WO2005073604A1 - Double seat valve - Google Patents

Double seat valve Download PDF

Info

Publication number
WO2005073604A1
WO2005073604A1 PCT/JP2004/010627 JP2004010627W WO2005073604A1 WO 2005073604 A1 WO2005073604 A1 WO 2005073604A1 JP 2004010627 W JP2004010627 W JP 2004010627W WO 2005073604 A1 WO2005073604 A1 WO 2005073604A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
port
chamber
inlet
seat
Prior art date
Application number
PCT/JP2004/010627
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Uchida
Hideki Sekiguchi
Michiaki Ohno
Original Assignee
Kabushiki Kaisha Saginomiya Seisakusho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004023620A external-priority patent/JP4431414B2/en
Application filed by Kabushiki Kaisha Saginomiya Seisakusho filed Critical Kabushiki Kaisha Saginomiya Seisakusho
Publication of WO2005073604A1 publication Critical patent/WO2005073604A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/34Cutting-off parts, e.g. valve members, seats
    • F16K1/44Details of seats or valve members of double-seat valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/34Cutting-off parts, e.g. valve members, seats
    • F16K1/36Valve members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/34Cutting-off parts, e.g. valve members, seats
    • F16K1/42Valve seats

Definitions

  • the present invention relates to a double-seat valve, and more particularly, to a double-seat valve that controls the flow rate of a refrigerant in a refrigeration, “refrigeration,” air conditioning, and hot water supply cycle.
  • valve ports are arranged on a valve housing on the same axis to face each other, and the two valve ports are formed into a valve body.
  • a double-seat valve that opens and closes with each of the two valve sections (for example, Patent Document 1).
  • a valve opening / closing direction force due to a pressure difference between a valve upstream side and a valve downstream side acts on both of the two valve sections, thereby canceling (cancelling) the two forces.
  • large-flow motorized valves such as motorized valves used in supercritical cycles using carbon dioxide refrigerant, etc., in which the driving force can be reduced and the high-pressure side refrigerant pressure exceeds the critical pressure of the refrigerant.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2001-324043
  • the problem to be solved by the present invention is to provide a double-seat valve that has a simple structure, can stably perform high-precision flow control, and can be downsized.
  • the double-seat valve according to the first invention is a valve housing having a first inlet / outlet port and a second inlet / outlet port, a cylindrical member fixed to the valve housing, and a hollow portion of the cylindrical member.
  • a rod-shaped valve body arranged so as to be movable in the axial direction, and the cylindrical member has A first valve port and a second valve port are formed concentrically on the same axis at a predetermined interval in the axial direction in the hollow portion, and the hollow portion has an end on one side of the second valve port. Chambers are respectively defined between the other side of the second valve port and one side of the first valve port, and the second chamber is defined on the other side of the first valve port.
  • the first and second valve ports communicate with the first chamber port and the second valve port in the radial direction through the cylindrical member.
  • a lateral hole communicating with an outlet port is formed, and the valve element extends axially across the end chamber, the second valve port, and the intermediate chamber, and moves in the first direction by axial movement.
  • the double-seat valve according to the second invention is provided with a valve housing having a first inlet / outlet port and a second inlet / outlet port, and movably arranged in the axial direction with respect to the valve housing.
  • a first valve chamber directly communicating with the first inlet / outlet port, a second valve chamber, and one side of the first valve chamber.
  • a first valve port formed on the other side of the first valve chamber and communicating with the second inlet / outlet port; and a second valve port formed on the same axis as the first valve port and arranged on the same axis.
  • a second valve port communicating with the first valve chamber, the valve body extending in the axial direction across the first valve chamber and the second valve chamber; A first valve land for opening and closing the first valve port by directional movement, a second valve land for opening and closing the second valve port, and the second valve chamber And an internal passage opening to the second inlet / outlet port.
  • the two flow paths required for the double-seat valve are formed by the flow path configuration equivalent to that of the single-seat valve and the flow path configuration by the internal passage of the valve element.
  • the structure of the flow passage in the valve housing as a double-seat valve is simplified, the size of the valve housing can be reduced, and the structure and shape of the valve body become complicated simply by forming a hollow internal passage. There is no.
  • the first inlet / outlet port ⁇ the side hole ⁇ the intermediate chamber ⁇ the first valve port ⁇ the second inlet / outlet port has the first inlet / outlet port.
  • Another flow path with second inlet / outlet port Is formed, and the opening degrees of the first valve port and the second valve port are simultaneously changed by the first valve land portion and the second valve land portion in accordance with the axial movement of the valve element.
  • the flow path from the first inlet / outlet port ⁇ side hole ⁇ intermediate chamber ⁇ first valve port ⁇ second inlet / outlet port has the same flow path configuration as the single seat valve, and the first inlet / outlet port ⁇ Since the main part of the flow passage from the side hole ⁇ intermediate chamber ⁇ second valve port ⁇ end chamber ⁇ internal passage ⁇ second inlet / outlet port is constituted by the internal passage of the valve body, the valve housing as a double seat valve In this case, the flow path configuration is simplified, and the size of the valve housing can be reduced. Also, the valve body does not become complicated in structure and shape only by forming a hollow internal passage.
  • the first inlet / outlet port ⁇ the first valve chamber ⁇ the first valve port ⁇ the second inlet / outlet port has a first passage and a second passage.
  • Another flow path by the 2nd inlet / outlet port is formed, and according to the axial movement of the valve element Accordingly, the opening degrees of the first valve port and the second valve port are simultaneously changed by the first valve land portion and the second valve land portion.
  • the flow path from the first inlet / outlet port ⁇ the first valve chamber ⁇ the first valve port ⁇ the second inlet / outlet port has the same flow path configuration as a single-seat valve.
  • the flow path by the second inlet / outlet port is composed of the internal passage of the valve body, so the double seat.
  • the flow path configuration in the valve housing as a valve is simplified, and the size of the valve housing can be reduced. Also, the valve body does not become complicated in structure and shape only by forming a hollow internal passage.
  • FIG. 1 is a cross-sectional view showing Embodiment 1 of a double-seat valve according to the present invention.
  • FIG. 2 is an enlarged sectional view of a main part of Embodiment 1 of the double-seat valve according to the present invention.
  • FIG. 3 is a sectional view taken along line AA of FIG. 2.
  • FIG. 4 is a sectional view taken along the line B_B in FIG. 2.
  • FIG. 5 is a sectional view showing Embodiment 2 of the double-seat valve according to the present invention.
  • FIGS. 6 (a) and (b) are enlarged cross-sectional views of essential parts of a double-seat valve according to Embodiment 2 of the present invention when the valve is closed and when the valve is opened.
  • FIG. 7 is a sectional view showing Embodiment 3 of the double-seat valve according to the present invention.
  • FIGS. 8 (a) and (b) are enlarged cross-sectional views of essential parts of a double-seat valve according to Embodiment 3 of the present invention when the valve is closed and when the valve is opened.
  • Garden 9 is a plan view of a lower valve shaft guide member used for the double-seat valve of the third embodiment.
  • FIG. 12 is a bottom view of the valve element of the double-seat valve of the fourth embodiment.
  • FIG. 14 is a block diagram showing a fifth embodiment which is one embodiment.
  • FIGS. 1 to 4 show a first embodiment of a double-seat valve according to the present invention.
  • the double seat valve according to the first embodiment is indicated by reference numeral 10 as a whole.
  • the double seat valve 10 has a valve housing 11.
  • the valve housing 11 includes a first inlet / outlet port (inlet port) 12 and a
  • a second inlet / outlet port (outlet port) 13 and a chamber 14 are formed.
  • the first inlet / outlet port 12 is formed as a lateral hole, and the first inlet / outlet port 12 has a lateral joint 1
  • the second inlet / outlet port 13 is formed as a pilot hole, and the lower joint 16 is connected to the second inlet / outlet port 13.
  • the chamber 14 has a lateral hole shape and directly communicates with the first inlet / outlet port 12.
  • upper and lower through holes 17A and 17B concentric with the second inlet / outlet port 13 are formed above and below the chamber 14, and a cylindrical member 20 is fitted and fixed in the upper and lower through holes 17A and 17B. ing.
  • the cylindrical member 20 fits into the upper and lower through holes 17A at the distal end 20A, and is directly connected to the lower joint 16. And extends vertically across the chamber 14 and fits into the upper and lower through-holes 17B at the intermediate portion 20B.
  • the cylindrical member 20 has a hollow shaft shape, and a first valve port 21 is provided by a first valve seat 23 and a second valve port 22 is provided by a second valve seat 24 in the hollow portion. They are formed concentrically at predetermined intervals in the direction.
  • the second valve port 22 has a slightly larger port diameter than the first valve port 21 (a size through which a first valve land portion 31 described later can pass) for assembling the valve body.
  • the hollow portion of the cylindrical member 20 has an end chamber 25 on one side (upper side) of the second valve port 22, and the other side (lower side) of the second valve port 22 and the first valve port.
  • An intermediate chamber 26 is defined between one side (upper side) of the first valve port 21 and a lower joint 16 (second inlet / outlet port 13) at the other side (lower side) of the first valve port 21. ) Directly.
  • a lateral hole 27 is formed to penetrate in the radial direction.
  • the lateral hole 27 penetrates radially through an intermediate position in the axial direction between the first valve port 21 and the second valve port 22, and passes through the intermediate chamber 26, the chamber 14, and the horizontal joint 15 (the first inlet / outlet port 1). 2) is communicated.
  • the cylindrical member 20 has a first bearing hole 28 for supporting a valve shaft portion 33 of a valve body 30 to be described later in an axial direction (vertical direction) on an extension (upper side) of the end chamber 25 in the axial direction. , And are formed concentrically with the second valve ports 21 and 22. As a result, the cylindrical member 20 is formed as a single component and serves as both a valve seat member and a valve body support member.
  • a rod-shaped valve body 30 is disposed in the hollow portion of the cylindrical member 20 so as to be movable in the axial direction.
  • the valve body 30 extends in the axial direction across the end chamber 25, the second valve port 22, and the intermediate chamber 26, and has a solid shaft shape (round bar shape) extending toward the end chamber 25 (upper side).
  • the valve shaft 33 is integrally formed, and the valve shaft 33 is fitted into the bearing hole 28 of the cylindrical member 20 so as to be movable in the axial direction, thereby forming a circular shape. It is supported by the cylindrical member 20. By this fitting, the valve body 30 is supported via the cylindrical member 20 so as to be movable in the axial direction with respect to the valve housing 11.
  • the valve element 30 has a conical first valve land portion 31 that opens and closes the first valve port 21 by axial movement and a conical first valve land portion 31 that opens and closes the second valve port 22 by the same axial movement. And a second valve land portion 32.
  • the distal end (lower end) of the valve body 30 faces the lower joint 16, and a drilled hole 34A with a bottom is drilled from the distal end of the valve body 30 so that the valve body 30 is located in the end chamber 25.
  • a lateral hole 34B is penetrated in the radial direction in the portion to be formed.
  • the drill hole 34A and the lateral hole 34B form an internal passage 34 that opens the end chamber 25 to the lower joint 16 (the second inlet / outlet port 13).
  • the four horizontal holes 34B are also formed in a cross at each rotation angle of 90 degrees.
  • An upper part 20C of the cylindrical member 20 protrudes from the upper part of the valve housing 11, and a lower lid member 35 is fixed concentrically with the cylindrical member 20 at this part.
  • a rotor case 41 of a stepping motor 40 is butt-welded to the lower lid member 35 in an airtight manner.
  • the rotor case 41 has a can shape having a cylindrical portion 41A and a hemispherical dome portion 41B integrally formed with the cylindrical portion 41A and closing the upper end of the cylindrical portion 41A. It is composed of a non-magnetic material.
  • a rotor 42 is rotatably arranged inside the cylindrical portion 41A of the rotor case 41.
  • the outer periphery of the rotor 42 is multipolar magnetized.
  • a cylindrical female screw member 43 is fixed to the center of the rotor 42.
  • the female screw member 43 and the rotor 42 are relatively rotatably connected to the upper end 33A of the valve body 30 by a connecting member 44, a fixing member 45, a collar member 46, a spring 47, and the like.
  • a male screw member 36 is concentrically fixed to the upper end 20D of the cylindrical member 20.
  • the male screw member 36 has a hollow shaft shape, and the valve shaft 33 of the valve body 30 passes through the hollow 36A.
  • a male screw 36B is formed on the outer peripheral surface of the male screw member 36, and the male screw 36B is screw-engaged with a female screw 43A formed on the inner peripheral surface of the female screw member 43. The rotation of the rotor 42 is converted into linear motion by this screw engagement.
  • a stator assembly 48 of the stepping motor 40 is positioned and mounted on an outer peripheral portion of the rotor case 41 by a locking piece 49.
  • the stator assembly 48 consists of an outer box 50, It has a stator coil 51, a plurality of magnetic pole teeth 52, an electrical connector portion 53, and the like, and is liquid-tightly sealed by a sealing resin.
  • a stopper holding rod 55 is suspended and fixed inside the hemispherical dome portion 41B.
  • a spiral guide 56 is attached to the stopper holding rod 55, and a movable stopper 57 is engaged with the spiral guide 56.
  • the movable stopper 57 is vertically kicked by a pin 58 attached to the rotor 42, guided by a spiral guide 56 with the rotation of the rotor 42, and vertically moved while turning.
  • the movable stopper 57 contacts the stopper portion 59 at the lower end of the stopper holding rod 55 or the stopper portion 60 at the upper end of the spiral guide 56, thereby rotating the rotor 42 in the valve closing direction or the valve opening direction. Restrict.
  • the stepping motor 40 rotationally drives the rotor 42 by energizing the stator coil 51.
  • the rotational movement of the rotor 42 is converted into a linear movement by the screw engagement between the female screw 43A and the male screw 36B, and the rotor 42 moves in the rotor case 41 in the axial direction (vertical direction).
  • the axial movement of the rotor 42 is transmitted to the valve body 30, and the valve body 30 moves in the axial direction (vertical direction).
  • the first valve land 31 of the valve element 30 adjusts the opening of the first valve port 21, and the second valve land 32 of the valve element 30 connects the second valve port 22
  • the opening degree is adjusted, and substantially the same flow control is performed in both the first valve port 21 and the second valve port 22.
  • the flow path configuration is the same as the flow path of the single seat valve, and the horizontal joint 15 (first inlet / outlet port 12) ⁇ chamber 14 ⁇ side hole 27 ⁇ intermediate chamber 26 ⁇ second valve port 22 ⁇ end chamber 25 ⁇ inside
  • the passage formed by the passage 34 ⁇ the lower joint 16 (the second inlet / outlet port 13) has a main portion constituted by the internal passage 34 of the valve body 30.
  • the flow path configuration in the valve housing 11 as a double seat valve is simplified, and the size of the valve housing 11 can be reduced.
  • the valve element 30 since the valve element 30 only needs to form the hollow internal passage 34, the structure and shape of the valve element 30 are not complicated.
  • cylindrical member 20 is a single part, which also serves as a valve seat member and a valve body supporting member, the concentricity between the first and second valve ports 21 and 22 and the bearing hole 28 is high. And the number of parts is reduced.
  • FIGS. 5, 6 (a) and 6 (b) show a second embodiment of a double-seat valve according to the present invention.
  • parts corresponding to FIGS. 1 to 4 are denoted by the same reference numerals as in FIG.
  • the double-seat valve according to the second embodiment is indicated by reference numeral 100 as a whole.
  • the double seat valve 100 has a valve housing 101.
  • the valve housing 101 includes a first inlet / outlet port (inlet port) 102, a second inlet / outlet port (outlet port) 103, a lower valve chamber (first valve chamber) 104, and an upper valve chamber ( A second valve chamber 105 is formed.
  • the first inlet / outlet port 102 is formed as a horizontal hole, and a transverse joint 106 is connected to the first inlet / outlet port 102.
  • the second inlet / outlet port 103 is formed as a pilot hole, and a lower joint 107 is connected to the second inlet / outlet port 103.
  • the lower valve chamber 104 is shaped like a lateral hole, and directly communicates with the first inlet / outlet port 102.
  • a first valve port 108 communicating with the second inlet / outlet port 103 is formed in a lower bottom surface portion of the lower valve chamber 104.
  • a second valve port 109 communicating with the upper valve chamber 105 is formed on the upper surface of the lower valve chamber 104.
  • the first valve port 108 and the second valve port 109 are concentrically arranged on the same axis, are above and below the lower valve chamber 104, and face each other. Also in this embodiment, the second valve port 109 has a slightly larger port diameter than the first valve port 108 (a size through which a first valve land portion 31 described later can pass) because of the assembly of the valve element. ing.
  • a valve shaft guide member 110 also serving as an attachment for the male screw member 36 is fixed to the upper part of the valve housing 101 by caulking.
  • the valve shaft guide member 110 supports the valve shaft portion 33 of the valve body 30 movably in the axial direction by a bearing hole 111 formed at the center. With this, the valve body 30 is supported movably in the axial direction with respect to the valve housing 101 via the valve shaft guide member 110.
  • the valve element 30 is equivalent to that of the first embodiment, and extends across the lower valve chamber 104, the second valve port 109, and the upper valve chamber 105 in the axial direction, and the valve
  • the shaft 33 is integrally provided.
  • the valve element 30 has a cylindrical first valve land portion 31 that opens and closes the first valve port 108 by axial movement, and a conical shape that opens and closes the second valve port 109 by the same axial movement. And a second valve land portion 32.
  • the distal end (lower end) of the valve body 30 faces the lower joint 107, and the valve body 30 is provided with a drilled hole 34A having a bottom from the distal end, and the valve body 30 is positioned on the upper side.
  • a lateral hole 34B is radially penetrated through a portion located in the valve chamber 105.
  • the drill hole 34A and the lateral hole 34B form an internal passage 34 that opens the upper valve chamber 105 to the lower joint 107 (second inlet / outlet port 103).
  • the configuration of the stepping motor 40, the feed screw and the like by the male screw member 36 and the female screw member 43 is the same as that of the first embodiment, so that the description of them to avoid redundant duplication will be omitted.
  • the first valve land portion 31 of the valve element 30 is connected to the first valve port 108 by moving the valve element 30 in the axial direction (up and down) by driving the stepping motor 40. While adjusting the opening, the second valve land 32 of the valve body 30 adjusts the opening of the second valve port 109, and the first valve port 108 and the second valve port 109 Approximately equivalent flow control is performed.
  • the horizontal joint 106 (first inlet / outlet port 102) ⁇ lower valve chamber 104 ⁇ first valve port 108 ⁇ lower joint 107 (second inlet / outlet port 103)
  • Flow path and horizontal joint 10 6 (first inlet / outlet port 102) ⁇ lower valve chamber 104 ⁇ second valve port 109 ⁇ upper valve chamber 105 ⁇ internal passage 34 ⁇ lower joint 107 (second inlet / outlet port
  • a fluid such as a refrigerant flows through another flow path according to 103).
  • the lateral joint 106 (first inlet / outlet port 102) ⁇ lower valve chamber: 104 ⁇ first valve port 108 ⁇ lower joint 107 (second inlet / outlet port 103) has a flow path of a single seat valve. It has the same flow path configuration as the flow path, and the horizontal joint 106 (first inlet / outlet port 102) ⁇ lower valve chamber: 104 ⁇ second valve port 109 ⁇
  • the upper valve chamber 105 ⁇ the internal passage 34 ⁇ the flow path formed by the lower joint 107 (second inlet / outlet port 103) has a main part constituted by the internal passage 34 of the valve body 30.
  • the flow path configuration in the housing 101 is simplified, and the size of the valve housing 101 can be reduced. Also, since the valve element 30 only needs to form the hollow internal passage 34, the structure and shape of the valve element 30 do not become complicated.
  • a supercritical cycle using a carbon dioxide refrigerant or the like requires an ultra-high pressure and a large flow rate.
  • a double port structure of a double seat valve is used.
  • the two valve port diameters are as identical as possible, and the ultra-high pressure acting on the valve body 30 can be canceled (pressure balance).
  • the upper valve (second valve land 32) and the lower valve (first valve land) 31) must be seated correctly.
  • valve lift-flow characteristics valve lift-flow characteristics
  • the shapes (straight and tapered) of the first valve land portion 31 and the second valve land portion 32 of the valve body 30 and the first The shape (taper and straight) of each of the valve port 108 and the second valve port 109 is individually set to achieve the same flow characteristics at the two valve ports.
  • FIGS. 7, 8 (a), (b), and FIG. 9 show a third embodiment of the double-seat valve according to the present invention.
  • FIG. 7 to FIG. 9 the portions corresponding to FIG. 1 and FIG. 5 are denoted by the same reference numerals as those in FIG.
  • a cylindrical lower extension valve shaft portion 37 is formed at the lower end of the valve body 30.
  • the lower extension valve shaft portion 37 passes through the center of the second inlet / outlet port 103 in the axial direction (upward and downward).
  • a lower valve shaft guide member 112 is fixed to the valve housing 101 together with the lower joint 107.
  • the lower valve shaft guide member 112 supports the lower extension valve shaft portion 37 of the valve body 30 movably in the axial direction by a bearing hole 113 formed at the center.
  • valve element 30 moves the upper side, that is, the feed screw mechanism side of the male screw member 36 and the female screw member 43 in the axial direction with respect to the valve housing 101 via the valve shaft guide member 110.
  • the lower valve shaft guide is provided on the lower side, that is, on the opposite side of the feed screw mechanism across the first valve land 31 and the second valve land 32. It is movably supported in the axial direction with respect to the valve housing 101 via a member 112.
  • the valve element 30 has a two-point support structure, and when the valve is opened, the valve element 30 is prevented from swaying and vibrating due to the fluid flowing in the valve housing 101, and the flow rate control is stabilized. Also, the fluid passing noise is reduced.
  • the lower valve shaft guide member 112 has a plurality of through holes (through holes) 114 formed around the bearing hole 113 so as not to obstruct the flow of fluid in the lower joint 107.
  • FIGS. 10, 11, and 12 show a fourth embodiment of the double-seat valve according to the present invention.
  • parts corresponding to FIGS. 1 and 5 are denoted by the same reference numerals as those in FIG. 1, and description thereof is omitted.
  • the first valve land portion 31 is configured as a separate component from the valve main body 120 integrally having the second valve land portion 32 and the valve shaft portion 33.
  • the valve body 30 is composed of the valve body 120 and the first valve land portion 31.
  • the first valve land portion 31 is a cylindrical component, and has an internal thread 31A formed in the inner peripheral portion.
  • a male screw 120A is formed on the outer periphery of the valve land mounting portion of the valve body 120.
  • the female screw 31A of the first valve land 31 is screwed into the male screw 120A.
  • the axial mounting position of the first valve land portion 31 with respect to the valve body 120 can be finely adjusted. This fine adjustment is performed with respect to the first valve land 108A around the valve seat 108A around the first valve port 108 and the valve seat 109A around the second valve port 109 where the axial separation distance is fixed. The distance is set so that both the first and second valve lands 32 are simultaneously seated (the distance between the first and second valve lands 31 and 32 in the axial direction).
  • the lower end portion 120B of the valve body 120 is swaged into the swaging engagement recess 31B formed in the first valve land portion 31, so that the first valve land portion 31 is brought into contact with the valve body 120. It is stopped and fixed.
  • four squeezing engagement recesses 31B are provided at 90 ° intervals, but it is sufficient if at least one squeezing engagement recess 31B is provided.
  • the shape of 31B is not limited to a semicircle, but may be a triangle or a rectangle.
  • the first valve land portion 31 is configured as a separate component from the valve body 120 having the second valve land portion 32 integrally, and the valve body 120 of the first valve land portion 31 is formed.
  • both the first valve land 31 and the second valve land 32 By adjusting the mounting position with respect to, even if there is a manufacturing error in the axial separation between the valve seat 108A and the valve seat 109A, both the first valve land 31 and the second valve land 32 The fully closed state in which the seat is seated can be reliably obtained, and the amount of valve leakage can be eliminated or reduced.
  • first valve land portion 31 is configured as a separate component from the valve body 120 having the second valve land portion 32 integrally, the first valve land portion 31 can be assembled easily. However, a design that is larger than or equal to the valve seat member 109A around the second valve port 109 is also possible.
  • FIG. 13 is an embodiment of a hot water supply cycle apparatus using a CO refrigerant (carbon dioxide refrigerant) in which the double-seat valve 10 or 100 of the first or second, third, or fourth embodiment is used. 5 is shown.
  • CO refrigerant carbon dioxide refrigerant
  • This hot water supply cycle device is a heat pump type water heater, and has a CO refrigerant circulation circuit including a compressor 71, a gas cooler 72 corresponding to a condenser, an electric double-seat valve 10 or 100, and an evaporator 73. Then, heat exchange is performed between the high-temperature CO refrigerant passing through the gas cooler 72 and the cold water in the hot water tank 74 to produce hot water.
  • the double-seat valve of the present invention has the same flow path configuration as the single-seat valve and the flow through the internal passage of the valve element.
  • the two-way flow path required for the double-seat valve is configured by the path configuration, so the flow path configuration in the valve housing as a double-seat valve is simplified, the valve housing can be downsized, and the valve Only the formation of the hollow internal passage does not complicate the structure and shape.
  • the valve body has a valve stem extending toward the end chamber, and the cylindrical member moves the valve stem in the axial direction on an axial extension of the end chamber. It is possible to provide a structure that has a bearing hole for supporting as much as possible, and also serves as a valve seat member and a valve body support member. Thereby, the number of parts is reduced, and concentricity between the valve port and the bearing hole is also guaranteed.
  • the electric motor such as a stepping motor and the electric motor
  • a feed screw mechanism that is driven to rotate by a motor and converts the rotational motion of the electric motor into a linear motion; the feed screw mechanism and the valve body are drivingly connected; and the valve body is driven by the feed screw mechanism. It can be configured to be driven in the axial direction. As a result, an electric double seat valve is obtained.
  • the valve body is separated from the feed screw mechanism and the feed screw mechanism by the first valve land and the second valve land.
  • a force S can be applied to a structure that is supported movably in the axial direction from the valve housing. Thereby, the swing movement (vibration) of the valve element is enhanced.
  • the first valve land portion is configured as a separate component from the valve body integrally having the second valve land portion.
  • the land portion may be fixedly mounted on the valve main body, and preferably, the first valve land portion is threadedly engaged with the valve main body so that an axial mounting position can be adjusted. In this state, it is possible to obtain a structure fixed to the valve body by caulking.
  • first valve land is configured as a separate component from the valve body integrally having the second valve land, the mounting position of the first valve land with respect to the valve body is reduced. The adjustment ensures a fully closed state in which both the first valve land and the second valve land are seated together, and reduces or eliminates valve leakage.

Abstract

A double seat valve formed in a simple structure, capable of accurately and stably performing flow control, and enabling a reduction in size, comprising one flow passage formed of a lateral joint (15) → a lateral hole (27) → an intermediate chamber (26) → a first valve port (21) → a lower joint (16) and the other flow passage formed of the lateral joint (15) → the lateral hole (27) → the intermediate chamber (26) → a second valve port (22) → an end chamber (25) → an internal passage (34) → the lower joint (16).

Description

明 細 書  Specification
複座弁  Double seat valve
技術分野  Technical field
[0001] この発明は、複座弁に関し、特に、冷凍'冷蔵 '空調'給湯サイクル等の冷媒流量を 制御する複座弁に関するものである。  The present invention relates to a double-seat valve, and more particularly, to a double-seat valve that controls the flow rate of a refrigerant in a refrigeration, “refrigeration,” air conditioning, and hot water supply cycle.
背景技術  Background art
[0002] 冷凍'冷蔵 '空調'給湯サイクル等の冷媒流量を制御する電動弁として、弁ハウジン グに二つの弁ポートが同一軸線上に対向配置され、その二つの弁ポートを弁体に形 成された二つの弁部によって各々開閉する複座弁がある(例えば、特許文献 1)。  [0002] As an electric valve for controlling a refrigerant flow rate in a refrigeration 'refrigeration' air conditioning 'hot water supply cycle or the like, two valve ports are arranged on a valve housing on the same axis to face each other, and the two valve ports are formed into a valve body. There is a double-seat valve that opens and closes with each of the two valve sections (for example, Patent Document 1).
[0003] 複座弁は、弁上流側と弁下流側との圧力差による弁開閉方向力が二つの弁部の 双方に作用することにより、それを相殺 (キャンセル)でき、弁開閉に必要な駆動力を 低減でき、高圧側の冷媒圧力が冷媒の臨界圧力以上になる二酸化炭素冷媒等によ る超臨界サイクルで使用される電動弁のような高圧 ·大流量用の電動弁に適してレ、る [0003] In a double-seat valve, a valve opening / closing direction force due to a pressure difference between a valve upstream side and a valve downstream side acts on both of the two valve sections, thereby canceling (cancelling) the two forces. Suitable for high-pressure, large-flow motorized valves, such as motorized valves used in supercritical cycles using carbon dioxide refrigerant, etc., in which the driving force can be reduced and the high-pressure side refrigerant pressure exceeds the critical pressure of the refrigerant. ,
[0004] しかし、従来の複座弁は、弁ハウジングに各弁ポート毎の流路を形成するため、弁 ハウジングが単座弁に比して大型化し、また、流路が複雑になり、流量が不安定にな り易い。また、全体の構造も複雑となり、部品点数が増え、作動不具合を生じ易ぐコ スト高になる。 [0004] However, in the conventional double-seat valve, since a flow passage for each valve port is formed in the valve housing, the valve housing becomes larger than a single-seat valve, the flow passage becomes complicated, and the flow rate increases. It is easy to become unstable. In addition, the overall structure is complicated, the number of parts is increased, and the cost is high, which is likely to cause malfunctions.
特許文献 1:特開 2001 - 324043号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2001-324043
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] この発明が解決しょうとする課題は、構造が簡単で、高精度の流量制御を安定して 行うことができ、小型化が可能な複座弁を提供することである。 [0005] The problem to be solved by the present invention is to provide a double-seat valve that has a simple structure, can stably perform high-precision flow control, and can be downsized.
課題を解決するための手段  Means for solving the problem
[0006] 第 1の発明による複座弁は、第 1の入出口ポートと第 2の入出口ポートとを有する弁 ハウジングと、前記弁ハウジングに固定された円筒部材と、前記円筒部材の中空部 に軸線方向に移動可能に配置された棒状の弁体とを具備し、前記円筒部材の前記 中空部には第 1の弁ポートと第 2の弁ポートが軸線方向に所定の間隔をおいて同一 軸線上に同心形成され、前記中空部は、前記第 2の弁ポートの一方の側に端室を、 前記第 2の弁ポートの他方の側と前記第 1の弁ポートの一方の側との間に中間室を 各々画定して、前記第 1の弁ポートの他方の側にて前記第 2の入出口ポートに連通 し、前記円筒部材には前記第 1の弁ポートと前記第 2の弁ポートとの軸線方向中間位 置を径方向に貫通して前記中間室と前記第 1の入出口ポートとを連通する横穴が形 成されており、前記弁体は、前記端室、前記第 2の弁ポート、前記中間室を軸線方向 に横切って延在し、軸線方向移動によって前記第 1の弁ポートを開閉する第 1の弁ラ ンド部と、前記第 2の弁ポートを開閉する第 2の弁ランド部と、前記端室を前記第 2の 入出口ポートに開放する内部通路とを有している。 [0006] The double-seat valve according to the first invention is a valve housing having a first inlet / outlet port and a second inlet / outlet port, a cylindrical member fixed to the valve housing, and a hollow portion of the cylindrical member. A rod-shaped valve body arranged so as to be movable in the axial direction, and the cylindrical member has A first valve port and a second valve port are formed concentrically on the same axis at a predetermined interval in the axial direction in the hollow portion, and the hollow portion has an end on one side of the second valve port. Chambers are respectively defined between the other side of the second valve port and one side of the first valve port, and the second chamber is defined on the other side of the first valve port. The first and second valve ports communicate with the first chamber port and the second valve port in the radial direction through the cylindrical member. A lateral hole communicating with an outlet port is formed, and the valve element extends axially across the end chamber, the second valve port, and the intermediate chamber, and moves in the first direction by axial movement. A first valve land for opening and closing the second valve port, a second valve land for opening and closing the second valve port, and the end chamber. And an internal passage that opens into the second inlet and outlet ports.
[0007] また、第 2の発明による複座弁は、第 1の入出口ポートと第 2の入出口ポートとを有 する弁ハウジングと、前記弁ハウジングに対して軸線方向に移動可能に配置された 棒状の弁体とを具備し、前記弁ハウジングは、前記第 1の入出口ポートに直接連通 する第 1の弁室と、第 2の弁室と、前記第 1の弁室の一方の側に形成され前記第 2の 入出口ポートに連通する第 1の弁ポートと、前記第 1の弁室の他方の側に形成されて 前記第 1の弁ポートと同一軸線上に配置され前記第 2の弁室に連通する第 2の弁ポ 一トとを有しており、前記弁体は、前記第 1の弁室と前記第 2の弁室を軸線方向に横 切って延在し、軸線方向移動によって前記第 1の弁ポートを開閉する第 1の弁ランド 部と、前記第 2の弁ポートを開閉する第 2の弁ランド部と、前記第 2の弁室を前記第 2 の入出口ポートに開放する内部通路とを有している。 [0007] The double-seat valve according to the second invention is provided with a valve housing having a first inlet / outlet port and a second inlet / outlet port, and movably arranged in the axial direction with respect to the valve housing. A first valve chamber directly communicating with the first inlet / outlet port, a second valve chamber, and one side of the first valve chamber. A first valve port formed on the other side of the first valve chamber and communicating with the second inlet / outlet port; and a second valve port formed on the same axis as the first valve port and arranged on the same axis. A second valve port communicating with the first valve chamber, the valve body extending in the axial direction across the first valve chamber and the second valve chamber; A first valve land for opening and closing the first valve port by directional movement, a second valve land for opening and closing the second valve port, and the second valve chamber And an internal passage opening to the second inlet / outlet port.
発明の効果  The invention's effect
[0008] この発明による複座弁によれば、単座弁と同等の流路構成と弁体の内部通路によ る流路構成によって複座弁に必要な 2系統の流路が構成されるから、複座弁としての 弁ハウジングにおける流路構成が簡単になり、弁ハウジングの小型化が可能になり、 弁体も、中空状の内部通路を形成するだけで、構造、形状が複雑になることがない。  [0008] According to the double-seat valve of the present invention, the two flow paths required for the double-seat valve are formed by the flow path configuration equivalent to that of the single-seat valve and the flow path configuration by the internal passage of the valve element. The structure of the flow passage in the valve housing as a double-seat valve is simplified, the size of the valve housing can be reduced, and the structure and shape of the valve body become complicated simply by forming a hollow internal passage. There is no.
[0009] 即ち、第 1の発明による複座弁によれば、第 1の入出口ポート→横穴→中間室→第 1の弁ポート→第 2の入出口ポートによる流路と、第 1の入出口ポート→横穴→中間 室→第 2の弁ポート→端室→内部通路→第 2の入出口ポートによるもう一つの流路と が形成され、弁体の軸線方向移動に応じて第 1の弁ランド部、第 2の弁ランド部により 、第 1の弁ポート、第 2の弁ポートの開度が同時に変化する。 That is, according to the double-seat valve of the first invention, the first inlet / outlet port → the side hole → the intermediate chamber → the first valve port → the second inlet / outlet port has the first inlet / outlet port. Outlet port → Side hole → Intermediate chamber → Second valve port → End chamber → Internal passage → Another flow path with second inlet / outlet port Is formed, and the opening degrees of the first valve port and the second valve port are simultaneously changed by the first valve land portion and the second valve land portion in accordance with the axial movement of the valve element.
[0010] 第 1の入出口ポート→横穴→中間室→第 1の弁ポート→第 2の入出口ポートによる 流路は、単座弁と同等の流路構成であり、第 1の入出口ポート→横穴→中間室→第 2の弁ポート→端室→内部通路→第 2の入出口ポートによる流路は、その主要部を 弁体の内部通路により構成されるから、複座弁としての弁ハウジングにおける流路構 成が簡単になり、弁ハウジングの小型化が可能になる。また、弁体も、中空状の内部 通路を形成するだけで、構造、形状が複雑になることがない。  [0010] The flow path from the first inlet / outlet port → side hole → intermediate chamber → first valve port → second inlet / outlet port has the same flow path configuration as the single seat valve, and the first inlet / outlet port → Since the main part of the flow passage from the side hole → intermediate chamber → second valve port → end chamber → internal passage → second inlet / outlet port is constituted by the internal passage of the valve body, the valve housing as a double seat valve In this case, the flow path configuration is simplified, and the size of the valve housing can be reduced. Also, the valve body does not become complicated in structure and shape only by forming a hollow internal passage.
[0011] また、第 2の発明による複座弁によれば、第 1の入出口ポート→第 1の弁室→第 1の 弁ポート→第 2の入出口ポートによる流路と、第 1の入出口ポート→第 1の弁室→第 2 の弁ポート→第 2の弁室→内部通路→第 2の入出口ポートによるもう一つの流路とが 形成され、弁体の軸線方向移動に応じて第 1の弁ランド部、第 2の弁ランド部により、 第 1の弁ポート、第 2の弁ポートの開度が同時に変化する。  [0011] Further, according to the double-seat valve according to the second aspect of the invention, the first inlet / outlet port → the first valve chamber → the first valve port → the second inlet / outlet port has a first passage and a second passage. An inlet / outlet port → 1st valve chamber → 2nd valve port → 2nd valve chamber → internal passage → Another flow path by the 2nd inlet / outlet port is formed, and according to the axial movement of the valve element Accordingly, the opening degrees of the first valve port and the second valve port are simultaneously changed by the first valve land portion and the second valve land portion.
[0012] 第 1の入出口ポート→第 1の弁室→第 1の弁ポート→第 2の入出口ポートによる流 路は、単座弁と同等の流路構成であり、第 1の入出口ポート→第 1の弁室→第 2の弁 ポート→第 2の弁室→内部通路→第 2の入出口ポートによる流路は、その主要部を 弁体の内部通路により構成されるから、複座弁としての弁ハウジングにおける流路構 成が簡単になり、弁ハウジングの小型化が可能になる。また、弁体も、中空状の内部 通路を形成するだけで、構造、形状が複雑になることがない。  [0012] The flow path from the first inlet / outlet port → the first valve chamber → the first valve port → the second inlet / outlet port has the same flow path configuration as a single-seat valve. → The first valve chamber → the second valve port → the second valve chamber → the internal passage → The flow path by the second inlet / outlet port is composed of the internal passage of the valve body, so the double seat The flow path configuration in the valve housing as a valve is simplified, and the size of the valve housing can be reduced. Also, the valve body does not become complicated in structure and shape only by forming a hollow internal passage.
図面の簡単な説明  Brief Description of Drawings
[0013] [図 1]この発明による複座弁の実施例 1を示す断面図である。  FIG. 1 is a cross-sectional view showing Embodiment 1 of a double-seat valve according to the present invention.
[図 2]この発明による複座弁の実施例 1の要部の拡大断面図である。  FIG. 2 is an enlarged sectional view of a main part of Embodiment 1 of the double-seat valve according to the present invention.
[図 3]図 2の A— A断面図である。  FIG. 3 is a sectional view taken along line AA of FIG. 2.
[図 4]図 2の B_B断面図である。  FIG. 4 is a sectional view taken along the line B_B in FIG. 2.
[図 5]この発明による複座弁の実施例 2を示す断面図である。  FIG. 5 is a sectional view showing Embodiment 2 of the double-seat valve according to the present invention.
[図 6] (a)、 (b)は、この発明による複座弁の実施例 2の要部の弁閉時と弁開時の拡大 断面図である。  FIGS. 6 (a) and (b) are enlarged cross-sectional views of essential parts of a double-seat valve according to Embodiment 2 of the present invention when the valve is closed and when the valve is opened.
[図 7]この発明による複座弁の実施例 3を示す断面図である。 [図 8] (a)、 (b)は、この発明による複座弁の実施例 3の要部の弁閉時と弁開時の拡大 断面図である。 FIG. 7 is a sectional view showing Embodiment 3 of the double-seat valve according to the present invention. FIGS. 8 (a) and (b) are enlarged cross-sectional views of essential parts of a double-seat valve according to Embodiment 3 of the present invention when the valve is closed and when the valve is opened.
 〇
園 9]実施例 3の複座弁に用いられる下側弁軸ガイド部材の平面図である。 Garden 9] is a plan view of a lower valve shaft guide member used for the double-seat valve of the third embodiment.
園 10]この発明による複座弁の実施例 4を示す断面図である。 Garden 10] is a sectional view showing Embodiment 4 of the double-seat valve according to the present invention.
園 11]この発明による複座弁の実施例 4の要部の拡大断面図である。 Garden 11] is an enlarged sectional view of a main part of Embodiment 4 of the double-seat valve according to the present invention.
園 12]実施例 4の複座弁の弁体の下端面図である。 FIG. 12 is a bottom view of the valve element of the double-seat valve of the fourth embodiment.
園 13]この発明による複座弁が適用される C〇 冷媒を使用した給湯サイクル装置の Garden 13] A hot water supply cycle device using C〇 refrigerant to which the double-seat valve according to the present invention is applied
2  2
一つの実施例である、実施例 5を示すブロック図である。 FIG. 14 is a block diagram showing a fifth embodiment which is one embodiment.
符号の説明 Explanation of symbols
複座弁  Double seat valve
11 弁ハウジング  11 Valve housing
12 第 1の入出口ポート  12 First entry / exit port
13 第 2の入出口ポート  13 Second entry / exit port
20 円筒部材  20 Cylindrical member
21 第 1の弁ポート  21 1st valve port
22 第 2の弁ポート  22 Second valve port
25 端室  25 end room
26 中間室  26 Intermediate room
28 軸受孔  28 Bearing hole
30 弁体  30 valve body
31 第 1の弁ランド部  31 1st valve land
32 第 2の弁ランド部  32 Second valve land
33 弁軸部  33 Valve stem
34 内部通路  34 Internal passage
36 雄ねじ部材  36 Male thread member
40 ステッピングモータ  40 stepper motor
41 ロータケース 43 雌ねじ部材 41 Rotor case 43 Female thread member
48 ステータ組立体  48 Stator assembly
100 複座弁  100 Double seat valve
101 弁ハウジング  101 Valve housing
102 第 1の入出口ポート  102 First entry / exit port
103 第 2の入出口ポート  103 Second entry / exit port
104 下側弁室  104 Lower valve room
105 上側弁室  105 Upper valve room
108 第 1の弁ポート  108 1st valve port
109 第 2の弁ポート  109 2nd valve port
110 弁軸ガイド部材  110 Valve shaft guide member
112 下側弁軸ガイド部材  112 Lower stem guide member
120 弁本体  120 Valve body
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0015] 以下に添付の図を参照してこの発明の実施例を詳細に説明する。 An embodiment of the present invention will be described below in detail with reference to the accompanying drawings.
実施例 1  Example 1
[0016] 図 1一図 4はこの発明による複座弁の実施例 1を示している。  FIGS. 1 to 4 show a first embodiment of a double-seat valve according to the present invention.
[0017] 実施例 1による複座弁は、全体を符号 10により示されている。複座弁 10は弁ハウジ ング 11を有している。弁ハウジング 11は、第 1の入出口ポート(入口ポート) 12と、第 [0017] The double seat valve according to the first embodiment is indicated by reference numeral 10 as a whole. The double seat valve 10 has a valve housing 11. The valve housing 11 includes a first inlet / outlet port (inlet port) 12 and a
2の入出口ポート(出口ポート) 13と、チャンバ 14とを形成されてレ、る。 A second inlet / outlet port (outlet port) 13 and a chamber 14 are formed.
[0018] 第 1の入出口ポート 12は横穴として形成され、第 1の入出口ポート 12には横継手 1[0018] The first inlet / outlet port 12 is formed as a lateral hole, and the first inlet / outlet port 12 has a lateral joint 1
5が接続されている。第 2の入出口ポート 13は下穴として形成され、第 2の入出口ポ ート 13には下継手 16が接続されている。チャンバ 14は、横穴状で、第 1の入出口ポ ート 12と直接連通している。 5 is connected. The second inlet / outlet port 13 is formed as a pilot hole, and the lower joint 16 is connected to the second inlet / outlet port 13. The chamber 14 has a lateral hole shape and directly communicates with the first inlet / outlet port 12.
[0019] 弁ハウジング 11にはチャンバ 14の上下に第 2の入出口ポート 13と同心の上下貫通 孔 17A、 17Bが形成されており、上下貫通孔 17A、 17Bに円筒部材 20が嵌合固定 されている。 In the valve housing 11, upper and lower through holes 17A and 17B concentric with the second inlet / outlet port 13 are formed above and below the chamber 14, and a cylindrical member 20 is fitted and fixed in the upper and lower through holes 17A and 17B. ing.
[0020] 円筒部材 20は、先端部 20Aにて上下貫通孔 17Aに嵌合して下継手 16に直接連 通し、チャンバ 14を上下に横切って延在し、中間部 20Bにて上側の上下貫通孔 17 Bに嵌合している。円筒部材 20は、中空軸状をなし、その中空部には、第 1の弁座部 23によって第 1の弁ポート 21と、第 2の弁座部 24によって第 2の弁ポート 22とが軸線 方向に所定の間隔をおいて同心形成されている。なお、第 2の弁ポート 22は弁体組 み付けのために、第 1の弁ポート 21より少し大きいポート径 (後述の第 1の弁ランド部 31が通過できる大きさ)になっている。 [0020] The cylindrical member 20 fits into the upper and lower through holes 17A at the distal end 20A, and is directly connected to the lower joint 16. And extends vertically across the chamber 14 and fits into the upper and lower through-holes 17B at the intermediate portion 20B. The cylindrical member 20 has a hollow shaft shape, and a first valve port 21 is provided by a first valve seat 23 and a second valve port 22 is provided by a second valve seat 24 in the hollow portion. They are formed concentrically at predetermined intervals in the direction. The second valve port 22 has a slightly larger port diameter than the first valve port 21 (a size through which a first valve land portion 31 described later can pass) for assembling the valve body.
[0021] 円筒部材 20の中空部は、第 2の弁ポート 22の一方の側(上側)に端室 25を、第 2 の弁ポート 22の他方の側(下側)と第 1の弁ポート 21の一方の側(上側)との間に中 間室 26を各々画定しており、第 1の弁ポート 21の他方の側(下側)にて下継手 16 (第 2の入出口ポート 13)に直接連通している。  The hollow portion of the cylindrical member 20 has an end chamber 25 on one side (upper side) of the second valve port 22, and the other side (lower side) of the second valve port 22 and the first valve port. An intermediate chamber 26 is defined between one side (upper side) of the first valve port 21 and a lower joint 16 (second inlet / outlet port 13) at the other side (lower side) of the first valve port 21. ) Directly.
[0022] 円筒部材 20がチャンバ 14を上下に横切る部分には横穴 27が径方向に貫通形成 されている。横穴 27は、第 1の弁ポート 21と第 2の弁ポート 22との間の軸線方向中間 位置を径方向に貫通して中間室 26とチャンバ 14、横継手 15 (第 1の入出口ポート 1 2)とを連通している。  [0022] At a portion where the cylindrical member 20 crosses the chamber 14 up and down, a lateral hole 27 is formed to penetrate in the radial direction. The lateral hole 27 penetrates radially through an intermediate position in the axial direction between the first valve port 21 and the second valve port 22, and passes through the intermediate chamber 26, the chamber 14, and the horizontal joint 15 (the first inlet / outlet port 1). 2) is communicated.
[0023] 横穴 27は、 90度の回転角毎に 4個、クロスに形成されている。これにより、横穴 27 と第 1の入出口ポート 12との位置関係力 円筒部材 20の弁ハウジング 11に対する周 方向の取付位置の影響を殆ど受けなくなり、円筒部材 20の弁ハウジング 11に対する 周方向の取付位置を規定 (周方向位置決め)する必要がなくなる。したがって、円筒 部材 20を弁ハウジング 11に対して任意の周方向位置で組み付けることが可能にな る。  [0023] Four cross holes 27 are formed in a cross at every rotation angle of 90 degrees. As a result, the positional relationship between the lateral hole 27 and the first inlet / outlet port 12 is substantially unaffected by the circumferential mounting position of the cylindrical member 20 with respect to the valve housing 11, and the cylindrical member 20 is circumferentially mounted with respect to the valve housing 11. There is no need to define the position (circumferential positioning). Therefore, the cylindrical member 20 can be assembled to the valve housing 11 at an arbitrary circumferential position.
[0024] 円筒部材 20は、端室 25の軸線方向延長線上(上側)に、後述する弁体 30の弁軸 部 33を軸線方向(上下方向)に移動可能に支持する軸受孔 28を第 1、第 2の弁ポー ト 21、 22と同心に形成されている。これにより、円筒部材 20は、 1部品で、弁座部材 と弁体支持部材とを兼ねてレ、る。  [0024] The cylindrical member 20 has a first bearing hole 28 for supporting a valve shaft portion 33 of a valve body 30 to be described later in an axial direction (vertical direction) on an extension (upper side) of the end chamber 25 in the axial direction. , And are formed concentrically with the second valve ports 21 and 22. As a result, the cylindrical member 20 is formed as a single component and serves as both a valve seat member and a valve body support member.
[0025] 円筒部材 20の中空部には棒状の弁体 30が軸線方向に移動可能に配置されてい る。弁体 30は、端室 25、第 2の弁ポート 22、中間室 26を軸線方向に横切って延在し 、端室 25の側(上側)に延在する中実軸状 (丸棒状)の弁軸部 33を一体に有し、弁 軸部 33が円筒部材 20の軸受孔 28に軸線方向に移動可能に嵌合することにより、円 筒部材 20より支持されている。この嵌合により、弁体 30は、円筒部材 20を介して弁 ハウジング 11に対して軸線方向に移動可能に支持されることになる。 [0025] A rod-shaped valve body 30 is disposed in the hollow portion of the cylindrical member 20 so as to be movable in the axial direction. The valve body 30 extends in the axial direction across the end chamber 25, the second valve port 22, and the intermediate chamber 26, and has a solid shaft shape (round bar shape) extending toward the end chamber 25 (upper side). The valve shaft 33 is integrally formed, and the valve shaft 33 is fitted into the bearing hole 28 of the cylindrical member 20 so as to be movable in the axial direction, thereby forming a circular shape. It is supported by the cylindrical member 20. By this fitting, the valve body 30 is supported via the cylindrical member 20 so as to be movable in the axial direction with respect to the valve housing 11.
[0026] 弁体 30は、軸線方向移動によって第 1の弁ポート 21を開閉する円錐状の第 1の弁 ランド部 31と、同じ軸線方向移動によって第 2の弁ポート 22を開閉する円錐状の第 2 の弁ランド部 32とを有している。  [0026] The valve element 30 has a conical first valve land portion 31 that opens and closes the first valve port 21 by axial movement and a conical first valve land portion 31 that opens and closes the second valve port 22 by the same axial movement. And a second valve land portion 32.
[0027] 弁体 30の先端部(下端)は下継手 16に臨んでおり、弁体 30には先端部より有底の ドリル孔 34Aが穿設され、弁体 30が端室 25内に位置する部分には横穴 34Bが径方 向に貫通されている。これにより、ドリル孔 34Aと横穴 34Bは、端室 25を下継手 16 ( 第 2の入出口ポート 13)に開放する内部通路 34をなす。なお、横穴 34Bも、 90度の 回転角毎に 4個、クロスに形成されている。  [0027] The distal end (lower end) of the valve body 30 faces the lower joint 16, and a drilled hole 34A with a bottom is drilled from the distal end of the valve body 30 so that the valve body 30 is located in the end chamber 25. A lateral hole 34B is penetrated in the radial direction in the portion to be formed. Thus, the drill hole 34A and the lateral hole 34B form an internal passage 34 that opens the end chamber 25 to the lower joint 16 (the second inlet / outlet port 13). The four horizontal holes 34B are also formed in a cross at each rotation angle of 90 degrees.
[0028] 弁ハウジング 11の上部には円筒部材 20の上部 20Cが突出しており、この部分には 下蓋部材 35が円筒部材 20と同心に固定されている。下蓋部材 35にはステッピング モータ 40のロータケース 41が気密に突き合わせ溶接されている。ロータケース 41は 、円筒部 41Aと、円筒部 41Aと一体成形されて円筒部 41Aの上端を閉じる半球状ド ーム部 41Bとを有するキャン状をなし、全体を同一肉厚のステンレス鋼等の非磁性体 により構成されている。  An upper part 20C of the cylindrical member 20 protrudes from the upper part of the valve housing 11, and a lower lid member 35 is fixed concentrically with the cylindrical member 20 at this part. A rotor case 41 of a stepping motor 40 is butt-welded to the lower lid member 35 in an airtight manner. The rotor case 41 has a can shape having a cylindrical portion 41A and a hemispherical dome portion 41B integrally formed with the cylindrical portion 41A and closing the upper end of the cylindrical portion 41A. It is composed of a non-magnetic material.
[0029] ロータケース 41の円筒部 41Aの内側にはロータ 42が回転可能に配置されている。  [0029] A rotor 42 is rotatably arranged inside the cylindrical portion 41A of the rotor case 41.
ロータ 42は外周部を多極着磁されている。ロータ 42の中心部には円筒状の雌ねじ 部材 43が固定されている。雌ねじ部材 43およびロータ 42は、連結部材 44、固定金 具 45、カラー部材 46、ばね 47等によって弁体 30の上端 33Aと相対回転可能に連 結されている。  The outer periphery of the rotor 42 is multipolar magnetized. A cylindrical female screw member 43 is fixed to the center of the rotor 42. The female screw member 43 and the rotor 42 are relatively rotatably connected to the upper end 33A of the valve body 30 by a connecting member 44, a fixing member 45, a collar member 46, a spring 47, and the like.
[0030] 円筒部材 20の上端部 20Dには雄ねじ部材 36が同心に固定されている。雄ねじ部 材 36は、中空軸状で、中空部 36Aを弁体 30の弁軸部 33が貫通している。雄ねじ部 材 36の外周面には雄ねじ 36Bが形成されており、雄ねじ 36Bは雌ねじ部材 43の内 周面に形成された雌ねじ 43Aにねじ係合している。ロータ 42の回転は、このねじ係 合によって直線運動に変換される。  [0030] A male screw member 36 is concentrically fixed to the upper end 20D of the cylindrical member 20. The male screw member 36 has a hollow shaft shape, and the valve shaft 33 of the valve body 30 passes through the hollow 36A. A male screw 36B is formed on the outer peripheral surface of the male screw member 36, and the male screw 36B is screw-engaged with a female screw 43A formed on the inner peripheral surface of the female screw member 43. The rotation of the rotor 42 is converted into linear motion by this screw engagement.
[0031] ロータケース 41の外周部には、ステッピングモータ 40のステータ組立体 48が係止 片 49によって位置決め装着されている。ステータ組立体 48は、外凾 50、上下 2段の ステータコイル 51、複数個の磁極歯 52、電気コネクタ部 53等を有し、封止樹脂 54に よって液密封止されている。 A stator assembly 48 of the stepping motor 40 is positioned and mounted on an outer peripheral portion of the rotor case 41 by a locking piece 49. The stator assembly 48 consists of an outer box 50, It has a stator coil 51, a plurality of magnetic pole teeth 52, an electrical connector portion 53, and the like, and is liquid-tightly sealed by a sealing resin.
[0032] 半球状ドーム部 41Bの内側にはストッパ保持ロッド 55が垂下固定されている。ストツ パ保持ロッド 55には螺旋ガイド 56が取り付けられており、螺旋ガイド 56には可動スト ッパ 57が係合している。 [0032] A stopper holding rod 55 is suspended and fixed inside the hemispherical dome portion 41B. A spiral guide 56 is attached to the stopper holding rod 55, and a movable stopper 57 is engaged with the spiral guide 56.
[0033] 可動ストッパ 57は、ロータ 42に取り付けられたピン 58によって蹴り回されることによ り、ロータ 42の回転に伴って螺旋ガイド 56に案内されて旋回しつつ上下移動する。 そして、可動ストッパ 57は、ストッパ保持ロッド 55の下端のストッパ部 59、あるいは螺 旋ガイド 56の上端のストッパ部 60に当接することにより、弁閉方向、あるいは弁開方 向のロータ 42の回転を制限する。 [0033] The movable stopper 57 is vertically kicked by a pin 58 attached to the rotor 42, guided by a spiral guide 56 with the rotation of the rotor 42, and vertically moved while turning. The movable stopper 57 contacts the stopper portion 59 at the lower end of the stopper holding rod 55 or the stopper portion 60 at the upper end of the spiral guide 56, thereby rotating the rotor 42 in the valve closing direction or the valve opening direction. Restrict.
[0034] ステッピングモータ 40は、ステータコイル 51に対する通電より、ロータ 42を回転駆 動する。ロータ 42が回転すると、雌ねじ 43Aと雄ねじ 36Bとのねじ係合によってロー タ 42の回転運動が直線運動に変換され、ロータ 42がロータケース 41内を軸線方向( 上下方向)に移動する。このロータ 42の軸線方向移動が弁体 30に伝えられ、弁体 3 0が軸線方向(上下方向)に移動する。 The stepping motor 40 rotationally drives the rotor 42 by energizing the stator coil 51. When the rotor 42 rotates, the rotational movement of the rotor 42 is converted into a linear movement by the screw engagement between the female screw 43A and the male screw 36B, and the rotor 42 moves in the rotor case 41 in the axial direction (vertical direction). The axial movement of the rotor 42 is transmitted to the valve body 30, and the valve body 30 moves in the axial direction (vertical direction).
[0035] これにより、弁体 30の第 1の弁ランド部 31が第 1の弁ポート 21の開度を調整すると 共に、弁体 30の第 2の弁ランド部 32が第 2の弁ポート 22の開度を調整し、第 1の弁ポ ート 21と第 2の弁ポート 22の双方で、略同等の流量制御が行われる。  As a result, the first valve land 31 of the valve element 30 adjusts the opening of the first valve port 21, and the second valve land 32 of the valve element 30 connects the second valve port 22 The opening degree is adjusted, and substantially the same flow control is performed in both the first valve port 21 and the second valve port 22.
[0036] この流量制御のもとに、横継手 15 (第 1の入出口ポート 12)→チャンバ 14→横穴 2 7→中間室 26→第 1の弁ポート 21→下継手 16 (第 2の入出口ポート 13)による流路 と、横継手 15 (第 1の入出口ポート 12)→チャンバ 14→横穴 27→中間室 26→第 2の 弁ポート 22→端室 25→内部通路 34→下継手 16 (第 2の入出口ポート 13)によるもう 一つの流路を冷媒等の流体が流れる。  Under this flow control, the horizontal joint 15 (first inlet / outlet port 12) → chamber 14 → side hole 27 → intermediate chamber 26 → first valve port 21 → lower joint 16 (second inlet / outlet port) Outlet port 13) and horizontal joint 15 (first inlet / outlet port 12) → chamber 14 → side hole 27 → intermediate chamber 26 → second valve port 22 → end chamber 25 → internal passage 34 → lower joint 16 A fluid such as a refrigerant flows through another flow path formed by the (second inlet / outlet port 13).
[0037] 横継手 15 (第 1の入出口ポート 12)→チャンバ 14→横穴 27→中間室 26→第 1の 弁ポート 21→下継手 16 (第 2の入出口ポート 13)による流路は、単座弁の流路と同 等の流路構成であり、横継手 15 (第 1の入出口ポート 12)→チャンバ 14→横穴 27→ 中間室 26→第 2の弁ポート 22→端室 25→内部通路 34→下継手 16 (第 2の入出口 ポート 13)による流路は、その主要部を弁体 30の内部通路 34により構成されるから、 複座弁としての弁ハウジング 11における流路構成が簡単になり、弁ハウジング 11の 小型化が可能になる。また、弁体 30も、中空状の内部通路 34を形成するだけでよい ので、弁体 30の構造、形状が複雑になることもない。 [0037] The flow path by the lateral joint 15 (first inlet / outlet port 12) → chamber 14 → lateral hole 27 → intermediate chamber 26 → first valve port 21 → lower joint 16 (second inlet / outlet port 13) The flow path configuration is the same as the flow path of the single seat valve, and the horizontal joint 15 (first inlet / outlet port 12) → chamber 14 → side hole 27 → intermediate chamber 26 → second valve port 22 → end chamber 25 → inside The passage formed by the passage 34 → the lower joint 16 (the second inlet / outlet port 13) has a main portion constituted by the internal passage 34 of the valve body 30. The flow path configuration in the valve housing 11 as a double seat valve is simplified, and the size of the valve housing 11 can be reduced. In addition, since the valve element 30 only needs to form the hollow internal passage 34, the structure and shape of the valve element 30 are not complicated.
[0038] また、円筒部材 20は、 1部品で、弁座部材と弁体支持部材とを兼ねているから、第 1、第 2の弁ポート 21、 22と軸受孔 28との同心性が高度に保証され、併せて部品点 数の削減が図られる。 [0038] Further, since the cylindrical member 20 is a single part, which also serves as a valve seat member and a valve body supporting member, the concentricity between the first and second valve ports 21 and 22 and the bearing hole 28 is high. And the number of parts is reduced.
実施例 2  Example 2
[0039] 図 5、図 6 (a)、(b)はこの発明による複座弁の実施例 2を示している。なお、図 5、図 6において、図 1一図 4に対応する部分は、図 1に付した符号と同一の符号を付けて ある。  FIGS. 5, 6 (a) and 6 (b) show a second embodiment of a double-seat valve according to the present invention. In FIGS. 5 and 6, parts corresponding to FIGS. 1 to 4 are denoted by the same reference numerals as in FIG.
[0040] 実施例 2による複座弁は、全体を符号 100により示されている。複座弁 100は弁ハ ウジング 101を有している。弁ハウジング 101は、第 1の入出口ポート(入口ポート) 1 02と、第 2の入出口ポート(出口ポート) 103と、下側弁室(第 1の弁室) 104と、上側 弁室(第 2の弁室) 105を形成されている。  [0040] The double-seat valve according to the second embodiment is indicated by reference numeral 100 as a whole. The double seat valve 100 has a valve housing 101. The valve housing 101 includes a first inlet / outlet port (inlet port) 102, a second inlet / outlet port (outlet port) 103, a lower valve chamber (first valve chamber) 104, and an upper valve chamber ( A second valve chamber 105 is formed.
[0041] 第 1の入出口ポート 102は横穴として形成され、第 1の入出口ポート 102には横継 手 106が接続されている。第 2の入出口ポート 103は下穴として形成され、第 2の入 出口ポート 103には下継手 107が接続されている。  The first inlet / outlet port 102 is formed as a horizontal hole, and a transverse joint 106 is connected to the first inlet / outlet port 102. The second inlet / outlet port 103 is formed as a pilot hole, and a lower joint 107 is connected to the second inlet / outlet port 103.
[0042] 下側弁室 104は、横穴状で、第 1の入出口ポート 102と直接連通している。下側弁 室 104の下底面部には第 2の入出口ポート 103に連通する第 1の弁ポート 108が形 成されている。下側弁室 104の上面部には上側弁室 105に連通する第 2の弁ポート 109が形成されている。  [0042] The lower valve chamber 104 is shaped like a lateral hole, and directly communicates with the first inlet / outlet port 102. A first valve port 108 communicating with the second inlet / outlet port 103 is formed in a lower bottom surface portion of the lower valve chamber 104. A second valve port 109 communicating with the upper valve chamber 105 is formed on the upper surface of the lower valve chamber 104.
[0043] 第 1の弁ポート 108と第 2の弁ポート 109とは、同一軸線上に同心配置で、下側弁 室 104の上下にあって、相対向している。なお、この実施例でも、第 2の弁ポート 109 は弁体組み付けのために、第 1の弁ポート 108より少し大きいポート径(後述の第 1の 弁ランド部 31が通過できる大きさ)になっている。  The first valve port 108 and the second valve port 109 are concentrically arranged on the same axis, are above and below the lower valve chamber 104, and face each other. Also in this embodiment, the second valve port 109 has a slightly larger port diameter than the first valve port 108 (a size through which a first valve land portion 31 described later can pass) because of the assembly of the valve element. ing.
[0044] 弁ハウジング 101の上部には雄ねじ部材 36の取付具を兼ねた弁軸ガイド部材 110 力 Sかしめ固定されてレ、る。弁軸ガイド部材 110は中心部に形成された軸受孔 111に よって弁体 30の弁軸部 33を軸線方向に移動可能に支持している。これにより、弁体 30は、弁軸ガイド部材 110を介して弁ハウジング 101に対して軸線方向に移動可能 に支持されることになる。 A valve shaft guide member 110 also serving as an attachment for the male screw member 36 is fixed to the upper part of the valve housing 101 by caulking. The valve shaft guide member 110 supports the valve shaft portion 33 of the valve body 30 movably in the axial direction by a bearing hole 111 formed at the center. With this, the valve body 30 is supported movably in the axial direction with respect to the valve housing 101 via the valve shaft guide member 110.
[0045] 弁体 30は、実施例 1のものと同等のものであり、下側弁室 104と第 2の弁ポート 109 と上側弁室 105を軸線方向に横切って延在し、上側に弁軸部 33を一体に有してい る。 [0045] The valve element 30 is equivalent to that of the first embodiment, and extends across the lower valve chamber 104, the second valve port 109, and the upper valve chamber 105 in the axial direction, and the valve The shaft 33 is integrally provided.
[0046] 弁体 30は、軸線方向移動によって第 1の弁ポート 108を開閉する円柱状の第 1の 弁ランド部 31と、同じ軸線方向移動によって第 2の弁ポート 109を開閉する円錐状の 第 2の弁ランド部 32とを有している。  The valve element 30 has a cylindrical first valve land portion 31 that opens and closes the first valve port 108 by axial movement, and a conical shape that opens and closes the second valve port 109 by the same axial movement. And a second valve land portion 32.
[0047] この実施例でも、弁体 30の先端部 (下端)は下継手 107に臨んでおり、弁体 30に は先端部より有底のドリル孔 34Aが穿設され、弁体 30が上側弁室 105内に位置する 部分には横穴 34Bが径方向に貫通されている。これにより、ドリル孔 34Aと横穴 34B は、上側弁室 105を下継手 107 (第 2の入出口ポート 103)に開放する内部通路 34 をなす。  [0047] Also in this embodiment, the distal end (lower end) of the valve body 30 faces the lower joint 107, and the valve body 30 is provided with a drilled hole 34A having a bottom from the distal end, and the valve body 30 is positioned on the upper side. A lateral hole 34B is radially penetrated through a portion located in the valve chamber 105. Thus, the drill hole 34A and the lateral hole 34B form an internal passage 34 that opens the upper valve chamber 105 to the lower joint 107 (second inlet / outlet port 103).
[0048] ステッピングモータ 40、雄ねじ部材 36と雌ねじ部材 43による送りねじ等の構成は、 実施例 1のものと同じであるので、重複冗長を避けるベぐそれらの説明を省略する。  [0048] The configuration of the stepping motor 40, the feed screw and the like by the male screw member 36 and the female screw member 43 is the same as that of the first embodiment, so that the description of them to avoid redundant duplication will be omitted.
[0049] この実施例でも、ステッピングモータ 40の駆動によって弁体 30が軸線方向(上下方 向)に移動することにより、弁体 30の第 1の弁ランド部 31が第 1の弁ポート 108の開度 を調整すると共に、弁体 30の第 2の弁ランド部 32が第 2の弁ポート 109の開度を調 整し、第 1の弁ポート 108と第 2の弁ポート 109の双方で、略同等の流量制御が行わ れる。  [0049] Also in this embodiment, the first valve land portion 31 of the valve element 30 is connected to the first valve port 108 by moving the valve element 30 in the axial direction (up and down) by driving the stepping motor 40. While adjusting the opening, the second valve land 32 of the valve body 30 adjusts the opening of the second valve port 109, and the first valve port 108 and the second valve port 109 Approximately equivalent flow control is performed.
[0050] この流量制御のもとに、横継手 106 (第 1の入出口ポート 102)→下側弁室 104→ 第 1の弁ポート 108→下継手 107 (第 2の入出口ポート 103)による流路と、横継手 10 6 (第 1の入出口ポート 102)→下側弁室 104→第 2の弁ポート 109→上側弁室 105 →内部通路 34→下継手 107 (第 2の入出口ポート 103)によるもう一つの流路を冷媒 等の流体が流れる。  [0050] Under this flow control, the horizontal joint 106 (first inlet / outlet port 102) → lower valve chamber 104 → first valve port 108 → lower joint 107 (second inlet / outlet port 103) Flow path and horizontal joint 10 6 (first inlet / outlet port 102) → lower valve chamber 104 → second valve port 109 → upper valve chamber 105 → internal passage 34 → lower joint 107 (second inlet / outlet port A fluid such as a refrigerant flows through another flow path according to 103).
[0051] 横継手 106 (第 1の入出口ポート 102)→下側弁室: 104→第 1の弁ポート 108→下 継手 107 (第 2の入出口ポート 103)による流路は、単座弁の流路と同等の流路構成 であり、横継手 106 (第 1の入出口ポート 102)→下側弁室: 104→第 2の弁ポート 109 →上側弁室 105→内部通路 34→下継手 107 (第 2の入出口ポート 103)による流路 は、その主要部を弁体 30の内部通路 34により構成されるから、複座弁としての弁ハ ウジング 101における流路構成が簡単になり、弁ハウジング 101の小型化が可能に なる。また、弁体 30も、中空状の内部通路 34を形成するだけでよいので、弁体 30の 構造、形状が複雑になることもない。 [0051] The lateral joint 106 (first inlet / outlet port 102) → lower valve chamber: 104 → first valve port 108 → lower joint 107 (second inlet / outlet port 103) has a flow path of a single seat valve. It has the same flow path configuration as the flow path, and the horizontal joint 106 (first inlet / outlet port 102) → lower valve chamber: 104 → second valve port 109 → The upper valve chamber 105 → the internal passage 34 → the flow path formed by the lower joint 107 (second inlet / outlet port 103) has a main part constituted by the internal passage 34 of the valve body 30. The flow path configuration in the housing 101 is simplified, and the size of the valve housing 101 can be reduced. Also, since the valve element 30 only needs to form the hollow internal passage 34, the structure and shape of the valve element 30 do not become complicated.
[0052] 二酸化炭素冷媒等による超臨界サイクルは、超高圧で、大流量が必要であり、しか も、弁漏れ量が少ないと云う条件を満たすためには、複座弁のダブルポート構造で、 二つの弁ポート径が可及的に同一で、弁体 30に作用する超高圧をキャンセル (圧力 バランス)できること、上弁(第 2の弁ランド部 32)、下弁(第 1の弁ランド部 31)が正しく 着座することが必要である。  [0052] A supercritical cycle using a carbon dioxide refrigerant or the like requires an ultra-high pressure and a large flow rate. However, in order to satisfy the condition that the amount of valve leakage is small, a double port structure of a double seat valve is used. The two valve port diameters are as identical as possible, and the ultra-high pressure acting on the valve body 30 can be canceled (pressure balance). The upper valve (second valve land 32) and the lower valve (first valve land) 31) must be seated correctly.
[0053] 更に、弁が開いた状態下でも、二つの弁ポートにおける流量特性 (弁リフト量-流量 特性)が同様で、圧力バランスが崩れないことを要求される。このため、実施例 2では 、図 6によく示されているように、弁体 30の第 1の弁ランド部 31と第 2の弁ランド部 32 の形状 (ストレートとテーパ)、更に、第 1の弁ポート 108と第 2の弁ポート 109の形状( テーパとストレート)を個々に設定し、二つの弁ポートにおける流量特性の同一化を 図っている。  [0053] Further, even when the valves are open, it is required that the flow characteristics (valve lift-flow characteristics) at the two valve ports be the same and the pressure balance be maintained. For this reason, in the second embodiment, as is well shown in FIG. 6, the shapes (straight and tapered) of the first valve land portion 31 and the second valve land portion 32 of the valve body 30 and the first The shape (taper and straight) of each of the valve port 108 and the second valve port 109 is individually set to achieve the same flow characteristics at the two valve ports.
実施例 3  Example 3
[0054] 図 7、図 8 (a)、(b)、図 9はこの発明による複座弁の実施例 3を示している。なお、図 FIGS. 7, 8 (a), (b), and FIG. 9 show a third embodiment of the double-seat valve according to the present invention. The figure
7—図 9において、図 1一図 5に対応する部分は、図 1に付した符号と同一の符号を 付けてその説明を省略する。 In FIG. 7 to FIG. 9, the portions corresponding to FIG. 1 and FIG. 5 are denoted by the same reference numerals as those in FIG.
[0055] この実施例では、弁体 30の下端側に円筒状の下側延長弁軸部 37がー体形成され ている。下側延長弁軸部 37は第 2の入出口ポート 103の中心部を軸線方向(上下方 向)に貫通している。 In this embodiment, a cylindrical lower extension valve shaft portion 37 is formed at the lower end of the valve body 30. The lower extension valve shaft portion 37 passes through the center of the second inlet / outlet port 103 in the axial direction (upward and downward).
[0056] 弁ハウジング 101には下継手 107と共に下側弁軸ガイド部材 112が固定されてい る。下側弁軸ガイド部材 112は中心部に形成された軸受孔 113によって弁体 30の下 側延長弁軸部 37を軸線方向に移動可能に支持している。  A lower valve shaft guide member 112 is fixed to the valve housing 101 together with the lower joint 107. The lower valve shaft guide member 112 supports the lower extension valve shaft portion 37 of the valve body 30 movably in the axial direction by a bearing hole 113 formed at the center.
[0057] これにより、弁体 30は、上側を、つまり、雄ねじ部材 36と雌ねじ部材 43による送りね じ機構側を、弁軸ガイド部材 110を介して弁ハウジング 101に対して軸線方向に移 動可能に支持されていることに加えて、下側、つまり、送りねじ機構とは第 1の弁ラン ド部 31および第 2の弁ランド部 32を隔てた反対側を、下側弁軸ガイド部材 112を介 して弁ハウジング 101に対して軸線方向に移動可能に支持されている。 As a result, the valve element 30 moves the upper side, that is, the feed screw mechanism side of the male screw member 36 and the female screw member 43 in the axial direction with respect to the valve housing 101 via the valve shaft guide member 110. In addition to being movably supported, the lower valve shaft guide is provided on the lower side, that is, on the opposite side of the feed screw mechanism across the first valve land 31 and the second valve land 32. It is movably supported in the axial direction with respect to the valve housing 101 via a member 112.
[0058] これにより、弁体 30は、 2点支持構造になり、弁開時に、弁ハウジング 101内を流れ る流体によって弁体 30が揺れ動くこと、振動することが抑えられ、流量制御が安定し 、流体通過音も小さくなる。  [0058] As a result, the valve element 30 has a two-point support structure, and when the valve is opened, the valve element 30 is prevented from swaying and vibrating due to the fluid flowing in the valve housing 101, and the flow rate control is stabilized. Also, the fluid passing noise is reduced.
[0059] なお、下側弁軸ガイド部材 112には、下継手 107部分の流体の流れを阻害しない よう、軸受孔 113の周りに複数個の流通孔(貫通孔) 114が穿けられている。  [0059] The lower valve shaft guide member 112 has a plurality of through holes (through holes) 114 formed around the bearing hole 113 so as not to obstruct the flow of fluid in the lower joint 107.
実施例 4  Example 4
[0060] 図 10、図 11、図 12はこの発明による複座弁の実施例 4を示している。なお、図 10 一図 12においても、図 1一図 5に対応する部分は、図 1に付した符号と同一の符号を 付けてその説明を省略する。  FIGS. 10, 11, and 12 show a fourth embodiment of the double-seat valve according to the present invention. In FIGS. 10 and 12, parts corresponding to FIGS. 1 and 5 are denoted by the same reference numerals as those in FIG. 1, and description thereof is omitted.
[0061] この実施例では、第 1の弁ランド部 31が、第 2の弁ランド部 32や弁軸部 33を一体に 有する弁本体 120とは、別部品として構成されている。これにより、弁体 30は、弁本 体 120と第 1の弁ランド部 31とで構成される。  [0061] In this embodiment, the first valve land portion 31 is configured as a separate component from the valve main body 120 integrally having the second valve land portion 32 and the valve shaft portion 33. Thus, the valve body 30 is composed of the valve body 120 and the first valve land portion 31.
[0062] 第 1の弁ランド部 31は、円筒状部品であり、内周部に雌ねじ 31Aを刻まれている。  [0062] The first valve land portion 31 is a cylindrical component, and has an internal thread 31A formed in the inner peripheral portion.
弁本体 120の弁ランド取付部外周には雄ねじ 120Aが形成されてレ、る。雄ねじ 120A には第 1の弁ランド部 31の雌ねじ 31 Aがねじ係合してレ、る。  A male screw 120A is formed on the outer periphery of the valve land mounting portion of the valve body 120. The female screw 31A of the first valve land 31 is screwed into the male screw 120A.
[0063] このねじ係合により、第 1の弁ランド部 31の弁本体 120に対する軸線方向の取付位 置を微調整することができる。この微調整は、軸線方向の離間距離が決まっている第 1の弁ポート 108の周りの弁座部 108Aと第 2の弁ポート 109の周りの弁座部 109Aに 対して第 1の弁ランド部 31と第 2の弁ランド部 32の双方が同時着座する間隔(第 1の 弁ランド部 31と第 2の弁ランド部 32の軸線方向の離間距離)になるように行われる。  With this screw engagement, the axial mounting position of the first valve land portion 31 with respect to the valve body 120 can be finely adjusted. This fine adjustment is performed with respect to the first valve land 108A around the valve seat 108A around the first valve port 108 and the valve seat 109A around the second valve port 109 where the axial separation distance is fixed. The distance is set so that both the first and second valve lands 32 are simultaneously seated (the distance between the first and second valve lands 31 and 32 in the axial direction).
[0064] この微調整後に、弁本体 120の下端部 120Bを第 1の弁ランド部 31に形成されてい るかしめ係合凹部 31Bにかしめることにより、第 1の弁ランド部 31が弁本体 120に回り 止め固定される。力しめ係合凹部 31Bは、この実施例では、 90度間隔で 4個設けら れているが、力 め係合凹部 31Bは少なくとも 1つ設けられていればよぐまた、力 め係合凹部 31Bの形状も、半円形に限られることはなぐ三角形、四角形でもよい。 [0065] 上述したように、第 1の弁ランド部 31が第 2の弁ランド部 32を一体に有する弁本体 1 20とは別部品として構成され、第 1の弁ランド部 31の弁本体 120に対する取付位置 調整により、弁座部 108Aと弁座部 109Aの軸線方向の離間距離に製造上の誤差が あっても、第 1の弁ランド部 31と第 2の弁ランド部 32の双方が共に着座する全閉状態 を確実に得ることができ、弁漏れ量をなくす或いは低減することができる。 After the fine adjustment, the lower end portion 120B of the valve body 120 is swaged into the swaging engagement recess 31B formed in the first valve land portion 31, so that the first valve land portion 31 is brought into contact with the valve body 120. It is stopped and fixed. In this embodiment, four squeezing engagement recesses 31B are provided at 90 ° intervals, but it is sufficient if at least one squeezing engagement recess 31B is provided. The shape of 31B is not limited to a semicircle, but may be a triangle or a rectangle. As described above, the first valve land portion 31 is configured as a separate component from the valve body 120 having the second valve land portion 32 integrally, and the valve body 120 of the first valve land portion 31 is formed. By adjusting the mounting position with respect to, even if there is a manufacturing error in the axial separation between the valve seat 108A and the valve seat 109A, both the first valve land 31 and the second valve land 32 The fully closed state in which the seat is seated can be reliably obtained, and the amount of valve leakage can be eliminated or reduced.
[0066] 第 1の弁ランド部 31が第 2の弁ランド部 32を一体に有する弁本体 120とは別部品と して構成されていることにより、組付上、第 1の弁ランド部 31が、第 2の弁ポート 109の 周りの弁座部材 109Aより大きぐ又は、弁座部材 109Aと等しくする設計も可能にな る。  [0066] Since the first valve land portion 31 is configured as a separate component from the valve body 120 having the second valve land portion 32 integrally, the first valve land portion 31 can be assembled easily. However, a design that is larger than or equal to the valve seat member 109A around the second valve port 109 is also possible.
実施例 5  Example 5
[0067] 図 13は、実施例 1あるいは 2、 3、 4の複座弁 10或いは 100が使用される CO 冷媒( 二酸化炭素冷媒)を使用した給湯サイクル装置の一つの実施例である、実施例 5を 示している。  FIG. 13 is an embodiment of a hot water supply cycle apparatus using a CO refrigerant (carbon dioxide refrigerant) in which the double-seat valve 10 or 100 of the first or second, third, or fourth embodiment is used. 5 is shown.
[0068] この給湯サイクル装置は、ヒートポンプ式給湯器であり、圧縮機 71、凝縮器に相当 するガスクーラ 72、電動式の複座弁 10或いは 100、蒸発器 73を含む CO 冷媒循環 路が構成され、ガスクーラ 72を通る高温の CO冷媒と湯タンク 74の冷水との間で熱 交換が行われ、温水を作り出す。  This hot water supply cycle device is a heat pump type water heater, and has a CO refrigerant circulation circuit including a compressor 71, a gas cooler 72 corresponding to a condenser, an electric double-seat valve 10 or 100, and an evaporator 73. Then, heat exchange is performed between the high-temperature CO refrigerant passing through the gas cooler 72 and the cold water in the hot water tank 74 to produce hot water.
産業上の利用可能性  Industrial applicability
[0069] 以上に説明した第 1乃至第 4の各実施例からも明ら力なように、本発明の複座弁で は、単座弁と同等の流路構成と弁体の内部通路による流路構成によって複座弁に必 要な 2系統の流路が構成されるから、複座弁としての弁ハウジングにおける流路構成 が簡単になり、弁ハウジングの小型化が可能になり、弁体も、中空状の内部通路を形 成するだけで、構造、形状が複雑になることがない。  As is apparent from the first to fourth embodiments described above, the double-seat valve of the present invention has the same flow path configuration as the single-seat valve and the flow through the internal passage of the valve element. The two-way flow path required for the double-seat valve is configured by the path configuration, so the flow path configuration in the valve housing as a double-seat valve is simplified, the valve housing can be downsized, and the valve Only the formation of the hollow internal passage does not complicate the structure and shape.
[0070] 尚、前記弁体は前記端室の側に延在する弁軸部を有しており、前記円筒部材は、 前記端室の軸線方向延長線上に前記弁軸部を軸線方向に移動可能に支持する軸 受孔を有してレ、て、弁座部材と弁体支持部材とを兼ねてレ、る構造とすることができる 。これにより、部品点数の削減が図られ、弁ポートと軸受孔との同心性も保証される。  [0070] The valve body has a valve stem extending toward the end chamber, and the cylindrical member moves the valve stem in the axial direction on an axial extension of the end chamber. It is possible to provide a structure that has a bearing hole for supporting as much as possible, and also serves as a valve seat member and a valve body support member. Thereby, the number of parts is reduced, and concentricity between the valve port and the bearing hole is also guaranteed.
[0071] また、この発明による複座弁では、ステッピングモータ等の電動モータと、前記電動 モータによって回転駆動され、前記電動モータの回転運動を直線運動に変換する送 りねじ機構とを有し、前記送りねじ機構と前記弁体とが駆動連結され、前記送りねじ 機構によって前記弁体が軸線方向に駆動されるように構成することができる。これに より、電動式の複座弁が得られる。 Further, in the double seat valve according to the present invention, the electric motor such as a stepping motor and the electric motor A feed screw mechanism that is driven to rotate by a motor and converts the rotational motion of the electric motor into a linear motion; the feed screw mechanism and the valve body are drivingly connected; and the valve body is driven by the feed screw mechanism. It can be configured to be driven in the axial direction. As a result, an electric double seat valve is obtained.
[0072] また、この発明による複座弁では、前記弁体は、前記送りねじ機構側と、前記送りね じ機構とは前記第 1の弁ランド部および前記第 2の弁ランド部を隔てた反対側との各 々において、前記弁ハウジングより軸線方向に移動可能に支持されている構造にす ること力 Sできる。これにより、弁体の耐揺れ動き(振動性)が高まる。  [0072] In the double-seat valve according to the present invention, the valve body is separated from the feed screw mechanism and the feed screw mechanism by the first valve land and the second valve land. On each of the opposite sides, a force S can be applied to a structure that is supported movably in the axial direction from the valve housing. Thereby, the swing movement (vibration) of the valve element is enhanced.
[0073] また、この発明による複座弁では、前記第 1の弁ランド部が、前記第 2の弁ランド部 を一体に有する弁本体とは別部品として構成されており、当該第 1の弁ランド部が前 記弁本体に固定装着されている構造にすることができ、好ましくは、前記第 1の弁ラン ド部が、前記弁本体に軸線方向の取付位置を調整可能にねじ係合した状態で、かし めにより前記弁本体に固定されている構造にすることができる。  [0073] Further, in the double-seat valve according to the present invention, the first valve land portion is configured as a separate component from the valve body integrally having the second valve land portion. The land portion may be fixedly mounted on the valve main body, and preferably, the first valve land portion is threadedly engaged with the valve main body so that an axial mounting position can be adjusted. In this state, it is possible to obtain a structure fixed to the valve body by caulking.
[0074] そして、第 1の弁ランド部が、第 2の弁ランド部を一体に有する弁本体とは別部品と して構成されていると、第 1の弁ランド部の弁本体に対する取付位置調整により、第 1 の弁ランド部と第 2の弁ランド部の双方が共に着座する全閉状態が確実に得られるよ うになり、弁漏れが低減或はなくなる。  [0074] If the first valve land is configured as a separate component from the valve body integrally having the second valve land, the mounting position of the first valve land with respect to the valve body is reduced. The adjustment ensures a fully closed state in which both the first valve land and the second valve land are seated together, and reduces or eliminates valve leakage.

Claims

請求の範囲 The scope of the claims
[1] 第 1の入出口ポートと第 2の入出口ポートとを有する弁ハウジングと、  [1] a valve housing having a first inlet / outlet port and a second inlet / outlet port;
前記弁ハウジングに固定された円筒部材と、  A cylindrical member fixed to the valve housing;
前記円筒部材の中空部に軸線方向に移動可能に配置された棒状の弁体とを具備 し、  A rod-shaped valve body disposed in the hollow portion of the cylindrical member so as to be movable in the axial direction,
前記円筒部材の前記中空部には第 1の弁ポートと第 2の弁ポートが軸線方向に所 定の間隔をおレ、て同一軸線上に同心形成され、  A first valve port and a second valve port are formed concentrically on the same axis at predetermined intervals in the axial direction in the hollow portion of the cylindrical member,
前記中空部は、前記第 2の弁ポートの一方の側に端室を、前記第 2の弁ポートの他 方の側と前記第 1の弁ポートの一方の側との間に中間室を各々画定して、前記第 1 の弁ポートの他方の側にて前記第 2の入出口ポートに連通し、  The hollow portion has an end chamber on one side of the second valve port and an intermediate chamber between the other side of the second valve port and one side of the first valve port. Defining, on the other side of said first valve port, communicating with said second inlet / outlet port;
前記円筒部材には前記第 1の弁ポートと前記第 2の弁ポートとの軸線方向中間位 置を径方向に貫通して前記中間室と前記第 1の入出口ポートとを連通する横穴が形 成されており、  The cylindrical member has a lateral hole penetrating radially through an intermediate position in the axial direction between the first valve port and the second valve port to communicate the intermediate chamber with the first inlet / outlet port. Has been established,
前記弁体は、前記端室、前記第 2の弁ポート、前記中間室を軸線方向に横切って 延在し、軸線方向移動によって前記第 1の弁ポートを開閉する第 1の弁ランド部と、前 記第 2の弁ポートを開閉する第 2の弁ランド部と、前記端室を前記第 2の入出口ポート に開放する内部通路とを有している、  A first valve land extending axially across the end chamber, the second valve port, and the intermediate chamber, and opening and closing the first valve port by axial movement; A second valve land that opens and closes the second valve port, and an internal passage that opens the end chamber to the second inlet / outlet port.
ことを特徴とする複座弁。  A double-seat valve characterized by the following:
[2] 前記弁体は前記端室の側に延在する弁軸部を有しており、前記円筒部材は、前記 端室の軸線方向延長線上に前記弁軸部を軸線方向に移動可能に支持する軸受孔 を有してレ、て、弁座部材と弁体支持部材とを兼ねてレ、ることを特徴とする請求項 1記 載の複座弁。 [2] The valve body has a valve stem extending toward the end chamber, and the cylindrical member is capable of moving the valve stem in the axial direction on an axial extension of the end chamber. 2. The double-seat valve according to claim 1, wherein the double-seat valve has a bearing hole for supporting the valve and serves as a valve seat member and a valve body support member.
[3] 第 1の入出口ポートと第 2の入出口ポートとを有する弁ハウジングと、  [3] a valve housing having a first inlet / outlet port and a second inlet / outlet port;
前記弁ハウジングに対して軸線方向に移動可能に配置された棒状の弁体とを具備 し、  A rod-shaped valve body arranged to be movable in the axial direction with respect to the valve housing,
前記弁ハウジングは、前記第 1の入出口ポートに直接連通する第 1の弁室と、第 2 の弁室と、前記第 1の弁室の一方の側に形成され前記第 2の入出口ポートに連通す る第 1の弁ポートと、前記第 1の弁室の他方の側に形成されて前記第 1の弁ポートと 同一軸線上に配置され前記第 2の弁室に連通する第 2の弁ポートとを有しており、 前記弁体は、前記第 1の弁室と前記第 2の弁室を軸線方向に横切って延在し、軸 線方向移動によって前記第 1の弁ポートを開閉する第 1の弁ランド部と、前記第 2の 弁ポートを開閉する第 2の弁ランド部と、前記第 2の弁室を前記第 2の入出口ポートに 開放する内部通路とを有している、 The valve housing includes a first valve chamber directly communicating with the first inlet / outlet port, a second valve chamber, and the second inlet / outlet port formed on one side of the first valve chamber. A first valve port communicating with the first valve chamber; and a first valve port formed on the other side of the first valve chamber. A second valve port disposed on the same axis and communicating with the second valve chamber, wherein the valve element traverses the first valve chamber and the second valve chamber in the axial direction. A first valve land that extends and opens and closes the first valve port by axial movement, a second valve land that opens and closes the second valve port, and the second valve chamber. And an internal passage opening to the second inlet / outlet port.
ことを特徴とする複座弁。  A double-seat valve characterized by the following:
[4] 電動モータと、前記電動モータによって回転駆動され、前記電動モータの回転運 動を直線運動に変換する送りねじ機構とを有し、前記送りねじ機構と前記弁体とが駆 動連結され、前記送りねじ機構によって前記弁体が軸線方向に駆動されることを特 徴とする請求項 1一 3の何れ力 4項記載の複座弁。 [4] An electric motor, and a feed screw mechanism that is rotationally driven by the electric motor and converts the rotational movement of the electric motor into linear motion, wherein the feed screw mechanism and the valve element are drivingly connected. 4. The double-seat valve according to claim 4, wherein the valve body is driven in the axial direction by the feed screw mechanism.
[5] 前記弁体は、前記送りねじ機構側と、前記送りねじ機構とは前記第 1の弁ランド部 および前記第 2の弁ランド部を隔てた反対側との各々において、前記弁ハウジングに 対して軸線方向に移動可能に支持されていることを特徴とする請求項 1一 4の何れか[5] The valve body is provided on the valve housing at each of the feed screw mechanism side and the opposite side of the feed screw mechanism opposite the first valve land portion and the second valve land portion. 5. The electronic device according to claim 1, wherein the supporting member is supported so as to be movable in an axial direction.
1項記載の複座弁。 Double seat valve according to item 1.
[6] 前記第 1の弁ランド部が、前記第 2の弁ランド部を一体に有する弁本体とは別部品 として構成されており、当該第 1の弁ランド部が前記弁本体に固定装着されているこ とを特徴とする請求項 1一 5の何れ力 1項記載の複座弁。  [6] The first valve land is configured as a separate component from a valve body integrally having the second valve land, and the first valve land is fixedly attached to the valve body. The double-seat valve according to any one of claims 1 to 5, wherein
[7] 前記第 1の弁ランド部が、前記弁本体に軸線方向の取付位置を調整可能にねじ係 合した状態で、かしめにより前記弁本体に固定されていることを特徴とする請求項 6 記載の複座弁。 7. The valve body according to claim 6, wherein the first valve land portion is fixed to the valve main body by caulking in a state where the mounting position in the axial direction of the first valve land portion is adjusted so as to be adjustable. Double seat valve as described.
PCT/JP2004/010627 2004-01-30 2004-07-26 Double seat valve WO2005073604A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-023620 2004-01-30
JP2004023620A JP4431414B2 (en) 2003-05-08 2004-01-30 Double seat valve

Publications (1)

Publication Number Publication Date
WO2005073604A1 true WO2005073604A1 (en) 2005-08-11

Family

ID=34823878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/010627 WO2005073604A1 (en) 2004-01-30 2004-07-26 Double seat valve

Country Status (1)

Country Link
WO (1) WO2005073604A1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1998241A (en) * 1933-01-26 1935-04-16 John S Keen Method of making valve mechanism
US2259990A (en) * 1939-02-22 1941-10-21 Gen Electric Valve
DE1110482B (en) * 1954-09-30 1961-07-06 Siemens Ag Double seat valve
GB1007437A (en) * 1961-01-30 1965-10-13 Ass Elect Ind Improvements relating to valves for controlling the flow of gases and/or vapours
JPS4955118U (en) * 1972-08-19 1974-05-15
JPS5176821U (en) * 1974-12-13 1976-06-17
JPS58150671U (en) * 1982-04-05 1983-10-08 株式会社山武 double seat valve
JPH0422231Y2 (en) * 1985-08-31 1992-05-20
JPH05503754A (en) * 1990-01-30 1993-06-17 アライド シグナル インコーポレイテッド Timing control device for double poppet valve
JPH0526388Y2 (en) * 1986-02-27 1993-07-02
JPH0561508B2 (en) * 1989-03-17 1993-09-06 Saginomiya Seisakusho Inc
JP2001108139A (en) * 1999-10-05 2001-04-20 Saginomiya Seisakusho Inc Vaporization pressure control valve

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1998241A (en) * 1933-01-26 1935-04-16 John S Keen Method of making valve mechanism
US2259990A (en) * 1939-02-22 1941-10-21 Gen Electric Valve
DE1110482B (en) * 1954-09-30 1961-07-06 Siemens Ag Double seat valve
GB1007437A (en) * 1961-01-30 1965-10-13 Ass Elect Ind Improvements relating to valves for controlling the flow of gases and/or vapours
JPS4955118U (en) * 1972-08-19 1974-05-15
JPS5176821U (en) * 1974-12-13 1976-06-17
JPS58150671U (en) * 1982-04-05 1983-10-08 株式会社山武 double seat valve
JPH0422231Y2 (en) * 1985-08-31 1992-05-20
JPH0526388Y2 (en) * 1986-02-27 1993-07-02
JPH0561508B2 (en) * 1989-03-17 1993-09-06 Saginomiya Seisakusho Inc
JPH05503754A (en) * 1990-01-30 1993-06-17 アライド シグナル インコーポレイテッド Timing control device for double poppet valve
JP2001108139A (en) * 1999-10-05 2001-04-20 Saginomiya Seisakusho Inc Vaporization pressure control valve

Similar Documents

Publication Publication Date Title
CN105889597B (en) Electric valve
CN108953620B (en) Motor-driven valve
JP6968768B2 (en) Electric valve and refrigeration cycle system
JP2005030586A (en) Electromagnetic fluid control valve
JP7383774B2 (en) Electric valve and refrigeration cycle system
JP2006316835A (en) Electric control valve
JP2005069389A (en) Valve device
JPH02248633A (en) Control device having throttle unit
JP2002276827A (en) Control valve
JP2004028205A (en) Motor operated valve
US20070057223A1 (en) Valve housing assembly
JP2017203509A (en) Motor valve
JP6595338B2 (en) Self-aligning disc
JP2004177105A (en) Motor-operated valve
JP7409982B2 (en) Electric valve and refrigeration cycle system
JP2024010029A (en) Motor-operated valve and refrigeration cycle system
WO2005073604A1 (en) Double seat valve
CN110836270B (en) Electronic expansion valve
JP2004353862A (en) Double-seat valve
JP2006200663A (en) Electric control valve
JP2021152381A (en) Flow passage switching valve
JP6515164B2 (en) Flow control valve
JP2008292003A (en) Motor-operated selector valve
CN112997028A (en) Flow path switching valve
JP2002081566A (en) Motor-operated selector valve

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase