伝送路 DLと、その上 に形成された第 1相左 Y転送電極 Fl , F2, F3, F4, F5、第 2相左 Y転送電極 G1 , G2, G3, G4, G5、第 3相左 Y転送電極 HI , H2, H3, H4, H5、及び上記第 1相 左 Y転送電極 F 1一 5に信号を供給する Y転送信号線 Q 1、上記第 2相左 Y転送電極 G1— 5に信号を供給する Y転送信号線 Q2、上記第 3相左 Y転送電極 HI— 5に信 号を供給する Y転送信号線 Q3とからなる。  The left YCCD (LC) is composed of a left Y transmission line DL provided on a semiconductor substrate (not shown), a first phase left Y transfer electrode Fl, F2, F3, F4, F5, and a second phase left Y formed thereon. Y transfer signal line that supplies signals to transfer electrodes G1, G2, G3, G4, G5, third phase left Y transfer electrode HI, H2, H3, H4, H5, and the first phase left Y transfer electrode F115 Q1, a Y transfer signal line Q2 for supplying a signal to the second phase left Y transfer electrode G1-5, and a Y transfer signal line Q3 for supplying a signal to the third phase left Y transfer electrode HI-5.
[0041] 右 YCCD (RC)は、不図示の半導体基板上に設けられた右 Y伝送路 DRと、その上 に形成された第 1相右 Y転送電 ¾J1, J2, J3, J4, J5、第 2相右 Y転送電極 Kl, Κ2, Κ3, Κ4, Κ5、第 3相右 Υ転送電極 LI , L2, L3, L4, L5、及び上記第 1相右 Y転送 電¾[1一 5に信号を供給する Υ転送信号線 Q4、上記第 2相右 Y転送電極 K1一 5に 信号を供給する Y転送信号線 Q5、上記第 3相右 Y転送電極 L1一 5に信号を供給す る Y転送信号線 Q6とからなる。 [0042] XCCD (XC)は、不図示の半導体基板上に設けられた X方向に平行な複数本の X 伝送路 D3, D4, D5等と、その上に Y方向に平行に形成された第 1相 X転送電極 A1 , A2, A3, A4, A5、第 2相 X転送電極 Bl , B2, B3, B4, B5、第 3相 X転送電極 C 1 , C2, C3, C4, C5、及び上記第:!相 X転送電極 A1— 5に信号を供給する X転送 信号線 PA、上記第 2相 X転送電極 Bl 5に信号を供給する X転送信号線 PB、上記 第 3相 X転送電極 C1一 5に信号を供給する X転送信号線 PCとからなる。 [0041] The right YCCD (RC) is composed of a right Y transmission line DR provided on a semiconductor substrate (not shown) and a first phase right Y transfer line ¾J1, J2, J3, J4, J5, formed thereon. 2nd phase right Y transfer electrode Kl, Κ2, Κ3, Κ4, Κ5, 3rd phase right Υ transfer electrode LI, L2, L3, L4, L5, and the above 1st phase right Y transfer electrode ΥTransfer signal line Q4, supplies the signal to the second phase right Y transfer electrode K15.Y transfer signal line Q5 supplies the signal to the third phase right Y transfer electrode L15.Y transfer It consists of signal line Q6. [0042] The XCCD (XC) includes a plurality of X transmission paths D3, D4, D5, and the like provided on a semiconductor substrate (not shown) parallel to the X direction, and a plurality of X transmission paths formed thereon in parallel to the Y direction. 1-phase X-transfer electrodes A1, A2, A3, A4, A5, 2nd-phase X-transfer electrodes Bl, B2, B3, B4, B5, 3rd-phase X-transfer electrodes C1, C2, C3, C4, C5, and above Phase: X-transfer signal line PA for supplying signals to X-transfer electrode A1-5, X-transfer signal line PB for supplying signals to second-phase X-transfer electrode Bl5, X-transfer electrode C3 for third-phase It consists of an X transfer signal line PC that supplies signals to 5.
[0043] 左 Y伝送路 DLと X伝送路 D3 5等、及び右 Y伝送路 DRと X伝送路 D3— 5等は、 図 2に示す如く相互に繋がっており、各伝送路中に保持された電荷は相互に移動可 能である。なお、図 2では、 X伝送路 D3, D4, D5、及び右 Y伝送路 DRの形状及び 位置関係を示すために、波線 VI, V2で囲まれる領域については、 X転送電極 C5等 及び右 Y転送電極 L5等の一部を削除して表示している力 実際には波線 VI , V2で 囲まれる領域内にも、これらの電極が形成されるべきことは言うまでもない。  The left Y transmission line DL and the X transmission line D35 and the like, and the right Y transmission line DR and the X transmission line D3-5 and the like are interconnected as shown in FIG. 2, and are held in each transmission line. The charged charges can move with each other. In FIG. 2, in order to show the shapes and positional relationships of the X transmission lines D3, D4, and D5 and the right Y transmission line DR, the region surrounded by the dashed lines VI and V2 includes the X transfer electrode C5 and the right Y transmission line. Force indicating a part of the transfer electrode L5 or the like deleted and displayed. Needless to say, these electrodes should be actually formed in the region surrounded by the dashed lines VI and V2.
[0044] 本発明の二次元調光デバイス VM1に信号線 Sigを介して外部から供給される形状 信号は、信号処理系 121に入力され、ここで調光信号に変換されて信号線 S1または S2を介して信号保持伝送機構 120の X方向の両端部に設けられた左 Y伝送路 DL の入力部 D0L、または右 Y伝送路 DRの入力部 DORに供給される。  A shape signal externally supplied to the two-dimensional dimming device VM1 of the present invention via the signal line Sig is input to the signal processing system 121, where it is converted into a dimming signal and converted to the signal line S1 or S2. The signal is supplied to the input section D0L of the left Y transmission path DL or the input section DOR of the right Y transmission path DR provided at both ends in the X direction of the signal holding / transmission mechanism 120 via.
[0045] この調光信号に同期して、信号処理系 121は 3相の Yクロック信号を発生し、各相 の信号をそれぞれ Y転送信号線 Ql , Q4、 Y転送信号線 Q2, Q5、 Y転送信号線 Q3 , Q6に供給する。また、信号処理系 121は 3相の Xクロック信号 PA, PB, PCも発生 し、それぞれを X転送信号線 PA, PB, PCに供給する。  In synchronization with the dimming signal, the signal processing system 121 generates a three-phase Y clock signal, and converts the signals of each phase into Y transfer signal lines Ql, Q4, Y transfer signal lines Q2, Q5, Y Supply to transfer signal lines Q3 and Q6. The signal processing system 121 also generates three-phase X clock signals PA, PB, and PC, and supplies them to the X transfer signal lines PA, PB, and PC, respectively.
[0046] なお、調光信号は、本発明の二次元調光デバイス VM1の特徴である調光素子ァ レイ 11上に形成した調光分布の移動に際しての移動方向に応じて、信号線 S1また は S2の一方を介して、両入力部 D0L, DORの一方に供給すればよレ、。その詳細に ついては後述する。  Note that the dimming signal is supplied to the signal line S1 or the signal line S1 according to the moving direction of the dimming distribution formed on the dimming element array 11, which is a feature of the two-dimensional dimming device VM1 of the present invention. Can be supplied to one of both input sections D0L and DOR via one of S2. The details will be described later.
[0047] 以下、調光信号が信号線 S1を介して、左 YCCD (LC)の入力部 D0Lに供給される 場合について説明する。  Hereinafter, a case will be described in which the dimming signal is supplied to the input unit D0L of the left YCCD (LC) via the signal line S1.
調光信号の入力により、入力部 D0Lには、調光信号に応じた一例として負の第 1の 電荷が形成される。この第 1の電荷は Y転送信号線 Q1により第:!相左 Y転送電極 F1 に供給される正電位の Yクロック信号により、左 Y伝送路 DL中の第 1相左 Y転送電極 F1の直下に移動する。このとき Υ転送信号線 Q2には弱い正電位力 Υ転送信号線 Q3には 0電位がそれぞれ印加される。 As a result of the input of the dimming signal, a negative first charge is formed in the input section D0L as an example corresponding to the dimming signal. This first charge is transferred to the first :! phase left Y transfer electrode F1 by the Y transfer signal line Q1. Due to the positive potential Y clock signal supplied to the left Y transfer path DL, it moves right below the first phase left Y transfer electrode F1 in the left Y transfer path DL. At this time, 弱 い a weak positive potential is applied to the transfer signal line Q2. 0A 0 potential is applied to the transfer signal line Q3.
[0048] その後、信号処理系 121から供給される Υ方向クロック信号は順次変化し、 Υ転送 信号線 Q1に 0電位が、 Υ転送信号線 Q2に正電位力 S、 Y転送信号線 Q3に弱い正電 位がそれぞれ印加される。これにより第 目左 Y転送電極 F1の直下にあった第 1の電 荷は、第 2相左 Y転送電極 G1の直下移動する。さらに、 Y方向クロック信号が変化し 、 Y転送信号線 Q1に弱い正電位力 Y転送信号線 Q2に 0電位が、 Y転送信号線 Q 3に正電位がそれぞれ印加されると、第 1の電荷は第 3相左 Y転送電極 FHの直下に 移動する。 After that, the Υ direction clock signal supplied from the signal processing system 121 sequentially changes, 0 the 0 potential is applied to the transfer signal line Q1, 正 the positive potential force S is applied to the transfer signal line Q2, and the Y potential is weak to the Y transfer signal line Q3. A positive potential is applied respectively. Thus, the first charge immediately below the first left Y transfer electrode F1 moves right below the second phase left Y transfer electrode G1. Further, when the Y-direction clock signal changes and a weak positive potential is applied to the Y transfer signal line Q1, a 0 potential is applied to the Y transfer signal line Q2 and a positive potential is applied to the Y transfer signal line Q3, the first charge is generated. Moves right below the third phase left Y transfer electrode FH.
[0049] そして、 3相の Yクロック信号の変化の 1サイクルが完了し、 Yクロック信号が最初の 状態 (Y転送信号線 Q1に正電位, Y転送信号線 Q2に弱い正電位, Y転送信号線 Q 3に 0電位の状態)に戻ると、第 1の電荷は第 1相左 Y転送電極 F2の直下に移動する 。この状態で、信号処理系 121は次の調光信号を信号線 S1を介して Y伝送路 DLの 入力部 D0Lに供給する。そして、この信号に応じて形成された一例として負の第 2の 電荷は第 1相左 Y転送電極 F1の直下に保持される。  [0049] Then, one cycle of the change of the three-phase Y clock signal is completed, and the Y clock signal is in the initial state (positive potential on Y transfer signal line Q1, weak positive potential on Y transfer signal line Q2, Y transfer signal When the state returns to the state of zero potential on the line Q3), the first charge moves to the position immediately below the first phase left Y transfer electrode F2. In this state, the signal processing system 121 supplies the next dimming signal to the input section D0L of the Y transmission line DL via the signal line S1. Then, as an example, a negative second charge formed in response to this signal is held immediately below the first-phase left Y transfer electrode F1.
[0050] 従って、 Yクロック信号の変化の 1サイクルに同期して、所定の調光信号を信号線 S 1を介して順次入力部 D0Lに入力することにより、左 YCCD (LC)を構成する第 1相 左 Y転送電極 F1— 5または第 2相左 Y転送電極 G1— 5等の直下に、所定の調光信 号に応じた電荷を順次形成していくことができる。  Therefore, in synchronization with one cycle of the change of the Y clock signal, a predetermined dimming signal is sequentially input to the input section D0L via the signal line S1, thereby forming the left YCCD (LC). Electric charges corresponding to a predetermined dimming signal can be sequentially formed immediately below the one-phase left Y transfer electrode F1-5 or the second phase left Y transfer electrode G1-5.
[0051] そして、上記動作の繰り返しにより、第 2相左 Y転送電極 G1— 5の全ての直下に所 定の調光信号 S1を形成し終えた段階で、信号処理系 121は XCCD (XC)を駆動し て、左 YCCD (LC)中に保持された上記各電荷 (調光信号)を XCCD内(XC)に転 送し供給する。  [0051] By repeating the above operation, at the stage where the predetermined dimming signal S1 has been formed immediately below all of the second-phase left Y transfer electrodes G1-5, the signal processing system 121 changes the XCCD (XC). Driving, the above-mentioned electric charges (light control signal) held in the left YCCD (LC) are transferred and supplied to the inside of the XCCD (XC).
[0052] すなわち、 Y転送信号線 Q1 3を通して左 YCCD (LC)の左 Y転送電極 F1 5, G1— 5, HI— 5に供給する Yクロック信号を全て 0電位または負電位とし、 X転送信 号線 PAを通じて XCCD (XC)中の第:!相 X転送電極 A1に正電位の Xクロック信号を 供給する。これにより、左 Y伝送路 DL中の第 2相左 Y転送電極 G1— 5のそれぞれの 直下に保持されてレ、た電荷 (調光信号)を、その Y方向の位置関係 (分布)を保った まま、 XCCD (XC)中の各伝送路 D3— D5等の中の左端の、第 1相 X転送電極 A1の 直下に移動させ、ここに供給すること力できる。 [0052] That is, all the Y clock signals supplied to the left Y transfer electrodes F15, G1-5, HI-5 of the left YCCD (LC) through the Y transfer signal line Q13 are set to 0 potential or negative potential, and the X transfer is performed. A positive potential X clock signal is supplied to the:! Phase X transfer electrode A1 in XCCD (XC) through line PA. As a result, each of the second phase left Y transfer electrodes G1-5 in the left Y transmission path DL The electric charge (dimming signal) that is held immediately below, while maintaining the positional relationship (distribution) in the Y direction, is transferred to the left end of each transmission path D3—D5 in XCCD (XC). It can be moved just below the 1-phase X transfer electrode A1 and supplied here.
[0053] XCCD (XC)も電荷結合素子であるから、上記の左 YCCD (LC)で示した例と同様 に順次変化する 3相の Xクロック信号を X転送信号線 PA, PB, PCに順次印加するこ とにより、上記の各伝送路 D3— 5等上の X転送電極 A1の直下に保持された上記電 荷 (調光信号)を、順次 + X方向に移動することができることは言うまでも無い。  [0053] Since XCCD (XC) is also a charge-coupled device, three-phase X clock signals that sequentially change in the same manner as in the example shown in the left YCCD (LC) above are sequentially applied to the X transfer signal lines PA, PB, and PC. It is needless to say that by applying the voltage, the charge (light control signal) held immediately below the X transfer electrode A1 on each of the transmission paths D3-5 can be sequentially moved in the + X direction. Not even.
[0054] なお、本例においては XCCD (XC)も 3相 CCDであるので、一つの独立した調光 信号を保持可能な部分は、図 2に破線で示した領域 (以下「電荷結合要素」と呼ぶ) CU0の如ぐ一つの X伝送路 D5と第 1相から第 3相の X転送電極のそれぞれ一つ( Al , Bl , C1)とが交差する部分を含む領域になる。  In this example, since the XCCD (XC) is also a three-phase CCD, the portion capable of holding one independent dimming signal is a region shown by a broken line in FIG. This is a region including a portion where one X transmission line D5 such as CU0 intersects one of the first to third phase X transfer electrodes (Al, Bl, C1).
[0055] この一つの電荷結合要素 CU0は、 X伝送路 D5上の各 X転送電極 Al, Bl , CIの 直下に当る 3箇所に、調光信号を保持する機能を有するが、本発明の二次元調光デ バイス VM1においては、後述する通り、このうち第 2相 X転送電極 B1の直下に保持 された調光信号に基づいて、上記調光素子アレイ 11中の調光要素を制御する。そ のため、各電荷結合要素中の、 X伝送路 D3— 5と第 2相 X転送電極 B1— 5との交差 点に形成される各領域を、以下、特に「信号保持要素」と呼ぶことにする。  [0055] The one charge-coupled element CU0 has a function of holding a dimming signal at three locations on the X transmission path D5 immediately below the X transfer electrodes Al, Bl, and CI. In the one-dimensional dimming device VM1, as described later, the dimming elements in the dimming element array 11 are controlled based on a dimming signal held immediately below the second-phase X transfer electrode B1. Therefore, each region formed at the intersection of the X transmission path D3-5 and the second-phase X transfer electrode B1-5 in each charge-coupled element is hereinafter referred to as a "signal holding element". To
[0056] XCCD (XC)は電荷 (信号)保持機能を有する信号保持要素が二次元に配列され た信号保持要素アレイであるとともに、当該信号保持要素に保持された電荷 (調光信 号)を X方向に沿って隣接する信号保持要素に転送する信号転送機構として機能す る。この場合、 X方向は、第 1の方向とみることができる。また、左 YCCD (LC)は、 XC CD (XC)中の - X方向端に配列される各信号保持要素に対して信号を供給する信 号供給機構として機能する。  [0056] XCCD (XC) is a signal holding element array in which signal holding elements having a charge (signal) holding function are two-dimensionally arranged, and charges (light control signals) held in the signal holding elements are stored. It functions as a signal transfer mechanism that transfers signals to adjacent signal holding elements along the X direction. In this case, the X direction can be regarded as the first direction. Further, the left YCCD (LC) functions as a signal supply mechanism that supplies a signal to each signal holding element arranged at the end in the −X direction in the XCCD (XC).
[0057] なお、図 2では、紙面の都合により電荷結合要素の数を X方向に 5列, Y方向に 5列 の計 25個に限って表示しているが、実際に形成すべき電荷結合要素の数は、これよ りも圧倒的に多くあるべきであることは言うまでも無い。そしてその配列数は、 X方向ま たは Y方向の少なくとも一方については、例えば 1000列以上であることが望ましい。  In FIG. 2, the number of charge-coupled elements is limited to five in the X-direction and five in the Y-direction for a total of 25, due to space limitations. It goes without saying that the number of elements should be overwhelmingly greater. It is desirable that the number of arrays be, for example, at least 1000 columns in at least one of the X direction and the Y direction.
[0058] 次に、 XCCD (XC)内の一つの電荷結合要素 CUの詳細について、図 3を用いて 説明する。 Next, the details of one charge-coupled element CU in XCCD (XC) will be described with reference to FIG. explain.
図 3 (A)は、図 2中の X伝送路 D3と第 1相から第 3相の X転送電極のそれぞれ一つ (A3, B3, C3)とが交差する位置に形成された、図中破線で示した電荷結合要素 C Uとその周囲の電荷結合要素の拡大図を表わす。図 3 (B)は、平面図である図 3 (A) 中の A— A'線に沿う断面図を表わし、図 3 (C)は、図 3 (A)中の B—B'線に沿う断面 図を表わす。ここで、図 3 (A) ,図 3 (B) ,図 3 (C)に示した XYZ座標の向きは、図 2中 に示したものと等価である。  FIG. 3 (A) is a view in which the X transmission line D3 in FIG. 2 and one of the X-transfer electrodes (A3, B3, C3) of the first to third phases are formed at positions where they cross each other. FIG. 2 shows an enlarged view of a charge-coupled element CU and its surrounding charge-coupled element indicated by broken lines. FIG. 3B is a cross-sectional view taken along a line A—A ′ in FIG. 3A, which is a plan view, and FIG. 3C is a sectional view taken along a line B—B ′ in FIG. 3A. A cross-sectional view is shown. Here, the directions of the XYZ coordinates shown in FIGS. 3 (A), 3 (B), and 3 (C) are equivalent to those shown in FIG.
[0059] シリコンウェハ等の半導体基板 50の表面には、 X軸方向に平行に、 X伝送路 D2, D3, D4と絶縁領域 El, E2, E3, E4と力 S形成される。ここで X伝送路 D2 4は、半 導体基板 50そのものからなり、一方、絶縁領域 E1 4は半導体基板 50を加工して 酸化膜等による絶縁層を形成したものである。  [0059] On the surface of a semiconductor substrate 50 such as a silicon wafer, X transmission paths D2, D3, D4 and insulating regions El, E2, E3, E4 and a force S are formed in parallel with the X-axis direction. Here, the X transmission line D24 is formed of the semiconductor substrate 50 itself, while the insulating region E14 is formed by processing the semiconductor substrate 50 to form an insulating layer such as an oxide film.
[0060] これらの上には、第:!相 X転送電極 A2, A3, A4、第 2相 X転送電極 B2, B3, B4、 第 3相 X転送電極 C2, C3, C4が Y方向に平行に形成される。なお、各 X転送電極 A 2— 4, B2— 4, C2— 4と伝送路 D2— 4の間には、シリコン酸化膜(二酸化珪素膜) 等の絶縁膜を形成し、各 X転送電極 A2— 4, B2— 4, C2— 4と伝送路 D2— 4の間 の絶縁性を確保する。  [0060] On top of these, the!:! Phase X transfer electrodes A2, A3, A4, the second phase X transfer electrodes B2, B3, B4, and the third phase X transfer electrodes C2, C3, C4 are parallel to the Y direction. Formed. An insulating film such as a silicon oxide film (silicon dioxide film) is formed between each of the X transfer electrodes A2-4, B2-4, C2-4 and the transmission line D2-4. — 4, B2— 4, Ensure insulation between C2—4 and transmission line D2—4.
[0061] ここで、電荷結合要素 CU中の X伝送路 D3中の第 2相 X転送電極 B3の直下は、上 述の通り信号保持要素 BDを構成する。これは他の電荷結合要素においても同様で ある。そして、第 2相 X方向転送電極 B2— 4の各電荷結合要素 BD等のほぼ中央に 相当する位置には、各電荷結合要素 BD1等に保持された信号を取り出すための経 路としての開口 51, 52, 53, 54, 55, 56, 57, 58, 59を形成する。また、図 3 (B)中 の電極 B2c, B2d、電極 B3c, B3d、電極 B4c, B4dは、それぞれ第 2相 X転送電極 B2 4の中の、開口 54, 55, 56の両端に位置する部分を表わす。  Here, immediately below the second-phase X transfer electrode B3 in the X transmission path D3 in the charge-coupled element CU, constitutes the signal holding element BD as described above. This is also true for other charge-coupled elements. At the position corresponding to the approximate center of each charge-coupled element BD or the like of the second phase X-direction transfer electrode B2-4, an opening 51 as a path for extracting a signal held by each charge-coupled element BD1 or the like is provided. , 52, 53, 54, 55, 56, 57, 58, 59. The electrodes B2c and B2d, the electrodes B3c and B3d, and the electrodes B4c and B4d in FIG. 3 (B) are portions of the second phase X transfer electrode B24 located at both ends of the openings 54, 55, and 56, respectively. Represents
[0062] 電荷結合要素 CUは、リソグラフイエ程により製造することができる。そして、その製 造方法は、一般的な CCDの製造方法と概ね同様であるため、詳細な説明は省略す る。  [0062] The charge-coupled element CU can be manufactured by a lithographic process. Since the manufacturing method is almost the same as a general CCD manufacturing method, a detailed description is omitted.
続いて、調光素子アレイ 11を構成する微小ミラーを含む調光素子の第 1の実施形 態について説明する。 [0063] 図 4は、調光素子アレイ 11を構成する一つの調光素子 MUの拡大図である。なお、 電荷結合要素 CU等の一部である信号保持要素 BDも調光素子 MUの一部を構成 するため、図 4には、電荷結合要素 CUについても併せて表示してある。 Subsequently, a first embodiment of the light control device including the micromirrors constituting the light control device array 11 will be described. FIG. 4 is an enlarged view of one light control element MU included in the light control element array 11. In addition, since the signal holding element BD which is a part of the charge coupled element CU and the like also constitutes a part of the dimming element MU, FIG. 4 also shows the charge coupled element CU.
調光素子 MUは、微小ミラー(ミラー) 10a,駆動電極 33a, 33b、ベース板 32、接 続電極 36, 37, 38, 39, 40, 41、電原酉己線 42、接地酉己泉 46、制卸トランジスタ 43、 接続プラグ 48等から構成される調光要素 49と、電荷結合要素 CU中の上記信号保 持要素 BDとから形成される素子である。なお、図 2に示した XCCD (XC)中に二次 元的に配列された他の電荷結合要素の上にも、調光要素 49と同様な調光要素が形 成され、調光素子が二次元的に配列された調光素子アレイ 11が形成されることは言 うまでもない。従って、本例においては、信号転送機構である XCCD (XC)と調光素 子アレイ 11は積層された構造となってレ、る。  The light control element MU is composed of a micro mirror (mirror) 10a, drive electrodes 33a and 33b, base plate 32, connection electrodes 36, 37, 38, 39, 40, 41, Ehara Tori Line 42, and Ground Tori Izumi 46 , A dimming element 49 including a control transistor 43, a connection plug 48, and the like, and the signal holding element BD in the charge-coupled element CU. Note that a dimming element similar to the dimming element 49 is also formed on the other charge-coupled elements two-dimensionally arranged in the XCCD (XC) shown in FIG. It goes without saying that the dimming element array 11 arranged two-dimensionally is formed. Therefore, in this example, the signal transfer mechanism XCCD (XC) and the dimming element array 11 have a stacked structure.
[0064] なお、図 4では図示の便宜上、接続プラグ 48の下端面 48aが半導体基板 50と接続 されることなく描かれている力 実際には図中矢印で示した通りこれらは接続される。 また、接続電極 38の下面 38aと制御トランジスタ 43の端部 44、及び接続電極 41の 下面 41aと接地配線 46の一部である接続部 47についても、分離して描かれているが 、図中矢印で示した通り、これらの各部も相互に接続されている。  In FIG. 4, for convenience of illustration, the force drawn without connecting the lower end surface 48a of the connection plug 48 to the semiconductor substrate 50 is actually connected as shown by the arrow in the figure. In addition, the lower surface 38a of the connection electrode 38 and the end 44 of the control transistor 43, and the lower surface 41a of the connection electrode 41 and the connection portion 47 that is a part of the ground wiring 46 are also illustrated separately. As shown by the arrows, these components are also connected to each other.
[0065] 以下、調光素子 MUの構成について、その製造方法の一例と併せて説明する。  Hereinafter, the configuration of the light control element MU will be described together with an example of a method of manufacturing the same.
はじめに、電荷結合要素 CU1の形成された半導体基板 50の上に、二酸化珪素等 力 なる不図示の第 1の絶縁膜を形成し、第 1の絶縁膜中の上記開口 55に対応する 位置に第 1の開口部を形成する。そして、この第 1の開口部にポリシリコン(多結晶の 珪素)等を埋め込み、接続プラグ 48を形成する。そして、接続プラグ 48の上端部を 酸化するなどによりシリコン酸化膜 45を形成する。  First, a first insulating film (not shown) made of silicon dioxide or the like is formed on the semiconductor substrate 50 on which the charge-coupled element CU1 is formed, and a first insulating film is formed at a position corresponding to the opening 55 in the first insulating film. Form one opening. Then, polysilicon (polycrystalline silicon) or the like is buried in the first opening to form a connection plug 48. Then, a silicon oxide film 45 is formed by oxidizing the upper end of the connection plug 48 or the like.
[0066] 続いて、接続プラグ 48上及び第 1の絶縁膜上に、全面に亘つてポリシリコン等から なる材料を形成 (成膜)し、電源配線 42、接地配線 46、制御トランジスタ 43を形成す べき箇所のみ残してこのポリシリコンを除去する。そして、形成された電源配線 42、接 地配線 46、制御トランジスタ 43等の上層に、シリコン酸化膜等からなる不図示の第 2 の絶縁層を形成し、この第 2の絶縁層のうち、制御トランジスタ 43の端部 44及び接地 電極 46の接続部 47に対応する位置に第 2の開口部を形成する。 [0067] その状態で、第 2の絶縁層の上から金属や低抵抗の半導体等の第 1の配線材料を 成膜する。これにより、上記第 2の開口部には第 1の配線材料が埋め込まれ接続電 極 38, 41が形成される。そして、第 2の絶縁層の上に形成された第 1の配線材料のう ち、所定の部分以外をエッチング等により除去することにより、接続電極 37, 40を形 成する。 Subsequently, a material made of polysilicon or the like is formed (deposited) over the entire surface of the connection plug 48 and the first insulating film, and the power supply wiring 42, the ground wiring 46, and the control transistor 43 are formed. The polysilicon is removed, leaving only the parts to be removed. Then, a second insulating layer (not shown) made of a silicon oxide film or the like is formed on the power supply wiring 42, the ground wiring 46, the control transistor 43, and the like. A second opening is formed at a position corresponding to the end 44 of the transistor 43 and the connection 47 of the ground electrode 46. In this state, a first wiring material such as a metal or a low-resistance semiconductor is formed on the second insulating layer. As a result, the first wiring material is embedded in the second opening, and connection electrodes 38 and 41 are formed. Then, the connection electrodes 37 and 40 are formed by removing, by etching or the like, portions other than predetermined portions of the first wiring material formed on the second insulating layer.
[0068] そして、接続電極 37, 40が形成された基板 50上に、さらにシリコン酸化膜等からな る不図示の第 3の絶縁層を成膜し、その上に例えば窒化珪素等からなる絶縁性のベ ース板 32を形成する。そして、ベース板 32及び第 3の絶縁層の所定の位置に第 3の 開口を形成し、その状態でベース板 32上から金属や低抵抗の半導体等の第 2の配 線材料を成膜する。これにより、上記第 3の開口部には第 2の配線材料が埋め込まれ 接続電極 36, 39を形成する。そして、ベース板 32上に形成された第 2の配線材料の うち、所定の部分以外をエッチング等により除去することにより、駆動電極 33a、駆動 電極 33b及び導通線 34を形成する。  Then, a third insulating layer (not shown) made of a silicon oxide film or the like is further formed on the substrate 50 on which the connection electrodes 37 and 40 are formed, and an insulating material made of, for example, silicon nitride or the like is further formed thereon. The base material 32 is formed. Then, a third opening is formed at a predetermined position of the base plate 32 and the third insulating layer, and a second wiring material such as a metal or a low-resistance semiconductor is formed on the base plate 32 in this state. . As a result, the second wiring material is buried in the third opening, and the connection electrodes 36 and 39 are formed. Then, of the second wiring material formed on the base plate 32, a portion other than a predetermined portion is removed by etching or the like, so that the drive electrode 33a, the drive electrode 33b, and the conductive line 34 are formed.
[0069] 続いて、ベース板 32上に高抵抗な配線材料を成膜し、そのパターンニングにより高 抵抗配線 35を形成する。駆動電極 33aと駆動電極 33bは、この高抵抗配線 35により 電気的に接続される。なお、高抵抗配線 35は、上記第 2の配線材料から駆動電極 3 3a, bの加工と同時に形成することもできる。この場合、高抵抗配線 35の線幅を駆動 電極 33a, bの線幅に比べて細く加工することにより、その電気抵抗を増大させるもの とすることができる。  Subsequently, a high-resistance wiring material is formed on the base plate 32, and the high-resistance wiring 35 is formed by patterning. The drive electrode 33a and the drive electrode 33b are electrically connected by the high resistance wiring 35. The high-resistance wiring 35 can also be formed from the second wiring material at the same time as the processing of the drive electrodes 33a and b. In this case, by making the line width of the high-resistance wiring 35 narrower than the line width of the drive electrodes 33a, b, the electric resistance can be increased.
[0070] その後、駆動電極 33a, b等の形成されたベース板 32上に、シリコン酸化膜等から なる第 4の絶縁層を成膜し、第 4の絶縁層の所定の位置に第 4の開口部を形成する。 そして、その上からシリコン等を成膜することにより、第 4の開口部の中に支持部 31を 形成し、第 4の絶縁層の上面にはミラー 10aを構成するシリコン膜を形成する。さらに 、そのシリコン膜の上にはアルミニウム等の高反射率金属や誘電体多層膜を形成し、 ミラー 10aの表面の高反射率を確保する。  After that, a fourth insulating layer made of a silicon oxide film or the like is formed on the base plate 32 on which the driving electrodes 33a, b and the like are formed, and the fourth insulating layer is formed at a predetermined position on the fourth insulating layer. An opening is formed. Then, by forming a film of silicon or the like from above, the support portion 31 is formed in the fourth opening, and a silicon film constituting the mirror 10a is formed on the upper surface of the fourth insulating layer. Further, a high-reflectance metal such as aluminum or a dielectric multilayer film is formed on the silicon film to secure a high reflectivity on the surface of the mirror 10a.
[0071] 続いて、上記シリコン膜をパターンユングして個々のミラー 10aを形成する。そして、 上記第 4の絶縁層をフッ酸等によるエッチングにより除去し、ベース板 32上とミラー 1 Oaとの間に、ミラー 10aの傾斜動作を可能とする空間を形成する。一方、上述の不図 示の第 1から第 3の絶縁層については除去する必要は無ぐ絶縁部材として調光素 子 MUの構成部材となる。 Subsequently, the silicon film is patterned to form individual mirrors 10a. Then, the fourth insulating layer is removed by etching with hydrofluoric acid or the like to form a space between the base plate 32 and the mirror 1 Oa that allows the mirror 10a to tilt. On the other hand, The first to third insulating layers shown in the drawing are components of the light control element MU as insulating members that do not need to be removed.
以上の工程により、調光素子 MUが完成する。  Through the above steps, the dimming device MU is completed.
なお、調光要素 49及び調光素子 MUの製造方法は上記の例に限られる訳ではな く、他の方法を用いても製造できることは言うまでもなレ、。  The method of manufacturing the light control element 49 and the light control element MU is not limited to the above example, and it goes without saying that the light control element 49 and the light control element MU can be manufactured using other methods.
[0072] ここで、ベース板 32、電源配線 42、接地配線 46については、一つの調光素子 MU 内に閉じた構成要素ではなぐ調光素子アレイ 11を構成する他の調光素子 MUと接 合された構成要素である。電源配線 42は X方向に隣接する他の調光素子 MUの電 源配線と各端部 42a, 42bにおいて繋がっている。すなわち電源配線 42は、調光素 子アレイ 11を構成する調光素子 MUのうち、同じ Y位置で X方向に並ぶ一列の調光 素子群を結ぶ X方向の配線を構成し、その終端部は不図示の電源回路に接続され 所定の電源電位が供給される。  [0072] Here, the base plate 32, the power supply wiring 42, and the ground wiring 46 are connected to other dimming elements MU constituting the dimming element array 11 which are not closed components in one dimming element MU. It is the combined component. The power wiring 42 is connected to the power wiring of another dimming element MU adjacent in the X direction at each end 42a, 42b. That is, the power supply wiring 42 constitutes a wiring in the X direction that connects a group of dimming elements arranged in the X direction at the same Y position among the dimming elements MU configuring the dimming element array 11, and has a terminating end. A predetermined power supply potential is supplied to a power supply circuit (not shown).
[0073] 同様に、接地配線 46は X方向に隣接する他の調光素子 MUの接地配線と各端部  [0073] Similarly, the ground wiring 46 is connected to the ground wiring of another dimming element MU adjacent in the X direction and each end.
46a, 46bにおいて繋がっており、同じ Y位置で X方向に並ぶ一列の調光素子群を 結ぶ X方向の配線を構成し、その終端部は不図示の接地回路に接続され所定の接 地電位が供給される。そして、絶縁性のベース板 32は調光素子 49と X方向及び Y方 向に隣接する他の調光素子 MU中のベース板と繋がってレ、る。  46a and 46b are connected to each other, and constitute a wiring in the X direction that connects a group of dimming elements arranged in the X direction at the same Y position, and the terminating end thereof is connected to a ground circuit (not shown) and a predetermined ground potential is formed. Supplied. Then, the insulating base plate 32 is connected to the dimming element 49 and the base plate in another dimming element MU adjacent in the X and Y directions.
[0074] 駆動電極 33bには接続電極 39が接続され、これ力 接続電極 40, 41を経て接地 配線 46上の接続部 47に接続 (導通)される。これにより、駆動電極 33bには接地配 線 46を介して、常に所定の接地電位が供給される。また、微小ミラー 10aは、支持部 31を介して導通線 34により駆動電極 33bと導通しているため、その電位は常に接地 電位に保たれる。  The connection electrode 39 is connected to the drive electrode 33 b, and is connected (conductive) to the connection portion 47 on the ground wiring 46 via the connection electrodes 40 and 41. As a result, a predetermined ground potential is always supplied to the drive electrode 33b via the ground line 46. Further, since the micromirror 10a is electrically connected to the drive electrode 33b via the conductive line 34 via the support 31, the potential is always kept at the ground potential.
[0075] これに対し、駆動電極 33aは、接続電極 36, 37, 38及び制御トランジスタ 43を介し て電源電極 42と接続されるとともに、高抵抗配線 35を介して駆動電極 33bとも接続さ れる。制御トランジスタ 43は、 n型半導体または p型半導体で構成され、絶縁膜 45を 介して接続される接続プラグ 48の上端部をゲート電極とする電界効果型トランジスタ (FET)を構成する。その一端は電源配線 42と接続され所定の電源電位が供給され 、その他端には端部 44を介して接続電極 38が接続される。 [0076] 従って、駆動電極 33aの電位は、制御トランジスタ 43の導通または非導通を制御す ることにより可変とすることができる。すなわち、制御トランジスタ 43を導通とすれば駆 動電極 33aは電源電極 42と導通し、これから電源電位が供給される。一方、制御トラ ンジスタ 43を非導通とすれば、駆動電極 33aと電源電極 42との導通は絶たれ、駆動 電極 33aが高抵抗配線 35を介して駆動電極 33bと繋がっていることから駆動電極 33 aの電位も駆動電極 33bと同様に接地電位となる。 On the other hand, the drive electrode 33a is connected to the power supply electrode 42 via the connection electrodes 36, 37, 38 and the control transistor 43, and is also connected to the drive electrode 33b via the high-resistance wiring 35. The control transistor 43 is made of an n-type semiconductor or a p-type semiconductor, and constitutes a field-effect transistor (FET) having the upper end of a connection plug 48 connected via an insulating film 45 as a gate electrode. One end is connected to a power supply wiring 42 to supply a predetermined power supply potential, and the other end is connected to a connection electrode 38 via an end 44. Accordingly, the potential of the drive electrode 33a can be made variable by controlling the conduction or non-conduction of the control transistor 43. That is, when the control transistor 43 is made conductive, the drive electrode 33a is made conductive with the power supply electrode 42, and the power supply potential is supplied from this. On the other hand, if the control transistor 43 is turned off, the conduction between the drive electrode 33a and the power supply electrode 42 is cut off, and the drive electrode 33a is connected to the drive electrode 33b via the high-resistance wiring 35. The potential of a becomes the ground potential similarly to the drive electrode 33b.
[0077] ここで、一例として上記電源電位が正であり接地電位が負である場合、制御トランジ スタ 43の導通時には、駆動電極 33aの電位は正、駆動電極 33b及び微小ミラー 10a の電位は負となる。このとき、駆動電極 33aと微小ミラー 10aの間には静電引力が生 じ、駆動電極 33bと微小ミラー 10aの間には静電斥力が生じる。この結果微小ミラー 1 Oaは傾斜し、その反射面の法線方向は図中 +Z方向から + X方向に傾いた方向に 変化する。  Here, as an example, when the power supply potential is positive and the ground potential is negative, when the control transistor 43 is conducting, the potential of the drive electrode 33a is positive, and the potentials of the drive electrode 33b and the micromirror 10a are negative. It becomes. At this time, an electrostatic attraction is generated between the driving electrode 33a and the micro mirror 10a, and an electrostatic repulsion is generated between the driving electrode 33b and the micro mirror 10a. As a result, the micromirror 1 Oa is inclined, and the normal direction of the reflection surface changes from the + Z direction to the + X direction in the figure.
[0078] 一方、制御トランジスタ 43の非導通時には、駆動電極 33a、駆動電極 33b及び微 小ミラー 10aの電位はいずれも負となり、駆動電極 33aと微小ミラー 10aの間及び駆 動電極 33bと微小ミラー 10aの間には、共に静電斥力が生じる。従って、この静電斥 力のつりあいにより、微小ミラー 10aの反射面は、その法線方向が図中 + Z方向と一 致する方向に向く。  On the other hand, when the control transistor 43 is non-conductive, the potentials of the drive electrode 33a, the drive electrode 33b and the micro mirror 10a are all negative, and the potential between the drive electrode 33a and the micro mirror 10a and between the drive electrode 33b and the micro mirror During 10a, electrostatic repulsion is generated. Therefore, due to the balance of the electrostatic repulsion, the reflection surface of the micromirror 10a is oriented in a direction whose normal direction coincides with the + Z direction in the figure.
[0079] なお、制御トランジスタ 43の導通、非導通は、接続プラグ 48に生じる電荷の正負( または 0)により、すなわち電荷結合要素 CUに保持された電荷の正負等により決定さ れるものであるから、微小ミラー 10aの傾き角は、電荷結合要素 CU中の信号保持要 素 BDに保持された電荷の正負ほたは 0)により制御すること力 Sできることになる。 なお、上記の電源電位及び接地電位の正負の設定は、上記の例示に限られる訳 ではなぐ上記とは正負が反転したものであってもよぐ一方が 0であっても良いことは 言うまでもなレ、。  The conduction and non-conduction of the control transistor 43 is determined by the polarity (or 0) of the charge generated in the connection plug 48, that is, by the polarity of the charge held in the charge coupling element CU. In addition, the tilt angle of the micromirror 10a can be controlled by the positive or negative sign of the charge held in the signal holding element BD in the charge-coupled element CU (0). The setting of the positive and negative of the power supply potential and the ground potential is not limited to the above example. Needless to say, the positive and negative may be reversed or the other may be zero. ,.
[0080] 以上の説明の通り、本実施形態においては、調光素子 MUはそれを構成する信号 保持要素 BDに保持された信号に応じて、調光要素 49中の微小ミラー 10aの角度を 変更し、すなわち、微小ミラー 10aに照射された照明光の所定の方向に対する反射 効率を変化させること、すなわち調光をすることができる。 [0081] そして、上述の如く調光素子 MUは、調光素子アレイ 11として図 2に示した XCCD ( XC)上の電荷伝送要素 CU上の全てに形成されることから、本発明の二次元調光デ バイス VM1においては、 XCCD (XC)上の各信号保持要素 BDに保持された調光 信号に基づいて、調光素子アレイ 11上の各調光素子 MUに所望の分布形状の調光 状態を形成することが可能となる。 As described above, in the present embodiment, the dimming element MU changes the angle of the micromirror 10a in the dimming element 49 according to the signal held in the signal holding element BD constituting the dimming element. That is, it is possible to change the reflection efficiency of the illumination light applied to the micromirror 10a in a predetermined direction, that is, to adjust the light. Then, as described above, the dimming element MU is formed on the entire charge transfer element CU on the XCCD (XC) shown in FIG. In the dimming device VM1, based on the dimming signal held in each signal holding element BD on the XCCD (XC), each dimming element MU on the dimming element array 11 has dimming with a desired distribution shape. A state can be formed.
[0082] 以下、この調光分布の形成について、図 2及び図 5を用いて説明する。  Hereinafter, the formation of the dimming distribution will be described with reference to FIGS. 2 and 5.
図 5 (A)は、調光素子アレイ 11上の各調光素子 MU上に形成するべき二次元調光 データ SDを表わす図であり、図中白または黒で表わされた 1ビットの調光信号力 X 方向に m列、 Y方向に n列に亘つて配列されたものである。ここで上記の白黒は、例 えば白が 1に対応し、黒が 0に対応する。  FIG. 5 (A) is a diagram showing two-dimensional dimming data SD to be formed on each dimming element MU on the dimming element array 11, and 1-bit dimming represented by white or black in the figure. The optical signal power is arranged in m rows in the X direction and n rows in the Y direction. Here, in the above black and white, for example, white corresponds to 1 and black corresponds to 0.
[0083] なお、二次元調光データ SDは、二次元調光デバイス VM1を構成する制御回路機 構 12の中の信号処理系 121に記憶されたものであってもよぐあるいは二次元調光 デバイス VM1とは別の不図示の信号処理装置に記憶され、そこから信号線 Sigを介 して形状信号として供給されるものであってもよい。そして、その記憶の形態はメモリ 一素子上の電気信号であってもよぐ大規模記憶装置上の磁気信号等の信号であつ ても良い。  The two-dimensional light control data SD may be stored in the signal processing system 121 in the control circuit mechanism 12 constituting the two-dimensional light control device VM1, or may be two-dimensional light control data. It may be stored in a signal processing device (not shown) different from the device VM1, and supplied as a shape signal from the signal processing device via the signal line Sig. The form of the storage may be an electric signal on one element of the memory or a signal such as a magnetic signal on a large-scale storage device.
[0084] ここで、二次元調光データ SDの、 Y方向の配列数 nは調光素子アレイ 11上の調光 素子 MUの Y方向配列数 (すなわち XCCD (XC)上に配列された電荷結合要素 CU の Y方向の配列数に同じ)に等しぐ X方向の配列数 mは調光素子 MUの X方向配 列数 (すなわち電荷結合要素 CUの X方向の配列数に同じ)より多い。  Here, the number n of the two-dimensional dimming data SD in the Y direction is the number of the dimming elements MU on the dimming element array 11 in the Y direction (that is, the charge coupling arranged on the XCCD (XC)). The number m of arrays in the X direction, which is equal to the number of arrays in the Y direction of the element CU, is greater than the number of arrays in the X direction of the dimmer MU (that is, the same as the number of arrays in the X direction of the charge-coupled element CU).
[0085] 上記調光分布の形成に際し、信号処理系 121は、先ず Y転送信号線 Q1— 3を通 して左 YCCD (LC)の左 Y転送電極 F1— 5, G1— 5, F1— 5に、上述の 3相の Yクロ ック信号の供給を開始する。そして信号処理系 121は、二次元調光データ SDのうち X方向右端に位置する歹 1JX1上に並ぶ調光データを、その Y方向位置 Yl , Y2, Y3, • ·Υηの順に、 Υクロック信号の上記変化の 1サイクルに同期して 1つずつ、調光信号 として信号線 S1を介して順次左 YCCD (LC)の入力部 DOLに供給する。  [0085] In forming the dimming distribution, the signal processing system 121 first passes through the Y transfer signal line Q1-3 to the left Y transfer electrode F1-5, G1-5, F1-5 of the left YCCD (LC). Then, supply of the above-mentioned three-phase Y clock signal is started. Then, the signal processing system 121 converts the dimming data of the two-dimensional dimming data SD arranged on the right end in the X direction on the 1JX1 in the X direction into the Y direction positions Yl, Y2, Y3,. In synchronization with one cycle of the above change, one by one, as a dimming signal, is sequentially supplied to the input section DOL of the left YCCD (LC) via the signal line S1.
[0086] このとき、入力部 DOLに送られる調光信号は、例えば、二次元調光データ SD中の 信号が 0であれば 0電位からなる信号とし、 1であれば負電位からなる信号とする。 信号処理系 121は、上記の信号転送を mサイクル繰り返すことにより、 2次元信号 S D上の列 XIに並ぶ調光データを全て左 YCCD (LC)に供給した後、 XCCDを駆動 して上述の如く左 YCCD (LC)に保持された調光信号を XCCD (XC)内の左端の一 列に配列する電荷結合要素 CU0等の中の信号保持要素 BDに転送して供給する。 [0086] At this time, the dimming signal sent to the input unit DOL is, for example, a signal having a zero potential if the signal in the two-dimensional dimming data SD is 0, and a signal having a negative potential if 1 is present. I do. The signal processing system 121 repeats the above-described signal transfer for m cycles to supply all dimming data arranged in the column XI on the two-dimensional signal SD to the left YCCD (LC), and then drives the XCCD as described above. The dimming signal held in the left YCCD (LC) is transferred to the signal holding element BD in the charge-coupled element CU0 and the like arranged in the leftmost column in the XCCD (XC) and supplied.
[0087] 続いて信号処理系 121は、二次元調光データ SDのうち列 X2上に並ぶ調光データ を、上記と同様にして、調光信号として順次入力部 D0Lに供給する。信号処理系 12 1は、これを mサイクル繰り返した後、再び XCCD (XC)を駆動して、 XCCD (XC)上 の左端の一列に配列する電荷結合要素 CU0等の中の信号保持要素 BDに保持さ れた先の調光信号列を、 +X方向に隣接する各電荷結合要素中の信号保持要素 B Dに転送するとともに、左 YCCD (LC)上に保持された新たな信号列を XCCD (XC) 上の左端の一列に配列する電荷結合要素 CU0等の中の信号保持要素 BDに転送 して供給する。 Subsequently, the signal processing system 121 sequentially supplies the light control data arranged on the column X2 of the two-dimensional light control data SD to the input unit D0L as a light control signal in the same manner as described above. After repeating this process for m cycles, the signal processing system 121 drives the XCCD (XC) again to transfer the signal to the signal holding element BD in the charge-coupled element CU0 etc. arranged in the leftmost row on the XCCD (XC). The held dimming signal sequence is transferred to the signal holding element BD in each charge-coupled element adjacent in the + X direction, and the new signal sequence held on the left YCCD (LC) is transferred to the XCCD ( XC) Transfer to and supply the signal holding element BD in the charge-coupled elements CU0 etc. arranged in the leftmost column on the top.
[0088] XCCD (XC)の各電荷結合要素 CUの X方向配列を q列とすれば、上記 XCCD (X C)駆動を含む一連の動作を q回繰り返すことにより、 XCCD (XC)の各電荷結合要 素 CU内の信号保持要素 BDの全てに対しての、所定の二次元調光データ SDの供 給が完了する。なお、上述の通り、本例においては信号保持要素 BDは各調光素子 MUの一部でもある。この結果、二次元調光デバイス VM1上の各調光素子 MUには 、各調光素子 MU内の信号保持要素 BDに保持された各調光信号に応じた調光分 布が形成される。  If the X-direction array of each charge-coupled element CU of XCCD (XC) is defined as q columns, a series of operations including the above-described XCCD (XC) driving is repeated q times to obtain each charge-coupled XCCD (XC). The supply of the predetermined two-dimensional dimming data SD to all of the signal holding elements BD in the element CU is completed. As described above, in the present example, the signal holding element BD is also a part of each dimming element MU. As a result, a dimming distribution corresponding to each dimming signal held in the signal holding element BD in each dimming element MU is formed in each dimming element MU on the two-dimensional dimming device VM1.
[0089] ところで、本発明の二次元調光デバイス VM1は、このように調光素子アレイ 11上に 所定の二次元調光形状分布を形成できるだけなぐその形状を概ね保ったまま、そ れを所定の方向(X方向)に移動可能であることに特徴がある。すなわち本発明は、 各調光素子 MU内の信号保持要素 BD及びそれへの信号の供給機構に CCD (上述 の XCCD (XC) )を採用しているため、この移動を容易に実現できることに特徴がある  Incidentally, the two-dimensional light control device VM1 of the present invention maintains a predetermined two-dimensional light control shape distribution on the light control element array 11 while maintaining its shape as much as possible. (X direction). That is, the present invention employs a CCD (XCCD (XC) described above) as the signal holding element BD in each dimming element MU and a signal supply mechanism to the signal holding element BD, so that this movement can be easily realized. There is
[0090] すなわち XCCD (XC)の上記駆動により、 XCCD (XC)上に二次元的に配列され た信号保持要素 BD上に保持された調光信号を、 +X方向に隣接する信号保持要 素 BD上に容易に移動できる。そして、これに伴って調光素子アレイ 11上に形成され る所定の二次元調光形状分布をも、 +X方向に容易に移動できる。なお、この XCC D (XC)の駆動に際しては、 XCCD (XC)の左端に配列される電荷結合要素 CU0等 の中の信号保持要素 BDに、 YCCD (LC)を経由して二次元調光データ SD上の新 たな調光信号を供給することは言うまでもない。 That is, by the above-described driving of the XCCD (XC), the dimming signal held on the signal holding element BD two-dimensionally arranged on the XCCD (XC) is changed to the signal holding element adjacent in the + X direction. Easy to move on BD. And, along with this, it is formed on the dimming element array 11. A predetermined two-dimensional dimming shape distribution can be easily moved in the + X direction. When driving the XCC D (XC), the two-dimensional dimming data is transferred to the signal holding element BD in the charge-coupled element CU0 etc. arranged at the left end of the XCCD (XC) via the YCCD (LC). It goes without saying that a new dimming signal on SD is supplied.
[0091] なお、信号保持要素 BD上の全てに所定の調光信号が保持された状態で XCCD ( XC)を駆動するには、 XCCD (XC)の右端に形成された信号保持要素 BD (図 2中で は各 Y伝送路 D3— 5上の第 2相 X転送電極 B5の直下に対応)上に保持された信号 を、何らかの方法で除去する必要が生じる。  [0091] In order to drive XCCD (XC) in a state where a predetermined dimming signal is held on all of the signal holding elements BD, a signal holding element BD formed on the right end of XCCD (XC) (see FIG. In 2, the signal held on the second phase X transfer electrode B5 on each Y transmission path D3-5 must be removed in some way.
[0092] そこで信号処理系 121は、上記 XCCD (XC)の転送動作に同期して、右 YCCDR C中の第 2相 Y転送電極 K1一 5に正電位を印加して、 XCCD (XC)右端の信号保持 要素 BD上に保持された電荷を右 YCCD (RC)中に除去する。そして、右 YCCD (R C)を駆動して、これらの電荷を右伝送路 DR中の排出端 DREに順次移動する。排出 端 DREには、不図示の接地線が接続され、この接地線により上記電荷は信号処理 系 121に回収される。  [0092] Therefore, the signal processing system 121 applies a positive potential to the second phase Y transfer electrode K15 in the right YCCDR C in synchronization with the transfer operation of the XCCD (XC), and The charge held on the element BD is removed in the right YCCD (RC). Then, the right YCCD (RC) is driven to sequentially move these charges to the discharge end DRE in the right transmission line DR. A ground line (not shown) is connected to the discharge end DRE, and the electric charge is recovered to the signal processing system 121 by the ground line.
[0093] 図 5 (B)は、調光素子アレイ 11上に形成された調光状態分布 VD1の一例を表わす 図である。上述の通り、調光素子アレイ 11中の調光素子 MUの X方向配列数は q列( B1から Bq)であり、 Y方向配列数は n列(D1から Dn)としている。調光状態分布 VD1 中の白または黒の表示は、二次元調光データ SDに対応したものであり、各調光要 素 49による所定方向への反射率力 例えば白の部分では高ぐ黒の部分で低いこと を表わす。  FIG. 5B is a diagram illustrating an example of the dimming state distribution VD 1 formed on the dimming element array 11. As described above, the number of dimming elements MU in the dimming element array 11 is arranged in the X direction in q columns (B1 to Bq), and the number of Y dimming elements in the Y direction is arranged in n columns (D1 to Dn). The white or black display in the dimming state distribution VD1 corresponds to the two-dimensional dimming data SD, and the reflectivity force in a predetermined direction by each dimming element 49. Indicates low in part.
[0094] 調光状態分布 VD1は、図 5 (A)に示した二次元調光データ SDのうち列 Xjを中心と する X方向の幅 q列上に並ぶ調光データに対応する調光分布を、調光素子アレイ 11 の X方向の中心である列 Beを中心として形成した状態を表わす。調光素子アレイ 11 上の各調光素子 MUには、二次元調光データ SD上の当該部分の調光データに対 応する調光状態が、 X方向および Y方向の配列を保って形成される。  [0094] The dimming state distribution VD1 is the dimming distribution corresponding to the dimming data arranged in the x-direction width q column centering on column Xj in the two-dimensional dimming data SD shown in Fig. 5 (A). Is formed around the column Be, which is the center of the dimming element array 11 in the X direction. In each dimming element MU on the dimming element array 11, a dimming state corresponding to the dimming data of the corresponding part on the two-dimensional dimming data SD is formed while maintaining the arrangement in the X and Y directions. You.
[0095] 一方、図 5 (C)は、図 5 (B)に示した状態から、 XCCD (XC)の上記駆動を 3サイク ル行なった後の、調光素子アレイ 11上の調光状態分布 VD2を表わす図である。す なわち調光素子アレイ 11上の調光状態分布 VD2は、図 5 (B)に示した調光状態分 布 VD1に比べ 3素子分 +X方向に移動している。また、調光素子アレイ 11の左側 3 歹 IJには、図 5 (A)中の二次元調光データ SDに基づく新たな調光分布が形成される。 On the other hand, FIG. 5 (C) shows the dimming state distribution on dimming element array 11 after the above-mentioned driving of XCCD (XC) has been performed for three cycles from the state shown in FIG. 5 (B). It is a figure showing VD2. That is, the dimming state distribution VD2 on the dimming element array 11 is the dimming state distribution shown in FIG. 5 (B). Cloth Moved in + X direction by 3 elements compared to VD1. In addition, a new dimming distribution based on the two-dimensional dimming data SD in FIG. 5A is formed in the left three systems IJ of the dimming element array 11.
[0096] このように、本発明の二次元調光デバイス VM1においては、調光素子アレイ 11上 に所定の二次元の調光状態分布を形成できるだけなぐその形状を概ね保ったまま 、それを所定の方向 (X方向)に移動可能である。  As described above, in the two-dimensional dimming device VM1 of the present invention, while maintaining its shape as much as possible to form a predetermined two-dimensional dimming state distribution on the dimming element array 11, it is maintained at a predetermined level. (X direction).
なお、上記の例に於いては調光素子アレイ 11上の調光分布を +X方向に移動す る例のみを示したが、これを一 X方向に移動することも可能であることは言うまでもない 。これは、調光信号を右 YCCD (RC)を経由して XCCD (XC)中の右端の電荷結合 要素 CU列に供給し、 Xクロック信号の相変化状態を変更して XCCD (RC)における 電荷 (調光信号)の転送方向を- X方向とすることで実現できる。  Note that, in the above example, only an example in which the dimming distribution on the dimming element array 11 is moved in the + X direction is shown, but it is needless to say that this can be moved in the 1X direction. No. This means that the dimming signal is supplied via the right YCCD (RC) to the rightmost charge-coupled element CU column in the XCCD (XC), and the phase change state of the X clock signal is changed to change the charge in the XCCD (RC). (Dimming signal) can be realized by setting the transfer direction to the -X direction.
[0097] また、その場合の XCCD (XC)中の左端の信号保持要素 BD上に保持された電荷 は、左 YCCD (LC)中に排出された後、左伝送路 DL中の排出端 DLEから不図示の 接地線により信号処理系 121に回収すればょレ、。  [0097] In this case, the charges held on the leftmost signal holding element BD in XCCD (XC) are discharged into left YCCD (LC), and then discharged from discharge end DLE in left transmission path DL. If it is collected in the signal processing system 121 by a ground wire (not shown).
なお、本発明の二次元調光デバイス VM1は、その用途によっては一方の向きにの み調光分布を移動できれば良い場合も有る。その場合、左 YCCD (LC)と右 YCCD (RC)が常に両方必要な訳ではなぐそのうち調光信号を XCCD (XC)に供給する側 となる片方のみを装備すれば良い。  Note that the two-dimensional light control device VM1 of the present invention may only need to be able to move the light control distribution in one direction depending on its use. In that case, both left YCCD (LC) and right YCCD (RC) are not always needed, but only one of them, which supplies the dimming signal to XCCD (XC), should be equipped.
[0098] なお、上述の実施形態にぉレ、ては、信号転送機構である XCCD (XC)や信号供給 機構である左右の左 YCCD (LC)及び右 YCCD (RC)は、電荷結合素子(CCD)よ りなるものとしたが、その実現手段はこれに限られるものではなぐ例えば磁気バブル メモリ等、所定の記憶要素に保持された情報を所定の方向にそって隣接する他の記 憶要素に転送することが可能な他の素子を用いることもできる。  In the above embodiment, the signal transfer mechanism XCCD (XC) and the left and right left YCCD (LC) and right YCCD (RC) serving as the signal supply mechanism are each composed of a charge-coupled device ( (CCD), but the realization means is not limited to this.For example, information stored in a predetermined storage element such as a magnetic bubble memory is stored in another storage element adjacent thereto along a predetermined direction. Other elements that can transfer the data to the device can also be used.
[0099] 一例として、磁気バブルメモリを使用する場合には、磁気バブルメモリ中に保持され た信号を読み込むために変調要素 49中に設ける信号読み取り機構も、上記の接続 プラグ 48と電荷効果型トランジスタである制御トランジスタ 43に代えて、磁性体プラグ とコイル等を使用することになる。 [0099] As an example, when a magnetic bubble memory is used, a signal reading mechanism provided in the modulating element 49 for reading a signal held in the magnetic bubble memory is also provided by the connection plug 48 and the charge effect transistor. Instead of the control transistor 43, a magnetic plug and a coil are used.
[0100] 次に、本発明の露光装置の第 1の実施形態及び本発明の露光方法の第 1の実施 形態を、図 6を参照して説明する。 本実施形態の露光装置は、本発明の二次元調光デバイス VM1上の上記反射型 の調光素子アレイ 11中の微小ミラー 10aからなる反射面 10に照明光 IL2を照射し、 その反射光 IL3を投影光学系 13を介して被露光基板 W上に露光する露光装置であ り、いわゆる走查型のマスクレス露光装置である。 Next, a first embodiment of the exposure apparatus of the present invention and a first embodiment of the exposure method of the present invention will be described with reference to FIG. The exposure apparatus of the present embodiment irradiates the reflecting surface 10 composed of the micromirrors 10a in the reflective dimming element array 11 on the two-dimensional dimming device VM1 of the present invention with the illumination light IL2, and reflects the reflected light IL3 This is an exposure apparatus that exposes a substrate W to be exposed through a projection optical system 13, that is, a so-called scanning type maskless exposure apparatus.
[0101] エキシマレーザあるいは高調波変換型レーザ等のレーザ、水銀ランプまたは発光 ダイオード等の光源 1から発せられた照明光 IL0は、整形光学系 2, 3を経て偏向素 子 4aに入射する。偏向素子 4aは例えば回折格子等の光学素子であり、入射した照 明光 IL0を必要に応じて所定の方向に偏向して、あるいは光束(「光線束」と同義)を 分割したうえにそれぞれを偏向して射出する。  [0101] Illumination light IL0 emitted from a laser such as an excimer laser or a harmonic conversion laser, or a light source 1 such as a mercury lamp or a light emitting diode is incident on the deflection element 4a via the shaping optical systems 2 and 3. The deflecting element 4a is, for example, an optical element such as a diffraction grating. The deflecting element 4a deflects the incident illuminating light IL0 in a predetermined direction as necessary, or deflects the light beam (synonymous with “light beam”) after dividing it. And inject.
[0102] 偏向素子 4aを射出した照明光 IL1は、リレーレンズ 6を経てフライアイレンズ等のォ プチカルインテグレータ 7に入射する。ォプチカノレインテグレータ 7を射出した照明光 は、リレーレンズ 8を経てビームスプリッタ 9に入射し、その分割面 9aで反射して照明 光 IL2となって可変成形マスクとしての二次元調光デバイス VM1上の反射型の調光 素子アレイ 11の反射面 10に照射される。この反射面 10は、上記調光素子 MU中の 微小ミラー 10aが二次元的に配列されたものである。各微小ミラー 10aの反射面の大 きさは、一例として 5から 20 μ ΐη角程度とする。  [0102] The illumination light IL1 emitted from the deflection element 4a enters the optical integrator 7 such as a fly-eye lens via the relay lens 6. The illumination light emitted from the optical integrator 7 enters the beam splitter 9 via the relay lens 8 and is reflected by the split surface 9a to become the illumination light IL2 on the two-dimensional dimming device VM1 as a variable shaping mask. The light is applied to the reflective surface 10 of the reflective dimming element array 11. The reflecting surface 10 is formed by two-dimensionally arranging micromirrors 10a in the dimming device MU. The size of the reflecting surface of each micromirror 10a is, for example, about 5 to 20 μΐη.
[0103] 調光素子アレイ 11で調光された照明光 IL3は、ビームスプリッタ 9の分割面 9aを透 過し投影光学系 13により集光され、半導体ウェハあるいはガラス基板等の被露光基 板 W上に照射される。このとき被露光基板 W上には、上述の所望のパターン形状に 対応して形成された調光素子アレイ 11上の調光分布に対応する明暗分布、すなわ ち所望のパターン形状に対応する像が形成され、これが露光される。  [0103] The illumination light IL3 modulated by the dimming element array 11 passes through the division surface 9a of the beam splitter 9, is condensed by the projection optical system 13, and is exposed to a substrate W such as a semiconductor wafer or a glass substrate. Irradiated on top. At this time, on the substrate W to be exposed, a light / dark distribution corresponding to the dimming distribution on the dimming element array 11 formed corresponding to the desired pattern shape described above, that is, an image corresponding to the desired pattern shape is formed. Is formed, and this is exposed.
[0104] 各微小ミラー 10aの反射面の向きは、形状信号処理系 21より信号線 Sigを通して制 御回路機構 12に伝達される形状信号に基づいて決定される。このとき微小ミラー 10 aの法線の向きが Z軸に平行であれば、照明光 IL2はその微小ミラー 10aで + Z方向 に反射されるため、ビームスプリッタ 9及び投影光学系 13を経て被露光基板 W上に 投影される。  The direction of the reflection surface of each micromirror 10 a is determined based on the shape signal transmitted from the shape signal processing system 21 to the control circuit mechanism 12 via the signal line Sig. At this time, if the direction of the normal line of the micromirror 10a is parallel to the Z axis, the illumination light IL2 is reflected by the micromirror 10a in the + Z direction, so that the illumination light IL2 is exposed through the beam splitter 9 and the projection optical system 13. Projected onto substrate W.
[0105] 一方、微小ミラー 10aの反射面が傾斜し、その法線の向きが Z軸からずれている場 合には、照明光 IL2はその微小ミラー 10aにより Z方向、すなわち投影光学系 13の光 軸 AX方向と異なる方向に反射され、投影光学系 13に入射することなぐあるいは投 影光学系 13の不図示の開口絞り等により遮光されて、被露光基板 W上に達すること はない。これにより被露光基板 W上には、調光素子アレイ 11上の微小ミラー 10aを含 む各調光素子 MUの変調状態に応じた照明強度分布が形成され、これが被露光基 板 W上に露光される。 On the other hand, when the reflecting surface of the micro mirror 10a is inclined and the direction of the normal is shifted from the Z axis, the illumination light IL2 is transmitted by the micro mirror 10a in the Z direction, light The light is reflected in a direction different from the direction of the axis AX and does not reach the substrate W to be exposed without being incident on the projection optical system 13 or blocked by an aperture stop (not shown) of the projection optical system 13. As a result, an illumination intensity distribution corresponding to the modulation state of each dimming element MU including the micromirror 10a on the dimming element array 11 is formed on the substrate W to be exposed, and this is exposed on the substrate W to be exposed. Is done.
[0106] 被露光基板 W上に形成される像の分解能は、調光素子アレイ 11を構成する調光 要素 49に含まれる微小ミラー 10aの大きさと投影光学系 13の縮小倍率とその解像度 で決まる。微小ミラー 10aの大きさを 20 z m角とし、投影光学系 13の縮小率が lZl 00倍のとき、被露光基板 W上に形成される像の分解能は、上記ミラーのピッチ(ほぼ 2つ分の大きさ)である 40 μ mに縮小率を掛けた 400nmとなることが期待される。た だし、これは投影光学系 13の開口数 (NA)や、光源の波長によっても制約を受ける 。すなわち、光源の波長を Iとするとき、投影光学系の解像度はほぼ λ /ΝΑで決ま るため、被露光基板 W上において上記 400nmの解像度を得るためには、短波長の 光源と大 NAの投影光学系を使用する必要がある。  The resolution of an image formed on the substrate W to be exposed is determined by the size of the micromirror 10 a included in the dimming element 49 constituting the dimming element array 11, the reduction magnification of the projection optical system 13, and its resolution. . When the size of the micromirror 10a is 20 zm square and the reduction ratio of the projection optical system 13 is 1 × 100, the resolution of the image formed on the substrate W to be exposed is equal to the pitch of the mirror (approximately two pitches). The size is expected to be 400 nm, which is 40 μm multiplied by the reduction ratio. However, this is also restricted by the numerical aperture (NA) of the projection optical system 13 and the wavelength of the light source. In other words, when the wavelength of the light source is I, the resolution of the projection optical system is determined substantially by λ / 、, and in order to obtain the above-mentioned 400 nm resolution on the substrate W to be exposed, a short wavelength light source and a large NA are required. It is necessary to use a projection optical system.
[0107] 例えば光源として、波長 193nmの ArF (アルゴン.フッ素)エキシマレーザを使用す る場合には、 0. 48程度以上の開口数を有する投影光学系することにより上記分解 能を達成することができる。ただし、調光素子アレイ 11上の調光素子 MUの配列ピッ チと投影光学系 13の解像度は、等しく設定されるべき必要があるわけではなぐどち らかがより微細であっても構わなレ、。  For example, when an ArF (argon.fluorine) excimer laser having a wavelength of 193 nm is used as a light source, the above resolution can be achieved by using a projection optical system having a numerical aperture of about 0.48 or more. it can. However, the arrangement pitch of the dimming elements MU on the dimming element array 11 and the resolution of the projection optical system 13 need not be set to be equal, but may be finer. Les ,.
[0108] なお、可変成形マスクを用いる露光装置においても、いわゆる変形照明法を適用 することは可能である。すなわち、調光素子アレイ 11への照明光の入射角度特性を 変更することにより投影光学系 13の実質的な解像度を向上することができる。  It is to be noted that a so-called modified illumination method can be applied to an exposure apparatus using a variable shaping mask. That is, the substantial resolution of the projection optical system 13 can be improved by changing the incident angle characteristics of the illumination light to the dimming element array 11.
そこで、本例の露光装置では、調光素子アレイ 11に照射する照明光 IL2の入射角 度特性を変更可能とするために、上述の偏向素子 4aを、例えばターレット式に複数 個交換可能に配置し、被露光基板に露光すべきパターンの形状等に応じて、ターレ ット部材 5を回転し、複数の偏向素子 4a, 4b等から最適な偏向素子 4a等を選択して 照明光光路に装填し、照明光に所望の偏向特性を与えるものとしている。  Therefore, in the exposure apparatus of the present example, in order to be able to change the incident angle characteristics of the illumination light IL2 irradiating the dimming element array 11, a plurality of the above-described deflection elements 4a are arranged, for example, in a turret type so as to be exchangeable. Then, the turret member 5 is rotated in accordance with the shape of the pattern to be exposed on the substrate to be exposed, and the optimum deflecting element 4a is selected from the plurality of deflecting elements 4a, 4b, etc., and loaded into the illumination optical path. In addition, a desired deflection characteristic is given to the illumination light.
[0109] 偏向素子 4aの交換により、偏向素子 4aを射出する照明光 IL1の偏向特性が変わり 、ォプチカルインテグレータ 7に入射する照明光 IL1の光量分布が変更される。ォプ チカルインテグレータ 7の射出面には、概ねこの光量分布を保った光量分布が形成 され、照明光 IL2は、この光量分布に基づく角度特性を持って調光素子アレイ 11に 照射され、これにより例えば輪帯照明等の変形照明が実現される。 The replacement of the deflection element 4a changes the deflection characteristics of the illumination light IL1 emitted from the deflection element 4a. The light intensity distribution of the illumination light IL1 incident on the optical integrator 7 is changed. On the exit surface of the optical integrator 7, a light amount distribution substantially maintaining this light amount distribution is formed, and the illumination light IL2 is applied to the dimming element array 11 with an angular characteristic based on this light amount distribution. For example, modified illumination such as annular illumination is realized.
[0110] なお、変形照明は、照明光 IL2を複数の部分光束に分割し、それぞれの部分光束 の調光素子アレイ 11への入射角を変更するものであり、照明光 IL2の全体としての 調光素子アレイ 11への入射角度を変更するものではない。これは、フォトマスクを使 用する露光装置における変形照明と同様である。  [0110] The deformed illumination is to divide the illumination light IL2 into a plurality of partial light beams and change the incident angle of each partial light beam to the dimming element array 11, and to adjust the illumination light IL2 as a whole. It does not change the angle of incidence on the optical element array 11. This is similar to the modified illumination in an exposure apparatus using a photomask.
[0111] 被露光基板 Wは例えば直径 300mm程度の半導体ウェハであるのに対し、投影光 学系 13の露光視野は一般にそれよりかなり狭い。そこで、被露光基板 Wの表面の全 面にわたって所望のパターンを露光するためには、露光中に被露光基板 Wを移動 する必要がある。そこで、被露光基板 Wは、基板ステージ 14に載置され、不図示の 駆動機構により定盤 17上を図中 X方向及び Y方向に可動になっている。そして、そ の位置は基板ステージ 14上に設置された移動鏡 15の位置を介してレーザ干渉計 1 6により計測され、ステージ制御系 18に伝達される。  [0111] The substrate W to be exposed is, for example, a semiconductor wafer having a diameter of about 300 mm, whereas the exposure field of view of the projection optical system 13 is generally considerably narrower. Therefore, in order to expose a desired pattern over the entire surface of the substrate W to be exposed, it is necessary to move the substrate W during exposure. Therefore, the substrate W to be exposed is mounted on the substrate stage 14, and is movable on the surface plate 17 in the X and Y directions in the figure by a driving mechanism (not shown). Then, the position is measured by the laser interferometer 16 via the position of the movable mirror 15 installed on the substrate stage 14, and transmitted to the stage control system 18.
なお、図 1には基板ステージ 14の X方向の位置を計測するための移動鏡 15及びレ 一ザ干渉計 16のみが表示される力 Y方向の位置を計測するための移動鏡及びレ 一ザ干渉計も設置されることは言うまでもなレ、。  FIG. 1 shows a movable mirror 15 for measuring the position in the X direction of the substrate stage 14 and a movable mirror and a laser for measuring the position in the Y direction in which only the laser interferometer 16 is displayed. It goes without saying that an interferometer will also be installed.
[0112] 以下、本実施形態の露光装置及び露光方法における被露光基板 Wへの露光動作 について説明する。本実施形態の露光装置及び露光方法では、投影光学系 13及 び二次元調光デバイス VM1等に対して、被露光基板 Wを相対走査 (スキャン)しつ つ、被露光基板 Wへの露光を行なう。 [0112] Hereinafter, the operation of exposing the substrate W to be exposed in the exposure apparatus and the exposure method of the present embodiment will be described. In the exposure apparatus and the exposure method of the present embodiment, the exposure of the substrate W is performed while the substrate W is relatively scanned with respect to the projection optical system 13 and the two-dimensional light adjusting device VM1. Do.
[0113] はじめに、不図示の基板搬送機構により被露光基板 Wを基板ステージ 14上に装填 する。そして、必要に応じて被露光基板 W上に既存の回路パターンの位置を位置合 せ顕微鏡 19で計測する。 First, the substrate W to be exposed is loaded on the substrate stage 14 by a substrate transport mechanism (not shown). Then, if necessary, the position of the existing circuit pattern is positioned on the substrate W to be exposed, and the position is measured by the microscope 19.
次に主制御系 20は、基板ステージ制御系 18を介して基板ステージ 14を露光準備 位置に移動させる。この露光準備位置は、被露光基板 W上に露光すべきパターンの 位置情報と、上記の位置合せ顕微鏡で計測した既存の回路パターンの位置とに基 づいて主制御系 20が決定する。 Next, the main control system 20 moves the substrate stage 14 to the exposure preparation position via the substrate stage control system 18. The exposure preparation position is based on the position information of the pattern to be exposed on the substrate W to be exposed and the position of the existing circuit pattern measured by the alignment microscope described above. The main control system 20 is determined accordingly.
[0114] 続いて、主制御系 20は基板ステージ制御系 18に指令を発し、基板ステージ 14を- X方向に概ね一定の速度で走査 (スキャン)させる。このときの基板ステージ 14の X方 向及び Y方向の位置はレーザ干渉計 16等により計測され、基板ステージ制御系 18 を介して主制御系 20に伝達される。そして主制御系 20及び基板ステージ制御系 18 は、この計測された位置情報に基づいて基板ステージ 14を所定の速度に保って一 X 方向に走査させる。 Subsequently, the main control system 20 issues a command to the substrate stage control system 18 to scan (scan) the substrate stage 14 at a substantially constant speed in the −X direction. At this time, the positions of the substrate stage 14 in the X and Y directions are measured by the laser interferometer 16 and the like, and transmitted to the main control system 20 via the substrate stage control system 18. Then, the main control system 20 and the substrate stage control system 18 scan the substrate stage 14 in the 1X direction while maintaining the predetermined speed based on the measured position information.
[0115] 一方、主制御系 20は形状信号処理系 21に指令を発し、形状信号処理系 21に記 憶されている被露光基板 W上に露光すべきパターン形状に関する形状信号を、可 変成形マスク VM1に伝送させる。形状信号は可変成形マスクとしての二次元調光デ バイス VM1中の制御回路機構 12に伝送され、上述の可変成形マスク (本発明の二 次元調光デバイス VM1)の機能により、調光素子アレイ 11上には、被露光基板 W上 に露光すべきパターンの形状に対応した調光分布が形成される。  On the other hand, the main control system 20 issues a command to the shape signal processing system 21 and variably shapes the shape signal relating to the pattern shape to be exposed on the substrate W to be exposed, which is stored in the shape signal processing system 21. Transmit to mask VM1. The shape signal is transmitted to the control circuit mechanism 12 in the two-dimensional dimming device VM1 as a variable shaping mask, and is controlled by the function of the above-described variable shaping mask (two-dimensional dimming device VM1 of the present invention). A dimming distribution corresponding to the shape of the pattern to be exposed on the substrate to be exposed W is formed thereon.
[0116] ところで、上述の通り被露光基板 Wは、概一定の速度で一 X方向に走査されている ので、調光素子アレイ 11上に形成した調光分布を、所定の位置関係を保って被露 光基板 W上に露光するには、その調光分布も +X方向に走査する必要がある。ここ で、 X方向についての符号が反転するのは、投影光学系 13として一般的な倒立像を 形成する光学系を想定するためである。  By the way, as described above, the substrate W to be exposed is scanned in the 1X direction at a substantially constant speed, so that the light control distribution formed on the light control element array 11 is maintained in a predetermined positional relationship. In order to expose the light-exposed substrate W, its dimming distribution also needs to be scanned in the + X direction. Here, the reason why the signs in the X direction are reversed is that the projection optical system 13 is assumed to be an optical system that forms a general inverted image.
[0117] 本発明の二次元調光デバイス VM1には、上述の通り、調光素子アレイ 11上に形 成した調光分布を、 XCCD (XC)の駆動により +X方向に移動する機能を有している ため、容易にこれを実現することができる。そして、主制御系 20は、形状信号処理系 21を介して二次元調光デバイス VM1に指令を送り、調光素子アレイ 11上に形成し た上記調光分布を、投影光学系 13を介して被露光基板 Wと結像関係を保ちながら +X方向に移動させる。  [0117] As described above, the two-dimensional dimming device VM1 of the present invention has a function of moving the dimming distribution formed on the dimming element array 11 in the + X direction by driving the XCCD (XC). Therefore, this can be easily realized. Then, the main control system 20 sends a command to the two-dimensional dimming device VM1 via the shape signal processing system 21, and transmits the dimming distribution formed on the dimming element array 11 via the projection optical system 13. The substrate to be exposed is moved in the + X direction while maintaining an image forming relationship.
[0118] なお、上記調光分布の X方向への移動に際しては、上述の如ぐそれに応じて調光 素子アレイ 11の X方向の一方の端に、順次新たなパターンに対応する調光分布を形 成していく必要がある。そのために、可変成形マスクとしての二次元調光デバイス V Ml中の制御回路機構 12中の上述の信号処理系 121は、上述の通り YCCD (LC, RC)を介して XCCD (XC)上の X方向端に配列される信号保持要素 BDに新たな調 光信号を供給する。また、必要に応じて、形状信号処理系 21は、新たなパターンに 対応する形状信号を、制御回路機構 12中の信号処理系 121に供給する。 When the dimming distribution is moved in the X direction, the dimming distribution corresponding to the new pattern is sequentially added to one end of the dimming element array 11 in the X direction as described above. It needs to be formed. For this purpose, the signal processing system 121 in the control circuit mechanism 12 in the two-dimensional dimming device V Ml as a variable shaping mask is, as described above, a YCCD (LC, A new dimming signal is supplied to the signal holding element BD arranged at the X-direction end on XCCD (XC) via RC). Further, as required, the shape signal processing system 21 supplies a shape signal corresponding to the new pattern to the signal processing system 121 in the control circuit mechanism 12.
[0119] なお、投影光学系 13が正立像を形成する光学系の場合には、被露光基板 Wの走 查方向と調光素子アレイ 11上の調光分布の走査方向が同符号になる場合もあり、ま た反射屈折光学系である場合には、被露光基板 Wの走査方向と調光素子アレイ 11 上の調光分布の走查方向が平行にならない場合もある。この場合にも、二次元調光 デバイス VM1の設置方向や基板ステージ 14の設置方向を適宜変更して、上記と同 様に、基板ステージ 14の走查方向を、すなわち被露光基板 Wの走查方向を、調光 素子アレイ 11上の調光分布の走查方向である第 1の方向が投影光学系 13を介して 被露光基板 W上に投影された方向に一致させるように構成すれば良いことは言うま でもない。 In the case where the projection optical system 13 is an optical system that forms an erect image, the scanning direction of the substrate W to be exposed and the scanning direction of the dimming distribution on the dimming element array 11 have the same sign. In the case of a catadioptric optical system, the scanning direction of the substrate W to be exposed may not be parallel to the scanning direction of the dimming distribution on the dimming element array 11. In this case as well, the installation direction of the two-dimensional dimming device VM1 and the installation direction of the substrate stage 14 are appropriately changed to change the running direction of the substrate stage 14, that is, the running direction of the substrate W to be exposed, as described above. The direction may be configured such that the first direction, which is the running direction of the dimming distribution on the dimming element array 11, matches the direction projected onto the substrate W to be exposed via the projection optical system 13. Needless to say.
[0120] 主制御系 20は、レーザ干渉計 16等による位置情報に基づき、基板ステージ 14が 所定位置に達した段階で光源 1に対して発光指令を発する。この結果、光源 1からの 照明光 IL0の発光が開始され、調光素子アレイ 11上に照明光 IL2が照射される。そ して、所望のパターン形状に対応した調光分布が与えられた反射光 IL3は、投影光 学系 13を介して被露光基板 W上に照射され、被露光基板 W上に上記所望形状のパ ターンが露光される。  The main control system 20 issues a light emission command to the light source 1 when the substrate stage 14 reaches a predetermined position, based on position information from the laser interferometer 16 and the like. As a result, the emission of the illumination light IL0 from the light source 1 is started, and the dimming element array 11 is irradiated with the illumination light IL2. Then, the reflected light IL3 provided with the dimming distribution corresponding to the desired pattern shape is irradiated onto the substrate W to be exposed through the projection optical system 13, and the target shape W The pattern is exposed.
[0121] また、主制御系 20は、基板ステージ 14が別の所定位置に達したときには、光源 1 に対して発光中止指令を発し、露光を中断する。その後、基板ステージ 14を Y方向 に、あるいはさらに X方向に駆動して別の露光準備位置に移動させ、上記露光動作 を繰り返して被露光基板 W上の必要な箇所への露光を行なう。  When the substrate stage 14 reaches another predetermined position, the main control system 20 issues a light emission stop command to the light source 1 to interrupt the exposure. Thereafter, the substrate stage 14 is driven in the Y direction or further in the X direction to move to another exposure preparation position, and the above-described exposure operation is repeated to expose a necessary portion on the substrate W to be exposed.
[0122] これにより、被露光基板 Wへの露光動作が完了する。そして、被露光基板 Wを不図 示の基板搬送機構により基板ステージ 14から除去し、露光装置外へ搬出する。 なお、引き続き別の被露光基板 (不図示)を露光する場合には、基板搬送機構によ り別の被露光基板を基板ステージ 14上に装填して、上記と同様の露光動作を繰り返 す。  Thus, the exposure operation on the substrate to be exposed W is completed. Then, the substrate W to be exposed is removed from the substrate stage 14 by a substrate transport mechanism (not shown) and carried out of the exposure apparatus. If another substrate to be exposed (not shown) is to be continuously exposed, another substrate to be exposed is loaded on the substrate stage 14 by the substrate transport mechanism, and the same exposure operation as described above is repeated. .
なお、上記各走查露光は、基板ステージ 14を常に同一の向き(例えば + X方向)に 走査しつつ行なうことも可能である力 S、一般には、基板ステージ 14を交互に + X方向 及び一 X方向に走査しつつ行なう方が処理能力が向上する。 In each of the scanning exposures, the substrate stage 14 is always set in the same direction (for example, in the + X direction). The processing capability can be improved by performing the scanning while the substrate stage 14 is alternately scanned in the + X direction and the 1X direction.
[0123] 本発明の露光装置の可変成形マスクである二次元調光デバイス VM1は、上述の 如く調光素子アレイ 11上に形成した調光分布を、 +X方向と一 X方向の双方に移動 可能な構成とすることができるので、走查方向を交互に変更しつつ行なう走查露光も 容易に実現することができる。 The two-dimensional dimming device VM1, which is a variable shaping mask of the exposure apparatus of the present invention, moves the dimming distribution formed on the dimming element array 11 as described above in both the + X direction and the 1X direction. Since a possible configuration can be adopted, running exposure performed while changing the running direction alternately can be easily realized.
[0124] なお、従来提案されている可変成形マスクも、例えば回転可能な微小ミラーが二次 元的に配列されたミラーアレイからなるものである。そして、各微小ミラーの回転角度 は、それぞれに対応して形成されるコンデンサーまたはメモリー素子等の記憶素子に 保持された電気信号に応じて決定される構成となっている。 [0124] The variable shaping mask that has been conventionally proposed also includes, for example, a mirror array in which rotatable micromirrors are two-dimensionally arranged. The rotation angle of each micromirror is determined in accordance with an electric signal held in a storage element such as a capacitor or a memory element formed correspondingly.
[0125] しかし、従来の可変成形マスクは、本発明の特徴である信号転送機構を有していな レ、。 [0125] However, the conventional variable shaping mask does not have the signal transfer mechanism that is a feature of the present invention.
従って、上記各微小ミラーに対応する記憶素子に記憶された信号を、その二次元 的な分布形状を保ったまま、それぞれ隣接する記憶素子に転送することができない。 そのため、ミラーアレイ上の調光分布を 1方向に僅かに移動する場合であっても、ミラ 一アレイを構成するすべての微小ミラーに対応する記憶素子の全てに、再度、全信 号を書き込む必要がある。このため従来の可変成形マスクでは、ミラーアレイ上の調 光分布の移動要する時間が比較的長ぐそれにより露光装置としての処理能力も制 限されることになる。  Therefore, the signal stored in the storage element corresponding to each micromirror cannot be transferred to the adjacent storage element while maintaining its two-dimensional distribution shape. Therefore, even if the dimming distribution on the mirror array moves slightly in one direction, it is necessary to write all signals again to all the storage elements corresponding to all the micro mirrors that make up the mirror array. There is. Therefore, in the conventional variable shaping mask, the time required for moving the dimming distribution on the mirror array is relatively long, which limits the processing capability of the exposure apparatus.
[0126] 一方、本発明の露光装置においては、信号転送機構 (XCCD (XC) )により、 XCC D上に二次元に配列された信号保持要素 BDに保持された調光信号を、 X方向に高 速に移動することが可能であり、これにより調光素子アレイ 11上に形成した調光分布 を、 X方向に高速に移動することが可能である。このため、調光素子アレイ 11上の調 光分布の移動要する時間が短ぐそれにより露光装置としての処理能力を大幅に向 上すること力 Sできる。  On the other hand, in the exposure apparatus of the present invention, the dimming signal held in the signal holding elements BD arranged two-dimensionally on the XCC D is transmitted in the X direction by the signal transfer mechanism (XCCD (XC)). It is possible to move at a high speed, whereby the light control distribution formed on the light control element array 11 can be moved at a high speed in the X direction. For this reason, the time required for moving the dimming distribution on the dimming element array 11 is short, so that the processing capability as an exposure apparatus can be greatly improved.
[0127] なお、上述の二次元調光デバイス VM1では、信号転送機構 (XCCD (XC) )中の X 方向端部に配列する信号保持要素 BDの一列に調光信号を供給する信号供給機構 は左右の YCCD (LC, RC)とし、 YCCD (LC, RC)への調光信号の供給は信号線 SIまたは S2を介してシリアルに(直列的に)供給するものとした。しかし、信号供給機 構を信号処理系 121と XCCD (XC)中の左右方向の端部に配列する各信号保持要 素 BDとを結ぶ多数本の信号線から構成し、上記信号保持要素 BDの一列にパラレ ノレに(並列的に)調光信号を供給する構成とすることもできる。これにより、 XCCD (X C)への信号の供給を一層高速化することができ、調光素子アレイ 11上の調光分布 の移動に要する時間を一層短くし、露光装置としての処理能力をさらに向上すること あでさる。 [0127] In the two-dimensional dimming device VM1, the signal supply mechanism that supplies the dimming signal to one row of the signal holding elements BD arranged at the end in the X direction in the signal transfer mechanism (XCCD (XC)) is as follows. Left and right YCCD (LC, RC) are used, and dimming signal supply to YCCD (LC, RC) is signal line It shall be supplied serially (serial) via SI or S2. However, the signal supply mechanism is composed of a number of signal lines that connect the signal processing system 121 and the signal holding elements BD arranged at the left and right ends in the XCCD (XC), and the signal holding element BD A configuration in which dimming signals are supplied to the parallel circuits in parallel (in parallel) can also be adopted. As a result, the speed of supplying signals to the XCCD (XC) can be further increased, the time required for moving the dimming distribution on the dimming element array 11 is further shortened, and the processing capability as an exposure apparatus is further improved. To do it.
[0128] ところで、以上の実施形態においては、基板ステージ 14の X方向位置と調光素子 アレイ 11上の調光分布の X方向位置は、それぞれ独立して位置制御するものとした が、基板ステージ 14の X方向位置に同期して調光素子アレイ 11上の調光分布の X 方向位置を移動させる構成とすることもできる。例えば、基板ステージ 14の X方向位 置を計測するレーザ干渉計 16の出力信号に基づき、その計測値の所定量の変動に 同期して、二次元調光デバイス VM1中の XCCD (XC)を駆動する構成とすることに より、これを実現すること力 Sできる。  In the above embodiment, the position of the substrate stage 14 in the X direction and the position of the dimming distribution on the dimming element array 11 in the X direction are controlled independently of each other. The X-direction position of the dimming distribution on the dimming element array 11 may be moved in synchronization with the X-direction position 14. For example, based on the output signal of the laser interferometer 16 that measures the position of the substrate stage 14 in the X direction, the XCCD (XC) in the two-dimensional dimming device VM1 is driven in synchronization with the fluctuation of the measured value by a predetermined amount. With this configuration, it is possible to realize this.
[0129] また、光源 1がエキシマレーザ等のパルス発光型の光源である場合には、そのパル ス発光時において、調光素子アレイ 11上の各微小ミラー 10aの傾き角が所定の角度 に設定された状態である必要がある。上記傾き角の変更中の状態においてパルス発 光が行なわれると、所望のパターンとは異なる明暗形状分布が被露光基板 W上に露 光されることになり、形成される像を劣化させるためである。  When the light source 1 is a pulse emission type light source such as an excimer laser, the tilt angle of each micro mirror 10a on the dimming element array 11 is set to a predetermined angle during the pulse emission. It is necessary to be in the state that was done. If pulse emission is performed in the state where the tilt angle is being changed, a light and dark shape distribution different from a desired pattern is exposed on the substrate W to be exposed, and the formed image is deteriorated. is there.
[0130] そこで、 XCCD (XC)を駆動するタイミングは、パルス発光型の光源 1の発光タイミ ングに同期して行なうことが望ましい。すなわち、パルス発光型の光源 1が発光された 後に、これに同期して XCCD (XC)を駆動し、次のパルス発光までの間に信号の転 送及び各微小ミラー 10aの傾き角の変更を完了させ、その後に再度パルス発光型の 光源 1の発光を行なうようにすれば良い。  Therefore, it is desirable to drive the XCCD (XC) in synchronization with the light emission timing of the pulse light source 1. That is, after the light source 1 of the pulse light emission type emits light, the XCCD (XC) is driven in synchronization with the light emission, and the signal transmission and the change of the inclination angle of each micromirror 10a are performed until the next pulse light emission. After the completion, the light emission of the pulse light source 1 may be performed again.
[0131] このときの XCCD (XC)の駆動は、パルス発光毎に 1サイクルの駆動するのみ、す なわち信号保持要素 BDに保持された信号を X方向に隣接する信号保持要素 BDに 1列分だけの転送にのみ限られるわけではなレ、。従って、各パルス発光の間に XCC D (XC)の複数サイクルの駆動を行ない、各信号保持要素 BDに保持された信号を、 X方向に沿って複数列離れた信号保持要素 BDに転送することができる。 [0131] At this time, the XCCD (XC) is driven only for one cycle for each pulse emission, that is, the signals held in the signal holding element BD are arranged in one row in the signal holding element BD adjacent in the X direction. Not limited to transferring only minutes. Therefore, a plurality of cycles of XCC D (XC) are driven during each pulse emission, and the signal held in each signal holding element BD is The signal can be transferred to the signal holding element BD separated by a plurality of columns along the X direction.
[0132] これにより、パルス発光の繰り返しレートの遅いパルス発光光源を使用しても、調光 素子アレイ 11上の調光分布の X方向移動速度を高速化することができ、露光装置の 処理能力を維持及び向上することが可能になる。 As a result, even when a pulsed light source having a low pulsed light emission repetition rate is used, the moving speed of the dimming distribution on the dimming element array 11 in the X direction can be increased, and the processing capability of the exposure apparatus can be improved. Can be maintained and improved.
なお、現在のリソグラフィ技術において主流であるフォトマスクを用いた微細パター ン露光技術においては、そのフォトマスクとして、透過光の位相(光路長)を部分的に 変更するいわゆる位相シフトマスクを用いて解像度を向上する方法が一部採用され ている。  In the fine pattern exposure technology using a photomask, which is the mainstream in the current lithography technology, the so-called phase shift mask that partially changes the phase (optical path length) of transmitted light is used as the photomask. Some methods have been adopted to improve
[0133] 本発明の二次元調光デバイス VM1も、このような位相シフト作用を有するマスクと すること力 Sできる。このためには、図 4に示した調光素子 MUにおいて、微小ミラー 10 aを上下方向(Z方向)に可動となるように構成すれば良い。微小ミラー 10aを反射し た照明光には、微小ミラー 10aの Z方向への移動量の 2倍の光路差が形成されるの で、これにより、二次元調光デバイス VM1に位相シフトマスクとしての機能を持たせ ること力 Sできる。  [0133] The two-dimensional light control device VM1 of the present invention can also be used as a mask having such a phase shift effect. For this purpose, in the dimming device MU shown in FIG. 4, the micromirror 10a may be configured to be movable in the vertical direction (Z direction). The illumination light reflected by the micromirror 10a has an optical path difference that is twice as large as the amount of movement of the micromirror 10a in the Z direction, so that the two-dimensional dimming device VM1 can be used as a phase shift mask. The ability to have functions S
[0134] 微小ミラー 10aを Z方向に駆動するためには、具体的には、例えば図 4に示した調 光要素 49において微小ミラー 10aを支持する支持部材 31を導通線 34上に形成し、 導通線 34近傍のベース板 32に開口部を形成しておく。これにより、導通線 34の可 橈性により微小ミラー 10aを上下させることができる。さらに、駆動電極 33a, 33bを一 体的に導通して形成し、一方、接続電極 39, 40, 41のうち少なくとも一つを高抵抗 材料で形成する。  In order to drive the micromirror 10a in the Z direction, specifically, for example, a support member 31 that supports the micromirror 10a in the dimming element 49 shown in FIG. An opening is formed in the base plate 32 near the conductive line 34. Thus, the micromirror 10a can be moved up and down by the flexibility of the conductive line 34. Further, the drive electrodes 33a and 33b are formed integrally conductively, while at least one of the connection electrodes 39, 40 and 41 is formed of a high resistance material.
[0135] そして、電源電位として正または負の電位を供給し、接地電位として 0電位を供給 すると、制御トランジスタ 43の導通により微小ミラー 10a及び駆動電極 33a, 33bには 正または負の電荷が蓄積され相互に斥力が生じるため、微小ミラー 10aは上方に移 動する。一方、制御トランジスタ 43の非導通により微小ミラー 10a及び駆動電極 33a , 33bは 0電位となり電荷は蓄積されず斥力も生じない。このため、導通線 34の弾性 により微小ミラー 10aは元に位置に戻る。従って、微小ミラー 10aを上下動作させるこ とができる。  When a positive or negative potential is supplied as a power supply potential and a zero potential is supplied as a ground potential, positive or negative charges are accumulated in the micromirror 10a and the drive electrodes 33a and 33b by conduction of the control transistor 43. The micromirrors 10a move upward due to mutual repulsion. On the other hand, due to the non-conduction of the control transistor 43, the micromirror 10a and the drive electrodes 33a and 33b become 0 potential, and no electric charge is accumulated and no repulsive force is generated. For this reason, the micromirror 10a returns to its original position due to the elasticity of the conductive wire 34. Therefore, the micro mirror 10a can be moved up and down.
[0136] なお、フォトマスクを用いた微細パターン露光技術においては、位相シフトマスクの 一形態として、マスク上の所定のパターンについて、そのパターンからの透過光の位 相を他のパターンからの透過光と反転せしめるのみでなぐその透過率を低減するい わゆるハーフトーン位相シフトマスクも使用されており、これにより解像度の向上等の 効果が得られている。上記の本発明の露光装置及び露光方法においても、例えば 以下の如き方法により、このハーフトーン位相シフトマスクと原理的に同等な構成を 実現し、同様な効果を得ることが可能である。 [0136] In the fine pattern exposure technique using a photomask, the phase shift mask As one form, a so-called halftone phase shift mask that reduces the transmittance of a given pattern on a mask not only by inverting the phase of transmitted light from that pattern with the transmitted light from another pattern, but also by using a so-called halftone phase shift mask It has been used to improve resolution and other effects. In the above-described exposure apparatus and exposure method of the present invention, for example, a configuration equivalent in principle to this halftone phase shift mask can be realized and the same effect can be obtained by the following method.
[0137] この方法は、一例として、上記の変形例の如く微小ミラー 10aが Z方向に上下動す る構成の二次元調光デバイス VM1を使用し、かつ、複数の調光素子 MUの組み合 わせを一つの調光素子とみなして調光を行なうものとする。これは、例えば、隣接す る 4個の調光素子 MUを一つの調光素子とみなし、そのうち 3個の調光素子 MU中の 上記微小ミラー 1 Oaを Z方向の上方位置に配置し、残る 1つを元に位置(すなわち Z 方向の下方位置)に配置させるものである。そして、それらの Z方向位置の差は、反 射する光束の波長の 1/4に設定する。  [0137] As an example, this method uses a two-dimensional dimming device VM1 in which the micromirror 10a moves up and down in the Z direction as in the above-described modification, and combines a plurality of dimming elements MU. It is assumed that the light control is performed assuming that the light control element is one light control element. This means that, for example, the four adjacent light control elements MU are regarded as one light control element, and the micromirror 1 Oa in the three light control elements MU is arranged at a position above the Z direction and remains. One of them is placed at the original position (that is, the lower position in the Z direction). Then, the difference between the positions in the Z direction is set to 1/4 of the wavelength of the reflected light beam.
[0138] このとき、 Z方向の下方位置に配置された微小ミラー 10aによる反射光束の振幅反 射率を + 1 (基準)とすると、 Z方向の上方位置に配置された微小ミラー 10aによる反 射光束の振幅反射率は- 1となる。この結果、両光束は干渉により相殺するが、ミラー の数の多い振幅反射率 1の光束は残存し、 4個の調光素子 MUは全体として 2の 負の振幅反射率を有することになる。  [0138] At this time, assuming that the amplitude reflectance of the reflected light flux from the micromirror 10a disposed at the lower position in the Z direction is +1 (reference), the reflection by the micromirror 10a disposed at the upper position in the Z direction is assumed. The amplitude reflectance of the light beam is -1. As a result, the two light beams cancel each other out due to the interference, but the light beams having an amplitude reflectance of 1 with many mirrors remain, and the four dimming elements MU have a negative amplitude reflectance of 2 as a whole.
[0139] 一方、その他の部分では隣接する 4個の調光素子 MUを構成する各微小ミラー 10 aをいずれも Z方向下方に配置させるものとすれば、これらのミラーからの振幅反射率 の和は + 4であるから、上記の各微小ミラー 10aが Z方向の上方位置及び下方位置 に配置された状態での反射光は、その他の部分からの反射光に対し、光量が低減し かつ位相が反転した光束を形成することとなり、ハーフトーン位相シフトマスクを形成 可能である。  On the other hand, in other portions, if each of the micromirrors 10a constituting the four adjacent dimming elements MU is arranged below in the Z direction, the sum of the amplitude reflectances from these mirrors Is +4, the reflected light in the state where the micromirrors 10a are arranged at the upper position and the lower position in the Z direction has a smaller light amount and a smaller phase than the reflected light from other portions. As a result, a halftone phase shift mask can be formed.
[0140] なお、この場合調光素子アレイ 11上の調光素子 MUの配列のピッチは、隣接する 複数個の調光素子 MU間の調光状態の変化が、被露光基板 Wに露光されないよう に、投影光学系 13の解像度に対して十分に小さぐ具体的にはその解像度の半分 程度以下に設定する必要がある。 [0141] ところで、上記の本発明の露光装置の第 1の実施形態及び露光方法の第 1の実施 形態にぉレ、ては、可変成形マスクである二次元調光デバイス VM1を構成する各調 光素子 MU中の微小ミラー 10aの法線の向きが Z軸と平行であるときに、その反射光 が投影光学系 13を経由して被露光基板 13上に露光されるものとした。この構成では 、微小ミラー 10aへの照明光 IL2と、微小ミラー 10aを反射して被露光基板 Wに照射 される照明光 IL2とが空間的には分離されないため、両光束の分離のためにビーム スプリッタ 9を必要とした。 In this case, the pitch of the arrangement of the dimming elements MU on the dimming element array 11 is such that a change in dimming state between a plurality of adjacent dimming elements MU is not exposed to the substrate W to be exposed. In addition, it is necessary to set the resolution sufficiently smaller than the resolution of the projection optical system 13, specifically, about half or less of the resolution. By the way, in the first embodiment of the exposure apparatus and the first embodiment of the exposure method of the present invention described above, each of the light components constituting the two-dimensional light control device VM1 which is a variable shaping mask is described. When the normal direction of the micromirror 10a in the optical element MU is parallel to the Z-axis, the reflected light is exposed on the substrate 13 through the projection optical system 13. In this configuration, since the illumination light IL2 to the micromirror 10a and the illumination light IL2 reflected by the micromirror 10a and irradiated onto the substrate W to be exposed are not spatially separated, the beam is used to separate both light beams. Splitter 9 required.
[0142] そこで、以下の本発明の露光装置の第 2の実施形態及び露光方法の第 2の実施形 態として、可変成形マスクである微小ミラー 10aを備えた二次元調光デバイス VM1へ の照明光 IL2を所定の角度傾けた例を図 7を用いて説明する。  Therefore, as a second embodiment of the exposure apparatus of the present invention and a second embodiment of the exposure method described below, illumination of the two-dimensional light control device VM1 including the micromirror 10a, which is a variable shaping mask, is performed. An example in which the light IL2 is inclined at a predetermined angle will be described with reference to FIG.
なお、本発明の露光装置の第 2の実施形態は、図 6中の本発明の露光装置の第 1 の実施形態と概ね共通しており、図 7には変更箇所のみを示してある。  The second embodiment of the exposure apparatus of the present invention is substantially common to the first embodiment of the exposure apparatus of the present invention in FIG. 6, and FIG. 7 shows only the changed portions.
[0143] 図 7において、リレーレンズ 8を射出した照明光 IL4は、傾斜ミラー 9bで反射して照 明光 IL5となり、投影光学系 13の光軸 AXに対し、全体として所定の傾き角をもって 可変成形マスクである二次元調光デバイス VM1に照射される。従って、二次元調光 デバイス VM1上の微小ミラー 10aの反射面の法線方向が Z軸に平行であると、その 反射光は破線で示した反射光 IL7となって反射し、投影光学系 13に入射しない。  In FIG. 7, the illumination light IL4 emitted from the relay lens 8 is reflected by the tilt mirror 9b to become the illumination light IL5, and is variably shaped with a predetermined tilt angle as a whole with respect to the optical axis AX of the projection optical system 13. The two-dimensional light control device VM1, which is a mask, is irradiated. Therefore, if the normal direction of the reflecting surface of the micromirror 10a on the two-dimensional light control device VM1 is parallel to the Z axis, the reflected light is reflected as reflected light IL7 indicated by a broken line, and is reflected by the projection optical system 13. Does not enter.
[0144] —方、微小ミラー 10aの反射面の法線方向が Z軸に対して、所定の角度傾いている 場合には、その反射光 IL6は概ね Z軸と平行な方向に反射し、投影光学系 13に入射 し被露光基板 Wに達する。  [0144] On the other hand, when the normal direction of the reflecting surface of the micromirror 10a is inclined at a predetermined angle with respect to the Z axis, the reflected light IL6 is reflected in a direction substantially parallel to the Z axis and projected. The light enters the optical system 13 and reaches the substrate W to be exposed.
従って、第 2の実施形態による露光装置においては、二次元調光デバイス VM1へ の入射光束 IL5と被露光基板 Wに達する反射光束 IL6との空間的な分離が可能で あり、ビームスプリッタ 9が不要になるという利点がある。  Therefore, in the exposure apparatus according to the second embodiment, it is possible to spatially separate the light beam IL5 incident on the two-dimensional dimming device VM1 and the reflected light beam IL6 reaching the substrate W to be exposed, and the beam splitter 9 is unnecessary. There is an advantage that it becomes.
[0145] なお、本実施形態においても、上述の変形照明を併用することができる。この場合 、図 6中に示したのと同じ偏光素子 4a等で分割された部分照明光は、それぞれ異な る入射角度で二次元調光デバイス VM1に入射するが、本実施形態では、各部分照 明光は全体としても上記所定の傾き角をもって二次元調光デバイス VM1に入射する [0146] ところで、従来のフォトマスクを用いる露光方法においては、特に変形照明を採用 する場合に、フォトマスク上のパターンの形状が部分的に変形して被露光基板上に 露光転写されるという課題があり、これを解決するためにフォトマスク上に形成する原 版パターンの形状を上記変形を見込んで予め補正しておく方法(いわゆる〇PC:光 学的近接効果補正)が採用されている。 [0145] In the present embodiment, the above-described modified illumination can be used together. In this case, the partial illumination light divided by the same polarizing element 4a as shown in FIG. 6 enters the two-dimensional dimming device VM1 at different incident angles, but in the present embodiment, each partial illumination The bright light as a whole enters the two-dimensional light control device VM1 with the above-mentioned predetermined inclination angle. By the way, in the conventional exposure method using a photomask, particularly when deformed illumination is employed, the problem is that the shape of the pattern on the photomask is partially deformed and is exposed and transferred onto the substrate to be exposed. In order to solve this, a method of correcting the shape of an original pattern formed on a photomask in advance in consideration of the above deformation (so-called ΔPC: optical proximity effect correction) has been adopted.
[0147] 本発明の露光装置及び露光方法においても、特に変形照明使用時に、二次元調 光デバイス VM1上に形成する調光分布の形状が、部分的に変形されて被露光基板 W上に露光される場合には、可変成形マスク VM1上に形成する調光分布を、所望 のパターンの形状からその変形分を考慮して補正した形状とすることができる。  In the exposure apparatus and the exposure method of the present invention as well, the shape of the dimming distribution formed on the two-dimensional dimming device VM1 is partially deformed and the In this case, the dimming distribution formed on the variable shaping mask VM1 can be formed into a shape corrected from the desired pattern shape in consideration of the deformation.
[0148] この補正は、例えば被露光基板 W上に露光すべき所望のパターンの形状に基づく データ(図 5 (A)に示した二次元調光データ SDの如きデータ)に基づいて、形状信 号処理系 21にて行なうこともでき、あるいは、二次元調光デバイス VM1内の制御回 路機構 12にて行なうこともできる。また、この補正は、予め露光装置外のデータ処理 装置にて行なうものとし、露光装置内ではこのような補正を行なわないものとすること あでさる。  This correction is performed based on, for example, data based on the shape of a desired pattern to be exposed on the substrate W to be exposed (data such as the two-dimensional light control data SD shown in FIG. 5A). The processing can be performed by the signal processing system 21, or can be performed by the control circuit mechanism 12 in the two-dimensional dimming device VM1. This correction is to be performed in advance by a data processing device outside the exposure apparatus, and such correction is not to be performed inside the exposure apparatus.
[0149] なお、フォトマスクを用いる露光方法においては、投影光学系と被露光基板の間に 液体を満たし、被露光基板に入射する露光光(照明光)の波長を、その液体の屈折 率分だけ縮小することにより、その解像度を向上する方法であるいわゆる液浸露光方 法も提案されている。この液浸露光方法は、本発明の露光装置および露光方法に対 しても適用可能であり、すなわち、例えば被露光基板 W及び基板ステージ 14と投影 光学系 13との間に局所的に純水等の液体を供給し、あるいはさらに強制除去するこ とにより液浸露光方法を実現できる。  [0149] In the exposure method using a photomask, a liquid is filled between the projection optical system and the substrate to be exposed, and the wavelength of the exposure light (illumination light) incident on the substrate to be exposed is changed by the refractive index of the liquid. A so-called immersion exposure method, which is a method of improving the resolution by only reducing the size, has also been proposed. This immersion exposure method is also applicable to the exposure apparatus and the exposure method of the present invention. That is, for example, pure water is locally provided between the substrate W to be exposed and the substrate stage 14 and the projection optical system 13. The liquid immersion exposure method can be realized by supplying a liquid such as the above or by forcibly removing the liquid.
[0150] ところで、本発明の二次元調光デバイスは、上述の反射型に限られるわけではなく 、透過型の構成とすることもできる。以下、図 8、図 9を用いて透過型の二次元調光デ バイスの実施形態(本発明の二次元調光デバイスの第 2の実施形態)について説明 する。  By the way, the two-dimensional light control device of the present invention is not limited to the above-mentioned reflection type, but may have a transmission type configuration. Hereinafter, an embodiment of a transmission type two-dimensional light control device (a second embodiment of the two-dimensional light control device of the present invention) will be described with reference to FIGS.
図 8 (A)は、二次元調光デバイス VM2の一部を表わす図であって、これを構成す る図中破線で示した調光素子 MU2が X方向に 3列、 Y方向に 3列配列された部分を 拡大して表わした図である。また、図 8 (B)は、調光素子 MU2の中央部を通る図 8 (A )中の線分 A— A'における二次元調光デバイス VM2の断面図を、図 8 (C)は、調光 素子 MU2の端部を通る図 8 (A)中の線分 Β_Β'における二次元調光デバイス VM2 の断面図を表わす。 FIG. 8 (A) is a diagram showing a part of the two-dimensional dimming device VM2. The dimming elements MU2 shown by broken lines in the drawing are three rows in the X direction and three rows in the Y direction. The arranged part It is the figure which expanded and represented. FIG. 8B is a cross-sectional view of the two-dimensional dimming device VM2 taken along line A--A ′ in FIG. 8A passing through the center of the dimming element MU2, and FIG. FIG. 8B is a cross-sectional view of the two-dimensional light control device VM2 taken along the line Β_Β ′ in FIG. 8A passing through the end of the light control element MU2.
[0151] 二次元調光デバイス VM2を構成する透過基板 62は、酸化マグネシウム、酸化亜 鉛等のバンドギャップ (禁制帯幅)が大きく紫外線に対する透過率が良好な金属酸化 物や金属フッ化物及び金属窒化物あるいはそれらの混合からなる半導体材料からな るものである。半導体材料が吸収する光の最長波長(吸収端波長)は、その半導体の バンドギャップにより決まる。すなわち、透過基板 62のバンドギャップを、二次元調光 デバイス VM2において使用が想定される光(以下「対象光」と呼ぶ)の 1光子あたりの エネルギーよりも大きくすることで、対象光に対して透過基板 62を透過性とすることが できる。 [0151] The transmission substrate 62 constituting the two-dimensional dimming device VM2 is made of a metal oxide, metal fluoride, or metal having a large band gap (forbidden band width) of magnesium oxide, zinc oxide, or the like and a good transmittance to ultraviolet rays. It is made of a semiconductor material composed of nitride or a mixture thereof. The longest wavelength (absorption edge wavelength) of light absorbed by a semiconductor material is determined by the band gap of the semiconductor. That is, by making the band gap of the transmission substrate 62 larger than the energy per photon of light (hereinafter referred to as “target light”) assumed to be used in the two-dimensional dimming device VM2, The transmission substrate 62 can be made transparent.
[0152] 透過基板 62を構成する半導体材料は、そのバンドギャップが二次元調光デバイス VM2の対象光の波長のエネルギーに対して僅かに大きな値となるように設定する。 例えば、対象光の波長が 193nmの紫外光であれば、その 1光子のエネルギーは 6. 42 [eV]であるため、透過基板 62を構成する材料のバンドギャップは、 6· 43力ら 6. 6 [eV]程度になるようにすれば良ぐこれは例えば酸化マグネシウムと酸化亜鉛の混 合により実現できる。  [0152] The semiconductor material forming the transmission substrate 62 is set so that its band gap has a slightly larger value with respect to the energy of the wavelength of the target light of the two-dimensional dimming device VM2. For example, if the wavelength of the target light is ultraviolet light of 193 nm, the energy of one photon is 6.42 [eV], so the band gap of the material constituting the transmission substrate 62 is 6.43 to 6. This can be achieved, for example, by mixing magnesium oxide and zinc oxide.
[0153] 透過基板 62の表面には、各調光素子 MU2のそれぞれに対応して、対象光に対し 透過十生を有する制御電極 L22, L23, L24, L32, L33, L34, L42, L43, L44が 形成され、それ以外の部分には遮光性及び絶縁性を有する遮光膜 63を形成する。 一方、透過基板 62の裏面には、対象光に対し透過性を有する一様な対向電極 64を 形成する。  [0153] On the surface of the transmissive substrate 62, control electrodes L22, L23, L24, L32, L33, L34, L42, L43, which have transmission through the target light corresponding to each dimming element MU2, respectively. L44 is formed, and a light-shielding film 63 having a light-shielding property and an insulating property is formed in other portions. On the other hand, on the back surface of the transmissive substrate 62, a uniform counter electrode 64 having transparency to the target light is formed.
[0154] このとき、制御電極 L22— L44と対向電極 64との間に所定の電位差を印加すると、 フランツ-ケルデイシュ (Franz— Keldysh)効果により、透過基板 62を構成する半導 体材料の吸収端波長を長波長側にシフトさせ、対象光に対する吸収特性を持たせる こと力 Sできる。本第 2実施形態の二次元調光デバイス VM2は、この効果を利用して 各調光素子 MU2の透過率や位相(以下まとめて「振幅透過率」とレ、う)を制御して調 光機能を実現するものである。 At this time, when a predetermined potential difference is applied between the control electrodes L22 to L44 and the counter electrode 64, the Franz-Keldysh effect causes the absorption edge of the semiconductor material forming the transmissive substrate 62 to be absorbed. It is possible to shift the wavelength to the longer wavelength side so that it has absorption characteristics for the target light. The two-dimensional light control device VM2 of the second embodiment utilizes this effect to control and control the transmittance and phase of each light control element MU2 (hereinafter collectively referred to as “amplitude transmittance”). It realizes an optical function.
[0155] 透過基板 62の表面の上記遮光膜 63上には、制御電極 L22— L44に所定の電位 を印加するための信号配線等を形成する。ここで、制御電極 L22— L44を含む各調 光素子 MU2等への調光信号の伝達は、本実施形態の二次元調光デバイス VM2に おいても、上記第 1の実施形態と同様に CCDデバイスを使用するものとする。  [0155] On the light-shielding film 63 on the surface of the transmissive substrate 62, signal wiring and the like for applying a predetermined potential to the control electrodes L22 to L44 are formed. Here, the transmission of the dimming signal to each dimming element MU2 and the like including the control electrodes L22 to L44 is also performed by the CCD in the two-dimensional dimming device VM2 of the present embodiment as in the first embodiment. Device shall be used.
[0156] すなわち、各制御電極 L22— L44の配列の Y方向の間隔部の遮光膜 63上には、 調光信号を保持し、かつ X方向に伝送するための X伝送路 U2, U3, U4, U5を形 成する。これは、遮光膜 63上にシリコン等の半導体膜を成膜し、あるいはさらにそれ をァニール (熱処理)等により多結晶化あるいは単結晶化して形成する。そして、その 上に Y方向に概ね平行に第 1相 X転送電極 R2, R3, R4、第 2相 X転送電極 S2, S3 , S4及び第 3相 X転送電極 Tl , T2, T3, T4を形成する。  That is, the X transmission lines U2, U3, and U4 for holding the dimming signal and transmitting the dimming signal in the X direction are provided on the light shielding film 63 in the Y direction interval of the arrangement of the control electrodes L22 to L44. , Forming U5. This is performed by forming a semiconductor film such as silicon on the light-shielding film 63, or by polycrystallizing or single-crystallizing it by annealing (heat treatment) or the like. Then, the first phase X transfer electrodes R2, R3, R4, the second phase X transfer electrodes S2, S3, S4 and the third phase X transfer electrodes Tl, T2, T3, T4 are formed substantially parallel to the Y direction. I do.
[0157] これらにより、各伝送路 U2— 5上に、電荷を X方向に転送する CCD (XCCD)が形 成され、第 1相、第 2相、第 3相の X転送電極 R2— 4, S2— 4, T1一 4の各電極に 3 相の Xクロック信号を順次印加することにより、各伝送路 U2— 5上の各 X転送電極 R2 一 4, S2— 4, T1一 4の直下に保持される電荷を X方向に転送することが可能となる [0157] As a result, a CCD (XCCD) for transferring charges in the X direction is formed on each transmission path U2-5, and the first, second, and third-phase X transfer electrodes R2-4, By sequentially applying a three-phase X clock signal to each electrode of S2-4, T1-4, each X transfer electrode R2-4, S2-4, T1-4 immediately below each transmission line U2-5 It is possible to transfer the retained charge in the X direction
[0158] なお、本第 2の実施形態においても、 X伝送路 D3中の第 2相 X転送電極 S2— 4の 直下に相当する部分を、以下「信号保持要素」と呼ぶ。これは、図 3 (C)中の信号保 持要素 BD2, BD3, BD4に相当する部分である。本実施形態においても第 2相 X転 送電極 S2— 4上の、それらが X伝送路 U2— 5と交差する位置の中央に開口部 71 , 7 2, 73, 74, 75, 76, 77, 78, 79力 S設けられ、 X伝送路 U2— 5上であって第 2相 X 転送電極 S2 4の直下にあたる信号保持要素に保持された電荷である調光信号は 、開口部 71— 79を介して読み出される。なお、図 8 (C)中の電極 S2c, S2d、電極 S 3c, S3d、電極 S4c, S4dは、それぞれ第 2相 X転送電極 S2— 4の中の、開口 74, 7 5, 76の両端に位置する部分を表わす。 [0158] Also in the second embodiment, a portion of the X transmission path D3 that is directly below the second phase X transfer electrode S2-4 is hereinafter referred to as a "signal holding element". This is a part corresponding to the signal holding elements BD2, BD3, BD4 in FIG. 3 (C). Also in the present embodiment, the openings 71, 72, 73, 74, 75, 76, 77, at the center of the second phase X transfer electrodes S2-4 at the positions where they intersect the X transmission path U2-5. 78, 79 force S is provided, and the dimming signal, which is the electric charge held by the signal holding element on the X transmission path U2-5 and directly below the second phase X transfer electrode S24, passes through the opening 71-79. Is read through. The electrodes S2c and S2d, the electrodes S3c and S3d, and the electrodes S4c and S4d in FIG. 8C are located at both ends of the openings 74, 75, and 76 in the second-phase X transfer electrode S2-4, respectively. Indicates the part that is located.
[0159] 開口部 71— 79の上方(+ Z方向)には、信号保持要素からの信号を読み取り、これ を増幅して制御電極 L22 44に印加するための増幅機構が設けられる。図 8では、 複雑化を避けるためこの増幅機構を省略したが、以下、図 9を用いてこれを説明する はじめに、開口部 75の位置に接続プラグを形成する。この接続プラグの下端は、信 号保持要素 BD3 (図 8 (C)参照)に直接または絶縁膜を介して接続され、接続プラグ の上端部にはシリコン酸化膜等の絶縁膜を形成する。そして、ポリシリコン等からな制 御トランジスタ 85, 86、電源電極 83及び接地電極 84を形成する。なお、これらの機 能は、上述の第 1の実施形態における、それらに該当する各部材の機能と同様であ る。制御トランジスタ 85, 86の一端部 85は電源電極 83に接続され、他端部 86は別 途形成する高抵抗部材 88を介して接地電極 84に接続される。また、制御トランジス タ 85, 86の他端部 86には、局所配線 87が接続され、局所配線 87の他方の端は制 御電極 L33に接続される。 [0159] Above the openings 71-79 (in the + Z direction), an amplification mechanism for reading a signal from the signal holding element, amplifying the signal, and applying the amplified signal to the control electrode L2244 is provided. Although this amplification mechanism is omitted in FIG. 8 to avoid complication, this will be described below with reference to FIG. First, a connection plug is formed at the position of the opening 75. The lower end of this connection plug is connected directly to the signal holding element BD3 (see FIG. 8 (C)) or via an insulating film, and an insulating film such as a silicon oxide film is formed on the upper end of the connection plug. Then, control transistors 85 and 86, a power supply electrode 83, and a ground electrode 84 made of polysilicon or the like are formed. Note that these functions are the same as the functions of the corresponding members in the above-described first embodiment. One end 85 of the control transistors 85 and 86 is connected to the power supply electrode 83, and the other end 86 is connected to the ground electrode 84 via a separately formed high resistance member 88. Further, a local wiring 87 is connected to the other ends 86 of the control transistors 85 and 86, and the other end of the local wiring 87 is connected to the control electrode L33.
[0160] これにより、制御電極 L33に印加される電位を、接続プラグ直下の信号保持要素 B D3に保持された電荷 (調光信号)に応じて変化させることができる。すなわち、二次 元に配列された各調光素子 MU2の振幅透過率を、信号保持要素 BD3に保持され た調光信号に応じて変化させることができる。  [0160] Thus, the potential applied to the control electrode L33 can be changed according to the charge (light control signal) held in the signal holding element BD3 immediately below the connection plug. That is, the amplitude transmittance of each dimming element MU2 arranged in two dimensions can be changed according to the dimming signal held in the signal holding element BD3.
この場合においては、調光要素の一つは、不図示の接続プラグ、制御トランジスタ 8 5, 86、高抵抗部材 88、局所配線 87、制御電極 L33、及び対向電極 64のうちこれ に対向する部分、並びに制御電極 L33と対向電極 64の当該部分に挟まれた透過基 板 62の一部等の部材によって構成される。そして、調光素子 MU2の一つは、上記 調光要素の一つと信号保持要素 BD3によって構成されることになる。  In this case, one of the dimming elements is a connection plug (not shown), a control transistor 85, 86, a high-resistance member 88, a local wiring 87, a control electrode L33, and a part facing the counter electrode 64. And a member such as a part of the transmission substrate 62 sandwiched between the control electrode L33 and the counter electrode 64. One of the dimming elements MU2 is constituted by one of the dimming elements and the signal holding element BD3.
[0161] 調光素子 MU2は、透過基板 62上に二次元的に配列されて調光素子アレイを構成 する。そして、信号保持要素 BD3も二次元的に配列されるとともに、信号転送機構と して機能する上述の XCCDにより、各信号保持要素 BD3に保持される電荷 (調光信 号)を、それぞれの信号保持要素 BD3に X方向に隣接する信号保持要素 BD2, BD 4に、順次転送することが可能である。  [0161] The dimming elements MU2 are two-dimensionally arranged on the transmission substrate 62 to form a dimming element array. The signal holding elements BD3 are also arranged two-dimensionally, and the XCCD, which functions as a signal transfer mechanism, transfers the charges (light control signals) held in each signal holding element BD3 to each signal. It is possible to sequentially transfer the signal to the signal holding elements BD2 and BD4 adjacent to the holding element BD3 in the X direction.
[0162] なお、本第 2の実施形態の二次元調光デバイス VM2においても、調光素子 MU2 及び X方向への信号転送機構以外の機構以外の構成については、第 1の実施形態 の二次元調光デバイス VM1と同様に構成できる。すなわち、本第 2の実施形態の二 次元調光デバイス VM2においても、その制御回路機構は、図 2に示した制御回路機 構 12と同様に、調光素子 MU2により構成される調光素子アレイの両端に信号供給 機構として左 YCCD (LC)及び右 YCCD (RC)を設け、図 2と同様な信号処理系 12 1を設けることで構成することができる。 In the two-dimensional dimming device VM2 of the second embodiment, the configuration other than the dimming element MU2 and the mechanism other than the signal transfer mechanism in the X direction is the same as the two-dimensional dimming device of the first embodiment. It can be configured in the same way as the dimming device VM1. That is, also in the two-dimensional light control device VM2 of the second embodiment, the control circuit mechanism has the control circuit device shown in FIG. Similarly to the configuration 12, a left YCCD (LC) and a right YCCD (RC) are provided as signal supply mechanisms at both ends of the dimming element array composed of the dimming element MU2, and a signal processing system 121 similar to FIG. It can be configured by providing.
[0163] 続いて、この第 2の実施形態の透過型の二次元調光デバイス VM2を用いる、本発 明の第 3の実施形態の露光装置及び第 3の実施形態の露光方法について、図 10を 用いて説明する。本形態の露光装置も、いわゆる走查型のマスクレス露光装置であ る。なお、第 1の実施形態を示した図 6中に示したものと同じ符号を付した部材は、第 1の実施形態で示したものと同様な部材であるため、その説明を省略する。  Next, an exposure apparatus according to the third embodiment of the present invention and an exposure method according to the third embodiment using the transmission type two-dimensional dimming device VM2 according to the second embodiment will be described with reference to FIG. This will be explained using. The exposure apparatus of the present embodiment is also a so-called running type maskless exposure apparatus. Note that members denoted by the same reference numerals as those shown in FIG. 6 showing the first embodiment are the same members as those shown in the first embodiment, and a description thereof will be omitted.
[0164] 図 10においてリレーレンズ 8を射出した照明光 IL8は、ミラー 60で反射して照明光 I L9となり、上述の透過型の二次元調光デバイス VM2に入射する。二次元調光デバ イス VM2が形成する振幅透過率分布により変調された照明光 IL10は、投影光学系 13を介して被露光基板 Wに照射され、これにより被露光基板 W上に二次元調光デ バイス VM2により形成された所望の強度分布を持った照明光が露光される。  In FIG. 10, the illumination light IL8 emitted from the relay lens 8 is reflected by the mirror 60 to become the illumination light IL9, and is incident on the above-described transmission type two-dimensional dimming device VM2. The illumination light IL10 modulated by the amplitude transmittance distribution formed by the two-dimensional dimming device VM2 is applied to the substrate W to be exposed through the projection optical system 13, and thereby the two-dimensional dimming is performed on the substrate W to be exposed. The illumination light having a desired intensity distribution formed by the device VM2 is exposed.
[0165] 本例においても、二次元調光デバイス VM2上の各調光素子 MU2の大きさは一例 として 5から 20 μ ΐη角程度であり、照明光 IL8等の波長や投影光学系 13の開口数は 、第 1の実施形態の露光装置と同様である。また、被露光基板 Wへの露光動作につ いても、第 1の実施形態の露光装置及び第 1の実施形態の露光方法と同様であり、 二次元調光デバイス VM2上の調光素子アレイに形成する調光分布(振幅透過率分 布)を、図中 +X方向および一 X方向の少なくとも一方に走査しつつ、基板ステージ 1 4を、その走査方向が投影光学系 13を介して被露光基板 Wの投影される方向に走 查しつつ行なう。形状信号処理系 21は、当該走査露光に際し、被露光基板 W上に 露光すべきパターンの形状を二次元調光デバイス VM2に伝達する。  Also in this example, the size of each dimming element MU2 on the two-dimensional dimming device VM2 is, for example, about 5 to 20 μΐη angle, the wavelength of the illumination light IL8 and the aperture of the projection optical system 13. The numbers are the same as in the exposure apparatus of the first embodiment. Also, the exposure operation on the substrate W to be exposed is the same as that of the exposure apparatus of the first embodiment and the exposure method of the first embodiment. While scanning the dimming distribution (amplitude transmittance distribution) to be formed in at least one of the + X direction and the 1X direction in the figure, the substrate stage 14 is exposed to light through the projection optical system 13 in the scanning direction. This is performed while running in the direction in which the substrate W is projected. The shape signal processing system 21 transmits the shape of the pattern to be exposed on the substrate W to be exposed to the two-dimensional dimming device VM2 during the scanning exposure.
[0166] 次に、本発明の露光装置及び露光方法を用いたデバイス製造方法について図 11 を用いて説明する。  Next, a device manufacturing method using the exposure apparatus and the exposure method of the present invention will be described with reference to FIG.
図 11 (A)は、集積回路の一部等のパターン 91が形成された状態の半導体ウェハ 等の被露光基板 Wを表わす断面図であり、被露光基板 W上のパターン 91以外の部 分にはシリコン酸化膜等の絶縁膜が形成されている。  FIG. 11A is a cross-sectional view showing a substrate W to be exposed such as a semiconductor wafer where a pattern 91 such as a part of an integrated circuit is formed. Is formed with an insulating film such as a silicon oxide film.
[0167] そして、それらの上層にさらにシリコン酸化膜からなる絶縁膜等の被力卩ェ膜 92を C VD法 (化学蒸着法)等で形成 (成膜)し、被加工膜 92のさらに上層にフォトレジスト( 感光材料) 93をスピンコート等で形成する。 [0167] Then, an overlying film 92 such as an insulating film made of a silicon oxide film is further formed on the C layer. It is formed (deposited) by a VD method (chemical vapor deposition method) or the like, and a photoresist (photosensitive material) 93 is formed on the film to be processed 92 by spin coating or the like.
この状態の被露光基板 Wを本発明の露光装置に装填し、上記露光により所望のパ ターン形状を露光する。この露光に際しては、被露光基板 Wに既存の回路パターン 91の位置を位置合せ顕微鏡 19で計測し、既存のパターン 91と所定の位置関係を 保って所望のパターンを露光する。  The substrate W to be exposed in this state is loaded into the exposure apparatus of the present invention, and a desired pattern shape is exposed by the above exposure. At the time of this exposure, the position of the existing circuit pattern 91 on the substrate to be exposed W is measured by the alignment microscope 19, and a desired pattern is exposed while maintaining a predetermined positional relationship with the existing pattern 91.
[0168] この露光後に、被露光基板 W上のフォトレジスト 93を現像することにより、フォトレジ スト 93は、図 11 (B)に示す通り、上記所望のパターンが露光された部分に対応した レジストパターン 93pに加工される。フォトレジスト 93としては、露光された部分が除去 されるポジ型と露光されなかった部分が除去されるネガ型の、いずれを用いても良い After this exposure, by developing the photoresist 93 on the substrate W to be exposed, as shown in FIG. 11B, the photoresist 93 becomes a resist corresponding to the portion where the desired pattern has been exposed. Processed into pattern 93p. As the photoresist 93, any of a positive type in which an exposed portion is removed and a negative type in which an unexposed portion is removed may be used.
[0169] 続いて、レジストパターン 93pをエッチングマスクとして、被加工層 92をエッチングし 、図 11 (C)に示す通り、被加工層 92をレジストパターン 93pの形状に倣ってパターン 92pに加工する。その後、レジストパターン 93pを溶剤または光化学反応等により除 去し、被加工層 92の所望のパターン 92pへ加工 (パターニング工程)が完了する。 Subsequently, using the resist pattern 93p as an etching mask, the processing target layer 92 is etched, and as shown in FIG. 11C, the processing target layer 92 is processed into a pattern 92p following the shape of the resist pattern 93p. Thereafter, the resist pattern 93p is removed by a solvent or a photochemical reaction or the like, and the processing (patterning step) of the desired pattern 92p of the processing target layer 92 is completed.
[0170] 高集積かつ高機能なデバイスにおいては、上記の成膜及びパターユング工程を繰 り返すことにより形成される。このとき、被加工層 92は、上記の例の絶縁膜に限るもの ではなぐ金属や半導体等の導電層である場合もあることは言うまでもない。また、加 ェすべき層は、被露光基板 W上に形成された膜には限定されず、被露光基板 Wそ のものを所定の形状に加工する工程を含めることもできる。  [0170] In a highly integrated and highly functional device, the device is formed by repeating the above-described film forming and patterning steps. At this time, it is needless to say that the processed layer 92 may be a conductive layer of a metal, a semiconductor, or the like, which is not limited to the insulating film of the above example. Further, the layer to be added is not limited to the film formed on the substrate W to be exposed, and may include a step of processing the substrate W to be exposed into a predetermined shape.
[0171] なお、本発明の露光方法は、デバイスの製造に利用可能なのみではなぐフォトマ スクの製造にも使用できる。  [0171] The exposure method of the present invention can be used not only for manufacturing a device but also for manufacturing a photomask.
このように、本発明は上述の実施形態に限定されず、本発明の要旨を逸脱しない 範囲で種々の構成を取り得る。また、明細書、特許請求の範囲、図面、及び要約を 含む 2004年 2月 25日付け提出の日本国特願 2004— 048984の全ての開示内容は 、そっくりそのまま引用して本願に組み込まれている。  As described above, the present invention is not limited to the above-described embodiment, and can take various configurations without departing from the gist of the present invention. In addition, the entire disclosure content of Japanese Patent Application No. 2004-048984 filed on Feb. 25, 2004, including the specification, claims, drawings, and abstracts, is incorporated in the present application by reference in its entirety. .
産業上の利用可能性  Industrial applicability
[0172] 本発明の二次元調光デバイスによれば、入力された形状信号に基づいて、それを 構成する調光素子アレイ上に二次元の調光分布を形成できるとともに、その分布を 一方向に高速に移動することができる。これにより、例えば走査型のマスクレス露光 装置の可変成形マスクとして使用した場合に、その調光分布を当該露光装置の走査 法に高速に移動することができ、露光装置の処理能力を高めることができる。 According to the two-dimensional dimming device of the present invention, based on the input shape signal, A two-dimensional light control distribution can be formed on the constituent light control element array, and the distribution can be moved in one direction at high speed. Thus, for example, when used as a variable shaping mask of a scanning type maskless exposure apparatus, its dimming distribution can be moved at high speed to the scanning method of the exposure apparatus, and the processing capability of the exposure apparatus can be increased. it can.
[0173] また、本発明の露光装置によれば、走查型のマスクレス露光装置において、本発明 の二次元調光デバイスを可変成形マスクとして用いることにより、可変成形マスク上に 形成される調光分布を一方向に高速に移動させることが可能となる。従って、露光装 置の処理能力を高めることができ、半導体集積回路等のデバイスの生産性を向上す ること力 Sできる。  [0173] Further, according to the exposure apparatus of the present invention, in a scanning type maskless exposure apparatus, by using the two-dimensional dimming device of the present invention as a variable shaping mask, the exposure formed on the variable shaping mask. The light distribution can be moved in one direction at high speed. Accordingly, the processing capability of the exposure apparatus can be improved, and the productivity of devices such as semiconductor integrated circuits can be improved.
[0174] また、本発明の露光方法によれば、本発明の二次元調光デバイスを可変成形マス クとして用レ、ることにより、可変成形マスク上に形成される調光分布を一方向に高速 に移動させることが可能となる。従って、露光装置の処理能力を高めることができ、半 導体集積回路等のデバイスの生産性を向上することができる。  Further, according to the exposure method of the present invention, by using the two-dimensional light control device of the present invention as a variable shaping mask, the light control distribution formed on the variable shaping mask can be changed in one direction. It is possible to move at high speed. Therefore, the processing capability of the exposure apparatus can be increased, and the productivity of devices such as semiconductor integrated circuits can be improved.
[0175] さらに、本発明のデバイス製造方法によれば、本発明による上記の高生産性の露 光方法によりデバイスを製造するため、デバイスの生産性を向上できデバイスの生産 コストを削減することが可能となる。さらに、マスクレス露光方法の特徴であるマスクコ ストの削減効果と相俟って、デバイスの生産コストを一層削減することが可能となる。  Further, according to the device manufacturing method of the present invention, since the device is manufactured by the above-described high-productivity exposure method of the present invention, the productivity of the device can be improved and the production cost of the device can be reduced. It becomes possible. Further, the production cost of the device can be further reduced in combination with the effect of reducing the mask cost, which is a feature of the maskless exposure method.

Claims

請求の範囲 The scope of the claims
[1] 調光信号を保持する信号保持要素と照射される光束を前記調光信号に基づレ、て 調光する調光要素とからなる調光素子が二次元に配列された調光素子アレイと、 前記調光素子中の信号保持要素に保持された前記調光信号を、第 1の方向に沿 つて隣接する前記調光素子中の信号保持要素に順次信号転送する信号転送機構と 前記第 1の方向の少なくとも一方の端に配列される前記調光素子中の信号保持要 素に、前記調光信号を供給する信号供給機構を有することを特徴とする二次元調光 デバイス。  [1] A dimming element in which a dimming element including a signal holding element for holding a dimming signal and a dimming element for dimming a light beam to be irradiated based on the dimming signal is two-dimensionally arranged. An array; a signal transfer mechanism for sequentially transferring the dimming signal held by the signal holding element in the dimming element to a signal holding element in the dimming element adjacent in a first direction; A two-dimensional light control device, comprising: a signal supply mechanism for supplying the light control signal to a signal holding element in the light control element arranged at at least one end in a first direction.
[2] 前記調光素子アレイを構成する前記調光素子の前記二次元の配列は、前記第 1の 方向に平行な座標軸と前記第 1の方向に垂直な座標軸とにより定まる直交座標系上 における直方格子の格子点上に配列されることを特徴とする請求項 1に記載の二次 元調光デバイス。  [2] The two-dimensional array of the light control elements constituting the light control element array is on an orthogonal coordinate system defined by a coordinate axis parallel to the first direction and a coordinate axis perpendicular to the first direction. The two-dimensional light control device according to claim 1, wherein the two-dimensional light control device is arranged on lattice points of a rectangular lattice.
[3] 前記信号転送機構は、電荷結合素子を含むことを特徴とする請求項 1に記載の二 次元調光デバイス。  3. The two-dimensional dimming device according to claim 1, wherein the signal transfer mechanism includes a charge-coupled device.
[4] 前記信号供給機構は、電荷結合素子を含むことを特徴とする請求項 1に記載の二 次元調光デバイス。  [4] The two-dimensional dimming device according to claim 1, wherein the signal supply mechanism includes a charge-coupled device.
[5] 前記信号転送機構と前記調光素子アレイとが、積層された構造であることを特徴と する請求項 1に記載の二次元調光デバイス。  [5] The two-dimensional light control device according to claim 1, wherein the signal transfer mechanism and the light control element array have a stacked structure.
[6] 前記調光は前記調光要素の振幅透過率の変更であることを特徴とする請求項 1に 記載の二次元調光デバイス。 6. The two-dimensional light control device according to claim 1, wherein the light control is a change in an amplitude transmittance of the light control element.
[7] 前記調光要素はミラーを含み、前記調光は前記照射される光束を所定方向に反射 する効率の変更であることを特徴とする請求項 1に記載の二次元調光デバイス。 7. The two-dimensional light control device according to claim 1, wherein the light control element includes a mirror, and the light control is a change in efficiency of reflecting the irradiated light beam in a predetermined direction.
[8] 前記効率の変更は、前記ミラーの反射面の傾き角を変更して行なうことを特徴とす る請求項 7に記載の二次元調光デバイス。  [8] The two-dimensional light control device according to claim 7, wherein the change of the efficiency is performed by changing a tilt angle of a reflection surface of the mirror.
[9] 前記調光は、前記ミラーによる反射光の位相を変化させるものであることを特徴とす る請求項 7に記載の二次元調光デバイス。 [9] The two-dimensional light control device according to claim 7, wherein the light control changes a phase of light reflected by the mirror.
[10] 調光信号を保持する信号保持要素と照射される光束を前記調光信号に基づレ、て 調光する調光要素とからなる調光素子が二次元に配列された調光素子アレイと、 前記調光素子中の信号保持要素に保持された前記調光信号を、第 1の方向に沿 つて隣接する前記調光素子中の信号保持要素に順次信号転送する信号転送機構と 前記第 1の方向の少なくとも一方の端に配列される前記調光素子中の信号保持要 素に、前記調光信号を供給する信号供給機構を有するとともに、 [10] A signal holding element for holding a dimming signal and a light beam to be irradiated are determined based on the dimming signal. A dimming element array in which dimming elements composed of dimming elements for dimming are two-dimensionally arranged; and a dimming signal held by a signal holding element in the dimming element, along a first direction. A signal transfer mechanism for sequentially transferring a signal to a signal holding element in the adjacent light control element; and a light control element in the light control element arranged at at least one end in the first direction. Having a signal supply mechanism for supplying signals,
前記調光要素はミラーを含み、前記調光は前記照射される光束を所定方向に反射 する効率を、前記ミラーの反射面の傾き角を変更して行なうことを特徴とする二次元 調光デバイス。  The two-dimensional dimming device, wherein the dimming element includes a mirror, and the dimming is performed by changing an inclination angle of a reflection surface of the mirror so as to reflect the irradiated light beam in a predetermined direction. .
[11] 前記調光素子アレイを構成する前記調光素子の前記二次元の配列は、前記第 1の 方向に平行な座標軸と前記第 1の方向に垂直な座標軸とにより定まる直交座標系上 における直方格子の格子点上に配列されることを特徴とする請求項 10に記載の二 次元調光デバイス。  [11] The two-dimensional arrangement of the light control elements constituting the light control element array is based on an orthogonal coordinate system defined by coordinate axes parallel to the first direction and coordinate axes perpendicular to the first direction. 11. The two-dimensional light control device according to claim 10, wherein the two-dimensional light control device is arranged on lattice points of a rectangular lattice.
[12] 前記信号転送機構は、電荷結合素子を含むことを特徴とする請求項 10に記載の 二次元調光デバイス。  12. The two-dimensional light control device according to claim 10, wherein the signal transfer mechanism includes a charge-coupled device.
[13] 前記信号供給機構は、電荷結合素子を含むことを特徴とする請求項 10に記載の 二次元調光デバイス。  13. The two-dimensional light control device according to claim 10, wherein the signal supply mechanism includes a charge-coupled device.
[14] 前記信号転送機構と前記調光素子アレイとが、積層された構造であることを特徴と する請求項 10に記載の二次元調光デバイス。  14. The two-dimensional light control device according to claim 10, wherein the signal transfer mechanism and the light control element array have a stacked structure.
[15] 被露光基板上に所望のパターンを露光するための露光装置であって、 [15] An exposure apparatus for exposing a desired pattern on a substrate to be exposed,
請求項 1から 14のいずれか一項に記載の二次元調光デバイスと、  A two-dimensional light control device according to any one of claims 1 to 14,
前記二次元調光デバイスに前記調光信号を供給する形状信号処理系と、 光源からの照明光を前記二次元調光デバイスに照射する照明光学系と、 前記二次元調光デバイスで調光された照明光を前記被露光基板上に導く投影光 学系と、  A shape signal processing system for supplying the light control signal to the two-dimensional light control device; an illumination optical system for irradiating the two-dimensional light control device with illumination light from a light source; A projection optical system for guiding the illumination light onto the substrate to be exposed,
前記被露光基板を保持し、前記第 1の方向が前記投影光学系により前記被露光基 板上に投影された方向である第 2の方向に走查可能な基板ステージとを備えることを 特徴とする露光装置。 A substrate stage that holds the substrate to be exposed and is movable in a second direction in which the first direction is projected onto the substrate by the projection optical system. Exposure equipment.
[16] 前記基板ステージの前記第 2の方向の位置の変化に同期して、前記二次元調光 デバイスの前記信号転送を行なうことを特徴とする請求項 15に記載の露光装置。 16. The exposure apparatus according to claim 15, wherein the signal transfer of the two-dimensional light control device is performed in synchronization with a change in the position of the substrate stage in the second direction.
[17] 前記光源はパルス発光型の光源であり、かつ前記パルス発光に同期して前記二次 元調光デバイスの前記信号転送を行なうことを特徴とする請求項 15に記載の露光装 置。  17. The exposure apparatus according to claim 15, wherein the light source is a pulse light emission type light source, and performs the signal transfer of the two-dimensional light control device in synchronization with the pulse light emission.
[18] 被露光基板上に所望のパターンを露光するための露光装置であって、  [18] An exposure apparatus for exposing a desired pattern on a substrate to be exposed,
請求項 7から 14のいずれか一項に記載の二次元調光デバイスと、  A two-dimensional dimming device according to any one of claims 7 to 14,
前記二次元調光デバイスに前記調光信号を供給する形状信号処理系と、 光源からの照明光を前記二次元調光デバイスに照射する照明光学系と、 前記二次元調光デバイスで調光された照明光を前記被露光基板上に導く投影光 学系と、  A shape signal processing system for supplying the light control signal to the two-dimensional light control device; an illumination optical system for irradiating the two-dimensional light control device with illumination light from a light source; A projection optical system for guiding the illumination light onto the substrate to be exposed,
前記被露光基板を保持し、前記第 1の方向が前記投影光学系により前記被露光基 板上に投影された方向である第 2の方向に走査可能な基板ステージとを備えるととも に、  A substrate stage that holds the substrate to be exposed and that can scan in a second direction in which the first direction is projected onto the substrate by the projection optical system.
前記照明光学系は、前記投影光学系の光軸に対して前記照明光を全体として所 定角度傾けて前記二次元調光デバイスに照射することを特徴とする露光装置。  An exposure apparatus, wherein the illumination optical system irradiates the two-dimensional dimming device with the illumination light inclined at a predetermined angle with respect to an optical axis of the projection optical system as a whole.
[19] 前記基板ステージの前記第 2の方向の位置の変化に同期して、前記二次元調光 デバイスの前記信号転送を行なうことを特徴とする請求項 18に記載の露光装置。 19. The exposure apparatus according to claim 18, wherein the signal transfer of the two-dimensional light control device is performed in synchronization with a change in the position of the substrate stage in the second direction.
[20] 前記光源はパルス発光型の光源であり、かつ前記パルス発光に同期して前記二次 元調光デバイスの前記信号転送を行なうことを特徴とする請求項 18に記載の露光装 置。 20. The exposure apparatus according to claim 18, wherein the light source is a pulse light emission type light source, and performs the signal transfer of the two-dimensional light control device in synchronization with the pulse light emission.
[21] 照明光を可変成形マスクに照射し、前記可変成形マスクで調光された前記照明光 を投影光学系を介して被露光基板に照射する露光方法であって、  [21] An exposure method of irradiating illumination light to a variable-shaped mask, and irradiating the illumination light adjusted by the variable-shaped mask to a substrate to be exposed via a projection optical system,
前記可変成形マスクとして請求項 1から 14のいずれか一項に記載の二次元調光デ バイスを用いるものであり、  The two-dimensional dimming device according to any one of claims 1 to 14, wherein the variable shaping mask is used,
前記調光素子アレイ中の前記調光素子に所望のパターンに対応する調光信号を 保持させることにより、前記調光素子アレイに前記所望のパターンに相当する調光分 布を形成し、かつ前記調光素子中の信号保持要素に保持された前記調光信号を、 前記信号転送機構により前記第 1の方向に沿って隣接する前記調光素子中の信号 保持要素に順次信号転送し、前記調光素子アレイに形成された前記調光分布を前 記第 1の方向に移動するとともに、 Forming a dimming distribution corresponding to the desired pattern on the dimming element array by causing the dimming element in the dimming element array to hold a dimming signal corresponding to a desired pattern; and The dimming signal held in the signal holding element in the dimming element, The signal transfer mechanism sequentially transfers a signal to a signal holding element in the light control element adjacent to the light control element along the first direction, and transfers the light control distribution formed on the light control element array to the first direction. Move to
前記被露光基板を、前記第 1の方向が前記投影光学系により前記被露光基板上 に投影された方向である第 2の方向に沿って、前記投影光学系に対して相対的に移 動させつつ露光を行なうことを特徴とする露光方法。  The substrate to be exposed is moved relative to the projection optical system along a second direction in which the first direction is projected onto the substrate by the projection optical system. Exposure method characterized by performing exposure while performing.
[22] 前記被露光基板の前記第 2の方向への移動に同期して、前記信号転送を行なうこ とを特徴とする請求項 21に記載の露光方法。 22. The exposure method according to claim 21, wherein the signal transfer is performed in synchronization with the movement of the substrate to be exposed in the second direction.
[23] 前記照明光はパルス発光型の光源から発せられるパルス光であり、 [23] The illumination light is pulsed light emitted from a pulsed light source,
前記パルス光の発光に同期して前記信号転送を行なうことを特徴とする請求項 21 に記載の露光方法。  22. The exposure method according to claim 21, wherein the signal transfer is performed in synchronization with emission of the pulse light.
[24] 照明光を可変成形マスクに照射し、前記可変成形マスクで調光された前記照明光 を投影光学系を介して被露光基板に照射する露光方法であって、  [24] An exposure method, which comprises irradiating illumination light onto a variable shaping mask, and irradiating the illumination light adjusted by the variable shaping mask to a substrate to be exposed via a projection optical system,
前記可変成形マスクとして請求項 7から 14のいずれか一項に記載の二次元調光デ バイスを用いるものであり、  The two-dimensional light control device according to any one of claims 7 to 14, wherein the variable shaping mask is used.
前記調光素子アレイ中の前記調光素子に所望のパターンに対応する調光信号を 保持させることにより、前記調光素子アレイに前記所望のパターンに相当する調光分 布を形成し、かつ前記調光素子中の信号保持要素に保持された前記調光信号を、 前記信号転送機構により前記第 1の方向に沿って隣接する前記調光素子中の信号 保持要素に順次信号転送し、前記調光素子アレイに形成された前記調光分布を前 記第 1の方向に移動し、  Forming a dimming distribution corresponding to the desired pattern on the dimming element array by causing the dimming element in the dimming element array to hold a dimming signal corresponding to a desired pattern; and Transferring the dimming signal held by the signal holding element in the dimming element to the signal holding element in the dimming element adjacent in the first direction by the signal transfer mechanism; Moving the dimming distribution formed on the optical element array in the first direction,
前記被露光基板を、前記第 1の方向が前記投影光学系により前記被露光基板上 に投影された方向である第 2の方向に沿って、前記投影光学系に対して相対的に移 動させつつ露光を行なうとともに、  The substrate to be exposed is moved relative to the projection optical system along a second direction in which the first direction is projected onto the substrate by the projection optical system. While exposing while
前記二次元調光デバイスへの前記照明光の照射を、前記投影光学系の光軸に対 して全体として所定角度傾けて行なうことを特徴とする露光方法。  An exposure method, wherein the irradiation of the illumination light to the two-dimensional dimming device is performed at a predetermined angle with respect to an optical axis of the projection optical system.
[25] 前記被露光基板の前記第 2の方向への移動に同期して、前記信号転送を行なうこ とを特徴とする請求項 24に記載の露光方法。 25. The exposure method according to claim 24, wherein the signal transfer is performed in synchronization with the movement of the substrate to be exposed in the second direction.
[26] 前記照明光はパルス発光型の光源から発せられるパルス光であり、 前記パルス光の発光に同期して前記信号転送を行なうことを特徴とする請求項 24 に記載の露光方法。 26. The exposure method according to claim 24, wherein the illumination light is pulsed light emitted from a pulsed light source, and the signal transfer is performed in synchronization with the emission of the pulsed light.
[27] 照明光を可変成形マスクに照射し、前記可変成形マスクで調光された前記照明光 を投影光学系を介してデバイスを形成すべき被露光基板に照射する露光工程を含 むデバイス製造方法であって、  [27] A device manufacturing method including an exposure step of irradiating illumination light to a variable-shaped mask and irradiating the illumination light adjusted by the variable-shaped mask to a substrate to be formed on which a device is to be formed via a projection optical system. The method,
前記露光工程において、  In the exposing step,
前記可変成形マスクとして請求項 1から 14のいずれか一項に記載の二次元調光デ バイスを用い、  Using the two-dimensional dimming device according to any one of claims 1 to 14 as the variable shaping mask,
前記調光素子アレイ中の前記調光素子に所望のパターンに対応する調光信号を 保持させることにより、前記調光素子アレイに前記所望のパターンに相当する調光分 布を形成し、かつ前記調光素子中の信号保持要素に保持された前記調光信号を、 前記信号転送機構により前記第 1の方向に沿って隣接する前記調光素子中の信号 保持要素に順次信号転送し、前記調光素子アレイに形成された前記調光分布を前 記第 1の方向に移動するとともに、  Forming a dimming distribution corresponding to the desired pattern on the dimming element array by causing the dimming element in the dimming element array to hold a dimming signal corresponding to a desired pattern; and The dimming signal held by the signal holding element in the dimming element is sequentially transferred by the signal transfer mechanism to a signal holding element in the adjacent dimming element along the first direction, and the dimming is performed. While moving the dimming distribution formed in the optical element array in the first direction,
前記被露光基板を、前記第 1の方向が前記投影光学系により前記被露光基板上 に投影された方向である第 2の方向に沿って、前記投影光学系に対して相対的に移 動させつつ露光を行なうことを特徴とするデバイス製造方法。  The substrate to be exposed is moved relative to the projection optical system along a second direction in which the first direction is projected onto the substrate by the projection optical system. A method for manufacturing a device, comprising: performing exposure while performing exposure.
[28] 前記被露光基板の前記第 2の方向への移動に同期して、前記信号転送を行なうこ とを特徴とする請求項 27に記載のデバイス製造方法。 28. The device manufacturing method according to claim 27, wherein the signal transfer is performed in synchronization with the movement of the substrate to be exposed in the second direction.
[29] 前記照明光はパルス発光型の光源から発せられるパルス光であり、 [29] The illumination light is pulsed light emitted from a pulsed light source,
前記パルス光の発光に同期して前記信号転送を行なうことを特徴とする請求項 27 に記載のデバイス製造方法。  28. The device manufacturing method according to claim 28, wherein the signal transfer is performed in synchronization with the emission of the pulse light.
[30] 照明光を可変成形マスクに照射し、前記可変成形マスクで調光された前記照明光 を投影光学系を介してデバイスを形成すべき被露光基板に照射する露光工程を含 むデバイス製造方法であって、 [30] A device manufacturing method including an exposure step of irradiating illumination light onto a variable shaping mask and irradiating the illumination light adjusted by the variable shaping mask onto a substrate to be exposed on which a device is to be formed via a projection optical system. The method,
前記露光工程において、  In the exposing step,
前記可変成形マスクとして請求項 7から 14のいずれか一項に記載の二次元調光デ バイスを用レ、、 The two-dimensional light control device according to any one of claims 7 to 14, wherein the variable shaping mask is used. Use vice,
前記調光素子アレイ中の前記調光素子に所望のパターンに対応する調光信号を 保持させることにより、前記調光素子アレイに前記所望のパターンに相当する調光分 布を形成し、かつ前記調光素子中の信号保持要素に保持された前記調光信号を、 前記信号転送機構により前記第 1の方向に沿って隣接する前記調光素子中の信号 保持要素に順次信号転送し、前記調光素子アレイに形成された前記調光分布を前 記第 1の方向に移動し、  Forming a dimming distribution corresponding to the desired pattern on the dimming element array by causing the dimming element in the dimming element array to hold a dimming signal corresponding to a desired pattern; and The dimming signal held by the signal holding element in the dimming element is sequentially transferred by the signal transfer mechanism to a signal holding element in the adjacent dimming element along the first direction, and the dimming is performed. Moving the dimming distribution formed on the optical element array in the first direction,
前記被露光基板を、前記第 1の方向が前記投影光学系により前記被露光基板上 に投影された方向である第 2の方向に沿って、前記投影光学系に対して相対的に移 動させつつ露光を行なうとともに、  The substrate to be exposed is moved relative to the projection optical system along a second direction in which the first direction is projected onto the substrate by the projection optical system. While exposing while
前記二次元調光デバイスへの前記照明光の照射を、前記投影光学系の光軸に対 して全体として所定角度傾けて行なうことを特徴とするデバイス製造方法。  A method for manufacturing a device, comprising: irradiating the two-dimensional dimming device with the illumination light while inclining at a predetermined angle with respect to an optical axis of the projection optical system as a whole.
[31] 前記被露光基板の前記第 2の方向への移動に同期して、前記信号転送を行なうこ とを特徴とする請求項 30に記載のデバイス製造方法。 31. The device manufacturing method according to claim 30, wherein the signal transfer is performed in synchronization with the movement of the substrate to be exposed in the second direction.
[32] 前記照明光はパルス発光型の光源から発せられるパルス光であり、 [32] The illumination light is pulsed light emitted from a pulsed light source,
前記パルス光の発光に同期して前記信号転送を行なうことを特徴とする請求項 30 に記載のデバイス製造方法。  31. The device manufacturing method according to claim 30, wherein the signal transfer is performed in synchronization with emission of the pulse light.
PCT/JP2005/002940 2004-02-25 2005-02-23 Two-dimensional light modulation device, exposure apparatus, and exposure method WO2005081034A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006510297A JPWO2005081034A1 (en) 2004-02-25 2005-02-23 Two-dimensional light control device, exposure apparatus, and exposure method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-048984 2004-02-25
JP2004048984 2004-02-25

Publications (1)

Publication Number Publication Date
WO2005081034A1 true WO2005081034A1 (en) 2005-09-01

Family

ID=34879532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/002940 WO2005081034A1 (en) 2004-02-25 2005-02-23 Two-dimensional light modulation device, exposure apparatus, and exposure method

Country Status (3)

Country Link
JP (1) JPWO2005081034A1 (en)
TW (1) TW200540457A (en)
WO (1) WO2005081034A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006041124A (en) * 2004-07-26 2006-02-09 Tohoku Univ Pattern drawing apparatus
JP2007189220A (en) * 2005-12-21 2007-07-26 Asml Netherlands Bv Lithography device, and device manufacturing method using compensation scheme for patterning array

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05206006A (en) * 1991-08-08 1993-08-13 Texas Instr Inc <Ti> Patterning device
JPH06202059A (en) * 1993-01-07 1994-07-22 Victor Co Of Japan Ltd Color display device
JPH08211847A (en) * 1994-07-29 1996-08-20 At & T Corp Micromechanical modulator-based direct-view display
JPH0917718A (en) * 1995-07-03 1997-01-17 Canon Inc Aligner and device, and manufacturing method using it

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05206006A (en) * 1991-08-08 1993-08-13 Texas Instr Inc <Ti> Patterning device
JPH06202059A (en) * 1993-01-07 1994-07-22 Victor Co Of Japan Ltd Color display device
JPH08211847A (en) * 1994-07-29 1996-08-20 At & T Corp Micromechanical modulator-based direct-view display
JPH0917718A (en) * 1995-07-03 1997-01-17 Canon Inc Aligner and device, and manufacturing method using it

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006041124A (en) * 2004-07-26 2006-02-09 Tohoku Univ Pattern drawing apparatus
JP2007189220A (en) * 2005-12-21 2007-07-26 Asml Netherlands Bv Lithography device, and device manufacturing method using compensation scheme for patterning array

Also Published As

Publication number Publication date
TW200540457A (en) 2005-12-16
JPWO2005081034A1 (en) 2007-10-25

Similar Documents

Publication Publication Date Title
KR102395621B1 (en) Method and apparatus for direct write maskless lithography
US6312134B1 (en) Seamless, maskless lithography system using spatial light modulator
US6473237B2 (en) Point array maskless lithography
JP4456328B2 (en) Digital photolithography system for creating smooth digital components
US7064880B2 (en) Projector and projection method
KR102135316B1 (en) Method and apparatus for direct write maskless lithography
TW200401956A (en) Lithographic apparatus and device manufacturing method
KR20100099157A (en) Spatial light modulation unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
JP2006128194A (en) Exposing apparatus and device manufacturing method
WO2003054749A1 (en) Scaling method for a digital photolithography system
WO2007142350A1 (en) Pattern formation method, pattern formation device, exposure method, exposure device, and device manufacturing method
US20070247604A1 (en) Optimized mirror design for optical direct write
WO2002012961A1 (en) System and method for making smooth diagonal components with a digital photolithography system
JP3920248B2 (en) Lithographic apparatus and device manufacturing method
US7189498B2 (en) Process and apparatus for generating a strong phase shift optical pattern for use in an optical direct write lithography process
JP5598733B2 (en) Spatial light modulation unit, illumination optical system, exposure apparatus, and device manufacturing method
JP2006178471A (en) Lithographic apparatus and device manufacturing method utilizing multiple substrate carrier for flat panel display substrate
US8057963B2 (en) Maskless vortex phase shift optical direct write lithography
JP2004349706A (en) Lithographic apparatus and device manufacturing method
WO2005081034A1 (en) Two-dimensional light modulation device, exposure apparatus, and exposure method
JP2000284494A (en) Exposure device
JP2007178494A (en) Exposure apparatus and method for manufacturing device
JPH10209019A (en) Exposure pattern projection device and aligner
US7474383B2 (en) Mask making method, mask making device, and mask drawing device
JP2007329386A (en) Exposure apparatus, exposure method, and method for manufacturing device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006510297

Country of ref document: JP

122 Ep: pct application non-entry in european phase