JP2009276309A - Leak detector - Google Patents

Leak detector Download PDF

Info

Publication number
JP2009276309A
JP2009276309A JP2008130321A JP2008130321A JP2009276309A JP 2009276309 A JP2009276309 A JP 2009276309A JP 2008130321 A JP2008130321 A JP 2008130321A JP 2008130321 A JP2008130321 A JP 2008130321A JP 2009276309 A JP2009276309 A JP 2009276309A
Authority
JP
Japan
Prior art keywords
gas
sensor
output
flow path
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008130321A
Other languages
Japanese (ja)
Other versions
JP5135058B2 (en
Inventor
Yasuhiro Setoguchi
泰弘 瀬戸口
Tomohiro Kawaguchi
智博 河口
Masashi Toyoda
雅史 豊田
Susumu Endo
進 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Figaro Engineering Inc
Fuso Co Ltd
Original Assignee
Figaro Engineering Inc
Fuso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Figaro Engineering Inc, Fuso Co Ltd filed Critical Figaro Engineering Inc
Priority to JP2008130321A priority Critical patent/JP5135058B2/en
Publication of JP2009276309A publication Critical patent/JP2009276309A/en
Application granted granted Critical
Publication of JP5135058B2 publication Critical patent/JP5135058B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce a waiting time due to fatigue of a gas sensor. <P>SOLUTION: In a leak detector, specimen gas and background gas are alternately supplied to first and second gas sensors, and the gas flow rates of the specimen gas and the background gas are set to be constant and to be equal to each other. When gas leakage is detected from an output of the gas sensor contacting with the specimen gas, and the output of the gas sensor is equal to or exceeds a threshold for a prescribed time or longer continuously, flow passages of the specimen gas and the background gas are switched. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明はガスセンサを用いたリークディテクタに関し、特にガスセンサの疲労による待ち時間を無くしたリークディテクタに関する。   The present invention relates to a leak detector using a gas sensor, and more particularly to a leak detector that eliminates the waiting time due to fatigue of the gas sensor.

リークの有無を検査する製品や設備に水素を封入し、ガスセンサでリークした水素を検出することが知られている。ところでガスセンサは高濃度のガスなどに触れると疲労し、出力が清浄空気中レベルへなかなか復帰しないことがある。リークの検査でガスセンサの出力が清浄空気中レベルへ復帰するのを待つと、高濃度のガスなどに触れる毎に待ち時間が生じ、非効率である。ガスセンサが高濃度のガスに触れることにより疲労し、センサ出力が清浄空気中レベルへ回復するまで検出ができなくなることは、フロン等の他のガスを検出するリークディテクタでも同様である。   It is known that hydrogen is sealed in a product or facility that is inspected for leaks, and the leaked hydrogen is detected by a gas sensor. By the way, the gas sensor may get tired when touched with high-concentration gas or the like, and the output may not easily return to the level in clean air. When waiting for the output of the gas sensor to return to the level in the clean air in the inspection of the leak, a waiting time occurs every time a high-concentration gas is touched, which is inefficient. The leak detector that detects other gases such as chlorofluorocarbon also detects that the gas sensor is fatigued by touching a high-concentration gas and cannot be detected until the sensor output recovers to a level in clean air.

なお関連する先行技術を示すと、特許文献1:JP1999-264809Aは、ガスセンサへ供給する雰囲気を参照ガスと試料ガスとの間で切り替えた際の、過渡的な特性からガスを検出することを開示している。
JP1999-264809A
As for related prior art, Patent Document 1: JP1999-264809A discloses that a gas is detected from a transient characteristic when an atmosphere supplied to a gas sensor is switched between a reference gas and a sample gas. is doing.
JP1999-264809A

この発明の課題は、ガスセンサの疲労による待ち時間を無くすことにある。   An object of the present invention is to eliminate waiting time due to fatigue of a gas sensor.

この発明のリークディテクタは、試料ガスの吸引孔と、バックグラウンドガスの吸引孔と、
第1及び第2の少なくとも2個のガスセンサと、
試料ガスを第1のガスセンサへバックグラウンドガスを第2のガスセンサへ供給する状態と、試料ガスを第2のガスセンサへバックグラウンドガスを第1のガスセンサへ供給する状態との間で、流路を切り替えるバルブと、
試料ガス及びバックグラウンドガスの流量が一定でかつ互いに等しくなるようにするための流量制御手段と、
第1及び第2のガスセンサの内で試料ガスを供給されているガスセンサの出力から、ガスのリークを検出するためのリーク検出手段と、
前記試料ガスを供給されているセンサの出力が増加して所定の条件を満たすと、前記バルブを介して前記流路を切り替えるための流路切り替え手段、とを設けたものである。
The leak detector of the present invention comprises a sample gas suction hole, a background gas suction hole,
First and second at least two gas sensors;
The flow path is between a state in which the sample gas is supplied to the first gas sensor and the background gas is supplied to the second gas sensor, and a state in which the sample gas is supplied to the second gas sensor and the background gas is supplied to the first gas sensor. A switching valve,
Flow rate control means for making the flow rates of the sample gas and the background gas constant and equal to each other;
Leak detection means for detecting a gas leak from the output of the gas sensor supplied with the sample gas among the first and second gas sensors;
And a flow path switching means for switching the flow path through the valve when the output of the sensor to which the sample gas is supplied increases to satisfy a predetermined condition.

ガスセンサは同種のものとし、3個以上設ける場合、流路も3通り以上設けて、センサの切り替えに応じて流路を切り替える。
好ましくは、流路切り替え手段は、前記試料ガスを供給されているセンサの出力が第1の閾値以上に増加した後、所定の時間内に第2の閾値以下に低下しない際に、流路を切り替える。
さらに好ましくは、前記リーク検出手段はリーク検出モードとガス濃度測定モードの2種のモードを備え、
リーク検出モードでは、ガスセンサ出力の時間微分からガスのリークを検出すると共に、前記試料ガスを供給されているセンサの出力が、第1の閾値以上に増加してから所定の時間経過した時点で、第2の閾値を越えている場合に流路を切り替え、
ガス濃度測定モードでは、前記試料ガスを供給されているセンサの出力が増加した後の安定値からガス濃度を測定すると共に、前記安定値を取得した時点で流路を切り替える。
The gas sensors are of the same type, and when three or more gas sensors are provided, three or more flow paths are also provided, and the flow paths are switched according to sensor switching.
Preferably, the flow path switching unit switches the flow path when the output of the sensor supplied with the sample gas does not decrease below the second threshold value within a predetermined time after the output increases above the first threshold value. Switch.
More preferably, the leak detection means has two modes, a leak detection mode and a gas concentration measurement mode,
In the leak detection mode, the gas leak is detected from the time derivative of the gas sensor output, and at the time when a predetermined time elapses after the output of the sensor supplied with the sample gas exceeds the first threshold value, When the second threshold is exceeded, the flow path is switched,
In the gas concentration measurement mode, the gas concentration is measured from the stable value after the output of the sensor to which the sample gas is supplied is increased, and the flow path is switched when the stable value is acquired.

この発明では、一方のガスセンサが試料ガスに触れて出力が増加し所低の条件を満たすと、流路を切り替え他方のガスセンサで検出を開始する。他方のガスセンサは同じ流量のバックグラウンドガスに触れていたので、流路を切り替えてもセンサが置かれている環境は同じで、検出を開始すると直ちに検出を開始できる。このため、ガスセンサの疲労による待ち時間が生じない。   In the present invention, when one gas sensor touches the sample gas and the output increases and satisfies the condition of low, the flow is switched and detection is started by the other gas sensor. Since the other gas sensor was in contact with the background gas having the same flow rate, the environment in which the sensor is placed is the same even when the flow path is switched, and detection can be started immediately after detection is started. For this reason, there is no waiting time due to fatigue of the gas sensor.

ここで流路切り替え手段は、試料ガスを供給されているセンサの出力が第1の閾値以上に増加した後、所定の時間内に第2の閾値以下に低下しない際に、流路を切り替えると、センサの出力が元のレベルまで低下しない場合に流路を切り替えることができる。
またリーク検出モードとガス濃度測定モードの2種のモードを設けると、リークの有無のチェックとガス濃度の測定の2種類の検出ができる。そしてリーク検出モードでは、ガスセンサ出力の時間微分からガスのリークを検出すると共に、試料ガスを供給されているセンサの出力が、第1の閾値以上に増加してから所定の時間経過した時点で、第2の閾値を越えている場合に流路を切り替える。一方ガス濃度測定モードでは、試料ガスを供給されているセンサの出力が増加した後の安定値からガス濃度を測定すると共に、前記安定値を取得した時点で流路を切り替えると、ガス濃度の安定値を測定できるようになった後に流路を切り替えることができる。
Here, the flow path switching unit switches the flow path when the output of the sensor to which the sample gas is supplied does not decrease below the second threshold value within a predetermined time after the output from the sensor increases. When the sensor output does not decrease to the original level, the flow path can be switched.
If two modes, a leak detection mode and a gas concentration measurement mode, are provided, two types of detection can be performed: a check for the presence of a leak and a measurement of the gas concentration. In the leak detection mode, the gas leak is detected from the time derivative of the gas sensor output, and at the time when a predetermined time elapses after the output of the sensor supplied with the sample gas increases to the first threshold value or more. When the second threshold value is exceeded, the flow path is switched. On the other hand, in the gas concentration measurement mode, if the gas concentration is measured from the stable value after the output of the sensor to which the sample gas is supplied increases, and the flow path is switched when the stable value is acquired, the gas concentration is stabilized. After the value can be measured, the flow path can be switched.

以下に本発明を実施するための最適実施例を示す。   In the following, an optimum embodiment for carrying out the present invention will be shown.

図1〜図4に、実施例のリークディテクタを示す。各図において2,4はガスセンサで、例えば金属酸化物半導体水素センサとし、ガスセンサ2,4は例えば同じ型番の同一ロットの2個のガスセンサである。6,8は三方弁で、これらを合わせて1個の4方弁等としてもよく、10,12はニードルバルブで、流量を調整できるバルブであれば任意であり、14,16は流量計である。また18は吸引用のポンプで、ニードルバルブ10,12に対しそれぞれ別のポンプを設けても良い。20,21はダストフィルタで、ガス中のダストを除き、22,23はガスフィルタで、活性炭やゼオライトなどのフィルタである。そしてダストフィルタ20,21は同じ種類のフィルタとし、ガスフィルタ22,23も同じ種類のガスフィルタとして、流路を切り替えても流量が変動しないようにする。25はガス吸引孔で、図示しないプローブの先端などに設け、チューブ27を介してダストフィルタ20へ接続する。26はバックグラウンドガス吸引孔で、リークディテクタの本体ケースなどに設ける。   1 to 4 show a leak detector according to the embodiment. In each figure, 2 and 4 are gas sensors, for example, metal oxide semiconductor hydrogen sensors, and the gas sensors 2 and 4 are, for example, two gas sensors of the same lot with the same model number. 6 and 8 are three-way valves, and these may be combined into a single four-way valve, etc. 10 and 12 are needle valves, and any valve that can adjust the flow rate, and 14 and 16 are flow meters. is there. Reference numeral 18 denotes a suction pump, and separate pumps may be provided for the needle valves 10 and 12, respectively. 20 and 21 are dust filters, excluding dust in the gas, and 22 and 23 are gas filters, which are filters such as activated carbon and zeolite. The dust filters 20 and 21 are the same type of filter, and the gas filters 22 and 23 are the same type of gas filter so that the flow rate does not fluctuate even when the flow path is switched. A gas suction hole 25 is provided at the tip of a probe (not shown) and connected to the dust filter 20 via the tube 27. Reference numeral 26 denotes a background gas suction hole which is provided in a main body case of the leak detector.

三方弁6,8の切替信号を(S,R)、ガスセンサ2,4からの出力信号をS1,S2、流量計14,16からの出力信号をF1,F2とする。またニードルバルブ10,12の制御信号をQ1,Q2とする。24は制御部で、ADコンバータやマイクロコンピュータ並びにLCDディスプレイなどを備え、センサ信号S1,S2と流量信号F1,F2が入力され、信号S,Rにより三方弁6.8を切り替えると共に、信号Q1,Q2によりニードルバルブ10,12を制御する。   The switching signals for the three-way valves 6, 8 are (S, R), the output signals from the gas sensors 2, 4 are S1, S2, and the output signals from the flow meters 14, 16 are F1, F2. The control signals for the needle valves 10 and 12 are Q1 and Q2. A control unit 24 includes an AD converter, a microcomputer, and an LCD display. The sensor signals S1 and S2 and the flow rate signals F1 and F2 are input, and the three-way valve 6.8 is switched by the signals S and R. The needle valves 10 and 12 are controlled by Q2.

図2にリークディテクタの制御部24を示す。ADコンバータ30へはセンサ信号S1,S2と流量信号F1,F2とが入力され、流量制御部40によりニードルバルブ10,12を制御して、これらの流量が一定でかつ共に等しくなるようにする。なお流量制御部40を設ける代わりに、ニードルバルブ10,12をマニュアルで制御するようにして、バルブ10,12の制御の仕方を表示部35に表示しても良い。リーク検出部31は、試料ガスに触れている方のガスセンサの出力を時間微分し、水素のリークの有無を検出する。   FIG. 2 shows the control unit 24 of the leak detector. Sensor signals S1 and S2 and flow rate signals F1 and F2 are input to the AD converter 30, and the flow rate control unit 40 controls the needle valves 10 and 12 so that these flow rates are constant and equal. Instead of providing the flow control unit 40, the needle valves 10 and 12 may be manually controlled, and the control method of the valves 10 and 12 may be displayed on the display unit 35. The leak detector 31 time-differentiates the output of the gas sensor that is in contact with the sample gas, and detects the presence or absence of hydrogen leak.

水素濃度測定部32は、同様に試料ガスに触れている方のガスセンサ信号が増加し、安定値に達すると、安定値から水素濃度を検出する。なお実際にセンサ信号が安定値に達するのを待つ代わりに、センサ信号の波形などから安定値を予測して、水素濃度を求めても良い。水素のリークの有無や水素濃度は、試料ガスに触れている方のガスセンサの信号から検出し、これらの検出結果を表示部35に表示する。流路切り替え部33は、試料ガスに触れている方のガスセンサ信号に基づいて、流路の切替信号S,Rを出力する。34は、流路切り替え部33に付属のタイマである。記憶部36は、バックグラウンドガスに触れている方のガスセンサ信号の平均値や定常値などを記憶し、流路を切り替え、このセンサを測定に用いると、記憶した平均値や定常値をバックグラウンドレベルを示す参照信号とする。モード選択部37は、リーク検出モードか水素濃度測定モードかの切り替えを行うマニュアルスイッチである。   Similarly, when the gas sensor signal in contact with the sample gas increases and reaches a stable value, the hydrogen concentration measuring unit 32 detects the hydrogen concentration from the stable value. Instead of waiting for the sensor signal to actually reach the stable value, the hydrogen value may be obtained by predicting the stable value from the waveform of the sensor signal or the like. The presence or absence of hydrogen leak and the hydrogen concentration are detected from the signal of the gas sensor that is in contact with the sample gas, and the detection results are displayed on the display unit 35. The channel switching unit 33 outputs channel switching signals S and R based on the gas sensor signal that is in contact with the sample gas. Reference numeral 34 denotes a timer attached to the flow path switching unit 33. The storage unit 36 stores the average value or steady value of the gas sensor signal that is in contact with the background gas, switches the flow path, and when this sensor is used for measurement, the stored average value or steady value is stored in the background. A reference signal indicating the level is used. The mode selection unit 37 is a manual switch that switches between a leak detection mode and a hydrogen concentration measurement mode.

図3に、リーク検出モードでの流路の切り替えアルゴリズムを示す。ここではセンサAが試料ガスに触れているものとし、センサ信号の時間微分からリークの有無を求めて、検出結果を表示部に表示する。センサAの出力が第1の検出閾値を越えると、タイマを起動し、タイムアウトするまでに第2の検出閾値以下にセンサ出力が低下していない場合、流路を切り替える。このようにして、ガスセンサの信号が増加した後、バックグラウンドレベルへの復帰が遅い場合に、流路を切り替える。また例えば1分あるいは2分などの一定時間毎に、流路を切り替える。ここでは検出閾値2を検出閾値1以下としたが、これらは同一の値などでも良い。またタイマを設けず、ガスセンサの信号が検出閾値1を越えると流路を切り替えてもよい。この場合は、微分によるリークの検出を妨げないように、第1の検出閾値を実施例よりも大きい値とすることが好ましい。   FIG. 3 shows a flow path switching algorithm in the leak detection mode. Here, it is assumed that the sensor A is in contact with the sample gas, the presence or absence of leakage is obtained from the time differentiation of the sensor signal, and the detection result is displayed on the display unit. When the output of the sensor A exceeds the first detection threshold, a timer is started, and the flow path is switched if the sensor output has not decreased below the second detection threshold before time-out. In this way, after the gas sensor signal increases, the flow path is switched when the return to the background level is slow. Further, for example, the flow path is switched at regular intervals such as 1 minute or 2 minutes. Here, the detection threshold 2 is set to be equal to or less than the detection threshold 1, but these may be the same value. Further, the flow path may be switched when the gas sensor signal exceeds the detection threshold 1 without providing a timer. In this case, it is preferable to set the first detection threshold value to a value larger than that of the embodiment so as not to prevent detection of leak by differentiation.

図4に、水素濃度測定モードでの流路切り替えアルゴリズムを示す。検出閾値1や検出閾値2は例えば図3の場合と同様とし、タイマ34がタイムアウトした時点ではなく、センサ出力が安定値に達すると、もしくは安定値を予測し得るようになると、流路を切り替える。即ち図4の1)でセンサ出力の波形から安定値を測定もしくは予測し、この時点でタイマ34がタイムアウトしていると流路を切り替える。なお水素濃度測定モードでは、検出のタクトタイムへの要求が高くないので、高濃度ガスに触れた後の流路の切り替えを行わなくても良い。またセンサ出力をキャリブレーションしておき、試料ガス中での安定値から求めたガス濃度と、バックグラウンド中でのセンサ出力に対応するガス濃度との差を、水素濃度として出力する。   FIG. 4 shows a flow path switching algorithm in the hydrogen concentration measurement mode. For example, the detection threshold 1 and the detection threshold 2 are the same as those in FIG. 3, and the flow path is switched when the sensor output reaches a stable value or when the stable value can be predicted, not when the timer 34 times out. . That is, in 1) of FIG. 4, a stable value is measured or predicted from the waveform of the sensor output, and when the timer 34 has timed out at this time, the flow path is switched. In the hydrogen concentration measurement mode, since the demand for the detection tact time is not high, it is not necessary to switch the flow path after touching the high concentration gas. In addition, the sensor output is calibrated, and the difference between the gas concentration obtained from the stable value in the sample gas and the gas concentration corresponding to the sensor output in the background is output as the hydrogen concentration.

実施例では金属酸化物半導体ガスセンサによる水素の漏れを検出する例を示したが、検出対象ガスはフロンその他任意であり、ガスセンサは接触式燃焼式ガスセンサや固体電解質ガスセンサあるいは電気化学ガスセンサなどでもよい。
In the embodiment, an example of detecting hydrogen leakage by a metal oxide semiconductor gas sensor has been described. However, the detection target gas may be any other fluorocarbon, and the gas sensor may be a contact combustion gas sensor, a solid electrolyte gas sensor, an electrochemical gas sensor, or the like.

実施例のリークディテクタのガス流路を示す図The figure which shows the gas flow path of the leak detector of an Example 実施例での制御部のブロック図Block diagram of the control unit in the embodiment リーク検出モードでの流路切り替えアルゴリズムを示す図で、1)はガスセンサの出力波形を、2)はタイマの動作を、3)は流路の切替を示す。FIG. 5 is a diagram showing a flow path switching algorithm in the leak detection mode, where 1) shows the output waveform of the gas sensor, 2) shows the timer operation, and 3) shows the flow path switching. 水素濃度測定モードでの流路切り替えアルゴリズムを示す図で、1)はガスセンサの出力波形を、2)はタイマの動作を、3)は流路の切替を示す。FIG. 4 is a diagram showing a flow path switching algorithm in the hydrogen concentration measurement mode, where 1) shows the output waveform of the gas sensor, 2) shows the timer operation, and 3) shows the flow path switching.

符号の説明Explanation of symbols

2,4 ガスセンサ
6,8 三方弁
10,12 ニードルバルブ
14,16 流量計
18 ポンプ
20,21 ダストフィルタ
22,23 ガスフィルタ
24 制御部
25 試料ガス吸引孔
26 バックグラウンドガス吸引孔
27 チューブ
30 ADコンバータ
31 リーク検出部
32 水素濃度測定部
33 流路切り替え部
34 タイマ
35 表示部
36 記憶部
37 モード選択部
40 流量制御部
2,4 Gas sensor 6,8 Three-way valve 10,12 Needle valve 14,16 Flow meter 18 Pump 20,21 Dust filter 22,23 Gas filter 24 Control unit 25 Sample gas suction hole 26 Background gas suction hole 27 Tube 30 AD converter 31 Leak Detection Unit 32 Hydrogen Concentration Measurement Unit 33 Channel Switching Unit 34 Timer 35 Display Unit 36 Storage Unit 37 Mode Selection Unit 40 Flow Rate Control Unit

Claims (3)

試料ガスの吸引孔と、バックグラウンドガスの吸引孔と、
第1及び第2の少なくとも2個のガスセンサと、
試料ガスを第1のガスセンサへバックグラウンドガスを第2のガスセンサへ供給する状態と、試料ガスを第2のガスセンサへバックグラウンドガスを第1のガスセンサへ供給する状態との間で、流路を切り替えるバルブと、
試料ガス及びバックグラウンドガスの流量が一定でかつ互いに等しくなるようにするための流量制御手段と、
第1及び第2のガスセンサの内で試料ガスを供給されているガスセンサの出力から、ガスのリークを検出するためのリーク検出手段と、
前記試料ガスを供給されているセンサの出力が増加して所定の条件を満たすと、前記バルブを介して前記流路を切り替えるための流路切り替え手段、とを設けたリークディテクタ。
Sample gas suction holes, background gas suction holes,
First and second at least two gas sensors;
The flow path is between a state in which the sample gas is supplied to the first gas sensor and the background gas is supplied to the second gas sensor, and a state in which the sample gas is supplied to the second gas sensor and the background gas is supplied to the first gas sensor. A switching valve,
Flow rate control means for making the flow rates of the sample gas and the background gas constant and equal to each other;
Leak detection means for detecting a gas leak from the output of the gas sensor supplied with the sample gas among the first and second gas sensors;
A leak detector comprising: a flow path switching means for switching the flow path via the valve when an output of the sensor supplied with the sample gas increases to satisfy a predetermined condition.
流路切り替え手段は、前記試料ガスを供給されているセンサの出力が第1の閾値以上に増加した後、所定の時間内に第2の閾値以下に低下しない際に、流路を切り替えることを特徴とする、請求項1のリークディテクタ。 The flow path switching means switches the flow path when the output of the sensor to which the sample gas is supplied does not decrease below the second threshold value within a predetermined time after the output of the sensor increases above the first threshold value. The leak detector of claim 1, characterized in that 前記リーク検出手段はリーク検出モードとガス濃度測定モードの2種のモードを備え、
リーク検出モードでは、ガスセンサ出力の時間微分からガスのリークを検出すると共に、前記試料ガスを供給されているセンサの出力が、第1の閾値以上に増加してから所定の時間経過した時点で、第2の閾値を越えている場合に流路を切り替え、
ガス濃度測定モードでは、前記試料ガスを供給されているセンサの出力が増加した後の安定値からガス濃度を測定すると共に、前記安定値を取得した時点で流路を切り替えるようにしたことを特徴とする、請求項2のリークディテクタ。
The leak detection means has two modes, a leak detection mode and a gas concentration measurement mode,
In the leak detection mode, the gas leak is detected from the time derivative of the gas sensor output, and at the time when a predetermined time elapses after the output of the sensor supplied with the sample gas exceeds the first threshold value, When the second threshold is exceeded, the flow path is switched,
In the gas concentration measurement mode, the gas concentration is measured from the stable value after the output of the sensor to which the sample gas is supplied is increased, and the flow path is switched when the stable value is acquired. The leak detector according to claim 2.
JP2008130321A 2008-05-19 2008-05-19 Leak detector Active JP5135058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008130321A JP5135058B2 (en) 2008-05-19 2008-05-19 Leak detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008130321A JP5135058B2 (en) 2008-05-19 2008-05-19 Leak detector

Publications (2)

Publication Number Publication Date
JP2009276309A true JP2009276309A (en) 2009-11-26
JP5135058B2 JP5135058B2 (en) 2013-01-30

Family

ID=41441864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008130321A Active JP5135058B2 (en) 2008-05-19 2008-05-19 Leak detector

Country Status (1)

Country Link
JP (1) JP5135058B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013217757A (en) * 2012-04-09 2013-10-24 Figaro Eng Inc Gas detection apparatus and gas detection method
JP2014112049A (en) * 2012-12-05 2014-06-19 Fuso Co Ltd Leak detector and method of measuring amount of leak of chlorofluorocarbon
JP2014533825A (en) * 2011-11-16 2014-12-15 インフィコン ゲゼルシャフト ミット ベシュレンクテル ハフツングInficon GmbH Rapid detection of dimensionally stable / loose package leaks without the addition of a test gas
JP2015040836A (en) * 2013-08-23 2015-03-02 株式会社フクダ Hydrogen leak test method and device
CN105021389A (en) * 2015-07-14 2015-11-04 浙江大学 Multifunctional component gas fatigue test system
CN107860529A (en) * 2017-10-18 2018-03-30 歌尔股份有限公司 Air cavity in air-leakage test is to holding method and device
US10845266B2 (en) 2011-11-16 2020-11-24 Inficon Gmbh Quick leak detection on dimensionally stable/slack packaging without the addition of test gas

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56149913U (en) * 1980-04-10 1981-11-11
JP2000155107A (en) * 1998-11-20 2000-06-06 Shimadzu Corp Gas measuring apparatus
JP2001174372A (en) * 1999-12-17 2001-06-29 Shimadzu Corp Odor distinguishing apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56149913U (en) * 1980-04-10 1981-11-11
JP2000155107A (en) * 1998-11-20 2000-06-06 Shimadzu Corp Gas measuring apparatus
JP2001174372A (en) * 1999-12-17 2001-06-29 Shimadzu Corp Odor distinguishing apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014533825A (en) * 2011-11-16 2014-12-15 インフィコン ゲゼルシャフト ミット ベシュレンクテル ハフツングInficon GmbH Rapid detection of dimensionally stable / loose package leaks without the addition of a test gas
US10845266B2 (en) 2011-11-16 2020-11-24 Inficon Gmbh Quick leak detection on dimensionally stable/slack packaging without the addition of test gas
JP2013217757A (en) * 2012-04-09 2013-10-24 Figaro Eng Inc Gas detection apparatus and gas detection method
JP2014112049A (en) * 2012-12-05 2014-06-19 Fuso Co Ltd Leak detector and method of measuring amount of leak of chlorofluorocarbon
JP2015040836A (en) * 2013-08-23 2015-03-02 株式会社フクダ Hydrogen leak test method and device
CN105021389A (en) * 2015-07-14 2015-11-04 浙江大学 Multifunctional component gas fatigue test system
CN107860529A (en) * 2017-10-18 2018-03-30 歌尔股份有限公司 Air cavity in air-leakage test is to holding method and device
CN107860529B (en) * 2017-10-18 2019-08-02 歌尔股份有限公司 Air cavity in air-leakage test is to appearance method and device

Also Published As

Publication number Publication date
JP5135058B2 (en) 2013-01-30

Similar Documents

Publication Publication Date Title
JP5135058B2 (en) Leak detector
US7159445B2 (en) Sniffing leak detector and method for operation thereof
US10948207B2 (en) Air purifier and air purification method
JP5921869B2 (en) Apparatus and method for leak detection using hydrogen as tracer gas
JP4949470B2 (en) Diagnosis of cracked multi-chamber solid electrolyte gas sensor
CN102182929B (en) Device and method for detecting pipeline blockage
JP2012047651A (en) Leak detector
CN104343510A (en) Gasoline car fuel evaporation pollutant control system testing device
JP4573514B2 (en) Constant potential electrolytic gas measurement method
JP2008025469A (en) Evaporated fuel control device for internal combustion engine
CN103893876A (en) Power-on self-test method for pressure sensors of gas passages of anesthesia machines
JP4876673B2 (en) Zirconia oxygen analyzer
JPH02114164A (en) Gas detector
KR101913149B1 (en) Gas detector using internal-type standard gas for re-calibration
US12002120B2 (en) Method for determining and monitoring gas consumption in a gas network under pressure or under vacuum and gas network
CN211903213U (en) Air conditioner fault detection device and system
WO2021039305A1 (en) Instrument for elemental analysis
JP2015040836A (en) Hydrogen leak test method and device
JP2014112049A (en) Leak detector and method of measuring amount of leak of chlorofluorocarbon
CN109283297B (en) Independent calibration sampling system for hydrogen online analysis
WO2007079516A3 (en) Sensor device and method for monitoring a fuel cell system
JP2009217695A (en) Gas detecting device
CN105699022A (en) Gas leakage detector for sealing device
CN101545821A (en) Method for detecting inside leakage of waste gas air heat exchanger for heating furnace
CN106526075B (en) A kind of method and apparatus of flue gas monitoring

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5135058

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250