WO2005073291A1 - Carbon fiber-reinforced polyolefin resin composition and formed article made therefrom - Google Patents

Carbon fiber-reinforced polyolefin resin composition and formed article made therefrom Download PDF

Info

Publication number
WO2005073291A1
WO2005073291A1 PCT/JP2005/001322 JP2005001322W WO2005073291A1 WO 2005073291 A1 WO2005073291 A1 WO 2005073291A1 JP 2005001322 W JP2005001322 W JP 2005001322W WO 2005073291 A1 WO2005073291 A1 WO 2005073291A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
fiber
carbon fiber
polyolefin resin
resin composition
Prior art date
Application number
PCT/JP2005/001322
Other languages
French (fr)
Japanese (ja)
Inventor
Koki Yano
Rikuo Onishi
Original Assignee
Idemitsu Kosan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co., Ltd. filed Critical Idemitsu Kosan Co., Ltd.
Publication of WO2005073291A1 publication Critical patent/WO2005073291A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene

Definitions

  • the present invention relates to a polyolefin-based carbon fiber reinforced resin composition and a molded article therefor.
  • the present invention relates to a polyolefin-based carbon fiber reinforced resin composition having improved properties such as flexural strength, flexural modulus, impact strength, and the like, and a molded article comprising the same.
  • Patent Documents 1 and 2 disclose a carbon fiber-reinforced resin composition using a polyolefin-based resin containing a specific rubber-based polymer, but this composition has poor impact strength. Was enough.
  • glass fibers (hereinafter sometimes referred to as GF) have a silanol group on the surface thereof. This is achieved by improving the interfacial strength between the matrix resin and the reinforcing fibers by adding a carboxylic acid or other modified polypropylene to the matrix resin.
  • GF glass fibers
  • carbon fiber which has a silanol group on the surface, the same method cannot be applied to carbon fiber.
  • Patent Document 4 discloses a carbon fiber resin composition obtained by treating a carbon fiber treated with a sizing agent with a maleic anhydride-modified polypropylene, whereby the impregnating property is improved and the strength is insufficient. .
  • Patent Document 1 JP-A-2002-3691 (Example 11)
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2001-294760 (Example 13)
  • Patent Document 3 JP-A-2002-13069
  • Patent Document 4 JP 2003-277525
  • an object of the present invention is to improve the strength (flexural strength, flexural modulus, impact strength) of a polyolefin-based carbon fiber reinforced resin composition.
  • a modified polyolefin resin having a functional group (such as an amino group) capable of reacting with a reactive functional group possessed by carbon fiber is a carbon fiber. Reacts with the functional groups (carboxyl group, quinone group, etc.) present on the surface of the resin to form a bond, strengthens the interfacial strength between the matrix resin, polyolefin resin, and carbon fibers, and achieves the desired physical properties.
  • a functional group such as an amino group
  • the present invention provides
  • the molded article of the present invention which also has a polyolefin-based carbon fiber-reinforced resin composition, can be suitably used for automobile parts, motorcycles, bicycle parts and the like, particularly parts requiring rigidity and durability. .
  • the fiber-reinforced resin composition of the present invention (hereinafter, referred to as the composition of the present invention)
  • (A) As the carbon fiber various conventionally known carbon fibers can be used. Specific examples thereof include carbon fibers of polyacryl-tolyl type, rayon type, pitch type, polybutyl alcohol type, regenerated cell source, mesophase pitch force produced pitch type and the like.
  • the fiber diameter of the carbon fiber is preferably 3 to 30 ⁇ m, and more preferably 4 to 10 ⁇ m. If the fiber diameter is too small, the fiber is liable to break, and the productivity of the reinforcing fiber bundle may be reduced. In addition, when continuously producing pellets, a large number of fibers must be bundled, and complicated labor for connecting fiber bundles is required, which is not preferable because productivity is reduced. In addition, when the pellet length is fixed, if the fiber diameter is excessively large, the astrat ratio of the fiber decreases, and the reinforcing effect may not be sufficiently exhibited, which is not preferable.
  • the aspect ratio is preferably from 5 to 6000.
  • the aspect ratio of the carbon fiber can be determined from the average fiber diameter and the average fiber length by (average fiber length) / (average fiber diameter).
  • a continuous fiber bundle is used as a raw material for long carbon fibers, and this is commercially available as tow.
  • the average fiber diameter is 3-30 m and the number of filament bundles is 500-24,000.
  • the average fiber diameter is 410 m and the number of bundles is 6,000 to 15,000.
  • chopped strands can be used as (A) carbon fibers.
  • the length of the chopped strand is usually 1 to 20 mm, and the fiber diameter is about 3 to 30 m, preferably 4 to 10 m. ⁇ m.
  • the fiber length of the carbon fiber (A) constituting the composition of the present invention is usually 0.05 to 200 mm, preferably 0.2 to 50 mm, and more preferably 412 to 20 mm.
  • the average aspect ratio (fiber length Z fiber diameter) is usually 5 to 6000, preferably 30 to 3000, and more preferably ⁇ 100 to 2000.
  • the carbon fibers are preferably arranged in parallel with each other at substantially the same length, particularly at a length of 2 to 200 mm, preferably 412 to 20 mm.
  • the surface of the carbon fiber is preferably subjected to surface treatment such as etching or coating.
  • Oxidation etching treatment includes air oxidation treatment, oxygen treatment, treatment with oxidizing gas, treatment with ozone, corona treatment, flame treatment, (atmospheric pressure) plasma treatment, and oxidizing liquid (nitric acid, alkali metal hypochlorite).
  • oxidizing liquid nitric acid, alkali metal hypochlorite.
  • Aqueous solution, potassium dichromate sulfuric acid, potassium permanganate sulfuric acid examples include carbon, silicon carbide, silicon dioxide, silicon, plasma monomers, Feguchisen, and Sanshioridani.
  • a sizing agent of urethane type, olefin type, acrylic type, nylon type, butadiene type or epoxy type may be used.
  • Examples of the (B) polyolefin resin include polypropylene, low-density polyethylene, ethylene ⁇ -olefin (for example, 1-butene, 1-hexene, 1-otene, 1-decene, etc.), and high-density polyethylene. And polypropylene is preferred.
  • the melt flow rate (hereinafter, referred to as MFR) of the polypropylene resin is usually from 1 to 300 gZl0 min, preferably from 10 to 250 gZlO min, more preferably from 20 to 200 gZlO min. If the MFR is less than lgZlO, the dispersibility of the reinforcing fibers in the molded article is reduced, and the appearance of the molded article may be poor. If the MFR is greater than 300 gZlO, the impact strength is reduced, which is not preferable. .
  • the MFR of the above polypropylene resin is based on JIS K 7210-1999, and the temperature is 230 ° C. , Load 2.16 kg.
  • the polypropylene resin that can be used in the present invention can be produced by the methods described in JP-A-5-32723, JP-A-11-71431, JP-A-2002-249624 and the like.
  • polypropylene resin can be produced by slurry polymerization, gas phase polymerization, or liquid phase bulk polymerization of propylene or the like using a polymerization catalyst.
  • a polymerization method for producing such a propylene polymer Any of batch polymerization and continuous polymerization can be used.
  • the molecular weight of the polypropylene resin during polymerization can be adjusted by the amount of hydrogen and the like as described in JP-A-2002-226510.
  • the modified polyolefin resin (C) is a polyolefin resin in which an amino group, an alkylamino group, an arylamino group, a glycidyl group, an isocyanate group, a dihydroxazolyl group, or an epoxy group is introduced.
  • amino groups are introduced into the polyolefin resin.
  • the polyolefin resin to be modified include polyethylene resin and polypropylene resin.
  • one or more functional groups may be introduced into the acid-modified polyolefin resin.
  • the acid-modified polyolefin resin can be modified with an unsaturated carboxylic acid or a derivative thereof, and the polyolefin resin has a carboxyl group or a carboxylic anhydride group.
  • Unsaturated carboxylic acids used to modify polyolefin resins include, for example, acrylic acid, methacrylic acid, maleic acid, nadic acid, fumaric acid, itaconic acid, crotonic acid, citraconic acid, sorbic acid, mesaconic acid, angelica Acids and the like.
  • Derivatives of the unsaturated carboxylic acids include acid anhydrides, esters, amides, imides, metal salts and the like. For example, maleic anhydride, itaconic anhydride, citraconic anhydride, nadic anhydride, acrylic acid, etc.
  • maleic anhydride or phthalic anhydride is particularly preferred, since unsaturated dicarboxylic acids and derivatives thereof are preferred.
  • the modified polyolefin-based resin having the above-mentioned functional group allows (A) to react with a carboxyl group, a quinone group, or the like present on the surface of the carbon fiber; A bond between carbon fiber and polyolefin-based resin (matrix resin) can be formed.
  • the polyolefin resin When a polypropylene resin or a mixture thereof is used as (B) the polyolefin resin, it is preferable to use a modified polypropylene resin as the modified polyolefin resin (C).
  • the modified polypropylene resin includes a modified propylene homopolymer, a propylene random copolymer, a propylene block copolymer, and the like, similarly to the above-mentioned polypropylene resin.
  • Examples of the (C) modified polyolefin resin used in the present invention include an epoxy-modified polypropylene resin described in JP-A-9-263687 and a terminal amino acid described in JP-A-6-128322.
  • Modified polypropylene resins, epoxy-terminated polypropylene resins disclosed in JP-A-8-253629, and amino-modified polypropylene resins obtained by reacting an acid-modified polyolefin resin with diamine are exemplified.
  • the crystallization temperature (Tc) of the modified polypropylene resin (C) is usually 90 to 125 ° C, preferably 1 to 125 ° C.
  • the limiting viscosity is usually 0.1 to 2.4 dlZg, preferably 0.2 to 1.6 dl / g.
  • the average number of functional groups per molecule of the modified polyolefin resin is usually 1.5 to 50 Z molecules, preferably 3 to 30 Z molecules, particularly preferably 5 to 20 Z molecules.
  • the average number of functional groups per molecule is 1.5 or more Z molecules or more, a network structure is formed and strength is easily obtained.
  • the crystallization temperature (Tc) of the modified polyolefin resin can be measured with a differential scanning calorimeter (DSC).
  • the intrinsic viscosity of (C) the modified polyolefin resin can be measured in tetralin at 135 ° C.
  • the average number of functional groups per molecule of the modified polyolefin resin is calculated from the amount of functional groups added by Fourier transform infrared spectroscopy (FTIR) and the number average molecular weight measured by GPC. Can be.
  • FTIR Fourier transform infrared spectroscopy
  • composition of the present invention may further contain various additives depending on the application, for example, dispersants, lubricants, plasticizers, flame retardants, antioxidants (phenol-based antioxidants, anti-phosphorylation agents). , Antioxidants, light stabilizers, UV absorbers, crystallization accelerators (nucleating agents), foaming agents, crosslinking agents, modifying additives such as antibacterial agents, pigments, dyes Coloring agents such as carbon black, titanium oxide, red iron oxide, azo pigments, anthraquinone pigments, phthalocyanine, talc, calcium carbonate, myritsu, clay, and other particulate fillers, and wollastonite and other short fiber fillers And whiskers such as potassium titanate.
  • additives such as carbon black, titanium oxide, red iron oxide, azo pigments, anthraquinone pigments, phthalocyanine, talc, calcium carbonate, myritsu, clay, and other particulate fillers, and wollastonite and other short fiber fillers
  • additives may be added at the time of producing a molded body from pellets, the force to be added to the pellets during the production of pellets.
  • specific gravity of the compositions of the present invention is usually at LOOOkgZm 3 or less, preferably, a 1000- 9 50kgZm 3.
  • the composition of the present invention is a short fiber reinforced resin pellet, it can be manufactured by melt-kneading a part or all of the component (A) -one (C) in an extruder or the like, and can be produced by a long fiber reinforced resin.
  • it is a resin pellet, it can be manufactured by a known method such as a drawing method.
  • the above (A)-(C) components may be separately melt-kneaded and then mixed (blended) !.
  • the aspect ratio of the fibers in the composition becomes large, and a composition having high strength is easily obtained, so that a more remarkable effect is obtained.
  • the shape of the fiber-reinforced resin pellets may be any of powder, flake, and pellet.
  • the pellet length of the long fiber reinforced resin pellet is usually 2 to 200 mm. If the pellet length is too short, the effect of improving rigidity, heat resistance and impact strength is low, and warpage may increase, and if the pellet length is too long, molding may be difficult.
  • the pellet length is preferably 3-1 OO mm, more preferably 4-1 20 mm, and particularly preferably 6 to 12 mm.
  • the carbon fibers in the pellet are preferably arranged in a state substantially parallel to each other.
  • the long fiber reinforced resin pellets are obtained by introducing a roving of thousands of reinforcing fibers into an impregnating die and uniformly impregnating the molten thermoplastic resin between the filaments. It can be easily obtained by cutting to 200 mm).
  • the molten resin (components (B) and (C) above) is supplied from an extruder into an impregnation die provided at the extruder tip, the continuous fiber bundle is passed through the impregnating die.
  • the resin is impregnated with molten resin, pulled out through a nozzle, and pelletized to a length of 2 to 200 mm.
  • a method for impregnating the molten resin into the carbon fiber (A) there is no particular limitation, in which a roving is passed through a fluidized bed of a resin powder and then heated to a temperature equal to or higher than the melting point of the resin.
  • an extruder having two or more feed sections is used, and A resin and a resin decomposing agent (for example, in the case of polypropylene resin, an organic peroxide is preferable) may be added from the eaves, and another resin may be added from the side feed.
  • a resin and a resin decomposing agent for example, in the case of polypropylene resin, an organic peroxide is preferable
  • extruders are used, and one or more of the extruders are provided with a resin and a resin decomposer (for example, in the case of polypropylene resin, an organic peroxide). Thing is preferable)
  • a resin decomposer for example, in the case of polypropylene resin, an organic peroxide. Thing is preferable
  • the short fiber reinforced resin pellets can be produced by kneading and dispersing each component at a predetermined ratio using a roll mill, a Banbury mixer, a kneader, or the like. Dry blending may be performed using a tumbler set blender, Henschel mixer, ribbon mixer, or the like. The mixture is kneaded with a single-screw extruder, a twin-screw extruder or the like to obtain a pellet-shaped molding material. Carbon fiber can be fed from the top or side of the extruder from the gap!
  • the molded article of the present invention is obtained by molding the above fiber-reinforced resin composition of the present invention.
  • the method for molding the molded article of the present invention includes known methods such as injection molding, extrusion molding, hollow molding, compression molding, injection compression molding, gas injection injection molding, and foam injection molding.
  • the molding method can be applied without any restrictions.
  • injection molding, compression molding and injection compression molding are preferred.
  • the molded article may be molded as it is of the composition of the present invention, or may be molded after being blended with a diluent.
  • the blending of the fiber-reinforced resin pellets, which is the composition of the present invention, and a diluent composed of the same thermoplastic resin as the fiber-reinforced resin pellets, such as polyolefin resin, can be performed by a dry blending method. . Rather, in order to maintain the fiber length in the composition and obtain higher rigidity, impact resistance, and durability improvement effects, the molding machine such as an injection molding machine or the like should be used directly after the dry blending without passing through an extruder.
  • the mixing ratio of the diluent is determined from the viewpoint of the effect of improving the rigidity, impact resistance and durability determined by the reinforcing fiber content of the fiber-reinforced resin pellets and the reinforcing fiber content required for the final molded product. Usually, it is 0 to 90% by mass.
  • the weight average fiber length of the (A) carbon fiber remaining after molding is usually 0.05 mm or more, preferably 1 mm or more. (A) If the weight average fiber length of carbon fiber is too short, rigidity and impact resistance The effect of improving properties and durability cannot be obtained.
  • Carbon fiber (chopped strand) HTA-C6-UEL1 PAN-based, urethane-based sizing agent (2.5% added), fiber diameter 7 ⁇ m, fiber length (strand length) 6 mm; Toho Tenatas Co., Ltd. Made)
  • Amino group-containing polypropylene resin (amino group-containing PP): Using the raw materials shown in Table 1 below
  • Amino group-containing PPs (1) and (2) produced under mixing conditions and kneading conditions were used.
  • amino group-containing PP is performed by using a 35 mm twin-screw extruder (manufactured by Labotex) with a vacuum vent, performing vacuum venting, and blending the entire amount of raw materials from the top feed.
  • ilganox 1010 manufactured by Chivas Specialty Chemicals Co .; antioxidant
  • ilgafos 168 manufactured by Chinoku Suphariti Chemicals Co .; antioxidant
  • PP polypropylene
  • Polybond 3200 Maleic acid-modified polypropylene (above) HMD A: Hexamethylene diamine (Tokyo Kasei Co., Ltd.)
  • Polypropylene resin, modified polypropylene resin and carbon fiber were added at the mixing ratio. After kneading the cylinder at 200 ° C and screw rotation at 350 rpm, cool the strand with water
  • Carbon fiber reinforced resin pellets were obtained in the same manner as in Example 2 and Comparative Examples 1 and 2, except that carbon fiber was charged from the side feed and the proportions of each component were changed as shown in Table 2 below. Was.
  • the weight average fiber length in the composition was calculated by the following formula, after extracting fibers with para-xylene, measuring the fiber length of 500 to 2000 fibers with an image processing device (manufactured by Lusettas). did.
  • Weight average fiber length ⁇ (fiber length) V ⁇ fiber length
  • the outside ratio of fiber was calculated from the above weight average fiber length and fiber diameter.
  • Molded articles obtained from the fiber-reinforced resin composition of the present invention can be used for automobile parts (front end, fan shroud, cooling fan, engine under cover, engine cover, radiator box, side door, back door inner, Back door outer, skin, roof rail, door handle, luggage box, wheel cover, handle, cooling module, air cleaner), motorcycle.
  • Bicycle parts (luggage box, handle, wheel)
  • Housing-related parts hot water cleaning valve seat parts, bathroom parts, chair legs, valves, meter bolts
  • other parts power tool parts, mower handles, hose joints, resin bolts, concrete formwork
  • automobile parts including front end modules (including fan shroud 'fan' cooling modules), air cleaners and door parts) and valves that require rigidity and durability.

Abstract

Disclosed is a fiber-reinforced resin composition which is characterized by containing a carbon fiber (A), a polyolefin resin (B), and a modified polyolefin resin (C) having one or more kinds of functional groups reactive with a reactive functional group of the carbon fiber (A) at the following ratio (mass%). (A):[(B) + (C)] = 1-80:99-20

Description

明 細 書  Specification
ポリオレフイン系炭素繊維強化樹脂組成物及びそれ力 なる成形品 技術分野  TECHNICAL FIELD The present invention relates to a polyolefin-based carbon fiber reinforced resin composition and a molded article therefor.
[0001] 本発明は、曲げ強度、曲げ弾性率、衝撃強度等の特性が向上したポリオレフイン系 炭素繊維強化榭脂組成物及びそれからなる成形品に関する。  The present invention relates to a polyolefin-based carbon fiber reinforced resin composition having improved properties such as flexural strength, flexural modulus, impact strength, and the like, and a molded article comprising the same.
背景技術  Background art
[0002] 近年、炭素繊維榭脂組成物は強度、剛性、低比重、耐摩耗性等の機械特性が評 価され工業的に重要な材料として注目されて 、る。特に自動車部品や電子材料製 品の分野においては高剛性の榭脂組成物の成形品が金属材料やガラス繊維強化 榭脂組成物の代替材料として有用性が検討されている。  [0002] In recent years, carbon fiber resin compositions have been evaluated as mechanical properties such as strength, rigidity, low specific gravity, and abrasion resistance, and have been attracting attention as industrially important materials. In particular, in the field of automobile parts and electronic material products, the usefulness of molded products of highly rigid resin compositions as substitutes for metal materials and glass fiber reinforced resin compositions is being studied.
[0003] 特許文献 1及び特許文献 2には、特定のゴム系重合体を含むポリオレフイン系榭脂 を使用した炭素繊維強化榭脂組成物が開示されているが、この組成物は衝撃強度 が不十分であった。  [0003] Patent Documents 1 and 2 disclose a carbon fiber-reinforced resin composition using a polyolefin-based resin containing a specific rubber-based polymer, but this composition has poor impact strength. Was enough.
[0004] 一般に、ガラス繊維強化榭脂組成物の高強度化は、ガラス繊維(以下、 GFと 、うこ とがある)は、その表面にシラノール基を有することから、 GFにアミノシランカップリン グ剤による表面処理とマトリックス榭脂にカルボン酸等により変性したポリプロピレンを 添加することで、マトリックス榭脂と強化繊維の界面強度を向上させることによって達 成されている。し力しながら、炭素繊維 (CF)は GFと異なり、表面にシラノール基を持 たな 、為、同様の手法を炭素繊維に適用することはできな 、。  [0004] In general, to increase the strength of a glass fiber-reinforced resin composition, glass fibers (hereinafter sometimes referred to as GF) have a silanol group on the surface thereof. This is achieved by improving the interfacial strength between the matrix resin and the reinforcing fibers by adding a carboxylic acid or other modified polypropylene to the matrix resin. However, unlike carbon fiber (CF), which has a silanol group on the surface, the same method cannot be applied to carbon fiber.
[0005] 一般的に、炭素繊維には含浸開繊時の炭素繊維の取り扱いを容易にしたり、マトリ ックス榭脂との濡れ性を向上させるために 、ろ 、ろなサイジング剤 (たとえば、特許文 献 3に記載のもの)を使用している。特許文献 4では、サイジング剤で処理した炭素繊 維を無水マレイン酸変性ポリプロピレンで処理した炭素繊維榭脂組成物を開示して おり、これにより含浸性は向上している力 強度は不足していた。  [0005] Generally, in order to facilitate the handling of carbon fibers during impregnation and opening of carbon fibers and to improve the wettability with matrix resin, various sizing agents (for example, see Patent 3). Patent Document 4 discloses a carbon fiber resin composition obtained by treating a carbon fiber treated with a sizing agent with a maleic anhydride-modified polypropylene, whereby the impregnating property is improved and the strength is insufficient. .
[0006] 特許文献 1:特開 2002— 3691号公報(実施例 11)  [0006] Patent Document 1: JP-A-2002-3691 (Example 11)
特許文献 2:特開 2001-294760公報(実施例 13)  Patent Document 2: Japanese Patent Application Laid-Open No. 2001-294760 (Example 13)
特許文献 3 :特開 2002— 13069号公報 特許文献 4:特開 2003— 277525公報 Patent Document 3: JP-A-2002-13069 Patent Document 4: JP 2003-277525
[0007] 本発明は、上記現状に鑑み、ポリオレフイン系炭素繊維強化榭脂組成物の強度( 曲げ強度、曲げ弾性率、衝撃強度)を向上させることを目的とする。 [0007] In view of the above situation, an object of the present invention is to improve the strength (flexural strength, flexural modulus, impact strength) of a polyolefin-based carbon fiber reinforced resin composition.
発明の開示  Disclosure of the invention
[0008] 上記目的を達成するため、本発明者らは鋭意研究を重ね、炭素繊維が有する反応 性官能基と反応できる官能基 (ァミノ基等)を有する変性ポリオレフイン系榭脂が、炭 素繊維の表面に存在する官能基 (カルボキシル基、キノン基等)と反応して結合を形 成し、マトリックス榭脂であるポリオレフイン系榭脂と炭素繊維との界面強度を強固に し、目的とする物性を向上させることができることを見出し本発明を完成させた。  [0008] In order to achieve the above object, the present inventors have conducted intensive studies and have found that a modified polyolefin resin having a functional group (such as an amino group) capable of reacting with a reactive functional group possessed by carbon fiber is a carbon fiber. Reacts with the functional groups (carboxyl group, quinone group, etc.) present on the surface of the resin to form a bond, strengthens the interfacial strength between the matrix resin, polyolefin resin, and carbon fibers, and achieves the desired physical properties. Have been found, and the present invention has been completed.
[0009] すなわち、本発明は、  That is, the present invention provides
(1) (A)炭素繊維、  (1) (A) carbon fiber,
(B)ポリオレフイン系榭脂、及び  (B) polyolefin-based resin, and
(C)上記 (A)炭素繊維が有する反応性官能基と反応しうる官能基を 1種以上有する 変性ポリオレフイン系榭脂、  (C) (A) a modified polyolefin resin having at least one functional group capable of reacting with the reactive functional group of the carbon fiber,
を、下記割合 (質量%)で含むことを特徴とする繊維強化榭脂組成物。  Is contained in the following ratio (mass%).
(A): [ (B) + (C) ] = 1一 80: 99一 20;  (A): [(B) + (C)] = 1-80: 99--20;
[0010] (2) (B)ポリオレフイン系榭脂がポリプロピレンであることを特徴とする上記(1)に記載 の繊維強化榭脂組成物; (2) The fiber-reinforced resin composition according to the above (1), wherein the (B) polyolefin resin is polypropylene.
[0011] (3) (C)変性ポリオレフイン系榭脂が有する官能基が、アミノ基又はエポキシ基である ことを特徴とする上記(1)又は (2)に記載の繊維強化榭脂組成物; (3) The fiber-reinforced resin composition according to the above (1) or (2), wherein the functional group of the modified polyolefin resin (C) is an amino group or an epoxy group;
[0012] (4)上記(1)一 (3)の ヽずれかに記載の繊維強化榭脂組成物を成形してなる成形品 を提供する。 (4) A molded article obtained by molding the fiber-reinforced resin composition according to any one of the above (1) to (3).
[0013] 本発明によれば、曲げ強度、曲げ弾性率、衝撃強度が向上したポリオレフイン系炭 素繊維強化榭脂組成物を提供することができる。  According to the present invention, it is possible to provide a polyolefin-based carbon fiber reinforced resin composition having improved flexural strength, flexural modulus and impact strength.
[0014] 本発明のポリオレフイン系炭素繊維強化榭脂組成物力もなる成形品は、自動車部 品、二輪,自転車部品等の、特に剛性や耐久性の要求される部品等に好適に用いる ことができる。 [0014] The molded article of the present invention, which also has a polyolefin-based carbon fiber-reinforced resin composition, can be suitably used for automobile parts, motorcycles, bicycle parts and the like, particularly parts requiring rigidity and durability. .
発明を実施するための最良の形態 [0015] 以下、本発明を詳細に説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
本発明の繊維強化榭脂組成物(以下、本発明の組成物という)は、  The fiber-reinforced resin composition of the present invention (hereinafter, referred to as the composition of the present invention)
(A)炭素繊維、  (A) carbon fiber,
(B)ポリオレフイン系榭脂、及び  (B) polyolefin-based resin, and
(C)上記 (A)炭素繊維が有する反応性官能基と反応しうる官能基を 1種以上有する 変性ポリオレフイン系榭脂、  (C) (A) a modified polyolefin resin having at least one functional group capable of reacting with the reactive functional group of the carbon fiber,
を、下記割合 (質量%)で含むことを特徴とする。  In the following proportions (% by mass).
(A): [ (B) + (C) ] = 1一 80: 99一 20  (A): [(B) + (C)] = 1-80: 99-1 20
[0016] 先ず、本発明の組成物の必須構成成分について説明する。 First, essential components of the composition of the present invention will be described.
(A)炭素繊維  (A) Carbon fiber
(A)炭素繊維は、従来公知の種々の炭素繊維を使用することができる。具体的には 、ポリアクリル-トリル系、レーヨン系、ピッチ系、ポリビュルアルコール系、再生セル口 ース、メゾフェーズピッチ力 製造されたピッチ系等の炭素繊維が挙げられる。  (A) As the carbon fiber, various conventionally known carbon fibers can be used. Specific examples thereof include carbon fibers of polyacryl-tolyl type, rayon type, pitch type, polybutyl alcohol type, regenerated cell source, mesophase pitch force produced pitch type and the like.
[0017] 炭素繊維の繊維径は、好ましくは 3— 30 μ mであり、さらに好ましくは 4一 10 μ mで ある。繊維径が過小であると、繊維が破損しやすいため、強化繊維束の生産性が低 下することがある。また、ペレットを連続製造するときに、繊維を多数本束ねなければ ならなくなり、繊維束をつなぐ煩雑な手間が必要となり、生産性が低下するため好まし くない。また、ペレット長が決まっている場合は繊維径が過大であると、繊維のァスぺ タト比が低下することとなり、補強効果が充分発揮されなくなることがあることから好ま しくない。アスペクト比は 5— 6000が好ましい。アスペクト比が過小であると強度が低 下し、大きすぎると成形性が低下する恐れがある。(A)炭素繊維のアスペクト比は、 平均繊維径と平均繊維長から、(平均繊維長) ÷ (平均繊維径)によって求めることが できる。 [0017] The fiber diameter of the carbon fiber is preferably 3 to 30 µm, and more preferably 4 to 10 µm. If the fiber diameter is too small, the fiber is liable to break, and the productivity of the reinforcing fiber bundle may be reduced. In addition, when continuously producing pellets, a large number of fibers must be bundled, and complicated labor for connecting fiber bundles is required, which is not preferable because productivity is reduced. In addition, when the pellet length is fixed, if the fiber diameter is excessively large, the astrat ratio of the fiber decreases, and the reinforcing effect may not be sufficiently exhibited, which is not preferable. The aspect ratio is preferably from 5 to 6000. If the aspect ratio is too small, the strength is reduced, and if it is too large, the moldability may be reduced. (A) The aspect ratio of the carbon fiber can be determined from the average fiber diameter and the average fiber length by (average fiber length) / (average fiber diameter).
[0018] 炭素長繊維の原料としては、連続状繊維束が用いられ、これはトウとして市販され ている。通常、その平均繊維径は 3— 30 m、フィラメント集束本数は 500— 24,000 本である。好ましくは平均繊維径 4一 10 m、集束本数 6,000— 15, 000本である。  [0018] A continuous fiber bundle is used as a raw material for long carbon fibers, and this is commercially available as tow. Usually, the average fiber diameter is 3-30 m and the number of filament bundles is 500-24,000. Preferably, the average fiber diameter is 410 m and the number of bundles is 6,000 to 15,000.
[0019] 他に、(A)炭素繊維として、チョップドストランドを用いることもできる。このチョップド ストランドの長さは、通常 1一 20mm、繊維の径は 3— 30 m程度、好ましくは 4一 10 μ mのものである。 [0019] Alternatively, chopped strands can be used as (A) carbon fibers. The length of the chopped strand is usually 1 to 20 mm, and the fiber diameter is about 3 to 30 m, preferably 4 to 10 m. μm.
[0020] 本発明の組成物を構成する(A)炭素繊維の繊維長は、通常、 0. 05— 200mm、 好ましく ίま 0. 2- 50mm,より好ましく ίま 4一 20mmである。  [0020] The fiber length of the carbon fiber (A) constituting the composition of the present invention is usually 0.05 to 200 mm, preferably 0.2 to 50 mm, and more preferably 412 to 20 mm.
[0021] 平均アスペクト比(繊維長 Z繊維径)は、通常、 5— 6000、好ましくは 30— 3000、 より好まし <は 100— 2000である。  [0021] The average aspect ratio (fiber length Z fiber diameter) is usually 5 to 6000, preferably 30 to 3000, and more preferably <100 to 2000.
[0022] (A)炭素繊維は、互いにほぼ同じ長さ、特に 2— 200mm、好ましくは 4一 20mmの 長さで平行に配列して 、ることが好ま 、。  [0022] (A) The carbon fibers are preferably arranged in parallel with each other at substantially the same length, particularly at a length of 2 to 200 mm, preferably 412 to 20 mm.
[0023] (A)炭素繊維の表面は、酸ィ匕エッチングや被覆等で表面処理を行ったものが好ま しい。酸化エッチング処理としては、空気酸化処理、酸素処理、酸化性ガスによる処 理、オゾンによる処理、コロナ処理、火炎処理、(大気圧)プラズマ処理、酸化性液体 (硝酸、次亜塩素酸アルカリ金属塩の水溶液、重クロム酸カリウム 硫酸、過マンガン 酸カリウム 硫酸)等が挙げられる。炭素繊維を被覆する物質としては、炭素、炭化珪 素、二酸化珪素、珪素、プラズマモノマー、フエ口セン、三塩ィ匕鉄等が挙げられる。  (A) The surface of the carbon fiber is preferably subjected to surface treatment such as etching or coating. Oxidation etching treatment includes air oxidation treatment, oxygen treatment, treatment with oxidizing gas, treatment with ozone, corona treatment, flame treatment, (atmospheric pressure) plasma treatment, and oxidizing liquid (nitric acid, alkali metal hypochlorite). Aqueous solution, potassium dichromate sulfuric acid, potassium permanganate sulfuric acid) and the like. Examples of the substance that coats the carbon fiber include carbon, silicon carbide, silicon dioxide, silicon, plasma monomers, Feguchisen, and Sanshioridani.
[0024] また、必要に応じてウレタン系、ォレフィン系、アクリル系、ナイロン系、ブタジエン系 及びエポキシ系等の収束剤を使用してもよ ヽ。  [0024] If necessary, a sizing agent of urethane type, olefin type, acrylic type, nylon type, butadiene type or epoxy type may be used.
[0025] (B)ポリオレフイン系榭脂  [0025] (B) Polyolefin resin
(B)ポリオレフイン系榭脂としては、例えば、ポリプロピレン、低密度ポリエチレン、ェ チレン α—ォレフィン(例えば、 1ーブテン、 1一へキセン、 1 オタテン、 1ーデセン等) 共重合体、高密度ポリエチレン等が挙げられ、ポリプロピレンが好ましい。  Examples of the (B) polyolefin resin include polypropylene, low-density polyethylene, ethylene α-olefin (for example, 1-butene, 1-hexene, 1-otene, 1-decene, etc.), and high-density polyethylene. And polypropylene is preferred.
[0026] (Β)ポリオレフイン系榭脂としての、ポリプロピレン榭脂には、プロピレン単独重合体 、プロピレンランダム共重合体、プロピレンブロック共重合体等がある力 いずれを用 いてもよいが、好ましくは、プロピレン単独重合体である。  [0026] (ii) Polypropylene resin as the polypropylene resin, propylene homopolymer, propylene random copolymer, propylene block copolymer, etc. Any force may be used. It is a propylene homopolymer.
[0027] ポリプロピレン榭脂のメルトフローレート(以下、 MFRという)は、通常 1一 300gZl 0分、好ましくは 10— 250gZlO分、さらに好ましくは 20— 200gZlO分である。 MF Rが lgZlO分未満であると成形体中の強化繊維の分散性が低下し、成形体の外観 不良が見られることがあり、 MFRが 300gZlO分より大きいと衝撃強度が低下するた め好ましくない。  [0027] The melt flow rate (hereinafter, referred to as MFR) of the polypropylene resin is usually from 1 to 300 gZl0 min, preferably from 10 to 250 gZlO min, more preferably from 20 to 200 gZlO min. If the MFR is less than lgZlO, the dispersibility of the reinforcing fibers in the molded article is reduced, and the appearance of the molded article may be poor.If the MFR is greater than 300 gZlO, the impact strength is reduced, which is not preferable. .
[0028] 上記のポリプロピレン榭脂の MFRは、 JIS K 7210— 1999に準拠し、温度 230°C 、荷重 2. 16kgの条件で測定した値である。 [0028] The MFR of the above polypropylene resin is based on JIS K 7210-1999, and the temperature is 230 ° C. , Load 2.16 kg.
[0029] 本発明で用いることができるポリプロピレン榭脂は、特開平 5— 32723号公報、特開 平 11— 71431号公報、特開 2002-249624号公報に記載の方法等により製造でき る。 [0029] The polypropylene resin that can be used in the present invention can be produced by the methods described in JP-A-5-32723, JP-A-11-71431, JP-A-2002-249624 and the like.
[0030] 即ち、ポリプロピレン榭脂は、重合用触媒を用いてプロピレン等をスラリー重合、気 相重合、又は液相塊状重合することにより製造でき、このようなプロピレン重合体を製 造する重合方式としては、バッチ重合、連続重合のいずれの方式も使用することがで きる。  [0030] That is, polypropylene resin can be produced by slurry polymerization, gas phase polymerization, or liquid phase bulk polymerization of propylene or the like using a polymerization catalyst. As a polymerization method for producing such a propylene polymer, Any of batch polymerization and continuous polymerization can be used.
[0031] ポリプロピレン榭脂の重合時の分子量は、特開 2002-226510号公報に記載され て 、るように水素量等で調整できる。  [0031] The molecular weight of the polypropylene resin during polymerization can be adjusted by the amount of hydrogen and the like as described in JP-A-2002-226510.
[0032] (C)上記 (A)炭素繊維が有する反応性官能基と反応しうる官能基を 1種以上有する 変性ポリオレフイン系榭脂(以下、(C)変性ポリオレフイン系榭脂と!/、う)  (C) Modified polyolefin resin having at least one functional group capable of reacting with the reactive functional group of the carbon fiber (A) (hereinafter referred to as (C) modified polyolefin resin! / )
本発明において、(C)変性ポリオレフイン樹脂とは、ポリオレフイン系榭脂中にアミノ 基、アルキルアミノ基、ァリールアミノ基、グリシジル基、イソシァネート基、ジヒドロォキ サゾリル基、エポキシ基を導入したものをいう。好ましくは、ポリオレフイン系榭脂にァ ミノ基を導入したものである。変性されるポリオレフイン系榭脂としては、例えば、ポリ エチレン榭脂、ポリプロピレン榭脂等が挙げられる。  In the present invention, the modified polyolefin resin (C) is a polyolefin resin in which an amino group, an alkylamino group, an arylamino group, a glycidyl group, an isocyanate group, a dihydroxazolyl group, or an epoxy group is introduced. Preferably, amino groups are introduced into the polyolefin resin. Examples of the polyolefin resin to be modified include polyethylene resin and polypropylene resin.
[0033] 尚、(C)変性ポリオレフイン榭脂は、酸変性したポリオレフイン樹脂に、官能基を 1種 以上導入してもよい。酸変性したポリオレフイン系榭脂は、不飽和カルボン酸又はそ の誘導体で変性でき、ポリオレフイン系榭脂中にカルボキシル基や無水カルボン酸 基を有する。  [0033] In the modified polyolefin resin (C), one or more functional groups may be introduced into the acid-modified polyolefin resin. The acid-modified polyolefin resin can be modified with an unsaturated carboxylic acid or a derivative thereof, and the polyolefin resin has a carboxyl group or a carboxylic anhydride group.
ポリオレフイン系榭脂を変性するために用いる不飽和カルボン酸としては、例えば、 アクリル酸、メタクリル酸、マレイン酸、ナジック酸、フマル酸、ィタコン酸、クロトン酸、 シトラコン酸、ソルビン酸、メサコン酸、アンゲリカ酸等が挙げられる。また、その不飽 和カルボン酸の誘導体としては、酸無水物、エステル、アミド、イミド、金属塩等があり 、例えば、無水マレイン酸、無水ィタコン酸、無水シトラコン酸、無水ナジック酸、ァク リル酸メチル、メタクル酸メチル、アクリル酸ェチル、アクリル酸ブチル、マレイン酸モノ ェチルエステル、アクリルアミド、マレイン酸モノアミド、マレイミド、 N—ブチルマレイミ ド、アクリル酸ナトリウム、メタクリル酸ナトリウム等が挙げられる。これらの中でも、不飽 和ジカルボン酸及びその誘導体が好ましぐ特に無水マレイン酸又は無水フタル酸 が好適である。 Unsaturated carboxylic acids used to modify polyolefin resins include, for example, acrylic acid, methacrylic acid, maleic acid, nadic acid, fumaric acid, itaconic acid, crotonic acid, citraconic acid, sorbic acid, mesaconic acid, angelica Acids and the like. Derivatives of the unsaturated carboxylic acids include acid anhydrides, esters, amides, imides, metal salts and the like. For example, maleic anhydride, itaconic anhydride, citraconic anhydride, nadic anhydride, acrylic acid, etc. Methyl acrylate, methyl methacrylate, ethyl acrylate, butyl acrylate, monoethyl maleate, acrylamide, monoamide maleate, maleimide, N-butyl maleimi , Sodium acrylate, sodium methacrylate and the like. Among these, maleic anhydride or phthalic anhydride is particularly preferred, since unsaturated dicarboxylic acids and derivatives thereof are preferred.
[0034] (C)変性ポリオレフイン系榭脂が上記官能基を有して 、ることで、 (A)炭素繊維の 表面に存在するカルボキシル基、キノン基等と反応することができ、(A)炭素繊維と ポリオレフイン系榭脂 (マトリックス榭脂)との結合を形成することができる。  [0034] (C) The modified polyolefin-based resin having the above-mentioned functional group allows (A) to react with a carboxyl group, a quinone group, or the like present on the surface of the carbon fiber; A bond between carbon fiber and polyolefin-based resin (matrix resin) can be formed.
[0035] 上記 (B)ポリオレフイン系榭脂としてポリプロピレン榭脂又はその混合物を使用する 場合は、(C)変性ポリオレフイン系榭脂として変性ポリプロピレン榭脂を用いることが 好ましい。  When a polypropylene resin or a mixture thereof is used as (B) the polyolefin resin, it is preferable to use a modified polypropylene resin as the modified polyolefin resin (C).
[0036] 尚、変性ポリプロピレン榭脂には、上述のポリプロピレン榭脂と同様に、変性された プロピレン単独重合体、プロピレンランダム共重合体、プロピレンブロック共重合体等 を含む。  [0036] The modified polypropylene resin includes a modified propylene homopolymer, a propylene random copolymer, a propylene block copolymer, and the like, similarly to the above-mentioned polypropylene resin.
[0037] ポリオレフイン系榭脂の変性には、グラフト変性、共重合化、末端変性等の方法を 使用することができる。  For the modification of the polyolefin resin, methods such as graft modification, copolymerization, and terminal modification can be used.
[0038] 本発明で用いる(C)変性ポリオレフイン系榭脂としては、例えば、特開平 9— 26368 7号公報に示されるエポキシ変性ポリプロピレン系榭脂、特開平 6— 128322号公報 に示される末端アミノ変性ポリプロピレン系榭脂、特開平 8— 253629号公報に示され る末端エポキシ変性ポリプロピレン榭脂、酸変性ポリオレフイン系榭脂とジァミンを反 応させたァミノ変性ポリプロピレン系榭脂等が挙げられる。  [0038] Examples of the (C) modified polyolefin resin used in the present invention include an epoxy-modified polypropylene resin described in JP-A-9-263687 and a terminal amino acid described in JP-A-6-128322. Modified polypropylene resins, epoxy-terminated polypropylene resins disclosed in JP-A-8-253629, and amino-modified polypropylene resins obtained by reacting an acid-modified polyolefin resin with diamine are exemplified.
[0039] (C)変性ポリプロピレン榭脂の結晶化温度 (Tc)は、通常 90— 125°C、好ましくは 1 [0039] The crystallization temperature (Tc) of the modified polypropylene resin (C) is usually 90 to 125 ° C, preferably 1 to 125 ° C.
10— 120°Cである。極限粘度は、通常 0. 1-2. 4dlZg、好ましくは 0. 2-1. 6dl/ gである。  10-120 ° C. The limiting viscosity is usually 0.1 to 2.4 dlZg, preferably 0.2 to 1.6 dl / g.
[0040] 変性ポリオレフイン樹脂の 1分子当たりの平均官能基数は、通常 1. 5— 50個 Z分 子、好ましくは 3— 30個 Z分子、特に好ましくは 5— 20個 Z分子である。 1分子当たり の平均官能基数が 1. 5個 Z分子以上であれば、網目構造を形成し強度が得られ易 く、 50個 Z分子を超えると製造時にゲルィ匕しゃすく好ましくな 、。  The average number of functional groups per molecule of the modified polyolefin resin is usually 1.5 to 50 Z molecules, preferably 3 to 30 Z molecules, particularly preferably 5 to 20 Z molecules. When the average number of functional groups per molecule is 1.5 or more Z molecules or more, a network structure is formed and strength is easily obtained.
[0041] (C)変性ポリオレフイン系榭脂の結晶化温度 (Tc)は、示差走査熱量計 (DSC)によ つて測定することができる。 [0042] (C)変性ポリオレフイン系榭脂の極限粘度は、テトラリン中、 135°Cで測定すること ができる。 (C) The crystallization temperature (Tc) of the modified polyolefin resin can be measured with a differential scanning calorimeter (DSC). [0042] The intrinsic viscosity of (C) the modified polyolefin resin can be measured in tetralin at 135 ° C.
[0043] (C)変性ポリオレフイン系榭脂の 1分子当たりの平均官能基数は、フーリエ変換赤 外分光法 (FTIR)で測定した官能基の付加量、 GPCで測定した数平均分子量から 算出することができる。  (C) The average number of functional groups per molecule of the modified polyolefin resin is calculated from the amount of functional groups added by Fourier transform infrared spectroscopy (FTIR) and the number average molecular weight measured by GPC. Can be.
[0044] 次に、本発明の組成物における、上記 (A)— (C)成分の配合割合は、質量%で、  Next, in the composition of the present invention, the mixing ratio of the components (A) to (C) is
(A): [ (B) + (C) ] = 1一 80: 99一 20  (A): [(B) + (C)] = 1-80: 99-1 20
であり、好ましくは  And preferably
(A): [ (B) + (C) ] = 2— 40: 98— 60  (A): [(B) + (C)] = 2—40: 98—60
である。  It is.
[0045] (A)炭素繊維の割合が 1質量%未満では、炭素繊維による樹脂の強化効果が現 れず、 80質量%を超えると、靱性が失われる場合がある。  [0045] (A) If the proportion of the carbon fiber is less than 1% by mass, the effect of reinforcing the resin by the carbon fiber does not appear, and if it exceeds 80% by mass, the toughness may be lost.
[0046] なお、本発明の組成物には、その他、用途に応じて様々な添加剤、例えば、分散 剤、滑剤、可塑剤、難燃剤、酸化防止剤 (フエノール系酸化防止剤、リン酸化防止剤 、ィォゥ系酸化防止剤)、帯電防止剤、光安定剤、紫外線吸収剤、結晶化促進剤 (増 核剤)、発泡剤、架橋剤、抗菌剤等の改質用添加剤、顔料、染料等の着色剤、カー ボンブラック、酸化チタン、ベンガラ、ァゾ顔料、アントラキノン顔料、フタロシアニン、 タルク、炭酸カルシウム、マイ力、クレー等の粒子状充填剤、ワラストナイト等の短繊 維状充填剤、チタン酸カリウム等のウイスカ一等を添加することができる。  [0046] The composition of the present invention may further contain various additives depending on the application, for example, dispersants, lubricants, plasticizers, flame retardants, antioxidants (phenol-based antioxidants, anti-phosphorylation agents). , Antioxidants, light stabilizers, UV absorbers, crystallization accelerators (nucleating agents), foaming agents, crosslinking agents, modifying additives such as antibacterial agents, pigments, dyes Coloring agents such as carbon black, titanium oxide, red iron oxide, azo pigments, anthraquinone pigments, phthalocyanine, talc, calcium carbonate, myritsu, clay, and other particulate fillers, and wollastonite and other short fiber fillers And whiskers such as potassium titanate.
[0047] これらの添加剤は、ペレット製造時に添カ卩してペレット中に含有させる力、ペレットか ら成形体を製造するときに添加してもよい。  [0047] These additives may be added at the time of producing a molded body from pellets, the force to be added to the pellets during the production of pellets.
[0048] 本発明の組成物の比重は、通常、 lOOOkgZm3以下であり、好ましくは、 1000— 9 50kgZm3である。 [0048] specific gravity of the compositions of the present invention is usually at LOOOkgZm 3 or less, preferably, a 1000- 9 50kgZm 3.
[0049] 次に、本発明の組成物の製造方法について説明する。  Next, a method for producing the composition of the present invention will be described.
本発明の組成物は、短繊維強化榭脂ペレットである場合は、押出し機等に上記 (A )一 (C)成分の一部又は全部を溶融混練して製造することができ、長繊維強化榭脂 ペレットである場合は、引き抜き法等公知の方法で製造することができる。上記 (A) 一 (C)成分の一部を別途溶融混練した後、混合 (ブレンド)してもよ!、。 [0050] 長繊維強化榭脂ペレットは、組成物中の繊維のアスペクト比が大きくなり、強度が高 い組成物を得やすいため、より顕著な効果が得られる。 When the composition of the present invention is a short fiber reinforced resin pellet, it can be manufactured by melt-kneading a part or all of the component (A) -one (C) in an extruder or the like, and can be produced by a long fiber reinforced resin. When it is a resin pellet, it can be manufactured by a known method such as a drawing method. The above (A)-(C) components may be separately melt-kneaded and then mixed (blended) !. [0050] In the long fiber reinforced resin pellets, the aspect ratio of the fibers in the composition becomes large, and a composition having high strength is easily obtained, so that a more remarkable effect is obtained.
[0051] 繊維強化榭脂ペレットの形状は、パウダー状、フレーク状、ペレット状のいずれでも 構わない。 [0051] The shape of the fiber-reinforced resin pellets may be any of powder, flake, and pellet.
[0052] 長繊維強化榭脂ペレットのペレット長は通常 2— 200mmである。ペレット長が短す ぎると、剛性、耐熱性及び衝撃強度の改善効果が低ぐ反り変形も大きくなる場合が あり、また、ペレット長が長すぎると成形が困難となる場合がある。ペレット長は、 3— 1 OOmmであることが好ましぐさらに好ましくは 4一 20mmであり、特に好ましくは 6— 1 2mmで to 。  [0052] The pellet length of the long fiber reinforced resin pellet is usually 2 to 200 mm. If the pellet length is too short, the effect of improving rigidity, heat resistance and impact strength is low, and warpage may increase, and if the pellet length is too long, molding may be difficult. The pellet length is preferably 3-1 OO mm, more preferably 4-1 20 mm, and particularly preferably 6 to 12 mm.
[0053] ペレット中の (A)炭素繊維は互いにほぼ平行な状態で配列して 、るのが好ま U、。  [0053] (A) The carbon fibers in the pellet are preferably arranged in a state substantially parallel to each other.
[0054] 長繊維強化榭脂ペレットは、数千本カゝらなる強化繊維のロービングを含浸ダイスに 導き、フィラメント間に溶融した熱可塑性榭脂を均一に含浸させた後、必要な長さ(2 一 200mm)に切断することにより容易に得ることができる。  [0054] The long fiber reinforced resin pellets are obtained by introducing a roving of thousands of reinforcing fibers into an impregnating die and uniformly impregnating the molten thermoplastic resin between the filaments. It can be easily obtained by cutting to 200 mm).
[0055] 例えば、押出機先端に設けられた含浸ダイス中に、押出機より溶融榭脂 (上記 (B) 及び (C)成分)を供給する一方、連続状繊維束を通過させ、この繊維束に溶融榭脂 を含浸させたのちノズルを通して引抜き、 2— 200mmの長さにペレタイズする。  For example, while the molten resin (components (B) and (C) above) is supplied from an extruder into an impregnation die provided at the extruder tip, the continuous fiber bundle is passed through the impregnating die. The resin is impregnated with molten resin, pulled out through a nozzle, and pelletized to a length of 2 to 200 mm.
[0056] 溶融榭脂を (A)炭素繊維に含浸させるための方法としては、特に制限はなぐロー ビングを榭脂粉体流動床に通した後、榭脂の融点以上に加熱する方法 (特公昭 52— 3985号公報)、クロスヘッドダイを用いて強化繊維のロービングに溶融させた熱可塑 性榭脂を含浸させる方法 (特開昭 62-60625号公報、特開昭 63— 132036号公報、 特開昭 63- 264326号公報、特開平 1-208118号公報)、榭脂繊維と強化繊維の口 一ビングとを混繊した後、榭脂の融点以上に加熱して榭脂を含浸させる方法 (特開 昭 61— 118235号公報)、ダイ内部に複数のロッドを配置し、これにロービングをジグ ザグ状に巻き掛けて開繊させ、溶融榭脂を含浸させる方法 (特開平 10-264152号 公報)、開繊ピンの間をピンに接触させずに通過させる方法 (WO97Z19805号公 報)、ローラーによって撚りを与え含浸させる方法 (特開平 5— 169445号公報)等、何 れの方法も用いることができる。  [0056] As a method for impregnating the molten resin into the carbon fiber (A), there is no particular limitation, in which a roving is passed through a fluidized bed of a resin powder and then heated to a temperature equal to or higher than the melting point of the resin. 52-3985), a method of impregnating a roving of reinforcing fibers with a molten thermoplastic resin using a crosshead die (JP-A-62-60625, JP-A-63-132036, JP-A-63-264326, JP-A-1-208118), a method of blending a resin fiber and a mouthpiece of a reinforcing fiber and then heating the resin to a temperature higher than the melting point of the resin to impregnate the resin ( JP-A-61-118235), a method in which a plurality of rods are arranged inside a die, a roving is wound around the die in a zigzag shape, the fiber is opened, and a molten resin is impregnated (JP-A-10-264152). ), A method of passing between the spread pins without contacting the pins (published in WO97Z19805), twisting with a roller Can also be used provided such method for impregnating (JP-A-5 169 445), what Re ways.
[0057] 榭脂を溶融する過程において、 2以上のフィード部を持つ押出機を使用し、トップフ イードから、榭脂と樹脂の分解剤 (例えば、ポリプロピレン榭脂の場合、有機過酸化物 が好ましい)、サイドフィードから別の榭脂を投入してもよい。 [0057] In the process of melting the resin, an extruder having two or more feed sections is used, and A resin and a resin decomposing agent (for example, in the case of polypropylene resin, an organic peroxide is preferable) may be added from the eaves, and another resin may be added from the side feed.
[0058] また、 2台以上の押出機 (押出し部)を使用し、そのうち 1台以上の押出機には榭脂 と榭脂の分解剤 (例えば、ポリプロピレン榭脂の場合、有機過酸ィ匕物が好ましい)を 投人してちょい。  [0058] Further, two or more extruders (extruding parts) are used, and one or more of the extruders are provided with a resin and a resin decomposer (for example, in the case of polypropylene resin, an organic peroxide). Thing is preferable)
[0059] 短繊維強化榭脂ペレットは、各成分を所定の割合にてロールミル、バンバリ一ミキ サー、ニーダ一等でよく混練分散して製造することができる。タンブラ一式プレンダー 、ヘンシェルミキサー、リボンミキサー等でドライブレンドしてもよい。そして、一軸押出 機、二軸押出機等で混練してペレット状の成形材料とする。炭素繊維は、押出機のト ップ又はサイドの 、ずれから投入してもよ!/、。  [0059] The short fiber reinforced resin pellets can be produced by kneading and dispersing each component at a predetermined ratio using a roll mill, a Banbury mixer, a kneader, or the like. Dry blending may be performed using a tumbler set blender, Henschel mixer, ribbon mixer, or the like. The mixture is kneaded with a single-screw extruder, a twin-screw extruder or the like to obtain a pellet-shaped molding material. Carbon fiber can be fed from the top or side of the extruder from the gap!
[0060] 次に、本発明の成形品について説明する。  Next, the molded article of the present invention will be described.
本発明の成形品は、上記本発明の繊維強化榭脂組成物を成形してなることを特徴 とする。  The molded article of the present invention is obtained by molding the above fiber-reinforced resin composition of the present invention.
[0061] 本発明の成形品を成形する方法としては、射出成形法、押出成形法、中空成形法 、圧縮成形法、射出圧縮成形法、ガス注入射出成形法、発泡射出成形法等の公知 の成形法をなんら制限なく適用できる。特に射出成形法、圧縮成形法及び射出圧縮 成形法が好ましい。  [0061] The method for molding the molded article of the present invention includes known methods such as injection molding, extrusion molding, hollow molding, compression molding, injection compression molding, gas injection injection molding, and foam injection molding. The molding method can be applied without any restrictions. In particular, injection molding, compression molding and injection compression molding are preferred.
[0062] 成形品は、本発明の組成物をそのまま成形してもよ 、し、希釈材とブレンドしてから 成形してもよい。上記本発明の組成物である繊維強化榭脂ペレットと、繊維強化榭脂 ペレットと同じポリオレフイン系榭脂等の熱可塑性榭脂からなる希釈材との配合は、ド ライブレンド方式を用いることができる。むしろ、組成物中の繊維長を保持し、より高 い剛性、耐衝撃性、耐久性の改良効果を得るためには、ドライブレンド後は押出機を 通さず、直接射出成形機等の成形機に供する方が好ましい。希釈材の配合比率に ついては、繊維強化榭脂組ペレットの強化繊維含有量と、最終成形品に求められる 強化繊維含有量とによって決まる力 剛性、耐衝撃性、耐久性の改良効果の点から 、通常は 0— 90質量%である。  [0062] The molded article may be molded as it is of the composition of the present invention, or may be molded after being blended with a diluent. The blending of the fiber-reinforced resin pellets, which is the composition of the present invention, and a diluent composed of the same thermoplastic resin as the fiber-reinforced resin pellets, such as polyolefin resin, can be performed by a dry blending method. . Rather, in order to maintain the fiber length in the composition and obtain higher rigidity, impact resistance, and durability improvement effects, the molding machine such as an injection molding machine or the like should be used directly after the dry blending without passing through an extruder. It is preferred to provide The mixing ratio of the diluent is determined from the viewpoint of the effect of improving the rigidity, impact resistance and durability determined by the reinforcing fiber content of the fiber-reinforced resin pellets and the reinforcing fiber content required for the final molded product. Usually, it is 0 to 90% by mass.
[0063] 成形後に残存する (A)炭素繊維の重量平均繊維長は、通常 0. 05mm以上、好ま しくは lmm以上である。 (A)炭素繊維の重量平均繊維長が短過ぎると剛性、耐衝撃 性、耐久性等の改良効果が得られない。 [0063] The weight average fiber length of the (A) carbon fiber remaining after molding is usually 0.05 mm or more, preferably 1 mm or more. (A) If the weight average fiber length of carbon fiber is too short, rigidity and impact resistance The effect of improving properties and durability cannot be obtained.
[実施例]  [Example]
[0064] 以下、実施例及び比較例を挙げて、本発明をさらに具体的に説明する。  Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.
実施例及び比較例で用いた材料は次の通りである。  The materials used in the examples and comparative examples are as follows.
[0065] (A)炭素繊維: [0065] (A) Carbon fiber:
カーボンファイバー(チョップドストランド) HTA-C6-UEL1 (PAN系、ウレタン系 収束剤 (付加量 2. 5%)、繊維径 7 μ m、繊維長 (ストランドの長さ) 6mm;東邦テナッ タス (株)製)  Carbon fiber (chopped strand) HTA-C6-UEL1 (PAN-based, urethane-based sizing agent (2.5% added), fiber diameter 7 μm, fiber length (strand length) 6 mm; Toho Tenatas Co., Ltd. Made)
[0066] (B)ポリオレフイン系榭脂: (B) Polyolefin-based resin:
ポリプロピレン榭脂、 J—3000GP (プロピレン単独重合体、 MFR= 30gZlOmin. ; 出光石油株式会社製)  Polypropylene resin, J-3000GP (Propylene homopolymer, MFR = 30gZlOmin .; Idemitsu Oil Co., Ltd.)
[0067] (C)変性ポリオレフイン系榭脂: (C) Modified polyolefin resin:
マレイン酸変性ポリプロピレン、ポリボンド 3200 (酸付加量 =0. 5質量0 /0、 MFR=Maleic acid-modified polypropylene, Polybond 3200 (acid addition amount zero. 5 mass 0/0, MFR =
250g/10min. ;白石カルシウム (株)製) 250g / 10min.; Shiraishi Calcium Co., Ltd.)
[0068] アミノ基含有ポリプロピレン系榭脂(ァミノ基含有 PP):下記表 1記載の原料を使用し[0068] Amino group-containing polypropylene resin (amino group-containing PP): Using the raw materials shown in Table 1 below
、配合条件、混練条件で製造したアミノ基含有 PP (1)及び (2)を使用した。 Amino group-containing PPs (1) and (2) produced under mixing conditions and kneading conditions were used.
[0069] アミノ基含有 PPの製造は、真空ベント付き 35ミリ二軸押出機 (ラボテックス社製)を 用い、真空ベント引きを実施し、原料全量をトップフィードからブレンドすることによつ て行った。なお、添カロ剤として、ィルガノックス 1010 (チバスべシャリティーケミカルズ 社製;酸化防止剤)及びィルガフォス 168 (チノくスぺシャリティーケミカルズ社製;酸ィ匕 防止剤)を、ポリプロピレン(PP) 6kg当たり、それぞれ 3. 6g及び 8. 4g (トータル 200[0069] The production of amino group-containing PP is performed by using a 35 mm twin-screw extruder (manufactured by Labotex) with a vacuum vent, performing vacuum venting, and blending the entire amount of raw materials from the top feed. Was. In addition, ilganox 1010 (manufactured by Chivas Specialty Chemicals Co .; antioxidant) and ilgafos 168 (manufactured by Chinoku Suphariti Chemicals Co .; antioxidant) were added as additive carohydrates per 6 kg of polypropylene (PP). , 3.6 g and 8.4 g respectively (200 total
Oppm)添カロした。 Oppm).
[0070] アミノ基含有 PPが製造されたか否かは、製造前後の赤外線吸収スペクトルを測定 し、 1670— 1810cm— 1のマレイン酸'無水マレイン酸によるものと考えられるピークが 消失し、新たに 1500— 1700cm"1にァミノ基によるものと推定される吸収帯が出現 することで確認した。 [0070] Whether an amino group-containing PP is produced, by measuring the infrared absorption spectra before and after manufacture, 1670- 1810cm- peak considered to be due to maleic acid 'maleic anhydride 1 disappeared, new 1500 — It was confirmed by the appearance of an absorption band presumed to be due to the amino group at 1700 cm " 1 .
[0071] [表 1] $;¾(sm¾¾¾^s;9了 τ¾^いTEM201:¾π2/ 7〜,。 [Table 1] $; ¾ (sm¾¾¾ ^ s; 9 τ¾ ^ い TEM201: ¾π2 / 7 ~ ,.
〔〕s ,¾室 ,007O21l 212 () S, ¾ room, 007O21l 212
Figure imgf000012_0001
Figure imgf000012_0001
ポリボンド 3200 : マレイン酸変性ポリプロピレン (前記) HMD A:へキサメチレンジァミン (東京化生社製)  Polybond 3200: Maleic acid-modified polypropylene (above) HMD A: Hexamethylene diamine (Tokyo Kasei Co., Ltd.)
DADD: 1 , 12—ジアミノドデカン DADD: 1, 12—diaminododecane
配合割合で、ポリプロピレン系榭脂、変性ポリプロピレン系榭脂及び炭素繊維を投入 した。シリンダー温度 200°C、スクリュー回転数 350rpmで混練し、ストランドを水冷後Polypropylene resin, modified polypropylene resin and carbon fiber were added at the mixing ratio. After kneading the cylinder at 200 ° C and screw rotation at 350 rpm, cool the strand with water
、ペレタイザで切断し、それぞれ炭素繊維強化榭脂ペレットを得た。 And cut with a pelletizer to obtain carbon fiber reinforced resin pellets.
[0073] 実施例 3、 4及び比較例 3、 4 Examples 3 and 4 and Comparative Examples 3 and 4
炭素繊維をサイドフィードから投入し、各成分の割合を下記表 2に記載のように変え た以外は、実施例 2及び比較例 1、 2と同様にして、それぞれ炭素繊維強化榭脂 ペレットを得た。  Carbon fiber reinforced resin pellets were obtained in the same manner as in Example 2 and Comparative Examples 1 and 2, except that carbon fiber was charged from the side feed and the proportions of each component were changed as shown in Table 2 below. Was.
[0074] [表 2] [Table 2]
配合割合 (質量%) Mixing ratio (% by mass)
構成成分 化合物名 (商品名)  Constituents Compound name (trade name)
実施例 1 実施例 2 実施例 3 実施例 4比較例 1 比較例 2 比較例 3 比較例 4 Example 1 Example 2 Example 3 Example 4 Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4
(A)炭素繊維 HTA-C 6-UE L 1 10 10 ― ― 10 10 ― ―(A) Carbon fiber HTA-C 6-UE L 1 10 10 ― ― 10 10 ― ―
(B) °リオレフイン系樹脂 J -3000GP 86 86 88 88 90 86 90 88 トツフ。フィ-ド *°リ ンド 3200 (マレイン酸基含有) ― ― ― ― ― 4 ― 2 (B) ° Reolefin resin J-3000GP 86 86 88 88 90 86 90 88 Feed * ° Lind 3200 (containing maleic acid group) ― ― ― ― ― 4 ― 2
(C)官能基含有変性  (C) Modification containing functional group
βリオレフイン系樹脂 アミノ基含有 PP(1) (アミ 基含有) 4 ― 2 ― ― ― ― ― アミノ基含有 PP (2) (アミノ基含有) ― 4 ― 2 ― ― ― ― サ仆'フィ - (Α)炭素繊維 HTA-C 6-UE L 1 ― ― 10 10 ― ― 10 10 This β Riorefuin resin amino group-containing PP (1) (amino group-containing) 4 - 2 - - - - - Amino group-containing PP (2) (amino group-containing) - 4 - 2 - - - - Sa boku 'Fi - (Α) Carbon fiber HTA-C 6-UE L 1 ― ― 10 10 ― ― 10 10
[0075] 得られた炭素繊維強化榭脂ペレットから、 JIS K 7152-1— 1999に準拠して、射 出成形サンプル (多目的試験片 A形)を作製した。 [0075] From the obtained carbon fiber reinforced resin pellets, an injection molded sample (multipurpose test piece A type) was produced in accordance with JIS K 7152-1-1999.
[0076] このサンプルを用いて、下記表 3に示す物性項目を測定し評価した。評価結果を表Using the sample, physical property items shown in Table 3 below were measured and evaluated. Show evaluation results
3に示す。 See Figure 3.
[0077] なお、組成物中の重量平均繊維長は、パラキシレンで繊維を抽出後、画像処理装 置 (ルーゼッタス社製)により 500— 2000本分の繊維長を測定し、下記式にて算出し た。  [0077] The weight average fiber length in the composition was calculated by the following formula, after extracting fibers with para-xylene, measuring the fiber length of 500 to 2000 fibers with an image processing device (manufactured by Lusettas). did.
重量平均繊維長 =∑ (繊維長) V∑繊維長  Weight average fiber length = ∑ (fiber length) V ∑ fiber length
繊維のァスぺ外比は、上記重量平均繊維長と繊維径から計算した。  The outside ratio of fiber was calculated from the above weight average fiber length and fiber diameter.
[0078] [表 3] [0078] [Table 3]
物性 測定方法 単位 実施例 1 実施例 2実施例 3実施例 4比較例 1 比較例 2比較例 3比較例 4 密度 JIS 7112:1999 kg/m3 950 950 950 950 950 950 950 950 引張り破壊応力(23TC) JIS K 7161:1994 MPa 58 55 85 70 34 41 38 44 曲げ強さ(23C) JIS K 7171:1994 MPa 91 89 122 98 50 66 63 70 曲げ弾性率 (23で) JIS K 7171:1994 MPa 4810 4800 6850 6780 4120 4350 6220 6690 シャルビ-衝撃強さ (23 ,ノッチ付) JIS K 7111:1996 KJ/m2 3.5 3.4 5.5 5.5 2.1 2.1 4.9 4.9 組成物中の重量平均繊維長 ― ■ 0.15 0.15 0.3 0.3 0.15 0.15 0.3 0.3 繊維のァス 外比 繊維長/繊維径 ― 21 21 43 43 21 21 43 43 Physical properties Measurement method Unit Example 1 Example 2 Example 3 Example 4 Comparative example 1 Comparative example 2 Comparative example 3 Comparative example 4 Density JIS 7112: 1999 kg / m 3 950 950 950 950 950 950 950 950 950 Tensile fracture stress (23TC ) JIS K 7161: 1994 MPa 58 55 85 70 34 41 38 44 Flexural strength (23C) JIS K 7171: 1994 MPa 91 89 122 98 50 66 63 70 Flexural modulus (at 23) JIS K 7171: 1994 MPa 4810 4800 6850 6780 4120 4350 6220 6690 Charvi-impact strength (23, with notch) JIS K 7111: 1996 KJ / m 2 3.5 3.4 5.5 5.5 2.1 2.1 4.9 4.9 Weight average fiber length in composition ― ■ 0.15 0.15 0.3 0.3 0.15 0.15 0.3 0.3 Fiber outer ratio Fiber length / fiber diameter ― 21 21 43 43 21 21 43 43
[0079] 表 3の結果から、実施例 1、 2及び比較例 1、 2、及び実施例 3、 4及び比較例 3、 4の 炭素繊維強化榭脂は、それぞれ密度、組成物中の重量平均繊維長及び繊維のァス ぺクト比がいずれも同じであるにもかかわらず、アミノ基含有ポリオレフインを添加した 実施例 1一 4では、引張破壊応力、曲げ強さ、曲げ弾性率及びシャルピー衝撃強さ がいずれも比較例 1一 4のものに比べて向上したことがわかる。 [0079] From the results in Table 3, the carbon fiber reinforced resins of Examples 1 and 2 and Comparative Examples 1 and 2 and Examples 3 and 4 and Comparative Examples 3 and 4 respectively have densities and weight averages in the compositions. In spite of the fact that the fiber length and the fiber aspect ratio were the same, in Example 14 in which the amino group-containing polyolefin was added, the tensile fracture stress, flexural strength, flexural modulus and Charpy impact strength were It can be seen that each of them was improved as compared with those of Comparative Examples 1-4.
[0080] なお、マレイン酸変性ポリオレフインを用いた比較例 2及び 4の組成物では、炭素繊 維の有する官能基とマレイン酸基とが反応せず、炭素繊維との結合を形成することが できなかったため、上記強度が向上しなかったことがわかる。  [0080] In the compositions of Comparative Examples 2 and 4 using the maleic acid-modified polyolefin, the functional group of the carbon fiber did not react with the maleic acid group, and a bond with the carbon fiber could be formed. It can be seen that the strength was not improved due to the absence of the above.
産業上の利用可能性  Industrial applicability
[0081] 本発明によれば、曲げ強度、曲げ弾性率、衝撃強度が向上した炭素繊維強化榭 脂組成物を提供することができる。  According to the present invention, it is possible to provide a carbon fiber reinforced resin composition having improved bending strength, bending elastic modulus, and impact strength.
[0082] 本発明の繊維強化榭脂組成物から得られる成形品は、自動車部品(フロントエンド 、ファンシェラウド、クーリングファン、エンジンアンダーカバー、エンジンカバー、ラジ エタ一ボックス、サイドドア、バックドアインナー、バックドアアウター、外板、ルーフレ ール、ドアハンドル、ラゲージボックス、ホイールカバー、ハンドル、クーリングモジュ ール、エアークリーナー)、二輪.自転車部品(ラゲージボックス、ハンドル、ホイール) [0082] Molded articles obtained from the fiber-reinforced resin composition of the present invention can be used for automobile parts (front end, fan shroud, cooling fan, engine under cover, engine cover, radiator box, side door, back door inner, Back door outer, skin, roof rail, door handle, luggage box, wheel cover, handle, cooling module, air cleaner), motorcycle. Bicycle parts (luggage box, handle, wheel)
、住宅関連部品(温水洗浄弁座部品、浴室部品、椅子の脚、バルブ類、メーターボッ タス)、その他 (電動工具部品、草刈り機ハンドル、ホースジョイント、榭脂ボルト、コン クリート型枠)や、特に剛性や耐久性の要求される自動車部品(フロントエンドモジュ ール(ファンシェラウド 'ファン'クーリングモジュールを含む)、エアークリーナー、ドア 部品)やバルブ類として好適に利用できる。 , Housing-related parts (hot water cleaning valve seat parts, bathroom parts, chair legs, valves, meter bolts), other parts (power tool parts, mower handles, hose joints, resin bolts, concrete formwork), and especially It can be suitably used as automobile parts (including front end modules (including fan shroud 'fan' cooling modules), air cleaners and door parts) and valves that require rigidity and durability.

Claims

請求の範囲 The scope of the claims
[1] (A)炭素繊維、  [1] (A) carbon fiber,
(B)ポリオレフイン系榭脂、及び  (B) polyolefin-based resin, and
(C)上記 (A)炭素繊維が有する反応性官能基と反応しうる官能基を 1種以上有す る変性ポリオレフイン系榭脂、  (C) the modified polyolefin resin having at least one functional group capable of reacting with the reactive functional group of the carbon fiber (A);
を、下記割合 (質量%)で含むことを特徴とする繊維強化榭脂組成物。  Is contained in the following ratio (mass%).
(A): [ (B) + (C) ] = 1一 80: 99一 20  (A): [(B) + (C)] = 1-80: 99-1 20
[2] (B)ポリオレフイン系榭脂がポリプロピレン系榭脂であることを特徴とする請求項 1に 記載の繊維強化榭脂組成物。 [2] The fiber-reinforced resin composition according to claim 1, wherein the (B) polyolefin resin is a polypropylene resin.
[3] (C)変性ポリオレフイン系榭脂が有する官能基が、アミノ基又はエポキシ基であるこ とを特徴とする請求項 1に記載の繊維強化榭脂組成物。 [3] The fiber-reinforced resin composition according to claim 1, wherein the functional group of the modified polyolefin resin (C) is an amino group or an epoxy group.
[4] 請求項 1に記載の繊維強化榭脂組成物を成形してなる成形品。 [4] A molded article obtained by molding the fiber-reinforced resin composition according to claim 1.
PCT/JP2005/001322 2004-02-02 2005-01-31 Carbon fiber-reinforced polyolefin resin composition and formed article made therefrom WO2005073291A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-025466 2004-02-02
JP2004025466A JP4586372B2 (en) 2004-02-02 2004-02-02 Polyolefin-based carbon fiber reinforced resin composition and molded article comprising the same

Publications (1)

Publication Number Publication Date
WO2005073291A1 true WO2005073291A1 (en) 2005-08-11

Family

ID=34823984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/001322 WO2005073291A1 (en) 2004-02-02 2005-01-31 Carbon fiber-reinforced polyolefin resin composition and formed article made therefrom

Country Status (2)

Country Link
JP (1) JP4586372B2 (en)
WO (1) WO2005073291A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011030784A1 (en) * 2009-09-09 2011-03-17 三菱レイヨン株式会社 Carbon fiber bundle and method for producing same
US10174453B2 (en) 2014-07-16 2019-01-08 Jsr Corporation Sizing agent, composition, and formed article
EP3345969A4 (en) * 2015-09-02 2019-01-16 JSR Corporation Composition and molded object

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005213478A (en) * 2004-02-02 2005-08-11 Idemitsu Kosan Co Ltd Carbon fiber-reinforced polyolefin resin composition and molded item consisting of it
US20060264556A1 (en) * 2005-05-17 2006-11-23 Arnold Lustiger Fiber reinforced polypropylene composite body panels
JP5114000B2 (en) * 2005-10-07 2013-01-09 株式会社プライムポリマー Fuel cell components
EP2221339B1 (en) 2007-11-28 2014-04-02 Mitsui Chemicals, Inc. Molded article of filler-reinforced polypropylene resin composition
JP5650117B2 (en) * 2009-09-09 2015-01-07 株式会社プライムポリマー Carbon fiber reinforced resin composition
KR101127601B1 (en) * 2011-05-11 2012-03-22 대림개발(주) Polyethylene resin composition and method for manufacturing the undreground water pipe using thereof
JP2017048313A (en) * 2015-09-02 2017-03-09 Jsr株式会社 Composition and molded body
JP2017048314A (en) * 2015-09-02 2017-03-09 Jsr株式会社 Composition and molded body
JP6956498B2 (en) * 2017-03-23 2021-11-02 日鉄ケミカル&マテリアル株式会社 Carbon fiber reinforced resin composition and molded product
JP6937594B2 (en) * 2017-03-23 2021-09-22 日鉄ケミカル&マテリアル株式会社 Adhesion imparting agent for carbon fiber reinforced resin composition
US20190375903A1 (en) * 2017-03-30 2019-12-12 Mitsui Chemicals, Inc. Filler-reinforced resin structure
JP6748974B2 (en) * 2019-06-13 2020-09-02 パナソニックIpマネジメント株式会社 Molding material, molded body, bicycle, manufacturing method of molded body

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63120741A (en) * 1986-11-10 1988-05-25 Showa Denko Kk Composite composition of carbon fiber high-molecular material
JPS63221169A (en) * 1987-03-10 1988-09-14 Showa Denko Kk Carbon fiber/high-molecular material composite composition
JPH10205081A (en) * 1997-01-24 1998-08-04 Sekisui Chem Co Ltd Fiber composite gutter and manufacture thereof
JPH10205082A (en) * 1997-01-24 1998-08-04 Sekisui Chem Co Ltd Fiber composite rain gutter and manufacture thereof
JPH11324251A (en) * 1998-05-07 1999-11-26 Sekisui Chem Co Ltd Fiber composite rain gutter and its manufacture
JP2000309666A (en) * 1999-04-26 2000-11-07 Takiron Co Ltd Polyolefin-based molding, molding material therefor, and their production
JP2005048343A (en) * 2003-07-31 2005-02-24 Mitsubishi Rayon Co Ltd Carbon fiber bundle, method for producing the same, thermoplastic resin composition, and molded product of the same
JP2005048342A (en) * 2003-07-31 2005-02-24 Mitsubishi Rayon Co Ltd Carbon fiber bundle, method for producing the same, thermoplastic resin composition, and molded product of the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58204043A (en) * 1982-05-24 1983-11-28 Mitsubishi Rayon Co Ltd Reinforced polyolefin resin composition
JPH06178385A (en) * 1992-12-10 1994-06-24 Nippon Petrochem Co Ltd Electroacoustic converter
JP3432320B2 (en) * 1994-10-03 2003-08-04 三菱エンジニアリングプラスチックス株式会社 Resin composition for automotive antifreeze system parts and molded parts thereof
JP3710943B2 (en) * 1997-11-19 2005-10-26 三井化学株式会社 Adhesive composition and multilayer structure

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63120741A (en) * 1986-11-10 1988-05-25 Showa Denko Kk Composite composition of carbon fiber high-molecular material
JPS63221169A (en) * 1987-03-10 1988-09-14 Showa Denko Kk Carbon fiber/high-molecular material composite composition
JPH10205081A (en) * 1997-01-24 1998-08-04 Sekisui Chem Co Ltd Fiber composite gutter and manufacture thereof
JPH10205082A (en) * 1997-01-24 1998-08-04 Sekisui Chem Co Ltd Fiber composite rain gutter and manufacture thereof
JPH11324251A (en) * 1998-05-07 1999-11-26 Sekisui Chem Co Ltd Fiber composite rain gutter and its manufacture
JP2000309666A (en) * 1999-04-26 2000-11-07 Takiron Co Ltd Polyolefin-based molding, molding material therefor, and their production
JP2005048343A (en) * 2003-07-31 2005-02-24 Mitsubishi Rayon Co Ltd Carbon fiber bundle, method for producing the same, thermoplastic resin composition, and molded product of the same
JP2005048342A (en) * 2003-07-31 2005-02-24 Mitsubishi Rayon Co Ltd Carbon fiber bundle, method for producing the same, thermoplastic resin composition, and molded product of the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011030784A1 (en) * 2009-09-09 2011-03-17 三菱レイヨン株式会社 Carbon fiber bundle and method for producing same
JP5889634B2 (en) * 2009-09-09 2016-03-22 三菱レイヨン株式会社 Carbon fiber bundle manufacturing method
US10174453B2 (en) 2014-07-16 2019-01-08 Jsr Corporation Sizing agent, composition, and formed article
EP3345969A4 (en) * 2015-09-02 2019-01-16 JSR Corporation Composition and molded object
US10570259B2 (en) 2015-09-02 2020-02-25 Jsr Corporation Composition and formed article

Also Published As

Publication number Publication date
JP2005213479A (en) 2005-08-11
JP4586372B2 (en) 2010-11-24

Similar Documents

Publication Publication Date Title
WO2005073291A1 (en) Carbon fiber-reinforced polyolefin resin composition and formed article made therefrom
EP3081591B1 (en) Carbon fiber-reinforced resin composition and molded article produced from same
US10435559B2 (en) Impact-modified polyamide compositions
WO2005073306A1 (en) Carbon fiber-reinforced polyolefin resin composition and molded article thereof
KR101154651B1 (en) Fiber-reinforced polyolefin resin composition and molding thereof
EP2872568B1 (en) Olefin-maleic anhydride copolymer compositions and uses thereof
US20110301262A1 (en) Process for producing compatibilized polymer blends
US5866648A (en) Long fiber-reinforced polymer alloy resin composition
JPH0618929B2 (en) Glass fiber reinforced polypropylene composition
JP2006117839A (en) Modified polyolefin-based resin for treating glass fiber, surface-treated glass fiber and fiber-reinforced polyolefin-based resin
EP2256150A1 (en) Long-fiber-reinforced resin composition and molded article thereof
JP4606719B2 (en) Black-based colored fiber reinforced resin composition
JP7198287B2 (en) Long fiber reinforced propylene resin composition and long fiber reinforced molded article
KR100730421B1 (en) Polyolefin resin composition and method of producing the same
JP2005002202A (en) Fiber-reinforced resin composition and its molding
JPH11302464A (en) Polyamide fiber-reinforced polyolefin resin composition and its preparation
JP2006241340A (en) Resin composition and its molded article
JP2005298758A (en) Fiber-reinforced resin composition and molded product thereof
JPH11181162A (en) High-melt-tension polyolefin composition and preparation thereof
WO2023073579A1 (en) Fiber-reinforced polyamide having improved toughness for low temperature applications
JPH11279286A (en) Polyamide fiber-reinforced resin composition and its production

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase