WO2005080935A1 - Leakage checking method and device - Google Patents

Leakage checking method and device Download PDF

Info

Publication number
WO2005080935A1
WO2005080935A1 PCT/JP2005/002431 JP2005002431W WO2005080935A1 WO 2005080935 A1 WO2005080935 A1 WO 2005080935A1 JP 2005002431 W JP2005002431 W JP 2005002431W WO 2005080935 A1 WO2005080935 A1 WO 2005080935A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
pressure
leakage
substance
leak inspection
Prior art date
Application number
PCT/JP2005/002431
Other languages
French (fr)
Japanese (ja)
Inventor
Ippei Torigoe
Shinichiro Arima
Noboru Ueda
Yoshifumi Ohbuchi
Original Assignee
Aim Tech Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aim Tech Co., Ltd. filed Critical Aim Tech Co., Ltd.
Priority to JP2006510217A priority Critical patent/JP4599544B2/en
Publication of WO2005080935A1 publication Critical patent/WO2005080935A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • G01M3/28Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds
    • G01M3/2807Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds for pipes
    • G01M3/2815Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds for pipes using pressure measurements

Definitions

  • the present invention relates to a leak inspection method and device used for diagnosing a state of a container including a pipe for supplying a gas or a liquid, and particularly to detecting a leak of a gas or a liquid from inside the container.
  • the present invention relates to a leakage inspection method and apparatus.
  • Containers including a large number of pipes are installed in buildings such as homes and factories. These containers include gas, liquid liquefied petroleum gas, drinking water, refrigerants for air conditioning, gas and solutions for plants, and the like. It is used to supply or store various gases or liquids throughout the building.
  • the container containing these pipes gradually deteriorates due to mechanical or chemical action over a long period of use, and in some cases, an opening occurs in the container wall, and the container is introduced into the container. There is a possibility that the problem of leakage of gas or liquid may occur.
  • a leak test for a container such as a pipe is performed by closing the container and injecting a gas or a liquid from an inlet provided in a part of the container such as a supply port or an outlet and communicating with the container. It is performed by measuring the pressure change in the container for more than a predetermined time after the inside of the container is set to a pressure higher than the outside of the tube.
  • Patent Document 1 a pressure capable of compensating for a temperature change.
  • a measurement method and device were proposed.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-227773
  • the operation of adjusting the pressure in the pipe to be equal to the pressure outside the pipe is usually realized by opening the pipe to the outside air. If the pressure inside and outside the pipe is to be balanced without using this means of opening, large-scale equipment and precise measuring equipment will be required. However, in large-scale facility gas pipes, a large amount of flammable gas is released into the atmosphere, so opening pipes to the atmosphere and making the pressure in the pipe equal to the atmospheric pressure is dangerous. In addition, since air is introduced into the pipe by opening the pipe to the atmosphere, it is necessary to perform an air purge before resuming use after inspection. With large-capacity piping, the air purging operation is very large and difficult. For the same reason, leak inspection of containers storing toxic gas, corrosive gas, etc. In this case, the container cannot be opened to the outside air in order to return the pressure to the atmospheric pressure. Disclosure of the invention
  • the problem to be solved by the present invention is to solve the above-mentioned problems, and to effectively remove the influence of a temperature change in a container, which can be achieved only by efficiently performing a leak inspection of a container such as a pipe. It is an object of the present invention to provide a leakage inspection method and apparatus.
  • a pressure increasing / decreasing step of increasing or decreasing the pressure of a container to be inspected for leakage in accordance with a predetermined time sequence and measuring a pressure change in the container are measured. Calculating a correlation between a signal measured in the pressure measuring step and a reference signal corresponding to the time series, and detecting leakage of the container based on the correlation.
  • the invention according to claim 2 is characterized in that, in the leakage inspection method according to claim 1, the signal measured in the pressure measuring step is a time-varying signal of pressure. I do.
  • the reference signal is a signal in a transient response period at the time of the pressurization / decompression step and immediately after the step, except for the correlation calculation power. It is characterized by being constituted as follows.
  • the pressurizing and depressurizing step includes a substance having the same component as a substance contained in a container to be inspected for leakage, or It is characterized in that a part of substances contained in the component is supplied or sucked.
  • the suction is performed by removing the recovered material or the partial material from a container to be tested for leakage.
  • the adsorbed material is adsorbed, and the supply is performed by releasing the adsorbed material to the adsorbed material or releasing the adsorbed material to the same component or the same component as the substance component contained in the container to be inspected for leakage from another container. It is characterized in that a part of the contained substances is supplied.
  • the invention according to claim 6 includes a pressure increasing / decreasing means for increasing or decreasing the pressure of a container to be inspected for leakage, a pressure measuring means for measuring a pressure change in the container, and a pressure increasing / decreasing means for the container.
  • Pressurizing / depressurizing control means for controlling the pressurizing / depressurizing means for performing according to a predetermined time sequence;
  • a leakage inspection apparatus characterized in that:
  • the leakage of the container is determined based on the volume of the container to be inspected and the correlation calculated by the arithmetic means. Characterized in that it has means for calculating the size of.
  • the volume of the container is such that when the container is pressurized or depressurized, it flows into or out of the container. It is calculated based on the value measured by the means for measuring the flow rate of the fluid to be measured and the pressure measuring means for measuring the pressure change in the container.
  • the caro pressure reducing means includes a substance or a substance having the same component as a substance contained in a container to be inspected for leakage.
  • a supply means for supplying a part of substances contained in the component or a suction means for suctioning is connected.
  • the suction means adsorbs the substance or a part of the substance collected from a container to be inspected for leakage.
  • the supply means releases the substance adsorbed on the adsorbent material, or contains the same component as or contained in the component contained in the container to be inspected for leakage. It is characterized in that it supplies other containers that contain some substances to be supplied.
  • the pressure measured using the reference signal corresponding to the time series of pressurization or depressurization in the pressurization or depressurization step of pressurizing or depressurizing the container to be inspected for leakage From the change signal, it is possible to identify the correlation component related to the leak and detect the leak without being affected by the temperature change. According to the present invention, since the temperature compensation is performed in parallel during the leak inspection, the leak inspection of a large-capacity container requiring a long time for the inspection can be accurately performed.
  • the reference signal is configured so as to exclude the signal in the transient response period immediately after the compression / decompression step from the correlation calculation from the correlation calculation. Even if the pressure inside the container changes suddenly during the transient response period immediately after, the pressure change which is a noise at the time of leakage inspection is removed, and only the pressure state necessary for leakage inspection can be effectively detected, and accuracy is improved. It is possible to realize high leakage inspection.
  • the suction operation can be performed efficiently by causing the substance collected from the container to be inspected for leakage or a part of the substance to be adsorbed to the adsorbent material by the suction. This makes it possible to stably hold the adsorbed substance.
  • the above-mentioned adsorbed material is released by the adsorbing material to supply a substance having the same component as the substance contained in the container to be inspected for leakage or a part of the substance contained in the component. There is no need to arrange another container such as a gas cylinder.
  • the volume of the container and the correlation calculated by the calculation means are calculated.
  • the values of the components it is possible to calculate the magnitude of the leakage of the container force, and particularly to the container when the container is pressurized or depressurized as in the invention according to claim 8.
  • By measuring the flow rate of the fluid flowing into or out of the vessel and calculating the volume of the vessel it is possible to automatically calculate the amount of leakage.
  • the ninth aspect of the present invention similarly to the fourth aspect of the invention, at the time of pressurization or depressurization, a substance having the same composition as the substance contained in the container whose leakage is to be inspected or the same substance Supply or absorption of some substances contained in the container, it is possible to prevent a substance different from the substance contained in the container from being taken into the container, and to replace the substance contained in the container after the inspection.
  • the work can be omitted, and a leak inspection can be performed without releasing flammable gas or toxic gas into the atmosphere.
  • the substance collected from the container whose leakage is to be inspected or a part of the substance is adsorbed to the adsorbent material at the time of suction.
  • the suction operation can be performed efficiently, and the adsorbed substance can be stably held.
  • the above-mentioned adsorbed substance is released from the adsorbed material to thereby release a substance having the same component as the substance contained in the container to be inspected for leakage or a partial substance contained in the component.
  • the adsorbed substance is used. Special means for release can be omitted.
  • FIG. 1 is a view showing a model of a leak state in a container.
  • FIG. 2 is a diagram expressing, in a block diagram, a relational expression relating to a state of leakage in a container.
  • FIG. 3 is a schematic view of a leakage inspection device according to the present invention.
  • FIG. 4 is a schematic diagram of a leakage inspection device using a time change in pressure.
  • FIG. 5 is a block diagram of a control circuit of the leakage inspection device using a time change in pressure.
  • FIG. 6 is a diagram showing a leakage inspection situation in the case where there is no temperature fluctuation and no leakage.
  • FIG. 7 is a diagram showing a leak inspection situation when there is no temperature fluctuation and there is a leak.
  • FIG. 8 is a diagram showing a leak inspection situation in a case where there is a temperature fluctuation and no leakage.
  • FIG. 9 is a diagram showing a leak inspection situation when there is a temperature fluctuation and a leak.
  • FIG. 10 is a diagram showing a leak inspection situation using a one-way pump when there is no temperature fluctuation and there is a leak.
  • FIG. 11 is a diagram showing a leak inspection situation using irregular pressurization and depressurization when there is no temperature fluctuation and there is a leak.
  • FIG. 12 is a schematic diagram of a leak inspection device using an adsorbent material.
  • FIG. 13 is a schematic diagram of a leak inspection device using an adsorbent material and a gas cylinder.
  • FIG. 1 is a model of a leak state of a container such as a pipe, which is a target of the leak inspection method according to the present invention.
  • V -dP / dt RT / m -dM / dt + MR / mdT / dt
  • the initial state in the container is as follows when the initial pressure P, the initial mass M, and the initial temperature T are:
  • Equation (2) can be calculated using Equation (3) above. The following equation is obtained.
  • V -dP / dt P V / M -dM / dt + P V / T -dT / dt
  • the volume flow rate Q of the container force is proportional to the pressure difference between the inside and outside when the gas density and pressure change in the container where leakage is small is small, so it is expressed as the following equation (6). Is done.
  • the time variation of the pressure in the container depends on the term (1 k′p (t)) related to leakage from the container and the mass flow rate G of the gas flowing into the container. Item P / M and in container
  • the leak inspection of the container can be said to be the operation of specifying the size of the term relating to the leak, that is, the coefficient k (or k), in the equation (7) describing the container model.
  • FIG. 2 is a block diagram of the above equation (7).
  • a leaking vessel inputs P / M'G, which is proportional to the inflow mass flow rate of the gas added to the vessel, and outputs the pressure difference p (t) between the inside and outside of the vessel.
  • the problem of leak detection is formulated as a system identification problem in which the coefficient k of the system in FIG. 2 into which the unknown disturbance P 0 / T 0 'dTZdt is mixed is estimated from the input and the output.
  • the nature of the temperature disturbance dTZdt which is an unknown disturbance, can be estimated to some extent from the experimental data and the thermal dynamics of the container.
  • G is set so as to be uncorrelated with the temperature fluctuation dTZdt, and the pressure difference p (t) is observed and the correlation method is used, the coefficient k that is not affected by the temperature fluctuation, that is, the magnitude of the leakage Can be identified.
  • the inside of the container can be regarded as an isothermal change. Specifically, the dominant frequency of the input signal is sufficiently low compared to the reciprocal of the thermal time constant of the container!
  • P ZM ⁇ ⁇ Gdt is the amount of pressurization or decompression when gas flows into or out of the container.
  • FIG. 3 shows an example of the leak inspection method according to the present invention.
  • a vessel 1 such as a pipe is connected to a pressurizing or depressurizing means comprising a cylinder 4 and a piston 3 for increasing or decreasing pressure.
  • the pressurizing / depressurizing means is not limited to the shape as shown in FIG. 3, and an electric pump as described later can be used. Further, the pressurizing means and the depressurizing means can be constituted by separate members.
  • the pressure sensor 2 is connected in the middle of the pipe connecting the means.
  • a linear actuator 5 for reciprocating the piston is connected to the piston 3 of the caro pressure reducing means.
  • the actuator is configured such that the movable portion moves up and down by a moving distance corresponding to the input signal from the oscillator 6, and as a result, the piston 3 connected to the movable portion performs reciprocating motion.
  • the angular frequency ⁇ of the reciprocating motion is selected so as to satisfy the following condition.
  • Temperature component dTZdt does not include the frequency component of angular frequency ⁇ .
  • the angular frequency is low enough that the temperature change in the container can be regarded as an isothermal change.
  • is a sufficiently high angular frequency compared to the cutoff frequency (k) of the container due to leakage.
  • the pressure is increased or decreased in a predetermined time sequence defined by cot.
  • the pressure in the container 1 is detected by the pressure sensor 2.
  • the input signal of the oscillator power is output by the 90 ° phase shifter 7 as a reference signal cos cot whose phase is shifted by 90 ° from the input signal, and is input to the correlator 8.
  • the pressure P (t) in the container is equal to the starting force of the piston in a steady state after a sufficient time has passed.
  • the coefficient k representing the magnitude of the leak can be determined.
  • a sine wave signal is used as the inflow mass flow rate G of the gas that determines the input signal, and its angular frequency is selected to a value that the temperature fluctuation dTZdt does not include as a frequency component.
  • any analog signal can be used as long as there is no correlation with temperature fluctuation, and an irregular signal such as white noise is used.
  • FIGS. 6-9 there is a method of repeating a regular pressurizing and depressurizing step as illustrated in FIGS. 6-9 to simplify the apparatus. Furthermore, there is a method of correlating the reference signal in phase with the time integration of the inflow mass flow rate G and the time change of the pressure in the container in consideration of ease of calculation.
  • a synchronous detection circuit can be used as a specific arithmetic device for calculating the correlation.
  • FIG. 10 there are a method of repeating pressurizing or depressurizing the container and opening to the atmospheric pressure, and a method of using an irregular pressurizing / depressurizing step illustrated in FIG.
  • FIG. 4 is a schematic diagram showing the concept of the mechanical configuration of the leakage inspection device of the present invention.
  • an electric pump 15 for supplying gas such as air to the container to be inspected or discharging gas from the container
  • a pressure sensor 14 for inspecting the pressure inside the container
  • a knob or check valve 13 for controlling the amount of gas supplied to the container or the amount of gas discharged from the container 13 and a valve 17 for equalizing the pressure in the container to the atmospheric pressure are provided as shown in Fig. 4.
  • a simple connection structure are provided as shown in Fig.
  • a detection hose 12 extends from the pressure measuring device, and as shown in a connection section 11, at the time of inspection, the detection hose 12 is connected to a discharge port such as a gas tap provided in a container such as a gas pipe to be inspected. Connect the tip.
  • a substance contained in a container which is an object to be inspected, may be released into the atmosphere, or a substance different from the substance contained in the container may be contained in the container. It is also possible to adopt a configuration as shown in FIG. 12 or FIG. 13 in order to prevent being taken in.
  • an adsorbent material 32 stored in an adsorption container 31 is used, and is constituted by a flow path of a pressurized system via a pump 15 and a valve B, and a flow path of a depressurized system via a valve A.
  • the pump 15 is stopped, the valve B is closed, and the knob A is opened, so that the gas in the test object is adsorbed by the adsorbent material 31 and the pressure in the test object can be reduced. It becomes.
  • the inside of the adsorption container 31 be held in advance in a reduced pressure state in comparison with the test object.
  • a pump (not shown) can be installed on the detection target side of Knob A to collect gas to be adsorbed on the adsorption material side.
  • Known materials such as activated carbon can be used as such an adsorption material.
  • the pump 15 When pressurizing, by closing valve A and opening valve B, the pump 15 allows the gas adsorbed by the adsorbent material 32 to be sent out to the test object by the operation of the pump 15. You. If necessary, the adsorbent can be heated to release the adsorbed gas and the conditions can be set to increase the gas delivery efficiency.
  • FIG. 13 when depressurizing the inside of the inspection object, an adsorbing material that adsorbs the gas in the inspection object is used as in FIG.
  • the valve C is opened, and the valve D is closed to perform the depressurizing operation.
  • the knurl C is closed and the knurl D is opened, so that the supply container (gas cylinder) is a gas supply means. From 43, supply gas into the inspection target.
  • the pressure in the supply container 43 is set in advance to be higher than the pressure in the inspection target.
  • valves A to D since it is necessary to appropriately control the pressurized and depressurized states, it is particularly necessary to appropriately control the opening and closing of the valves A to D.
  • the controller 16 performs drive control of the electric pump 15, opening and closing control of the valves 13 and 17, detection of a pressure signal of the pressure sensor 14, and the like. Then, under the control of the controller 16, various inspections such as a leakage inspection of the container, a measurement of the capacity in the container, and a measurement of a leakage amount in the container, which will be described below, are performed.
  • the leakage inspection circuit includes an AZD conversion unit 20, a dPZdt calculation unit 21, a synchronous detection circuit unit 22, a smoothing circuit unit 23, a compression / decompression control unit 24 serving as a compression / decompression control unit, and a reference signal generation unit. 25, a leakage determination unit 26, and a leakage amount calculation unit 27.
  • the pressurizing / depressurizing control unit 24 instructs the drive control of the electric pump 15 and the opening / closing control of the valves 13 and 17 in a predetermined time sequence according to a control program in which various leak inspection modes are stored and shown.
  • the detection signal from the pressure sensor 14 is input to the AZD conversion unit 20, and converts an analog signal, which is a detection signal, into a digital signal. Then, based on the digital signal, dPZdt, which is the time variation of the pressure P, is calculated by the dPZdt calculation unit 21.
  • the value of dPZdt calculated using the signal of the pressure sensor force is specified by the initial value of the pressurization or depressurization. In some cases, it is used to calculate later.
  • the reference signal generation section 25 generates a reference signal based on a signal generated in connection with the compression / decompression control procedure of the compression / decompression control section 24.
  • the reference signal can correspond to various kinds of signals. Imming is a time excluding the transient response time during the pressurization / decompression step and immediately after the step, such as adiabatic compression or adiabatic expansion. In general, during the pressurization / decompression process and during the transient response time immediately after the process, the pressure changes greatly regardless of the leakage, which causes noise in the leakage inspection.
  • This period is set so that the reference signal indicates a value of 0. If the amplitude of the pressure increase / decrease amount is too small compared to the initial pressure P, which is large, the pressure change during pressurization and the decrease
  • a signal of ⁇ and 1 may be used as a reference signal by using a coefficient ⁇ for compensating for the above difference between 1 and 1 signals.
  • a component of the measured pressure change signal that has a correlation with the reference signal synchronized with the time series of the pressurization and decompression process is calculated.
  • the synchronous detection circuit unit 22 extracts the calculated value of dPZdt at a time when the reference signal has a value other than 0 based on the reference signal, and adds the calculated value of the reference signal to the extracted dPZdt value. The value is multiplied.
  • the signal extracted and calculated by the synchronous detection circuit section is smoothed by the smoothing circuit section 23 so as to calculate a time average value which is the magnitude of the above-described component. Perform processing.
  • the synchronous detection circuit unit 22 and the smoothing circuit unit 23 are integrated, and the dPZ dt value (for example, the average value obtained by linear approximation) of the section indicated by the reference signal is weighted by ⁇ 1 of the reference signal and averaged. , Can also be calculated digitally.
  • a circuit that converts an analog signal of 14 pressure sensors into an analog signal state by an analog arithmetic circuit is not limited to the calculation using the digital signal described above. It may be.
  • the leak determination unit 26 determines that there is no leakage when the signal power from the smoothing circuit unit 23 is 0 (or within a predetermined error range from 0), and otherwise determines that there is leakage.
  • the leak amount calculation unit since the signal value from the smoothing circuit unit 23 and the pressure change amount per unit time are in a proportional relationship, the leak amount is calculated for each leak inspection device or each leak inspection mode. The amount of leakage from the container is calculated by multiplying the set proportional constant by the signal value from the smoothing circuit unit 23 and integrating the calculated and input container capacity of the test object separately. I do.
  • FIG. 6 shows an embodiment in which a forward / reverse rotation pump is used as the electric pump 15 to increase / decrease the pressure in the container of the test object.
  • Fig. 6 shows the temperature fluctuation in the container and the situation without leakage.
  • FIG. 6 (a) shows the timing at which the inside of the container is pressurized, depressurized, pressurized and decompressed, and closed by the drive control of the electric pump and the opening and closing control of the valves 13 and 17.
  • FIG. 6 (b) is a graph showing the output of the detection signal of the pressure sensor 14 as a change in the pressure P in the container by the pressurization / decompression control shown in FIG. 6 (a).
  • the pressure P increases, and in the depressurizing step, the pressure P decreases.
  • a transient response due to adiabatic compression immediately after the end of the pressurizing step and a transient response due to adiabatic expansion immediately after the depressurizing step occur.
  • the pressure P shows a constant state. .
  • FIG. 6 (c) is a graph obtained by time-differentiating a graph of the pressure P, which is a detection signal of the pressure sensor 14, in the dPZdt calculation unit.
  • FIG. 6D is a graph showing the state of the reference signal from the reference signal generation unit 25.
  • the reference signal corresponds to the pressurization step
  • 1 is generated to indicate the equilibrium state after the depressurization process
  • 1 is generated to indicate the equilibrium state after the depressurization process, so that they have the same pulse width.
  • FIG. 6E is a graph showing an output signal from the synchronous detection circuit unit 22.
  • the value of dPZdt when the reference signal indicates a value other than 0 is extracted, and the value of the extracted dPZdt is extracted. Is calculated by multiplying by the reference signal value and output.
  • the time-varying value (c) of the pressure P is 0. Value.
  • FIG. 6 (f) is a graph showing an output signal in the smoothing circuit unit 23.
  • the value is 0 in order to time-average the output signal (f) of the synchronous detection circuit section 22.
  • the leakage determination unit 26 determines that "no leakage". Also, the leak amount calculation unit 27 uses a value obtained by multiplying the output value of the smoothing circuit unit 23 by a constant as the pressure change amount (time change of the pressure). As a result, the pressure change amount becomes 0, and the pressure change amount becomes zero. Multiplied by the volume of the container is also calculated as zero.
  • Fig. 7 shows a measurement situation in the case where only a leak whose temperature changes in the container is generated.
  • FIG. 7 (a) shows the timing when the inside of the container is pressurized, depressurized, pressurized and depressurized, and closed as in FIG. 6 (a).
  • Fig. 7 (b) shows the change in the pressure P in the container, as in Fig. 6 (b). Shows a gradual increase after the process
  • FIG. 7 (c) shows the output of the dPZdt calculation unit 21 similarly to FIG. 6 (c), and the pressure drop due to the leakage after the pressurization step becomes a negative value, The pressure rise due to the leakage of is calculated and output as a positive value.
  • FIG. 7D is a graph showing the state of the reference signal from the reference signal generator 25, which is generated similarly to FIG. 6D.
  • FIG. 7 (e) shows a signal obtained by extracting the output signal (c) of the dPZdt calculating unit 21 based on the reference signal (d) and multiplying the extracted value by the reference signal, similarly to FIG. 6 (e). It is.
  • the pressure drop due to leakage after the pressurization step is displayed as a positive constant value as a result of multiplying the negative dPZdt value by 1 of the reference signal
  • the rise in pressure due to leakage of the pressure is displayed as a positive constant value as a result of multiplying the positive dPZdt value by 1 of the reference signal.
  • FIG. 7 (f) is a graph showing the output signal of the smoothing circuit unit 23, similarly to FIG. 6 (f). In order to average the graph of FIG. 7 (e) over time, a positive constant value is shown.
  • the leakage determination unit 26 determines that “leakage is present”.
  • the leak amount calculation unit 27 uses a value obtained by multiplying the output value of the smoothing circuit unit 23 by a predetermined constant as the pressure change amount (time change of pressure), and separately inputs the calculated pressure change amount. Alternatively, the amount of leakage is calculated and output by multiplying the calculated capacity of the container.
  • FIG. 8 shows a measurement situation when there is a temperature change (temperature rise) in the container and no leakage.
  • FIG. 8 (a) shows the timing when the inside of the container is pressurized, depressurized, pressurized and depressurized, and closed as in FIG. 6 (a).
  • Fig. 8 (b) shows the change in the pressure P in the container, as in Fig. 6 (b). It gradually increases after the process.
  • FIG. 8 (c) shows the output of the dPZdt calculation unit 21 as in FIG. 6 (c). The pressure rise due to the subsequent temperature rise is calculated and output as a positive value.
  • FIG. 8D is a graph showing the state of the reference signal from the reference signal generator 25, which is generated similarly to FIG. 6D.
  • FIG. 8 (e) is a diagram obtained by extracting the output signal (c) of the dPZdt calculating unit 11 based on the reference signal (d) and multiplying the extracted value by the reference signal, similarly to FIG. 6 (e). It is.
  • the pressure rise due to the temperature rise after the pressurization step is displayed as a negative constant value as a result of multiplying the positive dPZdt value by 1 of the reference signal
  • Subsequent pressure rise due to temperature rise is displayed as a positive constant value as a result of multiplying the positive dPZdt value by a reference signal of 1.
  • FIG. 8 (f) is a graph showing the output signal of the smoothing circuit unit 23 as in FIG. 6 (f). In order to average the time of the graph of FIG. Show.
  • the leakage determination unit 26 determines that "no leakage".
  • the leak amount calculation unit 27 calculates the pressure change (pressure change over time) as Since a value obtained by multiplying the output value of the smoothing circuit unit 23 by a constant is used, the pressure change amount becomes 0 as a result, and the leakage amount obtained by multiplying the pressure change amount by the capacity of the container is also calculated as 0.
  • FIG. 9 shows a measurement state in a case where there is a temperature change (temperature rise) in the container and there is a leak.
  • FIG. 9 (a) shows the timing when the inside of the container is pressurized, decompressed, pressurized and depressurized, and closed as in FIG. 6 (a).
  • Fig. 9 (b) shows the change in the pressure P in the container, as in Fig. 6 (b) .
  • the pressure rise due to temperature rise and the pressure drop due to leakage overlap.
  • a constant level no pressure change
  • both the pressure rise due to the temperature rise and the pressure rise due to the leakage occur, so the pressure rise due to only the leakage in Fig. 7 (b) and the temperature rise only in Fig. 8 (b) Shows a steep pressure rise than the pressure rise caused by the influence of.
  • FIG. 9 (c) shows the output of the dPZdt calculation unit 21 as in FIG. 6 (c), where the level of the pressure after the pressurizing step is 0, and The steep pressure rise is calculated and output as a positive value larger than the values in Fig. 7 (c) and Fig. 8 (c)! RU
  • FIG. 9D is a graph showing the state of the reference signal from the reference signal generator 25, which is generated similarly to FIG. 6D.
  • FIG. 9 (e) shows a signal obtained by extracting the output signal (c) of the dPZdt calculating unit 21 based on the reference signal (d) and multiplying the extracted value by the reference signal, similarly to FIG. 6 (e). It is.
  • the leveling-off state of the pressure change after the pressurizing step is displayed as a value 0 as a result of multiplying the dPZ dt value of 0 by 1 of the reference signal
  • the pressure rise is displayed as a positive constant value as a result of multiplying the positive dPZdt value by 1 of the reference signal.
  • FIG. 9 (f) is a graph showing the output signal of the smoothing circuit unit 23 as in FIG. 6 (f). The time constant of the graph of FIG. Is shown.
  • the leakage determination unit 26 determines that “leakage is present”. Further, the leak amount calculation unit 27 calculates the pressure change amount (time change of the pressure) using a value obtained by multiplying the output value of the smoothing circuit unit 23 by a predetermined constant. The leak amount is calculated and output by multiplying the pressure change amount thus obtained by a separately input or calculated capacity of the container.
  • the electric pump 15 uses a one-way pump that can only pressurize or depressurize, and the configuration of the device is simplified.
  • the container is repeatedly pressurized or depressurized and opened to the atmospheric pressure alternately and regularly, and the leak is inspected by correlating the time change of the container pressure with the reference signal. I do.
  • FIG. 10 shows a measurement situation in the case where there is only a leak in which the temperature inside the container changes.
  • FIG. 10 shows an example in which the pressurizing step and the valve opening step are alternately repeated.
  • the pressure P in the container in FIG. When a transient response occurs due to a transfer response or adiabatic expansion immediately after the valve opening process, and the gas temperature in the container reaches an equilibrium state, the pressure P gradually decreases due to leakage.
  • the pressure drop due to the leakage after the pressurizing step and the pressure drop after the valve opening step have a larger slope in the pressure drop after the pressurizing step.
  • the reference signal corresponds to the pressurization and depressurization control by the pressurization and depressurization control unit 24 at the timing excluding the pressurization step, the valve opening step and the transient response period. 1 is generated to indicate the equilibrium state after the process, and 1 is generated to indicate the equilibrium state after the pressure is reduced by the valve opening process so that they have the same pulse width. Except for the above, how to read the graphs in Fig. 10 is the same as in Fig. 6-9, so the description is omitted.
  • FIG. 11 illustrates a case where the compression / decompression pattern is modulated by an M-sequence signal that is a binary pseudo-random signal.
  • M-sequence signal that is a binary pseudo-random signal.
  • the reference signal a signal obtained by removing the period of the transient response based on the M-sequence signal used for modulation is used. If a sufficiently high-order M-sequence signal is used, there is no correlation with temperature fluctuations existing in the natural world. It becomes possible.
  • FIG. 11 shows a measurement state in a case where there is only a leak that changes in temperature inside the container.
  • the reference signal includes the calorie at the timing excluding the pressurizing step, the depressurizing step, and the transient response period in accordance with the pressurizing and depressurizing control by the pressurizing and depressurizing control unit 24.
  • the leak of a container such as a pipe can be efficiently inspected, and the effect of the temperature change in the container can be removed simultaneously with the leak detection, thereby accurately detecting the leak even in a large-capacity container. It is possible to provide a leak inspection method and device capable of performing the above. Further, according to the present invention, it is possible to incorporate the pressurizing and depressurizing steps in an arbitrary time series, and the step of returning the pressure in the container to the atmospheric pressure as in the earlier application is not required, so that a large-capacity flammable Effective leak inspection can also be performed on toxic gas piping and toxic gas containers.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

A leakage checking method and device for checking leakage of a container such as a pipe efficiently while removing the influence of the temperature variation in the container effectively. The leakage checking device comprises a means (15) for increasing/decreasing the pressure in a container the leakage of which is being checked, a means (14) for measuring the pressure variation in the container, a means for increasing/decreasing the pressure in the container in a specified time series, and an operating means for calculating correlation between a signal obtained by the pressure measuring means and a reference signal corresponding to the time series. The device is characterized in that leakage of the container is detected based on the correlation calculated by the operating means. Preferably, the device is characterized in that the reference signal is so composed that the signal during pressure increasing/decreasing step and the signal during the transient response period immediately after the pressure increasing/decreasing step are excluded from the calculation of the correlation.

Description

明 細 書  Specification
漏洩検査方法及び装置  Leak inspection method and device
技術分野  Technical field
[0001] 本発明は、気体又は液体を供給する配管を含む容器の状態を診断するために用 いられる、漏洩検査方法及び装置に関し、特に、気体又は液体の容器内からの漏洩 を検知するための漏洩検査方法及び装置に関する。  The present invention relates to a leak inspection method and device used for diagnosing a state of a container including a pipe for supplying a gas or a liquid, and particularly to detecting a leak of a gas or a liquid from inside the container. The present invention relates to a leakage inspection method and apparatus.
背景技術  Background art
[0002] 家庭や工場などの建物には多くの配管を含む容器が設置されており、これらは都 巿ガス ·液ィ匕石油ガス、飲料水、空調用冷媒ゃプラント用のガス ·溶液など、様々な 気体又は液体を建物内の各所に供給あるいは貯蔵するために利用されて 、る。 しかしながら、これらの配管を含む容器は、機械的又は化学的な作用により、長期 間に渡る使用の際に、徐々に劣化し、場合によっては容器壁に開口が発生し、容器 内に導入されている気体や液体が漏洩するという問題が発生する可能性がある。  [0002] Containers including a large number of pipes are installed in buildings such as homes and factories. These containers include gas, liquid liquefied petroleum gas, drinking water, refrigerants for air conditioning, gas and solutions for plants, and the like. It is used to supply or store various gases or liquids throughout the building. However, the container containing these pipes gradually deteriorates due to mechanical or chemical action over a long period of use, and in some cases, an opening occurs in the container wall, and the container is introduced into the container. There is a possibility that the problem of leakage of gas or liquid may occur.
[0003] 従来、配管などの容器に係る漏洩検査は、容器を閉塞状態にし、供給口や排出口 など容器の一部に設けられ容器内に連通した導入口より、気体又は液体を注入し、 容器内を管の外側より高い圧力状態にした後、所定時間以上に渡り、容器内の圧力 変化を測定することにより行なっている。  [0003] Conventionally, a leak test for a container such as a pipe is performed by closing the container and injecting a gas or a liquid from an inlet provided in a part of the container such as a supply port or an outlet and communicating with the container. It is performed by measuring the pressure change in the container for more than a predetermined time after the inside of the container is set to a pressure higher than the outside of the tube.
そして、測定の結果において、例えば、圧力が減少傾向を示した場合には、容器 内から気体又は液体が流出していると想定し、容器の壁面の一部に亀裂等の開口が あると判断していた。  If, for example, the pressure shows a decreasing trend in the measurement results, it is assumed that gas or liquid is flowing out of the container, and it is determined that there is an opening such as a crack in a part of the wall surface of the container. Was.
[0004] しかしながら、閉塞状態におかれた容器内の圧力の変化は、単に漏洩のみに起因 するものではなぐ容器内の温度変化などの影響にも依存して変化する。  [0004] However, the change in the pressure in the closed vessel changes depending not only on the leak but also on the influence of the temperature change in the vessel.
このため、正確な検査には、この温度変動の影響を考慮した測定が必要である力 従来、容器の圧力変化を計測する際に、容器内の温度変化を同時に測定するような 簡易な計測装置が無いため、温度変化が少ない時間を選んで計測することが行わ れており、検査作業の効率が著しく低下する原因となっていた。  For this reason, accurate inspection requires a measurement that takes into account the effects of temperature fluctuations. Conventionally, when measuring the pressure change in a container, a simple measuring device that simultaneously measures the temperature change in the container Because there is no measurement, the time when the temperature change is small is selected and measured, which causes the efficiency of the inspection work to be significantly reduced.
[0005] 本出願人は、以下の特許文献 1にお 、て、温度変化を補償することが可能な圧力 計測方法及び装置を提案した。 [0005] The present applicant has disclosed in Patent Document 1 below a pressure capable of compensating for a temperature change. A measurement method and device were proposed.
特許文献 1に係る発明では、気体又は液体を供給する配管の内部圧力を計測する 圧力計測方法において、配管の管内圧力を管外の圧力と同じになるように調整して 該配管を閉塞し、温度変化による配管内部の圧力変化量を計測し、あるいは、配管 内の気体又は液体の実測温度又は配管の実測温度の変化量を基に、配管内の圧 力計測値を補正することにより、温度変化の影響を除去するものである。  In the invention according to Patent Document 1, in a pressure measurement method for measuring the internal pressure of a pipe for supplying a gas or a liquid, the pressure in the pipe is adjusted to be equal to the pressure outside the pipe, and the pipe is closed. By measuring the pressure change inside the pipe due to the temperature change, or correcting the pressure measurement value inside the pipe based on the measured temperature of the gas or liquid in the pipe or the measured temperature of the pipe, It removes the effects of change.
特許文献 1:特開 2003— 227773号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2003-227773
[0006] 一般家庭向けのような小容量のガス配管においては、漏洩検査が比較的短時間で 実施できるため、検査時間の全体を通して、温度変化はほぼ一定の傾きを持つと仮 定することが可能である。したがって、配管の管内圧力を管外の圧力と同じになるよう に調整して該配管を閉塞し、温度変化による配管内部の圧力変化量を計測して、こ の計測結果に基づいて、漏洩検査時間中の温度変化の影響を除去することが可能 である。 [0006] In small-volume gas pipes such as those for general households, since leak inspection can be performed in a relatively short time, it is assumed that the temperature change has a substantially constant slope throughout the inspection time. It is possible. Therefore, the pressure inside the pipe is adjusted to be the same as the pressure outside the pipe, the pipe is closed, the amount of pressure change inside the pipe due to temperature change is measured, and a leak test is performed based on this measurement result. It is possible to eliminate the effects of temperature changes over time.
しかし、集合住宅、病院、学校などの大容量配管設備においては、漏洩検査に長 い時間が必要となるため、検査時間内に温度変化の傾きが変動する可能性がある。 このため、配管の内外圧力を同じになるように調整して計測した結果を用いたのでは 、温度変化の影響を除去できない場合が出てくる。さらに、管自体の温度を検出する 場合には、配管容量が大きくなるのに伴って、配管の場所によって温度変化が異な る傾向が強くなり、十分な温度補償を達成することが難しいという問題を有している。  However, in large-capacity piping facilities such as apartment houses, hospitals, and schools, a long time is required for leakage inspection, and the slope of the temperature change may fluctuate within the inspection time. For this reason, if the result of adjusting the inside and outside pressures of the pipes so as to be equal to each other is used, the influence of the temperature change may not be removed in some cases. Furthermore, when the temperature of the pipe itself is detected, there is a problem that, as the capacity of the pipe increases, the temperature change tends to vary depending on the location of the pipe, and it is difficult to achieve sufficient temperature compensation. Have.
[0007] また、特許文献 1に関わる発明において、配管の管内圧力を管外の圧力と同じにな るように調整する作業は、通常、配管を外気に連通開放することによって実現される 。この開放の手段によらずに管内外の圧力を平衡させようとすると、大がかりな装置 や精密な計測装置が必要となる。ところが、大規模施設のガス配管では、可燃性の ガスを大気中に大量に放出することになるため、配管を大気に開放して管内圧力を 大気圧に等しくする作業は危険をともなう。また、配管を大気に開放することで配管 内に空気が導入されるため、検査後に使用再開するに先立って、エアーパージの作 業が必要となる。大容量の配管では、エアーパージ作業は非常に大掛力りで困難な 作業となる。同様の理由で、有毒ガス、腐食性ガスなどを貯蔵する容器の漏洩検査 においても、圧力を大気圧に戻すために、容器を外気に開放することができない。 発明の開示 [0007] Further, in the invention related to Patent Document 1, the operation of adjusting the pressure in the pipe to be equal to the pressure outside the pipe is usually realized by opening the pipe to the outside air. If the pressure inside and outside the pipe is to be balanced without using this means of opening, large-scale equipment and precise measuring equipment will be required. However, in large-scale facility gas pipes, a large amount of flammable gas is released into the atmosphere, so opening pipes to the atmosphere and making the pressure in the pipe equal to the atmospheric pressure is dangerous. In addition, since air is introduced into the pipe by opening the pipe to the atmosphere, it is necessary to perform an air purge before resuming use after inspection. With large-capacity piping, the air purging operation is very large and difficult. For the same reason, leak inspection of containers storing toxic gas, corrosive gas, etc. In this case, the container cannot be opened to the outside air in order to return the pressure to the atmospheric pressure. Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] 本発明の解決しょうとする課題は、上述した問題を解決し、配管などの容器の漏洩 検査を効率良く行うだけでなぐ容器内の温度変化の影響を効果的に除去すること が可能な漏洩検査方法及び装置を提供することである。  [0008] The problem to be solved by the present invention is to solve the above-mentioned problems, and to effectively remove the influence of a temperature change in a container, which can be achieved only by efficiently performing a leak inspection of a container such as a pipe. It is an object of the present invention to provide a leakage inspection method and apparatus.
課題を解決するための手段  Means for solving the problem
[0009] 上述した課題を解決するため、請求項 1に係る発明では、漏洩を検査すべき容器を 所定の時間系列に従って加圧又は減圧する加減圧工程と、該容器内の圧力変化を 計測する圧力計測工程とを有し、該圧力計測工程で計測された信号と、該時間系列 に対応した参照信号との相関を算出し、該相関に基いて、該容器の漏洩を検出する [0009] In order to solve the above-described problem, in the invention according to claim 1, a pressure increasing / decreasing step of increasing or decreasing the pressure of a container to be inspected for leakage in accordance with a predetermined time sequence and measuring a pressure change in the container are measured. Calculating a correlation between a signal measured in the pressure measuring step and a reference signal corresponding to the time series, and detecting leakage of the container based on the correlation.
[0010] また、請求項 2に係る発明では、請求項 1に記載の漏洩検査方法にぉ 、て、該圧 力計測工程で計測された信号が、圧力の時間変化信号であることを特徴とする。 [0010] The invention according to claim 2 is characterized in that, in the leakage inspection method according to claim 1, the signal measured in the pressure measuring step is a time-varying signal of pressure. I do.
[0011] また、請求項 3に係る発明では、請求項 1又は 2に記載の漏洩検査方法において、 該参照信号が、加減圧工程時及び該工程直後の過渡応答期間の信号を相関算出 力も除くように構成されることを特徴とする。  [0011] Further, in the invention according to claim 3, in the leakage inspection method according to claim 1 or 2, the reference signal is a signal in a transient response period at the time of the pressurization / decompression step and immediately after the step, except for the correlation calculation power. It is characterized by being constituted as follows.
[0012] また、請求項 4に係る発明では、請求項 1乃至 3に記載の漏洩検査方法において、 該加減圧工程は、漏洩を検査すべき容器に収容される物質成分と同じ成分の物質 又は該成分に含まれる一部の物質を供給又は吸引することを特徴とする。  [0012] In the invention according to claim 4, in the leak inspection method according to any one of claims 1 to 3, the pressurizing and depressurizing step includes a substance having the same component as a substance contained in a container to be inspected for leakage, or It is characterized in that a part of substances contained in the component is supplied or sucked.
[0013] また、請求項 5に係る発明では、請求項 4に記載の漏洩検査方法にぉ 、て、該吸 引は、漏洩を検査すべき容器力 回収した該物質又は該一部の物質を吸着材料に 吸着させ、該供給は、該吸着した物質を該吸着材料力 放出させ、あるいは、他の容 器から漏洩を検査すべき容器に収容される物質成分と同じ成分の物質又は該成分 に含まれる一部の物質を供給させることを特徴とする。  [0013] Further, in the invention according to claim 5, according to the leak inspection method according to claim 4, the suction is performed by removing the recovered material or the partial material from a container to be tested for leakage. The adsorbed material is adsorbed, and the supply is performed by releasing the adsorbed material to the adsorbed material or releasing the adsorbed material to the same component or the same component as the substance component contained in the container to be inspected for leakage from another container. It is characterized in that a part of the contained substances is supplied.
[0014] また、請求項 6に係る発明は、漏洩を検査すべき容器を加圧又は減圧する加減圧 手段と、該容器内の圧力変化を計測する圧力計測手段と、該容器の加減圧を所定 の時間系列に従って実施するための該加減圧手段を制御する加減圧制御手段と、 該圧力計測手段により得られた信号と、該時間系列に対応した参照信号との相関を 算出する演算手段とを有し、該演算手段によって算出された相関に基いて、該容器 の漏洩を検出することを特徴とする漏洩検査装置である。 [0014] Further, the invention according to claim 6 includes a pressure increasing / decreasing means for increasing or decreasing the pressure of a container to be inspected for leakage, a pressure measuring means for measuring a pressure change in the container, and a pressure increasing / decreasing means for the container. Pressurizing / depressurizing control means for controlling the pressurizing / depressurizing means for performing according to a predetermined time sequence; Calculating means for calculating a correlation between the signal obtained by the pressure measuring means and a reference signal corresponding to the time series; detecting leakage of the container based on the correlation calculated by the calculating means; A leakage inspection apparatus characterized in that:
[0015] また、請求項 7に係る発明では、請求項 6に記載の漏洩検査装置において、検査 すべき容器の容積と、該演算手段によって算出された相関とに基いて、該容器の漏 洩の大きさを算出する手段を有することを特徴とする。  [0015] In the invention according to claim 7, in the leak inspection apparatus according to claim 6, the leakage of the container is determined based on the volume of the container to be inspected and the correlation calculated by the arithmetic means. Characterized in that it has means for calculating the size of.
[0016] また、請求項 8に係る発明では、請求項 7に記載の漏洩検査装置において、該容 器の容積が、容器を加圧又は減圧する際に、容器へ流入又は容器カゝら流出する流 体の流量を計測する手段及び該容器内の圧力変化を計測する圧力計測手段によつ て計測した値に基づいて算出されることを特徴とする。  [0016] In the invention according to claim 8, in the leak inspection apparatus according to claim 7, the volume of the container is such that when the container is pressurized or depressurized, it flows into or out of the container. It is calculated based on the value measured by the means for measuring the flow rate of the fluid to be measured and the pressure measuring means for measuring the pressure change in the container.
[0017] また、請求項 9に係る発明では、請求項 6に記載の漏洩検査装置において、該カロ 減圧手段には、漏洩を検査すべき容器に収容される物質成分と同じ成分の物質又 は該成分に含まれる一部の物質を供給する供給手段又は吸引する吸引手段とが接 続されて!ヽることを特徴とする。  [0017] In the invention according to claim 9, in the leak inspection apparatus according to claim 6, the caro pressure reducing means includes a substance or a substance having the same component as a substance contained in a container to be inspected for leakage. A supply means for supplying a part of substances contained in the component or a suction means for suctioning is connected.
[0018] また、請求項 10に係る発明では、請求項 9に記載の漏洩検査装置において、該吸 引手段は、漏洩を検査すべき容器から回収した該物質又は一部の該物質を吸着す る吸着材料を有し、該供給手段は、該吸着材料に吸着された物質を放出させ、ある いは、漏洩を検査すべき容器に収容される物質成分と同じ成分の物質又は該成分 に含まれる一部の物質を収容する他の容器力 供給させるものであることを特徴とす る。  [0018] In the invention according to claim 10, in the leak inspection apparatus according to claim 9, the suction means adsorbs the substance or a part of the substance collected from a container to be inspected for leakage. The supply means releases the substance adsorbed on the adsorbent material, or contains the same component as or contained in the component contained in the container to be inspected for leakage. It is characterized in that it supplies other containers that contain some substances to be supplied.
発明の効果  The invention's effect
[0019] 請求項 1に係る発明により、漏洩を検査すべき容器を加圧又は減圧する加減圧ェ 程における、加圧又は減圧の時間系列に対応した参照信号を利用して、計測された 圧力変化信号の中から、漏洩に係る相関成分を同定し、温度変化に影響されること なく漏洩を検出することが可能となる。本発明では、漏洩検査中に温度補償が平行し て実施されるので、検査に長時間を要する大容量容器の漏洩検査も正確に行うこと ができる。  [0019] According to the invention of claim 1, the pressure measured using the reference signal corresponding to the time series of pressurization or depressurization in the pressurization or depressurization step of pressurizing or depressurizing the container to be inspected for leakage. From the change signal, it is possible to identify the correlation component related to the leak and detect the leak without being affected by the temperature change. According to the present invention, since the temperature compensation is performed in parallel during the leak inspection, the leak inspection of a large-capacity container requiring a long time for the inspection can be accurately performed.
[0020] また、請求項 2に係る発明により、圧力の時間変化信号と参照信号との相関をとるこ とで、加減圧工程および圧力計測工程を単純ィ匕することが可能となる。 [0020] Further, according to the invention of claim 2, it is possible to correlate the time change signal of the pressure with the reference signal. Thus, the pressurizing / depressurizing step and the pressure measuring step can be simplified.
[0021] また、請求項 3に係る発明により、参照信号が、加減圧工程時及び該工程直後の 過渡応答期間の信号を相関算出から除くように構成されるため、加減圧工程時及び 該工程直後の過渡応答期間において、容器内の圧力が急激に変化した場合でも、 漏洩検査時のノイズとなる圧力変化を除去し、漏洩検査に必要な圧力状態のみを効 果的に検出でき、精度の高い漏洩検査を実現することが可能となる。  [0021] Further, according to the invention of claim 3, the reference signal is configured so as to exclude the signal in the transient response period immediately after the compression / decompression step from the correlation calculation from the correlation calculation. Even if the pressure inside the container changes suddenly during the transient response period immediately after, the pressure change which is a noise at the time of leakage inspection is removed, and only the pressure state necessary for leakage inspection can be effectively detected, and accuracy is improved. It is possible to realize high leakage inspection.
[0022] また、請求項 4に係る発明により、加減圧工程は、漏洩を検査すべき容器に収容さ れる物質成分と同じ成分の物質又は該成分に含まれる一部の物質を供給又は吸引 することで、容器に収容された物質と異なる物質が、容器内に取り込まれることを防止 でき、検査後に容器に収容された物質を入れ替えるなどの作業を省略することが可 能となるとともに、可燃性ガスや有毒ガスを大気中に放出することなく漏洩検査を実 施することが可能となる。  [0022] Further, according to the invention according to claim 4, in the pressurizing and depressurizing step, a substance having the same component as the substance component contained in the container to be inspected for leakage or a part of the substance contained in the component is supplied or sucked. As a result, it is possible to prevent a substance different from the substance contained in the container from being taken into the container, and it is possible to omit operations such as replacing the substance contained in the container after the inspection, and to reduce the flammability. Leak inspection can be performed without releasing gas or toxic gas into the atmosphere.
[0023] また、請求項 5に係る発明により、前記吸引で、漏洩を検査すべき容器から回収し た物質又はその一部の物質を吸着材料に吸着させることにより、効率よく吸引作業を 行うことができ、吸着された物質を安定に保持することが可能となる。また、前記供給 で、前述の吸着した物質を該吸着材料力 放出させることにより、漏洩を検査すべき 容器に収容される物質成分と同じ成分の物質又は該成分に含まれる一部の物質を 供給するガスボンベなどの他の容器を配置する必要が無い。あるいは、前記供給で 、他の容器から漏洩を検査すべき容器に収容される物質成分と同じ成分の物質又は 該成分に含まれる一部の物質を供給させる場合には、吸着した物質を放出させるた めの特別な手段を省略することが可能となる。  [0023] Further, according to the invention according to claim 5, the suction operation can be performed efficiently by causing the substance collected from the container to be inspected for leakage or a part of the substance to be adsorbed to the adsorbent material by the suction. This makes it possible to stably hold the adsorbed substance. In addition, in the supply, the above-mentioned adsorbed material is released by the adsorbing material to supply a substance having the same component as the substance contained in the container to be inspected for leakage or a part of the substance contained in the component. There is no need to arrange another container such as a gas cylinder. Alternatively, in the above-mentioned supply, when a substance having the same component as the substance contained in the container to be inspected for leakage from another container or a part of the substance contained in the component is supplied, the adsorbed substance is released. It is possible to omit special measures for this.
[0024] また、請求項 6に係る発明により、請求項 1に係る発明と同様に、加圧又は減圧の 時間系列に対応した参照信号を利用して、計測された圧力変化信号の中から、漏洩 に係る相関成分を同定し、温度変化に影響されることなく漏洩を検出することが可能 な漏洩検査装置を提供できる。本発明によって、漏洩検査中に温度補償を平行して 実施することで、検査に長時間を要する大容量容器の検査も正確に行える漏洩検査 装置を提供することができる。  [0024] Further, according to the invention of claim 6, similarly to the invention of claim 1, from the measured pressure change signal using the reference signal corresponding to the time series of the pressurization or decompression, It is possible to provide a leakage inspection device capable of identifying a correlation component relating to leakage and detecting the leakage without being affected by a temperature change. According to the present invention, it is possible to provide a leakage inspection apparatus capable of accurately inspecting a large-capacity container requiring a long time for inspection by performing temperature compensation in parallel during leakage inspection.
[0025] また、請求項 7に係る発明により、容器の容積と、演算手段によって算出された相関 成分の値を用いることにより、該容器力 の漏洩の大きさを算出することが可能となる と共に、特に、請求項 8に係る発明のように、容器を加圧又は減圧する際の、容器へ 流入又は容器力 流出する流体の流量を計測し、容器の容積を算出することにより、 自動的に漏洩量を算出することも可能となる。 [0025] Further, according to the invention of claim 7, the volume of the container and the correlation calculated by the calculation means are calculated. By using the values of the components, it is possible to calculate the magnitude of the leakage of the container force, and particularly to the container when the container is pressurized or depressurized as in the invention according to claim 8. By measuring the flow rate of the fluid flowing into or out of the vessel and calculating the volume of the vessel, it is possible to automatically calculate the amount of leakage.
[0026] また、請求項 9に係る発明により、請求項 4に係る発明と同様に、加減圧の際には、 漏洩を検査すべき容器に収容される物質成分と同じ成分の物質又は該成分に含ま れる一部の物質を供給又は吸弓 Iするため、容器に収容された物質と異なる物質が、 容器内に取り込まれることを防止でき、検査後に容器に収容された物質を入れ替え るなどの作業を省略することが可能となるとともに、可燃性ガスや有毒ガスを大気中 に放出することなく漏洩検査を実施することが可能となる。  [0026] According to the ninth aspect of the present invention, similarly to the fourth aspect of the invention, at the time of pressurization or depressurization, a substance having the same composition as the substance contained in the container whose leakage is to be inspected or the same substance Supply or absorption of some substances contained in the container, it is possible to prevent a substance different from the substance contained in the container from being taken into the container, and to replace the substance contained in the container after the inspection. The work can be omitted, and a leak inspection can be performed without releasing flammable gas or toxic gas into the atmosphere.
[0027] また、請求項 10に係る発明により、請求項 5に係る発明と同様に、吸引時に、漏洩 を検査すべき容器から回収した物質又はその一部の物質を吸着材料に吸着させるこ とにより、効率よく吸引作業を行うことができ、吸着された物質を安定に保持すること が可能となる。また、供給時に、前述の吸着した物質を該吸着材料力 放出させるこ とにより、漏洩を検査すべき容器に収容される物質成分と同じ成分の物質又は該成 分に含まれる一部の物質を供給するガスボンベなどの他の容器を配置する必要が無 い。あるいは、該供給時で、他の容器から漏洩を検査すべき容器に収容される物質 成分と同じ成分の物質又は該成分に含まれる一部の物質を供給させる場合には、吸 着した物質を放出させるための特別な手段を省略することが可能となる。  [0027] Further, according to the invention of claim 10, as in the invention of claim 5, the substance collected from the container whose leakage is to be inspected or a part of the substance is adsorbed to the adsorbent material at the time of suction. Thereby, the suction operation can be performed efficiently, and the adsorbed substance can be stably held. Further, at the time of supply, the above-mentioned adsorbed substance is released from the adsorbed material to thereby release a substance having the same component as the substance contained in the container to be inspected for leakage or a partial substance contained in the component. There is no need to arrange other containers such as gas cylinders to supply. Alternatively, at the time of the supply, if a substance of the same component as the substance contained in the container to be inspected for leakage from another container or a part of the substance contained in the component is supplied, the adsorbed substance is used. Special means for release can be omitted.
図面の簡単な説明  Brief Description of Drawings
[0028] [図 1]容器内の漏洩状態のモデルを示す図である。 FIG. 1 is a view showing a model of a leak state in a container.
[図 2]容器内の漏洩状態に係る関係式をブロック線図で表現した図ある。  FIG. 2 is a diagram expressing, in a block diagram, a relational expression relating to a state of leakage in a container.
[図 3]本発明の漏洩検査装置の概略図である。  FIG. 3 is a schematic view of a leakage inspection device according to the present invention.
[図 4]圧力の時間変化を用いる漏洩検査装置の概略図である。  FIG. 4 is a schematic diagram of a leakage inspection device using a time change in pressure.
[図 5]圧力の時間変化を用いる漏洩検査装置の制御回路のブロック図である。  FIG. 5 is a block diagram of a control circuit of the leakage inspection device using a time change in pressure.
[図 6]温度変動なし、漏洩なしの場合における漏洩検査状況を示す図である。  FIG. 6 is a diagram showing a leakage inspection situation in the case where there is no temperature fluctuation and no leakage.
[図 7]温度変動なし、漏洩ありの場合における漏洩検査状況を示す図である。  FIG. 7 is a diagram showing a leak inspection situation when there is no temperature fluctuation and there is a leak.
[図 8]温度変動あり、漏洩なしの場合における漏洩検査状況を示す図である。 [図 9]温度変動あり、漏洩ありの場合における漏洩検査状況を示す図である。 FIG. 8 is a diagram showing a leak inspection situation in a case where there is a temperature fluctuation and no leakage. FIG. 9 is a diagram showing a leak inspection situation when there is a temperature fluctuation and a leak.
[図 10]温度変動なし、漏洩ありの場合における一方向ポンプを利用した漏洩検査状 況を示す図である。  FIG. 10 is a diagram showing a leak inspection situation using a one-way pump when there is no temperature fluctuation and there is a leak.
[図 11]温度変動なし、漏洩ありの場合における不規則加減圧を利用した漏洩検査状 況を示す図である。  FIG. 11 is a diagram showing a leak inspection situation using irregular pressurization and depressurization when there is no temperature fluctuation and there is a leak.
鬧 12]吸着材料を用いた場合の漏洩検査装置の概略図である。 FIG. 12 is a schematic diagram of a leak inspection device using an adsorbent material.
[図 13]吸着材料及びガスボンベを利用した漏洩検査装置の概略図である。  FIG. 13 is a schematic diagram of a leak inspection device using an adsorbent material and a gas cylinder.
符号の説明 Explanation of symbols
1 容器 1 container
2 圧力センサ  2 Pressure sensor
3 ピストン  3 piston
4 シリンダー  4 cylinder
5 リニアァクチユエ一ター  5 Linear Actuator
6 発振器  6 oscillator
7 90° 移相器  7 90 ° phase shifter
8 相関器  8 Correlator
11 接続部  11 Connection
12 検知ホース  12 Detection hose
13, 17 ノルブ  13, 17 Norbu
14 圧力センサ  14 Pressure sensor
15, 34, 38 電動ポンプ  15, 34, 38 Electric pump
16 コントローラ  16 Controller
20 AZD変換部  20 AZD converter
21 dPZdt算出部  21 dPZdt calculator
22 同期検波回路部  22 Synchronous detection circuit
23 平滑回路部  23 Smoothing circuit
24 加減圧制御部  24 Pressurization control section
25 参照信号発生部 26 漏洩判定部 25 Reference signal generator 26 Leak judgment unit
27 漏洩量算出部  27 Leakage amount calculation unit
31, 36 吸着容器  31, 36 adsorption vessel
32 吸着材料  32 Adsorption material
43 供給容器  43 Supply container
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0030] 本発明の基本的考え方について、以下の説明する。 [0030] The basic concept of the present invention will be described below.
図 1は、本発明に係る漏洩検査方法の対象となる、配管などの容器の漏洩状態を モデル化したものである。  FIG. 1 is a model of a leak state of a container such as a pipe, which is a target of the leak inspection method according to the present invention.
容器内に気体が存在し、該気体の状態を示すものとして、気体の圧力 P、気体の温 度 T、容器内の気体の質量 Μ、気体の平均分子量 m、気体の平均密度 p、容器内 の体積 Vと仮定する。  The presence of gas in the container, and the state of the gas, indicate the gas pressure P, the gas temperature T, the mass of the gas in the container Μ, the average molecular weight m of the gas, the average density p of the gas, Suppose that the volume V of
0  0
該容器が漏洩状態にある場合、容器内から漏洩する気体の体積流量を Qとする。 また、検査対象である容器に対し、ポンプ等により容器内の気体を加減圧したとき に、容器に流入する気体の質量流量を Gと仮定する。  When the container is in a leak state, let Q be the volume flow rate of gas leaking from the container. Also, assume that the mass flow rate of gas flowing into the container when the gas in the container is pressurized and depressurized by a pump or the like to the container to be inspected is G.
[0031] 容器内の気体に関する状態方程式は、次の式(1)で与えられる。 [0031] The state equation relating to the gas in the container is given by the following equation (1).
PV =MRT/m (1)  PV = MRT / m (1)
0  0
容器内の気体の状態量の時間変化を考えると、式(1)の両辺を時間微分すること により、次の式(2)が得られる。  Considering the time change of the state quantity of the gas in the container, the following equation (2) is obtained by time-differentiating both sides of the equation (1).
V -dP/dt= RT/m -dM/dt+ MR/m · dT/dt · · · · (2)  V -dP / dt = RT / m -dM / dt + MR / mdT / dt
o  o
[0032] 容器内の初期の状態は、初期圧力 P、初期質量 M、初期温度 Tとする場合、次  [0032] The initial state in the container is as follows when the initial pressure P, the initial mass M, and the initial temperature T are:
0 0 0  0 0 0
の状態方程式 (3)で表される。  It is expressed by the state equation (3).
P V =M RT / (3)  P V = M RT / (3)
0 0 0 0  0 0 0 0
漏洩による容器内の気体の質量 M、気体の温度 Tの変化がともに微小であると仮 定し、二次の微小項を無視すると、式(2)は、上記式(3)を利用して、次式のようにな る。  Assuming that the changes in the mass M of the gas in the container and the temperature T of the gas in the vessel due to leakage are both small, and neglecting the second-order minute term, Equation (2) can be calculated using Equation (3) above. The following equation is obtained.
V -dP/dt=P V /M -dM/dt+P V /T -dT/dt  V -dP / dt = P V / M -dM / dt + P V / T -dT / dt
0 0 0 0 0 0 0  0 0 0 0 0 0 0
上式の両辺を P Vで割ると、次の式 (4)が得られる。 1/P -dP/dt= l/M -dM/dt+ l/T -dT/dt · · · (4) By dividing both sides of the above equation by PV, the following equation (4) is obtained. 1 / P -dP / dt = l / M -dM / dt + l / T -dT / dt (4)
0 0 0  0 0 0
[0033] いま、容器への加圧工程により、容器内に気体が流入する(流入質量流量 G)と共 に、容器の一部より気体が漏洩している(体積流量 Q)とすると、容器内の質量変化 は、次の式(5)で表現される。ここに、 pは気体の平均密度である。  Now, assuming that gas is leaking from a part of the container (volume flow rate Q) together with gas flowing into the container (inflow mass flow rate G) by the pressurizing step to the container, Is represented by the following equation (5). Where p is the average density of the gas.
dM/dt=- Q + G (5)  dM / dt =-Q + G (5)
他方、容器力ゝらの体積流量 Qは、漏洩が小さぐ容器内の気体密度や圧力変化が 微小である場合には、内外圧力差に比例するので、次の式 (6)のように表現される。  On the other hand, the volume flow rate Q of the container force is proportional to the pressure difference between the inside and outside when the gas density and pressure change in the container where leakage is small is small, so it is expressed as the following equation (6). Is done.
Q= (P-P ) -k =p (t) -k (6)  Q = (P-P) -k = p (t) -k (6)
A 1 1  A 1 1
ただし、 Pは大気圧、 p (t) =P— Pは容器内外の圧力差、 kは漏洩の大きさを表す  Where P is the atmospheric pressure, p (t) = P—P is the pressure difference between the inside and outside of the vessel, and k is the magnitude of the leak
A A 1  A A 1
係数である。  It is a coefficient.
[0034] 上記式 (4)に、上記式(5)及び (6)を代入すると共に、両辺に Pを掛け、さらに気  [0034] The above equations (5) and (6) are substituted into the above equation (4), and P is multiplied on both sides to further increase the energy.
0  0
体の平均密度が p =M /Vであることを利用すると、次の式(7)が得られる。 Using the fact that the average density of the body is p = M / V, the following equation (7) is obtained.
0 0  0 0
dp (t) /dt=-k-p (t) +P /M -G + P /T -dT/dt  dp (t) / dt = -k-p (t) + P / M -G + P / T -dT / dt
0 0 0 0  0 0 0 0
… · · (7)  … · · (7)
ただし、 k=P /V -kであり、また、圧力 Pの時間変化が、容器内外の圧力差 p (t)  Where k = P / V-k, and the time change of the pressure P is the pressure difference p (t) between the inside and outside of the container.
0 0 1  0 0 1
の時間変化に等しいことを用いている。  Is used.
[0035] 上記式(7)から、容器内の圧力の時間変化量が、容器からの漏洩に係る項 (一 k'p ( t) )、容器内に流入する気体の質量流量 Gに依存する項 P /M 及び、容器内  From the above equation (7), the time variation of the pressure in the container depends on the term (1 k′p (t)) related to leakage from the container and the mass flow rate G of the gas flowing into the container. Item P / M and in container
0 0  0 0
の気体の温度変化に依存する項 P /Ύ 'dTZdtとからなっていることが理解される  It is understood that it consists of the term P / Ύ'dTZdt that depends on the temperature change of the gas
0 0 そして、容器の漏洩検査とは、容器モデルを記述する式(7)中の、漏洩に係わる項 の大きさ、すなわち係数 k (あるいは k )を特定する作業であると言うことができる。  0 0 And the leak inspection of the container can be said to be the operation of specifying the size of the term relating to the leak, that is, the coefficient k (or k), in the equation (7) describing the container model.
[0036] 図 2は、上記式(7)をブロック線図で表現したものである。  FIG. 2 is a block diagram of the above equation (7).
ブロック線図から明らかなように、漏洩状態にある容器は、容器に加えられる気体の 流入質量流量に比例する P /M 'Gを入力、容器内外の圧力差 p (t)を出力とし、漏  As is clear from the block diagram, a leaking vessel inputs P / M'G, which is proportional to the inflow mass flow rate of the gas added to the vessel, and outputs the pressure difference p (t) between the inside and outside of the vessel.
0 0  0 0
洩の大きさに比例したフィードバックループを有する一次遅れ系として記述される。そ して、気体の温度変化に係る成分 P /T 'dTZdtは、このシステムの入力に加算的  It is described as a first-order lag system with a feedback loop proportional to the magnitude of the leak. Then, the component P / T'dTZdt related to the temperature change of the gas is added to the input of this system.
0 0  0 0
に重畳される雑音となって 、る。 したがって、漏洩検知の問題は、未知の外乱 P 0 /T 0 'dTZdtが混入する図 2のシ ステムの係数 kを、入力と出力から推定する、システム同定問題として定式ィ匕される。 ただし、未知外乱である温度変動 dTZdtの性質は、実験'測定データ及び容器の 熱的なダイナミックスから、ある程度の推測が可能である。 The noise is superimposed on the noise. Therefore, the problem of leak detection is formulated as a system identification problem in which the coefficient k of the system in FIG. 2 into which the unknown disturbance P 0 / T 0 'dTZdt is mixed is estimated from the input and the output. However, the nature of the temperature disturbance dTZdt, which is an unknown disturbance, can be estimated to some extent from the experimental data and the thermal dynamics of the container.
[0037] システムへの入力である P /M · Gは自由に設定することができるから、外乱であ  [0037] Since P / M · G, which is an input to the system, can be set freely,
0 0  0 0
る温度変動 dTZdtと無相関となるように Gを設定し、このときの圧力差 p(t)を観測し て相関法を利用すれば、温度変動に影響されることなぐ係数 kすなわち漏洩の大き さを同定することが可能になる。  If G is set so as to be uncorrelated with the temperature fluctuation dTZdt, and the pressure difference p (t) is observed and the correlation method is used, the coefficient k that is not affected by the temperature fluctuation, that is, the magnitude of the leakage Can be identified.
相関法を用いる場合の入力信号 P /M  Input signal P / M when using the correlation method
0 0 'Gの条件は、次のとおりである。  The condition of 0 0 'G is as follows.
(a) 温度変動 dTZdtと無相関な信号であること。  (a) The signal must be uncorrelated with the temperature fluctuation dTZdt.
(b) 容器内が等温変化とみなせること。具体的には入力信号の卓越周波数が、容 器の熱時定数の逆数と比較して十分低!、こと。  (b) The inside of the container can be regarded as an isothermal change. Specifically, the dominant frequency of the input signal is sufficiently low compared to the reciprocal of the thermal time constant of the container!
(c) 入力信号の卓越周波数が、容器の漏洩時定数 (lZk)の逆数と比較して十分 高いこと。  (c) The dominant frequency of the input signal is sufficiently higher than the reciprocal of the leak time constant (lZk) of the container.
なお、相関関数の性質力 導かれる等式である以下の数 1を用いれば、入力の時 間積分 P /M · ί Gdtと、出力の時間微分 dp (t)Zdtの相関を利用することもできる By using the following equation (1), which is an equation derived from the correlation function, it is also possible to use the correlation between the time integral P / M · Gdt of the input and the time derivative dp (t) Zdt of the output. it can
0 0 0 0
。 P ZM · ί Gdtは、容器に気体を流入または流出させたときの加圧量または減圧 . P ZM · ί Gdt is the amount of pressurization or decompression when gas flows into or out of the container.
0 0 0 0
量に一致し、一方、 dp (t)Zdtは容器内圧力の時間変化である。  While dp (t) Zdt is the time variation of the pressure in the vessel.
[0038] [数 1] [0038] [number 1]
) - -0 (τ))--0 (τ)
Figure imgf000012_0001
図 3に、本発明に係る漏洩検査方法の一例を示す。
Figure imgf000012_0001
FIG. 3 shows an example of the leak inspection method according to the present invention.
配管等の容器 1には、シリンダー 4及びピストン 3からなる加圧又は減圧する加減圧 手段が接続されている。加減圧手段は、図 3のような形状のものに限らず、後述する ような電動ポンプを用いることも可能である。さらに、加圧手段と減圧手段とを別々の 部材で構成することもできる。また、容器 1の内圧を測定するために、容器 1と加減圧 手段とを連接する配管の途中に圧力センサ 2が接続されて 、る。 A vessel 1 such as a pipe is connected to a pressurizing or depressurizing means comprising a cylinder 4 and a piston 3 for increasing or decreasing pressure. The pressurizing / depressurizing means is not limited to the shape as shown in FIG. 3, and an electric pump as described later can be used. Further, the pressurizing means and the depressurizing means can be constituted by separate members. In order to measure the internal pressure of container 1, The pressure sensor 2 is connected in the middle of the pipe connecting the means.
[0040] カロ減圧手段のピストン 3には、該ピストンを往復運動させるためのリニアァクチユエ 一ター 5が接続されている。ァクチユエ一ターは、発振器 6からの入力信号に対応し た移動距離だけ可動部が上下動し、結果として、該可動部に接続されるピストン 3が 往復運動を行うよう構成されて ヽる。 [0040] A linear actuator 5 for reciprocating the piston is connected to the piston 3 of the caro pressure reducing means. The actuator is configured such that the movable portion moves up and down by a moving distance corresponding to the input signal from the oscillator 6, and as a result, the piston 3 connected to the movable portion performs reciprocating motion.
今、発振器から sin co tの入力信号がァクチユエ一ター 5に印加された場合には、ピ ストン 3は、 X sin co tで往復運動を行う。ただし、 Xは、ピストンの往復運動に係る振  Now, when an input signal of sin cot is applied to the actuator 5 from the oscillator, the piston 3 reciprocates at X sin cot. Where X is the vibration related to the reciprocation of the piston.
0 0  0 0
幅値を示す。ここで、往復運動の角周波数 ωは、次の条件を満たすように選ばれて いる。  Indicates the width value. Here, the angular frequency ω of the reciprocating motion is selected so as to satisfy the following condition.
•温度変動 dTZdtに角周波数 ωの周波数成分は含まれな ヽ。  • Temperature component dTZdt does not include the frequency component of angular frequency ω.
•容器内の温度変化が等温変化とみなせる程度に十分低い角周波数である。 •漏洩による容器のカットオフ周波数 (k)に較べて ωは十分高い角周波数である。  • The angular frequency is low enough that the temperature change in the container can be regarded as an isothermal change. • ω is a sufficiently high angular frequency compared to the cutoff frequency (k) of the container due to leakage.
[0041] 初期圧力 Ρを大気圧 Ρとして、ピストンを往復運動させることにより、容器 1内は sin By setting the initial pressure 大 to the atmospheric pressure Ρ and reciprocating the piston, the inside of the container 1 becomes sin
0 A  0 A
co tで規定される所定の時間系列で加圧又は減圧される。式(7)と対応させたときの 質量流量 Gは、ピストンの断面積を Sとして、(0 ω χ Scos co t = M /V · ω χ Scos co  The pressure is increased or decreased in a predetermined time sequence defined by cot. The mass flow rate G corresponding to the equation (7) is expressed as (0 ω χ Scos co t = M / V · ω χ Scos co
0 0 0 0 tである。容器 1内の圧力は、圧力センサ 2で検知される。検知された圧力検出信号を 0 0 0 0 t. The pressure in the container 1 is detected by the pressure sensor 2. The detected pressure detection signal
P (t)とし、該圧力検出信号は、相関器 8に入力される。 P (t), and the pressure detection signal is input to the correlator 8.
他方、発振器力 の入力信号は、 90° 移相器 7により、入力信号から位相が 90° だけシフトした参照信号 cos co tが出力され、相関器 8に入力される。  On the other hand, the input signal of the oscillator power is output by the 90 ° phase shifter 7 as a reference signal cos cot whose phase is shifted by 90 ° from the input signal, and is input to the correlator 8.
[0042] 容器内の圧力 P (t)は、ピストンの運転開始力 十分に時間の経った定常状態では[0042] The pressure P (t) in the container is equal to the starting force of the piston in a steady state after a sufficient time has passed.
、以下の数 2となる。 And the following equation (2).
[0043] [数 2] [0043] [Equation 2]
PQ +P Q +
Figure imgf000013_0001
Figure imgf000013_0001
[0044] 相関器 8において、圧力検出信号 P (t)と参照信号 cos co tの相関を計算すると、第一 項の一定圧力 P When the correlation between the pressure detection signal P (t) and the reference signal cos cot is calculated in the correlator 8, the constant pressure P
0との相関はゼロであり、また、温度変動 dTZdtには角周波数 ωの 成分が含まれないから、第三項との相関もまたゼロとなる。結局、相関器 8の出力は、 第二項との相関 P /V · ω χ S 'k/ (k2+ ω 2)となる。ここで、 0)カ¾に比べて十分に The correlation with 0 is zero, and the temperature fluctuation dTZdt does not include the component of the angular frequency ω, so the correlation with the third term is also zero. After all, the output of correlator 8 is Correlation with the second term P / V · ω χ S 'k / (k 2 + ω 2 ). Here, 0)
0 0 0  0 0 0
大きいことを考慮すると、相関器の出力は、 Ρ /V ·χ S'kZ oと近似される。この出  Considering that it is large, the output of the correlator is approximated as Ρ / V · χS'kZo. This out
0 0 0  0 0 0
力から漏洩の大きさを表す係数 kを求めることができる。  From the force, the coefficient k representing the magnitude of the leak can be determined.
[0045] 図 3の実施例においては、入力信号を決定する気体の流入質量流量 Gとして、正 弦波信号を用い、その角周波数を、温度変動 dTZdtが周波数成分として含んでい ない値に選んでいる。流入質量流量 Gとしては、温度変動と無相関でさえあれば、任 意のアナログ信号を用いることが可能であり、白色雑音などの不規則信号を用いるこ とちでさる。  In the embodiment of FIG. 3, a sine wave signal is used as the inflow mass flow rate G of the gas that determines the input signal, and its angular frequency is selected to a value that the temperature fluctuation dTZdt does not include as a frequency component. In. As the inflow mass flow rate G, any analog signal can be used as long as there is no correlation with temperature fluctuation, and an irregular signal such as white noise is used.
この他に、装置を単純化するため、図 6— 9に例示するように規則的な加減圧工程 を繰り返す方法もある。さらに、計算しやすさを考慮して、流入質量流量 Gの時間積 分と同位相の参照信号と、容器内圧力の時間変化との相関をとる方法がある。規則 的な加減圧工程を繰り返す場合には、相関を計算する具体的な演算装置として、同 期検波回路を用いることができる。また、図 10に例示するように、容器の加圧又は減 圧と大気圧への開放を繰り返す方法、図 11に例示する不規則な加減圧工程を用い る方法ちある。  In addition, there is a method of repeating a regular pressurizing and depressurizing step as illustrated in FIGS. 6-9 to simplify the apparatus. Furthermore, there is a method of correlating the reference signal in phase with the time integration of the inflow mass flow rate G and the time change of the pressure in the container in consideration of ease of calculation. When the regular pressurization and depressurization steps are repeated, a synchronous detection circuit can be used as a specific arithmetic device for calculating the correlation. Further, as illustrated in FIG. 10, there are a method of repeating pressurizing or depressurizing the container and opening to the atmospheric pressure, and a method of using an irregular pressurizing / depressurizing step illustrated in FIG.
[0046] 次に、本発明の好適な実施例として、容器内圧力の時間変化との相関を算出する 方法を、ガス配管の漏洩検査装置を例にとって説明する。  Next, as a preferred embodiment of the present invention, a method of calculating the correlation with the time change of the pressure in the container will be described, taking a leak inspection device of a gas pipe as an example.
図 4は、本発明の漏洩検査装置の機械的構成の概念を示した概略図である。 漏洩検査装置内には、被検査体である容器内に空気などの気体を供給、あるいは 、容器内から気体を排出するための電動ポンプ 15、容器内の圧力を検査するための 圧力センサ 14、容器内への気体の供給量又は容器内からの気体の排出量を制御 するためのノ レブ又は逆止弁 13、容器内の圧力を大気圧と等しくするためのバルブ 17が、図 4のような接続構造にて相互に接続配置されている。  FIG. 4 is a schematic diagram showing the concept of the mechanical configuration of the leakage inspection device of the present invention. Inside the leak inspection device, an electric pump 15 for supplying gas such as air to the container to be inspected or discharging gas from the container, a pressure sensor 14 for inspecting the pressure inside the container, As shown in Fig. 4, a knob or check valve 13 for controlling the amount of gas supplied to the container or the amount of gas discharged from the container 13 and a valve 17 for equalizing the pressure in the container to the atmospheric pressure are provided as shown in Fig. 4. Are connected to each other with a simple connection structure.
圧力計測装置からは検知ホース 12が延出しており、接続部 11に示すように、検査 時においては、検査対象のガス配管などの容器に設けられたガス栓などの排出口に 検知ホース 12の先端を接続する。  A detection hose 12 extends from the pressure measuring device, and as shown in a connection section 11, at the time of inspection, the detection hose 12 is connected to a discharge port such as a gas tap provided in a container such as a gas pipe to be inspected. Connect the tip.
なお、一般家庭のガス配管程度の容量に関し配管検査を行う場合には、電動ボン プ 15を漏洩検査装置に組み込む方が、携行や取り扱いにおける便利性が高い。し かし、工場のプラントの配管など容量が大きい容器を検査する場合には、容器内へ の空気などの供給量が増大するため、漏洩検査装置と電動ポンプとを別々に設け、 各機器の配管を相互に接続可能とすることが望ましい。 In addition, when conducting a pipe inspection on the capacity of a gas pipe of a general household, it is more convenient to carry and handle by incorporating the electric pump 15 into a leak inspection device. Shi However, when inspecting a container with a large capacity, such as a pipe in a factory plant, the supply amount of air and the like into the container increases. Are desirably connectable to each other.
[0047] 上述した図 4の構成に限らず、例えば、被検査体である容器内に収容された物質を 大気中に放出したり、容器内に収容された物質と異なる物質が該容器内に取り込ま れることを防止するために、図 12又は図 13に示すような構成を採用することも可能で ある。  [0047] Not limited to the configuration of FIG. 4 described above, for example, a substance contained in a container, which is an object to be inspected, may be released into the atmosphere, or a substance different from the substance contained in the container may be contained in the container. It is also possible to adopt a configuration as shown in FIG. 12 or FIG. 13 in order to prevent being taken in.
図 12では、吸着容器 31に収容された吸着材料 32を利用し、ポンプ 15とバルブ B を介する加圧系の流路と、バルブ Aを介する減圧系の流路により構成される。減圧時 には、ポンプ 15が停止状態でバルブ Bが閉じられ、ノ レブ Aを開放することで、検査 対象内のガスを吸着材料 31が吸着し、検査対象内を減圧状態とすることが可能とな る。特に、吸着材料 32の作用を補助するために、予め吸着容器 31内を検査対象と 比較し減圧状態に保持しておくことが好ましい。また、必要に応じて、ノ レブ Aの検 查対象側にポンプ (不図示)を設置し、吸着材料側に吸着すべきガスを集めることも 可能である。このような吸着材料としては活性炭などの公知の材料が使用可能である  In FIG. 12, an adsorbent material 32 stored in an adsorption container 31 is used, and is constituted by a flow path of a pressurized system via a pump 15 and a valve B, and a flow path of a depressurized system via a valve A. During depressurization, the pump 15 is stopped, the valve B is closed, and the knob A is opened, so that the gas in the test object is adsorbed by the adsorbent material 31 and the pressure in the test object can be reduced. It becomes. In particular, in order to assist the action of the adsorbent material 32, it is preferable that the inside of the adsorption container 31 be held in advance in a reduced pressure state in comparison with the test object. If necessary, a pump (not shown) can be installed on the detection target side of Knob A to collect gas to be adsorbed on the adsorption material side. Known materials such as activated carbon can be used as such an adsorption material.
[0048] また、加圧する場合には、バルブ Aを閉じ、バルブ Bを開放することにより、ポンプ 1 5の動作により、吸着材料 32が吸着したガスを、検査対象に送出することが可能とな る。ガスの送出効率を高めるため、必要に応じて、吸着材料を加熱し吸着したガスを 放出し易!、状況を設定することもできる。 When pressurizing, by closing valve A and opening valve B, the pump 15 allows the gas adsorbed by the adsorbent material 32 to be sent out to the test object by the operation of the pump 15. You. If necessary, the adsorbent can be heated to release the adsorbed gas and the conditions can be set to increase the gas delivery efficiency.
[0049] 次に、図 13では、検査対象内を減圧する際に、図 12と同様に検査対象内のガスを 吸着する吸着材料を使用している。減圧時にはバルブ Cを開放し、バルブ Dを閉じる ことにより減圧動作を行い、加圧時にはノ レブ Cを閉じ、ノ レブ Dを開放することによ り、ガスの供給手段である供給容器 (ガスボンベ) 43から、ガスを検査対象内に供給 する。供給容器 43内の圧力は、予め検査対象内より高い気圧となるように設定され ている。  Next, in FIG. 13, when depressurizing the inside of the inspection object, an adsorbing material that adsorbs the gas in the inspection object is used as in FIG. During depressurization, the valve C is opened, and the valve D is closed to perform the depressurizing operation. During pressurization, the knurl C is closed and the knurl D is opened, so that the supply container (gas cylinder) is a gas supply means. From 43, supply gas into the inspection target. The pressure in the supply container 43 is set in advance to be higher than the pressure in the inspection target.
[0050] 図 12及び図 13においては、加圧と減圧状態を適切に制御することが必要であるた め、特に、バルブ A— Dの開閉制御などを適切に行う必要がある。また、検査対象及 び吸着容器、更にはガスボンベなどの関連する機器間の流量を調整するため、各機 器間を接続する管路にオリフェスなどの流量調整手段を設けることも可能である。さら に、図 13においては、吸着材料 32に吸着したガスを、接続部 11をはじめ、バルブ C 及び Dなどを調整し、ガスボンベ 43に戻すことができる。なお、必要に応じて、バルブ C及び Dの前にポンプなどの加圧器具を装着することも可能である。 In FIG. 12 and FIG. 13, since it is necessary to appropriately control the pressurized and depressurized states, it is particularly necessary to appropriately control the opening and closing of the valves A to D. The inspection target and In order to adjust the flow rate between the related equipment such as the gas and the adsorption container and the gas cylinder, it is also possible to provide a flow rate adjusting means such as an orifice in a pipe connecting the respective equipments. Further, in FIG. 13, the gas adsorbed by the adsorbent material 32 can be returned to the gas cylinder 43 by adjusting the connection portion 11 and the valves C and D. If necessary, a pressurizing device such as a pump can be installed in front of the valves C and D.
[0051] コントローラ 16は、電動ポンプ 15の駆動制御、バルブ 13, 17の開閉制御、圧力セ ンサ 14の圧力信号の検知などを行う。そして、コントローラ 16の制御により、以下で 説明する、容器の漏洩検査、容器内の容量の計測、及び容器内の漏洩量の計測な どの各種検査を実施する。 The controller 16 performs drive control of the electric pump 15, opening and closing control of the valves 13 and 17, detection of a pressure signal of the pressure sensor 14, and the like. Then, under the control of the controller 16, various inspections such as a leakage inspection of the container, a measurement of the capacity in the container, and a measurement of a leakage amount in the container, which will be described below, are performed.
[0052] 次に、コントローラ 16に組み込まれる主な漏洩検査回路について説明する。 Next, a main leak inspection circuit incorporated in the controller 16 will be described.
図 5に示すように、漏洩検査回路は、 AZD変換部 20、 dPZdt算出部 21、同期検 波回路部 22、平滑回路部 23、加減圧制御手段である加減圧制御部 24、参照信号 発生部 25、漏洩判定部 26、そして漏洩量算出部 27からなる。  As shown in FIG. 5, the leakage inspection circuit includes an AZD conversion unit 20, a dPZdt calculation unit 21, a synchronous detection circuit unit 22, a smoothing circuit unit 23, a compression / decompression control unit 24 serving as a compression / decompression control unit, and a reference signal generation unit. 25, a leakage determination unit 26, and a leakage amount calculation unit 27.
加減圧制御部 24では、図示されて 、な 、各種の漏洩検査モードを記憶した制御 プログラムに従い、所定の時間系列で電動ポンプ 15の駆動制御及びバルブ 13, 17 の開閉制御を指示する。  The pressurizing / depressurizing control unit 24 instructs the drive control of the electric pump 15 and the opening / closing control of the valves 13 and 17 in a predetermined time sequence according to a control program in which various leak inspection modes are stored and shown.
[0053] 圧力センサ 14からの検出信号は、 AZD変換部 20に入力され、検出信号であるァ ナログ信号をデジタル信号に変換する。そして、該デジタル信号に基き、圧力 Pの時 間変化量である dPZdtを dPZdt算出部 21で算出する。 [0053] The detection signal from the pressure sensor 14 is input to the AZD conversion unit 20, and converts an analog signal, which is a detection signal, into a digital signal. Then, based on the digital signal, dPZdt, which is the time variation of the pressure P, is calculated by the dPZdt calculation unit 21.
容器力もの漏洩に係る時定数が、圧力測定時間に比べ十分に大きいと仮定できる 場合には、複数の時点で圧力測定 {t , P (t) } (i=0, 1, · · · , N)を行い、 dPZdtを 、最小二乗法などで直線近似することにより求めることも可能である。  If it can be assumed that the time constant related to the leakage of the container force is sufficiently large compared to the pressure measurement time, the pressure measurement at multiple points {t, P (t)} (i = 0, 1, N), and dPZdt can be obtained by linear approximation using the least squares method or the like.
また、加減圧工程の終了時の加圧量または減圧量のばらつきを補償するため、圧 力センサ力もの信号を用いて計算した dPZdtの値を、加圧量または減圧量の初期 値で規格ィ匕して、後の計算に用いる場合もある。  In addition, in order to compensate for the variation in the amount of pressurization or depressurization at the end of the pressurization / depressurization process, the value of dPZdt calculated using the signal of the pressure sensor force is specified by the initial value of the pressurization or depressurization. In some cases, it is used to calculate later.
[0054] 次に、加減圧制御部 24の加減圧制御手順に関連して発生される信号に基き、参 照信号発生部 25では、参照信号を発生する。 Next, the reference signal generation section 25 generates a reference signal based on a signal generated in connection with the compression / decompression control procedure of the compression / decompression control section 24.
参照信号は、各種の対応が可能であるが、例えば、 1又は- 1の信号であり、発生タ イミングが、加減圧工程時及び、該工程直後の断熱圧縮又は断熱膨張などの過渡 応答時間を除く時期である。一般に、加減圧工程時及び該工程直後の過度応答時 間では、漏洩とは無関係に圧力が大きく変化して漏洩検査のノイズの原因となるためThe reference signal can correspond to various kinds of signals. Imming is a time excluding the transient response time during the pressurization / decompression step and immediately after the step, such as adiabatic compression or adiabatic expansion. In general, during the pressurization / decompression process and during the transient response time immediately after the process, the pressure changes greatly regardless of the leakage, which causes noise in the leakage inspection.
、この期間は、参照信号が 0の値を示すよう設定される。なお、加減圧量の振幅が大 きぐ初期圧力 Pと比較して微小量とは言えない場合には、加圧時の圧力変化と減 This period is set so that the reference signal indicates a value of 0. If the amplitude of the pressure increase / decrease amount is too small compared to the initial pressure P, which is large, the pressure change during pressurization and the decrease
0  0
圧時の圧力変化に差が生じる。この場合には、参照信号として、 1又は 1の信号で はなぐ上記の差を補償する係数 αを用いて、例えば αと 1の信号とすればよい。  There is a difference in pressure change during pressure. In this case, for example, a signal of α and 1 may be used as a reference signal by using a coefficient α for compensating for the above difference between 1 and 1 signals.
[0055] 次に、計測された圧力変化信号中の、加減圧工程の時間系列に同期した参照信 号と相関を有する成分を算出する。具体的には、同期検波回路部 22では、参照信 号を基に、該参照信号が 0以外の値を有する時期の dPZdtの算出値を抽出すると 共に、抽出された該 dPZdt値に参照信号の値が掛け算される。 Next, a component of the measured pressure change signal that has a correlation with the reference signal synchronized with the time series of the pressurization and decompression process is calculated. Specifically, the synchronous detection circuit unit 22 extracts the calculated value of dPZdt at a time when the reference signal has a value other than 0 based on the reference signal, and adds the calculated value of the reference signal to the extracted dPZdt value. The value is multiplied.
次に、該同期検波回路部で抽出及び算出された信号を、平滑回路部 23により、上 記成分の大きさである時間平均値を算出するため、該同期検波回路部力 の信号の 平滑化処理を行う。  Next, the signal extracted and calculated by the synchronous detection circuit section is smoothed by the smoothing circuit section 23 so as to calculate a time average value which is the magnitude of the above-described component. Perform processing.
同期検波回路部 22及び平滑回路部 23を一体化し、参照信号が示す区間の dPZ dt値 (例えば、直線近似した平均値)に対し、参照信号の ± 1の重み付けを行い平均 ィ匕することにより、デジタル的に算出することも可能である。  The synchronous detection circuit unit 22 and the smoothing circuit unit 23 are integrated, and the dPZ dt value (for example, the average value obtained by linear approximation) of the section indicated by the reference signal is weighted by ± 1 of the reference signal and averaged. , Can also be calculated digitally.
また、 dPZdtの算出、同期検波、及び平滑化に際しては、上述したデジタル信号 により算出するものに限らず、圧力センサ 14力ものアナログ信号を、アナログ演算回 路により、アナログ信号の状態で変換する回路であっても良い。  In addition, when calculating dPZdt, synchronous detection, and smoothing, a circuit that converts an analog signal of 14 pressure sensors into an analog signal state by an analog arithmetic circuit is not limited to the calculation using the digital signal described above. It may be.
[0056] 漏洩判定部 26においては、平滑回路部 23からの信号力 0 (又は 0から所定の誤 差範囲内)の場合には、漏洩なしと判断し、それ以外の場合には漏洩ありと判断する また、漏洩量算出部においては、平滑回路部 23からの信号値と、単位時間当たり の圧力変化量は比例関係にあることから、漏洩検査装置毎又は各種の漏洩検査モ ードごとに設定される比例定数を、平滑回路部 23からの信号値に掛け合わせ、また 、別途算出又は入力される被検査体の容器の容量とを積算することにより、該容器か らの漏洩量を算出する。 容器の容量を自動的測定する方法としては、先の特許出願 (特開 2003—227773 )にも示したように、容器を加圧又は減圧する際の、容器へ流入又は容器カゝら流出す る流体の流量と、その際の容器内の圧力変化量に基き、気体の状態方程式より算出 することも可會である。 [0056] The leak determination unit 26 determines that there is no leakage when the signal power from the smoothing circuit unit 23 is 0 (or within a predetermined error range from 0), and otherwise determines that there is leakage. In addition, in the leak amount calculation unit, since the signal value from the smoothing circuit unit 23 and the pressure change amount per unit time are in a proportional relationship, the leak amount is calculated for each leak inspection device or each leak inspection mode. The amount of leakage from the container is calculated by multiplying the set proportional constant by the signal value from the smoothing circuit unit 23 and integrating the calculated and input container capacity of the test object separately. I do. As a method for automatically measuring the capacity of a container, as described in the previous patent application (Japanese Patent Application Laid-Open No. 2003-227773), when a container is pressurized or depressurized, it flows into or out of the container. It is also possible to calculate from the equation of state of the gas based on the flow rate of the fluid and the amount of pressure change in the vessel at that time.
[0057] 次に、図 6から図 9に示す漏洩検査装置の各測定例を参考に、本発明の漏洩検査 方法を具体的に説明する。  Next, the leak inspection method of the present invention will be specifically described with reference to each measurement example of the leak inspection device shown in FIGS. 6 to 9.
図 6は、電動ポンプ 15として、正逆転ポンプを用いて、被検査体の容器内を加減圧 する場合の実施例である。  FIG. 6 shows an embodiment in which a forward / reverse rotation pump is used as the electric pump 15 to increase / decrease the pressure in the container of the test object.
特に、図 6の場合は、容器内の温度変動と、漏洩のない場合の状況を示す。  In particular, Fig. 6 shows the temperature fluctuation in the container and the situation without leakage.
図 6 (a)は、電動ポンプの駆動制御及びバルブ 13, 17の開閉制御により、容器内 を加圧、減圧、加減圧停止 ·閉塞状態とするタイミングを示したものである。  FIG. 6 (a) shows the timing at which the inside of the container is pressurized, depressurized, pressurized and decompressed, and closed by the drive control of the electric pump and the opening and closing control of the valves 13 and 17.
[0058] 図 6 (b)は、上記図 6 (a)による加減圧制御により、容器内の圧力 Pの変化として、圧 力センサ 14の検出信号の出力を示すグラフである。加圧工程においては、圧力 Pが 上昇し、減圧工程においては、圧力 Pが低下する。また、加圧工程終了直後の断熱 圧縮による過渡応答や、減圧工程直後の断熱膨張による過渡応答が生じており、容 器内の気体の温度が平衡状態に達すると、圧力 Pは一定状態を示す。  FIG. 6 (b) is a graph showing the output of the detection signal of the pressure sensor 14 as a change in the pressure P in the container by the pressurization / decompression control shown in FIG. 6 (a). In the pressurizing step, the pressure P increases, and in the depressurizing step, the pressure P decreases. In addition, a transient response due to adiabatic compression immediately after the end of the pressurizing step and a transient response due to adiabatic expansion immediately after the depressurizing step occur.When the temperature of the gas in the container reaches an equilibrium state, the pressure P shows a constant state. .
[0059] 図 6 (c)は、 dPZdt算出部において、上記圧力センサ 14の検出信号である圧力 P のグラフを時間微分したグラフである。加圧工程、減圧工程、及び過渡応答期間に おいては、 0以外の値を示すが、温度変化なしであると共に、漏洩なしの場合には、 平衡状態において dPZdt=0となる。  FIG. 6 (c) is a graph obtained by time-differentiating a graph of the pressure P, which is a detection signal of the pressure sensor 14, in the dPZdt calculation unit. During the pressurizing step, the depressurizing step, and the transient response period, a value other than 0 is shown. However, if there is no temperature change and no leakage, dPZdt = 0 in the equilibrium state.
[0060] 図 6 (d)は、参照信号発生部 25からの参照信号の状態を示したグラフであり、参照 信号は、加減圧制御部 24による加減圧制御に対応して、加圧工程、減圧工程及び 過渡応答期間を除いたタイミングで、加圧工程後の平衡状態を示す時期に 1を、減 圧工程後の平衡状態を示す時期に 1を、それぞれ同一のパルス幅となるように発生 させている。  FIG. 6D is a graph showing the state of the reference signal from the reference signal generation unit 25. The reference signal corresponds to the pressurization step, At the timing excluding the depressurization process and the transient response period, 1 is generated to indicate the equilibrium state after the depressurization process, and 1 is generated to indicate the equilibrium state after the depressurization process, so that they have the same pulse width. Let me.
[0061] 図 6 (e)は、同期検波回路部 22からの出力信号を示すグラフであり、参照信号が 0 以外の値を示す場合の dPZdtの値を抽出すると共に、抽出された dPZdtの値に参 照信号値を掛け合わせたものを算出し、出力したものである。 図 6の場合は、参照信号 (d)が 0以外の値を有するタイミングでは、圧力 Pの時間変 化値 (c)は 0となっているため、(e)のグラフは、結果として 0の値を示すこととなる。 FIG. 6E is a graph showing an output signal from the synchronous detection circuit unit 22. The value of dPZdt when the reference signal indicates a value other than 0 is extracted, and the value of the extracted dPZdt is extracted. Is calculated by multiplying by the reference signal value and output. In the case of FIG. 6, when the reference signal (d) has a value other than 0, the time-varying value (c) of the pressure P is 0. Value.
[0062] 図 6 (f)は、平滑回路部 23における出力信号を示すグラフである。平滑回路部 23 では、同期検波回路部 22の出力信号 (f)を時間平均化するため、値は 0を示してい る。 FIG. 6 (f) is a graph showing an output signal in the smoothing circuit unit 23. In the smoothing circuit section 23, the value is 0 in order to time-average the output signal (f) of the synchronous detection circuit section 22.
平滑回路部 23からの出力値力^であるため、漏洩判定部 26においては、「漏洩な し」と判断する。また、漏洩量算出部 27では、圧力変化量 (圧力の時間変化)として 平滑回路部 23の出力値に定数を掛けた値を利用するため、結果として圧力変化量 が 0となり、該圧力変化量に容器の容量を掛けた漏洩量も 0と算出される。  Since it is the output value power ^ from the smoothing circuit unit 23, the leakage determination unit 26 determines that "no leakage". Also, the leak amount calculation unit 27 uses a value obtained by multiplying the output value of the smoothing circuit unit 23 by a constant as the pressure change amount (time change of the pressure). As a result, the pressure change amount becomes 0, and the pressure change amount becomes zero. Multiplied by the volume of the container is also calculated as zero.
[0063] 図 7は、容器内の温度変化がなぐ漏洩のみ発生している場合の測定状況を示した ものである。 [0063] Fig. 7 shows a measurement situation in the case where only a leak whose temperature changes in the container is generated.
図 7 (a)は、図 6 (a)と同様に、容器内を加圧、減圧、加減圧停止'閉塞状態とするタ イミングを示したものである。  FIG. 7 (a) shows the timing when the inside of the container is pressurized, depressurized, pressurized and depressurized, and closed as in FIG. 6 (a).
図 7 (b)は、図 6 (b)と同様に、容器内の圧力 Pの変化を示したものであり、漏洩があ るため、加圧工程後には、徐々に圧力が低下し、減圧工程後には徐々に上昇を示す  Fig. 7 (b) shows the change in the pressure P in the container, as in Fig. 6 (b). Shows a gradual increase after the process
[0064] 図 7 (c)は、図 6 (c)と同様に、 dPZdt算出部 21の出力を示したものであり、加圧ェ 程後の漏洩による圧力下降がマイナス値として、減圧工程後の漏洩による圧力上昇 がプラス値として算出し出力されている。 FIG. 7 (c) shows the output of the dPZdt calculation unit 21 similarly to FIG. 6 (c), and the pressure drop due to the leakage after the pressurization step becomes a negative value, The pressure rise due to the leakage of is calculated and output as a positive value.
図 7 (d)は、図 6 (d)と同様に発生される、参照信号発生部 25からの参照信号の状 態を示したグラフである。  FIG. 7D is a graph showing the state of the reference signal from the reference signal generator 25, which is generated similarly to FIG. 6D.
図 7 (e)は、図 6 (e)と同様に、 dPZdt算出部 21の出力信号 (c)を、参照信号 (d)に 基き、抽出すると共に、該抽出値に参照信号を掛け算したものである。  FIG. 7 (e) shows a signal obtained by extracting the output signal (c) of the dPZdt calculating unit 21 based on the reference signal (d) and multiplying the extracted value by the reference signal, similarly to FIG. 6 (e). It is.
図 7 (e)のグラフが示すように、加圧工程後の漏洩による圧力降下は、マイナスの d PZdt値に参照信号の 1が掛け合わされた結果、プラスの一定値として表示され、 減圧工程後の漏洩による圧力上昇は、プラスの dPZdt値に参照信号の 1が掛け合 わされた結果、プラスの一定値として表示される。  As shown in the graph of Fig. 7 (e), the pressure drop due to leakage after the pressurization step is displayed as a positive constant value as a result of multiplying the negative dPZdt value by 1 of the reference signal, and The rise in pressure due to leakage of the pressure is displayed as a positive constant value as a result of multiplying the positive dPZdt value by 1 of the reference signal.
[0065] 図 7 (f)は、図 6 (f)と同様に、平滑回路部 23における出力信号を示すグラフであり 、図 7 (e)のグラフを時間平均化するため、プラスの一定値を示す。 FIG. 7 (f) is a graph showing the output signal of the smoothing circuit unit 23, similarly to FIG. 6 (f). In order to average the graph of FIG. 7 (e) over time, a positive constant value is shown.
平滑回路部 23からの出力値がプラスの一定値であるため、漏洩判定部 26におい ては、「漏洩あり」と判断する。また、漏洩量算出部 27では、圧力変化量 (圧力の時間 変化)として、平滑回路部 23の出力値に所定の定数を掛けた値を利用し、算出され た該圧力変化量を、別途入力又は算出された容器の容量に掛け合わせることにより 、漏洩量を算出し、出力する。  Since the output value from the smoothing circuit unit 23 is a positive constant value, the leakage determination unit 26 determines that “leakage is present”. The leak amount calculation unit 27 uses a value obtained by multiplying the output value of the smoothing circuit unit 23 by a predetermined constant as the pressure change amount (time change of pressure), and separately inputs the calculated pressure change amount. Alternatively, the amount of leakage is calculated and output by multiplying the calculated capacity of the container.
[0066] 図 8は、容器内の温度変化 (温度上昇)があり、漏洩がない場合の測定状況を示し たものである。 FIG. 8 shows a measurement situation when there is a temperature change (temperature rise) in the container and no leakage.
図 8 (a)は、図 6 (a)と同様に、容器内を加圧、減圧、加減圧停止'閉塞状態とするタ イミングを示したものである。  FIG. 8 (a) shows the timing when the inside of the container is pressurized, depressurized, pressurized and depressurized, and closed as in FIG. 6 (a).
図 8 (b)は、図 6 (b)と同様に、容器内の圧力 Pの変化を示したものであり、温度上昇 があるため、加圧工程後には、徐々に圧力が上昇し、減圧工程後にも徐々に上昇を 示す。  Fig. 8 (b) shows the change in the pressure P in the container, as in Fig. 6 (b). It gradually increases after the process.
[0067] 図 8 (c)は、図 6 (c)と同様に、 dPZdt算出部 21の出力を示したものであり、加圧ェ 程後の温度上昇による圧力上昇がプラス値として、減圧工程後の温度上昇による圧 力上昇がプラス値として算出し出力されている。  FIG. 8 (c) shows the output of the dPZdt calculation unit 21 as in FIG. 6 (c). The pressure rise due to the subsequent temperature rise is calculated and output as a positive value.
図 8 (d)は、図 6 (d)と同様に発生される、参照信号発生部 25からの参照信号の状 態を示したグラフである。  FIG. 8D is a graph showing the state of the reference signal from the reference signal generator 25, which is generated similarly to FIG. 6D.
図 8 (e)は、図 6 (e)と同様に、 dPZdt算出部 11の出力信号 (c)を、参照信号 (d)に 基き、抽出すると共に、該抽出値に参照信号を掛け算したものである。  FIG. 8 (e) is a diagram obtained by extracting the output signal (c) of the dPZdt calculating unit 11 based on the reference signal (d) and multiplying the extracted value by the reference signal, similarly to FIG. 6 (e). It is.
図 8 (e)のグラフが示すように、加圧工程後の温度上昇による圧力上昇は、プラスの dPZdt値に参照信号の 1が掛け合わされた結果、マイナスの一定値として表示さ れ、減圧工程後の温度上昇による圧力上昇は、プラスの dPZdt値に参照信号の 1が 掛け合わされた結果、プラスの一定値として表示される。  As shown in the graph of Fig. 8 (e), the pressure rise due to the temperature rise after the pressurization step is displayed as a negative constant value as a result of multiplying the positive dPZdt value by 1 of the reference signal, Subsequent pressure rise due to temperature rise is displayed as a positive constant value as a result of multiplying the positive dPZdt value by a reference signal of 1.
[0068] 図 8 (f)は、図 6 (f)と同様に、平滑回路部 23における出力信号を示すグラフであり 、図 8 (e)のグラフを時間平均化するため、 0の値を示す。 FIG. 8 (f) is a graph showing the output signal of the smoothing circuit unit 23 as in FIG. 6 (f). In order to average the time of the graph of FIG. Show.
平滑回路部 23からの出力値力^であるため、漏洩判定部 26においては、「漏洩な し」と判断する。また、漏洩量算出部 27では、圧力変化量 (圧力の時間変化)として 平滑回路部 23の出力値に定数を掛けた値を利用するため、結果として圧力変化量 が 0となり、該圧力変化量に容器の容量を掛けた漏洩量も 0と算出される。 Since it is the output value power ^ from the smoothing circuit unit 23, the leakage determination unit 26 determines that "no leakage". The leak amount calculation unit 27 calculates the pressure change (pressure change over time) as Since a value obtained by multiplying the output value of the smoothing circuit unit 23 by a constant is used, the pressure change amount becomes 0 as a result, and the leakage amount obtained by multiplying the pressure change amount by the capacity of the container is also calculated as 0.
[0069] 図 9は、容器内の温度変化 (温度上昇)があり、漏洩もある場合の測定状況を示した ものである。 FIG. 9 shows a measurement state in a case where there is a temperature change (temperature rise) in the container and there is a leak.
図 9 (a)は、図 6 (a)と同様に、容器内を加圧、減圧、加減圧停止'閉塞状態とするタ イミングを示したものである。  FIG. 9 (a) shows the timing when the inside of the container is pressurized, decompressed, pressurized and depressurized, and closed as in FIG. 6 (a).
図 9 (b)は、図 6 (b)と同様に、容器内の圧力 Pの変化を示したものであり、加圧工程 後には、温度上昇による圧力上昇と、漏洩による圧力低下が重複して発生するため、 ここでは横ばいの一定値 (圧力変化なし)を示している。また、減圧工程後には、温度 上昇による圧力上昇と、漏洩による圧力上昇が共に発生しているため、図 7 (b)の漏 洩のみの影響による圧力上昇や図 8 (b)の温度上昇のみの影響による圧力上昇より 、急峻な圧力上昇を示す。  Fig. 9 (b) shows the change in the pressure P in the container, as in Fig. 6 (b) .After the pressurization step, the pressure rise due to temperature rise and the pressure drop due to leakage overlap. Here, a constant level (no pressure change) is shown here. After the depressurization step, both the pressure rise due to the temperature rise and the pressure rise due to the leakage occur, so the pressure rise due to only the leakage in Fig. 7 (b) and the temperature rise only in Fig. 8 (b) Shows a steep pressure rise than the pressure rise caused by the influence of.
[0070] 図 9 (c)は、図 6 (c)と同様に、 dPZdt算出部 21の出力を示したものであり、加圧ェ 程後の圧力の横ばい状態が 0として、減圧工程後の急峻な圧力上昇は図 7 (c)や図 8 (c)の値より大きなプラス値として算出し出力されて!、る。 FIG. 9 (c) shows the output of the dPZdt calculation unit 21 as in FIG. 6 (c), where the level of the pressure after the pressurizing step is 0, and The steep pressure rise is calculated and output as a positive value larger than the values in Fig. 7 (c) and Fig. 8 (c)! RU
図 9 (d)は、図 6 (d)と同様に発生される、参照信号発生部 25からの参照信号の状 態を示したグラフである。  FIG. 9D is a graph showing the state of the reference signal from the reference signal generator 25, which is generated similarly to FIG. 6D.
図 9 (e)は、図 6 (e)と同様に、 dPZdt算出部 21の出力信号 (c)を、参照信号 (d)に 基き、抽出すると共に、該抽出値に参照信号を掛け算したものである。  FIG. 9 (e) shows a signal obtained by extracting the output signal (c) of the dPZdt calculating unit 21 based on the reference signal (d) and multiplying the extracted value by the reference signal, similarly to FIG. 6 (e). It is.
図 9 (e)のグラフが示すように、加圧工程後の圧力変化の横ばい状態は、 0の dPZ dt値に参照信号の 1が掛け合わされた結果、値 0として表示され、減圧工程後の圧 力上昇は、プラスの dPZdt値に参照信号の 1が掛け合わされた結果、プラスの一定 値として表示される。  As shown by the graph in Fig. 9 (e), the leveling-off state of the pressure change after the pressurizing step is displayed as a value 0 as a result of multiplying the dPZ dt value of 0 by 1 of the reference signal, The pressure rise is displayed as a positive constant value as a result of multiplying the positive dPZdt value by 1 of the reference signal.
[0071] 図 9 (f)は、図 6 (f)と同様に、平滑回路部 23における出力信号を示すグラフであり 、図 9 (e)のグラフを時間平均化するため、プラスの一定値を示す。  FIG. 9 (f) is a graph showing the output signal of the smoothing circuit unit 23 as in FIG. 6 (f). The time constant of the graph of FIG. Is shown.
平滑回路部 23からの出力値がプラスの一定値であるため、漏洩判定部 26におい ては、「漏洩あり」と判断する。また、漏洩量算出部 27では、圧力変化量 (圧力の時間 変化)として、平滑回路部 23の出力値に所定の定数を掛けた値を利用し、算出され た該圧力変化量を、別途入力又は算出された容器の容量に掛け合わせることにより 、漏洩量を算出し、出力する。 Since the output value from the smoothing circuit unit 23 is a positive constant value, the leakage determination unit 26 determines that “leakage is present”. Further, the leak amount calculation unit 27 calculates the pressure change amount (time change of the pressure) using a value obtained by multiplying the output value of the smoothing circuit unit 23 by a predetermined constant. The leak amount is calculated and output by multiplying the pressure change amount thus obtained by a separately input or calculated capacity of the container.
[0072] 以上、規則的な加減圧工程を繰り返し、容器内圧力の時間変化と参照信号との相 関をとる方法について、詳細に説明した。記述を簡潔にするために、温度変動が直 線的に上昇する場合を想定して説明しているが、この想定は、理論上は何ら必要な ことではない。本発明の漏洩検査にとって必要なことは、温度変動が、参照信号と無 相関であること、すなわち温度変動に起因する圧力変化に参照信号を掛けて平均し たときに 0となることである。  The method of repeating the regular pressurizing and depressurizing steps to correlate the time change of the pressure in the container with the reference signal has been described in detail. For simplicity, the explanation assumes that temperature fluctuations increase linearly, but this assumption is not necessary in theory. What is necessary for the leak test of the present invention is that the temperature fluctuation is uncorrelated with the reference signal, that is, it becomes 0 when the pressure change caused by the temperature fluctuation is multiplied by the reference signal and averaged.
図 4の構成の変形として、電動ポンプ 15に、加圧又は減圧のみ可能な一方向ボン プを利用する、装置構成を簡単ィ匕した方法もある。この方法では、図 10に示すように 、容器の加圧又は減圧と大気圧への開放を交互に規則的に繰り返し、容器内圧力 の時間変化と参照信号との相関をとることで漏洩を検査する。  As a modification of the configuration in FIG. 4, there is a method in which the electric pump 15 uses a one-way pump that can only pressurize or depressurize, and the configuration of the device is simplified. In this method, as shown in Fig. 10, the container is repeatedly pressurized or depressurized and opened to the atmospheric pressure alternately and regularly, and the leak is inspected by correlating the time change of the container pressure with the reference signal. I do.
この構成例からも明らかなように、容器の加減圧量が、大気圧の上下に同じ圧力だ け変動することは何ら必要なことではなぐ任意の二圧力間を交替させることによって も、漏洩に起因する圧力変化と温度変動に起因する圧力変化とを分離することが可 能である。  As is evident from this configuration example, it is not necessary for the amount of pressure applied to the container to fluctuate by the same pressure above and below the atmospheric pressure.It is not necessary to switch between any two pressures. It is possible to separate the pressure change caused by the temperature change from the pressure change caused by the temperature change.
[0073] 図 10では、容器内の温度変化がなぐ漏洩のみある場合の測定状況を示したもの である。  FIG. 10 shows a measurement situation in the case where there is only a leak in which the temperature inside the container changes.
図 10では、加圧工程とバルブ開放工程を交互に繰り返した場合の例であり、図 10 (b)の容器内の圧力 Pの変化に示すように、加圧工程終了直後の断熱圧縮による過 渡応答や、バルブ開放工程直後の断熱膨張による過渡応答が生じ、容器内の気体 温度が平衡状態に達すると、圧力 Pは漏洩により、徐々に低下状態を示す。なお、加 圧工程後の漏洩による圧力下降とバルブ開放工程後の圧力下降とでは、一般的に 加圧工程後の圧力下降のほうが大きな傾きを有している。  FIG. 10 shows an example in which the pressurizing step and the valve opening step are alternately repeated. As shown in the change of the pressure P in the container in FIG. When a transient response occurs due to a transfer response or adiabatic expansion immediately after the valve opening process, and the gas temperature in the container reaches an equilibrium state, the pressure P gradually decreases due to leakage. In general, the pressure drop due to the leakage after the pressurizing step and the pressure drop after the valve opening step have a larger slope in the pressure drop after the pressurizing step.
また、図 10 (d)に示すように、参照信号としては、加減圧制御部 24による加減圧制 御に対応して、加圧工程、バルブ開放工程及び過渡応答期間を除いたタイミングで 、加圧工程後の平衡状態を示す時期に 1を、バルブ開放工程による減圧後の平衡 状態を示す時期に 1を、それぞれ同一のパルス幅となるように発生させている。 上記以外の図 10の各グラフの見方は、図 6— 9と同様であるため、説明は省略する Further, as shown in FIG. 10 (d), the reference signal corresponds to the pressurization and depressurization control by the pressurization and depressurization control unit 24 at the timing excluding the pressurization step, the valve opening step and the transient response period. 1 is generated to indicate the equilibrium state after the process, and 1 is generated to indicate the equilibrium state after the pressure is reduced by the valve opening process so that they have the same pulse width. Except for the above, how to read the graphs in Fig. 10 is the same as in Fig. 6-9, so the description is omitted.
[0074] 規則的な加減圧を行う場合、温度変動が参照信号と同じ周波数成分を持って!/ヽな いことが、温度変動に起因する圧力変化が無相関となって、温度変動の影響を分離 して漏洩を検出できるための条件となる。一般的には、規則的加減圧の周期を適切 に選べば、この条件が満足されると期待できる。しかし、規則的な加減圧を行ったの では、参照信号と温度変動を無相関にできない特殊な場合も考えうる。 [0074] In the case of performing regular pressurization and decompression, the fact that the temperature fluctuation does not have the same frequency component as the reference signal! This is a condition for separating leaks and detecting leaks. In general, it can be expected that this condition will be satisfied if the period of regular pressurization is appropriately selected. However, there may be a special case in which the reference signal and the temperature fluctuation cannot be made uncorrelated if regular pressurization is performed.
このような場合には、加減圧の時間系列として、二値不規則信号を使用すればよい 。図 11は、二値の疑似不規則信号である M系列信号で加減圧パターンを変調した 場合を例示している。参照信号としては、変調に用いた M系列信号を元にして、過渡 応答の期間を除 、た信号を用いて 、る。十分に高 、次数の M系列信号を用いれば 、自然界に存在する温度変動と相関を持つことは無いから、いかなる温度変動を受 けていても、その影響を除去して漏洩検査を行うことが可能となる。  In such a case, a binary irregular signal may be used as the time series of the pressure increase / decrease. FIG. 11 illustrates a case where the compression / decompression pattern is modulated by an M-sequence signal that is a binary pseudo-random signal. As the reference signal, a signal obtained by removing the period of the transient response based on the M-sequence signal used for modulation is used. If a sufficiently high-order M-sequence signal is used, there is no correlation with temperature fluctuations existing in the natural world. It becomes possible.
[0075] 図 11では、容器内の温度変化がなぐ漏洩のみある場合の測定状況を示したもの である。  FIG. 11 shows a measurement state in a case where there is only a leak that changes in temperature inside the container.
図 11では、図 11 (b)に示すように、加圧工程及び減圧工程を不規則な時間系列で 実行している。  In FIG. 11, as shown in FIG. 11 (b), the pressurizing step and the depressurizing step are executed in an irregular time sequence.
さら〖こ、図 11 (d)に示すように、参照信号としては、加減圧制御部 24による加減圧 制御に対応して、加圧工程、減圧工程及び過渡応答期間を除いたタイミングで、カロ 圧工程後の平衡状態を示す時期に 1を、減圧工程後の平衡状態を示す時期に 1を 、それぞれ同一のパルス幅となるように発生させて!/、る。  Further, as shown in FIG. 11 (d), the reference signal includes the calorie at the timing excluding the pressurizing step, the depressurizing step, and the transient response period in accordance with the pressurizing and depressurizing control by the pressurizing and depressurizing control unit 24. Generate 1 to indicate the equilibrium state after the pressure reduction step, and 1 to indicate the equilibrium state after the pressure reduction step so that they have the same pulse width! /
上記以外の図 11の各グラフの見方は、図 6— 10と同様であるため、説明は省略す る。  Except for the above, how to read each graph in FIG. 11 is the same as in FIG. 6-10, and therefore, the description is omitted.
[0076] 本発明は、上記説明に限定されるものではなぐ特許文献 1に記載されているように 、漏洩検査に係る各種の測定モードプログラムを記憶する記憶手段や、測定データ を蓄積する記憶手段を設ける技術、液晶などの表示手段、 KEYボードなどの入力手 段に係る技術など、当該分野に係る公知の技術を付加することができることは言うま でもない。 産業上の利用可能性 [0076] The present invention is not limited to the above description. As described in Patent Document 1, storage means for storing various measurement mode programs related to leak inspection and storage means for storing measurement data It goes without saying that a known technique in the relevant field can be added, such as a technique for providing a display, a display means such as a liquid crystal, and a technique relating to an input means such as a KEY board. Industrial applicability
本発明により、配管などの容器の漏洩検査を効率良く行うだけでなぐ容器内の温 度変化の影響除去を漏洩検知と同時に行うことで、大容量の容器に対しても正確に 漏洩を検知することが可能な漏洩検査方法及び装置を提供することが可能となる。 また、本発明により、加減圧工程を任意の時間系列で組み込むことが可能となり、 先の出願のように容器内の圧力を大気圧に戻す工程を必須要件とすることも無くなり 、大容量の可燃性ガス配管や有毒ガス容器などに対しても、効果的な漏洩検査を行 うことが可能となる。  According to the present invention, the leak of a container such as a pipe can be efficiently inspected, and the effect of the temperature change in the container can be removed simultaneously with the leak detection, thereby accurately detecting the leak even in a large-capacity container. It is possible to provide a leak inspection method and device capable of performing the above. Further, according to the present invention, it is possible to incorporate the pressurizing and depressurizing steps in an arbitrary time series, and the step of returning the pressure in the container to the atmospheric pressure as in the earlier application is not required, so that a large-capacity flammable Effective leak inspection can also be performed on toxic gas piping and toxic gas containers.

Claims

請求の範囲 The scope of the claims
[1] 漏洩を検査すべき容器を所定の時間系列に従って加圧又は減圧する加減圧工程 と、該容器内の圧力変化を計測する圧力計測工程とを有し、  [1] A pressurizing and depressurizing step of pressurizing or depressurizing a container to be inspected for leakage in accordance with a predetermined time sequence, and a pressure measuring step of measuring a pressure change in the container,
該圧力計測工程で計測された信号と、該時間系列に対応した参照信号との相関を 算出し、  Calculating a correlation between the signal measured in the pressure measurement step and a reference signal corresponding to the time sequence,
該相関に基いて、該容器の漏洩を検出することを特徴とする漏洩検査方法。  A leakage inspection method comprising detecting leakage of the container based on the correlation.
[2] 請求項 1に記載の漏洩検査方法にぉ 、て、該圧力計測工程で計測された信号が、 圧力の時間変化信号であることを特徴とする漏洩検査方法。  [2] The leak inspection method according to claim 1, wherein the signal measured in the pressure measurement step is a time change signal of pressure.
[3] 請求項 1又は 2に記載の漏洩検査方法にお 、て、該参照信号が、加減圧工程時及 び該工程直後の過渡応答期間の信号を相関算出から除くように構成されていること を特徴とする漏洩検査方法。 [3] In the leakage inspection method according to claim 1 or 2, the reference signal is configured to exclude a signal in a transient response period during a pressurizing / depressurizing step and immediately after the step from the correlation calculation. A leak inspection method characterized by the following.
[4] 請求項 1乃至 3に記載の漏洩検査方法において、該加減圧工程は、漏洩を検査す べき容器に収容される物質成分と同じ成分の物質又は該成分に含まれる一部の物 質を供給又は吸引することを特徴とする漏洩検査方法。 [4] In the leak inspection method according to any one of claims 1 to 3, the pressurizing / depressurizing step includes a substance having the same component as a substance contained in a container to be inspected for leakage, or a partial substance contained in the component. A leakage inspection method characterized by supplying or sucking air.
[5] 請求項 4に記載の漏洩検査方法にぉ 、て、該吸引は、漏洩を検査すべき容器から 回収した該物質又は該一部の物質を吸着材料に吸着させ、該供給は、該吸着した 物質を該吸着材料カゝら放出させ、あるいは、他の容器から漏洩を検査すべき容器に 収容される物質成分と同じ成分の物質又は該成分に含まれる一部の物質を供給さ せることを特徴とする漏洩検査方法。 [5] According to the leak inspection method according to claim 4, the suction causes the substance or a part of the substance collected from the container to be inspected for leakage to be adsorbed on an adsorbent material, and the supply includes: The adsorbed substance is released from the adsorbent material, or a substance of the same component as the substance contained in the container to be inspected for leakage from another container or a part of the substance contained in the component is supplied. A leak inspection method characterized by the following.
[6] 漏洩を検査すべき容器を加圧又は減圧する加減圧手段と、 [6] pressurizing or depressurizing means for pressurizing or depressurizing a container to be inspected for leakage,
該容器内の圧力変化を計測する圧力計測手段と、  Pressure measuring means for measuring a pressure change in the container,
該容器の加減圧を所定の時間系列に従って実施するための該加減圧手段を制御 する加減圧制御手段と、  Pressurization control means for controlling the pressurization and decompression means for performing the pressurization and decompression of the container in accordance with a predetermined time sequence;
該圧力計測手段により得られた信号と、該時間系列に対応した参照信号との相関 を算出する演算手段とを有し、  Calculating means for calculating a correlation between the signal obtained by the pressure measuring means and a reference signal corresponding to the time sequence,
該演算手段によって算出された相関に基いて、該容器の漏洩を検出することを特 徴とする漏洩検査装置。  A leak inspection device characterized by detecting a leak in the container based on the correlation calculated by the calculating means.
[7] 請求項 6に記載の漏洩検査装置において、検査すべき容器の容積と、該演算手段 によって算出された相関とに基いて、該容器の漏洩の大きさを算出する手段を有す ることを特徴とする漏洩検査装置。 [7] The leak inspection apparatus according to claim 6, wherein the volume of the container to be inspected and the arithmetic means A means for calculating the magnitude of leakage of the container based on the correlation calculated by the method.
[8] 請求項 7に記載の漏洩検査装置において、該容器の容積が、容器を加圧又は減 圧する際に、容器へ流入又は容器力 流出する流体の流量を計測する手段及び該 容器内の圧力変化を計測する圧力計測手段によって計測した値に基づいて算出さ れることを特徴とする漏洩検査装置。  [8] The leak inspection apparatus according to claim 7, wherein the volume of the container measures a flow rate of a fluid flowing into or out of the container when the container is pressurized or depressurized, and the inside of the container. A leak inspection device characterized by being calculated based on a value measured by a pressure measuring means for measuring a pressure change.
[9] 請求項 6に記載の漏洩検査装置において、該加減圧手段には、漏洩を検査すべき 容器に収容される物質成分と同じ成分の物質又は該成分に含まれる一部の物質を 供給する供給手段又は吸引する吸引手段とが接続されていることを特徴とする漏洩 検査装置。  [9] In the leak inspection apparatus according to claim 6, the pressurizing / depressurizing means is supplied with a substance of the same component as the substance component contained in the container to be inspected for leakage or a part of substances contained in the component. A leak inspection device, characterized in that it is connected to a supply means for performing suction or a suction means for performing suction.
[10] 請求項 9に記載の漏洩検査装置において、該吸引手段は、漏洩を検査すべき容器 力 回収した該物質又は一部の該物質を吸着する吸着材料を有し、該供給手段は、 該吸着材料に吸着された物質を放出させ、あるいは、漏洩を検査すべき容器に収容 される物質成分と同じ成分の物質又は該成分に含まれる一部の物質を収容する他 の容器から供給させるものであることを特徴とする漏洩検査装置。  [10] In the leak inspection apparatus according to claim 9, the suction means has a container to be inspected for leaks, and has an adsorbent material for adsorbing the recovered substance or a part of the substance, and the supply means includes: The substance adsorbed by the adsorbent material is released or supplied from another container that contains a substance of the same component as the substance component contained in the container whose leakage is to be inspected or a part of the substance contained in the component. A leak inspection device, characterized in that:
PCT/JP2005/002431 2004-02-19 2005-02-17 Leakage checking method and device WO2005080935A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006510217A JP4599544B2 (en) 2004-02-19 2005-02-17 Leakage inspection method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-042272 2004-02-19
JP2004042272 2004-02-19

Publications (1)

Publication Number Publication Date
WO2005080935A1 true WO2005080935A1 (en) 2005-09-01

Family

ID=34879252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/002431 WO2005080935A1 (en) 2004-02-19 2005-02-17 Leakage checking method and device

Country Status (2)

Country Link
JP (1) JP4599544B2 (en)
WO (1) WO2005080935A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006275906A (en) * 2005-03-30 2006-10-12 Kumamoto Univ Leakage inspection method and system
JP2007536559A (en) * 2005-01-10 2007-12-13 モコン・インコーポレーテッド Apparatus and method for detecting leaks in hermetically sealed packages
JP2009128067A (en) * 2007-11-20 2009-06-11 Osaka Gas Co Ltd Fluid leakage detection method
JP2013002929A (en) * 2011-06-15 2013-01-07 Nippon Valqua Ind Ltd Method of measuring liquid leakage amount
JP2015224997A (en) * 2014-05-29 2015-12-14 株式会社エイムテック Pressure gauge inspection system and pressure gauge inspection method used therefor
JP2020029843A (en) * 2018-08-24 2020-02-27 株式会社Subaru Diagnostic device for evaporation fuel treatment system
JP2020201090A (en) * 2019-06-07 2020-12-17 レッキス工業株式会社 Refrigerant piping inspection device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5876134U (en) * 1981-11-17 1983-05-23 大阪瓦斯株式会社 Equipment for fuel gas leak detection and pressure retention
JPH0727659A (en) * 1993-07-13 1995-01-31 Tokyo Gas Co Ltd Gas leakage detection method
JPH07198529A (en) * 1993-12-28 1995-08-01 Otsuka Pharmaceut Factory Inc Pin hole detection method for sealing package
JPH07306113A (en) * 1994-05-13 1995-11-21 Nippon Oil & Fats Co Ltd Leakage inspecting agent
JPH07333098A (en) * 1994-04-14 1995-12-22 Nippon Telegr & Teleph Corp <Ntt> Method for estimating leaked part of gas maintenance communication line network
JPH09288031A (en) * 1996-04-23 1997-11-04 Seibu Gas Kk Measuring apparatus for leakage amount of gas
JPH10185649A (en) * 1996-12-25 1998-07-14 Kimmon Mfg Co Ltd Wireless meter inspecting device
JPH10185751A (en) * 1996-12-24 1998-07-14 Tokyo Gas Co Ltd Air tightness inspection process
JPH11153506A (en) * 1997-11-25 1999-06-08 Hitachi Ltd On-service inspection method for joint
JPH11248592A (en) * 1998-02-27 1999-09-17 Osaka Gas Co Ltd Method and device for inspecting gas piping for airtightness and leakage and pressure measuring instrument used for the device
JP2003227773A (en) * 2001-11-27 2003-08-15 Shinichiro Arima Pressure measuring method and apparatus thereof

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5876134U (en) * 1981-11-17 1983-05-23 大阪瓦斯株式会社 Equipment for fuel gas leak detection and pressure retention
JPH0727659A (en) * 1993-07-13 1995-01-31 Tokyo Gas Co Ltd Gas leakage detection method
JPH07198529A (en) * 1993-12-28 1995-08-01 Otsuka Pharmaceut Factory Inc Pin hole detection method for sealing package
JPH07333098A (en) * 1994-04-14 1995-12-22 Nippon Telegr & Teleph Corp <Ntt> Method for estimating leaked part of gas maintenance communication line network
JPH07306113A (en) * 1994-05-13 1995-11-21 Nippon Oil & Fats Co Ltd Leakage inspecting agent
JPH09288031A (en) * 1996-04-23 1997-11-04 Seibu Gas Kk Measuring apparatus for leakage amount of gas
JPH10185751A (en) * 1996-12-24 1998-07-14 Tokyo Gas Co Ltd Air tightness inspection process
JPH10185649A (en) * 1996-12-25 1998-07-14 Kimmon Mfg Co Ltd Wireless meter inspecting device
JPH11153506A (en) * 1997-11-25 1999-06-08 Hitachi Ltd On-service inspection method for joint
JPH11248592A (en) * 1998-02-27 1999-09-17 Osaka Gas Co Ltd Method and device for inspecting gas piping for airtightness and leakage and pressure measuring instrument used for the device
JP2003227773A (en) * 2001-11-27 2003-08-15 Shinichiro Arima Pressure measuring method and apparatus thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007536559A (en) * 2005-01-10 2007-12-13 モコン・インコーポレーテッド Apparatus and method for detecting leaks in hermetically sealed packages
JP2006275906A (en) * 2005-03-30 2006-10-12 Kumamoto Univ Leakage inspection method and system
JP4512827B2 (en) * 2005-03-30 2010-07-28 国立大学法人 熊本大学 Leakage inspection method and apparatus
JP2009128067A (en) * 2007-11-20 2009-06-11 Osaka Gas Co Ltd Fluid leakage detection method
JP2013002929A (en) * 2011-06-15 2013-01-07 Nippon Valqua Ind Ltd Method of measuring liquid leakage amount
JP2015224997A (en) * 2014-05-29 2015-12-14 株式会社エイムテック Pressure gauge inspection system and pressure gauge inspection method used therefor
JP2020029843A (en) * 2018-08-24 2020-02-27 株式会社Subaru Diagnostic device for evaporation fuel treatment system
US11111883B2 (en) 2018-08-24 2021-09-07 Subaru Corporation Diagnostic apparatus for evaporative fuel processing system
JP2020201090A (en) * 2019-06-07 2020-12-17 レッキス工業株式会社 Refrigerant piping inspection device
JP7270214B2 (en) 2019-06-07 2023-05-10 レッキス工業株式会社 Refrigerant pipe inspection device

Also Published As

Publication number Publication date
JPWO2005080935A1 (en) 2008-01-10
JP4599544B2 (en) 2010-12-15

Similar Documents

Publication Publication Date Title
WO2005080935A1 (en) Leakage checking method and device
JP2007525638A (en) Measurement of fluid volume in a container using pressure
CN108196505B (en) Normal-temperature gaseous working medium quantitative filling system and filling method thereof
RU2013107034A (en) AUTOMATED ANALYSIS OF PRESSURE VALUES UNDER PRESSURE
JP2020008564A (en) Device, method, usage for leak detection, and corresponding computer program storage means
JP2003227773A (en) Pressure measuring method and apparatus thereof
JP7339343B2 (en) Method for detecting leaks in gas networks under pressure or vacuum and gas networks
CN111879659A (en) Hydrogen absorption agent evaluation device for low-temperature container
JP4512827B2 (en) Leakage inspection method and apparatus
JP2009276309A (en) Leak detector
DE502005001657D1 (en) Tightness test of the main air line of a train
CN212721954U (en) Leak detection device
JP5861890B2 (en) Method for measuring the amount of dissolved gas in a pressurized liquid
CN114427939B (en) Pressure cooker detection equipment and detection method
CN208607521U (en) A kind of PLC control system of helium leak check filling recyclable device
CN100487459C (en) Hydrogen storage alloy performance integrated experimental apparatus
CN109085793A (en) A kind of PLC control system of helium leak check filling recyclable device
CN112147033B (en) System and method for testing gas content
JP2008290056A (en) Vapor recovery apparatus
CN211651945U (en) Leakage detecting system for large container part
JP5463727B2 (en) Condenser cooling pipe leak inspection device
JP5060159B2 (en) Vapor collection device
CN210572192U (en) Water oxygen particle analysis and detection system
JP3570333B2 (en) Leak test method and leak test device using hermetic structure and hermetic structure for leak test device
JP2009264698A (en) Method and device for determining gas component

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006510217

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase