JP2005221150A - Waste gas treatment device for carbon fiber manufacturing device by vapor-phase method - Google Patents

Waste gas treatment device for carbon fiber manufacturing device by vapor-phase method Download PDF

Info

Publication number
JP2005221150A
JP2005221150A JP2004029135A JP2004029135A JP2005221150A JP 2005221150 A JP2005221150 A JP 2005221150A JP 2004029135 A JP2004029135 A JP 2004029135A JP 2004029135 A JP2004029135 A JP 2004029135A JP 2005221150 A JP2005221150 A JP 2005221150A
Authority
JP
Japan
Prior art keywords
gas
exhaust gas
carbon fiber
discharged
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004029135A
Other languages
Japanese (ja)
Inventor
Fuminori Munekane
史典 宗兼
Hirosuke Kawaguchi
宏輔 河口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bussan Nanotech Research Institute Inc
Original Assignee
Bussan Nanotech Research Institute Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bussan Nanotech Research Institute Inc filed Critical Bussan Nanotech Research Institute Inc
Priority to JP2004029135A priority Critical patent/JP2005221150A/en
Priority to PCT/JP2005/001692 priority patent/WO2005075890A1/en
Publication of JP2005221150A publication Critical patent/JP2005221150A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • F23G7/07Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases in which combustion takes place in the presence of catalytic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
    • F23J15/04Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material using washing fluids

Abstract

<P>PROBLEM TO BE SOLVED: To provide a waste gas treatment device for rendering carbon hydride and a sulfur compound in a waste gas generated in manufacturing carbon fiber by a vapor-phase method, harmless, and diffusing the waste gas to the atmospheric air preferably after reducing carbon dioxide. <P>SOLUTION: This waste gas treatment device 10 for discharging a discharged gas to the outside of a system constituting the carbon fiber manufacturing device by the vapor-phase method, using transition metal or a transition metal compound, and sulfur or a sulfur compound as catalyst, and manufacturing carbon fiber from a carbon source by the vapor-phase method in a reaction furnace 33, comprises a burning oxidizing means 11 for burning and oxidizing the incombustible discharged gas, generated in the reaction furnace 33 wherein the carbon fiber is manufactured by performing the heat treatment on a material gas in the presence of the catalyst, under a specific burning condition, a humidity absorbing means 12 and a circulation tank 13. An absorbent composed of the water or alkaline solution is supplied to the humidity absorbing means 12 to absorb specific harmful components from the burnt oxidized gas, and the absorbent after absorbing the harmful components in the circulation tank is partially discharged. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、遷移金属あるいは遷移金属の化合物と、硫黄あるいは硫黄化合物とからなる触媒の存在下で、原料ガスである炭化水素を熱分解して炭素繊維を形成する気相法炭素繊維(VGCF)、カーボンナノチューブ、カーボンナノホーン、カーボンナノコイル、リボン状カーボンファイバーなどの微細な繊維状の炭素繊維を製造する気相法炭素繊維製造装置の排ガス処理装置に関する。   The present invention relates to a vapor grown carbon fiber (VGCF) that forms carbon fibers by thermally decomposing hydrocarbons as a raw material gas in the presence of a catalyst comprising a transition metal or a transition metal compound and sulfur or a sulfur compound. The present invention relates to an exhaust gas treatment apparatus of a vapor phase carbon fiber production apparatus for producing fine fibrous carbon fibers such as carbon nanotubes, carbon nanohorns, carbon nanocoils, and ribbon-like carbon fibers.

気相法による炭素繊維の製造は、炭素源としてのベンゼンやトルエン等の有機溶剤と、触媒としての鉄等の遷移金属あるいは遷移金属の化合物と、触媒としての硫黄あるいは硫黄の化合物とを、水素とともに800〜1500℃の温度に制御された反応炉内に供給し、炭素源を熱分解し、分解した炭素を遷移金属を核にして成長させて、所定の炭素繊維、例えばカーボンナノチューブ(CNT)を製造している。   The production of carbon fiber by the gas phase method involves the use of an organic solvent such as benzene or toluene as a carbon source, a transition metal such as iron as a catalyst or a transition metal compound, and sulfur or a sulfur compound as a catalyst. In addition, the carbon source is supplied into a reactor controlled to a temperature of 800 to 1500 ° C., the carbon source is thermally decomposed, and the decomposed carbon is grown with a transition metal as a nucleus to obtain a predetermined carbon fiber such as a carbon nanotube (CNT). Is manufacturing.

原料ガスを熱分解して炭素繊維を気相成長させるに際しては、主生成物としての炭素繊維とは別に、水素、鎖状炭化水素、芳香族炭化水素、硫化水素等の副生成物が生成される。これら副生成物のうち芳香族炭化水素における高沸点成分の大部分は主生成物である炭素繊維と共に回収されるが、回収されない一部の高沸点芳香族炭化水素のほか水素、鎖状炭化水素、低沸点芳香族炭化水素および硫化水素は物質収支上、キャリアガスと共に排ガスとして系外に排出する必要がある。   When carbon fiber is vapor-grown by pyrolyzing the source gas, by-products such as hydrogen, chain hydrocarbons, aromatic hydrocarbons, and hydrogen sulfide are generated separately from the carbon fiber as the main product. The Of these by-products, most of the high-boiling components in aromatic hydrocarbons are recovered together with the main product carbon fiber, but some high-boiling aromatic hydrocarbons that are not recovered are also hydrogen and chain hydrocarbons. The low-boiling aromatic hydrocarbons and hydrogen sulfide need to be discharged out of the system as exhaust gas together with the carrier gas because of the material balance.

従来は、これらの排ガスをそのまま大気に放散するか、焼却処理し大気に放散していたが、高沸点芳香族炭化水素は難燃性であることから焼却処理できず、硫黄化合物あるいは硫黄酸化物とともにそのまま大気に放散される結果となっていた。   Conventionally, these exhaust gases were directly released into the atmosphere or incinerated and released into the atmosphere, but high boiling point aromatic hydrocarbons are flame retardant and cannot be incinerated. At the same time, it was released into the atmosphere as it was.

一方、反応炉で生成した炭素繊維は、製品ユーザーの要求品位を満たすために、800℃〜3000℃で加熱処理を施すが、上述したようにこの炭素繊維には芳香族炭化水素のうち高沸点成分の大部分を含み、さらに触媒として用いた遷移金属が硫化物などとして存在しており(この状態の炭素繊維を粗製炭素繊維という)、これを加熱処理すると該高沸点芳香族炭化水素の一部はそのまま揮発し、さらに熱分解反応により低沸点炭化水素および硫化水素が発生する。この加熱処理排ガスもそのまま大気に放散するか、焼却処理し大気に放散していたが、硫黄化合物あるいは硫黄酸化物がそのまま大気に放散される結果となっていた。   On the other hand, the carbon fiber produced in the reactor is subjected to heat treatment at 800 ° C. to 3000 ° C. in order to satisfy the quality requirements of the product user. As described above, this carbon fiber has a high boiling point among aromatic hydrocarbons. The transition metal used as a catalyst containing most of the components is present as sulfides (the carbon fiber in this state is called crude carbon fiber), and when this is heat-treated, one of the high-boiling aromatic hydrocarbons is present. The part is volatilized as it is, and further low boiling point hydrocarbons and hydrogen sulfide are generated by the thermal decomposition reaction. This heat-treated exhaust gas was also diffused into the atmosphere as it was, or was incinerated and diffused into the atmosphere, but the sulfur compound or sulfur oxide was diffused into the atmosphere as it was.

すなわち、気相法による炭素繊維の製造は、現在は小規模な生産で行われていることから、副生成物や排ガスについてはとくに規制を受けることなく、そのまま大気開放されているのが現状である。   In other words, since the production of carbon fiber by the gas phase method is currently performed on a small scale, by-products and exhaust gas are open to the atmosphere as they are without any particular restrictions. is there.

しかしながら、小規模の生産であっても環境面を考慮すると、副生成物や加熱処理排ガスを燃焼させて有害物質を低減することが好ましいが、上記のように難燃性ガスを燃焼処理することはうまくいっていないのが実情である。   However, considering the environmental aspects even in small-scale production, it is preferable to burn down by-products and heat treatment exhaust gas to reduce harmful substances. The situation is not going well.

このような問題に対して、遷移金属を触媒とし反応炉中で有機化合物を加熱分解し炭素繊維を得る気相法炭素繊維の製造方法において、縦型の焼却炉を用い、プロパンや都市ガスなどの可燃性ガスをパイロットバーナーで常時燃焼させ、そこへ反応排ガスや加熱処理排ガスを主バーナーを通して供給し、パイロットバーナーの火炎により着火させて焼却処理する排ガスの処理方法が提案されている(例えば、特許文献1参照)。   In response to such problems, in a gas phase carbon fiber manufacturing method for obtaining carbon fiber by thermally decomposing an organic compound in a reaction furnace using a transition metal as a catalyst, a vertical incinerator is used, such as propane or city gas. A combustible gas is always combusted by a pilot burner, a reaction exhaust gas or a heat treatment exhaust gas is supplied through a main burner, and an incineration treatment method is performed by igniting with a flame of the pilot burner (for example, Patent Document 1).

上記のように、気相法による炭素繊維の製造においては、難燃性である高沸点芳香族炭化水素は焼却処理しても完全には分解されずそのまま大気放散せざるを得ない状況であり、また焼却により鎖状炭化水素、低沸点炭化水素および分解された高沸点炭化水素からは二酸化炭素が、硫化水素からは硫黄酸化物が発生する。現状では、気相法炭素繊維の製造量が少ないことから大気放散される二酸化炭素、硫黄化合物あるいは硫黄酸化物の量も比較的少量であり、また製造設備は大規模化学プラントの一部に立地していることから、大気汚染防止法に定めるところの硫黄酸化物総量規制値を十分満足している。   As described above, in the production of carbon fiber by the vapor phase method, flame retardant high-boiling aromatic hydrocarbons cannot be completely decomposed even if incinerated and must be released to the atmosphere as they are. In addition, carbon dioxide is generated from chain hydrocarbons, low boiling point hydrocarbons and decomposed high boiling point hydrocarbons by incineration, and sulfur oxides are generated from hydrogen sulfide. At present, the amount of vapor-grown carbon fiber is small, so the amount of carbon dioxide, sulfur compounds, or sulfur oxides released to the atmosphere is relatively small, and the production facilities are located in a part of a large-scale chemical plant. Therefore, it fully satisfies the regulation value for the total amount of sulfur oxides stipulated in the Air Pollution Control Law.

しかしながら、気相法炭素繊維の製造量を増大すべく製造設備の規模が大規模化すると、大気放散される二酸化炭素、硫黄化合物あるいは硫黄酸化物の量も大量になり、また該製造設備は単独立地になることも考えられ、大気汚染防止法に定めるところの硫黄酸化物総量規制値を満足できなくなるおそれがある。さらに、地球温暖化防止を配慮した製造設備を志向すれば、排ガスの燃焼によって発生する二酸化炭素を可及的に抑えることが望ましい。   However, when the scale of the production facility is increased to increase the production amount of vapor grown carbon fiber, the amount of carbon dioxide, sulfur compound or sulfur oxide released into the atmosphere becomes large, and the production facility is independent. There is a possibility of becoming a location, and there is a risk that it will not be possible to meet the regulation value for the total amount of sulfur oxides stipulated in the Air Pollution Control Law. Furthermore, if a production facility that takes into consideration the prevention of global warming is aimed at, it is desirable to suppress as much as possible the carbon dioxide generated by the combustion of exhaust gas.

前記特許文献1では、燃焼処理によっても処理されない前記物質への対応についてはなんら触れるところがない。
特許第3397155号公報
In the said patent document 1, there is no place touched on the response | compatibility to the said substance which is not processed also by a combustion process.
Japanese Patent No. 3397155

本発明は、気相法炭素繊維製造に伴ない発生する排ガス中の炭化水素および硫黄化合物を無害化処理し、望ましくは、該無害化処理に伴なって発生する二酸化炭素を低減した後の排ガスを大気放散する排ガス処理装置を提供することを目的とする。   The present invention relates to an exhaust gas after detoxifying hydrocarbons and sulfur compounds in exhaust gas generated in the course of vapor-grown carbon fiber production, and preferably after reducing carbon dioxide generated in the detoxification process. An object of the present invention is to provide an exhaust gas treatment apparatus that diffuses air.

上記課題を解決するために、本発明は、気相法炭素繊維の製造過程における反応炉からの排ガスを、燃焼炉に導入し焼却処理を施す。反応炉からの排ガスには、キャリアとしての水素ガスおよび炭素繊維製造原料である炭化水素の分解反応にて生成した水素が、難燃性の高沸点芳香族炭化水素や硫化水素となって存在する。本発明では、これら難燃性の高沸点芳香族炭化水素や硫化水素を完全に酸化するため、都市ガス等を燃料とした助然バーナーにて燃焼炉排ガス温度が400〜600℃になるよう調節して燃焼酸化する。燃焼酸化処理したガスは、燃焼炉の後段に設けた湿式吸収手段に導入され、吸収液としての水、望ましくはアルカリ水溶液との接触により吸収されて排除される。これら燃焼酸化処理と吸収除去処理とを経て無害化されたガスは、大気放散される。   In order to solve the above-mentioned problems, the present invention introduces exhaust gas from a reaction furnace in the process of producing vapor grown carbon fiber into a combustion furnace and incinerates it. In the exhaust gas from the reactor, hydrogen gas generated as a carrier and hydrogen produced by the decomposition reaction of hydrocarbons as carbon fiber production raw materials exist as flame retardant high-boiling aromatic hydrocarbons and hydrogen sulfide. . In the present invention, in order to completely oxidize these flame-retardant high-boiling aromatic hydrocarbons and hydrogen sulfide, the combustion furnace exhaust gas temperature is adjusted to 400 to 600 ° C. with an auxiliary burner using city gas or the like as fuel. And oxidize by combustion. The gas subjected to the combustion oxidation treatment is introduced into a wet absorption means provided at the subsequent stage of the combustion furnace, and is absorbed and removed by contact with water as an absorbent, preferably an alkaline aqueous solution. The gas rendered harmless through the combustion oxidation treatment and the absorption removal treatment is released into the atmosphere.

すなわち、本発明は、遷移金属あるいは遷移金属の化合物と、硫黄あるいは硫黄の化合物とを触媒とし、炭素源から反応炉において気相法により炭素繊維を製造する気相法炭素繊維製造装置を構成する、反応炉で生じた排出対象となるガスを系外に排出する排ガス処理装置において、触媒の存在下で原料ガスに熱処理を行って炭素繊維を製造する反応炉で発生し排出対象となるガスのうち難燃性を有したガスを、所定の燃焼条件で燃焼酸化する燃焼酸化手段と、前記燃焼酸化手段で燃焼酸化されたガスから所定の有害成分を除去する有害成分除去装置とを備えた。   That is, the present invention constitutes a vapor-grown carbon fiber production apparatus for producing carbon fiber from a carbon source by a vapor phase method in a reaction furnace using a transition metal or a compound of a transition metal and sulfur or a sulfur compound as a catalyst. In an exhaust gas treatment apparatus that exhausts a gas to be discharged generated in a reaction furnace to the outside of the system, a gas generated in a reaction furnace for producing carbon fiber by heat-treating a raw material gas in the presence of a catalyst Of these, a combustion oxidation means for burning and oxidizing a flame-retardant gas under a predetermined combustion condition, and a harmful component removal apparatus for removing a predetermined harmful component from the gas burned and oxidized by the combustion oxidation means.

さらに、本発明は,上記排ガス処理装置において、有害成分除去装置が、湿式吸収手段と、循環タンクとを有し、湿式吸収手段に水またはアルカリ溶液からなる吸収液を供給して燃焼酸化ガスから所定の有害成分を吸収し、循環タンクにおいて有害成分を吸収した吸収液の一部を排除するようにした。   Further, according to the present invention, in the above exhaust gas treatment apparatus, the harmful component removal apparatus has a wet absorption means and a circulation tank, and supplies an absorption liquid made of water or an alkaline solution to the wet absorption means from the combustion oxidizing gas. A predetermined harmful component was absorbed, and a part of the absorbing solution that absorbed the harmful component in the circulation tank was excluded.

また、本発明は、遷移金属あるいは遷移金属の化合物と、硫黄あるいは硫黄の化合物とを触媒とし、炭素源から反応炉において気相法により製造された炭素繊維を、800〜3000℃の温度で熱処理する熱処理炉で生じた排出対象となるガスを系外に排出する排ガス処理装置において、前記熱処理において発生し排出対象となる硫化水素ガスを、所定の燃焼条件で燃焼酸化する燃焼酸化手段と、前記燃焼酸化手段で燃焼酸化された排ガスから所定の有害成分を水またはアルカリ溶液からなる吸収液に吸収する湿式吸収手段と、吸収液の一部を系外に排除する循環タンクとを備えた。さらに、本発明は、上記排ガス処理装置において、湿式吸収手段により有害成分を除去されたガスを大気に放散する放散手段を備えた。   The present invention also provides a heat treatment of a carbon fiber produced by a vapor phase method in a reaction furnace from a carbon source using a transition metal or a compound of a transition metal and sulfur or a sulfur compound as a catalyst at a temperature of 800 to 3000 ° C. In the exhaust gas treatment apparatus for exhausting the gas to be discharged generated in the heat treatment furnace to the outside of the system, the combustion oxidation means for burning and oxidizing the hydrogen sulfide gas generated in the heat treatment and to be discharged under a predetermined combustion condition; A wet absorption means for absorbing a predetermined harmful component from the exhaust gas combustion-oxidized by the combustion oxidation means into an absorption liquid made of water or an alkaline solution, and a circulation tank for removing a part of the absorption liquid out of the system were provided. Furthermore, the present invention is the above exhaust gas treatment apparatus, further comprising a diffusion means for releasing the gas from which harmful components have been removed by the wet absorption means to the atmosphere.

本発明は、遷移金属あるいは遷移金属の化合物と、硫黄あるいは硫黄の化合物とを触媒とし、炭素源から反応炉において気相法により炭素繊維を製造する製造工程において生じた排出対象となるガス、および前記製造工程により製造された炭素繊維を熱処理炉において800〜3000℃の温度で熱処理する際に生じた排出対象となるガスの少なくとも一方を系外に排出する排ガス処理装置において、前記排出対象となるガスから所定の有害成分を除去する有害成分除去装置を備えた。また、前記有害成分除去装置は、湿式吸収手段と、循環タンクとを有し、湿式吸収手段に水またはアルカリ溶液からなる吸収液を供給して排出対象となるガスの有害物質を吸収液に吸収し、有害物質を吸収した吸収液の一部を循環タンクにて系外へ排除するようにした。さらに、前記排出対象となるガスは、炭化水素ガス、または硫化水素ガスを含んでいる。   The present invention comprises a transition metal or a transition metal compound and sulfur or a sulfur compound as a catalyst, a gas to be discharged generated in a production process for producing carbon fiber from a carbon source by a gas phase method in a reaction furnace, and An exhaust gas treatment apparatus that exhausts at least one of the gas to be discharged generated when the carbon fiber manufactured by the manufacturing process is heat-treated at a temperature of 800 to 3000 ° C. in a heat treatment furnace is the discharge target. A harmful component removing device for removing predetermined harmful components from the gas was provided. Further, the harmful component removal apparatus has a wet absorption means and a circulation tank, and supplies the absorption liquid composed of water or an alkaline solution to the wet absorption means to absorb the harmful substances of the gas to be discharged into the absorption liquid. In addition, a part of the absorbing solution that has absorbed harmful substances is excluded from the system by a circulation tank. Further, the gas to be discharged contains hydrocarbon gas or hydrogen sulfide gas.

本発明は、気相法炭素繊維製造に伴い発生する排ガスを、適切な燃焼条件で燃焼酸化し、該燃焼酸化ガスを湿式吸収処理する排ガス処理方法により、該排ガス中の炭化水素濃度および硫黄化合物濃度を100ppm以下に低減することを可能とする。   The present invention relates to an exhaust gas treatment method in which exhaust gas generated in the production of vapor-grown carbon fiber is burnt and oxidized under appropriate combustion conditions, and the combustion oxidation gas is subjected to wet absorption treatment. It is possible to reduce the concentration to 100 ppm or less.

以下、本発明を実施するための最良の形態を図面を参照して詳細に説明する。図1は、本発明による排ガス処理装置を備えた気相法炭素繊維製造装置の構成の概略を説明する図である。気相法炭素繊維製造装置は、CNT製造部30と、CNT精製部50と、排ガス処理部10とを備えて構成される。   The best mode for carrying out the present invention will be described below in detail with reference to the drawings. FIG. 1 is a diagram for explaining the outline of the configuration of a vapor grown carbon fiber production apparatus equipped with an exhaust gas treatment apparatus according to the present invention. The vapor grown carbon fiber production apparatus includes a CNT production unit 30, a CNT purification unit 50, and an exhaust gas treatment unit 10.

排ガス処理部10は、燃焼酸化手段として働く燃焼酸化塔11と、湿式吸収手段として働く湿式吸収塔12と、循環タンク13と、循環ポンプ15と、排出ブロワ16とを有し、これらの装置(手段)を、配管14−1〜14−5を用いて図示のように接続して構成される。   The exhaust gas treatment unit 10 includes a combustion oxidation tower 11 that functions as combustion oxidation means, a wet absorption tower 12 that functions as wet absorption means, a circulation tank 13, a circulation pump 15, and an exhaust blower 16. Means) are connected as shown in the figure using pipes 14-1 to 14-5.

燃焼酸化塔11には、CNT製造部30から配管14−1を介して送られてきた排ガスを塔内に供給する排ガス供給ノズル113と、排ガスに適切に空気比で空気を供給する空気供給ノズル114と、排ガスと空気との混合ガスに点火するパイロットバーナー111と、難燃性高沸点芳香族炭化水素や硫化水素を完全に酸化するための都市ガス等を燃料とした助燃バーナー112とが設けられる。燃焼酸化塔11において燃焼酸化したガス(以下、「燃焼酸化ガス」という)は、配管14−2を介して湿式吸収塔12へ供給される。   The combustion oxidation tower 11 includes an exhaust gas supply nozzle 113 that supplies the exhaust gas sent from the CNT production unit 30 via the pipe 14-1 into the tower, and an air supply nozzle that supplies air to the exhaust gas at an appropriate air ratio. 114, a pilot burner 111 that ignites a mixed gas of exhaust gas and air, and an auxiliary combustion burner 112 that uses city gas or the like as a fuel to completely oxidize flame-retardant high-boiling aromatic hydrocarbons or hydrogen sulfide. It is done. Gas that is burnt and oxidized in the combustion oxidation tower 11 (hereinafter referred to as “burning oxidation gas”) is supplied to the wet absorption tower 12 via the pipe 14-2.

湿式吸収塔12では、水好ましくはアルカリ溶液からなる吸収液がシャワーノズル121から内部に撒布され、燃焼酸化ガスに含まれる有害成分が吸収液に吸収される。有害成分を吸収した吸収液は、配管14―3を介して循環タンク13に供給される。有害成分が取り除かれ無害化された処理済みの排ガスは、配管14−5および排出ブロワ16を介して大気中へ放散される。   In the wet absorption tower 12, an absorption liquid made of water, preferably an alkaline solution, is distributed inside from the shower nozzle 121, and harmful components contained in the combustion oxidizing gas are absorbed by the absorption liquid. The absorbing liquid that has absorbed the harmful components is supplied to the circulation tank 13 through the pipe 14-3. The treated exhaust gas from which harmful components have been removed and detoxified is released into the atmosphere via the pipe 14-5 and the exhaust blower 16.

循環タンク13では、燃焼酸化ガスを吸収した吸収液の一部を排出し、この排出した分だけ注ぎ足した後の吸収液を、湿式吸収塔12へ循環ポンプ15および配管14−4を介して供給する。   In the circulation tank 13, a part of the absorption liquid that has absorbed the combustion oxidizing gas is discharged, and the absorption liquid after being added by the discharged amount is supplied to the wet absorption tower 12 via the circulation pump 15 and the pipe 14-4. Supply.

CNT製造部30は、反応炉31を備える。   The CNT manufacturing unit 30 includes a reaction furnace 31.

反応炉31は、遷移金属あるいは遷移金属の化合物と、硫黄あるいは硫黄化合物とからなる触媒下で原料である炭化水素を熱分解し、カーボンナノチューブを生成する炉であり、触媒および原料を含む原料溶液の供給管311と、水素ガスの供給管312と、気化したガスの排出管313とを備える。反応炉31では、触媒となる鉄(Fe)などの遷移金属あるいは遷移金属の化合物(例えば、フェロセン)と、硫黄(S)あるいは硫黄化合物を含む有機化合物(例えば、チオフェン)と、原料液(例えば、トルエン)とが水素ガスとともに加熱される。   The reaction furnace 31 is a furnace that thermally decomposes hydrocarbon as a raw material under a catalyst composed of a transition metal or a transition metal compound and sulfur or a sulfur compound to generate carbon nanotubes, and a raw material solution containing the catalyst and the raw material Supply pipe 311, hydrogen gas supply pipe 312, and vaporized gas discharge pipe 313. In the reaction furnace 31, a transition metal such as iron (Fe) or a transition metal compound (for example, ferrocene), an organic compound (for example, thiophene) containing sulfur (S) or a sulfur compound, and a raw material liquid (for example, ferrophene). , Toluene) and hydrogen gas.

この反応炉31では、生成した未反応原料や未利用触媒の残渣や非繊維状炭化物やタール分などを含む炭素繊維(以下、「粗製炭素繊維」という)などは配管32,53−1を介してCNT精製部50に供給される。   In the reactor 31, generated unreacted raw materials, unused catalyst residues, carbon fibers containing non-fibrous carbides, tars, and the like (hereinafter referred to as “crude carbon fibers”) and the like are passed through pipes 32 and 53-1. And supplied to the CNT purification unit 50.

CNT精製部50は、粗製炭素繊維を精製して最終製品である炭素繊維(カーボンナノチューブ)とする部分であり、第1の熱処理炉51と第2の熱処理炉52とを有して構成される。   The CNT refining unit 50 is a part that refines crude carbon fiber to form a carbon fiber (carbon nanotube) as a final product, and includes a first heat treatment furnace 51 and a second heat treatment furnace 52. .

第1の熱処理炉51は、反応炉31から送られてきた粗製炭素繊維および揮発成分のうち揮発成分を取り除くための加熱処理手段であり、炉部511と、ガス排出管512とを有して構成される。反応炉31から送られてきた粗製炭素繊維および揮発成分のうち揮発成分は、例えば800〜1500℃に維持された炉部511において気化された後、ガス排出管512から除去される。ガス排出管512から排出された揮発成分は、排ガス処理部10と同様な燃焼酸化回収手段によって燃焼酸化された後に有害物質が回収され、無害化された気体のみが大気へ放散される。揮発成分が除かれた粗製炭素繊維は、配管53−2を経由して第2の熱処理炉52へ送出される。   The first heat treatment furnace 51 is a heat treatment means for removing volatile components from the crude carbon fiber and volatile components sent from the reaction furnace 31, and has a furnace section 511 and a gas discharge pipe 512. Composed. Of the crude carbon fibers and volatile components sent from the reaction furnace 31, volatile components are vaporized in a furnace section 511 maintained at, for example, 800 to 1500 ° C., and then removed from the gas exhaust pipe 512. Volatile components discharged from the gas discharge pipe 512 are burned and oxidized by the combustion oxidation recovery means similar to the exhaust gas processing unit 10, and then harmful substances are recovered, and only the harmless gas is released to the atmosphere. The crude carbon fiber from which the volatile components have been removed is sent to the second heat treatment furnace 52 via the pipe 53-2.

第2の熱処理炉52は、揮発成分が取り除かれた粗製炭素繊維を黒鉛化するための加熱処理を行う手段であり、炉部521と、ガス排出管522とを有して構成される。配管53−2を経由して第1の熱処理炉51から炉部521に供給された粗製炭素繊維は、炉部521において例えば1300〜3000℃に維持されることにより黒鉛化処理が施され、この処理によって生じた排ガスは、ガス排出管522から排出される。ガス排出管522から排出された排ガスは、排ガス処理部10と同様な燃焼酸化回収手段によって燃焼酸化された後に有害物質が回収され、無害化された気体のみが大気へ放散される。なお、本実施例では、二段階の加熱処理(熱処理)を経て組成炭素繊維から製品化された炭素繊維(CNT)を得るようにしているが、本発明は、これに限定されるものではなく、所望の炭素繊維(CNT)に応じ800〜3000℃の熱処理を少なくとも一段階施せば良い。   The second heat treatment furnace 52 is a means for performing a heat treatment for graphitizing the crude carbon fiber from which the volatile components have been removed, and includes a furnace part 521 and a gas discharge pipe 522. The crude carbon fiber supplied from the first heat treatment furnace 51 to the furnace part 521 via the pipe 53-2 is graphitized by being maintained at, for example, 1300 to 3000 ° C. in the furnace part 521. The exhaust gas generated by the treatment is discharged from the gas discharge pipe 522. The exhaust gas discharged from the gas exhaust pipe 522 is burnt and oxidized by the combustion oxidation recovery means similar to the exhaust gas processing unit 10, and then harmful substances are recovered, and only the harmless gas is released to the atmosphere. In the present embodiment, the carbon fiber (CNT) produced from the composition carbon fiber is obtained through two-stage heat treatment (heat treatment), but the present invention is not limited to this. Depending on the desired carbon fiber (CNT), heat treatment at 800 to 3000 ° C. may be performed in at least one step.

なお、気相法炭素繊維を製造する反応炉31内は水素雰囲気であり、空気の浸入による事故を未然に防ぐ目的で系内圧力を0.1〜5kPaに制御している。加熱処理を行う炉部511および炉部512にあっても空気の浸入による事故を未然に防ぐため系内圧力を0.1〜5kPaに制御している。   The reactor 31 for producing vapor grown carbon fiber has a hydrogen atmosphere, and the system pressure is controlled to 0.1 to 5 kPa for the purpose of preventing accidents caused by air intrusion. Even in the furnace section 511 and the furnace section 512 that perform the heat treatment, the system pressure is controlled to 0.1 to 5 kPa in order to prevent accidents due to air intrusion.

図2を用いて、炭化水素及び硫化水素を含む排ガスを燃焼酸化した後、湿式吸収処理をする排ガス処理部10の詳細な構成を説明する。   The detailed configuration of the exhaust gas treatment unit 10 that performs wet absorption treatment after combustion and oxidation of exhaust gas containing hydrocarbons and hydrogen sulfide will be described with reference to FIG.

反応処理および加熱処理に伴なう排ガスは、上記系内圧力で系外に押し出され、燃焼酸化設備である排ガス処理部10に送られる。排ガス処理部10は、燃焼酸化塔11と、湿式吸収塔12と、循環タンク13とから構成され、これらは、それぞれ配管14−2,14−3、14−4によって接続されている。配管14−2には熱交換器17が、配管14−4には循環ポンプ15が、配管14−5には排出ブロワ16が設けられている。   The exhaust gas accompanying the reaction treatment and the heat treatment is pushed out of the system at the above system pressure and sent to the exhaust gas treatment unit 10 which is a combustion oxidation facility. The exhaust gas treatment unit 10 includes a combustion oxidation tower 11, a wet absorption tower 12, and a circulation tank 13, which are connected by pipes 14-2, 14-3, and 14-4, respectively. The pipe 14-2 is provided with a heat exchanger 17, the pipe 14-4 is provided with a circulation pump 15, and the pipe 14-5 is provided with a discharge blower 16.

燃焼酸化塔11には、パイロットバーナー111と、助燃バーナー112と、排ガスノズル113と、空気ノズル114とが設けられている。パイロットバーナー111および助燃バーナー112は、都市ガスやプロパンガス等の燃料の燃焼により、バーナー構造の排ガスノズル113を介して燃焼酸化塔11内に導入された、反応炉31からの排ガス(以下、燃焼酸化対象排ガスという)を燃焼酸化し、炭化水素から水と二酸化炭素を生成するとともに、硫化水素から硫黄酸化物を生成する。燃焼酸化対象排ガスの燃焼状態は、該燃焼酸化対象排ガスの温度を所要の範囲内に維持することにより適切に制御される。具体的には、燃焼酸化対象排ガスの温度が400〜600℃になるように、導入する空気量を調整する。燃焼状態制御は、燃焼酸化対象排ガスの導入量と、別途導入される空気量との比で行っても良く、この場合、理論燃焼空気量の1.2倍から1.6倍となる比で制御すればよい。あるいは燃焼酸化対象排ガス中の残存酸素濃度で制御しても良く、この場合、残存酸素濃度が4%〜8%となるように制御すればよい。   The combustion oxidation tower 11 is provided with a pilot burner 111, an auxiliary combustion burner 112, an exhaust gas nozzle 113, and an air nozzle 114. The pilot burner 111 and the auxiliary combustion burner 112 are exhaust gas from the reaction furnace 31 (hereinafter referred to as combustion) introduced into the combustion oxidation tower 11 through the exhaust gas nozzle 113 having a burner structure by combustion of fuel such as city gas or propane gas. Combusted and oxidized (referred to as oxidation target exhaust gas), water and carbon dioxide are generated from hydrocarbons, and sulfur oxides are generated from hydrogen sulfide. The combustion state of the exhaust gas subject to combustion oxidation is appropriately controlled by maintaining the temperature of the exhaust gas subject to combustion oxidation within a required range. Specifically, the amount of air to be introduced is adjusted so that the temperature of the combustion oxidation target exhaust gas becomes 400 to 600 ° C. Combustion state control may be performed by the ratio of the amount of exhaust gas subject to combustion oxidation and the amount of air introduced separately, in this case, the ratio is 1.2 to 1.6 times the theoretical amount of combustion air. Control is sufficient. Alternatively, the residual oxygen concentration in the combustion oxidation target exhaust gas may be controlled. In this case, the residual oxygen concentration may be controlled to be 4% to 8%.

燃焼酸化塔11で燃焼酸化され処理済みとなった排ガス(以下、処理済排ガスという)は、熱交換器17によってその体積を縮減された後に湿式吸収塔12に送られる。この実施例では、湿式吸収塔12の吸収液として苛性ソーダ水溶液を用いており、その濃度はpH4〜6である。処理済排ガスは塔底より塔の壁に対し垂直の方向で導入する。塔頂より上記吸収液をスプレーし、該処理済排ガスと向流接触させて排ガス中の二酸化炭素と硫黄酸化物を吸収する。   The exhaust gas that has been burned and oxidized in the combustion oxidation tower 11 and has been treated (hereinafter referred to as treated exhaust gas) is reduced in volume by the heat exchanger 17 and then sent to the wet absorption tower 12. In this embodiment, an aqueous caustic soda solution is used as the absorbent of the wet absorption tower 12, and its concentration is pH 4-6. The treated exhaust gas is introduced in a direction perpendicular to the tower wall from the tower bottom. The absorption liquid is sprayed from the top of the tower and brought into countercurrent contact with the treated exhaust gas to absorb carbon dioxide and sulfur oxide in the exhaust gas.

処理済排ガス中の二酸化炭素および硫黄酸化物を吸収した吸収液は、塔底より抜き出され配管14−3を介して循環タンク13に貯蔵される。この吸収液は、硫酸ナトリウムおよび炭酸ナトリウムが溶解しており、循環使用するとこれら化合物が濃縮し析出するため、循環量の1〜10%を系外にパージし排水する。循環量は、湿式吸収塔12の構造及び排ガス中の除外物質濃度及び得ようとする処理ガス中の除外物質濃度により決まる。また、吸収液は二酸化炭素と硫黄酸化物の吸収により塩基度が上昇するため、上記管理塩基度に収まるように適宜苛性ソーダ水溶液を補給する。塩基度を調整した吸収液はポンプ15で引かれ再び湿式吸収塔12に送られる。   The absorption liquid that has absorbed carbon dioxide and sulfur oxide in the treated exhaust gas is extracted from the bottom of the tower and stored in the circulation tank 13 via the pipe 14-3. In this absorption solution, sodium sulfate and sodium carbonate are dissolved, and these compounds are concentrated and precipitated when used in circulation. Therefore, 1 to 10% of the circulation amount is purged out of the system and drained. The amount of circulation is determined by the structure of the wet absorption tower 12 and the concentration of excluded substances in the exhaust gas and the concentration of excluded substances in the processing gas to be obtained. In addition, since the basicity of the absorption liquid increases due to absorption of carbon dioxide and sulfur oxides, an aqueous caustic soda solution is appropriately replenished so as to be within the control basicity. The absorption liquid whose basicity is adjusted is drawn by the pump 15 and sent to the wet absorption tower 12 again.

湿式吸収塔12で二酸化炭素および硫化水素が吸収除去され無害化されたガスは、塔頂よりブロワー16で引かれ、大気に放散される。なお、燃焼酸化塔11から湿式吸収塔12に至る処理済排ガスの温度が高い程、該処理済排ガス中の二酸化炭素および硫黄酸化物の吸収液への吸収率が低下するため、上述したように熱交換器17を設ければ、この吸収率の低下を可及的に抑えることができ、好ましいものとなる。   The gas obtained by absorbing and removing carbon dioxide and hydrogen sulfide in the wet absorption tower 12 is drawn by the blower 16 from the top of the tower and is released to the atmosphere. As the temperature of the treated exhaust gas from the combustion oxidation tower 11 to the wet absorption tower 12 is higher, the absorption rate of the carbon dioxide and sulfur oxide in the treated exhaust gas into the absorbent is decreased. If the heat exchanger 17 is provided, this decrease in absorption rate can be suppressed as much as possible, which is preferable.

本発明にかかる排ガス処理装置を用いた気相法炭素繊維製造装置の構成の概要を説明する図。The figure explaining the outline | summary of a structure of the vapor-grown carbon fiber manufacturing apparatus using the waste gas processing apparatus concerning this invention. 図1に示した気相法炭素繊維製造装置に用いる排ガス処理装置の構成を説明する図。The figure explaining the structure of the waste gas processing apparatus used for the vapor-grown carbon fiber manufacturing apparatus shown in FIG.

符号の説明Explanation of symbols

10:排ガス処理部
11:燃焼酸化塔
111:パイロットバーナー
112:助燃バーナー
113:排ガス供給ノズル
114:空気供給ノズル
12:湿式吸収塔
121:シャワーノズル
13:循環タンク
14:配管
15:循環ポンプ
16:排出ブロワ
17:熱交換器
30:CNT製造部
31:反応炉
311:原料溶液供給管
312:水素ガス供給管
313:ガス排出管
32:配管
50:CNT精製部
51:第1の熱処理炉
511:炉部
512:排ガス排出管
52:第2の熱処理炉
521:炉部
522:排ガス排出管
53:配管
70:分離部
10: exhaust gas treatment unit 11: combustion oxidation tower 111: pilot burner 112: auxiliary combustion burner 113: exhaust gas supply nozzle 114: air supply nozzle 12: wet absorption tower 121: shower nozzle 13: circulation tank 14: piping 15: circulation pump 16: Exhaust blower 17: Heat exchanger 30: CNT production part 31: Reactor 311: Raw material solution supply pipe 312: Hydrogen gas supply pipe 313: Gas exhaust pipe 32: Pipe 50: CNT purification part 51: First heat treatment furnace 511: Furnace part 512: Exhaust gas discharge pipe 52: Second heat treatment furnace 521: Furnace part 522: Exhaust gas discharge pipe 53: Pipe 70: Separation part

Claims (8)

遷移金属あるいは遷移金属の化合物と、硫黄あるいは硫黄の化合物とを触媒とし、炭素源から反応炉において気相法により炭素繊維を製造する気相法炭素繊維製造装置を構成する、反応炉で生じた排出対象となるガスを系外に排出する排ガス処理装置において、
触媒の存在下で原料ガスに熱処理を行って炭素繊維を製造する反応炉で発生し排出対象となるガスのうち難燃性を有したガスを、所定の燃焼条件で燃焼酸化する燃焼酸化手段と、
前記燃焼酸化手段で燃焼酸化されたガスから所定の有害成分を除去する有害成分除去装置と
を備えることを特徴とする排ガス処理装置。
Occurred in a reaction furnace that constitutes a vapor-phase carbon fiber production apparatus that produces carbon fiber from a carbon source by a vapor phase method in a reaction furnace using a transition metal or a compound of a transition metal and sulfur or a sulfur compound as a catalyst. In exhaust gas treatment equipment that discharges gas to be discharged out of the system,
Combustion oxidation means for burning and oxidizing a flame-retardant gas generated in a reactor for producing carbon fiber by heat-treating the raw material gas in the presence of a catalyst under a predetermined combustion condition ,
An exhaust gas treatment apparatus comprising: a harmful component removal device that removes a predetermined harmful component from the gas that is burnt and oxidized by the combustion oxidizing means.
前記有害成分除去装置が、湿式吸収手段と、循環タンクとを有し、湿式吸収手段に水またはアルカリ溶液からなる吸収液を供給して燃焼酸化ガスから所定の有害成分を吸収し、循環タンクにおいて有害成分を吸収した吸収液の一部を排除することを特徴とする請求項1に記載の排ガス処理装置。   The harmful component removal apparatus has a wet absorption means and a circulation tank, and supplies the wet absorption means with an absorption liquid made of water or an alkaline solution to absorb a predetermined harmful component from the combustion oxidizing gas. The exhaust gas treatment apparatus according to claim 1, wherein a part of the absorbing liquid that has absorbed harmful components is excluded. 遷移金属あるいは遷移金属の化合物と、硫黄あるいは硫黄の化合物とを触媒とし、炭素源から反応炉において気相法により製造された炭素繊維を、800〜3000℃の温度で熱処理する熱処理炉で生じた排出対象となるガスを系外に排出する排ガス処理装置において、
前記熱処理炉において発生し排出対象となる硫化水素ガスを、所定の燃焼条件で燃焼酸化する燃焼酸化手段と、
前記燃焼酸化手段で燃焼酸化された排ガスから所定の有害成分を水またはアルカリ溶液からなる吸収液に吸収する湿式吸収手段と、
吸収液の一部を系外に排除する循環タンクと
を備えることを特徴とする排ガス処理装置。
It was produced in a heat treatment furnace using a transition metal or a transition metal compound and sulfur or a sulfur compound as a catalyst, and carbon fiber produced by a gas phase method in a reaction furnace from a carbon source at a temperature of 800 to 3000 ° C. In exhaust gas treatment equipment that discharges gas to be discharged out of the system,
Combustion oxidation means for burning and oxidizing the hydrogen sulfide gas generated in the heat treatment furnace to be discharged under a predetermined combustion condition;
Wet absorption means for absorbing a predetermined harmful component from the exhaust gas combustion-oxidized by the combustion oxidation means into an absorption liquid consisting of water or an alkaline solution;
An exhaust gas treatment apparatus comprising: a circulation tank that excludes a part of the absorption liquid from the system.
前記湿式吸収手段により有害成分が除去されたガスを大気に放散する放散手段を含むことを特徴とする請求項2または請求項3に記載の排ガス処理装置。   The exhaust gas treatment apparatus according to claim 2 or 3, further comprising a diffusion unit that diffuses the gas from which harmful components have been removed by the wet absorption unit to the atmosphere. 遷移金属あるいは遷移金属の化合物と、硫黄あるいは硫黄の化合物とを触媒とし、炭素源から反応炉において気相法により炭素繊維を製造する製造工程において生じた排出対象となるガス、および前記製造工程により製造された炭素繊維を熱処理炉において800〜3000℃の温度で熱処理する際に生じた排出対象となるガスの少なくとも一方を系外に排出する排ガス処理装置において、
前記排出対象となるガスから所定の有害成分を除去する有害成分除去装置を含むことを特徴とする排ガス処理装置。
A transition metal or a transition metal compound and sulfur or a sulfur compound as a catalyst, a gas to be discharged in a production process for producing carbon fiber from a carbon source by a gas phase method in a reaction furnace, and the production process In the exhaust gas treatment apparatus for discharging at least one of the gases to be discharged generated when the produced carbon fiber is heat-treated in a heat treatment furnace at a temperature of 800 to 3000 ° C.,
An exhaust gas treatment apparatus comprising a harmful component removal device for removing predetermined harmful components from the gas to be discharged.
前記有害成分除去装置は、湿式吸収手段と、循環タンクとを有し、湿式吸収手段に水またはアルカリ溶液からなる吸収液を供給して排出対象となるガスの有害物質を吸収液に吸収し、有害物質を吸収した吸収液の一部を循環タンクにて系外へ排除することを特徴とする請求項5に記載の排ガス処理装置。   The harmful component removal apparatus has a wet absorption means and a circulation tank, supplies an absorption liquid composed of water or an alkaline solution to the wet absorption means, and absorbs harmful substances of gas to be discharged into the absorption liquid, 6. The exhaust gas treatment apparatus according to claim 5, wherein a part of the absorbing liquid that has absorbed the harmful substance is excluded from the system by a circulation tank. 前記排出対象となるガスは、炭化水素ガスを含むことを特徴とする請求項5または請求項6に記載の排ガス処理装置。   The exhaust gas treatment apparatus according to claim 5 or 6, wherein the gas to be discharged contains a hydrocarbon gas. 前記排出対象となるガスは、硫化水素ガスを含むことを特徴とする請求項1ないし請求項7のいずれか一項に記載の排ガス処理装置。
The exhaust gas treatment apparatus according to any one of claims 1 to 7, wherein the gas to be discharged contains hydrogen sulfide gas.
JP2004029135A 2004-02-05 2004-02-05 Waste gas treatment device for carbon fiber manufacturing device by vapor-phase method Pending JP2005221150A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004029135A JP2005221150A (en) 2004-02-05 2004-02-05 Waste gas treatment device for carbon fiber manufacturing device by vapor-phase method
PCT/JP2005/001692 WO2005075890A1 (en) 2004-02-05 2005-02-04 Apparatus for treating exhaust gas in apparatus for producing carbon fiber by gas phase method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004029135A JP2005221150A (en) 2004-02-05 2004-02-05 Waste gas treatment device for carbon fiber manufacturing device by vapor-phase method

Publications (1)

Publication Number Publication Date
JP2005221150A true JP2005221150A (en) 2005-08-18

Family

ID=34835942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004029135A Pending JP2005221150A (en) 2004-02-05 2004-02-05 Waste gas treatment device for carbon fiber manufacturing device by vapor-phase method

Country Status (2)

Country Link
JP (1) JP2005221150A (en)
WO (1) WO2005075890A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009028622A (en) * 2007-07-26 2009-02-12 Mitsuru Ozawa Carbon dioxide recovery apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6491147B2 (en) * 2016-07-20 2019-03-27 大陽日酸株式会社 Exhaust gas treatment method, exhaust gas treatment device, and carbon fiber production system
CN107420883B (en) * 2017-08-03 2019-03-19 中国环境科学研究院 A kind of carbon industry exhausted air quantity and pollutant become Zero discharging system and method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62191406A (en) * 1986-02-17 1987-08-21 Jgc Corp Treatment of waste sulfuric acid and ammonia-containing gas
JP3971843B2 (en) * 1997-11-21 2007-09-05 カンケンテクノ株式会社 Semiconductor manufacturing exhaust gas abatement apparatus and abatement method
JP3397155B2 (en) * 1999-01-05 2003-04-14 昭和電工株式会社 Method for treating exhaust gas from vapor grown carbon fiber
JP4000258B2 (en) * 2000-12-28 2007-10-31 日機装株式会社 Method for producing vapor grown carbon fiber
JP2003146635A (en) * 2001-08-27 2003-05-21 Mitsubishi Heavy Ind Ltd Method, apparatus and equipment for manufacturing carbon nanomaterial
JP2003329233A (en) * 2002-05-15 2003-11-19 Babcock Hitachi Kk Exhaust gas processing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009028622A (en) * 2007-07-26 2009-02-12 Mitsuru Ozawa Carbon dioxide recovery apparatus

Also Published As

Publication number Publication date
WO2005075890A1 (en) 2005-08-18

Similar Documents

Publication Publication Date Title
CN104359113B (en) A kind of waste gas, liquid waste incineration system and method
JPWO2009060885A1 (en) Fluidized incinerator and sludge fluidized incineration method using the same
JP2006312143A (en) Method for decomposing low-concentration methane
JP2018527547A (en) Reduction burner that allows oxidation reaction and reduction reaction to be separated and syngas recycling system using the same
US20110303134A1 (en) Method and apparatus for treating solid wastes
JP2005221150A (en) Waste gas treatment device for carbon fiber manufacturing device by vapor-phase method
JP2003010641A (en) Method and apparatus for purifying waste gas in coke oven gas treatment
JP2004036983A (en) Method and device for treating ammonia containing gas
KR100447009B1 (en) Treatment method of waste and apparatus thereof
CN113091075A (en) Control method of dioxin in waste salt pyrolysis
CN104418454A (en) Treatment method of organic wastewater
JP7254465B2 (en) Mercury recovery device and mercury recovery method
JP5723414B2 (en) Incineration treatment apparatus and incineration treatment method for waste liquid containing chromium
JP2011036772A (en) Mechanism for deodorizing and cleaning voc gas
JP2006026525A (en) Exhaust gas treatment system
JP2967975B2 (en) Furnace to prevent dioxin generation
CN216799303U (en) Chemical storage tank waste gas RTO administers device
JP2004211970A (en) Combustion method and device for combustible material
WO2021192390A1 (en) Gasification system and wastewater treatment method
KR20010111703A (en) Method of recycling industrial waste and apparatus therefor
KR100919471B1 (en) System Removing Stink or Volatile Organic Compound Discharged from Industrial Complex
JP2008292091A (en) Gas treatment method and device
JP2023064219A (en) Combustion furnace exhaust gas treatment method and combustion furnace exhaust gas treatment system
JP4121645B2 (en) Method and apparatus for recovering heat from waste
JP4519338B2 (en) Method for treating ammonia-containing gas and coal gasification combined power plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061218

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080206

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090908