WO2005075890A1 - Apparatus for treating exhaust gas in apparatus for producing carbon fiber by gas phase method - Google Patents

Apparatus for treating exhaust gas in apparatus for producing carbon fiber by gas phase method Download PDF

Info

Publication number
WO2005075890A1
WO2005075890A1 PCT/JP2005/001692 JP2005001692W WO2005075890A1 WO 2005075890 A1 WO2005075890 A1 WO 2005075890A1 JP 2005001692 W JP2005001692 W JP 2005001692W WO 2005075890 A1 WO2005075890 A1 WO 2005075890A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
exhaust gas
carbon fiber
sulfur
discharged
Prior art date
Application number
PCT/JP2005/001692
Other languages
French (fr)
Japanese (ja)
Inventor
Fuminori Munekane
Hirosuke Kawaguchi
Original Assignee
Bussan Nanotech Research Institute, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bussan Nanotech Research Institute, Inc. filed Critical Bussan Nanotech Research Institute, Inc.
Publication of WO2005075890A1 publication Critical patent/WO2005075890A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • F23G7/07Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases in which combustion takes place in the presence of catalytic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
    • F23J15/04Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material using washing fluids

Definitions

  • the present invention relates to a vapor-grown carbon fiber that pyrolyzes a hydrocarbon as a raw material gas to form a carbon fiber in the presence of a catalyst composed of a transition metal or a compound of a transition metal and sulfur or a sulfur compound. (VGCF), carbon nanotubes, carbon nanohorns, carbon nanocoils, ribbon-shaped carbon fibers, etc.
  • VGCF transition metal or a compound of a transition metal and sulfur or a sulfur compound.
  • the present invention relates to an exhaust gas treatment device for a gas-phase carbon fiber production device for producing fine fibrous carbon fibers.
  • the production of carbon fibers by a gas phase method is performed by using an organic solvent such as benzene or toluene as a carbon source, a transition metal or a compound of a transition metal such as iron as a catalyst, and a sulfur or a compound of sulfur as a catalyst.
  • an organic solvent such as benzene or toluene
  • a transition metal or a compound of a transition metal such as iron as a catalyst
  • a sulfur or a compound of sulfur as a catalyst.
  • the carbon fiber produced in the reaction furnace is subjected to a heat treatment at 800 ° C-3000 ° C in order to satisfy the quality required by the product user.
  • the transition metal used as a catalyst contains most of the high-boiling components among the hydrogen hydrides, and the transition metal used as a catalyst is present as a sulfide (carbon fiber in this state is called crude carbon fiber).
  • carbon fiber in this state is called crude carbon fiber.
  • part of the high-boiling aromatic hydrocarbon is volatilized as it is, and a low-boiling hydrocarbon and sulfur-hydrogen are generated by a thermal decomposition reaction.
  • This heat-treated exhaust gas was also emitted to the atmosphere as it was or incinerated and emitted to the atmosphere, but the sulfur compound or sulfur oxide was emitted to the atmosphere as it was.
  • a vapor-grown carbon fiber production method in which a transition metal is used as a catalyst to thermally decompose an organic compound in a reaction furnace to obtain a carbon fiber uses a vertical incinerator and a propane.
  • a combustible gas such as gas and city gas is constantly burned by a pilot burner, and the reaction exhaust gas and the heat treatment exhaust gas are supplied to it through a main burner and ignited by the flame of the pilot burner for incineration.
  • Puru for example, see Patent Document 1.
  • Patent Document 1 there is no way to deal with the substance that is not treated even by the combustion treatment.
  • Patent Document 1 Patent No. 3397155
  • the present invention detoxifies hydrocarbons and sulfur compounds in exhaust gas generated during the production of vapor-grown carbon fiber, and desirably removes carbon dioxide generated as a result of the detoxification. It is an object of the present invention to provide an exhaust gas treatment device that emits the reduced exhaust gas to the atmosphere.
  • the present invention introduces exhaust gas from a reaction furnace in a process of producing vapor grown carbon fiber into a combustion furnace and performs incineration treatment.
  • the exhaust gas from the reactor furnace contains hydrogen gas as a carrier and hydrogen generated by the decomposition reaction of hydrocarbons, which are raw materials for producing carbon fibers, in combination with flame-retardant high-boiling aromatic hydrocarbons and sulfur-containing hydrogen.
  • the temperature of the combustion furnace exhaust gas is set to 400 to 600 ° C using an auxiliary burner using city gas or the like as a fuel. Adjust and burn oxidation.
  • the gas subjected to the combustion oxidation treatment is introduced into wet absorption means provided at the latter stage of the combustion furnace, and is absorbed and removed by contact with water as an absorbing solution, preferably an alkaline aqueous solution.
  • the gas detoxified through these combustion oxidation treatment and absorption removal treatment is released to the atmosphere.
  • the present invention provides a vapor-grown carbon fiber production method in which a transition metal or a compound of a transition metal and sulfur or a compound of sulfur are used as catalysts to produce carbon fibers from a carbon source by a vapor phase method in a reaction furnace.
  • An exhaust gas treatment device that constitutes the device and discharges the gas to be emitted from the reaction furnace to the outside of the system is generated in a reaction furnace that performs heat treatment on the raw material gas in the presence of a catalyst to produce carbon fibers.
  • Combustion oxidizing means for burning and oxidizing a flame-retardant gas among the gases to be discharged under predetermined combustion conditions;
  • a harmful component removing device for removing a predetermined harmful component from the gas force.
  • the harmful component removing apparatus has a wet absorption means and a circulation tank, and supplies water or an absorbing solution having an alkaline solution power to the wet absorption means. Combustion oxidizing gas power A predetermined harmful component is absorbed, and a part of the absorbing liquid that has absorbed the harmful component in the circulation tank is eliminated.
  • the present invention provides a method for producing a carbon fiber produced by a gas phase method in a reactor from a carbon source using a transition metal or a compound of a transition metal and sulfur or a compound of sulfur as a catalyst.
  • an exhaust gas treatment device that discharges a gas to be discharged generated in a heat treatment furnace that heat-treats at a temperature of ° C outside the system, the hydrogen sulfide gas that is generated and discharged in the heat treatment is burned and oxidized under predetermined combustion conditions.
  • a circulation tank is provided for removal outside the system.
  • the present invention provides the exhaust gas treatment device described above, further comprising a dispersing unit for dispersing the gas from which the harmful components have been removed by the wet absorbing unit to the atmosphere.
  • the present invention provides a process for producing carbon fibers from a carbon source by a gas phase method in a reactor using a transition metal or a compound of a transition metal and sulfur or a compound of sulfur as a catalyst.
  • Exhaust gas that discharges at least one of the target gas and the target gas generated when the carbon fiber manufactured in the above manufacturing process is heat-treated in a heat treatment furnace at a temperature of 800 to 3000 ° C.
  • the processing apparatus further includes a harmful component removing device that removes a predetermined harmful component from the gas to be discharged.
  • the harmful component removing device has a wet absorbing means and a circulation tank, and supplies water or an alkaline absorbing solution to the wet absorbing means to absorb harmful substances of a gas to be discharged. And a part of the absorbing solution that absorbed the harmful substances was removed from the system by the circulation tank.
  • the gas to be discharged includes a hydrocarbon gas or a hydrogen gas.
  • the present invention provides an exhaust gas treatment method for burning and oxidizing exhaust gas generated by vapor-phase carbon fiber production under appropriate combustion conditions, and wet-absorbing the combustion oxidized gas. Hydrocarbon and sulfur compound concentrations can be reduced to less than 100 ppm.
  • FIG. 1 is a diagram illustrating an outline of a configuration of a vapor-grown carbon fiber production apparatus using an exhaust gas treatment apparatus according to the present invention.
  • FIG. 2 is a diagram illustrating the configuration of an exhaust gas treatment device used in the vapor-grown carbon fiber production device shown in FIG.
  • FIG. 1 is a diagram schematically illustrating the configuration of a vapor-grown carbon fiber production apparatus provided with an exhaust gas treatment apparatus according to the present invention.
  • the vapor-grown carbon fiber production apparatus includes a CNT production section 30, a CNT purification section 50, and an exhaust gas treatment section 10.
  • the exhaust gas treatment section 10 includes a combustion oxidation tower 11 serving as combustion oxidation means, a wet absorption tower 12 serving as wet absorption means, a circulation tank 13, a circulation pump 15, and a discharge blower 16, These devices (means) are connected and connected as shown in the figure using pipes 141-145.
  • the combustion oxidation tower 11 has an exhaust gas supply nozzle 113 that supplies exhaust gas sent from the CNT production unit 30 via the pipe 141 into the tower, and supplies air to the exhaust gas at an appropriate air ratio.
  • the gas that has been oxidized by combustion in the combustion oxidation tower 11 (hereinafter referred to as “combustion oxidation gas”) is supplied to the wet absorption tower 12 via the pipe 142.
  • water preferably having an alkaline solution power
  • harmful components contained in the combustion oxidizing gas are absorbed by the absorption liquid.
  • the absorbing liquid that has absorbed the harmful components is supplied to the circulation tank 13 via the pipes 14-13.
  • the treated exhaust gas, from which harmful components have been removed and rendered harmless, is supplied to piping 145 ⁇ Emitted to the atmosphere via 16.
  • the CNT manufacturing unit 30 includes a reaction furnace 31.
  • the reaction furnace 31 is a furnace for thermally decomposing a hydrocarbon as a raw material under a catalyst composed of a transition metal or a compound of a transition metal and sulfur or a sulfur compound to produce carbon nanotubes.
  • a supply pipe 311 for containing raw material solution, a supply pipe 312 for hydrogen gas, and a discharge pipe 313 for vaporized gas are provided.
  • a transition metal or a compound of a transition metal such as iron (Fe) serving as a catalyst (for example, hydrogen chloride) and an organic compound containing sulfur (S) or a sulfur sulfide (for example, thiophene) are used.
  • a raw material liquid for example, toluene
  • the generated unreacted raw materials and the residue of the unused catalyst ⁇ the carbon fibers containing non-fibrous carbides and tar components (hereinafter referred to as “crude carbon fibers”) are piped 32,53— It is supplied to the CNT refining section 50 via 1.
  • the CNT refining section 50 is a section for refining crude carbon fiber into carbon fiber (carbon nanotube) as a final product, and has a first heat treatment furnace 51 and a second heat treatment furnace 52. Be composed.
  • the first heat treatment furnace 51 is a heat treatment means for removing volatile components of the crude carbon fibers and volatile components sent from the reaction furnace 31, and includes a furnace section 511 and a gas discharge pipe 512. It is configured to have.
  • the volatile components of the crude carbon fibers and volatile components sent from the reaction furnace 31 are vaporized in a furnace section 511 maintained at, for example, 800 to 1500 ° C., and then removed from a gas discharge pipe 512.
  • the volatile components discharged from the gas discharge pipe 512 are burned and oxidized by the combustion oxidizing and recovering means similar to the exhaust gas processing unit 10, and then the harmful substances are recovered, and only the detoxified gas is released to the atmosphere. .
  • the crude carbon fiber from which the volatile components have been removed is sent out to the second heat treatment furnace 52 via the pipe 53-2.
  • the second heat treatment furnace 52 is means for performing a heat treatment for graphitizing the crude carbon fiber from which volatile components have been removed, and includes a furnace part 521 and a gas discharge pipe 522. Is done. Arrangement The crude carbon fiber supplied from the first heat treatment furnace 51 to the furnace part 521 via the pipe 52-2 is subjected to a graphite treatment in the furnace part 521 by being maintained at, for example, 1300-3000 ° C. The exhaust gas generated by this process is exhausted from the gas exhaust pipe 522. The exhaust gas discharged from the gas discharge pipe 522 is burned and oxidized by the combustion oxidizing and recovering means similar to the exhaust gas processing unit 10, and then the harmful substances are recovered, and only the detoxified gas is released to the atmosphere.
  • the carbon fiber (CNT) commercialized from the composition carbon fiber is obtained through two-stage heat treatment (heat treatment), but the present invention is not limited to this. At least one stage of heat treatment at 800 to 3000 ° C. may be performed depending on the desired carbon fiber (CNT).
  • the inside of the reactor 31 for producing the vapor grown carbon fiber is in a hydrogen atmosphere, and the pressure in the system is controlled to 0.1 to 5 kPa in order to prevent accidents due to intrusion of air. Even in the furnace sections 511 and 512 where heat treatment is performed, the pressure in the system is controlled to 0.1-5 kPa to prevent accidents due to air intrusion.
  • Exhaust gas accompanying the reaction treatment and the heat treatment is extruded out of the system at the above-mentioned system pressure, and is sent to an exhaust gas treatment unit 10, which is a combustion oxidation facility.
  • the exhaust gas treatment unit 10 includes a combustion oxidation tower 11, a wet absorption tower 12, and a circulation tank 13, which are connected by pipes 14-2, 14-3, and 144, respectively.
  • the pipe 142 is provided with a heat exchanger 17, the pipe 144 is provided with a circulation pump 15, and the pipes 14-5 are provided with a discharge blower 16.
  • the combustion oxidation tower 11 is provided with a pilot burner 111, an auxiliary burner 112, an exhaust gas nozzle 113, and an air nozzle 114.
  • the pilot burner 111 and the auxiliary burner 112 burn the fuel such as city gas and propane gas, and the exhaust gas from the reactor 31 introduced into the combustion oxidation tower 11 through the exhaust gas nozzle 113 having a burner structure.
  • combustion-oxidized exhaust gas is burned and oxidized to produce water and carbon dioxide from hydrocarbons and sulfur oxides from hydrogen sulfide.
  • the combustion state of the combustion oxidation target exhaust gas is appropriately controlled by maintaining the temperature of the combustion oxidation target exhaust gas within a required range. Is controlled.
  • the amount of air introduced is adjusted so that the temperature of the exhaust gas to be subjected to combustion oxidation becomes 400 to 600 ° C.
  • Combustion state control may be performed by the ratio of the amount of exhaust gas to be oxidized for combustion and the amount of air separately introduced.In this case, the ratio is 1.2 to 1.6 times the theoretical combustion air amount. What is necessary is to control.
  • control may be performed by the residual oxygen concentration in the exhaust gas to be oxidized.In this case, the control may be performed so that the residual oxygen concentration becomes 4% to 8%.
  • Exhaust gas that has been burnt and oxidized in the combustion oxidation tower 11 and has been treated (hereinafter, treated exhaust gas! /!) Is sent to the wet absorption tower 12 after its volume has been reduced by heat exchange.
  • a caustic soda aqueous solution is used as an absorbing solution of the wet absorption tower 12, and its concentration is ⁇ 4-6.
  • the treated exhaust gas is introduced from the bottom of the tower in a direction perpendicular to the tower wall.
  • the above absorbing solution is sprayed from the top of the tower and brought into countercurrent contact with the treated exhaust gas to absorb carbon dioxide and sulfur oxide in the exhaust gas.
  • the absorbent that has absorbed the carbon dioxide and sulfur oxide in the treated exhaust gas is drawn out from the bottom of the tower and stored in the circulation tank 13 via the pipe 143. Since sodium sulfate and sodium carbonate are dissolved in this absorption solution and these compounds are concentrated and precipitated when used in circulation, 110% of the circulated amount is purged out of the system and drained.
  • the amount of circulation is determined by the structure of the wet absorption tower 12, the concentration of the exclusion substance in the exhaust gas, and the concentration of the exclusion substance in the processing gas to be obtained.
  • an aqueous caustic soda solution is appropriately replenished so as to be within the above-mentioned control basicity.
  • the absorbent adjusted for basicity is drawn by the pump 15 and sent to the wet absorption tower 12 again.
  • the gas detoxified by absorbing and removing carbon dioxide and hydrogen sulfide in the wet absorption tower 12 is drawn from the top of the tower by a blower 16 and released to the atmosphere.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Incineration Of Waste (AREA)
  • Treating Waste Gases (AREA)
  • Chimneys And Flues (AREA)

Abstract

An exhaust gas treatment apparatus (10) for discharging a gas to be discharged to the outside thereof, which constitutes a gas phase carbon fiber production apparatus for producing a carbon fiber in a reaction furnace (33) by a gas phase method from a carbon source using a combination of a transition metal or a transition metal compound and sulfur or a sulfur compound as a catalyst, wherein it has a combustion oxidation means (11) for oxidizing by combustion, under prescribed conditions, a gaseous component having flame retardency contained in the gas having been generated in a reaction furnace (33) for conducting a heat treatment of a raw material gas in the presence of a catalyst to produce a carbon fiber and being to be discharged, a wet absorption means (12) and a circulation tank (13), and wherein an absorbing fluid comprising water or an alkali solution is fed to the wet absorption means (12), to absorb prescribed harmful components from a combustion-oxidized gas, and a part of an absorbing fluid having harmful components absorbed therein is removed in the circulation tank. The above exhaust gas treatment apparatus can be suitably used for converting hydrocarbons and sulfur compounds in an exhaust gas generated in the production of carbon fiber by a gas phase method to harmless materials, desirably further reducing a carbon dioxide content of the exhaust gas, and then discharging the resulting gas into the atmosphere.

Description

明 細 書  Specification
気相法炭素繊維製造装置の排ガス処理装置  Exhaust gas treatment equipment for vapor-phase carbon fiber production equipment
技術分野  Technical field
[0001] 本発明は、遷移金属あるいは遷移金属の化合物と、硫黄あるいは硫黄化合物とか らなる触媒の存在下で、原料ガスである炭化水素を熱分解して炭素繊維を形成する 気相法炭素繊維 (VGCF)、カーボンナノチューブ、カーボンナノホーン、カーボンナ ノコイル、リボン状カーボンファイバーなどの微細な繊維状の炭素繊維を製造する気 相法炭素繊維製造装置の排ガス処理装置に関する。  The present invention relates to a vapor-grown carbon fiber that pyrolyzes a hydrocarbon as a raw material gas to form a carbon fiber in the presence of a catalyst composed of a transition metal or a compound of a transition metal and sulfur or a sulfur compound. (VGCF), carbon nanotubes, carbon nanohorns, carbon nanocoils, ribbon-shaped carbon fibers, etc. The present invention relates to an exhaust gas treatment device for a gas-phase carbon fiber production device for producing fine fibrous carbon fibers.
背景技術  Background art
[0002] 気相法による炭素繊維の製造は、炭素源としてのベンゼンやトルエン等の有機溶 剤と、触媒としての鉄等の遷移金属あるいは遷移金属の化合物と、触媒としての硫黄 あるいは硫黄の化合物とを、水素とともに 800— 1500°Cの温度に制御された反応炉 内に供給し、炭素源を熱分解し、分解した炭素を遷移金属を核にして成長させて、 所定の炭素繊維、例えばカーボンナノチューブ (CNT)を製造して ヽる。  [0002] The production of carbon fibers by a gas phase method is performed by using an organic solvent such as benzene or toluene as a carbon source, a transition metal or a compound of a transition metal such as iron as a catalyst, and a sulfur or a compound of sulfur as a catalyst. Is supplied together with hydrogen into a reactor controlled at a temperature of 800-1500 ° C., where the carbon source is thermally decomposed, and the decomposed carbon is grown with a transition metal as a nucleus. Manufactures carbon nanotubes (CNTs).
[0003] 原料ガスを熱分解して炭素繊維を気相成長させるに際しては、主生成物としての炭 素繊維とは別に、水素、鎖状炭化水素、芳香族炭化水素、硫化水素等の副生成物 が生成される。これら副生成物のうち芳香族炭化水素における高沸点成分の大部分 は主生成物である炭素繊維と共に回収されるが、回収されない一部の高沸点芳香族 炭化水素のほか水素、鎖状炭化水素、低沸点芳香族炭化水素および硫化水素は物 質収支上、キャリアガスと共に排ガスとして系外に排出する必要がある。  [0003] When carbon fibers are vapor-phase grown by pyrolyzing a raw material gas, apart from carbon fibers as a main product, by-products such as hydrogen, chain hydrocarbons, aromatic hydrocarbons, and hydrogen sulfide are produced. Things are created. Of these by-products, most of the high-boiling components in aromatic hydrocarbons are recovered together with the main product, carbon fiber, but not high-boiling aromatic hydrocarbons, hydrogen, and chain hydrocarbons that are not recovered. In addition, low-boiling aromatic hydrocarbons and hydrogen sulfide need to be discharged out of the system together with carrier gas as exhaust gas due to material balance.
[0004] 従来は、これらの排ガスをそのまま大気に放散する力、焼却処理し大気に放散して いたが、高沸点芳香族炭化水素は難燃性であることから焼却処理できず、硫黄化合 物あるいは硫黄酸ィ匕物とともにそのまま大気に放散される結果となっていた。  [0004] Conventionally, these exhaust gases have been incinerated with the power to emit them as they are to the atmosphere. However, since high-boiling aromatic hydrocarbons are incombustible, they cannot be incinerated. Or, the result was that it was directly emitted to the atmosphere together with the sulfur acid sword.
[0005] 一方、反応炉で生成した炭素繊維は、製品ユーザーの要求品位を満たすために、 800°C— 3000°Cで加熱処理を施すが、上述したようにこの炭素繊維には芳香族炭 化水素のうち高沸点成分の大部分を含み、さらに触媒として用いた遷移金属が硫ィ匕 物などとして存在しており(この状態の炭素繊維を粗製炭素繊維という)、これを加熱 処理すると該高沸点芳香族炭化水素の一部はそのまま揮発し、さらに熱分解反応に より低沸点炭化水素および硫ィ匕水素が発生する。この加熱処理排ガスもそのまま大 気に放散するか、焼却処理し大気に放散していたが、硫黄化合物あるいは硫黄酸化 物がそのまま大気に放散される結果となって 、た。 [0005] On the other hand, the carbon fiber produced in the reaction furnace is subjected to a heat treatment at 800 ° C-3000 ° C in order to satisfy the quality required by the product user. The transition metal used as a catalyst contains most of the high-boiling components among the hydrogen hydrides, and the transition metal used as a catalyst is present as a sulfide (carbon fiber in this state is called crude carbon fiber). Upon treatment, part of the high-boiling aromatic hydrocarbon is volatilized as it is, and a low-boiling hydrocarbon and sulfur-hydrogen are generated by a thermal decomposition reaction. This heat-treated exhaust gas was also emitted to the atmosphere as it was or incinerated and emitted to the atmosphere, but the sulfur compound or sulfur oxide was emitted to the atmosphere as it was.
[0006] すなわち、気相法による炭素繊維の製造は、現在は小規模な生産で行われている ことから、副生成物ゃ排ガスについてはとくに規制を受けることなぐそのまま大気開 放されて!/ヽるのが現状である。  [0006] In other words, the production of carbon fiber by the gas phase method is currently carried out on a small scale, so that by-products and exhaust gas are released to the atmosphere as they are without any particular regulations! / This is the current situation.
[0007] しかしながら、小規模の生産であっても環境面を考慮すると、副生成物や加熱処理 排ガスを燃焼させて有害物質を低減することが好ま ヽが、上記のように難燃性ガス を燃焼処理することはうまく 、つて 、な 、のが実情である。  [0007] However, even in the case of small-scale production, in consideration of the environment, it is preferable to reduce harmful substances by burning by-products and heat-treated exhaust gas. Burning is a good thing, and it's actually.
[0008] このような問題に対して、遷移金属を触媒とし反応炉中で有機化合物を加熱分解し 炭素繊維を得る気相法炭素繊維の製造方法において、縦型の焼却炉を用い、プロ パンや都市ガスなどの可燃性ガスをパイロットバーナーで常時燃焼させ、そこへ反応 排ガスや加熱処理排ガスを主バーナーを通して供給し、パイロットバーナーの火炎 により着火させて焼却処理する排ガスの処理方法が提案されて!ヽる (例えば、特許文 献 1参照)。  [0008] In order to solve such a problem, a vapor-grown carbon fiber production method in which a transition metal is used as a catalyst to thermally decompose an organic compound in a reaction furnace to obtain a carbon fiber uses a vertical incinerator and a propane. A combustible gas such as gas and city gas is constantly burned by a pilot burner, and the reaction exhaust gas and the heat treatment exhaust gas are supplied to it through a main burner and ignited by the flame of the pilot burner for incineration. ! Puru (for example, see Patent Document 1).
[0009] 上記のように、気相法による炭素繊維の製造にお!、ては、難燃性である高沸点芳 香族炭化水素は焼却処理しても完全には分解されずそのまま大気放散せざるを得 ない状況であり、また焼却により鎖状炭化水素、低沸点炭化水素および分解された 高沸点炭化水素からは二酸化炭素が、硫化水素からは硫黄酸化物が発生する。現 状では、気相法炭素繊維の製造量が少ないことから大気放散される二酸ィ匕炭素、硫 黄ィ匕合物あるいは硫黄酸ィ匕物の量も比較的少量であり、また製造設備は大規模ィ匕 学プラントの一部に立地していることから、大気汚染防止法に定めるところの硫黄酸 化物総量規制値を十分満足して!/、る。  [0009] As described above, in the production of carbon fiber by the gas phase method, even high-boiling aromatic hydrocarbons, which are flame-retardant, are not completely decomposed even after incineration and are emitted to the atmosphere as they are. It is inevitable that carbon dioxide will be produced from chain hydrocarbons, low-boiling hydrocarbons and high-boiling hydrocarbons decomposed by incineration, and sulfur oxides will be produced from hydrogen sulfide. At present, since the amount of vapor-grown carbon fiber produced is small, the amount of carbon dioxide, sulfur sulfide, or sulfur sulfide that is released to the atmosphere is also relatively small, and the production equipment Is located in a part of a large-scale dangling plant, so it fully satisfies the regulation value of total sulfur oxides stipulated in the Air Pollution Control Law!
[0010] しかしながら、気相法炭素繊維の製造量を増大すべく製造設備の規模が大規模ィ匕 すると、大気放散される二酸ィヒ炭素、硫黄ィヒ合物あるいは硫黄酸ィヒ物の量も大量に なり、また該製造設備は単独立地になることも考えられ、大気汚染防止法に定めると ころの硫黄酸化物総量規制値を満足できなくなるおそれがある。さらに、地球温暖化 防止を配慮した製造設備を志向すれば、排ガスの燃焼によって発生する二酸化炭 素を可及的に抑えることが望ましい。 [0010] However, when the scale of the production equipment is increased to increase the production amount of the vapor grown carbon fiber, the emission of carbon dioxide, sulfur compound, or sulfur acid compound which is released to the atmosphere is reduced. It is also conceivable that the production volume will be large and that the production facility will be located at a single location, which may make it impossible to satisfy the total sulfur oxide regulation value stipulated by the Air Pollution Control Law. Furthermore, global warming It is desirable to minimize the carbon dioxide generated by the combustion of exhaust gas as much as possible when considering production facilities that take prevention into account.
[0011] 前記特許文献 1では、燃焼処理によっても処理されない前記物質への対応につい てはなんら虫れるところがな ヽ。  [0011] In Patent Document 1, there is no way to deal with the substance that is not treated even by the combustion treatment.
特許文献 1 :特許第 3397155号公報  Patent Document 1: Patent No. 3397155
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0012] 本発明は、気相法炭素繊維製造に伴ない発生する排ガス中の炭化水素および硫 黄化合物を無害化処理し、望ましくは、該無害化処理に伴なつて発生する二酸化炭 素を低減した後の排ガスを大気放散する排ガス処理装置を提供することを目的とす る。 [0012] The present invention detoxifies hydrocarbons and sulfur compounds in exhaust gas generated during the production of vapor-grown carbon fiber, and desirably removes carbon dioxide generated as a result of the detoxification. It is an object of the present invention to provide an exhaust gas treatment device that emits the reduced exhaust gas to the atmosphere.
課題を解決するための手段  Means for solving the problem
[0013] 上記課題を解決するために、本発明は、気相法炭素繊維の製造過程における反 応炉からの排ガスを、燃焼炉に導入し焼却処理を施す。反応炉カゝらの排ガスには、 キャリアとしての水素ガスおよび炭素繊維製造原料である炭化水素の分解反応にて 生成した水素が、難燃性の高沸点芳香族炭化水素や硫ィ匕水素となって存在する。 本発明では、これら難燃性の高沸点芳香族炭化水素や硫化水素を完全に酸化する ため、都市ガス等を燃料とした助然バーナーにて燃焼炉排ガス温度が 400— 600°C になるよう調節して燃焼酸化する。燃焼酸化処理したガスは、燃焼炉の後段に設けた 湿式吸収手段に導入され、吸収液としての水、望ましくはアルカリ水溶液との接触に より吸収されて排除される。これら燃焼酸化処理と吸収除去処理とを経て無害化され たガスは、大気放散される。  [0013] In order to solve the above problems, the present invention introduces exhaust gas from a reaction furnace in a process of producing vapor grown carbon fiber into a combustion furnace and performs incineration treatment. The exhaust gas from the reactor furnace contains hydrogen gas as a carrier and hydrogen generated by the decomposition reaction of hydrocarbons, which are raw materials for producing carbon fibers, in combination with flame-retardant high-boiling aromatic hydrocarbons and sulfur-containing hydrogen. Exists. In the present invention, in order to completely oxidize these flame-retardant high-boiling aromatic hydrocarbons and hydrogen sulfides, the temperature of the combustion furnace exhaust gas is set to 400 to 600 ° C using an auxiliary burner using city gas or the like as a fuel. Adjust and burn oxidation. The gas subjected to the combustion oxidation treatment is introduced into wet absorption means provided at the latter stage of the combustion furnace, and is absorbed and removed by contact with water as an absorbing solution, preferably an alkaline aqueous solution. The gas detoxified through these combustion oxidation treatment and absorption removal treatment is released to the atmosphere.
[0014] すなわち、本発明は、遷移金属あるいは遷移金属の化合物と、硫黄あるいは硫黄 の化合物とを触媒とし、炭素源から反応炉において気相法により炭素繊維を製造す る気相法炭素繊維製造装置を構成する、反応炉で生じた排出対象となるガスを系外 に排出する排ガス処理装置にぉ ヽて、触媒の存在下で原料ガスに熱処理を行って 炭素繊維を製造する反応炉で発生し排出対象となるガスのうち難燃性を有したガス を、所定の燃焼条件で燃焼酸化する燃焼酸化手段と、前記燃焼酸化手段で燃焼酸 ィ匕されたガス力も所定の有害成分を除去する有害成分除去装置とを備えた。 That is, the present invention provides a vapor-grown carbon fiber production method in which a transition metal or a compound of a transition metal and sulfur or a compound of sulfur are used as catalysts to produce carbon fibers from a carbon source by a vapor phase method in a reaction furnace. An exhaust gas treatment device that constitutes the device and discharges the gas to be emitted from the reaction furnace to the outside of the system is generated in a reaction furnace that performs heat treatment on the raw material gas in the presence of a catalyst to produce carbon fibers. Combustion oxidizing means for burning and oxidizing a flame-retardant gas among the gases to be discharged under predetermined combustion conditions; And a harmful component removing device for removing a predetermined harmful component from the gas force.
[0015] さらに、本発明は,上記排ガス処理装置において、有害成分除去装置が、湿式吸 収手段と、循環タンクとを有し、湿式吸収手段に水またはアルカリ溶液力 なる吸収 液を供給して燃焼酸ィ匕ガス力 所定の有害成分を吸収し、循環タンクにおいて有害 成分を吸収した吸収液の一部を排除するようにした。  Further, according to the present invention, in the above-mentioned exhaust gas treatment apparatus, the harmful component removing apparatus has a wet absorption means and a circulation tank, and supplies water or an absorbing solution having an alkaline solution power to the wet absorption means. Combustion oxidizing gas power A predetermined harmful component is absorbed, and a part of the absorbing liquid that has absorbed the harmful component in the circulation tank is eliminated.
[0016] また、本発明は、遷移金属あるいは遷移金属の化合物と、硫黄あるいは硫黄の化 合物とを触媒とし、炭素源から反応炉において気相法により製造された炭素繊維を、 800— 3000°Cの温度で熱処理する熱処理炉で生じた排出対象となるガスを系外に 排出する排ガス処理装置において、前記熱処理において発生し排出対象となる硫 化水素ガスを、所定の燃焼条件で燃焼酸化する燃焼酸化手段と、前記燃焼酸化手 段で燃焼酸化された排ガスカゝら所定の有害成分を水またはアルカリ溶液カゝらなる吸 収液に吸収する湿式吸収手段と、吸収液の一部を系外に排除する循環タンクとを備 えた。さらに、本発明は、上記排ガス処理装置において、湿式吸収手段により有害成 分を除去されたガスを大気に放散する放散手段を備えた。  Further, the present invention provides a method for producing a carbon fiber produced by a gas phase method in a reactor from a carbon source using a transition metal or a compound of a transition metal and sulfur or a compound of sulfur as a catalyst. In an exhaust gas treatment device that discharges a gas to be discharged generated in a heat treatment furnace that heat-treats at a temperature of ° C outside the system, the hydrogen sulfide gas that is generated and discharged in the heat treatment is burned and oxidized under predetermined combustion conditions. Combustion oxidizing means, wet oxidizing means for absorbing predetermined harmful components from exhaust gas oxidized by the combustion oxidizing means into water or an alkaline solution, and a part of the absorbing solution. A circulation tank is provided for removal outside the system. Further, the present invention provides the exhaust gas treatment device described above, further comprising a dispersing unit for dispersing the gas from which the harmful components have been removed by the wet absorbing unit to the atmosphere.
[0017] 本発明は、遷移金属あるいは遷移金属の化合物と、硫黄あるいは硫黄の化合物と を触媒とし、炭素源から反応炉において気相法により炭素繊維を製造する製造工程 にお 、て生じた排出対象となるガス、および前記製造工程により製造された炭素繊 維を熱処理炉において 800— 3000°Cの温度で熱処理する際に生じた排出対象とな るガスの少なくとも一方を系外に排出する排ガス処理装置において、前記排出対象 となるガス力も所定の有害成分を除去する有害成分除去装置を備えた。また、前記 有害成分除去装置は、湿式吸収手段と、循環タンクとを有し、湿式吸収手段に水ま たはアルカリ溶液力 なる吸収液を供給して排出対象となるガスの有害物質を吸収 液に吸収し、有害物質を吸収した吸収液の一部を循環タンクにて系外へ排除するよ うにした。さらに、前記排出対象となるガスは、炭化水素ガス、または硫ィ匕水素ガスを 含んでいる。  [0017] The present invention provides a process for producing carbon fibers from a carbon source by a gas phase method in a reactor using a transition metal or a compound of a transition metal and sulfur or a compound of sulfur as a catalyst. Exhaust gas that discharges at least one of the target gas and the target gas generated when the carbon fiber manufactured in the above manufacturing process is heat-treated in a heat treatment furnace at a temperature of 800 to 3000 ° C. The processing apparatus further includes a harmful component removing device that removes a predetermined harmful component from the gas to be discharged. In addition, the harmful component removing device has a wet absorbing means and a circulation tank, and supplies water or an alkaline absorbing solution to the wet absorbing means to absorb harmful substances of a gas to be discharged. And a part of the absorbing solution that absorbed the harmful substances was removed from the system by the circulation tank. Further, the gas to be discharged includes a hydrocarbon gas or a hydrogen gas.
発明の効果  The invention's effect
[0018] 本発明は、気相法炭素繊維製造に伴!ヽ発生する排ガスを、適切な燃焼条件で燃 焼酸化し、該燃焼酸化ガスを湿式吸収処理する排ガス処理方法により、該排ガス中 の炭化水素濃度および硫黄化合物濃度を lOOppm以下に低減することを可能とす る。 [0018] The present invention provides an exhaust gas treatment method for burning and oxidizing exhaust gas generated by vapor-phase carbon fiber production under appropriate combustion conditions, and wet-absorbing the combustion oxidized gas. Hydrocarbon and sulfur compound concentrations can be reduced to less than 100 ppm.
図面の簡単な説明  Brief Description of Drawings
[0019] [図 1]本発明にかかる排ガス処理装置を用いた気相法炭素繊維製造装置の構成の 概要を説明する図。  FIG. 1 is a diagram illustrating an outline of a configuration of a vapor-grown carbon fiber production apparatus using an exhaust gas treatment apparatus according to the present invention.
[図 2]図 1に示した気相法炭素繊維製造装置に用いる排ガス処理装置の構成を説明 する図。  FIG. 2 is a diagram illustrating the configuration of an exhaust gas treatment device used in the vapor-grown carbon fiber production device shown in FIG.
符号の説明  Explanation of symbols
[0020] 10:排ガス処理部 [0020] 10: Exhaust gas treatment unit
11:燃焼酸ィ匕塔  11: Combustion acid tower
111:ノ ィロットノーナ一  111: Nylon Nonna
112:助燃バーナー  112: burner burner
113:排ガス供給ノズル  113: Exhaust gas supply nozzle
114:空気供給ノズル  114: Air supply nozzle
12:湿式吸収塔  12: Wet absorption tower
121:シャワーノズル  121: shower nozzle
13:循環タンク  13: Circulation tank
14:配管  14: Piping
15:循環ポンプ  15: Circulation pump
16:排出ブロワ  16: Discharge blower
17:熱交換器  17: Heat exchanger
30:CNT製造部  30: CNT production department
31:反応炉  31: Reactor
311:原料溶液供給管  311: Raw material supply pipe
312:水素ガス供給管  312: Hydrogen gas supply pipe
313:ガス排出管  313: Gas exhaust pipe
32:配管  32: Piping
50:CNT精製部 51 :第 1の熱処理炉 50: CNT purification section 51: 1st heat treatment furnace
511 :炉部  511: Furnace section
512 :排ガス排出管  512: Exhaust gas exhaust pipe
52 :第 2の熱処理炉  52: Second heat treatment furnace
521 :炉部  521: Furnace section
522 :排ガス排出管  522: Exhaust gas exhaust pipe
53 :配管  53: Piping
70 :分離部  70: Separation section
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0021] 以下、本発明を実施するための最良の形態を図面を参照して詳細に説明する。図Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the drawings. Figure
1は、本発明による排ガス処理装置を備えた気相法炭素繊維製造装置の構成の概 略を説明する図である。気相法炭素繊維製造装置は、 CNT製造部 30と、 CNT精製 部 50と、排ガス処理部 10とを備えて構成される。 FIG. 1 is a diagram schematically illustrating the configuration of a vapor-grown carbon fiber production apparatus provided with an exhaust gas treatment apparatus according to the present invention. The vapor-grown carbon fiber production apparatus includes a CNT production section 30, a CNT purification section 50, and an exhaust gas treatment section 10.
[0022] 排ガス処理部 10は、燃焼酸化手段として働く燃焼酸化塔 11と、湿式吸収手段とし て働く湿式吸収塔 12と、循環タンク 13と、循環ポンプ 15と、排出ブロワ 16とを有し、 これらの装置 (手段)を、配管 14 1一 14 5を用いて図示のように接続して構成され る。 [0022] The exhaust gas treatment section 10 includes a combustion oxidation tower 11 serving as combustion oxidation means, a wet absorption tower 12 serving as wet absorption means, a circulation tank 13, a circulation pump 15, and a discharge blower 16, These devices (means) are connected and connected as shown in the figure using pipes 141-145.
[0023] 燃焼酸ィ匕塔 11には、 CNT製造部 30から配管 14 1を介して送られてきた排ガスを 塔内に供給する排ガス供給ノズル 113と、排ガスに適切に空気比で空気を供給する 空気供給ノズル 114と、排ガスと空気との混合ガスに点火するノ ィロットバーナー 11 1と、難燃性高沸点芳香族炭化水素や硫ィ匕水素を完全に酸ィ匕するための都市ガス 等を燃料とした助燃バーナー 112とが設けられる。燃焼酸化塔 11にお ヽて燃焼酸化 したガス (以下、「燃焼酸ィ匕ガス」という)は、配管 14 2を介して湿式吸収塔 12へ供 給される。  [0023] The combustion oxidation tower 11 has an exhaust gas supply nozzle 113 that supplies exhaust gas sent from the CNT production unit 30 via the pipe 141 into the tower, and supplies air to the exhaust gas at an appropriate air ratio. An air supply nozzle 114, a pilot burner 111 that ignites a mixed gas of exhaust gas and air, and a city gas for completely oxidizing flame-retardant high-boiling aromatic hydrocarbons and sulfide hydrogen And an auxiliary burner 112 using the same as fuel. The gas that has been oxidized by combustion in the combustion oxidation tower 11 (hereinafter referred to as “combustion oxidation gas”) is supplied to the wet absorption tower 12 via the pipe 142.
[0024] 湿式吸収塔 12では、水好ましくはアルカリ溶液力もなる吸収液がシャワーノズル 12 1から内部に撒布され、燃焼酸ィ匕ガスに含まれる有害成分が吸収液に吸収される。 有害成分を吸収した吸収液は、配管 14一 3を介して循環タンク 13に供給される。有 害成分が取り除かれ無害化された処理済みの排ガスは、配管 14 5および排出プロ ヮ 16を介して大気中へ放散される。 [0024] In the wet absorption tower 12, water, preferably having an alkaline solution power, is sprayed from the shower nozzle 121, and harmful components contained in the combustion oxidizing gas are absorbed by the absorption liquid. The absorbing liquid that has absorbed the harmful components is supplied to the circulation tank 13 via the pipes 14-13. The treated exhaust gas, from which harmful components have been removed and rendered harmless, is supplied to piping 145 散 Emitted to the atmosphere via 16.
[0025] 循環タンク 13では、燃焼酸ィ匕ガスを吸収した吸収液の一部を排出し、この排出した 分だけ注ぎ足した後の吸収液を、湿式吸収塔 12へ循環ポンプ 15および配管 14 4 を介して供給する。 [0025] In the circulation tank 13, a part of the absorbing solution that has absorbed the combustion and oxidation gas is discharged, and the absorbing solution that has been poured by the discharged amount is sent to the wet absorption tower 12 by the circulating pump 15 and the piping 14 Feed through 4.
[0026] CNT製造部 30は、反応炉 31を備える。 The CNT manufacturing unit 30 includes a reaction furnace 31.
[0027] 反応炉 31は、遷移金属あるいは遷移金属の化合物と、硫黄あるいは硫黄化合物と からなる触媒下で原料である炭化水素を熱分解し、カーボンナノチューブを生成する 炉であり、触媒および原料を含む原料溶液の供給管 311と、水素ガスの供給管 312 と、気化したガスの排出管 313とを備える。反応炉 31では、触媒となる鉄 (Fe)などの 遷移金属あるいは遷移金属の化合物(例えば、フ 口セン)と、硫黄 (S)あるいは硫 黄ィ匕合物を含む有機化合物 (例えば、チオフ ン)と、原料液 (例えば、トルエン)とが 水素ガスとともに加熱される。  [0027] The reaction furnace 31 is a furnace for thermally decomposing a hydrocarbon as a raw material under a catalyst composed of a transition metal or a compound of a transition metal and sulfur or a sulfur compound to produce carbon nanotubes. A supply pipe 311 for containing raw material solution, a supply pipe 312 for hydrogen gas, and a discharge pipe 313 for vaporized gas are provided. In the reaction furnace 31, a transition metal or a compound of a transition metal such as iron (Fe) serving as a catalyst (for example, hydrogen chloride) and an organic compound containing sulfur (S) or a sulfur sulfide (for example, thiophene) are used. ) And a raw material liquid (for example, toluene) are heated together with hydrogen gas.
[0028] この反応炉 31では、生成した未反応原料や未利用触媒の残渣ゃ非繊維状炭化物 やタール分などを含む炭素繊維 (以下、「粗製炭素繊維」という)などは配管 32, 53— 1を介して CNT精製部 50に供給される。  [0028] In the reaction furnace 31, the generated unreacted raw materials and the residue of the unused catalyst ゃ the carbon fibers containing non-fibrous carbides and tar components (hereinafter referred to as “crude carbon fibers”) are piped 32,53— It is supplied to the CNT refining section 50 via 1.
[0029] CNT精製部 50は、粗製炭素繊維を精製して最終製品である炭素繊維 (カーボン ナノチューブ)とする部分であり、第 1の熱処理炉 51と第 2の熱処理炉 52とを有して 構成される。  [0029] The CNT refining section 50 is a section for refining crude carbon fiber into carbon fiber (carbon nanotube) as a final product, and has a first heat treatment furnace 51 and a second heat treatment furnace 52. Be composed.
[0030] 第 1の熱処理炉 51は、反応炉 31から送られてきた粗製炭素繊維および揮発成分 のうち揮発成分を取り除くための加熱処理手段であり、炉部 511と、ガス排出管 512 とを有して構成される。反応炉 31から送られてきた粗製炭素繊維および揮発成分の うち揮発成分は、例えば 800— 1500°Cに維持された炉部 511において気化された 後、ガス排出管 512から除去される。ガス排出管 512から排出された揮発成分は、排 ガス処理部 10と同様な燃焼酸ィ匕回収手段によって燃焼酸化された後に有害物質が 回収され、無害化された気体のみが大気へ放散される。揮発成分が除かれた粗製炭 素繊維は、配管 53— 2を経由して第 2の熱処理炉 52へ送出される。  [0030] The first heat treatment furnace 51 is a heat treatment means for removing volatile components of the crude carbon fibers and volatile components sent from the reaction furnace 31, and includes a furnace section 511 and a gas discharge pipe 512. It is configured to have. The volatile components of the crude carbon fibers and volatile components sent from the reaction furnace 31 are vaporized in a furnace section 511 maintained at, for example, 800 to 1500 ° C., and then removed from a gas discharge pipe 512. The volatile components discharged from the gas discharge pipe 512 are burned and oxidized by the combustion oxidizing and recovering means similar to the exhaust gas processing unit 10, and then the harmful substances are recovered, and only the detoxified gas is released to the atmosphere. . The crude carbon fiber from which the volatile components have been removed is sent out to the second heat treatment furnace 52 via the pipe 53-2.
[0031] 第 2の熱処理炉 52は、揮発成分が取り除かれた粗製炭素繊維を黒鉛ィ匕するため の加熱処理を行う手段であり、炉部 521と、ガス排出管 522とを有して構成される。配 管 53— 2を経由して第 1の熱処理炉 51から炉部 521に供給された粗製炭素繊維は、 炉部 521において例えば 1300— 3000°Cに維持されることにより黒鉛ィ匕処理が施さ れ、この処理によって生じた排ガスは、ガス排出管 522から排出される。ガス排出管 5 22から排出された排ガスは、排ガス処理部 10と同様な燃焼酸ィ匕回収手段によって 燃焼酸化された後に有害物質が回収され、無害化された気体のみが大気へ放散さ れる。なお、本実施例では、二段階の加熱処理 (熱処理)を経て組成炭素繊維から 製品化された炭素繊維 (CNT)を得るようにしているが、本発明は、これに限定される ものではなぐ所望の炭素繊維(CNT)に応じ 800— 3000°Cの熱処理を少なくとも 一段階施せば良い。 [0031] The second heat treatment furnace 52 is means for performing a heat treatment for graphitizing the crude carbon fiber from which volatile components have been removed, and includes a furnace part 521 and a gas discharge pipe 522. Is done. Arrangement The crude carbon fiber supplied from the first heat treatment furnace 51 to the furnace part 521 via the pipe 52-2 is subjected to a graphite treatment in the furnace part 521 by being maintained at, for example, 1300-3000 ° C. The exhaust gas generated by this process is exhausted from the gas exhaust pipe 522. The exhaust gas discharged from the gas discharge pipe 522 is burned and oxidized by the combustion oxidizing and recovering means similar to the exhaust gas processing unit 10, and then the harmful substances are recovered, and only the detoxified gas is released to the atmosphere. In this embodiment, the carbon fiber (CNT) commercialized from the composition carbon fiber is obtained through two-stage heat treatment (heat treatment), but the present invention is not limited to this. At least one stage of heat treatment at 800 to 3000 ° C. may be performed depending on the desired carbon fiber (CNT).
[0032] なお、気相法炭素繊維を製造する反応炉 31内は水素雰囲気であり、空気の浸入 による事故を未然に防ぐ目的で系内圧力を 0. 1— 5kPaに制御している。加熱処理 を行う炉部 511および炉部 512にあっても空気の浸入による事故を未然に防ぐため 系内圧力を 0. 1— 5kPaに制御している。  [0032] The inside of the reactor 31 for producing the vapor grown carbon fiber is in a hydrogen atmosphere, and the pressure in the system is controlled to 0.1 to 5 kPa in order to prevent accidents due to intrusion of air. Even in the furnace sections 511 and 512 where heat treatment is performed, the pressure in the system is controlled to 0.1-5 kPa to prevent accidents due to air intrusion.
実施例  Example
[0033] 図 2を用いて、炭化水素及び硫ィ匕水素を含む排ガスを燃焼酸ィ匕した後、湿式吸収 処理をする排ガス処理部 10の詳細な構成を説明する。  With reference to FIG. 2, a detailed configuration of the exhaust gas treatment unit 10 that performs a wet absorption treatment after combusting and oxidizing exhaust gas containing hydrocarbons and hydrogen sulfate will be described.
[0034] 反応処理および加熱処理に伴なぅ排ガスは、上記系内圧力で系外に押し出され、 燃焼酸化設備である排ガス処理部 10に送られる。排ガス処理部 10は、燃焼酸化塔 11と、湿式吸収塔 12と、循環タンク 13とから構成され、これらは、それぞれ配管 14 - 2, 14-3, 14 4によって接続されている。配管 14 2には熱交換器 17が、配管 14 4には循環ポンプ 15が、配管 14—5には排出ブロワ 16が設けられている。  [0034] Exhaust gas accompanying the reaction treatment and the heat treatment is extruded out of the system at the above-mentioned system pressure, and is sent to an exhaust gas treatment unit 10, which is a combustion oxidation facility. The exhaust gas treatment unit 10 includes a combustion oxidation tower 11, a wet absorption tower 12, and a circulation tank 13, which are connected by pipes 14-2, 14-3, and 144, respectively. The pipe 142 is provided with a heat exchanger 17, the pipe 144 is provided with a circulation pump 15, and the pipes 14-5 are provided with a discharge blower 16.
[0035] 燃焼酸化塔 11には、パイロットバーナー 111と、助燃バーナー 112と、排ガスノズ ル 113と、空気ノズル 114とが設けられている。パイロットバーナー 111および助燃バ ーナー 112は、都市ガスやプロパンガス等の燃料の燃焼により、バーナー構造の排 ガスノズル 113を介して燃焼酸ィ匕塔 11内に導入された、反応炉 31からの排ガス(以 下、燃焼酸化対象排ガスという)を燃焼酸化し、炭化水素から水と二酸ィ匕炭素を生成 するとともに、硫化水素から硫黄酸化物を生成する。燃焼酸化対象排ガスの燃焼状 態は、該燃焼酸化対象排ガスの温度を所要の範囲内に維持することにより適切に制 御される。具体的には、燃焼酸ィ匕対象排ガスの温度が 400— 600°Cになるように、導 入する空気量を調整する。燃焼状態制御は、燃焼酸化対象排ガスの導入量と、別途 導入される空気量との比で行っても良ぐこの場合、理論燃焼空気量の 1. 2倍から 1 . 6倍となる比で制御すればよい。あるいは燃焼酸化対象排ガス中の残存酸素濃度 で制御しても良ぐこの場合、残存酸素濃度が 4%— 8%となるように制御すればよい The combustion oxidation tower 11 is provided with a pilot burner 111, an auxiliary burner 112, an exhaust gas nozzle 113, and an air nozzle 114. The pilot burner 111 and the auxiliary burner 112 burn the fuel such as city gas and propane gas, and the exhaust gas from the reactor 31 introduced into the combustion oxidation tower 11 through the exhaust gas nozzle 113 having a burner structure. In the following, combustion-oxidized exhaust gas) is burned and oxidized to produce water and carbon dioxide from hydrocarbons and sulfur oxides from hydrogen sulfide. The combustion state of the combustion oxidation target exhaust gas is appropriately controlled by maintaining the temperature of the combustion oxidation target exhaust gas within a required range. Is controlled. Specifically, the amount of air introduced is adjusted so that the temperature of the exhaust gas to be subjected to combustion oxidation becomes 400 to 600 ° C. Combustion state control may be performed by the ratio of the amount of exhaust gas to be oxidized for combustion and the amount of air separately introduced.In this case, the ratio is 1.2 to 1.6 times the theoretical combustion air amount. What is necessary is to control. Alternatively, control may be performed by the residual oxygen concentration in the exhaust gas to be oxidized.In this case, the control may be performed so that the residual oxygen concentration becomes 4% to 8%.
[0036] 燃焼酸化塔 11で燃焼酸化され処理済みとなった排ガス (以下、処理済排ガスと!/ヽぅ )は、熱交 によってその体積を縮減された後に湿式吸収塔 12に送られる。こ の実施例では、湿式吸収塔 12の吸収液として苛性ソーダ水溶液を用いており、その 濃度は ρΗ4— 6である。処理済排ガスは塔底より塔の壁に対し垂直の方向で導入す る。塔頂より上記吸収液をスプレーし、該処理済排ガスと向流接触させて排ガス中の 二酸ィ匕炭素と硫黄酸ィ匕物を吸収する。 [0036] Exhaust gas that has been burnt and oxidized in the combustion oxidation tower 11 and has been treated (hereinafter, treated exhaust gas! /!) Is sent to the wet absorption tower 12 after its volume has been reduced by heat exchange. In this embodiment, a caustic soda aqueous solution is used as an absorbing solution of the wet absorption tower 12, and its concentration is ρΗ4-6. The treated exhaust gas is introduced from the bottom of the tower in a direction perpendicular to the tower wall. The above absorbing solution is sprayed from the top of the tower and brought into countercurrent contact with the treated exhaust gas to absorb carbon dioxide and sulfur oxide in the exhaust gas.
[0037] 処理済排ガス中の二酸ィ匕炭素および硫黄酸ィ匕物を吸収した吸収液は、塔底より抜 き出され配管 14 3を介して循環タンク 13に貯蔵される。この吸収液は、硫酸ナトリウ ムおよび炭酸ナトリウムが溶解しており、循環使用するとこれら化合物が濃縮し析出 するため、循環量の 1一 10%を系外にパージし排水する。循環量は、湿式吸収塔 12 の構造及び排ガス中の除外物質濃度及び得ようとする処理ガス中の除外物質濃度 により決まる。また、吸収液は二酸化炭素と硫黄酸化物の吸収により塩基度が上昇 するため、上記管理塩基度に収まるように適宜苛性ソーダ水溶液を補給する。塩基 度を調整した吸収液はポンプ 15で引かれ再び湿式吸収塔 12に送られる。  [0037] The absorbent that has absorbed the carbon dioxide and sulfur oxide in the treated exhaust gas is drawn out from the bottom of the tower and stored in the circulation tank 13 via the pipe 143. Since sodium sulfate and sodium carbonate are dissolved in this absorption solution and these compounds are concentrated and precipitated when used in circulation, 110% of the circulated amount is purged out of the system and drained. The amount of circulation is determined by the structure of the wet absorption tower 12, the concentration of the exclusion substance in the exhaust gas, and the concentration of the exclusion substance in the processing gas to be obtained. Since the basicity of the absorbing solution increases due to absorption of carbon dioxide and sulfur oxides, an aqueous caustic soda solution is appropriately replenished so as to be within the above-mentioned control basicity. The absorbent adjusted for basicity is drawn by the pump 15 and sent to the wet absorption tower 12 again.
[0038] 湿式吸収塔 12で二酸化炭素および硫化水素が吸収除去され無害化されたガスは 、塔頂よりブロワ一 16で引かれ、大気に放散される。なお、燃焼酸化塔 11から湿式 吸収塔 12に至る処理済排ガスの温度が高い程、該処理済排ガス中の二酸ィ匕炭素お よび硫黄酸ィ匕物の吸収液への吸収率が低下するため、上述したように熱交 を設ければ、この吸収率の低下を可及的に抑えることができ、好ましいものとなる。  [0038] The gas detoxified by absorbing and removing carbon dioxide and hydrogen sulfide in the wet absorption tower 12 is drawn from the top of the tower by a blower 16 and released to the atmosphere. The higher the temperature of the treated exhaust gas from the combustion oxidation tower 11 to the wet absorption tower 12, the lower the absorption rate of the diacid carbon and sulfur oxide in the treated exhaust gas into the absorbent is. Therefore, if the heat exchange is provided as described above, it is possible to suppress the decrease in the absorption rate as much as possible, which is preferable.

Claims

請求の範囲 The scope of the claims
[1] 遷移金属あるいは遷移金属の化合物と、硫黄あるいは硫黄の化合物とを触媒とし、 炭素源から反応炉において気相法により炭素繊維を製造する気相法炭素繊維製造 装置を構成する、反応炉で生じた排出対象となるガスを系外に排出する排ガス処理 装置において、  [1] A reaction furnace comprising a vapor-phase carbon fiber production device that produces a carbon fiber from a carbon source by a vapor phase method in a reaction furnace using a transition metal or a transition metal compound and sulfur or a sulfur compound as a catalyst. In an exhaust gas treatment device that discharges the gas to be discharged generated in
触媒の存在下で原料ガスに熱処理を行って炭素繊維を製造する反応炉で発生し排 出対象となるガスのうち難燃性を有したガスを、所定の燃焼条件で燃焼酸ィ匕する燃 焼酸化手段と、  Among the gases to be discharged in a reactor for producing carbon fibers by subjecting a raw material gas to heat treatment in the presence of a catalyst, a nonflammable gas is burned and oxidized under predetermined combustion conditions. Burning oxidation means;
前記燃焼酸化手段で燃焼酸化されたガスから所定の有害成分を除去する有害成分 除去装置と  A harmful component removing device for removing a predetermined harmful component from the gas oxidized by combustion by the combustion oxidizing means;
を備えることを特徴とする排ガス処理装置。  An exhaust gas treatment device comprising:
[2] 前記有害成分除去装置が、湿式吸収手段と、循環タンクとを有し、湿式吸収手段 に水またはアルカリ溶液カゝらなる吸収液を供給して燃焼酸ィ匕ガスカゝら所定の有害成 分を吸収し、循環タンクにぉ 、て有害成分を吸収した吸収液の一部を排除することを 特徴とする請求項 1に記載の排ガス処理装置。  [2] The harmful component removing device has a wet absorbing means and a circulating tank, and supplies water or an absorbing solution such as an alkaline solution to the wet absorbing means to cause a predetermined harmful effect such as burning and oxidizing gas. 2. The exhaust gas treatment device according to claim 1, wherein a part of the absorbing solution that absorbs the components and absorbs the harmful components into the circulation tank is removed.
[3] 遷移金属あるいは遷移金属の化合物と、硫黄あるいは硫黄の化合物とを触媒とし、 炭素源力も反応炉において気相法により製造された炭素繊維を、 800— 3000°Cの 温度で熱処理する熱処理炉で生じた排出対象となるガスを系外に排出する排ガス処 理装置において、  [3] Heat treatment of carbon fiber produced by a gas phase method in a reactor using a transition metal or a compound of a transition metal and sulfur or a compound of sulfur as a catalyst at a temperature of 800 to 3000 ° C. In an exhaust gas treatment device that discharges the gas that is generated in the furnace and is targeted for emission,
前記熱処理炉において発生し排出対象となる硫ィ匕水素ガスを、所定の燃焼条件で 燃焼酸化する燃焼酸化手段と、  Combustion oxidizing means for burning and oxidizing sulfur gas to be discharged in the heat treatment furnace under predetermined combustion conditions;
前記燃焼酸ィ匕手段で燃焼酸化された排ガスカゝら所定の有害成分を水またはアルカリ 溶液からなる吸収液に吸収する湿式吸収手段と、  Wet absorption means for absorbing a predetermined harmful component in the exhaust gas burned and oxidized by the combustion oxidizing means into an absorbing solution comprising water or an alkaline solution;
吸収液の一部を系外に排除する循環タンクと  A circulation tank that removes part of the absorbing solution out of the system
を備えることを特徴とする排ガス処理装置。  An exhaust gas treatment device comprising:
[4] 前記湿式吸収手段により有害成分が除去されたガスを大気に放散する放散手段を 含むことを特徴とする請求項 2または請求項 3に記載の排ガス処理装置。 4. The exhaust gas treatment device according to claim 2, further comprising a dispersing unit that disperses the gas from which the harmful components have been removed by the wet absorbing unit to the atmosphere.
[5] 遷移金属あるいは遷移金属の化合物と、硫黄あるいは硫黄の化合物とを触媒とし、 炭素源力 反応炉において気相法により炭素繊維を製造する製造工程において生 じた排出対象となるガス、および前記製造工程により製造された炭素繊維を熱処理 炉において 800— 3000°Cの温度で熱処理する際に生じた排出対象となるガスの少 なくとも一方を系外に排出する排ガス処理装置において、 [5] using a transition metal or a compound of a transition metal and sulfur or a compound of sulfur as a catalyst, Carbon source power The gas to be discharged generated in the production process of producing carbon fiber by the gas phase method in the reactor, and the carbon fiber produced in the production process are heat-treated in the heat treatment furnace at a temperature of 800 to 3000 ° C. In an exhaust gas treatment device that discharges at least one of the gases to be discharged generated during
前記排出対象となるガス力 所定の有害成分を除去する有害成分除去装置を含 むことを特徴とする排ガス処理装置。  An exhaust gas treatment apparatus comprising a harmful component removing device for removing a predetermined harmful component of the gas to be discharged.
[6] 前記有害成分除去装置は、湿式吸収手段と、循環タンクとを有し、湿式吸収手段 に水またはアルカリ溶液カゝらなる吸収液を供給して排出対象となるガスの有害物質を 吸収液に吸収し、有害物質を吸収した吸収液の一部を循環タンクにて系外へ排除 することを特徴とする請求項 5に記載の排ガス処理装置。 [6] The harmful component removing device has a wet absorbing means and a circulation tank, and supplies the wet absorbing means with water or an absorbing solution composed of an alkaline solution to absorb harmful substances of a gas to be discharged. 6. The exhaust gas treatment apparatus according to claim 5, wherein a part of the absorption liquid that has been absorbed into the liquid and has absorbed the harmful substance is removed outside the system by a circulation tank.
[7] 前記排出対象となるガスは、炭化水素ガスを含むことを特徴とする請求項 5または 請求項 6に記載の排ガス処理装置。 7. The exhaust gas treatment device according to claim 5, wherein the gas to be discharged includes a hydrocarbon gas.
[8] 前記排出対象となるガスは、硫化水素ガスを含むことを特徴とする請求項 1な ヽし 請求項 7のいずれか一項に記載の排ガス処理装置。 [8] The exhaust gas treatment apparatus according to any one of claims 1 to 7, wherein the gas to be discharged includes hydrogen sulfide gas.
PCT/JP2005/001692 2004-02-05 2005-02-04 Apparatus for treating exhaust gas in apparatus for producing carbon fiber by gas phase method WO2005075890A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004029135A JP2005221150A (en) 2004-02-05 2004-02-05 Waste gas treatment device for carbon fiber manufacturing device by vapor-phase method
JP2004-029135 2004-02-05

Publications (1)

Publication Number Publication Date
WO2005075890A1 true WO2005075890A1 (en) 2005-08-18

Family

ID=34835942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/001692 WO2005075890A1 (en) 2004-02-05 2005-02-04 Apparatus for treating exhaust gas in apparatus for producing carbon fiber by gas phase method

Country Status (2)

Country Link
JP (1) JP2005221150A (en)
WO (1) WO2005075890A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107420883A (en) * 2017-08-03 2017-12-01 中国环境科学研究院 A kind of carbon industry exhausted air quantity and pollutant become Zero discharging system and method
TWI706111B (en) * 2016-07-20 2020-10-01 日商大陽日酸股份有限公司 Exhaust gas treatment method, exhaust gas treatment device, carbon fiber production equipment, and carbon fiber production system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5115923B2 (en) * 2007-07-26 2013-01-09 滿 小澤 Carbon dioxide gas recovery device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0415164B2 (en) * 1986-02-17 1992-03-17 Nitsuki Kk
JPH11211036A (en) * 1997-11-21 1999-08-06 Kanken Techno Kk Device and method of eliminating harm of exhaust gas from manufacturing semiconductor
JP2000199617A (en) * 1999-01-05 2000-07-18 Showa Denko Kk Method for treating exhaust gas of vapor phase carbon fiber
JP2002266171A (en) * 2000-12-28 2002-09-18 Nikkiso Co Ltd Method for producing vapor grown carbon fiber
JP2003146635A (en) * 2001-08-27 2003-05-21 Mitsubishi Heavy Ind Ltd Method, apparatus and equipment for manufacturing carbon nanomaterial
JP2003329233A (en) * 2002-05-15 2003-11-19 Babcock Hitachi Kk Exhaust gas processing device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0415164B2 (en) * 1986-02-17 1992-03-17 Nitsuki Kk
JPH11211036A (en) * 1997-11-21 1999-08-06 Kanken Techno Kk Device and method of eliminating harm of exhaust gas from manufacturing semiconductor
JP2000199617A (en) * 1999-01-05 2000-07-18 Showa Denko Kk Method for treating exhaust gas of vapor phase carbon fiber
JP2002266171A (en) * 2000-12-28 2002-09-18 Nikkiso Co Ltd Method for producing vapor grown carbon fiber
JP2003146635A (en) * 2001-08-27 2003-05-21 Mitsubishi Heavy Ind Ltd Method, apparatus and equipment for manufacturing carbon nanomaterial
JP2003329233A (en) * 2002-05-15 2003-11-19 Babcock Hitachi Kk Exhaust gas processing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI706111B (en) * 2016-07-20 2020-10-01 日商大陽日酸股份有限公司 Exhaust gas treatment method, exhaust gas treatment device, carbon fiber production equipment, and carbon fiber production system
CN107420883A (en) * 2017-08-03 2017-12-01 中国环境科学研究院 A kind of carbon industry exhausted air quantity and pollutant become Zero discharging system and method

Also Published As

Publication number Publication date
JP2005221150A (en) 2005-08-18

Similar Documents

Publication Publication Date Title
US9061246B2 (en) Ammonia destruction methods for use in a Claus tail gas treating unit
CN104359113B (en) A kind of waste gas, liquid waste incineration system and method
HU184389B (en) Method and apparatus for destroying wastes by using of plasmatechnic
CN106744722A (en) A kind of regeneration technology of acetylene cleaning Waste Sulfuric Acid
JPWO2007122678A1 (en) Method and apparatus for processing gas containing nitrous oxide
WO2005075890A1 (en) Apparatus for treating exhaust gas in apparatus for producing carbon fiber by gas phase method
KR20200092973A (en) Process for the production of sulfur and sulfuric acid
CN113091075A (en) Control method of dioxin in waste salt pyrolysis
JPH10132241A (en) Method for disposing of waste liquid or exhaust gas
JP2004036983A (en) Method and device for treating ammonia containing gas
JP2007031492A (en) Method for producing hydrogen from sludge
JP2003010641A (en) Method and apparatus for purifying waste gas in coke oven gas treatment
KR20040031917A (en) Complete Renewal pollution-free process of various kind of wastes, and major equipments required
KR101188804B1 (en) Deodorization purification device of VOC gas
CN104418454A (en) Treatment method of organic wastewater
JP7254465B2 (en) Mercury recovery device and mercury recovery method
JP3790890B2 (en) Production inhibitor and production inhibition method for chlorinated aromatic compounds
KR200204708Y1 (en) Apparatus for recycling industrial waste
JPH04332570A (en) Method for pyrolyzing organic matter
CN111486459A (en) Process for treating a gaseous feed containing sulfur compounds
JP2000033365A (en) Treatment of waste water
JP4491688B2 (en) Production inhibitor and production inhibition method for chlorinated aromatic compounds
US11731079B2 (en) Method and apparatus for treating exhaust gas
JP7377639B2 (en) Mercury recovery equipment and mercury recovery method
JP3586406B2 (en) Waste plastic processing equipment

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase