JP5861890B2 - Method for measuring the amount of dissolved gas in a pressurized liquid - Google Patents

Method for measuring the amount of dissolved gas in a pressurized liquid Download PDF

Info

Publication number
JP5861890B2
JP5861890B2 JP2012184497A JP2012184497A JP5861890B2 JP 5861890 B2 JP5861890 B2 JP 5861890B2 JP 2012184497 A JP2012184497 A JP 2012184497A JP 2012184497 A JP2012184497 A JP 2012184497A JP 5861890 B2 JP5861890 B2 JP 5861890B2
Authority
JP
Japan
Prior art keywords
amount
dissolved gas
carbon dioxide
pressurized liquid
dissolved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012184497A
Other languages
Japanese (ja)
Other versions
JP2014041101A (en
Inventor
龍雄 藤原
龍雄 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2012184497A priority Critical patent/JP5861890B2/en
Publication of JP2014041101A publication Critical patent/JP2014041101A/en
Application granted granted Critical
Publication of JP5861890B2 publication Critical patent/JP5861890B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Description

本発明は、被圧液体中に溶存する気体の量を測定する方法に関する。   The present invention relates to a method for measuring the amount of gas dissolved in a pressurized liquid.

従来、水などの液体中に溶存している気体の量を測定する手法としては、液体を真空引きして、あるいは液体を超音波で振動させながら真空引きして溶存気体を気相に抽出する真空抽出法(減圧法)や、液体を湯煎にかけ、加熱によって溶存気体を分離、抽出する湯煎法などが知られている(例えば、特許文献1参照)。   Conventionally, as a method of measuring the amount of gas dissolved in a liquid such as water, the dissolved gas is extracted into the gas phase by evacuating the liquid or by evacuating the liquid while vibrating with ultrasonic waves. Known are a vacuum extraction method (decompression method), a hot water bath method in which a liquid is subjected to hot water bath, and dissolved gas is separated and extracted by heating (for example, see Patent Document 1).

特開2006−71340号公報JP 2006-71340 A

しかしながら、上記従来の真空抽出法においては、溶存気体量を比較的短時間で測定できるという利点を有する反面、超音波を用いたとしても完全に液体中から溶存気体を抽出することが難しい。また、測定時に液体を大気開放状態にするため、大気との接触に起因して溶存気体量に変化が生じてしまう。このようなことから、真空抽出法においては、特に、高圧で加圧されている被圧液体や高圧で加圧されていた被圧液体中の溶存気体量を精度よく測定することが難しいという問題があった。   However, the conventional vacuum extraction method has an advantage that the amount of dissolved gas can be measured in a relatively short time, but it is difficult to completely extract the dissolved gas from the liquid even if ultrasonic waves are used. In addition, since the liquid is opened to the atmosphere at the time of measurement, the amount of dissolved gas changes due to contact with the atmosphere. For this reason, in the vacuum extraction method, in particular, it is difficult to accurately measure the amount of dissolved gas in the pressurized liquid pressurized at high pressure and the pressurized liquid pressurized at high pressure. was there.

一方、湯煎法においても、溶存気体量を比較的短時間で測定することが可能であるが、湯煎温度を100℃にしても溶存気体が液体中に残存する。このため、やはり、高圧で加圧されている被圧液体や高圧で加圧されていた被圧液体中の溶存気体量を精度よく測定することが難しい。   On the other hand, in the hot water method, the amount of dissolved gas can be measured in a relatively short time, but the dissolved gas remains in the liquid even if the hot water temperature is 100 ° C. For this reason, it is still difficult to accurately measure the amount of dissolved gas in the pressurized liquid pressurized at a high pressure or the pressurized liquid pressurized at a high pressure.

本発明は、上記事情に鑑み、被圧液体中の溶存気体量を精度よく、且つ効率よく測定することを可能にする被圧液体中の溶存気体量の測定方法を提供することを目的とする。   In view of the circumstances described above, an object of the present invention is to provide a method for measuring the amount of dissolved gas in a pressurized liquid that enables accurate and efficient measurement of the amount of dissolved gas in the pressurized liquid. .

上記の目的を達するために、この発明は以下の手段を提供している。   In order to achieve the above object, the present invention provides the following means.

本発明の被圧液体中の溶存気体量の測定方法は、被圧液体中に溶存する気体の量を測定する方法であって、キャビテーションを発生させながら前記被圧液体をサンプリング容器に流入させて採取するとともに、前記キャビテーションによって前記被圧液体から解離した過飽和溶存気体を捕集し、該過飽和溶存気体の量を測定する過飽和溶存気体量測定工程と、前記過飽和溶存気体量測定工程でサンプリング容器に採取した前記被圧液体を用い、該被圧液体中で二酸化炭素を発生させ、前記被圧液体中の溶存気体を二酸化炭素の泡によって連行湧出させるとともに二酸化炭素を除去し、二酸化炭素以外の溶存気体量を測定する二酸化炭素以外の溶存気体量測定工程と、前記過飽和溶存気体量測定工程でサンプリング容器に採取した前記被圧液体を用い、該被圧液体の総酸度を求め、前記総酸度から前記被圧液体中の溶存二酸化炭素の量を求める溶存二酸化炭素量測定工程とを備え、前記過飽和溶存気体の量と前記二酸化炭素以外の溶存気体の量と前記溶存二酸化炭素の量を合計して前記被圧液体中の溶存気体量を求めようにしたことを特徴とする。   The method for measuring the amount of dissolved gas in the pressurized liquid according to the present invention is a method for measuring the amount of gas dissolved in the pressurized liquid, wherein the pressurized liquid is allowed to flow into the sampling vessel while generating cavitation. And collecting the supersaturated dissolved gas dissociated from the pressurized liquid by the cavitation and measuring the amount of the supersaturated dissolved gas in the supersaturated dissolved gas amount measuring step and the supersaturated dissolved gas amount measuring step in the sampling container. Using the collected pressurized liquid, carbon dioxide is generated in the pressurized liquid, dissolved gas in the pressurized liquid is entrained by the bubbles of carbon dioxide and carbon dioxide is removed, and dissolved substances other than carbon dioxide are dissolved. The step of measuring the amount of gas other than carbon dioxide, and the pressurized liquid collected in the sampling vessel in the step of measuring the amount of supersaturated dissolved gas Using a dissolved carbon dioxide content measuring step for obtaining a total acidity of the pressurized liquid and obtaining an amount of dissolved carbon dioxide in the pressurized liquid from the total acidity, wherein the amount of the supersaturated dissolved gas and other than the carbon dioxide The amount of dissolved gas and the amount of dissolved carbon dioxide are added together to determine the amount of dissolved gas in the pressurized liquid.

ここで、本発明における「被圧液体」は、加圧された状態にある液体だけでなく、加圧されていた液体も含む。   Here, the “pressurized liquid” in the present invention includes not only a liquid in a pressurized state but also a pressurized liquid.

本発明の被圧液体中の溶存気体量の測定方法においては、過飽和溶存気体量測定工程で、キャビテーションを発生させながら被圧液体をサンプリング容器に採取するようにしたことにより、被圧液体から過飽和溶存気体を効率的且つ効果的に解離して捕集することができ、過飽和溶存気体の量を測定することができる。
また、二酸化炭素以外の溶存気体量測定工程で、被圧液体中で二酸化炭素を発生させ、被圧液体中の溶存気体を二酸化炭素の泡によって連行湧出させることにより、二酸化炭素以外の溶存気体量を測定することができる。
さらに、溶存二酸化炭素量測定工程で、被圧液体の総酸度を求め、総酸度から被圧液体中の溶存二酸化炭素の量を求めることができる。
In the method for measuring the amount of dissolved gas in the pressurized liquid of the present invention, in the supersaturated dissolved gas amount measuring step, the pressurized liquid is sampled in the sampling vessel while generating cavitation, so that the supersaturated from the pressurized liquid is obtained. Dissolved gas can be dissociated and collected efficiently and effectively, and the amount of supersaturated dissolved gas can be measured.
Also, in the step of measuring the amount of dissolved gas other than carbon dioxide, the amount of dissolved gas other than carbon dioxide is generated by generating carbon dioxide in the pressurized liquid and entraining the dissolved gas in the pressurized liquid with bubbles of carbon dioxide. Can be measured.
Further, in the dissolved carbon dioxide amount measurement step, the total acidity of the pressurized liquid can be obtained, and the amount of dissolved carbon dioxide in the pressurized liquid can be obtained from the total acidity.

よって、本発明の被圧液体中の溶存気体量の測定方法においては、過飽和溶存気体量測定工程と、二酸化炭素以外の溶存気体量測定工程と、溶存二酸化炭素量測定工程(水上置換法と、二酸化炭素による追い出し法と、酸度法)の3種類の工程を組み合わせることにより、従来、その計量が困難であった被圧液体中の溶存気体量を確実に計量することが可能になる。   Therefore, in the method for measuring the amount of dissolved gas in the pressurized liquid of the present invention, a supersaturated dissolved gas amount measuring step, a dissolved gas amount measuring step other than carbon dioxide, and a dissolved carbon dioxide amount measuring step (water replacement method, Combining the three types of processes of the carbon dioxide expelling method and the acidity method) makes it possible to reliably measure the amount of dissolved gas in the pressurized liquid, which has conventionally been difficult to measure.

LPG貯蔵タンクが具備する底水排水槽から高圧の排水を排出する排出経路、及びこの排出経路に設けたサンプリング装置を示す図である。It is a figure which shows the discharge path | route which discharges | emits high pressure wastewater from the bottom water drainage tank which an LPG storage tank comprises, and the sampling apparatus provided in this discharge path. サンプリング装置を示す図であり、本発明に係る被圧液体中の溶存気体量の測定方法の過飽和溶存気体量測定工程を行なっている状態を示す図である。It is a figure which shows a sampling apparatus, and is a figure which shows the state which is performing the supersaturated dissolved gas amount measurement process of the measuring method of the dissolved gas amount in the to-be-pressurized liquid which concerns on this invention. 本発明に係る被圧液体中の溶存気体量の測定方法の二酸化炭素以外の溶存気体量測定工程を示す図である。It is a figure which shows the dissolved gas amount measurement process other than the carbon dioxide of the measuring method of the dissolved gas amount in the to-be-pressurized liquid which concerns on this invention.

以下、図1から図3を参照し、本発明の一実施形態に係る被圧液体中の溶存気体量の測定方法について説明する。ここで、本実施形態では、LPG貯蔵タンクが具備する底水排水槽中の高圧の排水に溶存した気体の量を測定するものとして説明を行うが、本発明にかかる被圧液体中の溶存気体量の測定方法は、勿論、加圧されている、あるいは加圧されていた水以外の液体中の溶存気体量を測定する場合にも適用可能である。   Hereinafter, with reference to FIGS. 1 to 3, a method for measuring the amount of dissolved gas in a pressurized liquid according to an embodiment of the present invention will be described. Here, in this embodiment, although it demonstrates as what measures the quantity of the gas dissolved in the high pressure waste_water | drain in the bottom water drainage tank which an LPG storage tank comprises, the dissolved gas in the to-be-pressurized liquid concerning this invention Of course, the method of measuring the amount is also applicable to measuring the amount of dissolved gas in a liquid other than pressurized or pressurized water.

はじめに、図1及び図2に示すように、本実施形態の被圧液体中の溶存気体量の測定方法を用い、LPG貯蔵タンク1が具備する底水排水槽2の高圧の排水(高圧水、被圧液体)W中の溶存気体量を測定する際には、高圧の排水Wを底水排水槽2から排出する排出経路3にサンプリング装置4を設置しておく。   First, as shown in FIG. 1 and FIG. 2, by using the method for measuring the amount of dissolved gas in the pressurized liquid according to the present embodiment, high-pressure drainage (high-pressure water, When measuring the amount of dissolved gas in the pressurized liquid W, a sampling device 4 is installed in the discharge path 3 for discharging the high-pressure waste water W from the bottom water drain tank 2.

ここで、排出経路3は、底水排水槽2の高圧の排水W中に配設したポンプ5と、ポンプ5からLPG貯蔵タンク1の外部に延出した排水管6を備えている。また、排水管6には、ポンプ5側から順に、バランスホール付き逆止弁7、第1自動制御弁8、第2自動制御弁9、流量伝送器10、流量調整弁11、オリフィス12などが設けられている。さらに、第1自動制御弁8と第2自動制御弁9の間に第1分岐配管15が接続され、この第1分岐配管15には、分岐接続部側から順に、第3自動制御弁16、排気弁17、第1開閉弁19、ボリュームタンク20などが設けられている。さらに、流量伝送器10と流量調整弁11の間、流量調整弁11とオリフィス12の間にそれぞれ、第2分岐配管21、第3分岐配管22が接続して設けられ、これら第2分岐配管21と第3分岐配管22にはそれぞれ、開閉弁(第2開閉弁23、第3開閉弁24)が設けられている。   Here, the discharge path 3 includes a pump 5 disposed in the high-pressure drain W of the bottom water drain tank 2 and a drain pipe 6 extending from the pump 5 to the outside of the LPG storage tank 1. Further, the drain pipe 6 includes, in order from the pump 5 side, a check valve 7 with a balance hole, a first automatic control valve 8, a second automatic control valve 9, a flow rate transmitter 10, a flow rate adjustment valve 11, an orifice 12, and the like. Is provided. Furthermore, the 1st branch piping 15 is connected between the 1st automatic control valve 8 and the 2nd automatic control valve 9, and this 3rd automatic control valve 16, in order from this branch connection part side to this 1st branch piping 15, An exhaust valve 17, a first on-off valve 19, a volume tank 20, and the like are provided. Further, a second branch pipe 21 and a third branch pipe 22 are provided between the flow transmitter 10 and the flow control valve 11 and between the flow control valve 11 and the orifice 12, respectively. Each of the third branch pipes 22 is provided with an on-off valve (second on-off valve 23, third on-off valve 24).

本実施形態のサンプリング装置4は、第2分岐配管21と第3分岐配管22の各開閉弁23、24に接続して架設された連絡配管25と、連絡配管25に第2分岐配管21側から順に設けられた定流量弁26、第4開閉弁27、第5開閉弁28と、第4開閉弁27と第5開閉弁28の間に接続して分岐した第4分岐配管29、第5分岐配管30とを備えて構成されている。また、第4分岐配管29に第6開閉弁31、第5分岐配管30に第7開閉弁32が着脱可能に設けられ、これら第6開閉弁31と第7開閉弁32にそれぞれ、サンプリング容器33、34が接続されている。このとき、流量調整用のニードル弁35を介してサンプリング容器33、34が接続されている。また、各サンプリング容器33、34は、例えば、容量が300ccで12.4MPaの耐圧性を備えている。   The sampling device 4 of the present embodiment includes a connecting pipe 25 connected to the on-off valves 23 and 24 of the second branch pipe 21 and the third branch pipe 22, and a connecting pipe 25 from the second branch pipe 21 side. A constant flow valve 26, a fourth on-off valve 27, a fifth on-off valve 28, and a fourth branch pipe 29, a fifth branch branchingly connected between the fourth on-off valve 27 and the fifth on-off valve 28. A pipe 30 is provided. In addition, a sixth on-off valve 31 is detachably provided on the fourth branch pipe 29, and a seventh on-off valve 32 is detachably provided on the fifth branch pipe 30. , 34 are connected. At this time, sampling containers 33 and 34 are connected via a needle valve 35 for flow rate adjustment. Each sampling container 33 and 34 has a pressure resistance of 12.4 MPa with a capacity of 300 cc, for example.

そして、本実施形態の被圧液体中の溶存気体量の測定方法では、過飽和溶存気体量測定工程と、二酸化炭素以外の溶存気体量測定工程と、溶存二酸化炭素量測定工程(水上置換法と、二酸化炭素による追い出し法と、酸度法)の3種類の工程を実施して、高圧の排水(被圧液体)中の溶存気体量を計量する。   And in the measuring method of the dissolved gas amount in the pressurized liquid of the present embodiment, the supersaturated dissolved gas amount measuring step, the dissolved gas amount measuring step other than carbon dioxide, the dissolved carbon dioxide amount measuring step (the water displacement method, Three types of processes, carbon dioxide expulsion method and acidity method, are carried out to measure the amount of dissolved gas in high-pressure wastewater (pressured liquid).

はじめに、過飽和溶存気体量測定工程(水上置換法)を行なう。この過飽和溶存気体量測定工程は、図2に示すように、サンプリング装置4によってサンプリング容器34に排水(被圧液体)Wを採取すると同時に原位置で行なう。具体的に、過飽和溶存気体量測定工程では、流量調整弁11を閉じるとともに各開閉弁23、24、27、28、29、32を開き、サンプリング容器33、34に排水Wを流入させて採取する。このとき、ニードル弁35を操作してサンプリング容器34に流入する排水Wの通水量を例えば約0.5L/minに絞り、この所定の通水量への調節でキャビテーションを発生させながら排水Wをサンプリング容器34に採取する。   First, a supersaturated dissolved gas amount measurement step (water replacement method) is performed. As shown in FIG. 2, this supersaturated dissolved gas amount measurement step is performed at the same time as the drainage (pressured liquid) W is collected in the sampling container 34 by the sampling device 4. Specifically, in the supersaturated dissolved gas amount measurement step, the flow rate adjustment valve 11 is closed and the on-off valves 23, 24, 27, 28, 29, and 32 are opened, and the waste water W is introduced into the sampling containers 33 and 34 and collected. . At this time, by operating the needle valve 35, the flow rate of the waste water W flowing into the sampling vessel 34 is reduced to, for example, about 0.5 L / min, and the waste water W is sampled while generating cavitation by adjusting to this predetermined flow rate. Collect in container 34.

そして、このようにキャビテーションを発生させることにより、排水W中の過飽和溶存気体R1が連行湧出して解離する。この過飽和溶存気体R1をサンプリング容器34から配管36を通じて水上のメスシリンダー37で捕集し、その体積を計量する。これにより、高圧の排水W中に溶存している全溶存気体のうち、過飽和溶存気体R1の量が、過飽和溶存気体量測定工程によって原位置で測定される。   And by generating cavitation in this way, the supersaturated dissolved gas R1 in the waste water W is entrained and dissociated. This supersaturated dissolved gas R1 is collected from a sampling vessel 34 through a pipe 36 by a graduated cylinder 37 on the water, and its volume is measured. Thereby, the amount of supersaturated dissolved gas R1 is measured in-situ by the supersaturated dissolved gas amount measurement process among all the dissolved gases dissolved in the high pressure waste water W.

次に、二酸化炭素以外の溶存気体量測定工程(二酸化炭素による追い出し法)を行なう。この二酸化炭素以外の溶存気体量測定工程では、過飽和溶存気体量測定工程でサンプリング容器33、34に採取した排水Wを用い、この排水W中で二酸化炭素を発生させる。そして、排水W中の溶存気体を二酸化炭素の泡によって連行湧出させ、二酸化炭素を除去することによって、二酸化炭素以外の溶存気体量を測定する。   Next, a process for measuring the amount of dissolved gas other than carbon dioxide (purge method using carbon dioxide) is performed. In the dissolved gas amount measuring step other than carbon dioxide, the waste water W collected in the sampling containers 33 and 34 in the supersaturated dissolved gas amount measuring step is used to generate carbon dioxide in the waste water W. And the dissolved gas in the waste_water | drain W is entrained by the bubble of a carbon dioxide, and the amount of dissolved gas other than a carbon dioxide is measured by removing a carbon dioxide.

具体的に、二酸化炭素以外の溶存気体量測定工程は、サンプリング容器34で採取した排水(試料水、被圧液体)Wに対し、分析室で溶存気体量を測定する。図3(a)に示すように、はじめに、250mlの試料ビン40に5gの大理石41を入れ、サンプリング容器34内の排水Wを、採水管42を用いて試料ビン40に250ml注入する。   Specifically, in the dissolved gas amount measurement step other than carbon dioxide, the dissolved gas amount is measured in the analysis chamber with respect to the waste water (sample water, pressurized liquid) W collected by the sampling container 34. As shown in FIG. 3A, first, 5 g of marble 41 is placed in a 250 ml sample bottle 40, and 250 ml of the waste water W in the sampling container 34 is injected into the sample bottle 40 using a water collection tube.

次に、図3(b)に示すように、試料ビン40の上に、下部にHCl栓43を備えたHClビュレット44を組み立てて接続し、このビュレット44に上方からHCl(2+1)S1を15ml入れ、NaOH栓45をビュレット44の上部に取り付けてHCl(2+1)S1を内封する。   Next, as shown in FIG. 3B, an HCl burette 44 having an HCl stopper 43 at the bottom is assembled and connected to the sample bottle 40, and 15 ml of HCl (2 + 1) S1 is attached to the burette 44 from above. Then, a NaOH stopper 45 is attached to the upper part of the burette 44, and HCl (2 + 1) S1 is enclosed.

また、図3(c)に示すように、HClビュレット44の上にNaOHビュレット46を組み立て、このNaOHビュレット46内に20%NaOH溶液S2を注入して満たす。このとき、NaOH溶液S2には、水酸化カルシウムの沈殿を防止するために、50g/lのロッシェル塩を加える。   Further, as shown in FIG. 3C, an NaOH burette 46 is assembled on the HCl burette 44, and a 20% NaOH solution S2 is injected into the NaOH burette 46 to fill it. At this time, 50 g / l Rochelle salt is added to the NaOH solution S2 in order to prevent precipitation of calcium hydroxide.

そして、図3(d)に示すように、HCl栓43を開栓し、HCl(S1)を試料ビン40に降下させると、HCl(S1)と大理石41が反応して二酸化炭素(CO)が発生する。このように二酸化炭素を発生させると、二酸化炭素の泡によって溶存気体が連行湧出される。また、連行湧出された溶存気体と二酸化炭素がNaOH溶液S2を通過すると、二酸化炭素がNaOH溶液S2に吸収され、二酸化炭素以外の溶存気体R2のみが捕集される。よって、この捕集した溶存気体R2を計量することで、二酸化炭素以外の溶存気体R2の量が測定される。 Then, as shown in FIG. 3D, when the HCl stopper 43 is opened and HCl (S1) is lowered to the sample bottle 40, HCl (S1) and the marble 41 react to react with carbon dioxide (CO 2 ). Will occur. When carbon dioxide is generated in this way, dissolved gas is entrained by carbon dioxide bubbles. Further, when the dissolved gas and carbon dioxide that are entrained are passed through the NaOH solution S2, the carbon dioxide is absorbed by the NaOH solution S2, and only the dissolved gas R2 other than carbon dioxide is collected. Therefore, the amount of dissolved gas R2 other than carbon dioxide is measured by measuring the collected dissolved gas R2.

次に、二酸化炭素以外の溶存気体量測定工程で二酸化炭素以外の溶存気体量を測定したので、溶存二酸化炭素量測定工程(酸度法)によって、残りの二酸化炭素(CO)の気体量の測定を行なう。この溶存二酸化炭素量測定工程では、過飽和溶存気体量測定工程でサンプリング容器33、34に採取した排水Wを用い、この排水W中にフェノールフタレイン試液を加え、NaOH溶液を滴定し、pH8.3を定量点として滴定量から総酸度を算定する。そして、総酸度から遊離炭酸(水中に溶解している二酸化炭素)の質量を求め、体積に換算することで、排水中の溶存二酸化炭素R3の量を求める。 Next, since the dissolved gas amount other than carbon dioxide was measured in the dissolved gas amount measuring step other than carbon dioxide, the remaining gas amount of carbon dioxide (CO 2 ) was measured by the dissolved carbon dioxide amount measuring step (acidity method). To do. In this dissolved carbon dioxide amount measuring step, the wastewater W collected in the sampling vessels 33 and 34 in the supersaturated dissolved gas amount measuring step is used, a phenolphthalein test solution is added to the wastewater W, and the NaOH solution is titrated to pH 8.3. The total acidity is calculated from the titration amount using as a quantification point. Then, the mass of free carbonic acid (carbon dioxide dissolved in water) is determined from the total acidity, and the amount of dissolved carbon dioxide R3 in the waste water is determined by converting the mass into volume.

具体的に、溶存二酸化炭素量測定工程は、サンプリング容器33、34で採取した排水(試料水、被圧液体)Wに対し、分析室で溶存二酸化炭素量を測定する。   Specifically, in the dissolved carbon dioxide amount measuring step, the amount of dissolved carbon dioxide is measured in the analysis chamber with respect to the waste water (sample water, pressurized liquid) W collected by the sampling containers 33 and 34.

ここで、酸度とは、水中に含まれている炭酸、鉱酸、有機酸などの酸分を中和するのに要するアルカリ分を、これに対応するCaCOのppmで表したもので、その1ppm(mg/l)を1度とする。また、総酸度とは、水中の酸分全部をこれに対応するCaCOのppmで表したものである。 Here, the acidity is the alkali content required to neutralize the acid content of carbonic acid, mineral acid, organic acid, etc. contained in water, expressed in ppm of the corresponding CaCO 3 , 1 ppm (mg / l) is defined as 1 degree. The total acidity is the total acid content in water expressed in ppm of the corresponding CaCO 3 .

そして、本実施形態では、まず、サンプリング容器33、34で採取した排水Wの総酸度の定量を、フェノールフタレイン測定法を用いて行なう。このフェノールフタレイン測定法で排水Wの総酸度を定量する際には、排水(試料水W)100mlを比色管にとり、フェノールフタレイン試薬(指示薬)を4〜5滴加えて白紙上に置き、微虹色が消えずに残るまで0.02規定(0.02mol/l;本溶液1mlがCaCO1mgに相当)のNaOH溶液で滴定して予備試験を行なう。次に、別の比色管に排水(試料水W)100mlをとり、フェノールフタレイン試薬を4〜5滴加え、これに予備試験で消費した量と同量の0.02規定のNaOH溶液を加え、軽く動揺し、虹色が消えた場合は、さらに同様にて規定を続ける。そして、虹色が消えずに残った時点で、遊離炭酸が溶存していない状態であるため、pH8.3におけるNaHCOの当量点(終末点)を総酸度とする。 In this embodiment, first, the total acidity of the waste water W collected in the sampling containers 33 and 34 is quantified using a phenolphthalein measurement method. When quantifying the total acidity of wastewater W by this phenolphthalein measurement method, take 100 ml of wastewater (sample water W) in a colorimetric tube, add 4 to 5 drops of phenolphthalein reagent (indicator), and place it on a white paper. Titrate with a NaOH solution of 0.02 N (0.02 mol / l; 1 ml of this solution corresponds to 1 mg of CaCO 3 ) until a slight iridescent color remains, and perform a preliminary test. Next, 100 ml of waste water (sample water W) is taken in another colorimetric tube, 4 to 5 drops of phenolphthalein reagent are added, and 0.02 normal NaOH solution of the same amount as consumed in the preliminary test is added thereto. In addition, if the rainbow color disappears slightly after shaking, continue the same rule. When the rainbow color remains without disappearing, the free carbonic acid is not dissolved, so the equivalent point (end point) of NaHCO 3 at pH 8.3 is defined as the total acidity.

滴定時の化学反応式は、CO+NaOH→NaHCOである。また、最終的に、虹色が消えずに残った時点の0.02規定のNaOH溶液の合計ml数aから、〔総酸度(CaCOppm)=a×1000/試料水ml〕によって総酸度を算定する。 The chemical reaction formula at the time of titration is CO 2 + NaOH → NaHCO 3 . Finally, from the total ml number a of the 0.02 normal NaOH solution at the time when the rainbow color remained without disappearing, the total acidity by [total acidity (CaCO 3 ppm) = a × 1000 / ml sample water] Is calculated.

そして、総酸度から換算して遊離炭酸(排水中に溶解している二酸化炭素)R3の量が求まる。
このとき、遊離炭酸の質量算定式は、遊離炭酸(COppm;mg/l)=[総酸度(CaCOppm)−鉱酸酸度(CaCOppm)]×0.88であり、遊離炭酸の体積算定式は、遊離炭酸(COml/l)=COppm/44.01×22.263である。
Then, the amount of free carbonic acid (carbon dioxide dissolved in the wastewater) R3 is determined in terms of the total acidity.
At this time, the mass calculation formula of free carbonic acid is free carbonic acid (CO 2 ppm; mg / l) = [total acidity (CaCO 3 ppm) −mineral acidity (CaCO 3 ppm)] × 0.88. The volume calculation formula is as follows: free carbonic acid (CO 2 ml / l) = CO 2 ppm / 44.01 × 22.263.

なお、遊離炭酸の質量算定式における〔鉱酸酸度〕とは、HSO、HCl、およびHNOなどの鉱酸(炭酸以外の非金属を含む酸の総称で、古来、鉱物から得られた)による酸度である。また、試料水(排水W)中に第二鉄塩およびアルミニウム塩が著量に含有されているときは、鉄およびアルミニウムを測定して、これに対応するCaCOのppm(mg/l)を差し引いた残りを鉱酸酸度とする。当量点はpH4.8で、0.02規定のNaOH溶液で滴定するため、試料水がpH4.8以上の場合は、鉱酸酸度なしとする。 In addition, the [mineral acidity] in the mass calculation formula of free carbonic acid is a general term for mineral acids (acids including non-metals other than carbonic acid) such as H 2 SO 4 , HCl, and HNO 3. Acidity. Further, when ferric salt and aluminum salt are contained in the sample water (drainage W) in a significant amount, iron and aluminum are measured, and the corresponding ppm (mg / l) of CaCO 3 is measured. The remainder after subtraction is defined as the mineral acidity. The equivalence point is pH 4.8, and titration is performed with a 0.02 N NaOH solution. Therefore, if the sample water has a pH of 4.8 or more, there is no mineral acidity.

また、遊離炭酸の質量算定式における(0.88)は、総酸度の算定式を同規定度のCOに換算して算定する際の換算比である。さらに、遊離炭酸の体積算定式における(44.01)は、日本化学会原子量委員会「4桁の原子量表(2010)」の分子量による。また、遊離炭酸の体積算定式における(22.263)は、実在気体のCO1モルの物性値(体積)による。 Moreover, (0.88) in the mass calculation formula of free carbonic acid is a conversion ratio when calculating the calculation formula of total acidity by converting it into CO 2 of the same normality. Furthermore, (44.01) in the volume calculation formula of free carbonic acid is based on the molecular weight of the Chemical Society of Japan Atomic Weight Committee “4-digit atomic weight table (2010)”. Moreover, (22.263) in the volume calculation formula of free carbonic acid is based on the physical property value (volume) of 1 mol of CO 2 in the actual gas.

そして、上記のように、過飽和溶存気体量測定工程と、二酸化炭素以外の溶存気体量測定工程と、溶存二酸化炭素量測定工程(水上置換法と、二酸化炭素による追い出し法と、酸度法)の3種類の工程で計量した過飽和溶存気体R1の量と二酸化炭素以外の溶存気体R2の量と溶存二酸化炭素R3の量を合計することにより、高圧の排水中の溶存気体量が得られる。   And, as described above, 3 of the supersaturated dissolved gas amount measuring step, the dissolved gas amount measuring step other than carbon dioxide, and the dissolved carbon dioxide amount measuring step (water displacement method, carbon dioxide expelling method, and acidity method) By adding up the amount of the supersaturated dissolved gas R1 measured in the types of processes, the amount of the dissolved gas R2 other than carbon dioxide, and the amount of the dissolved carbon dioxide R3, the amount of dissolved gas in the high-pressure waste water can be obtained.

したがって、本実施形態の被圧液体中の溶存気体量の測定方法においては、過飽和溶存気体量測定工程で、キャビテーションを発生させながら被圧液体(高圧の排水)Wをサンプリング容器33、34に採取するようにしたことにより、被圧液体Wから過飽和溶存気体R1を効率的且つ効果的に解離して捕集することができ、過飽和溶存気体R1の量を測定することができる。   Therefore, in the method for measuring the dissolved gas amount in the pressurized liquid according to the present embodiment, the pressurized liquid (high pressure waste water) W is collected in the sampling containers 33 and 34 while generating cavitation in the supersaturated dissolved gas amount measuring step. By doing so, the supersaturated dissolved gas R1 can be efficiently and effectively dissociated and collected from the pressurized liquid W, and the amount of the supersaturated dissolved gas R1 can be measured.

また、二酸化炭素以外の溶存気体量測定工程で、被圧液体W中で二酸化炭素を発生させ、被圧液体W中の溶存気体を二酸化炭素の泡によって連行湧出させることにより、二酸化炭素以外の溶存気体R2の量を測定することができる。   Further, in the step of measuring the amount of dissolved gas other than carbon dioxide, carbon dioxide is generated in the pressurized liquid W, and the dissolved gas in the pressurized liquid W is entrained by the bubbles of carbon dioxide, thereby dissolving other than carbon dioxide. The amount of gas R2 can be measured.

さらに、溶存二酸化炭素量測定工程で、被圧液体Wの総酸度を求め、総酸度から被圧液体W中の溶存二酸化炭素R3の量を求めることができる。   Further, in the dissolved carbon dioxide amount measuring step, the total acidity of the pressurized liquid W can be obtained, and the amount of dissolved carbon dioxide R3 in the pressurized liquid W can be obtained from the total acidity.

よって、本実施形態の被圧液体中の溶存気体量の測定方法においては、過飽和溶存気体量測定工程と、二酸化炭素以外の溶存気体量測定工程と、溶存二酸化炭素量測定工程の3種類の工程を組み合わせることにより、従来、その計量が困難であった被圧液体中の溶存気体量を確実に計量することが可能になる。   Therefore, in the method for measuring the amount of dissolved gas in the pressurized liquid of the present embodiment, three types of processes, a supersaturated dissolved gas amount measuring step, a dissolved gas amount measuring step other than carbon dioxide, and a dissolved carbon dioxide amount measuring step. By combining the above, it becomes possible to reliably measure the amount of dissolved gas in the pressurized liquid, which has been difficult to measure conventionally.

以上、本発明に係る被圧液体中の溶存気体量の測定方法の一実施形態について説明したが、本発明は上記の実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。   As mentioned above, although one Embodiment of the measuring method of the dissolved gas amount in the pressurized liquid which concerns on this invention was described, this invention is not limited to said embodiment, It changes suitably in the range which does not deviate from the meaning. Is possible.

1 LPG貯蔵タンク
2 底水排水槽
3 排出経路
4 サンプリング装置
5 ポンプ
6 排水管
7 バランスホール付き逆止弁
8 第1自動制御弁
9 第2自動制御弁
10 流量伝送器
11 流量調整弁
12 オリフィス
15 第1分岐配管
16 第3自動制御弁
17 排気弁
19 第1開閉弁
20 ボリュームタンク
21 第2分岐配管
22 第3分岐配管
23 第2開閉弁
24 第3開閉弁
25 連絡配管
26 定流量弁
27 第4開閉弁
28 第5開閉弁
29 第4分岐配管
30 第5分岐配管
31 第6開閉弁
32 第7開閉弁
33 サンプリング容器
34 サンプリング容器
35 ニードル弁
36 配管
37 メスシリンダー
40 試料ビン
41 大理石
42 採水管
43 HCl栓
44 HClビュレット
45 NaOH栓
46 NaOHビュレット
R1 過飽和溶存気体
R2 二酸化炭素以外の溶存気体
R3 溶存二酸化炭素
S1 塩酸溶液
S2 水酸化ナトリウム溶液
W 排水(試料水、被圧液体)
DESCRIPTION OF SYMBOLS 1 LPG storage tank 2 Bottom water drainage tank 3 Discharge path 4 Sampling device 5 Pump 6 Drain pipe 7 Check valve 8 with balance hole 1st automatic control valve 9 2nd automatic control valve 10 Flow transmitter 11 Flow control valve 12 Orifice 15 First branch pipe 16 Third automatic control valve 17 Exhaust valve 19 First on-off valve 20 Volume tank 21 Second branch pipe 22 Third branch pipe 23 Second on-off valve 24 Third on-off valve 25 Connection pipe 26 Constant flow valve 27 First 4 on-off valve 28 5th on-off valve 29 4th branch pipe 30 5th branch pipe 31 6th on-off valve 32 7th on-off valve 33 sampling container 34 sampling container 35 needle valve 36 pipe 37 graduated cylinder 40 sample bottle 41 marble 42 sampling pipe 43 HCl plug 44 HCl burette 45 NaOH plug 46 NaOH burette R1 Supersaturated dissolved gas R2 Carbon dioxide Outside dissolved gas R3 Dissolved carbon dioxide S1 Hydrochloric acid solution S2 Sodium hydroxide solution W Drainage (sample water, pressurized liquid)

Claims (1)

被圧液体中に溶存する気体の量を測定する方法であって、
キャビテーションを発生させながら前記被圧液体をサンプリング容器に流入させて採取するとともに、前記キャビテーションによって前記被圧液体から解離した過飽和溶存気体を捕集し、該過飽和溶存気体の量を測定する過飽和溶存気体量測定工程と、
前記過飽和溶存気体量測定工程でサンプリング容器に採取した前記被圧液体を用い、該被圧液体中で二酸化炭素を発生させ、前記被圧液体中の溶存気体を二酸化炭素の泡によって連行湧出させるとともに二酸化炭素を除去し、二酸化炭素以外の溶存気体量を測定する二酸化炭素以外の溶存気体量測定工程と、
前記過飽和溶存気体量測定工程でサンプリング容器に採取した前記被圧液体を用い、該被圧液体の総酸度を求め、前記総酸度から前記被圧液体中の溶存二酸化炭素の量を求める溶存二酸化炭素量測定工程とを備え、
前記過飽和溶存気体の量と前記二酸化炭素以外の溶存気体の量と前記溶存二酸化炭素の量を合計して前記被圧液体中の溶存気体量を求めようにしたことを特徴とする被圧液体中の溶存気体量の測定方法。
A method for measuring the amount of gas dissolved in a pressurized liquid,
The supersaturated dissolved gas that collects the supersaturated dissolved gas dissociated from the pressurized liquid by the cavitation and collects the supersaturated dissolved gas and collects the pressurized liquid while flowing into the sampling vessel while generating cavitation. A quantity measuring step;
Using the pressurized liquid collected in the sampling vessel in the supersaturated dissolved gas amount measuring step, generating carbon dioxide in the pressurized liquid, and entraining the dissolved gas in the pressurized liquid with carbon dioxide bubbles Removing the carbon dioxide and measuring the amount of dissolved gas other than carbon dioxide;
Using the pressurized liquid collected in the sampling vessel in the supersaturated dissolved gas amount measurement step, the total acidity of the pressurized liquid is obtained, and the dissolved carbon dioxide for obtaining the amount of dissolved carbon dioxide in the pressurized liquid from the total acidity A quantity measuring step,
In the pressurized liquid, the amount of the dissolved gas in the pressurized liquid is obtained by adding up the amount of the supersaturated dissolved gas, the amount of dissolved gas other than the carbon dioxide, and the amount of the dissolved carbon dioxide. Of measuring the amount of dissolved gas.
JP2012184497A 2012-08-23 2012-08-23 Method for measuring the amount of dissolved gas in a pressurized liquid Expired - Fee Related JP5861890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012184497A JP5861890B2 (en) 2012-08-23 2012-08-23 Method for measuring the amount of dissolved gas in a pressurized liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012184497A JP5861890B2 (en) 2012-08-23 2012-08-23 Method for measuring the amount of dissolved gas in a pressurized liquid

Publications (2)

Publication Number Publication Date
JP2014041101A JP2014041101A (en) 2014-03-06
JP5861890B2 true JP5861890B2 (en) 2016-02-16

Family

ID=50393460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012184497A Expired - Fee Related JP5861890B2 (en) 2012-08-23 2012-08-23 Method for measuring the amount of dissolved gas in a pressurized liquid

Country Status (1)

Country Link
JP (1) JP5861890B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6471973B2 (en) * 2015-06-04 2019-02-20 清水建設株式会社 Method and apparatus for measuring free gas from groundwater
KR101906303B1 (en) * 2017-03-28 2018-10-10 충북대학교 산학협력단 A Device and Method Measuring Nitrogen Content in Kerosene Fuel
CN107884427B (en) * 2017-11-09 2019-12-31 北京理工大学 System for measuring content of gas in ventilating cavity bubble based on circulating water tunnel
JP7106293B2 (en) * 2018-02-28 2022-07-26 株式会社キッツエスシーティー Valve seat leakage measurement method, valve seat leakage measurement device, and high-pressure valve for hydrogen station

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5319237B2 (en) * 1973-02-15 1978-06-20
JP3358671B2 (en) * 1993-05-27 2002-12-24 大日本インキ化学工業株式会社 Method for controlling pests inhabiting soil and apparatus for producing water for controlling the pests
JP4117058B2 (en) * 1997-02-05 2008-07-09 三菱レイヨン・エンジニアリング株式会社 Production method of carbonated spring
JP2002214106A (en) * 2001-01-18 2002-07-31 Hiromaito Co Ltd Analytical method of dissolved gas in liquid and device therefor
AT409673B (en) * 2001-03-23 2002-10-25 Anton Paar Gmbh METHOD AND DEVICE FOR DETERMINING THE CONTENT OF GASES SOLVED IN LIQUIDS
JP2006071340A (en) * 2004-08-31 2006-03-16 Kurita Water Ind Ltd Method of measuring concentration of dissolved gas in liquid, measuring device, and manufacture device of nitrogen gas-dissolved water
KR101433780B1 (en) * 2005-08-11 2014-08-25 클루 에즈 Method for the production of fertilizer and co2
JP4893365B2 (en) * 2007-02-27 2012-03-07 株式会社明電舎 Microbubble generator and microbubble generator system
JP2010022936A (en) * 2008-07-18 2010-02-04 Ube Ind Ltd Apparatus and method for producing ultrapure water

Also Published As

Publication number Publication date
JP2014041101A (en) 2014-03-06

Similar Documents

Publication Publication Date Title
JP5861890B2 (en) Method for measuring the amount of dissolved gas in a pressurized liquid
WO2021244406A1 (en) Device and method for measuring gas solubility in natural gas hydrate solution system
Walker et al. Potential errors in the quantitative evaluation of biogas production in anaerobic digestion processes
CN201780246U (en) Carbonate content measurement instrument employing pressure-volume method
JP5448045B2 (en) Leakage CO2 detection method, leakage CO2 detection device, and underground CO2 leakage monitoring method
Halseid et al. Corrosion and bulk phase reactions in CO2 transport pipelines with impurities: review of recent published studies
JP5772886B2 (en) Analysis equipment
RU2405933C1 (en) Method for survey of gas and gas-condensate wells
CN104007041B (en) Coal seam hydrogen sulfide content determinator
CN104897521B (en) A kind of anhydrous fracturing fluid flow conductivity test system of carbon dioxide
EP1950774A3 (en) Quantitative measurement of production and consumption of gases in power transformers and device
CN110761749A (en) Simulation experiment system and experiment method for synthesis and exploitation of natural gas hydrate
Al-Anezi et al. Parameters affecting the solubility of carbon dioxide in seawater at the conditions encountered in MSF desalination plants
US9835525B2 (en) Multiphase sample container and method
CN111443029B (en) Simulation device and simulation method for hydrogen sulfide corrosion pipe
CN107219150A (en) A kind of method and its device for determining soil sample calcium carbonate content
CN109060590B (en) System and method for measuring content of hydrogen sulfide gas in coal seam
US20100281950A1 (en) Method and apparatus for analysis of mixed streams
CN102654497A (en) Mixing-separating crude oil corrosion testing method
CN104330530B (en) A kind of DO determination device and assay method
CN206132601U (en) Wet -type chemical analyser
JP4996895B2 (en) Calcium carbonate concentration measuring method, measuring device and calcium carbonate concentration control device
RU2181882C1 (en) Device determining concentration of gas in liquid
CN205138849U (en) Solution gas sampling device
RU92143U1 (en) UNIVERSAL CYLINDER FOR TAKING AND RESEARCH SEPARATORY SAMPLES OF GAS AND LIQUID HYDROCARBONS

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151209

R150 Certificate of patent or registration of utility model

Ref document number: 5861890

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees