WO2005078823A1 - Plated steel sheet for battery container, battery container using such plated steel sheet, and battery using such battery container - Google Patents

Plated steel sheet for battery container, battery container using such plated steel sheet, and battery using such battery container Download PDF

Info

Publication number
WO2005078823A1
WO2005078823A1 PCT/JP2005/001925 JP2005001925W WO2005078823A1 WO 2005078823 A1 WO2005078823 A1 WO 2005078823A1 JP 2005001925 W JP2005001925 W JP 2005001925W WO 2005078823 A1 WO2005078823 A1 WO 2005078823A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
alloy layer
battery container
steel sheet
iron
Prior art date
Application number
PCT/JP2005/001925
Other languages
French (fr)
Japanese (ja)
Inventor
Hitoshi Ohmura
Tatsuo Tomomori
Yoshitaka Honda
Eiji Yamane
Eiji Okamatsu
Original Assignee
Toyo Kohan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co., Ltd. filed Critical Toyo Kohan Co., Ltd.
Publication of WO2005078823A1 publication Critical patent/WO2005078823A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/124Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure
    • H01M50/1243Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure characterised by the internal coating on the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/124Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure
    • H01M50/126Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure comprising three or more layers
    • H01M50/128Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure comprising three or more layers with two or more layers of only inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/124Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/124Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure
    • H01M50/1245Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure characterised by the external coating on the casing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Plated steel plate for battery container battery container using the plated steel plate for battery container, and battery using the battery container
  • the present invention relates to a plated steel plate for a battery container, and a battery container using the plated steel plate for a battery container.
  • the inventors of the present invention have proposed a surface-treated steel sheet having a nickel-tin intermetallic compound formed on the surface thereof, in which irregularities are easily generated on the inner surface of the container (for example, see Patent Document 1).
  • graphite is dispersed and deposited in the nickel plating formed on the surface of the steel sheet to form irregularities on the surface and expose graphite particles with excellent conductivity to the surface to allow contact between the positive electrode active material and the inner surface of the battery container.
  • the present inventors have also proposed a surface-treated steel sheet with reduced resistance (for example, see Patent Document 2).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 07-300695
  • Patent Document 2 International Publication No. WO00Z05437 pamphlet
  • the present invention relates to a plated steel sheet for a battery container, which can provide a battery having excellent discharge characteristics without forming a conductive layer mainly composed of graphite or the like on the inner surface of the battery container, and an electrode using the same. It is an object to provide a pond container and a battery using the same.
  • the plated steel sheet for a battery container of the present invention that solves the above-mentioned problems is characterized in that, in the plated steel sheet for a battery container using a steel sheet as a substrate, an alloy layer containing silver is formed on the outermost surface on the inner surface side of the battery container.
  • a plated steel sheet for a battery container (claim 1).
  • the alloy layer containing silver is a nickel-tin-silver alloy layer, a nickel-phosphorous-tin "! Good alloy layer or a nickel-cobalt-tin-silver alloy layer (Claim 2).
  • an iron-nickel alloy layer and a nickel-tin-silver alloy layer are sequentially formed on the steel sheet on the side serving as the inner surface of the battery container. 3), or
  • an iron-nickel alloy layer, a nickel layer, and a nickel-tin-silver alloy layer are formed on the steel sheet in order from the bottom on the inner side of the battery container (Claim 4), or
  • the iron-nickel alloy layer, the iron-nickel-phosphorous alloy layer, and the nickel-phosphorous tin layer are formed on the steel sheet in order from the bottom on the steel sheet ( Claim 5), or
  • the iron-nickel alloy layer, iron-nickel-phosphorus alloy layer, nickel-phosphorus alloy layer, and nickel-phosphorus tin-silver alloy layer are formed on the steel sheet in order from the bottom on the inner side of the battery case. (Claim 6) or
  • the iron-nickel-phosphorus alloy layer, nickel-phosphorus alloy layer, and nickel-phosphorus-tin "! Good alloy layer are formed on the steel sheet in order from the bottom on the inner side of the battery case. (Claim 8) or
  • the iron-nickel alloy layer, iron-nickel-cobalt alloy layer, and nickel-cobalt-tin alloy layer must be formed in order from the bottom on the inner side of the battery container. (Claim 9), or
  • the iron / nickel alloy layer, the iron / nickel / cobalt alloy layer, the nickel / cobalt alloy layer, and the nickel / cobalt tin / good alloy layer are formed on the steel plate in order from the bottom. (Claim 10), or
  • an iron-nickel-cobalt alloy layer and a nickel-cobalt-tin "! Good alloy layer must be formed on the steel sheet in order from the bottom on the steel sheet inner side (claim 11).
  • an iron-nickel-cobalt alloy layer, a nickel-cobalt alloy layer, and a nickel-cobalt-tin-silver alloy layer are formed in order from the bottom on the inner side of the battery container (from the claim).
  • an iron-nickel alloy layer On the side to be the inner surface of the battery container, an iron-nickel alloy layer, an iron- 12 nickel-rucono-retorin alloy layer, and a nickel-cono-retorin-tin-silver alloy layer are formed on the steel plate in the order from the bottom to the bottom (claim 13).
  • an iron-nickel alloy layer On the side that is the inner surface of the battery container, an iron-nickel alloy layer, an iron-nickel-cobalt-phosphorus alloy layer, a nickel-cobalt-phosphorus alloy layer, and a nickel-cobalt-phosphorus-tin-silver alloy layer are sequentially formed on a steel plate in the lower color order. (Claim 14), or
  • the iron-nickel alloy layer, nickel layer, nickel-cobalt-phosphorous-alloy layer, and nickel-cobalt-phosphorus-tin--good alloy layer are formed on the steel plate in the order from the bottom on the side that is the inner surface of the battery container (claim 15).
  • an iron-nickel alloy layer On the side that will be the inner surface of the battery container, an iron-nickel alloy layer, an iron-nickel-lucono-retorin alloy layer, and a nickel-cono-retorin "! Good alloy layer must be formed on a steel plate in the order of lower color ( Claim 16), or
  • an iron-nickel alloy layer On the side that will be the inner surface of the battery container, an iron-nickel alloy layer, an iron-nickel-cobalt-phosphorus alloy layer, a nickel-cobalt-phosphorus alloy layer, and a nickel-cobalt-phosphorus-silver alloy layer are formed on a steel plate in order from the bottom. (Claim 17), or
  • An iron-nickel alloy layer, a nickel layer, a nickel-cobalt-phosphorous-alloy layer, and a nickel-cobalt-phosphorus-silver alloy layer are formed on a steel sheet in the order from the bottom to the inner surface of the battery container (claim 18).
  • the battery container of the present invention is formed by molding the steel sheet for battery container according to any one of claims 1 to 19 into a bottomed cylindrical shape.
  • a battery container (Claim 20) characterized by the following:
  • a battery according to the present invention is a battery (claim 21) characterized in that it is formed using the battery container described above (claim 20).
  • a silver-tin alloy layer is formed on the outermost surface of the plated steel sheet for a battery container on the inner surface side of the battery container, so that a paint containing graphite powder as a main component is applied to the inner surface of the container. Even if used without the above, the same or higher discharge characteristics as those of a conventional battery container using a graphite-coated container can be obtained, and the battery life is also improved.
  • the steel sheet used as the substrate may be a general-purpose low-carbon aluminum-killed steel (carbon content 0.01 to 0.15% by weight) or a non-ageable ultra-low carbon aluminum-killed steel (carbon content 0.01 % By weight). These steels are hot-rolled to remove the scale from the surface by pickling, then cold-rolled, electrolytically cleaned, annealed and temper-rolled, and used as a substrate. After cold rolling and electrolytic cleaning, the substrate may be plated without annealing and then annealed.
  • a metal layer is formed on both sides of the steel sheet as the substrate obtained in this manner to obtain a plated steel sheet for a battery container of the present invention.
  • the metal layer formed on the plated steel sheet for battery containers is a nickel plated layer, a nickel alloy plated layer, a cobalt plated layer, a cobalt alloy plated layer, a nickel cobalt alloy plated layer, or After the plating layer is formed, heat treatment is performed.
  • the uppermost layer of these metal layers formed on the side of the steel sheet that is the inner surface of the battery container is provided. It is characterized in that an alloy layer containing silver is formed.
  • the inner surface of the battery container is provided with a steel plate with a metal layer formed on the steel plate for the battery container.
  • the conductive layer is formed by applying a paint mainly composed of graphite or the like on the metal layer on the inner surface side of the container to form a conductive layer.
  • an alloy layer containing silver is formed on the outermost surface of the inner surface of the container, so that the battery container coated with the conventional graphite paint without applying the graphite paint is applied. Discharge characteristics equivalent to or better than those obtained by using are obtained. Therefore, the steps of applying and drying the graphite paint can be omitted.
  • the discharge characteristics are further improved. Also, a secondary effect that the internal resistance is reduced and the battery life is improved can be obtained.
  • the metal layer on the inner surface of the container, on which the alloy layer containing silver is formed on the outermost surface of the steel plate on the side to be the inner surface of the battery container is preferably configured as shown below. That is, in order from the steel sheet side, (a) an iron-nickel alloy layer, a nickel-tin-silver alloy layer, (b) an iron-nickel alloy layer, a nickel layer, a nickel-tin-silver alloy layer, (C) Iron-nickel alloy layer, iron-nickel-phosphorus alloy layer, nickel-phosphorus tin-silver alloy layer, (d) iron-nickel alloy layer, iron-nickel-phosphorus alloy layer, nickel-phosphorus alloy layer, Lurin tin silver alloy layer formed, (e) iron nickel phosphorus alloy layer, -nickel phosphorus tin "!
  • iron nickel phosphorus alloy layer formed, (f) iron nickel phosphorus alloy layer, nickel phosphorus alloy layer, nickel phosphorus tin (G) iron-nickel alloy layer, iron-nickel-cobalt alloy layer, nickel-cobalt-tin-silver alloy layer, (h) iron-nickel alloy layer, iron-nickel-cobalt alloy layer, Nickel Baltic alloy layer, nickel-Koba Ruto tin silver alloy layer, (i) iron nickel cobalt alloy layer, nickel cobalt tin silver alloy layer formed, (j) iron nickel cobalt alloy layer, nickel cobalt alloy layer, nickel cobalt tin _ good alloy layer (K) iron-nickel alloy layer, iron-nickel-cono-retolin alloy layer, nickel-cono-leto tin-silver alloy layer, (1) iron-nickel alloy layer, iron-nickel-cobalt-phosphorus alloy layer, nickel-cobalt-phosphorus layer Alloy layer, nickel-cobalt-tin "!
  • an iron-nickel alloy layer and a nickel layer on the steel sheet in order of the downward force on the side of the steel sheet for the battery container which is to be the outer surface of the battery container.
  • the above-mentioned cold-rolled steel sheet of low-carbon aluminum-killed steel or ultra-low-carbon aluminum-killed steel is used as a substrate.
  • the upper layer is made of a nickel-phosphorus alloy or a nickel-cobalt alloy.
  • a two-layer plating is formed as a base plating layer, and a tin plating layer and a silver plating are formed on one of these base plating layers.
  • annealing is performed to form any of the above alloy layers containing silver on the outermost surface. Or one of the above-mentioned substrates on the substrate After forming a layer, annealing is performed, and then a tin plating layer and a silver plating layer are formed on the underlying plating layer after annealing, and a silver-tin alloy is formed on any of these underlying plating layers.
  • a re-annealing treatment may be performed to form any of the above alloy layers containing silver on the outermost surface.
  • the step of forming the above-mentioned plating layer on the substrate of these cold-rolled steel sheets and performing the annealing treatment is performed when a cold-rolled steel sheet of low carbon aluminum killed steel is used as a plating substrate (hereinafter, referred to as “Step A”).
  • Step A a cold-rolled steel sheet of low carbon aluminum killed steel is used as a plating substrate.
  • B process cold rolled ultra-low carbon aluminum-killed steel sheets as plating substrates
  • the plated steel sheet for a battery container is manufactured by the step A, it is performed as follows.
  • cold-roll low-carbon aluminum-killed steel electrolytically wash in an aqueous alkaline solution, and then apply nickel plating to both sides. , Box annealing or continuous annealing.
  • tin plating is applied only to the side that will be the inner surface of the battery container, and silver plating is applied thereon.
  • silver-tin alloy or, after temper rolling, apply a nickel-tin alloy and then apply silver. Or apply silver-tin alloy.
  • a nickel layer and a Z or nickel-iron alloy layer having the structure of (a) or (b) are formed on the inner side of the battery container, and a nickel-tin-silver alloy layer is further formed on the outermost surface.
  • the steel plate for a battery container according to the present invention which is formed and has an iron-nickel alloy layer and a nickel layer formed on the side to be the outer surface of the battery container, is obtained.
  • the annealing after cold rolling is performed by box type annealing, it is preferable to perform soaking in the temperature range of 640-680 ° C for 5-20 hours. If continuous annealing is performed, the temperature range is 730-800 ° C. It is preferable to soak 0.5 to 3 minutes. When performing post-plating annealing by box-type annealing, it is preferable to soak in a temperature range of 500 to 530 ° C for 5 to 10 hours.When performing continuous annealing, it is preferable to perform soaking in a temperature range of 730 to 800 ° C. It is preferable to soak for 5 to 3 minutes. Whether to provide the metal layer of the configuration (a) or (b) is appropriately selected from the amount of nickel plating and the annealing conditions (type, temperature, time) after plating.
  • the low-carbon aluminum-killed steel is temper-rolled through the same steps as described above, and then becomes the inner surface of the battery container.
  • the battery case and nickel-phosphorus alloy on top of it Apply nickel plating and perform box type annealing or continuous annealing.
  • tin plating is performed only on the side that will be the inner surface of the battery container, and silver plating or silver-tin alloy plating is performed thereon.
  • box annealing or continuous annealing is performed again. In this way, the nickel-iron alloy layer and nickel-phosphorus alloy layer (C) or (d) are
  • Two layers and two layers of Z or nickel-ferrous alloy layer and nickel-phosphorous iron-iron alloy layer are formed, and a nickel-phosphorus-tin-silver alloy layer is further formed on the outermost surface.
  • a plated steel sheet for a battery container of the present invention on which an iron-nickel alloy layer and a nickel layer are formed.
  • Annealing conditions after cold rolling and after plating are appropriately selected in the same range as the above annealing conditions after cold rolling. Whether to provide the metal layer of the configuration (c) or (d) is determined by appropriately selecting the amount of nickel-phosphorus alloy deposition and the annealing conditions (type, temperature, time) after plating.
  • the low-carbon aluminum-killed steel is temper-rolled through the same process as described above, and then becomes the inner surface of the battery container. Apply a nickel-phosphorus alloy to the side, apply nickel plating to the side that will be the outer surface of the battery container, and perform box-type annealing or continuous annealing. Next, after temper rolling, tin plating and silver plating or silver-tin alloy plating are performed only on the side that will be the inner surface of the battery container. Thereafter, box annealing or continuous annealing is performed again.
  • the nickel-phosphorus alloy layer (e) or (f) and the Z or nickel-phosphorous iron alloy layer are formed on the inner side of the battery container, and the nickel-phosphorus-tin-silver layer is formed on the outermost surface.
  • An alloy layer is formed, and an iron-nickel alloy layer and a nickel layer are formed on the side to be the outer surface of the battery container, thereby obtaining the steel plate for a battery container of the present invention.
  • the annealing conditions after the cold rolling and after the plating are appropriately selected in the same range as the above annealing conditions after the cold rolling. Whether to provide the metal layer of the configuration (e) or (f) is appropriately selected from the amount of nickel-phosphorus alloy deposition and the annealing conditions (type, temperature, and time) after the plating.
  • the low-carbon aluminum-killed steel is temper-rolled through the same process as described above, and then becomes the inner surface of the battery container.
  • Apply nickel plating on the side and nickel-cobalt alloy plating thereon apply nickel plating on the side that will be the outer surface of the battery container, and perform box-type annealing or continuous annealing.
  • box annealing or continuous annealing is performed again.
  • the nickel-iron alloy layer and the nickel-cobalt alloy layer and the Z or nickel-iron alloy layer and the nickel-cobalt alloy layer of (g) or (h) Two layers of a ferrous alloy layer are formed, and a nickel-cobalt-tin "good alloy layer is formed on the outermost surface, and an iron-nickel alloy layer and a nickel layer are formed on the outer surface of the battery container.
  • the annealing conditions after cold rolling and after plating are appropriately selected within the same range as the annealing conditions after cold rolling described above.
  • the amount of nickel-cobalt alloy deposition and the annealing conditions (type, temperature, time) after plating are appropriately selected.
  • the low-carbon aluminum-killed steel is temper-rolled through the same steps as described above, and then becomes the inner surface of the battery container.
  • Apply nickel alloy on one side apply nickel plating on the side that will be the outer surface of the battery container, and perform box-type annealing or continuous annealing.
  • tin plating is applied only to the inner side of the battery container and silver plating or silver-tin alloy plating is applied thereon.
  • box annealing or continuous annealing is performed again. In this way, on the side that becomes the inner surface of the battery container, the nickel cobalt tin "!
  • the Good alloy layer is formed on the outermost surface on the nickel cobalt iron alloy layer of the configuration (i), or the configuration of (j).
  • a nickel-cobalt alloy layer is formed on the nickel-cobalt-iron alloy layer, and a nickel-cobalt-tin "! Good alloy layer is formed on the outermost surface.
  • the plated steel sheet for a battery container of the present invention on which a nickel alloy layer and a nickel layer are formed is obtained.
  • the annealing conditions after cold rolling and after plating are appropriately selected in the same range as the annealing conditions after cold rolling described above. Whether to provide a metal layer in the configuration of (ii) or G) is determined by the amount of nickel-cobalt alloy deposition and the annealing conditions (type, temperature, time) after plating.
  • the metal layer having the configuration (k) or (1) or (m) is formed on a steel sheet
  • the low-carbon aluminum-killed steel is temper-rolled through the same steps as above, and then the battery container Nickel plating is applied on the inner side and nickel-cobalt-phosphorus alloy is applied on the inner side. Nickel plating is applied on the outer side of the battery container, and box or continuous annealing is performed. Continue to Apply tin plating and silver plating or silver-tin alloy plating only on the inner surface of the pond. Thereafter, box annealing or continuous annealing is performed again. In this way, the nickel-cobalt-phosphorus-tin "!
  • Good alloy layer is formed on the outermost surface of the two layers of the iron-nickel alloy layer having the configuration (k) and the iron-nickel-cobalt-phosphorous alloy layer on the side that will be the inner surface of the battery container.
  • the formed force or iron-nickel alloy layer of the configuration of (1), the iron-nickel-cobalt-phosphorus alloy layer on it, and the nickel-conoreletrin alloy layer on it are further formed on the outermost surface.
  • Nickel Cobalt Phosphorus Tin "! A three-layer structure consisting of a good alloy layer or an iron-nickel alloy layer (m) and a nickel layer on it, and a nickel-cobalttrin alloy layer on it is formed on top.
  • the conditions for annealing after rolling and after plating are appropriately selected within the same range as the annealing conditions after cold rolling described above, which metal layer of (k) or (1) or (m) is provided. For, select the amount of plating of various metals or alloys and the annealing conditions (type, temperature, time) after plating as appropriate.
  • low-carbon aluminum-killed steel is temper-rolled through the same process as above, and then becomes the inner surface of the battery container Nickel plating on the side and nickel-cobalt-phosphorus alloy plating on it, nickel plating on the side that will be the outer surface of the battery container, and box or continuous annealing.
  • box annealing or continuous annealing is performed again. In this way, on the side that will be the inner surface of the battery container, the nickel-cobalt-phosphorus!
  • an iron-nickel alloy layer having the configuration of (o), an iron-nickel-cobalt-phosphorus alloy layer thereon, and a nickel-cobalt-phosphorus alloy layer thereabove, and a nickel-cobalt-phosphorus alloy layer thereover.
  • a nickel-cobalt-phosphorus-silver alloy layer is formed on the surface, or an iron-nickel alloy layer with the composition (p), a nickel layer on it, and a nickel-cobalt-phosphorus alloy layer on it are formed.
  • a nickel cobalt-phosphorus good alloy layer is formed on the outermost surface, and the outer surface of the battery container is The plated steel sheet for a battery container of the present invention on which the iron-nickel alloy layer and the nickel layer are formed is obtained.
  • the annealing conditions after the cold rolling and after the plating are appropriately selected in the same range as the annealing conditions after the cold rolling. Whether the metal layer of (n), (o), or (p) is provided with a misaligned metal layer depends on the amount of plating of various metals or alloys and the annealing conditions (type, temperature, and time) after plating. select.
  • the plated steel sheet for a battery container is manufactured in the step B, the following procedure is performed.
  • cold roll an ultra-low carbon aluminum killed steel electrolytically wash in an alkaline aqueous solution, apply nickel plating on both sides, and pull Subsequently, tin plating is applied only to the inner surface of the battery container, and silver plating or silver-tin alloy plating is applied thereon.
  • silver plating or silver-tin alloy plating is applied thereon.
  • continuous annealing is performed, followed by temper rolling.
  • the nickel layer and the Z or nickel-iron alloy layer having the configuration of (a) or (b) are formed on the side that becomes the inner surface of the battery container, and the nickel-tin-silver alloy layer is formed on the outermost surface.
  • the plated steel sheet for a battery container of the present invention is obtained in which an iron-nickel alloy layer and a nickel layer are formed on the outer side of the battery container.
  • the continuous annealing is preferably carried out in a temperature range of 730 to 800 ° C for 0.5 to 3 minutes.
  • the amount of nickel plating and the conditions of continuous annealing (temperature and time) are appropriately selected as to which of the metal layers (a) and (b) is provided.
  • the ultra-low carbon aluminum-killed steel is electrolytically cleaned through the same steps as above, and then the inner surface of the battery container is formed.
  • nickel plating and nickel-phosphorous alloy plating are applied, and then tin plating and silver plating or silver-tin alloy plating are applied thereon.
  • nickel plating On the side that will be the outer surface of the battery container, apply nickel plating. Thereafter, continuous annealing is performed, followed by temper rolling.
  • ultra-low carbon aluminum-killed steel is electrolytically cleaned through the same steps as described above, and then the inner surface of the battery container is formed.
  • a metal layer having the above configuration (e) or (f) is provided on a steel sheet
  • ultra-low carbon aluminum-killed steel is electrolytically cleaned through the same steps as described above, and then the inner surface of the battery container is formed.
  • nickel plating is applied to the side to be the outer surface of the battery container. Thereafter, continuous annealing is performed and then temper rolling.
  • a nickel-phosphorin alloy layer and / or a nickel-phosphorus-iron alloy layer having the structure (e) or (f) is formed on the inner side of the battery container, and the nickel phosphorous Tin "! A good alloy layer is formed, and a nickel-alloy layer and a nickel layer are formed on the side to be the outer surface of the battery container to obtain the plated steel sheet for battery containers of the present invention. It is preferable to soak for 0.5 to 3 minutes in a temperature range of 800 ° C. U.
  • the nickel layer and / or nickel alloy layer with the configuration (e) or (f) is determined by the amount of nickel plating. , And continuous annealing conditions (temperature, time) are appropriately selected.
  • ultra-low carbon aluminum-killed steel is electrolytically cleaned through the same steps as described above, and then the inner surface of the battery container is cleaned.
  • nickel plating and nickel-cobalt alloy plating are applied, and then tin plating and silver plating or silver-tin alloy plating are applied.
  • Nickel plating is applied to the outer side of the battery container. Thereafter, continuous annealing is performed, followed by temper rolling.
  • two layers of nickel-iron alloy layer and nickel-cobalt alloy layer of (g) or (h) and Z or nickel-iron alloy layer and nickel-cobalt-iron alloy Of the present invention in which a nickel-cobalt-tin-silver alloy layer is formed on the outermost surface, and an iron-nickel alloy layer and a nickel layer are formed on the outer side of the battery container.
  • a plated steel sheet for a battery container is obtained.
  • the continuous annealing is preferably carried out in a temperature range of 730-800 ° C for 0.5-3 minutes. Whether to provide the nickel layer and / or nickel alloy layer having the configuration of (g) or (h) is appropriately selected from the amount of nickel plating and the continuous annealing conditions (temperature and time).
  • the nickel-cobalt alloy layer and the Z or nickel-cobalt-iron alloy layer having the configuration (i) or (j) are formed on the side serving as the inner surface of the battery container, and the nickel cobalt tin
  • the plated steel sheet for a battery container of the present invention is obtained in which a silver alloy layer is formed, and an iron-nickel alloy layer and a nickel layer are formed on the outer surface of the battery container.
  • the continuous annealing is preferably carried out in a temperature range of 730-800 ° C for 0.5-3 minutes. Whether to provide the nickel layer and / or the nickel alloy layer having the configuration (i) or (j) is appropriately selected from the nickel plating amount and the continuous annealing conditions (temperature and time).
  • ultra-low carbon aluminum killed steel is electrolytically washed through the same process as above, and then the inner surface of the battery container Then, apply nickel plating and nickel-cobalt-phosphorus alloy plating on the side to be treated, and then apply tin plating and silver plating or silver-tin alloy plating thereon. Nickel plating is applied to the outer side of the battery container. Thereafter, continuous annealing is performed, followed by temper rolling.
  • the nickel-cobalt-phosphorus-tin-silver alloy layer is formed on the outermost surface of the two layers consisting of the iron-nickel alloy layer having the configuration (k) and the iron-nickel-cobalt-phosphorus alloy layer on the side that will be the inner surface of the battery container.
  • Nickel-cobalt-phosphorous-tin formed on the outermost surface on three layers consisting of an iron-nickel alloy layer having the constitution of (1), an iron-nickel-cobalt-phosphorus alloy layer thereon, and a nickel-cobalt-phosphorus alloy layer thereon.
  • a nickel alloy layer with a good alloy layer formed, or an iron-nickel alloy layer with the composition of (m), a nickel layer on it, and a nickel-cobalt alloy layer on top A plated steel sheet for a battery container according to the present invention, in which a retorin-tin-silver alloy layer is formed and an iron-nickel alloy layer and a nickel layer are formed on the outer surface of the battery container, is obtained. It is preferable to soak for 0.5 to 3 minutes in the temperature range of 730 to 800 ° C. Whether to provide the metal layer of (k) or (1) or (m) depends on the type of metal or The amount of plating of the alloy and the continuous annealing conditions (temperature, time) are appropriately selected.
  • the ultra-low carbon aluminum killed steel is electrolytically washed through the same steps as described above, and then Nickel plating and nickel-cobalt-phosphorus alloy plating are applied to the inner side of the battery container, and then tin plating and silver plating are applied. Nickel plating is applied to the side that will be the outer surface of the battery container. Thereafter, continuous annealing is performed, followed by temper rolling. In this way, the outermost surface of the two layers consisting of the iron-nickel alloy layer having the structure (n) and the iron-nickel-cobalt-phosphorus alloy layer on the side serving as the inner surface of the battery container is nickel-cobalt-phosphorous.
  • a good alloy layer is formed, or the uppermost surface of the iron-nickel alloy layer with the configuration of (o), the iron-nickel-cobalt-phosphorus alloy layer on it, and the nickel-cobalt-phosphorus alloy layer on it
  • a nickel-cobalt-phosphor-silver alloy layer is formed on the surface, and an iron-nickel alloy layer and a nickel layer are formed on the outer surface of the battery container.
  • the metal layer of (n) or (o) or (p) is determined by the plating amount of various metals or alloys and continuous annealing. Conditions (temperature, time) are appropriately selected.
  • the plated steel sheet for a battery container of the present invention is obtained as described above.
  • the battery container of the present invention is obtained by subjecting the above-mentioned steel sheet for battery container to drawing, drawing and ironing (DI processing), drawing and stretching (DTR), or stretching after drawing and ironing. It is obtained by forming into a bottomed cylindrical shape using the combined processing method.
  • the bottom surface is a circle, an ellipse, or a polygonal shape such as a rectangle and a square, and the height of the side wall is appropriately selected according to the application, and the cylindrical shape is formed.
  • the battery container thus obtained is filled with a positive electrode, a negative electrode active material and the like to form a battery.
  • the low-carbon aluminum-killed steel (II) was cold-rolled (thickness 0.25 mm) of low-carbon aluminum-killed steel (I) and ultra-low-carbon aluminum-killed steel (II) whose chemical composition is shown in Table 1. for
  • plated steel plates for battery containers were prepared respectively. .
  • i-i xvi process plating is performed on the side that will be the inner surface of the container.
  • Nickel plating, nickel-phosphorus alloy plating, nickel-conolet alloy plating in the process shown in i-i xvi above Tin plating, nickel-tin alloy plating, silver plating, silver-tin alloy plating were performed under the following conditions.
  • Anode Nickel pellets (filled in a titanium basket and fitted with a polypropylene anode bag)
  • Nickel pellets (filled in a titanium basket and fitted with a polypropylene anode bag)
  • Silver-tin alloy plating bath (Dipsol TS-3200 (for Sn-3.5wt% Ag eutectic alloy, Dipsol Co., Ltd.)
  • an alkaline manganese battery was prepared as follows. Manganese dioxide and graphite were collected at a ratio of 10: 1, and potassium hydroxide (10 mol) was added and mixed to prepare a positive electrode mixture. Next, the positive electrode mixture was pressurized in a mold to form a donut-shaped positive electrode mixture pellet having a predetermined size, and was press-inserted into the battery container. Some of the battery containers used had inner surfaces coated with paint containing graphite powder as a main component. Next, the negative electrode plate on which the negative electrode current collector was spot-welded was mounted on the battery container.
  • a vinylon woven fabric separator having a strong force is inserted along the inner periphery of the positive electrode mixture pellet pressed into the battery container, and the zinc oxide and potassium hydroxide are saturated with zinc oxide.
  • the negative electrode gel was filled in the battery container.
  • an insulator gasket was attached to the negative electrode plate, inserted into the battery container, and then subjected to a cashmere process to produce an alkaline manganese battery.
  • the characteristics of the battery prepared using the battery container prepared from the sample cap of Sample No. 133 as described above were evaluated as follows.
  • the battery After leaving the battery at 80 ° C for 3 days, the battery was discharged to a constant current of 1.5 A, and the time until the voltage reached 0.9 V was measured as the discharge time. The longer the discharge time, the better the discharge characteristics.
  • the battery according to the present invention which uses the plated steel sheet for a battery container having an alloy layer containing a trace amount of silver formed on the outermost surface on the side to be the inner surface of the battery container, does not apply graphite paint to the inner surface of the container. However, it exhibits short-circuit current, discharge characteristics, and intermittent discharge characteristics that are equal to or higher than those of a conventional container with graphite paint applied to the inner surface. Therefore, the steps of applying and drying the graphite paint can be omitted, and the battery can be manufactured at low cost. Further, when a graphite paint is applied to the inner surface of the battery container using the steel sheet for battery containers of the present invention, short-circuit current, discharge characteristics, and intermittent discharge characteristics are further improved, so that a high-performance battery can be provided. You.

Abstract

Disclosed is a plated steel sheet for battery containers which enables to obtain a battery having excellent discharge characteristics without forming a conductive layer mainly composed of graphite or the like over the inner surface of a battery container. Also disclosed are a battery container using such a plated steel sheet and a battery employing such a battery container. Such a plated steel sheet for battery containers is obtained by forming a nickel layer and/or a nickel alloy layer on one side of a steel sheet which is to be the inner surface of a battery container sequentially from the steel sheet side and further forming an alloy layer containing silver thereon. A battery container is obtained by shaping this plated steel sheet for battery containers into a tube with a bottom.

Description

明 細 書  Specification
電池容器用めつき鋼板、その電池容器用めつき鋼板を用いた電池容器、 およびその電池容器を用いた電池  Plated steel plate for battery container, battery container using the plated steel plate for battery container, and battery using the battery container
技術分野  Technical field
[0001] 本発明は、電池容器用めつき鋼板、その電池容器用めつき鋼板を用いた電池容器 The present invention relates to a plated steel plate for a battery container, and a battery container using the plated steel plate for a battery container.
、およびその電池容器を用いた電池に関する。 And a battery using the battery container.
背景技術  Background art
[0002] 近年、オーディオ機器ゃモバイュ電話など、多方面において携帯用機器が用いら れ、その作動電源として一次電池であるアルカリ電池、二次電池であるニッケル水素 電池、リチウムイオン電池などが多用されている。これらの電池においては、高出力 化および長寿命化など、高出力化が常時求められおり、正極および負極活物質を充 填する電池容器も電池の重要な構成要素として性能の向上が求められている。例え ば、正極活物質と電池容器内面との接触抵抗を低減させることを目的として、電池容 器内面に凹凸を設けることが行われており、電池容器に成形加工する際の加工によ り電池容器内面に凹凸を発生させやすくした、表面にニッケル 錫属金間化合物を 形成させた表面処理鋼板が本発明者等によって提案されている(例えば、特許文献 1参照)。また、鋼板表面に形成させるニッケルめっき中に黒鉛を分散析出させること により、表面に凹凸を形成させるとともに、導電性に優れる黒鉛粒子を表面に露出さ せて正極活物質と電池容器内面との接触抵抗を低減させた表面処理鋼板も本発明 者等によって提案されている (例えば、特許文献 2参照)。  [0002] In recent years, portable devices have been used in various fields such as audio devices and mobile phones, and alkaline batteries as primary batteries, nickel-metal hydride batteries as secondary batteries, and lithium-ion batteries have been frequently used as operating power sources. ing. These batteries are constantly required to have high output such as high output and long life, and battery containers filled with positive and negative electrode active materials are also required to improve performance as important components of batteries. I have. For example, in order to reduce the contact resistance between the positive electrode active material and the inner surface of the battery container, irregularities are provided on the inner surface of the battery container. The inventors of the present invention have proposed a surface-treated steel sheet having a nickel-tin intermetallic compound formed on the surface thereof, in which irregularities are easily generated on the inner surface of the container (for example, see Patent Document 1). In addition, graphite is dispersed and deposited in the nickel plating formed on the surface of the steel sheet to form irregularities on the surface and expose graphite particles with excellent conductivity to the surface to allow contact between the positive electrode active material and the inner surface of the battery container. The present inventors have also proposed a surface-treated steel sheet with reduced resistance (for example, see Patent Document 2).
[0003] これらの表面処理鋼板を電池容器に成形加工し、正極および負極活物質を充填し て電池とする場合、充填する負極活物質との接触抵抗を減少させて放電特性を向上 させるために、電池容器内面に黒鉛などを主体とする塗料を塗布して導電層を形成 させることが行われて 、るが、黒鉛の塗料の塗布および乾燥にぉ 、ては溶媒が揮散 されて環境に悪影響を与えている。そのため、黒鉛塗料の塗布を省略した電池容器 を用いることが試みられているが、放電特性などが低下してしまうため、黒鉛塗料の 塗布を省略しても放電特性が低下しない電池容器用めつき鋼板が求められている。 [0004] 本発明に関する先行技術文献として以下のものがある。 [0003] When forming a battery by forming these surface-treated steel sheets into a battery container and filling the positive electrode and the negative electrode active material, it is necessary to reduce contact resistance with the filled negative electrode active material and improve discharge characteristics. However, a paint mainly composed of graphite or the like is applied to the inner surface of the battery container to form a conductive layer. However, when the paint of graphite is applied and dried, the solvent is volatilized and the environment is adversely affected. Is given. For this reason, attempts have been made to use battery containers without the application of graphite paint. However, since the discharge characteristics and the like are reduced, even if the application of the graphite paint is omitted, the battery container plating does not deteriorate. There is a need for steel sheets. [0004] Prior art documents relating to the present invention include the following.
[0005] 特許文献 1:特開平 07— 300695号公報 [0005] Patent Document 1: Japanese Patent Application Laid-Open No. 07-300695
特許文献 2:国際公開第 WO00Z05437号パンフレット  Patent Document 2: International Publication No. WO00Z05437 pamphlet
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] 本発明は、電池容器内面に黒鉛などを主体とする導電層を形成せずとも、優れた 放電特性を有する電池とすることが可能な電池容器用めつき鋼板、それを用いた電 池容器、およびそれを用いた電池を提供することを目的とする。 [0006] The present invention relates to a plated steel sheet for a battery container, which can provide a battery having excellent discharge characteristics without forming a conductive layer mainly composed of graphite or the like on the inner surface of the battery container, and an electrode using the same. It is an object to provide a pond container and a battery using the same.
課題を解決するための手段  Means for solving the problem
[0007] 上記課題を解決する本発明の電池容器用めつき鋼板は、鋼板を基板とする電池容 器用めつき鋼板において、電池容器内面となる側の最表面に銀を含む合金層が形 成されてなることを特徴とする電池容器用めつき鋼板 (請求項 1)である。この場合、 銀を含む合金層がニッケル 錫 銀合金層、ニッケル リン 錫"!良合金層あるいは- ッケルーコバルト-錫-銀合金層であることが望まし 、 (請求項 2)。 [0007] The plated steel sheet for a battery container of the present invention that solves the above-mentioned problems is characterized in that, in the plated steel sheet for a battery container using a steel sheet as a substrate, an alloy layer containing silver is formed on the outermost surface on the inner surface side of the battery container. A plated steel sheet for a battery container (claim 1). In this case, it is desirable that the alloy layer containing silver is a nickel-tin-silver alloy layer, a nickel-phosphorous-tin "! Good alloy layer or a nickel-cobalt-tin-silver alloy layer (Claim 2).
[0008] また、電池容器用めつき鋼板において、電池容器内面となる側では、鋼板上に下 力も順に、鉄-ニッケル合金層、ニッケル-錫-銀合金層が形成されてなること (請求 項 3)、または [0008] In the plated steel sheet for a battery container, an iron-nickel alloy layer and a nickel-tin-silver alloy layer are sequentially formed on the steel sheet on the side serving as the inner surface of the battery container. 3), or
電池容器用めつき鋼板において、電池容器内面となる側では、鋼板上に下から順 に、鉄 ニッケル合金層、ニッケル層、ニッケル 錫 銀合金層が形成されてなること( 請求項 4)、または  In the plating steel sheet for a battery container, an iron-nickel alloy layer, a nickel layer, and a nickel-tin-silver alloy layer are formed on the steel sheet in order from the bottom on the inner side of the battery container (Claim 4), or
電池容器用めつき鋼板において、電池容器内面となる側では、鋼板上に下から順 に、鉄 ニッケル合金層、鉄 ニッケル リン合金層、ニッケル リン 錫"!良合金層が 形成されてなること (請求項 5)、または、  In the plated steel sheet for the battery container, the iron-nickel alloy layer, the iron-nickel-phosphorous alloy layer, and the nickel-phosphorous tin layer are formed on the steel sheet in order from the bottom on the steel sheet ( Claim 5), or
電池容器用めつき鋼板において、電池容器内面となる側では、鋼板上に下から順 に、鉄—ニッケル合金層、鉄—ニッケル リン合金層、ニッケル リン合金層、ニッケル リン 錫 銀合金層が形成されてなること (請求項 6)または  In the steel sheet for the battery case, the iron-nickel alloy layer, iron-nickel-phosphorus alloy layer, nickel-phosphorus alloy layer, and nickel-phosphorus tin-silver alloy layer are formed on the steel sheet in order from the bottom on the inner side of the battery case. (Claim 6) or
電池容器用めつき鋼板において、電池容器内面となる側では、鋼板上に下から順 に、鉄 ニッケル リン合金層、ニッケル リン 錫"!良合金層が形成されてなること (請 求項 7)、または In the plating steel sheet for the battery container, on the side that becomes the inner surface of the battery container, an iron-nickel-phosphorus alloy layer and a nickel-phosphorous tin ”! Claim 7), or
電池容器用めつき鋼板において、電池容器内面となる側では、鋼板上に下から順 に、鉄—ニッケル リン合金層、ニッケル リン合金層、ニッケル リン-錫"!良合金層が 形成されてなること (請求項 8)または  In the steel sheet for battery case, the iron-nickel-phosphorus alloy layer, nickel-phosphorus alloy layer, and nickel-phosphorus-tin "! Good alloy layer are formed on the steel sheet in order from the bottom on the inner side of the battery case. (Claim 8) or
電池容器用めつき鋼板において、電池容器内面となる側では、鋼板上に下から順 に、鉄—ニッケル合金層、鉄 ニッケル コバルト合金層、ニッケル コバルト 錫"!良 合金層が形成されてなること(請求項 9)、または  In the plated steel sheet for the battery container, the iron-nickel alloy layer, iron-nickel-cobalt alloy layer, and nickel-cobalt-tin alloy layer must be formed in order from the bottom on the inner side of the battery container. (Claim 9), or
電池容器用めつき鋼板において、電池容器内面となる側では、鋼板上に下から順 に、鉄 ニッケル合金層、鉄 ニッケル コバルト合金層、ニッケル コバルト合金層、 ニッケル コバルト 錫 ~良合金層が形成されてなること (請求項 10)を特徴とし、また は  On the inner side of the battery case, the iron / nickel alloy layer, the iron / nickel / cobalt alloy layer, the nickel / cobalt alloy layer, and the nickel / cobalt tin / good alloy layer are formed on the steel plate in order from the bottom. (Claim 10), or
電池容器用めつき鋼板において、電池容器内面となる側では、鋼板上に下から順 に、鉄 ニッケル コバルト合金層、ニッケル コバルト 錫"!良合金層が形成されてな ること (請求項 11)、または  In the plated steel sheet for a battery container, an iron-nickel-cobalt alloy layer and a nickel-cobalt-tin "! Good alloy layer must be formed on the steel sheet in order from the bottom on the steel sheet inner side (claim 11). Or
電池容器用めつき鋼板において、電池容器内面となる側では、鋼板上に下から順 に、鉄—ニッケル コバルト合金層、ニッケル コバルト合金層、ニッケル コバルト 錫 銀合金層が形成されてなること (請求項 12)を特徴とし、または、  In the plated steel sheet for a battery container, an iron-nickel-cobalt alloy layer, a nickel-cobalt alloy layer, and a nickel-cobalt-tin-silver alloy layer are formed in order from the bottom on the inner side of the battery container (from the claim). Clause 12), or
電池容器内面となる側では鋼板上に下カゝら順に、鉄 ニッケル合金層、鉄一二ッケ ルーコノ レトーリン合金層、ニッケルーコノ レトーリンー錫 銀合金層が形成されてなるこ と(請求項 13)を特徴とし、または  On the side to be the inner surface of the battery container, an iron-nickel alloy layer, an iron- 12 nickel-rucono-retorin alloy layer, and a nickel-cono-retorin-tin-silver alloy layer are formed on the steel plate in the order from the bottom to the bottom (claim 13). Features, or
電池容器内面となる側では鋼板上に下カゝら順に、鉄 ニッケル合金層、鉄一二ッケ ルーコバルト リン合金層、ニッケル コバルト リン合金層、ニッケル コバルト リン 錫 銀合金層が形成されてなること (請求項 14)を特徴とし、または  On the side that is the inner surface of the battery container, an iron-nickel alloy layer, an iron-nickel-cobalt-phosphorus alloy layer, a nickel-cobalt-phosphorus alloy layer, and a nickel-cobalt-phosphorus-tin-silver alloy layer are sequentially formed on a steel plate in the lower color order. (Claim 14), or
電池容器内面となる側では鋼板上に下カゝら順に、鉄 ニッケル合金層、ニッケル層 、ニッケル コバルト リン合金層、ニッケル コバルト リン 錫 _良合金層が形成され てなること (請求項 15)を特徴とし、または  The iron-nickel alloy layer, nickel layer, nickel-cobalt-phosphorous-alloy layer, and nickel-cobalt-phosphorus-tin--good alloy layer are formed on the steel plate in the order from the bottom on the side that is the inner surface of the battery container (claim 15). Features, or
電池容器内面となる側では鋼板上に下カゝら順に、鉄 ニッケル合金層、鉄一二ッケ ルーコノ レトーリン合金層、ニッケルーコノ レトーリン"!良合金層が形成されてなること( 請求項 16)を特徴とし、または On the side that will be the inner surface of the battery container, an iron-nickel alloy layer, an iron-nickel-lucono-retorin alloy layer, and a nickel-cono-retorin "! Good alloy layer must be formed on a steel plate in the order of lower color ( Claim 16), or
電池容器内面となる側では鋼板上に下カゝら順に、鉄 ニッケル合金層、鉄一二ッケ ルーコバルト リン合金層、ニッケル コバルト リン合金層、ニッケル コバルト リン 銀合金層が形成されてなること (請求項 17)を特徴とし、または  On the side that will be the inner surface of the battery container, an iron-nickel alloy layer, an iron-nickel-cobalt-phosphorus alloy layer, a nickel-cobalt-phosphorus alloy layer, and a nickel-cobalt-phosphorus-silver alloy layer are formed on a steel plate in order from the bottom. (Claim 17), or
電池容器内面となる側では鋼板上に下カゝら順に、鉄 ニッケル合金層、ニッケル層 、ニッケル コバルト リン合金層、ニッケル コバルト リン 銀合金層が形成されてな ること (請求項 18)を特徴とし、さらにまた  An iron-nickel alloy layer, a nickel layer, a nickel-cobalt-phosphorous-alloy layer, and a nickel-cobalt-phosphorus-silver alloy layer are formed on a steel sheet in the order from the bottom to the inner surface of the battery container (claim 18). And again
上記の電池容器用めつき鋼板 (請求項 1一 18)において、電池容器外面となる側の 鋼板上に下カゝら順に、鉄 ニッケル合金層、ニッケル層が形成されてなること(請求項 19)を特徴とする。  In the above-mentioned steel sheet for a battery case (claim 118), an iron-nickel alloy layer and a nickel layer are formed in order from the bottom on the steel sheet on the outer surface of the battery case (claim 19). ).
[0010] そして、本発明の電池容器は、上記(請求項 1一 19)のいずれかの電池容器用めつ き鋼板を有底の筒型形状に成形加工して形成されて!ヽることを特徴とする電池容器 ( 請求項 20)であり、  [0010] The battery container of the present invention is formed by molding the steel sheet for battery container according to any one of claims 1 to 19 into a bottomed cylindrical shape. A battery container (Claim 20) characterized by the following:
本発明の電池は、上記 (請求項 20)の電池容器を用いて形成されていることを特徴 とする電池 (請求項 21)である。  A battery according to the present invention is a battery (claim 21) characterized in that it is formed using the battery container described above (claim 20).
発明の効果  The invention's effect
[0011] 本発明においては、電池容器用めつき鋼板の電池容器内面となる側の最表面に、 銀 錫合金層を形成させることにより、容器内面に黒鉛粉末を主成分とする塗料を塗 布せずに用いても、従来の電池容器における黒鉛を塗布した容器を用いた電池と同 等以上の放電特性が得られ、更に、電池寿命も向上する。  In the present invention, a silver-tin alloy layer is formed on the outermost surface of the plated steel sheet for a battery container on the inner surface side of the battery container, so that a paint containing graphite powder as a main component is applied to the inner surface of the container. Even if used without the above, the same or higher discharge characteristics as those of a conventional battery container using a graphite-coated container can be obtained, and the battery life is also improved.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0012] 以下、本発明を詳細に説明する。まず、本発明の電池容器用めつき鋼板の基板で ある鋼板について説明する。基板となる鋼板としては、汎用の低炭素アルミキルド鋼( 炭素量 0. 01-0. 15重量%)、またはニオブやチタンを添加した非時効性の極低炭 素アルミキルド鋼 (炭素量 0. 01重量%未満)を用いる。これらの鋼を熱間圧延板を 酸洗して表面のスケールを除去した後、冷間圧延し次いで電解洗浄、焼鈍、調質圧 延したものを基板として用いる。冷間圧延して電解洗浄後、焼鈍を施さずに基板とし てめつきを施し、その後焼鈍してもよい。 [0013] このようにして得られる基板である鋼板の両面に金属層を形成させて、本発明の電 池容器用めつき鋼板とする。一般に、電池容器用めつき鋼板に形成させる金属層とし ては、ニッケルめっき層、ニッケル合金めつき層、コバルトめっき層、コバルト合金めつ き層、ニッケル コバルト合金めつき層、または鋼板上にこれらのめっき層を形成させ た後、熱処理を施したものなどがあるが、本発明の電池容器用めつき鋼板において は、鋼板の電池容器内面となる側に形成されるこれらの金属層の最上層に銀を含む 合金層を形成させることを特徴としている。通常、電池容器の内面には、充填する負 極活物質との接触抵抗を減少させて放電特性を向上させるために、鋼板に上記の金 属層を形成させた電池容器用めつき鋼板を電池容器に成形加工し、容器内面側の 金属層の上に黒鉛などを主体とする塗料を塗布して導電層を形成させているが、本 発明の電池容器用めつき鋼板を電池容器に成形加工し、正極および負極活物質を 充填して電池とした場合は、容器内面の最表面に銀を含む合金層を形成させること により、黒鉛塗料を塗布しなくとも従来の黒鉛塗料を塗布した電池容器を用いた場合 と同等以上の放電特性が得られる。そのため、この黒鉛塗料の塗布及び乾燥工程を 省略することができる。本発明の電池容器用めつき鋼板を電池容器に成形加工し、 従来と同様に容器内面に黒鉛塗料を塗布した容器を用いた場合は、放電特性はさ らに向上する。また、内部抵抗が低下し、電池寿命が向上する副次効果も得られる。 Hereinafter, the present invention will be described in detail. First, a steel sheet which is a substrate of the plated steel sheet for a battery container of the present invention will be described. The steel sheet used as the substrate may be a general-purpose low-carbon aluminum-killed steel (carbon content 0.01 to 0.15% by weight) or a non-ageable ultra-low carbon aluminum-killed steel (carbon content 0.01 % By weight). These steels are hot-rolled to remove the scale from the surface by pickling, then cold-rolled, electrolytically cleaned, annealed and temper-rolled, and used as a substrate. After cold rolling and electrolytic cleaning, the substrate may be plated without annealing and then annealed. [0013] A metal layer is formed on both sides of the steel sheet as the substrate obtained in this manner to obtain a plated steel sheet for a battery container of the present invention. Generally, the metal layer formed on the plated steel sheet for battery containers is a nickel plated layer, a nickel alloy plated layer, a cobalt plated layer, a cobalt alloy plated layer, a nickel cobalt alloy plated layer, or After the plating layer is formed, heat treatment is performed. However, in the plated steel sheet for a battery container of the present invention, the uppermost layer of these metal layers formed on the side of the steel sheet that is the inner surface of the battery container is provided. It is characterized in that an alloy layer containing silver is formed. Normally, in order to reduce the contact resistance with the negative electrode active material to be filled and improve the discharge characteristics, the inner surface of the battery container is provided with a steel plate with a metal layer formed on the steel plate for the battery container. The conductive layer is formed by applying a paint mainly composed of graphite or the like on the metal layer on the inner surface side of the container to form a conductive layer. However, when the battery is filled with the positive and negative electrode active materials, an alloy layer containing silver is formed on the outermost surface of the inner surface of the container, so that the battery container coated with the conventional graphite paint without applying the graphite paint is applied. Discharge characteristics equivalent to or better than those obtained by using are obtained. Therefore, the steps of applying and drying the graphite paint can be omitted. In the case where the plated steel sheet for a battery container of the present invention is formed into a battery container and a container having a graphite paint applied to the inner surface of the container is used as in the conventional case, the discharge characteristics are further improved. Also, a secondary effect that the internal resistance is reduced and the battery life is improved can be obtained.
[0014] 鋼板の電池容器内面となる側の最表面に銀を含む合金層を形成させる容器内面 の金属層は、下記に示すように構成されていることが好ましい。すなわち、鋼板側か ら下から順に、(a)鉄 ニッケル合金層、ニッケル 錫 銀合金層を形成したもの、(b) 鉄—ニッケル合金層、ニッケル層、ニッケル 錫 銀合金層を形成したもの、(c)鉄一二 ッケル合金層、鉄 ニッケル リン合金層、ニッケル リン 錫 銀合金層を形成したも の、 (d)鉄 ニッケル合金層、鉄 ニッケル リン合金層、ニッケル リン合金層、 -ッケ ルーリン 錫 銀合金層を形成したもの、(e)鉄 ニッケル リン合金層、 -ッケノレ リン 錫"!良合金層を形成したもの、(f)鉄 ニッケル リン合金層、ニッケル リン合金層、 ニッケル リン 錫 銀合金層を形成したもの、(g)鉄 ニッケル合金層、鉄 ニッケル コバルト合金層、ニッケル コバルト 錫 銀合金層を形成したもの、(h)鉄 -ッケ ル合金層、鉄 ニッケル コバルト合金層、ニッケル コバルト合金層、ニッケルーコバ ルトー錫 銀合金層、(i)鉄 ニッケル コバルト合金層、ニッケル コバルト 錫 銀合 金層を形成したもの、(j)鉄 ニッケル コバルト合金層、ニッケル コバルト合金層、 ニッケル コバルト 錫 _良合金層を形成したもの、(k)鉄 ニッケル合金層、鉄 -ッ ケルーコノ レトーリン合金層、ニッケルーコノ レトー錫一銀合金層を形成したもの、 (1)鉄 ニッケル合金層、鉄—ニッケル コバルト リン合金層、ニッケル コバルト リン合金 層、ニッケル コバルト 錫"!良合金層を形成したもの、(m)鉄 ニッケル合金層、 -ッ ケル層、ニッケル コバルト リン合金層、ニッケル コバルト 錫 銀合金層を形成し たもの、(n)鉄 ニッケル合金層、鉄 ニッケル コバルト リン合金層、ニッケルーコバ ルト" I良合金層を形成したもの、(o)鉄 ニッケル合金層、鉄 ニッケル コバルト リン 合金層、ニッケル コバルト リン合金層、ニッケル コバルト 銀合金層を形成したも の、(P)鉄 ニッケル合金層、ニッケル層、ニッケル コバルト—リン合金層、ニッケル コバルト 銀合金層を形成したものの 、ずれかであることが好まし 、。これらの金属層 の最表面となる銀を含む合金層における銀の存在量としては、銀として 0. 05-1. 0 g/m2ゝこのましくは 0. 05-0. 5g/m2であること力 子まし!/、。 0. 05g/m2未満 では放電特性の向上効果に乏しぐ 1. Og/m2を超えてもそれ以上放電特性は向 上せず、コスト的に有利でなくなる。 [0014] The metal layer on the inner surface of the container, on which the alloy layer containing silver is formed on the outermost surface of the steel plate on the side to be the inner surface of the battery container, is preferably configured as shown below. That is, in order from the steel sheet side, (a) an iron-nickel alloy layer, a nickel-tin-silver alloy layer, (b) an iron-nickel alloy layer, a nickel layer, a nickel-tin-silver alloy layer, (C) Iron-nickel alloy layer, iron-nickel-phosphorus alloy layer, nickel-phosphorus tin-silver alloy layer, (d) iron-nickel alloy layer, iron-nickel-phosphorus alloy layer, nickel-phosphorus alloy layer, Lurin tin silver alloy layer formed, (e) iron nickel phosphorus alloy layer, -nickel phosphorus tin "! Good alloy layer formed, (f) iron nickel phosphorus alloy layer, nickel phosphorus alloy layer, nickel phosphorus tin (G) iron-nickel alloy layer, iron-nickel-cobalt alloy layer, nickel-cobalt-tin-silver alloy layer, (h) iron-nickel alloy layer, iron-nickel-cobalt alloy layer, Nickel Baltic alloy layer, nickel-Koba Ruto tin silver alloy layer, (i) iron nickel cobalt alloy layer, nickel cobalt tin silver alloy layer formed, (j) iron nickel cobalt alloy layer, nickel cobalt alloy layer, nickel cobalt tin _ good alloy layer (K) iron-nickel alloy layer, iron-nickel-cono-retolin alloy layer, nickel-cono-leto tin-silver alloy layer, (1) iron-nickel alloy layer, iron-nickel-cobalt-phosphorus alloy layer, nickel-cobalt-phosphorus layer Alloy layer, nickel-cobalt-tin "! Good alloy layer formed, (m) Iron-nickel alloy layer, nickel layer, nickel-copper phosphorus alloy layer, nickel-cobalt-tin-silver alloy layer formed, (n) Iron-nickel alloy layer, iron-nickel-cobalt-phosphorus-alloy layer, nickel-cobalt "I Good alloy layer formed, (o) iron-nickel alloy layer, iron-nickel (P) Iron-nickel alloy layer, nickel layer, nickel-cobalt-phosphorus alloy layer, nickel-cobalt-silver alloy layer , It is preferable that it is misaligned. The abundance of silver in the alloy layer containing silver as the outermost surface of the metal layer, 0.1 as silver 05-1. 0 g / m 2ゝpreferably not 0. 05-0. 5g / m 2 To be a child! / ,. If the content is less than 0.05 g / m 2 , the effect of improving the discharge characteristics is poor. 1. If the content exceeds Og / m 2 , the discharge characteristics are not further improved and the cost is not advantageous.
また、電池容器用めつき鋼板の電池容器外面となる側には鋼板上に下力も順に、鉄 一二ッケル合金層、ニッケル層を設けることが好まし 、。 Further, it is preferable to provide an iron-nickel alloy layer and a nickel layer on the steel sheet in order of the downward force on the side of the steel sheet for the battery container which is to be the outer surface of the battery container.
次に、本発明の電池容器用めつき鋼板の製造方法について説明する。上記の低 炭素アルミキルド鋼または極低炭素アルミキルド鋼の冷延鋼板を基板とし、これらの 基板にニッケルめっき、ニッケル リン合金めつき、ニッケル コバルト合金めつきのい ずれかのめっき層、または下層をニッケルめっき、上層をニッケル リン合金めつきま たはニッケル コバルト合金とする 2層めつきを下地めつき層として形成させ、これらの いずれかの下地めつき層上に錫めつき層とその上に銀めつき層を形成させる力、また はこれらのいずれかの下地めつき層上にニッケル 錫合金めつきを施し、その上に錫 めっき層とその上に銀めつき層を形成させる力、またはこれらのいずれかの下地めつ き層上に銀 錫合金めつき層を形成させた後、焼鈍処理を行って最表面に銀を含む 上記の合金層のいずれかを形成させる。または基板に上記のいずれかの下地めつき 層を形成させた後に焼鈍し、次いで焼鈍後の下地めつき層上に錫めつき層とその上 に銀めつき層を形成させる力、これらのいずれかの下地めつき層上に銀 錫合金めつ き層を形成させた後、再焼鈍処理を施して最表面に銀を含む上記の合金層のいず れかを形成させてもよい。これらの冷延鋼板の基板上に上記のめっき層を形成させ、 焼鈍処理を行う工程は、低炭素アルミキルド鋼の冷延鋼板をめつき基板として用いる 場合 (以下、「A工程」という)と、極低炭素アルミキルド鋼の冷延鋼板をめつき基板と して用いる場合 (以下、「B工程」 t 、う)に大別される。 Next, a method for producing the plated steel sheet for a battery container of the present invention will be described. The above-mentioned cold-rolled steel sheet of low-carbon aluminum-killed steel or ultra-low-carbon aluminum-killed steel is used as a substrate. The upper layer is made of a nickel-phosphorus alloy or a nickel-cobalt alloy. A two-layer plating is formed as a base plating layer, and a tin plating layer and a silver plating are formed on one of these base plating layers. Force to form a coating layer, or to apply a nickel-tin alloy coating on one of these base plating layers and form a tin plating layer thereon and a silver plating layer thereon, or After forming a silver-tin alloy plating layer on one of the base plating layers, annealing is performed to form any of the above alloy layers containing silver on the outermost surface. Or one of the above-mentioned substrates on the substrate After forming a layer, annealing is performed, and then a tin plating layer and a silver plating layer are formed on the underlying plating layer after annealing, and a silver-tin alloy is formed on any of these underlying plating layers. After the formation of the plating layer, a re-annealing treatment may be performed to form any of the above alloy layers containing silver on the outermost surface. The step of forming the above-mentioned plating layer on the substrate of these cold-rolled steel sheets and performing the annealing treatment is performed when a cold-rolled steel sheet of low carbon aluminum killed steel is used as a plating substrate (hereinafter, referred to as “Step A”). The use of cold rolled ultra-low carbon aluminum-killed steel sheets as plating substrates (hereinafter referred to as “B process” t) is broadly classified.
[0016] A工程により電池容器用めつき鋼板を製造する場合は、以下のようにして行う。鋼 板上に上記の(a)または (b)の構成の金属層を形成させる場合は、低炭素アルミキ ルド鋼を冷間圧延しアルカリ水溶液中で電解洗浄した後、両面にニッケルめっきを施 し、箱型焼鈍または連続焼鈍する。次いで調質圧延した後、引き続き電池容器内面 となる側のみに錫めつきとその上に銀めつきを施す。または、銀 錫合金めつきを施 す。もしくは、調質圧延した後、ニッケル 錫合金めつきを施し、その上に銀めつきを 施す。または銀 錫合金めつきを施す。その後、再度箱型焼鈍または連続焼鈍する。 このようにして、電池容器内面となる側には (a)または (b)の構成のニッケル層および Zまたはニッケル一鉄合金層が形成され、さらにその上の最表面にニッケル 錫 銀 合金層が形成されてなり、電池容器外面となる側には鉄 ニッケル合金層、ニッケル 層が形成された本発明の電池容器用めつき鋼板が得られる。冷間圧延後の焼鈍を 箱型焼鈍で行う場合は 640— 680°Cの温度範囲で 5— 20時間均熱することが好まし ぐ連続焼鈍で行う場合は 730— 800°Cの温度範囲で 0. 5— 3分均熱することが好 ましい。めっき後の焼鈍を箱型焼鈍で行う場合は 500— 530°Cの温度範囲で 5— 10 時間均熱することが好ましぐ連続焼鈍で行う場合は 730— 800°Cの温度範囲で 0. 5— 3分均熱することが好ましい。(a)または (b)の構成のどちらの金属層を設けるか は、ニッケルめっき量およびめつき後の焼鈍条件 (タイプ、温度、時間)を適宜選択す る。 [0016] When the plated steel sheet for a battery container is manufactured by the step A, it is performed as follows. When forming a metal layer having the above configuration (a) or (b) on a steel plate, cold-roll low-carbon aluminum-killed steel, electrolytically wash in an aqueous alkaline solution, and then apply nickel plating to both sides. , Box annealing or continuous annealing. Next, after temper rolling, tin plating is applied only to the side that will be the inner surface of the battery container, and silver plating is applied thereon. Alternatively, apply silver-tin alloy. Or, after temper rolling, apply a nickel-tin alloy and then apply silver. Or apply silver-tin alloy. Thereafter, box annealing or continuous annealing is performed again. In this way, a nickel layer and a Z or nickel-iron alloy layer having the structure of (a) or (b) are formed on the inner side of the battery container, and a nickel-tin-silver alloy layer is further formed on the outermost surface. The steel plate for a battery container according to the present invention, which is formed and has an iron-nickel alloy layer and a nickel layer formed on the side to be the outer surface of the battery container, is obtained. If the annealing after cold rolling is performed by box type annealing, it is preferable to perform soaking in the temperature range of 640-680 ° C for 5-20 hours.If continuous annealing is performed, the temperature range is 730-800 ° C. It is preferable to soak 0.5 to 3 minutes. When performing post-plating annealing by box-type annealing, it is preferable to soak in a temperature range of 500 to 530 ° C for 5 to 10 hours.When performing continuous annealing, it is preferable to perform soaking in a temperature range of 730 to 800 ° C. It is preferable to soak for 5 to 3 minutes. Whether to provide the metal layer of the configuration (a) or (b) is appropriately selected from the amount of nickel plating and the annealing conditions (type, temperature, time) after plating.
[0017] 鋼板上に上記の(c)または (d)の構成の金属層を形成させる場合は、低炭素アルミ キルド鋼を上記と同様の工程を経て調質圧延した後、電池容器内面となる側に-ッ ケルーめつきとその上にニッケル リン合金めつきを施し、電池容器外面となる側に- ッケルめっきを施し、箱型焼鈍または連続焼鈍する。次いで調質圧延した後、引き続 き電池容器内面となる側のみに錫めつきとその上に銀めつき、または銀 錫合金めつ きを施す。その後、再度箱型焼鈍または連続焼鈍する。このようにして、電池容器内 面となる側には (C)または(d)の構成のニッケル一鉄合金層とニッケル リン合金層の[0017] In the case of forming a metal layer having the above-mentioned configuration (c) or (d) on a steel plate, the low-carbon aluminum-killed steel is temper-rolled through the same steps as described above, and then becomes the inner surface of the battery container. On the side of the battery case and nickel-phosphorus alloy on top of it, Apply nickel plating and perform box type annealing or continuous annealing. Next, after temper rolling, tin plating is performed only on the side that will be the inner surface of the battery container, and silver plating or silver-tin alloy plating is performed thereon. Thereafter, box annealing or continuous annealing is performed again. In this way, the nickel-iron alloy layer and nickel-phosphorus alloy layer (C) or (d) are
2層および Zまたはニッケル一鉄合金層とニッケルーリン一鉄合金層の 2層が形成され 、さらにその上の最表面にニッケル リン 錫 銀合金層が形成されてなり、電池容器 外面となる側には鉄 ニッケル合金層、ニッケル層が形成された本発明の電池容器 用めつき鋼板が得られる。冷間圧延後およびめつき後の焼鈍条件は上記の冷間圧 延後の焼鈍条件と同様の範囲で適宜選択する。(c)または (d)の構成のどちらの金 属層を設けるかは、ニッケル リン合金めつき量およびめつき後の焼鈍条件 (タイプ、 温度、時間)を適宜選択する。 Two layers and two layers of Z or nickel-ferrous alloy layer and nickel-phosphorous iron-iron alloy layer are formed, and a nickel-phosphorus-tin-silver alloy layer is further formed on the outermost surface. Can be obtained a plated steel sheet for a battery container of the present invention, on which an iron-nickel alloy layer and a nickel layer are formed. Annealing conditions after cold rolling and after plating are appropriately selected in the same range as the above annealing conditions after cold rolling. Whether to provide the metal layer of the configuration (c) or (d) is determined by appropriately selecting the amount of nickel-phosphorus alloy deposition and the annealing conditions (type, temperature, time) after plating.
[0018] 鋼板上に上記の(e)または (f)の構成の金属層を形成させる場合は、低炭素アルミ キルド鋼を上記と同様の工程を経て調質圧延した後、電池容器内面となる側に-ッ ケルーリン合金めつきを施し、電池容器外面となる側にニッケルめっきを施し、箱型焼 鈍または連続焼鈍する。次いで調質圧延した後、引き続き電池容器内面となる側の みに錫めつきとその上に銀めつき、または銀 錫合金めつきを施す。その後、再度箱 型焼鈍または連続焼鈍する。このようにして、電池容器内面となる側には (e)または( f)のニッケル リン合金層および Zまたはニッケル リン一鉄合金層が形成され、さら にその上の最表面にニッケル リン 錫 銀合金層が形成されてなり、電池容器外面 となる側には鉄 ニッケル合金層、ニッケル層が形成された本発明の電池容器用め つき鋼板が得られる。冷間圧延後およびめつき後の焼鈍条件は上記の冷間圧延後 の焼鈍条件と同様の範囲で適宜選択する。 (e)または (f)の構成のどちらの金属層を 設けるかは、ニッケル リン合金めつき量およびめつき後の焼鈍条件 (タイプ、温度、 時間)を適宜選択する。 When a metal layer having the structure (e) or (f) is formed on a steel plate, the low-carbon aluminum-killed steel is temper-rolled through the same process as described above, and then becomes the inner surface of the battery container. Apply a nickel-phosphorus alloy to the side, apply nickel plating to the side that will be the outer surface of the battery container, and perform box-type annealing or continuous annealing. Next, after temper rolling, tin plating and silver plating or silver-tin alloy plating are performed only on the side that will be the inner surface of the battery container. Thereafter, box annealing or continuous annealing is performed again. In this way, the nickel-phosphorus alloy layer (e) or (f) and the Z or nickel-phosphorous iron alloy layer are formed on the inner side of the battery container, and the nickel-phosphorus-tin-silver layer is formed on the outermost surface. An alloy layer is formed, and an iron-nickel alloy layer and a nickel layer are formed on the side to be the outer surface of the battery container, thereby obtaining the steel plate for a battery container of the present invention. The annealing conditions after the cold rolling and after the plating are appropriately selected in the same range as the above annealing conditions after the cold rolling. Whether to provide the metal layer of the configuration (e) or (f) is appropriately selected from the amount of nickel-phosphorus alloy deposition and the annealing conditions (type, temperature, and time) after the plating.
[0019] 鋼板上に上記の(g)または (h)の構成の金属層を形成させる場合は、低炭素アルミ キルド鋼を上記と同様の工程を経て調質圧延した後、電池容器内面となる側に-ッ ケルめっきとその上にニッケル コバルト合金めつきを施し、電池容器外面となる側に ニッケルめっきを施し、箱型焼鈍または連続焼鈍する。引き続き電池容器内面となる 側のみに錫めつきとその上に銀めつき、または銀 錫合金めつきを施す。その後、再 度箱型焼鈍または連続焼鈍する。このようにして、電池容器内面となる側には (g)ま たは (h)の構成のニッケル一鉄合金層とニッケル コバルト合金層の 2層および Zまた はニッケル一鉄合金層とニッケル コバルト一鉄合金層の 2層が形成され、さらにその 上の最表面にニッケル コバルト 錫"!良合金層が形成されてなり、電池容器外面と なる側には鉄 ニッケル合金層、ニッケル層が形成された本発明の電池容器用めつ き鋼板が得られる。冷間圧延後およびめつき後の焼鈍条件は上記の冷間圧延後の 焼鈍条件と同様の範囲で適宜選択する。 (g)または (h)の構成のどちらの金属層を 設けるかは、ニッケル コバルト合金めつき量およびめつき後の焼鈍条件 (タイプ、温 度、時間)を適宜選択する。 When a metal layer having the configuration (g) or (h) is formed on a steel plate, the low-carbon aluminum-killed steel is temper-rolled through the same process as described above, and then becomes the inner surface of the battery container. Apply nickel plating on the side and nickel-cobalt alloy plating thereon, apply nickel plating on the side that will be the outer surface of the battery container, and perform box-type annealing or continuous annealing. Continue to be inside the battery container Apply tin plating only on the side and silver plating or silver-tin alloy plating on it. After that, box annealing or continuous annealing is performed again. In this way, on the side that becomes the inner surface of the battery container, two layers of the nickel-iron alloy layer and the nickel-cobalt alloy layer and the Z or nickel-iron alloy layer and the nickel-cobalt alloy layer of (g) or (h) Two layers of a ferrous alloy layer are formed, and a nickel-cobalt-tin "good alloy layer is formed on the outermost surface, and an iron-nickel alloy layer and a nickel layer are formed on the outer surface of the battery container. The annealing conditions after cold rolling and after plating are appropriately selected within the same range as the annealing conditions after cold rolling described above. As to which metal layer of the configuration of h) is provided, the amount of nickel-cobalt alloy deposition and the annealing conditions (type, temperature, time) after plating are appropriately selected.
[0020] 鋼板上に上記の(i)または (j)の構成の金属層を形成させる場合は、低炭素アルミ キルド鋼を上記と同様の工程を経て調質圧延した後、電池容器内面となる側に-ッ ケルーコノ レト合金めつきを施し、電池容器外面となる側にニッケルめっきを施し、箱 型焼鈍または連続焼鈍する。引き続き電池容器内面となる側のみに錫めつきとその 上に銀めつき、または銀 錫合金めつきを施す。その後、再度箱型焼鈍または連続焼 鈍する。このようにして、電池容器内面となる側には (i)の構成のニッケル コバルト 鉄合金層上の最表面にニッケル コバルト 錫"!良合金層が形成されるカゝ、または (j) の構成のニッケル コバルト一鉄合金層上にニッケル コバルト合金層が形成され、さ らにその上の最表面にニッケル コバルト 錫"!良合金層が形成されてなり、電池容 器外面となる側には鉄 ニッケル合金層、ニッケル層が形成された本発明の電池容 器用めつき鋼板が得られる。冷間圧延後およびめつき後の焼鈍条件は上記の冷間 圧延後の焼鈍条件と同様の範囲で適宜選択する。 (ί)または G)の構成のどちらの金 属層を設けるかは、ニッケル コバルト合金めつき量およびめつき後の焼鈍条件 (タイ プ、温度、時間)を適宜選択する。 [0020] When the metal layer having the configuration (i) or (j) is formed on a steel sheet, the low-carbon aluminum-killed steel is temper-rolled through the same steps as described above, and then becomes the inner surface of the battery container. Apply nickel alloy on one side, apply nickel plating on the side that will be the outer surface of the battery container, and perform box-type annealing or continuous annealing. Subsequently, tin plating is applied only to the inner side of the battery container and silver plating or silver-tin alloy plating is applied thereon. After that, box annealing or continuous annealing is performed again. In this way, on the side that becomes the inner surface of the battery container, the nickel cobalt tin "! Good alloy layer is formed on the outermost surface on the nickel cobalt iron alloy layer of the configuration (i), or the configuration of (j). A nickel-cobalt alloy layer is formed on the nickel-cobalt-iron alloy layer, and a nickel-cobalt-tin "! Good alloy layer is formed on the outermost surface. The plated steel sheet for a battery container of the present invention on which a nickel alloy layer and a nickel layer are formed is obtained. The annealing conditions after cold rolling and after plating are appropriately selected in the same range as the annealing conditions after cold rolling described above. Whether to provide a metal layer in the configuration of (ii) or G) is determined by the amount of nickel-cobalt alloy deposition and the annealing conditions (type, temperature, time) after plating.
[0021] 鋼板上に上記の(k)または (1)もしくは (m)の構成の金属層を形成させる場合は、 低炭素アルミキルド鋼を上記と同様の工程を経て調質圧延した後、電池容器内面と なる側にニッケルめっきとその上にニッケル コバルト リン合金めつきを施し、電池容 器外面となる側にニッケルめっきを施し、箱型焼鈍または連続焼鈍する。引き続き電 池容器内面となる側のみに錫めつきとその上に銀めつき、または銀 錫合金めつきを 施す。その後、再度箱型焼鈍または連続焼鈍する。このようにして、電池容器内面と なる側には (k)の構成の鉄 ニッケル合金層とその上の鉄 ニッケル コバルト リン 合金層の 2層上の最表面にニッケル コバルトーリンー錫"!良合金層が形成されてなる 力 または (1)の構成の鉄 ニッケル合金層とその上の鉄 ニッケル コバルト リン合 金層、さらにその上のニッケルーコノ レトーリン合金層の 3層が形成され、さらにその上 の最表面にニッケル コバルト リン 錫"!良合金層が形成されてなるカゝ、または (m) の構成の鉄—ニッケル合金層とその上のニッケル層、さらにその上のニッケルーコバ ルトーリン合金層の 3層が形成され、さらにその上の最表面にニッケル コバルトーリン 錫"!良合金層が形成されてなり、電池容器外面となる側には鉄 ニッケル合金層、 ニッケル層が形成された本発明の電池容器用めつき鋼板が得られる。冷間圧延後お よびめつき後の焼鈍条件は上記の冷間圧延後の焼鈍条件と同様の範囲で適宜選択 する。(k)または (1)もしくは (m)の構成のどちらの金属層を設けるかは、各種金属ま たは合金のめっき量、およびめつき後の焼鈍条件 (タイプ、温度、時間)を適宜選択 する。 [0021] When the metal layer having the configuration (k) or (1) or (m) is formed on a steel sheet, the low-carbon aluminum-killed steel is temper-rolled through the same steps as above, and then the battery container Nickel plating is applied on the inner side and nickel-cobalt-phosphorus alloy is applied on the inner side. Nickel plating is applied on the outer side of the battery container, and box or continuous annealing is performed. Continue to Apply tin plating and silver plating or silver-tin alloy plating only on the inner surface of the pond. Thereafter, box annealing or continuous annealing is performed again. In this way, the nickel-cobalt-phosphorus-tin "! Good alloy layer is formed on the outermost surface of the two layers of the iron-nickel alloy layer having the configuration (k) and the iron-nickel-cobalt-phosphorous alloy layer on the side that will be the inner surface of the battery container. The formed force or iron-nickel alloy layer of the configuration of (1), the iron-nickel-cobalt-phosphorus alloy layer on it, and the nickel-conoreletrin alloy layer on it are further formed on the outermost surface. Nickel Cobalt Phosphorus Tin "! A three-layer structure consisting of a good alloy layer or an iron-nickel alloy layer (m) and a nickel layer on it, and a nickel-cobalttrin alloy layer on it is formed on top. A nickel-cobalt-tin-tin "! Good alloy layer is formed on the surface, and an iron-nickel alloy layer and a nickel layer are formed on the outer surface of the battery container. The conditions for annealing after rolling and after plating are appropriately selected within the same range as the annealing conditions after cold rolling described above, which metal layer of (k) or (1) or (m) is provided. For, select the amount of plating of various metals or alloys and the annealing conditions (type, temperature, time) after plating as appropriate.
鋼板上に上記の(n)または (o)もしくは (p)の構成の金属層を形成させる場合は、 低炭素アルミキルド鋼を上記と同様の工程を経て調質圧延した後、電池容器内面と なる側にニッケルめっきとその上にニッケル コバルト リン合金めつきを施し、電池容 器外面となる側にニッケルめっきを施し、箱型焼鈍または連続焼鈍する。引き続き電 池容器内面となる側のみに銀めつきを施す。その後、再度箱型焼鈍または連続焼鈍 する。このようにして、電池容器内面となる側には (n)の構成の鉄 ニッケル合金層と その上の鉄—ニッケル コバルト リン合金層の 2層上の最表面にニッケル コバルト リン"!良合金層が形成されてなるか、または (o)の構成の鉄 ニッケル合金層とその上 の鉄 ニッケル コバルト リン合金層、さらにその上のニッケル コバルト リン合金層 の 3層が形成され、さらにその上の最表面にニッケル コバルト リン 銀合金層が形 成されてなるカゝ、または(p)の構成の鉄 ニッケル合金層とその上のニッケル層、さら にその上のニッケル コバルト リン合金層の 3層が形成され、さらにその上の最表面 にニッケル コバルトーリン _良合金層が形成されてなり、電池容器外面となる側には 鉄 ニッケル合金層、ニッケル層が形成された本発明の電池容器用めつき鋼板が得 られる。冷間圧延後およびめつき後の焼鈍条件は上記の冷間圧延後の焼鈍条件と 同様の範囲で適宜選択する。 (n)または (o)もしくは (p)の構成の!/、ずれの金属層を 設けるかは、各種金属または合金のめっき量、およびめつき後の焼鈍条件 (タイプ、 温度、時間)を適宜選択する。 When forming a metal layer having the above structure (n) or (o) or (p) on a steel plate, low-carbon aluminum-killed steel is temper-rolled through the same process as above, and then becomes the inner surface of the battery container Nickel plating on the side and nickel-cobalt-phosphorus alloy plating on it, nickel plating on the side that will be the outer surface of the battery container, and box or continuous annealing. Continue to apply silver plating only to the inner side of the battery container. Thereafter, box annealing or continuous annealing is performed again. In this way, on the side that will be the inner surface of the battery container, the nickel-cobalt-phosphorus! Or an iron-nickel alloy layer having the configuration of (o), an iron-nickel-cobalt-phosphorus alloy layer thereon, and a nickel-cobalt-phosphorus alloy layer thereabove, and a nickel-cobalt-phosphorus alloy layer thereover. A nickel-cobalt-phosphorus-silver alloy layer is formed on the surface, or an iron-nickel alloy layer with the composition (p), a nickel layer on it, and a nickel-cobalt-phosphorus alloy layer on it are formed. A nickel cobalt-phosphorus good alloy layer is formed on the outermost surface, and the outer surface of the battery container is The plated steel sheet for a battery container of the present invention on which the iron-nickel alloy layer and the nickel layer are formed is obtained. The annealing conditions after the cold rolling and after the plating are appropriately selected in the same range as the annealing conditions after the cold rolling. Whether the metal layer of (n), (o), or (p) is provided with a misaligned metal layer depends on the amount of plating of various metals or alloys and the annealing conditions (type, temperature, and time) after plating. select.
[0023] B工程により電池容器用めつき鋼板を製造する場合は、以下のようにして行う。鋼板 上に上記の(a)または (b)の構成の金属層を設ける場合は、極低炭素アルミキルド鋼 を冷間圧延しアルカリ水溶液中で電解洗浄した後、両面にニッケルめっきを施し、引 き続き電池容器内面となる側のみに錫めつきとその上に銀めつき、または銀 錫合金 めっきを施す。または、ニッケル-錫合金めつきを施し、その上に銀めつき、または銀 錫合金めつきを施す。その後連続焼鈍し、次いで調質圧延する。このようにして、電 池容器内面となる側には (a)または (b)の構成のニッケル層および Zまたはニッケル 一鉄合金層が形成され、さらにその上の最表面にニッケル 錫 銀合金層が形成され てなり、電池容器外面となる側には鉄 ニッケル合金層、ニッケル層が形成された本 発明の電池容器用めつき鋼板が得られる。連続焼鈍は 730— 800°Cの温度範囲で 0 . 5— 3分均熱することが好ましい。 (a)または (b)の構成のどちらの金属層を設ける かは、ニッケルめっき量、および連続焼鈍条件 (温度、時間)を適宜選択する。  [0023] When the plated steel sheet for a battery container is manufactured in the step B, the following procedure is performed. When providing a metal layer of the above configuration (a) or (b) on a steel plate, cold roll an ultra-low carbon aluminum killed steel, electrolytically wash in an alkaline aqueous solution, apply nickel plating on both sides, and pull Subsequently, tin plating is applied only to the inner surface of the battery container, and silver plating or silver-tin alloy plating is applied thereon. Alternatively, apply a nickel-tin alloy plating, and then apply a silver plating or a silver-tin alloy plating. Thereafter, continuous annealing is performed, followed by temper rolling. In this way, the nickel layer and the Z or nickel-iron alloy layer having the configuration of (a) or (b) are formed on the side that becomes the inner surface of the battery container, and the nickel-tin-silver alloy layer is formed on the outermost surface. Thus, the plated steel sheet for a battery container of the present invention is obtained in which an iron-nickel alloy layer and a nickel layer are formed on the outer side of the battery container. The continuous annealing is preferably carried out in a temperature range of 730 to 800 ° C for 0.5 to 3 minutes. The amount of nickel plating and the conditions of continuous annealing (temperature and time) are appropriately selected as to which of the metal layers (a) and (b) is provided.
[0024] 鋼板上に上記の(c)または (d)の構成の金属層を設ける場合は、極低炭素アルミキ ルド鋼を上記と同様の工程を経て電解洗浄し、次 、で電池容器内面となる側に-ッ ケルめっきとその上にニッケル リン合金めつきを施し、さらにその上に錫めつきとそ の上に銀めつき、または銀 錫合金めつきを施す。電池容器外面となる側には-ッケ ルめっきを施す。その後連続焼鈍し、次いで調質圧延する。このようにして、電池容 器内面となる側には (c)または(d)の構成のニッケル一鉄合金層とニッケル リン合金 層の 2層および,またはニッケル一鉄合金層とニッケルーリン一鉄合金層の 2層が形成 され、さらにその上の最表面にニッケル リン 錫 銀合金層が形成されてなり、電池 容器外面となる側には鉄 ニッケル合金層、ニッケル層が形成された本発明の電池 容器用めつき鋼板が得られる。連続焼鈍は 730— 800°Cの温度範囲で 0. 5— 3分均 熱することが好ま U、。(c)または(d)の構成のニッケル層および Zまたはニッケル合 金層のどちらを設けるかは、ニッケルめっき量、および連続焼鈍条件 (温度、時間)を 適宜選択する。 [0024] When the metal layer having the configuration (c) or (d) is provided on the steel sheet, the ultra-low carbon aluminum-killed steel is electrolytically cleaned through the same steps as above, and then the inner surface of the battery container is formed. On the other side, nickel plating and nickel-phosphorous alloy plating are applied, and then tin plating and silver plating or silver-tin alloy plating are applied thereon. On the side that will be the outer surface of the battery container, apply nickel plating. Thereafter, continuous annealing is performed, followed by temper rolling. In this way, on the side serving as the inner surface of the battery container, two layers of the nickel-iron alloy layer and the nickel-phosphorus alloy layer having the configuration (c) or (d) and / or the nickel-iron alloy layer and the nickel-phosphorus iron layer An alloy layer of nickel-phosphorus-tin-silver is formed on the outermost surface of the alloy layer, and an iron-nickel alloy layer and a nickel layer are formed on the outer surface of the battery container. A plated steel sheet for a battery container is obtained. For continuous annealing, it is preferable to soak in a temperature range of 730-800 ° C for 0.5-3 minutes. (C) or (d) nickel layer and Z or nickel alloy Which of the gold layers is provided depends on the amount of nickel plating and continuous annealing conditions (temperature, time).
[0025] 鋼板上に上記の(e)または (f)の構成の金属層を設ける場合は、極低炭素アルミキ ルド鋼を上記と同様の工程を経て電解洗浄し、次 、で電池容器内面となる側に-ッ ケノレーリン合金めつきを施し、さらにその上に錫めつきとその上に銀めつき、または銀 錫合金めつきを施す。電池容器外面となる側にはニッケルめっきを施す。その後連続 焼鈍し、次いで調質圧延する。このようにして、電池容器内面となる側には(e)または (f)の構成の-ッケノレーリン合金層および,またはニッケルーリン一鉄合金層が形成さ れ、さらにその上の最表面にニッケル リン 錫"!良合金層が形成されてなり、電池容 器外面となる側には鉄 ニッケル合金層、ニッケル層が形成された本発明の電池容 器用めつき鋼板が得られる。連続焼鈍は 730— 800°Cの温度範囲で 0. 5— 3分均熱 することが好ま U、。 (e)または (f)の構成のニッケル層および/またはニッケル合金 層のどちらを設けるかは、ニッケルめっき量、および連続焼鈍条件 (温度、時間)を適 宜選択する。  When a metal layer having the above configuration (e) or (f) is provided on a steel sheet, ultra-low carbon aluminum-killed steel is electrolytically cleaned through the same steps as described above, and then the inner surface of the battery container is formed. On the other side, apply a -Kaknorelin alloy plating, and then apply a tin plating and a silver plating or silver-tin alloy plating thereon. Nickel plating is applied to the side to be the outer surface of the battery container. Thereafter, continuous annealing is performed and then temper rolling. In this way, a nickel-phosphorin alloy layer and / or a nickel-phosphorus-iron alloy layer having the structure (e) or (f) is formed on the inner side of the battery container, and the nickel phosphorous Tin "! A good alloy layer is formed, and a nickel-alloy layer and a nickel layer are formed on the side to be the outer surface of the battery container to obtain the plated steel sheet for battery containers of the present invention. It is preferable to soak for 0.5 to 3 minutes in a temperature range of 800 ° C. U. The nickel layer and / or nickel alloy layer with the configuration (e) or (f) is determined by the amount of nickel plating. , And continuous annealing conditions (temperature, time) are appropriately selected.
[0026] 鋼板上に上記の(g)または (h)の構成の金属層を設ける場合は、極低炭素アルミキ ルド鋼を上記と同様の工程を経て電解洗浄し、次 、で電池容器内面となる側に-ッ ケルめっきとその上にニッケル コバルト合金めつきを施し、さらにその上に錫めつき とその上に銀めつき、または銀 錫合金めつきを施す。電池容器外面となる側には- ッケルめっきを施す。その後連続焼鈍し、次いで調質圧延する。このようにして、電池 容器内面となる側には (g)または (h)の構成のニッケル一鉄合金層とニッケルーコバル ト合金層の 2層および Zまたはニッケル一鉄合金層とニッケル コバルト一鉄合金層の 2層が形成され、さらにその上の最表面にニッケル コバルト 錫 銀合金層が形成さ れてなり、電池容器外面となる側には鉄 ニッケル合金層、ニッケル層が形成された 本発明の電池容器用めつき鋼板が得られる。連続焼鈍は 730— 800°Cの温度範囲 で 0. 5— 3分均熱することが好ましい。(g)または (h)の構成のニッケル層および/ま たはニッケル合金層のどちらを設けるかは、ニッケルめっき量、および連続焼鈍条件 (温度、時間)を適宜選択する。  [0026] When a metal layer having the above configuration (g) or (h) is provided on a steel plate, ultra-low carbon aluminum-killed steel is electrolytically cleaned through the same steps as described above, and then the inner surface of the battery container is cleaned. On the other side, nickel plating and nickel-cobalt alloy plating are applied, and then tin plating and silver plating or silver-tin alloy plating are applied. Nickel plating is applied to the outer side of the battery container. Thereafter, continuous annealing is performed, followed by temper rolling. In this way, on the side that will be the inner surface of the battery container, two layers of nickel-iron alloy layer and nickel-cobalt alloy layer of (g) or (h) and Z or nickel-iron alloy layer and nickel-cobalt-iron alloy Of the present invention, in which a nickel-cobalt-tin-silver alloy layer is formed on the outermost surface, and an iron-nickel alloy layer and a nickel layer are formed on the outer side of the battery container. A plated steel sheet for a battery container is obtained. The continuous annealing is preferably carried out in a temperature range of 730-800 ° C for 0.5-3 minutes. Whether to provide the nickel layer and / or nickel alloy layer having the configuration of (g) or (h) is appropriately selected from the amount of nickel plating and the continuous annealing conditions (temperature and time).
[0027] 鋼板上に上記の(i)または (j)の構成の金属層を設ける場合は、極低炭素アルミキ ルド鋼を上記と同様の工程を経て電解洗浄し、次 、で電池容器内面となる側に-ッ ケルーコノ レト合金めつきを施し、さらにその上に錫めつきとその上に銀めつき、また は銀 錫合金めつきを施す。電池容器外面となる側にはニッケルめっきを施す。その 後連続焼鈍し、次いで調質圧延する。このようにして、電池容器内面となる側には (i) または (j)の構成のニッケル コバルト合金層および Zまたはニッケル コバルト一鉄 合金層が形成され、さらにその上の最表面にニッケル コバルト 錫 銀合金層が形 成されてなり、電池容器外面となる側には鉄 ニッケル合金層、ニッケル層が形成さ れた本発明の電池容器用めつき鋼板が得られる。連続焼鈍は 730— 800°Cの温度 範囲で 0. 5— 3分均熱することが好ましい。(i)または (j)の構成のニッケル層および /またはニッケル合金層のどちらを設けるかは、ニッケルめっき量、および連続焼鈍 条件 (温度、時間)を適宜選択する。 [0027] When a metal layer having the above-mentioned configuration (i) or (j) is provided on a steel plate, an extremely low carbon aluminum alloy is used. The steel is electrolytically cleaned through the same process as above, and then the nickel-coated nickel alloy is applied to the side that will become the inner surface of the battery container, and then tin and silver are further applied. Apply silver-tin alloy. Nickel plating is applied to the side to be the outer surface of the battery container. After that, continuous annealing and then temper rolling are performed. In this way, the nickel-cobalt alloy layer and the Z or nickel-cobalt-iron alloy layer having the configuration (i) or (j) are formed on the side serving as the inner surface of the battery container, and the nickel cobalt tin The plated steel sheet for a battery container of the present invention is obtained in which a silver alloy layer is formed, and an iron-nickel alloy layer and a nickel layer are formed on the outer surface of the battery container. The continuous annealing is preferably carried out in a temperature range of 730-800 ° C for 0.5-3 minutes. Whether to provide the nickel layer and / or the nickel alloy layer having the configuration (i) or (j) is appropriately selected from the nickel plating amount and the continuous annealing conditions (temperature and time).
鋼板上に上記の(k)または (1)もしくは (m)の構成の金属層を設ける場合は、極低 炭素アルミキルド鋼を上記と同様の工程を経て電解洗净し、次 、で電池容器内面と なる側にニッケルめっきとその上にニッケル コバルト—リン合金めつきを施し、その上 に錫めつきとその上に銀めつき、または銀 錫合金めつきを施す。電池容器外面とな る側にはニッケルめっきを施す。その後連続焼鈍し、次いで調質圧延する。このよう にして、電池容器内面となる側には (k)の構成の鉄 ニッケル合金層とその上の鉄 ニッケル コバルト リン合金層からなる 2層上の最表面にニッケル コバルト リン 錫 銀合金層が形成されるか、または (1)の構成の鉄 ニッケル合金層とその上の鉄一二 ッケルーコバルト リン合金層とまたその上のニッケル コバルト リン合金層からなる 3 層上の最表面にニッケル コバルト リン 錫"!良合金層が形成されてなるカゝ、または (m)の構成の鉄—ニッケル合金層とその上のニッケル層とまたその上のニッケルーコ バルト リン合金層の 3層力もなる最表面にニッケルーコノ レトーリン 錫 銀合金層が 形成されてなり、電池容器外面となる側には鉄 ニッケル合金層、ニッケル層が形成 された本発明の電池容器用めつき鋼板が得られる。連続焼鈍は 730— 800°Cの温 度範囲で 0. 5— 3分均熱することが好ましい。(k)または (1)もしくは (m)の構成のい ずれの金属層を設けるかは、各種金属または合金のめっき量、および連続焼鈍条件 (温度、時間)を適宜選択する。 [0029] 鋼板上に上記の(n)または (o)もしくは (p)の構成の金属層を設ける場合は、極低 炭素アルミキルド鋼を上記と同様の工程を経て電解洗净し、次 、で電池容器内面と なる側にニッケルめっきとその上にニッケル コバルト—リン合金めつきを施し、その上 に錫めつきとその上に銀めつきを施す。電池容器外面となる側にはニッケルめっきを 施す。その後連続焼鈍し、次いで調質圧延する。このようにして、電池容器内面とな る側には (n)の構成の鉄 ニッケル合金層とその上の鉄 ニッケル コバルト リン合 金層カゝらなる 2層上の最表面にニッケル コバルト リン"!良合金層が形成されるか、 または (o)の構成の鉄 ニッケル合金層とその上の鉄 ニッケル コバルト リン合金 層とまたその上のニッケル コバルト—リン合金層力もなる 3層上の最表面にニッケル コバルト リン ~良合金層が形成されてなるカゝ、または (p)の構成の鉄 ニッケル合 金層とその上のニッケル層とまたその上のニッケル コバルト リン合金層の 3層から なる最表面にニッケル コバルト リン 銀合金層が形成されてなり、電池容器外面と なる側には鉄 ニッケル合金層、ニッケル層が形成された本発明の電池容器用めつ き鋼板が得られる。連続焼鈍は 730— 800°Cの温度範囲で 0. 5— 3分均熱すること が好ましい。(n)または (o)もしくは (p)の構成のいずれの金属層を設けるかは、各種 金属または合金のめっき量、および連続焼鈍条件 (温度、時間)を適宜選択する。 When providing a metal layer having the above configuration (k) or (1) or (m) on a steel plate, ultra-low carbon aluminum killed steel is electrolytically washed through the same process as above, and then the inner surface of the battery container Then, apply nickel plating and nickel-cobalt-phosphorus alloy plating on the side to be treated, and then apply tin plating and silver plating or silver-tin alloy plating thereon. Nickel plating is applied to the outer side of the battery container. Thereafter, continuous annealing is performed, followed by temper rolling. In this way, the nickel-cobalt-phosphorus-tin-silver alloy layer is formed on the outermost surface of the two layers consisting of the iron-nickel alloy layer having the configuration (k) and the iron-nickel-cobalt-phosphorus alloy layer on the side that will be the inner surface of the battery container. Nickel-cobalt-phosphorous-tin formed on the outermost surface on three layers consisting of an iron-nickel alloy layer having the constitution of (1), an iron-nickel-cobalt-phosphorus alloy layer thereon, and a nickel-cobalt-phosphorus alloy layer thereon. "! A nickel alloy layer with a good alloy layer formed, or an iron-nickel alloy layer with the composition of (m), a nickel layer on it, and a nickel-cobalt alloy layer on top A plated steel sheet for a battery container according to the present invention, in which a retorin-tin-silver alloy layer is formed and an iron-nickel alloy layer and a nickel layer are formed on the outer surface of the battery container, is obtained. It is preferable to soak for 0.5 to 3 minutes in the temperature range of 730 to 800 ° C. Whether to provide the metal layer of (k) or (1) or (m) depends on the type of metal or The amount of plating of the alloy and the continuous annealing conditions (temperature, time) are appropriately selected. When a metal layer having the structure (n) or (o) or (p) is provided on a steel sheet, the ultra-low carbon aluminum killed steel is electrolytically washed through the same steps as described above, and then Nickel plating and nickel-cobalt-phosphorus alloy plating are applied to the inner side of the battery container, and then tin plating and silver plating are applied. Nickel plating is applied to the side that will be the outer surface of the battery container. Thereafter, continuous annealing is performed, followed by temper rolling. In this way, the outermost surface of the two layers consisting of the iron-nickel alloy layer having the structure (n) and the iron-nickel-cobalt-phosphorus alloy layer on the side serving as the inner surface of the battery container is nickel-cobalt-phosphorous. ! A good alloy layer is formed, or the uppermost surface of the iron-nickel alloy layer with the configuration of (o), the iron-nickel-cobalt-phosphorus alloy layer on it, and the nickel-cobalt-phosphorus alloy layer on it A cobalt-phosphorous alloy with a good alloy layer formed on it, or a three-layer structure consisting of an iron-nickel alloy layer with the configuration of (p), a nickel layer thereabove, and a nickel-cobalt phosphorus alloy layer thereover A nickel-cobalt-phosphor-silver alloy layer is formed on the surface, and an iron-nickel alloy layer and a nickel layer are formed on the outer surface of the battery container. 730—800 ° C It is preferable to soak for 0.5 to 3 minutes in the temperature range.The metal layer of (n) or (o) or (p) is determined by the plating amount of various metals or alloys and continuous annealing. Conditions (temperature, time) are appropriately selected.
[0030] 本発明の電池容器用めつき鋼板は上記のようにして得られる。本発明の電池容器 は上記電池容器用めつき鋼板を、絞り加工法、絞りしごき加工法 (DI加工法)、絞りス トレツチカ卩工法 (DTR加工法)、または絞り加工後ストレッチ加工としごき加工を併用 する加工法を用いて、有底の筒型形状に成形加工して得られる。筒型形状としては 底面が円、楕円、または長方形や正方形などの多角形の形状であり、用途に応じて 側壁の高さを適宜選択した筒型形状に成形加工する。このようにして得られる電池容 器に正極、負極活物質等を充填して電池とする。 [0030] The plated steel sheet for a battery container of the present invention is obtained as described above. The battery container of the present invention is obtained by subjecting the above-mentioned steel sheet for battery container to drawing, drawing and ironing (DI processing), drawing and stretching (DTR), or stretching after drawing and ironing. It is obtained by forming into a bottomed cylindrical shape using the combined processing method. As the cylindrical shape, the bottom surface is a circle, an ellipse, or a polygonal shape such as a rectangle and a square, and the height of the side wall is appropriately selected according to the application, and the cylindrical shape is formed. The battery container thus obtained is filled with a positive electrode, a negative electrode active material and the like to form a battery.
実施例  Example
[0031] 以下、実施例にて本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail with reference to examples.
[電池容器用めっき鋼板の作成]  [Preparation of plated steel sheets for battery containers]
基板として、表 1に化学組成を示す低炭素アルミキルド鋼 (I)および極低炭素アルミ キルド鋼 (II)の冷間圧延板 (厚さ 0. 25mm)を用い、低炭素アルミキルド鋼 (II)を用 、た場合は下記の i一 ivで示す工程を経て、極低炭素アルミキルド鋼 (II)を用いた場 合は下記の V— xviで示す工程を経て、それぞれ電池容器用めつき鋼板を作成した。 なお、下記の i一 xviの工程においては容器内面となる側にめっきを施した場合を示し ており、容器外面となる側にはいずれも下記の i一 Vの工程において電解洗浄後に- ッケノレめつきを施す。 The low-carbon aluminum-killed steel (II) was cold-rolled (thickness 0.25 mm) of low-carbon aluminum-killed steel (I) and ultra-low-carbon aluminum-killed steel (II) whose chemical composition is shown in Table 1. for In the case of the above, through the process indicated by i-iv below, and in the case of using ultra-low carbon aluminum killed steel (II), through the process indicated by V-xvi below, plated steel plates for battery containers were prepared respectively. . In the following i-i xvi process, plating is performed on the side that will be the inner surface of the container. Apply
i)冷間圧延→電解洗浄→ニッケルめっき→焼鈍 (箱型または連続焼鈍)→調質圧 延→錫めつき→銀めっき (または調質圧延後に銀 錫合金めつき)→焼鈍 (箱型また は連続焼鈍)→最表面に銀を含む合金層形成  i) Cold rolling → electrolytic cleaning → nickel plating → annealing (box type or continuous annealing) → temper rolling → tin plating → silver plating (or silver tin alloy plating after temper rolling) → annealing (box type or Is continuous annealing) → Silver-containing alloy layer is formed on the outermost surface
ii)冷間圧延→電解洗浄→ニッケルめっき→焼鈍 (箱型または連続焼鈍)→調質圧 延→-ッケルー錫合金めつき→銀めっき (または調質圧延後に銀-錫合金めつき)→ 焼鈍 (箱型または連続焼鈍)→最表面に銀を含む合金層形成  ii) Cold rolling → electrolytic cleaning → nickel plating → annealing (box type or continuous annealing) → temper rolling → plating with a nickel-tin alloy → silver plating (or plating with silver-tin alloy after temper rolling) → annealing (Box type or continuous annealing) → forming an alloy layer containing silver on the outermost surface
iii)冷間圧延→電解洗浄→ニッケルめっき→ニッケル リン合金めつき→焼鈍 (箱型 または連続焼鈍)→調質圧延→錫めっき→銀めっき (または調質圧延後に銀 錫合 金めつき)→焼鈍 (箱型または連続焼鈍)→最表面に銀を含む合金層形成  iii) Cold rolling → electrolytic cleaning → nickel plating → nickel-phosphorous alloy plating → annealing (box or continuous annealing) → temper rolling → tin plating → silver plating (or silver-tin alloy plating after temper rolling) → Annealing (box or continuous annealing) → forming an alloy layer containing silver on the outermost surface
iv)冷間圧延→電解洗浄→ニッケル -リン合金めつき→焼鈍 (箱型または連続焼鈍) →調質圧延→錫めつき→銀めっき (または調質圧延後に銀 錫合金めつき)→焼鈍( 箱型または連続焼鈍)→最表面に銀を含む合金層形成  iv) Cold rolling → electrolytic cleaning → nickel-phosphorus alloy plating → annealing (box or continuous annealing) → temper rolling → tin plating → silver plating (or silver-tin alloy plating after temper rolling) → annealing ( (Box type or continuous annealing) → forming an alloy layer containing silver on the outermost surface
V)冷間圧延→電解洗浄→ニッケルめっき→ニッケルーコノ レト合金めつき→焼鈍( 箱形または連続焼鈍)→調質圧延→錫めっき→銀めっき (または調質圧延後に銀 錫合金めつき)→焼鈍 (箱型または連続焼鈍)→最表面に銀を含む合金層形成  V) Cold rolling → electrolytic cleaning → nickel plating → nickel-conolet alloy plating → annealing (box or continuous annealing) → temper rolling → tin plating → silver plating (or silver-tin alloy plating after temper rolling) → annealing (Box type or continuous annealing) → forming an alloy layer containing silver on the outermost surface
vi)冷間圧延→電解洗浄→ニッケル コバルト合金めつき→焼鈍 (箱型または連続 焼鈍)→調質圧延→錫めつき→銀めっき (または調質圧延後に銀 錫合金めつき)→ 焼鈍 (箱型または連続焼鈍)→最表面に銀を含む合金層形成  vi) Cold rolling → electrolytic cleaning → nickel-cobalt alloy plating → annealing (box-shaped or continuous annealing) → temper rolling → tin plating → silver plating (or silver-tin alloy plating after temper rolling) → annealing (box (Mold or continuous annealing) → forming an alloy layer containing silver on the outermost surface
vii)冷間圧延→電解洗浄→ニッケルめっき→ニッケル コバルト リン合金めつき→ 焼鈍 (箱型または連続焼鈍)→調質圧延→錫めつき→銀めっき (または調質圧延後 に銀 -錫合金めつき)→焼鈍 (箱型または連続焼鈍)→最表面に銀を含む合金層形 成  vii) Cold rolling → electrolytic cleaning → nickel plating → nickel cobalt phosphorus alloy plating → annealing (box type or continuous annealing) → temper rolling → tin plating → silver plating (or silver-tin alloy plating after temper rolling) ) → annealing (box or continuous annealing) → forming an alloy layer containing silver on the outermost surface
viii)冷間圧延→電解洗浄→ニッケルめっき→ニッケル コバルト リン合金めつき→ 焼鈍 (箱型または連続焼鈍)→調質圧延→銀めっき (または調質圧延後に銀めつき) →焼鈍 (箱型または連続焼鈍)→最表面に銀を含む合金層形成 viii) Cold rolling → electrolytic cleaning → nickel plating → nickel cobalt phosphorus alloy plating → Annealing (box or continuous annealing) → temper rolling → silver plating (or silver plating after temper rolling) → annealing (box or continuous annealing) → forming an alloy layer containing silver on the outermost surface
ix)冷間圧延→電解洗浄→ニッケルめっき→錫めつき→銀めっき(または調質圧延 後に銀 -錫合金めつき)→連続焼鈍→調質圧延→最表面に銀を含む合金層形成 ix) Cold rolling → electrolytic cleaning → nickel plating → tin plating → silver plating (or silver-tin alloy plating after temper rolling) → continuous annealing → temper rolling → forming an alloy layer containing silver on the outermost surface
X)冷間圧延→電解洗浄→ニッケルめっき→ニッケル-錫合金めつき→銀めっき(ま たは調質圧延後に銀 -錫合金めつき)→連続焼鈍→調質圧延→最表面に銀を含む 合金層形成 X) Cold rolling → electrolytic cleaning → nickel plating → nickel-tin alloy plating → silver plating (or silver-tin alloy plating after temper rolling) → continuous annealing → temper rolling → contains silver on the outermost surface Alloy layer formation
xi)冷間圧延→電解洗浄→ニッケルめっき→ニッケル リン合金めつき→錫めつき→ 銀めつき (または調質圧延後に銀 錫合金めつき)→連続焼鈍→調質圧延→最表面 に銀を含む合金層形成  xi) Cold rolling → electrolytic cleaning → nickel plating → nickel-phosphorus alloy plating → tin plating → silver plating (or silver-tin alloy plating after temper rolling) → continuous annealing → temper rolling → silver on the outermost surface Alloy layer formation including
xii)冷間圧延→電解洗浄→ニッケル リン合金めつき→錫めつき→銀めっき(または 調質圧延後に銀 -錫合金めつき)→連続焼鈍→調質圧延→最表面に銀を含む合金 層形成  xii) Cold rolling → electrolytic cleaning → nickel-phosphorus alloy plating → tin plating → silver plating (or silver-tin alloy plating after temper rolling) → continuous annealing → temper rolling → alloy layer containing silver on the outermost surface Formation
xiii)冷間圧延→電解洗浄→ニッケルめっき→ニッケル コバルト合金めつき→錫め つき→銀めっき (または調質圧延後に銀 錫合金めつき)→連続焼鈍→調質圧延→ 最表面に銀を含む合金層形成  xiii) Cold rolling → electrolytic cleaning → nickel plating → nickel-cobalt alloy plating → tin plating → silver plating (or silver-tin alloy plating after temper rolling) → continuous annealing → temper rolling → contains silver on the outermost surface Alloy layer formation
xiv)冷間圧延→電解洗浄→ニッケル-コバルト合金めつき→錫めつき→銀めっき(ま たは調質圧延後に銀 -錫合金めつき)→連続焼鈍→調質圧延→最表面に銀を含む 合金層形成 xiv) Cold rolling → electrolytic cleaning → nickel-cobalt alloy plating → tin plating → silver plating (or silver-tin alloy plating after temper rolling) → continuous annealing → temper rolling → silver on the outermost surface Including alloy layer formation
XV)冷間圧延→電解洗浄→ニッケルめっき→ニッケル コバルト リン合金めつき→ 錫めつき→銀めっき (または調質圧延後に銀 錫合金めつき)→連続焼鈍→調質圧 延→最表面に銀を含む合金層形成  XV) Cold rolling → electrolytic cleaning → nickel plating → nickel cobalt phosphorus alloy plating → tin plating → silver plating (or silver tin alloy plating after temper rolling) → continuous annealing → temper rolling → silver on the outermost surface Formation of alloy layer containing
xvi)冷間圧延→電解洗浄→ニッケルめっき→ニッケル コバルト リン合金めつき→ 銀めつき (または調質圧延後に銀めつき)→連続焼鈍→調質圧延→最表面に銀を含 む合金層形成  xvi) Cold rolling → electrolytic cleaning → nickel plating → nickel cobalt phosphorus alloy plating → silver plating (or silver plating after temper rolling) → continuous annealing → temper rolling → formation of an alloy layer containing silver on the outermost surface
[表 1] 鋼種 化 学 組 成 c S i Mil P s A 1 N N b F e [table 1] Steel grade chemical composition c S i Mil P s A 1 NN b Fe
I 0.04 0.01 0.023 0.006 0.01 0.046 0,0023 0.001 残部 π 0.002 0.01 0.045 0.08 0.052 0.0021 0.011 残部 上記の i一 xviに示した工程におけるニッケルめっき、ニッケル リン合金めつき、ニッ ケル—コノ レト合金めつきは、錫めつき、ニッケル—錫合金めつき、銀めつき、銀—錫合 金めつきは以下に示す条件で行った oo。  I 0.04 0.01 0.023 0.006 0.01 0.046 0,0023 0.001 Remainder π 0.002 0.01 0.045 0.08 0.052 0.0021 0.011 Remainder Nickel plating, nickel-phosphorus alloy plating, nickel-conolet alloy plating in the process shown in i-i xvi above Tin plating, nickel-tin alloy plating, silver plating, silver-tin alloy plating were performed under the following conditions.
<-ッケルめつさ >  <-Mitsukusa>
浴組成 硫酸ニッケル 300g/L  Bath composition Nickel sulfate 300g / L
塩化ニッケル 40g/L  Nickel chloride 40g / L
ホウ酸 30gZL  Boric acid 30gZL
ピット抑制剤 (ラウリル硫酸ナトリウム) 0.4mL/L  Pit inhibitor (sodium lauryl sulfate) 0.4mL / L
陽極 ニッケルペレット(チタンバスケットに充填し、ポリプロピレン製ァノ  Anode Nickel pellets (filled in titanium basket,
バッグ装着)  With bag)
撹拌 空気撹拌  Stir Air stir
pH 4—4.6  pH 4-4.6
浴温 55— 60°C  Bath temperature 55-60 ° C
電流密度 20AZdm2 Current density 20AZdm 2
<ニッケノレ リンめつき >  <Nickenore Lin Metsuki>
硫酸ニッケル 250g/L  Nickel sulfate 250g / L
塩化 ッケル 40g/L  Nickel chloride 40g / L
ホウ酸 30g/L  Boric acid 30g / L
亜リン酸 5— 20g/L  Phosphorous acid 5-20 g / L
陽極 ニッケルペレット(チタンバスケットに充填し、ポリプロピレン製アノード バッグ装着)  Anode Nickel pellets (filled in a titanium basket and fitted with a polypropylene anode bag)
撹拌 空気撹拌 pH 1. 5—2. 5 Stirring Air stirring pH 1.5—2.5
浴温 40— 60°C  Bath temperature 40-60 ° C
電流密度 10— 15AZdm2 Current density 10—15AZdm 2
[0035] < -ッケノレ一コノ ノレトめっき >  [0035] <-Pole plating>
浴組成 硫酸ニッケル 250g,  Bath composition Nickel sulfate 250g,
硫酸コバルト 5— 40g/L  Cobalt sulfate 5—40g / L
塩化 ッケル 40g/ Nickel chloride 40 g /
ホウ酸 30g/ Boric acid 30 g /
ニッケルペレット(チタンバスケットに充填し、ポリプロピレン製アノード バッグ装着)  Nickel pellets (filled in a titanium basket and fitted with a polypropylene anode bag)
撹拌 空気撹拌  Stir Air stir
PH 1. 5—2. 5  PH 1.5—2.5
浴温 40— 60。C  Bath temperature 40-60. C
電流密度 10— 15AZdm2 Current density 10—15AZdm 2
[0036] <錫めっき >  [0036] <Tin plating>
浴組成 硫酸第一錫 30g  Bath composition stannous sulfate 30g
フエノールスルホン散 60g  60 g of phenol sulfone
エトキシ化 αナフトール 5g  Ethoxylated α-naphthol 5g
錫板  Tin plate
循環 Circulation
Figure imgf000019_0001
Figure imgf000019_0001
電流密度 lOAZdm2 Current density lOAZdm 2
[0037] <ニッケル 錫合金めつき >  [0037] <Nickel-tin alloy plating>
浴組成 塩化第一錫 50g  Bath composition Stannous chloride 50g
塩化 ッケル 300g  300 g of nickel chloride
フッ化ナトリウム 30g  Sodium fluoride 30g
酸性フッ化アンミニゥム 35g  Ammonium fluoride 35g
ニッケル- 28%錫合金板 撹拌 めっき浴の循環 Nickel-28% tin alloy plate Agitation Circulation of plating bath
浴温 65°C  Bath temperature 65 ° C
pH 4. 5  pH 4.5
電流密度 4AZdm2 Current density 4AZdm 2
[0038] く銀めつき > [0038] Silver Mesh>
浴組成 銀含有有機散塩 (ダインシルバ一一 NEC) 200g/L  Bath composition Silver-containing organic salt (Dyne Silva NEC Corporation) 200g / L
有機酸 (錯塩:ダインシルバ一— AGI) 500g,L  Organic acid (complex: Dynesilva-AGI) 500g, L
有機添加剤(ダインシルバ一— AGH) 25g/L 陽極 銀板  Organic additive (Dyne Silva-AGH) 25g / L Anode Silver plate
撹拌 めっき浴の循環  Agitation Circulation of plating bath
pH 3—3. 5  pH 3—3.5
浴温 40— 45°C  Bath temperature 40-45 ° C
電流密度 lAZdm2 Current density lAZdm 2
[0039] く銀 錫合金めつき〉 [0039] Plated with silver-tin alloy>
浴組成 銀 錫合金めつき浴(ディップソール TS- 3200 (Sn-3.5wt%Ag 共晶合金用、ディップソール (株)製)  Bath composition Silver-tin alloy plating bath (Dipsol TS-3200 (for Sn-3.5wt% Ag eutectic alloy, Dipsol Co., Ltd.)
陽極 錫板  Anode Tin plate
撹拌 めっき浴の循環 浴温 22— 285°C  Stirring Plating bath circulation Bath temperature 22-285 ° C
電流密度 20AZdm2 Current density 20AZdm 2
以上のようにして表 2に示す電池容器用めつき鋼板の試料 (試料番号 1一 27)を作 成した。表 3に示すように、比較用に最表面に銀または銀含有化合物を形成させな V、試料 (試料番号 28— 33)を作成した。  As described above, the samples of the plated steel sheets for battery containers shown in Table 2 (sample numbers 127) were prepared. As shown in Table 3, for comparison, V samples (Sample Nos. 28-33) having no silver or silver-containing compound formed on the outermost surface were prepared.
[0040] [表 2]
Figure imgf000021_0001
[0040] [Table 2]
Figure imgf000021_0001
Figure imgf000022_0001
Figure imgf000022_0001
¾0041 これらの試料番号 1一 23の試料から 57mm径でブランクを打ち抜いた後、鉄 -ッ ケル合金層とニッケル層のみを設けた側が容器外面となるようにして、 10段の絞りカロ ェ〖こより、外径 13. 8mm、高さ 49. 3mmの円筒形の LR6型電池(単三型電池)容器 に成形加工した。 ¾0041 After blanking a blank with a diameter of 57 mm from these sample Nos. 1 and 23, the side with only the iron-nickel alloy layer and the nickel layer is the outer surface of the container. It was formed into a cylindrical LR6 type battery (AA battery) container with an outer diameter of 13.8 mm and a height of 49.3 mm.
[0043] [電池の作成] [0043] [Creation of battery]
この電池容器を用いて、以下のようにしてアルカリマンガン電池を作成した。二酸ィ匕 マンガンと黒鉛を 10 : 1の比率で採取し、水酸ィ匕カリウム(10モル)を添加混合して正 極合剤を作成した。次いで、この正極合剤を金型中で加圧して所定寸法のドーナツ 形状の正極合剤ペレットに成形し、上記の電池容器に圧挿入した。なお、一部の電 池容器は、内面に黒鉛粉末を主成分とする塗料を塗布したものを用いた。次に、負 極集電棒をスポット溶接した負極板を電池容器に装着した。次いで、ビニロン製織布 力もなるセパレータを、電池容器に圧挿入した正極合剤ペレットの内周に沿うようにし て挿入し、亜鉛粒と酸ィ匕亜鉛を飽和させた水酸ィ匕カリウムカゝらなる負極ゲルを電池容 器内に充填した。さらに、負極板に絶縁体のガスケットを装着して電池容器内に挿入 した後、カシメカ卩ェを施してアルカリマンガン電池を作成した。  Using this battery container, an alkaline manganese battery was prepared as follows. Manganese dioxide and graphite were collected at a ratio of 10: 1, and potassium hydroxide (10 mol) was added and mixed to prepare a positive electrode mixture. Next, the positive electrode mixture was pressurized in a mold to form a donut-shaped positive electrode mixture pellet having a predetermined size, and was press-inserted into the battery container. Some of the battery containers used had inner surfaces coated with paint containing graphite powder as a main component. Next, the negative electrode plate on which the negative electrode current collector was spot-welded was mounted on the battery container. Next, a vinylon woven fabric separator having a strong force is inserted along the inner periphery of the positive electrode mixture pellet pressed into the battery container, and the zinc oxide and potassium hydroxide are saturated with zinc oxide. The negative electrode gel was filled in the battery container. Furthermore, an insulator gasket was attached to the negative electrode plate, inserted into the battery container, and then subjected to a cashmere process to produce an alkaline manganese battery.
[0044] [特性評価] [Characteristic evaluation]
以上のようにして試料番号 1一 33の試料カゝら作成した電池容器を用いて作成した 電池の特性を、以下のようにして評価した。  The characteristics of the battery prepared using the battery container prepared from the sample cap of Sample No. 133 as described above were evaluated as follows.
[0045] <短絡電流 > [0045] <Short circuit current>
電池を 80°Cで 3日間放置した後、電池に電流計を接続して閉回路を設けて電流値 を測定し、これを短絡電流とした。短絡電流が大きいほど特性が良好であることを示 す。  After leaving the battery at 80 ° C for 3 days, an ammeter was connected to the battery, a closed circuit was provided, and the current value was measured. This was defined as the short-circuit current. The higher the short-circuit current, the better the characteristics.
[0046] <放電特性 >  <Discharge Characteristics>
電池を 80°Cで 3日間放置した後、電池を 1. 5Aの一定電流に放電し、電圧が 0. 9 Vに到達するまでの時間を放電時間として測定した。放電時間が長!、ほど放電特性 が良好であることを示す。  After leaving the battery at 80 ° C for 3 days, the battery was discharged to a constant current of 1.5 A, and the time until the voltage reached 0.9 V was measured as the discharge time. The longer the discharge time, the better the discharge characteristics.
[0047] <間歇放電特性 > [0047] <Intermittent discharge characteristics>
重付カ卩間歇放電の評価として、 2Aで 0. 5秒放電した後に 0. 25Aで 29. 5秒放電 する操作を 1サイクルとして、このサイクルを繰り返し、電圧が 1. OVに到達するまでの サイクル数を測定した。サイクル数が多!ヽほど間歇放電特性が良好であることを示す As an evaluation of the intermittent discharge of the weighted potato, discharge at 2A for 0.5 seconds and then discharge at 0.25A for 29.5 seconds This operation was repeated as one cycle, and the number of cycles until the voltage reached 1. OV was measured. The more cycles, the better the intermittent discharge characteristics.
[0048] これらの特性評価結果を表 4に示す。 [0048] Table 4 shows the results of these characteristic evaluations.
[0049] [表 4] [Table 4]
特 性 評価 結 果 区 分 Characteristic evaluation results
短絡零流  Short circuit zero current
電瞓布  Electric cloth
(AJ I' 亀 間  (AJ I 'Kamema
1 11.4 420 25 有 本発明  1 11.4 420 25 Yes The present invention
2 Π.0 410 23 有 本発明  2 Π.0 410 23 Yes The present invention
3 11.1 410 24 有 本発明  3 11.1 410 24 Yes The present invention
4 10.8 395 22 有 本発明  4 10.8 395 22 Yes Present invention
5 10.5 375 21 有 本発明  5 10.5 375 21 Yes Present invention
6 11.2 415 24 有 本発明  6 11.2 415 24 Ex.
7 11.5 425 25 有 本発明  7 11.5 425 25 Yes The present invention
8 10.9 415 23 有 本発明  8 10.9 415 23 Yes Present invention
9 10.8 415 23 有 本発明  9 10.8 415 23 Yes Present invention
10 10.7 410 23 有 本 ¾明  10 10.7 410 23 Arimoto Akira
Π 10.9 410 24 有 本発明  Π 10.9 410 24 Yes Present invention
12 10.3 400 21 有 本発明  12 10.3 400 21 Yes The present invention
!3 11.1 420 24 有 本発明  ! 3 11.1 420 24 Yes Present invention
14 8.0 200 17 4ff 本発明  14 8.0 200 17 4ff The present invention
15 7.5 195 15 本発明  15 7.5 195 15 The present invention
16 7.6 195 16 ¾£ 本発明  16 7.6 195 16 ¾ £ The present invention
17 8.9 365 22 to 本発明  17 8.9 365 22 to the present invention
18 7.5 195 14 本発明  18 7.5 195 14 The present invention
19 7.5 190 14 本発明  19 7.5 190 14 The present invention
20 7.7 195 15 本発明  20 7.7 195 15 The present invention
21 7.9 195 16 本発明  21 7.9 195 16 The present invention
22 \ϊ.1 450 30 有 本発明  22 \ ϊ.1 450 30 Yes Present invention
23 Π.9 445 30 有 本発明  23 Π.9 445 30 Yes Present invention
24 8.4 235 22 本発明  24 8.4 235 22 The present invention
25 ΙΖ.1 450 30 有 本発明  25 ΙΖ.1 450 30 Yes Present invention
26 12.0 445 29 有 本発明  26 12.0 445 29 Yes Present invention
27 8.3 230 21 is 本発明  27 8.3 230 21 is the present invention
28 6.7 170 [2 St 比較例  28 6.7 170 [2 St Comparative Example
29 3.7 115 3 比較例  29 3.7 115 3 Comparative example
30 5.2 140 4 比較例  30 5.2 140 4 Comparative example
31 4.9 !25 3 比較例  31 4.9! 25 3 Comparative example
32 5.2 140 4 in 比較例  32 5.2 140 4 in Comparative example
33 4.9 125 3 比較例 表 4に示すように、電池容器内面となる側の最表面に銀を含む合金層を形成させた 本発明の電池容器用めつき鋼板を用いた電池においては、最表面に銀を含む合金 層が存在しない電池容器用めつき鋼板を用いた電池の容器内面に黒鉛塗料を塗布 した場合と同等以上の短絡電流、放電特性、間歇放電特性が得られた。また、本発 明の電池容器用めつき鋼板を用いた電池の容器内面に黒鉛塗料を塗布した場合は 、さらに短絡電流、放電特性、間歇放電特性が向上した。 33 4.9 125 3 Comparative Example As shown in Table 4, in the battery using the plated steel sheet for a battery container of the present invention in which an alloy layer containing silver was formed on the outermost surface on the side to be the inner surface of the battery container, Graphite paint is applied to the inner surface of a battery container that uses a steel plate for battery containers that does not have an alloy layer containing silver As a result, short-circuit current, discharge characteristics, and intermittent discharge characteristics equivalent to or higher than those obtained were obtained. In addition, when the graphite coating was applied to the inner surface of the battery using the plated steel sheet for battery containers of the present invention, the short-circuit current, discharge characteristics, and intermittent discharge characteristics were further improved.
産業上の利用可能性 Industrial applicability
本発明の電池容器内面となる側の最表面に微量の銀を含む合金層を形成させて なる電池容器用めつき鋼板を用いた電池は、容器内面に黒鉛塗料を塗布せずに用 Vヽても従来の容器内面に黒鉛塗料を塗布した容器を用いた場合と同等以上の短絡 電流、放電特性、間歇放電特性を示す。そのため、黒鉛塗料を塗布および乾燥する 工程を省略することが可能となり、低コストで電池を製造できる。また本発明の電池容 器用めつき鋼板を用いた電池の容器内面に黒鉛塗料を塗布した場合は、さらに短絡 電流、放電特性、間歇放電特性が向上するので、高性能電池を提供することができ る。  The battery according to the present invention, which uses the plated steel sheet for a battery container having an alloy layer containing a trace amount of silver formed on the outermost surface on the side to be the inner surface of the battery container, does not apply graphite paint to the inner surface of the container. However, it exhibits short-circuit current, discharge characteristics, and intermittent discharge characteristics that are equal to or higher than those of a conventional container with graphite paint applied to the inner surface. Therefore, the steps of applying and drying the graphite paint can be omitted, and the battery can be manufactured at low cost. Further, when a graphite paint is applied to the inner surface of the battery container using the steel sheet for battery containers of the present invention, short-circuit current, discharge characteristics, and intermittent discharge characteristics are further improved, so that a high-performance battery can be provided. You.

Claims

請求の範囲 The scope of the claims
[1] 鋼板を基板とする電池容器用めつき鋼板において、電池容器内面となる側の最表 面に銀を含む合金層が形成されていることを特徴とする電池容器用めつき鋼板。  [1] A plated steel sheet for a battery container, comprising a steel plate as a substrate, wherein an alloy layer containing silver is formed on an outermost surface on a side to be an inner surface of the battery container.
[2] 前記銀を含む合金層がニッケル 錫"!良合金層、ニッケル リン 錫"!良合金層ある いはニッケル コバルト 錫"!良合金層であることを特徴とする請求項 1に記載の電池 容器用めつき鋼板。  [2] The alloy layer containing silver is nickel-tin "! An excellent alloy layer, nickel-phosphorus-tin"! 2. The plated steel sheet for a battery container according to claim 1, wherein the steel sheet is a good alloy layer or nickel cobalt tin.
[3] 鋼板を基板とする電池容器用めつき鋼板にぉ 、て、電池容器内面となる側では鋼 板上に下カゝら順に、鉄-ニッケル合金層、ニッケル-錫"!良合金層が形成されている ことを特徴とする電池容器用めつき鋼板。  [3] In the case of a plated steel sheet for a battery container using a steel sheet as a substrate, the iron-nickel alloy layer and the nickel-tin "! A plated steel sheet for a battery container, characterized in that a steel sheet is formed.
[4] 鋼板を基板とする電池容器用めつき鋼板にぉ 、て、電池容器内面となる側では鋼 板上に下カゝら順に、鉄-ニッケル合金層、ニッケル層、ニッケル-錫-銀合金層が形 成されて!/ヽることを特徴とする電池容器用めつき鋼板。  [4] With regard to the plated steel sheet for a battery container having a steel sheet as a substrate, the iron-nickel alloy layer, the nickel layer, and the nickel-tin-silver layer are formed on the steel sheet in the order from the bottom to the inner side of the battery container. A plated steel sheet for a battery container, characterized in that the alloy layer is formed! / ヽ.
[5] 鋼板を基板とする電池容器用めつき鋼板にぉ 、て、電池容器内面となる側では鋼 板上に下力も順に、鉄-ニッケル合金層、鉄-ニッケル-リン合金層、ニッケル-リン- 錫 銀合金層が形成されていることを特徴とする電池容器用めつき鋼板。  [5] With respect to the steel plate for a battery container having a steel plate as a substrate, an iron-nickel alloy layer, an iron-nickel-phosphorus alloy layer, a nickel- A plating steel sheet for a battery container, wherein a phosphor-tin-silver alloy layer is formed.
[6] 鋼板を基板とする電池容器用めつき鋼板にぉ 、て、電池容器内面となる側では鋼 板上に下力も順に、鉄-ニッケル合金層、鉄-ニッケル-リン合金層、ニッケル-リン合 金層、ニッケル リン 錫 銀合金層が形成されていることを特徴とする電池容器用め つき鋼板。  [6] In the case of a plated steel sheet for a battery container having a steel sheet as a substrate, the iron-nickel alloy layer, the iron-nickel-phosphorus alloy layer, the nickel-phosphorus alloy layer, A plating steel sheet for a battery container, comprising a phosphorus alloy layer and a nickel phosphorus tin silver alloy layer.
[7] 鋼板を基板とする電池容器用めつき鋼板にぉ 、て、電池容器内面となる側では鋼 板上に下カゝら順に、鉄-ニッケル-リン合金層、ニッケル-リン-錫"!良合金層が形成さ れて ヽることを特徴とする電池容器用めっき鋼板。  [7] With regard to the plated steel sheet for a battery container having a steel plate as a substrate, the iron-nickel-phosphorus alloy layer and the nickel-phosphorus-tin layer are arranged on the steel plate on the side to be the inner surface of the battery container. ! Plated steel sheet for battery containers, characterized by forming a good alloy layer.
[8] 鋼板を基板とする電池容器用めつき鋼板にぉ 、て、電池容器内面となる側では鋼 板上に下力も順に、鉄-ニッケル-リン合金層、ニッケル-リン合金層、ニッケル-リン- 錫 銀合金層が形成されていることを特徴とする電池容器用めつき鋼板。  [8] With respect to the plated steel sheet for a battery container having a steel plate as a substrate, the iron-nickel-phosphorus alloy layer, the nickel-phosphorus alloy layer, the nickel-phosphorus alloy layer, A plating steel sheet for a battery container, wherein a phosphor-tin-silver alloy layer is formed.
[9] 鋼板を基板とする電池容器用めつき鋼板にぉ 、て、電池容器内面となる側では鋼 板上に下力も順に、鉄-ニッケル合金層、鉄-ニッケル-コバルト合金層、ニッケル-コ バルト 錫 銀合金層が形成されていることを特徴とする電池容器用めつき鋼板。 [9] In the case of a steel plate for a battery container having a steel plate as a substrate, the iron-nickel alloy layer, the iron-nickel-cobalt alloy layer, the nickel- A plated steel sheet for a battery container, comprising a cobalt tin silver alloy layer.
[10] 鋼板を基板とする電池容器用めつき鋼板において、電池容器内面となる側では鋼 板上に下力も順に、鉄-ニッケル合金層、鉄-ニッケル-コバルト合金層、ニッケル-コ バルト合金層、ニッケル コバルト 錫 銀合金層が形成されて ヽることを特徴とする 電池容器用めつき鋼板。 [10] In the plated steel sheet for a battery container using a steel sheet as the substrate, the iron-nickel alloy layer, the iron-nickel-cobalt alloy layer, and the nickel-cobalt alloy A plated steel sheet for a battery container, characterized in that a coated layer comprises a nickel cobalt tin silver alloy layer.
[11] 鋼板を基板とする電池容器用めつき鋼板において、電池容器内面となる側では鋼 板上に下力も順に、鉄-ニッケル-コバルト合金層、ニッケル-コバルト-錫"!良合金層 が形成されて ヽることを特徴とする電池容器用めっき鋼板。  [11] In the plated steel sheet for a battery container that uses a steel sheet as the substrate, the iron-nickel-cobalt alloy layer and the nickel-cobalt-tin alloy layer are successively placed on the steel plate on the side that is the inner surface of the battery container. A plated steel sheet for a battery container, characterized by being formed.
[12] 鋼板を基板とする電池容器用めつき鋼板において、電池容器内面となる側では鋼 板上に下力も順に、鉄-ニッケル-コバルト合金層、ニッケル-コバルト合金層、 -ッケ ルーコノ レトー錫 銀合金層が形成されていることを特徴とする電池容器用めつき鋼 板。  [12] In the plated steel sheet for a battery container having a steel plate as a substrate, the iron-nickel-cobalt alloy layer, the nickel-cobalt alloy layer, and the A plated steel plate for a battery container, comprising a tin-silver alloy layer.
[13] 鋼板を基板とする電池容器用めつき鋼板において、電池容器内面となる側では鋼 板上に下力も順に、鉄-ニッケル合金層、鉄-ニッケル-コバルト-リン合金層、 -ッケ ルーコノ レトーリン 錫 銀合金層が形成されていることを特徴とする電池容器用めつ き鋼板。  [13] In the plated steel sheet for a battery container having a steel plate as a substrate, the iron-nickel alloy layer, the iron-nickel-cobalt-phosphorus alloy layer, and the A steel sheet for a battery container, wherein a lucono-retorin tin-silver alloy layer is formed.
[14] 鋼板を基板とする電池容器用めつき鋼板において、電池容器内面となる側では鋼 板上に下力も順に、鉄-ニッケル合金層、鉄-ニッケル-コバルト-リン合金層、 -ッケ ルーコバルト—リン合金層、ニッケル コバルト—リン 錫 銀合金層が形成されて 、るこ とを特徴とする電池容器用めつき鋼板。  [14] In the plating steel sheet for a battery container having a steel plate as a substrate, the iron-nickel alloy layer, the iron-nickel-cobalt-phosphorus alloy layer, and the A plated steel sheet for a battery container, comprising a rucobalt-phosphorus alloy layer and a nickel cobalt-phosphorus tin-silver alloy layer formed thereon.
[15] 鋼板を基板とする電池容器用めつき鋼板において、電池容器内面となる側では鋼 板上に下力も順に、鉄-ニッケル合金層、ニッケル層、ニッケル-コバルト-リン合金層 、ニッケル コバルト リン 錫 _良合金層が形成されて ヽることを特徴とする電池容器 用めつき鋼板。 [15] In the plated steel sheet for a battery container using a steel sheet as a substrate, the iron-nickel alloy layer, the nickel layer, the nickel-cobalt-phosphorous alloy layer, the nickel-cobalt layer, A plated steel sheet for a battery container, characterized in that a phosphorus tin _ good alloy layer is formed thereon.
[16] 鋼板を基板とする電池容器用めつき鋼板において、電池容器内面となる側では鋼 板上に下力も順に、鉄-ニッケル合金層、鉄-ニッケル-コバルト-リン合金層、 -ッケ ルーコノ レトーリン ~良合金層が形成されていることを特徴とする電池容器用めつき鋼 板。  [16] In the plated steel sheet for a battery container having a steel plate as a substrate, the iron-nickel alloy layer, the iron-nickel-cobalt-phosphorus alloy layer, and the LUCONO RETOLIN ~ A plated steel sheet for battery containers, wherein a good alloy layer is formed.
[17] 鋼板を基板とする電池容器用めつき鋼板において、電池容器内面となる側では鋼 板上に下力も順に、鉄-ニッケル合金層、鉄-ニッケル-コバルト-リン合金層、 -ッケ ルーコバルト リン合金層、ニッケル コバルト リン"!良合金層が形成されて 、ることを 特徴とする電池容器用めつき鋼板。 [17] In the plated steel sheet for a battery container using a steel sheet as a substrate, The iron-nickel alloy layer, the iron-nickel-cobalt-phosphorus alloy layer, the nickel-cobalt-phosphorous alloy layer, and the nickel-cobalt-phosphorus layer are formed on the plate in this order. Steel plate for battery containers.
[18] 鋼板を基板とする電池容器用めつき鋼板において、電池容器内面となる側では鋼 板上に下力も順に、鉄-ニッケル合金層、ニッケル層、ニッケル-コバルト-リン合金層 、ニッケル コバルト リン 銀合金層が形成されて 、ることを特徴とする電池容器用 めっき鋼板。  [18] In the plated steel sheet for a battery container using a steel sheet as the substrate, the iron-nickel alloy layer, the nickel layer, the nickel-cobalt-phosphorus alloy layer, and the nickel A plated steel sheet for a battery container, wherein a phosphor silver alloy layer is formed.
[19] 請求項 1乃至 18のいずれか 1項に記載の電池容器用めつき鋼板において、電池容 器外面となる側の鋼板上に下カゝら順に、鉄 ニッケル合金層、ニッケル層が形成され て 、ることを特徴とする電池容器用めつき鋼板。  [19] The plating steel sheet for a battery container according to any one of claims 1 to 18, wherein an iron-nickel alloy layer and a nickel layer are formed in order from the bottom on the steel sheet on the side to be the outer surface of the battery container. A plated steel sheet for a battery container, characterized in that:
[20] 請求項 1乃至 19のいずれか 1項に記載の電池容器用めつき鋼板を有底の筒型形 状に成形加工して形成してなることを特徴とする電池容器。  [20] A battery container obtained by forming the plated steel sheet for a battery container according to any one of claims 1 to 19 into a bottomed cylindrical shape.
[21] 請求項 20に記載の電池容器を用いてなることを特徴とする電池。  [21] A battery comprising the battery container according to claim 20.
PCT/JP2005/001925 2004-02-13 2005-02-09 Plated steel sheet for battery container, battery container using such plated steel sheet, and battery using such battery container WO2005078823A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004036398 2004-02-13
JP2004-036398 2004-02-13
JP2004-088814 2004-03-25
JP2004088814A JP4798955B2 (en) 2004-02-13 2004-03-25 Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container

Publications (1)

Publication Number Publication Date
WO2005078823A1 true WO2005078823A1 (en) 2005-08-25

Family

ID=34863459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/001925 WO2005078823A1 (en) 2004-02-13 2005-02-09 Plated steel sheet for battery container, battery container using such plated steel sheet, and battery using such battery container

Country Status (2)

Country Link
JP (1) JP4798955B2 (en)
WO (1) WO2005078823A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09306439A (en) * 1996-05-21 1997-11-28 Katayama Tokushu Kogyo Kk Battery can forming material, battery can forming method and battery can
JPH09312150A (en) * 1996-05-23 1997-12-02 Fuji Elelctrochem Co Ltd Cylindrical battery case and manufacture thereof
JPH11102671A (en) * 1997-09-26 1999-04-13 Toshiba Battery Co Ltd Alkaline dry battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH111779A (en) * 1997-06-11 1999-01-06 Katayama Tokushu Kogyo Kk Production of battery can forming material, and battery can forming material produced by this method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09306439A (en) * 1996-05-21 1997-11-28 Katayama Tokushu Kogyo Kk Battery can forming material, battery can forming method and battery can
JPH09312150A (en) * 1996-05-23 1997-12-02 Fuji Elelctrochem Co Ltd Cylindrical battery case and manufacture thereof
JPH11102671A (en) * 1997-09-26 1999-04-13 Toshiba Battery Co Ltd Alkaline dry battery

Also Published As

Publication number Publication date
JP2005256154A (en) 2005-09-22
JP4798955B2 (en) 2011-10-19

Similar Documents

Publication Publication Date Title
JP5083931B2 (en) Battery container manufacturing method, battery container manufactured by the battery container manufacturing method, and battery using the battery container
JP5102945B2 (en) Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and alkaline battery using the battery container
JP2006093096A (en) Plated steel sheet for battery container, battery container using same, and battery using its battery container
JP4748665B2 (en) Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container
JP2006190648A (en) Plated sheet steel for battery case, battery case using the plated sheet steel for battery case, and battery using the battery case
WO2000074155A1 (en) Surface-treated steel sheet for battery case, battery case comprising the same, methods for producing them, and battery
JP3594286B2 (en) Surface-treated steel sheet for battery case, battery case using the same, manufacturing method thereof and battery
WO2005104267A1 (en) Plated steel sheet for battery container, battery container utilizing the plated steel sheet and battery utilizing the battery container
JPWO2005018021A1 (en) Surface-treated steel sheet for battery case, battery case and battery using the same
JP4798953B2 (en) Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container
JP2006348362A (en) Plated steel sheet for battery receptacle, battery receptacle using the plated steel sheet, and battery using the battery receptacle
WO2005078823A1 (en) Plated steel sheet for battery container, battery container using such plated steel sheet, and battery using such battery container
JP4817724B2 (en) Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container
JP2007059087A (en) Plated steel sheet for battery case, battery case using same, and battery using the battery case
JP2004076117A (en) Surface treated steel sheet for battery case, and battery case using the same
JP3840430B2 (en) Surface-treated steel sheet for battery case and battery case
JP2006294353A (en) Plated steel sheet for battery container, battery container using plated steel sheet for battery container, and battery using battery container
JP4911952B2 (en) Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container
JP4968877B2 (en) Plated steel sheet for battery container, method for producing the same, battery container using the plated steel sheet for battery container, and battery using the battery container
JP5041809B2 (en) Plated steel sheet for battery container, manufacturing method thereof, battery container using the plated steel sheet for battery container, and battery using the battery container
JP4675707B2 (en) Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container
JP2006093097A (en) Plated steel sheet for battery container, battery container using same, and battery using its battery container
JP3594285B2 (en) Surface-treated steel sheet for battery case, battery case using the same, manufacturing method thereof and battery
WO2005104268A1 (en) Plated steel plate for cell vessel, cell vessel using the plated steel plate for cell vessel, cell using the cell vessel
JP2006307321A (en) Plated steel sheet for battery vessel, battery vessel using the plated steel sheet for battery vessel, and battery using the battery vessel

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase