JPS63221169A - Carbon fiber/high-molecular material composite composition - Google Patents

Carbon fiber/high-molecular material composite composition

Info

Publication number
JPS63221169A
JPS63221169A JP5307487A JP5307487A JPS63221169A JP S63221169 A JPS63221169 A JP S63221169A JP 5307487 A JP5307487 A JP 5307487A JP 5307487 A JP5307487 A JP 5307487A JP S63221169 A JPS63221169 A JP S63221169A
Authority
JP
Japan
Prior art keywords
carbon fiber
compd
group
functional group
alkali metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5307487A
Other languages
Japanese (ja)
Other versions
JPH0676556B2 (en
Inventor
Yasusuke Hirao
平尾 庸介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP5307487A priority Critical patent/JPH0676556B2/en
Publication of JPS63221169A publication Critical patent/JPS63221169A/en
Publication of JPH0676556B2 publication Critical patent/JPH0676556B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To provide the title compsn. having excellent flexural strength, flexural modulus, etc., consisting of a compd. having epoxy group, a specific high- molecular compd. (mixture) and carbon fiber having acidic functional group in the form of an alkali metal salt on the surface thereof. CONSTITUTION:Carbon fiber obtd. from PAN or pitch is subjected to a vapor phase oxidation treatment, electrolytic oxidation, liquid phase oxidation, etc. to form an acidic functional group such as COOH, OH,=O or lactone type functional group. The carbon fiber is then brought into contact with an alkaline substance such as NaOH, etc. to convert the functional group into an alkali metal salt, thus obtaining carbon fiber (B). A high-molecular compd. (A) having COOH groups or anhydride groups on its straight-chain or branched chain or a mixture (A) thereof with other high-molecular compd. such as a polyolefin is blended with 1-60wt.% component B and a compd. (C) having epoxy group and acting as a coupling agent between the components A and B.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は炭素繊維をフィラーとして強化した高分子複合
材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a polymer composite material reinforced with carbon fiber as a filler.

(従来の技術) 炭素繊維で補強された樹脂等の複合材料はスポーツ用品
、レジャー用品、宇宙航空用材料、電磁波シールド用材
料等幅広い分野にわたり“てその用途開発が進められて
いる。
(Prior Art) Composite materials such as carbon fiber-reinforced resins are being developed for use in a wide range of fields, including sporting goods, leisure goods, aerospace materials, and electromagnetic shielding materials.

炭素繊維のもつ優れた特性としての比強度、比弾性率を
生かした分野また優れた電気伝導性を生かした分野等今
後更にその用途は広がっていくことが予想される。
It is expected that its applications will further expand in the future, such as in fields that take advantage of the excellent properties of carbon fiber, such as specific strength and specific modulus, as well as fields that take advantage of its excellent electrical conductivity.

しかし複合化時、マトリックスとの接着強度が弱く、素
材のもつ特性を十分に生かしきれていないことは現在こ
の分野において克服すべき最大の問題点でちゃ、この改
善を計るため種々の提案がなされている。
However, when compounding, the adhesive strength with the matrix is weak, and the characteristics of the material cannot be fully utilized. This is currently the biggest problem to be overcome in this field, and various proposals have been made to improve this problem. ing.

炭素繊維の改質としては酸化処理が代表的な手法として
挙げられる。酸化処理法としては気相酸化法、薬品によ
る液相酸化法、炭素繊維の電気伝導性を利用した電解酸
化法等があシ、商業プラントにおいては効率性、制御性
から電解法が最も広く採用されている。
Oxidation treatment is a typical method for modifying carbon fibers. Oxidation treatment methods include gas phase oxidation, liquid phase oxidation using chemicals, and electrolytic oxidation that utilizes the electrical conductivity of carbon fibers.In commercial plants, electrolysis is the most widely adopted method due to its efficiency and controllability. has been done.

(発明が解決しようとする問題点) 上記いずれの処理法を採用しても過度の酸化処理は炭素
材料そのものの劣化をもたらすためおのずからその処理
には限度があシ、酸化処理後、すイソング処理或いはカ
ップリング剤処理され市販されている炭素繊維をそのま
まフィラーとして高分子材料と複合化しても必ずしも高
分子材料との良好な接着性を示さない。例えばマトリッ
クスとしてポリオレフィンを用いた場合、接着性が悪く
、引張シ破断後の断面観察ではマトリックスとフィラー
の界面でのすっぽ抜は現象が頻繁に見られ、個々のもつ
特性から期待されるコンポジット性能を大きく下回る特
性しか得られていない。その他の種々の、マトリックス
となシ得る高分子材料に対しても、素材に応じ期待され
るコンデジット特性の達成度は異なるがいずれにしても
十分満足なものとはいい難い。
(Problems to be Solved by the Invention) No matter which of the above treatment methods is adopted, excessive oxidation treatment causes deterioration of the carbon material itself, so there is a natural limit to the treatment. Alternatively, even if a commercially available carbon fiber treated with a coupling agent is used as a filler and composited with a polymeric material, it does not necessarily exhibit good adhesion to the polymeric material. For example, when polyolefin is used as a matrix, the adhesion is poor, and when cross-sectionally observed after tensile fracture, the phenomenon of slippage at the interface between the matrix and the filler is frequently observed, and the composite performance is expected from the characteristics of each. However, the characteristics obtained are far lower than those obtained. With respect to various other polymeric materials that can be used as a matrix, the degree of achievement of the expected conduit properties varies depending on the material, but in any case, it cannot be said that they are fully satisfactory.

ここにいうコンデジット特性の達成度の指標としては例
えば引張強度については長繊維の場合、体積含有率比に
よる加成性での評価が一般的に使用され、また短繊維の
場合には更に複雑であシ、KellyTysonの式等
が用いられる。
As an indicator of the degree of achievement of the conduit properties mentioned here, for example, in the case of long fibers, evaluation of additivity based on the volume content ratio is generally used for tensile strength, and in the case of short fibers, a more complicated evaluation is used. For example, the KellyTyson equation is used.

以上に述べたように従来の技術では炭素繊維の表面改質
のみでは十分な接着性を得るに至らないため、マトリッ
クスがポリオレフィンの場合、複合化にあたシ変性ポリ
マーを組成の一部として加えることも試みられている。
As mentioned above, with conventional techniques, it is not possible to obtain sufficient adhesion only by surface modification of carbon fibers, so when the matrix is polyolefin, a modified polymer is added as part of the composition for compounding. This is also being attempted.

例えばオレフィンとエポキシ基を有しラジカル共重合し
得る不飽和モノマーとの共重合体又はグラフト重合体、
或いはオレフィンと不飽和ジカルボン酸またはその無水
物との共重合体又はグラフト重合体等の変性テリオレフ
ィンである。
For example, a copolymer or graft polymer of an olefin and an unsaturated monomer having an epoxy group and capable of radical copolymerization,
Alternatively, it is a modified teriolefin such as a copolymer or graft polymer of an olefin and an unsaturated dicarboxylic acid or its anhydride.

これらの組み合わせ、即ち酸化処理後サイソング処理或
いはカップリング剤処理をした市販炭素繊維と変性ポリ
オレフィン及びマトリックスとなるポリオレフィンの単
独或いはコポリマーとの組み合わせによシ得られる複合
材料ではこれらの処理を施さない場合と比較すれば力学
的評価での向上がみられる場合もあるが素材の特性から
期待できるものに対しでは低いものであシ、破断面観察
結果でも依然としてすっぽ抜は状態が多くみられる等ま
だ改善の余地は大きい。
When these treatments are not applied to composite materials obtained by combinations of these, i.e., commercially available carbon fibers that have been oxidized and then treated with Cysong or coupling agents, modified polyolefins, and matrix polyolefins alone or in combination with copolymers. Although there are cases where an improvement is seen in mechanical evaluation when compared to There is a lot of room for improvement.

またその他の炭素繊維表面の改質方法としては、各種ポ
リマーのグラフト或いは被覆等種々提案されているもの
の、工程の複雑化等によるコスト面、及びその処理によ
る効果面から広く採用されるまでには至っていない。
In addition, various other methods for modifying the surface of carbon fibers, such as grafting or coating with various polymers, have been proposed, but these methods have not been widely adopted due to the complexity of the process, the cost, and the effectiveness of the treatment. Not yet reached.

本発明者は炭素繊維の特性を低下させることなく、容易
な処理と既存物質との組み合わせによシ優れた特性を示
す複合材を得ることを目的として鋭意検討した結果、本
発明に到達したものである。
The present inventor has arrived at the present invention as a result of intensive studies aimed at obtaining a composite material that exhibits excellent properties through easy processing and combination with existing materials without deteriorating the properties of carbon fiber. It is.

(問題点を解決するだめの手段) 本発明は炭素繊維(黒鉛繊維を含む)と高分子化合物と
の複合組成物であって、 (A) エポキシ基を有する化合物 (B)  直鎖中もしくは分岐鎖中にカルボン酸基もし
くはその無水物基を有する高分子化合物又は該高分子化
合物と他の高分子化合物であってエポキシ基を有する化
合物以外の高分子化合物との混合物 (C)  表面の酸性官能基をアルカリ金属塩とした炭
素繊維 からなることを特徴とする。
(Means for Solving the Problems) The present invention is a composite composition of carbon fibers (including graphite fibers) and a polymer compound, comprising: (A) a compound having an epoxy group; (B) a linear or branched compound; A polymer compound having a carboxylic acid group or its anhydride group in its chain, or a mixture of this polymer compound and another polymer compound other than a compound having an epoxy group (C) Acidic functionality on the surface It is characterized by being made of carbon fiber whose base is an alkali metal salt.

本発明によれば炭素繊維の特性を低下させることなく、
炭素繊維と高分子材料との接着性を向上させることによ
シ、優れた特性を示す炭素繊維強化高分子複合組成物を
得ることができる。
According to the present invention, without reducing the properties of carbon fiber,
By improving the adhesion between carbon fibers and polymeric materials, it is possible to obtain carbon fiber-reinforced polymer composite compositions that exhibit excellent properties.

本発明者は先に表面の酸性基をアルカリ金属塩とした炭
素繊維と高分子からなる組成物であって、該高分子中の
直鎖中もしくは分岐鎖中にエポキシ基をもつ高分子を少
くとも一部含むことを特徴とする複合組成物の特許を出
願した。
The present inventor has developed a composition consisting of a carbon fiber and a polymer in which the acidic groups on the surface have been treated with alkali metal salts, and in which the amount of polymers having epoxy groups in the linear or branched chains of the polymer is reduced. A patent application has been filed for a composite composition characterized by containing a portion of both.

本発明はこれをさらに研究した結果、炭素繊維表面の酸
性基をアルカリ金属塩とした部分とエポキシ基が反応後
、さらにカルボン酸基もしくはその無水物基との反応性
を利用してさらに優れた性能の複合組成物としたもので
ある。
As a result of further research into this, the present invention has found that after the acidic group on the surface of the carbon fiber reacts with the epoxy group, an even better product can be obtained by utilizing the reactivity with the carboxylic acid group or its anhydride group. It is a composite composition with high performance.

複合組成物の特性については熱硬化性の場合には眉間剪
断強度(ILSS )等により接着力を評価することが
でき、熱可塑性の場合にはILSS等で直接の評価はで
きないものの得られた組成物の機械的特性の向上をみれ
ばそれが接着性向上によることは明らかであシ、これに
よシ評価することができる。
Regarding the properties of composite compositions, in the case of thermosetting adhesive strength can be evaluated using ILSS, etc., and in the case of thermoplastic compositions, although it cannot be directly evaluated by ILSS etc., the obtained composition If we look at the improvement in the mechanical properties of the product, it is clear that this is due to the improvement in adhesiveness, and this can be used for evaluation.

炭素繊維の表面に生成する酸性基とは−COOH。The acidic group generated on the surface of carbon fiber is -COOH.

−OH,=O5及びこれらの複合したラクトン型等であ
る。
-OH, =O5, and their combined lactone type.

炭素繊維の表面にこれらの酸性基をつけるには炭素繊維
を気相(例えば空気)酸化、電解酸化。
To attach these acidic groups to the surface of carbon fibers, carbon fibers are oxidized in a gas phase (for example, in air) or electrolytically oxidized.

液相酸化等の処理を行なえばよい。Treatment such as liquid phase oxidation may be performed.

炭素繊維の表面には表面処理としての酸化処理を施す前
にも少量ではあるが酸性基が存在していることは文献(
「炭素繊維」犬谷杉部編p222昭和58年近代編集社
刊)でも報告されている。
It is reported in the literature that a small amount of acidic groups exist on the surface of carbon fibers even before oxidation treatment as a surface treatment.
It is also reported in ``Carbon Fiber'' edited by Inutani Sugibe, p. 222 (published by Kindai Editorial Company, 1981).

しかし、自然に生ずる酸性基はわずかであるので、一般
的には前記したような方法で酸化処理を行なう。そして
望ましくは10 当量/ f (CF)以上の酸性基を
つける( CFとは炭素繊維の英名略称)。
However, since there are only a few naturally occurring acidic groups, oxidation treatment is generally performed by the method described above. Preferably, 10 equivalents/f (CF) or more of acidic groups are added (CF is the English abbreviation for carbon fiber).

その上限は炭素繊維の種類によって異なるが、繊維の損
傷による機械的強度の低下をもたらさない程度で処理を
停止すべきであシ、例えばPAN系でtri s x 
i O−’ ”AM/ ? (CF) 8に−ch 9
゜使用される炭素繊維はPAN系、ピッチ系、気相成長
系等公知のすべての炭素繊維であシ、これらは炭化繊維
、黒鉛化繊維等熱処理条件の如何にかかわらず使用する
ことができる。
The upper limit varies depending on the type of carbon fiber, but the treatment should be stopped at a level that does not cause a decrease in mechanical strength due to fiber damage.
i O-' ”AM/? (CF) 8-ch 9
The carbon fibers used are all known carbon fibers such as PAN type, pitch type, vapor growth type, etc., and these can be used regardless of heat treatment conditions such as carbonized fibers and graphitized fibers.

炭素繊維の表面の酸性基をアルカリ金属塩にするにはこ
の炭素繊維とアルカリ性物質(NaOH。
To convert the acid groups on the surface of carbon fibers into alkali metal salts, combine the carbon fibers with an alkaline substance (NaOH).

KOH等)を接触させればよく、アルカリ性物質を含む
雰囲気下に炭素繊維を存在させて実施する気相法、液中
に炭素繊維を浸漬、あるいは塗布する方法等表面の酸性
基の中和が達成できるならばいずれの方法も用いること
ができる。液中処理したものはその後水洗、乾燥して使
用する。
KOH, etc.) can be used to neutralize the acidic groups on the surface, such as a gas phase method in which the carbon fiber is placed in an atmosphere containing an alkaline substance, or a method in which the carbon fiber is immersed or coated in a liquid. Any method can be used if it can be achieved. Those treated in liquid are then washed with water and dried before use.

本発明はこのように表面処理した炭素繊維と高分子化合
物との複合材であるが、エポキシ基を有する化合物を、
炭素繊維表面の酸性基をアルカリ金属塩としたものとカ
ルボン酸基又はその無水物基を有する高分子化合物との
カップリング剤的に用いるものである。
The present invention is a composite material of surface-treated carbon fiber and a polymer compound.
It is used as a coupling agent between an alkali metal salt of an acidic group on the surface of carbon fiber and a polymer compound having a carboxylic acid group or its anhydride group.

エポキシ基を有する化合物としてはモノマー。A monomer is a compound having an epoxy group.

オリコマ−1高分子のいずれでもよく、七ツマ−又はオ
リゴマーとしてはメタクリル酸グリシジル。
Any of the oligomers or oligomers may be used, such as glycidyl methacrylate.

スチレンオキサイド、エピクロルヒドリン等及び公知の
方法によシ得られるオリゴマーであり、また高分子とし
てはビスフェノールA系の他エポキシ樹脂として製造、
市販されているものが用いられる(垣内弘編「エポキシ
樹脂」(昭晃堂昭和54年6月発行)第51頁ないし第
105頁参照)。
Styrene oxide, epichlorohydrin, etc., and oligomers obtained by known methods, and polymers include bisphenol A-based and other epoxy resins.
Commercially available resins are used (see "Epoxy Resins" edited by Hiroshi Kakiuchi (published in June 1977 by Shokodo), pages 51 to 105).

直鎖中もしくは分岐鎖中にカルボン酸基もしくはその無
水物基を有する高分子化合物としてはカルボン酸基ある
いはその無水物基を有し、ラジカル共重合し得る不飽和
モノマーとポリオレフィン等との共重合体もしくはグラ
フト重合体等を挙げることができる。
The polymer compound having a carboxylic acid group or its anhydride group in a straight chain or a branched chain includes a copolymerization of an unsaturated monomer having a carboxylic acid group or its anhydride group and capable of radical copolymerization with a polyolefin, etc. Examples include coalescence or graft polymers.

本発明の組成物は後述するようにエポキシを有する化合
物、カルボン酸基等を有する高分子化合物は極くわずか
の量で効果があるので、これらの化合物以外にポリオレ
フィン、エチレン−酢ビ共重合体等の高分子化合物を含
めることができる。
As will be described later, the composition of the present invention is effective with a very small amount of a compound having epoxy, a polymer compound having a carboxylic acid group, etc. In addition to these compounds, polyolefin, ethylene-vinyl acetate copolymer, etc. Polymer compounds such as the following can be included.

この場合、例えばポリゾロピレンを併用する場合、カル
ボン酸基等を有する化合物としては、ポリゾロピレンと
のなじみを考え、ポリゾロピレンとグラフト重合し得る
不飽和モノマーとの共重合体が適しておシ、例えば市販
されている商品としてアトマー(三井石油化学(株)製
の商標)がある。
In this case, for example, when polyzolopyrene is used in combination, a copolymer of polyzolopyrene and an unsaturated monomer capable of graft polymerization is suitable as a compound having a carboxylic acid group etc., considering its compatibility with polyzolopyrene. Atmer (trademark manufactured by Mitsui Petrochemical Co., Ltd.) is a product that is used for this purpose.

次に本発明の組成物における組成比について説明する。Next, the composition ratio in the composition of the present invention will be explained.

エポキシ基を有する化合物は炭素繊維表面のアルカリ金
属塩によシ開環が促進され、その開環したものがカルボ
ン酸基あるいはその無水物基を有する化合物とこれらの
基を通して結合するものであるから、これらの化合物の
量はその中のエポキシ基、カルボン酸基あるいはその無
水物基の量が前記アルカリ金属塩と当量ないしそれ以上
含むようにすることが望ましいが、しかし実験結果によ
れば、これ以下の量であってもかなシの効果が認められ
る。その量の上限については特に制限はないが、組成物
の特性、用途を考え、また上記以外の高分子化合物の併
用等から適宜定めることができる。
Ring opening of a compound having an epoxy group is promoted by the alkali metal salt on the surface of the carbon fiber, and the ring-opened product bonds to a compound having a carboxylic acid group or its anhydride group through these groups. The amount of these compounds is preferably such that the amount of epoxy groups, carboxylic acid groups, or their anhydride groups is equivalent to or more than the alkali metal salt, but according to experimental results, Even at the following amounts, the effect of Kanashi is observed. There is no particular restriction on the upper limit of the amount, but it can be determined as appropriate based on the characteristics and intended use of the composition, as well as the combination of polymer compounds other than those mentioned above.

本発明の組成物中の炭素繊維の量は用途によってかなり
広範囲に変えることができ、少ないもので1〜2%(重
量%、以下同じ)から多いものでは60%位まで用いら
れる。
The amount of carbon fiber in the composition of the present invention can vary widely depending on the application, ranging from as little as 1 to 2% (by weight, hereinafter the same) to as much as 60%.

これらの複合組成物の混合あるいはさらに成形する方法
としては高分子化合物の中に熱可塑性樹脂を含める場合
、先に炭素繊維をエポキシ基を有する化合物で処理し、
次いでカルデン酸基もしくはその無水物基を有する高分
子と熱可塑性樹脂とをトライブレンドした後混練押出機
を用いてRレット化又は射出成形する方法や初めからこ
れらをトライブレンド後混練押出機を用いて複合化する
ことが一般的である。
When a thermoplastic resin is included in the polymer compound, the method for mixing or further molding these composite compositions is to first treat carbon fibers with a compound having an epoxy group;
Next, a polymer having a caldic acid group or its anhydride group and a thermoplastic resin are tri-blended and then made into R-lett or injection molded using a kneading extruder, or a method of tri-blending them from the beginning and then using a kneading extruder It is common to combine them.

また熱硬化性高分子を用いる場合はトライブレンド後熱
硬化する方法の他に一旦炭素繊維のゾレグレグ組成物と
した後型まれる形状となし、熱硬化することもできる。
Further, when using a thermosetting polymer, in addition to the method of triblending and then thermosetting, it is also possible to make a carbon fiber solegreg composition and then mold it into a shape and thermosetting.

(作用) 炭素繊維の表面の酸化処理によシ得られた酸性官能基を
アルカリ金属塩に転化した−ことによジェポキシ基の開
環が促進され、続いて開環したものとカル?ン酸基もし
くはその無水物基が化学的に結合した結果従来の方法に
より製造された炭素繊維強化高分子材料を上回る特性を
もつ複合材料が得られたものと考えられる。
(Function) The acidic functional groups obtained by the oxidation treatment of the surface of carbon fibers were converted into alkali metal salts.This promoted the ring opening of the jepoxy groups, and the subsequent ring opening and cal? It is believed that as a result of the chemical bonding of the acid groups or their anhydride groups, a composite material with properties superior to those of carbon fiber-reinforced polymer materials produced by conventional methods was obtained.

炭素繊維は酸処理後アルカリ塩とすることが必要であシ
、これを例えば有機酸のアルカリ金属塩を別につくり、
これを炭素繊維の表面に付着させても本発明のような効
果は得られない。
After carbon fiber is treated with an acid, it is necessary to convert it into an alkali salt, for example, by separately preparing an alkali metal salt of an organic acid.
Even if this is attached to the surface of carbon fibers, the effects of the present invention cannot be obtained.

(効果) 本発明によれば炭素繊維の特性を低下させることなく、
簡単な処理及び特定高分子の組合せによシ、後に実施例
に示すように曲げ強さ、曲げ弾性率等の機械的特性を向
上することができる。
(Effect) According to the present invention, without deteriorating the characteristics of carbon fiber,
By simple processing and combination of specific polymers, mechanical properties such as flexural strength and flexural modulus can be improved as shown in Examples later.

(実施例) (1)  炭素繊維とメタクリル酸グリシシンとの反応 市販のPΔ系炭素繊維(東邦ベスロン製: HTA−0
6)を55℃で6 Hrアセトン抽出しサイジング剤を
除去した(この時点での表面状態は炭化後酸化処理を施
した状態である)。
(Example) (1) Reaction of carbon fiber and glycicin methacrylate Commercially available PΔ carbon fiber (manufactured by Toho Bethlon: HTA-0
6) was extracted with acetone for 6 hours at 55° C. to remove the sizing agent (the surface condition at this point was a state where oxidation treatment was performed after carbonization).

乾燥後過剰のKOH水溶液(1150規定)を投入後H
C1水溶液(1150規定)で逆滴定し、炭素繊維表面
の全酸性基を定量したところ4×10 当量/P(CF
)であった。
After drying, add excess KOH aqueous solution (1150N)
When the total acidic groups on the carbon fiber surface were quantified by back titration with C1 aqueous solution (1150N), it was 4 × 10 equivalents/P (CF
)Met.

サイジング剤除去後乾燥した炭素繊維を10倍当量のK
OH水溶液中に浸漬し、80℃で4 Hr処理した後水
洗した。水洗終了後100℃で真空乾燥し、表面の酸性
基をアルカリ金属塩とした炭素繊維を得た。
After removing the sizing agent, the dried carbon fiber was treated with 10 times the equivalent of K.
It was immersed in an OH aqueous solution, treated at 80°C for 4 hours, and then washed with water. After washing with water, the carbon fibers were vacuum dried at 100° C. to obtain carbon fibers in which the acidic groups on the surface were made into alkali metal salts.

次に上記処理済の炭素繊維30f、メタクリル酸グリシ
ジル300m、溶媒としてニトロベンゼン700m、ラ
ジカル重合禁止剤としてN−フェニル−β−ナフチルア
ミン2?をセパラブルフラスコに入れ攪拌し女から12
0℃で2時間処理した。反応終了後メタノールを投入し
てポリマーを析出させ濾過によシ分離した。ν紙上に残
ったポリマーと炭素繊維をクロロホルムにて抽出後乾燥
し、エポキシ基をもつモノマーと反応させた炭素繊維を
得た。
Next, 30 f of the above-treated carbon fiber, 300 m of glycidyl methacrylate, 700 m of nitrobenzene as a solvent, and 2?N-phenyl-β-naphthylamine as a radical polymerization inhibitor. Put it in a separable flask, stir it, and add 12
It was treated at 0°C for 2 hours. After the reaction was completed, methanol was added to precipitate the polymer, which was separated by filtration. The polymer and carbon fibers remaining on the ν paper were extracted with chloroform and dried to obtain carbon fibers reacted with a monomer having an epoxy group.

(2)  炭1繊維とスチレンオキサイドとの反応特開
昭58−180615に示した方法によシ、水素ガスを
キャリアとして、鉄の超微粉末をエチルアルコール中に
分散させた液を反応管内に噴射する方法で得た気相成長
炭素繊維を60%HNO,j100℃の条件で、48 
Hr酸化処理を施した。処理後pi−17になるまで水
洗した。
(2) Reaction between charcoal 1 fibers and styrene oxide According to the method shown in JP-A-58-180615, a liquid in which ultrafine iron powder was dispersed in ethyl alcohol using hydrogen gas as a carrier was placed in a reaction tube. The vapor-grown carbon fiber obtained by the injection method was heated to 48% by heating with 60% HNO at 100°C.
Hr oxidation treatment was performed. After treatment, it was washed with water until it reached pi-17.

潰し80℃で2 Hr処理した後水洗した。It was crushed, treated at 80°C for 2 hours, and then washed with water.

水洗終了後100℃で真空乾燥し、表面の酸性基をアル
カリ金属塩とした炭素繊維を得た。
After washing with water, the carbon fibers were vacuum dried at 100° C. to obtain carbon fibers in which the acidic groups on the surface were made into alkali metal salts.

次に上記処理済の炭素繊維301.スチレンオキサイド
250m、溶媒としてニトロベンゼン750−をセパラ
ブルフラスコに入れ攪拌しながら110℃で3時間処理
した。反応終了後メタノールを投入してポリマーを析出
させ濾過によシ分離した。F紙上に残ったポリマーと炭
素繊維をクロロホルムにて抽出後乾燥し、エポキシ基を
もつモノマーと反応させた炭素繊維を得た。
Next, the treated carbon fiber 301. Styrene oxide (250 m) and nitrobenzene (750 m) as a solvent were placed in a separable flask and treated at 110°C for 3 hours with stirring. After the reaction was completed, methanol was added to precipitate the polymer, which was separated by filtration. The polymer and carbon fibers remaining on the F paper were extracted with chloroform and dried to obtain carbon fibers reacted with a monomer having an epoxy group.

(3)  カルデン酸変性プリプロピレンプリプロピレ
ン(商標名ニジヨウアロマ−2銘柄:MA510)10
0P、無水マレイン酸(東重化成製)75SL#過酸化
ベンゾイル(東京化成製) 0.75 Pを溶媒とした
キシレン1.6 II中に入れ120℃で2.5時間反
応させた。反応終了後アセトンを加え、flJマー析出
後、再溶解、再沈殿により未反応モノマーを洗い出しカ
ルボン酸無水物基を含有する変性ポリプロピレンを得だ
(3) Caldic acid-modified polypropylene (trade name Nijiyo Aroma-2 brand: MA510) 10
0P, maleic anhydride (manufactured by Toju Kasei) 75SL#benzoyl peroxide (manufactured by Tokyo Kasei) 0.75 P was placed in xylene 1.6 II as a solvent and reacted at 120° C. for 2.5 hours. After the reaction was completed, acetone was added, flJmer was precipitated, and unreacted monomers were washed out by redissolution and reprecipitation to obtain modified polypropylene containing carboxylic acid anhydride groups.

グラフト量は赤外吸収スペクトルによシ検量した。グラ
フト量は0.4重量%であった。
The amount of grafting was calibrated by infrared absorption spectrum. The amount of grafting was 0.4% by weight.

(A)  比較炭素繊維 市販の炭素繊維(東邦ペスロン製 HTA−C6)をそ
のまま用いた。なおこの繊維はメーカー側にて酸化処理
及びサイジング剤付与がなされている。
(A) Comparative Carbon Fiber A commercially available carbon fiber (HTA-C6 manufactured by Toho Peslon) was used as it was. Note that this fiber has been oxidized and added with a sizing agent by the manufacturer.

(5)  比較炭素繊維 上記の炭素繊維を実施例1に示す、アセトン抽出による
サイジング剤除去処理までを施したもの。
(5) Comparative carbon fiber The carbon fiber described above was subjected to the sizing agent removal treatment by acetone extraction as shown in Example 1.

即ち炭素繊維に酸化処理のみを施した表面状態に相当す
る。
In other words, it corresponds to the surface condition of carbon fibers subjected to only oxidation treatment.

(6)  比較炭素繊維 上記(5)の炭素繊維を(1)と同様な手法で、表面の
酸性基をアルカリ金属塩とする処理までを施したもの。
(6) Comparative carbon fiber The carbon fiber of (5) above was treated in the same manner as in (1) up to and including converting the acidic groups on the surface into alkali metal salts.

(7)  比較炭素繊維 (2)に示す、気相成長炭素繊維を酸化処理まで施した
もの。
(7) Comparative carbon fiber The vapor-grown carbon fiber shown in (2) has been subjected to oxidation treatment.

(8)比較炭素繊維 (2)と同様の処理手順で、気相成長炭素繊維を表面の
酸性基をアルカリ金属塩とする処理までを施しだもの◇ (9)  比較炭素繊維 (2)の方法により気相中で生成したままの炭素繊維0 00  複合材の作成及びその特性 前記した夫々の炭素繊維、カルモノ駿無水物基を有する
変性Iリグロピレン及びポリゾロぎレン(商標名ニジヨ
ウアロマ−銘柄:MA510)を表1に示す配合割合に
てラデゾラストミル(東洋精器製作所製:形式2B−1
25、ローラミキサー型式1’!−60)を用い混練し
た。炭素繊維はPAN系は長さ約6稽のものを用いたが
、混練後は平均300μmとなった。また気相法の炭素
繊維は微細なものを用いた。
(8) The same treatment procedure as comparative carbon fiber (2), but the vapor-grown carbon fiber is treated to convert the acidic groups on the surface into alkali metal salts◇ (9) Method of comparative carbon fiber (2) Preparation of carbon fiber 0 00 composite material as produced in the gas phase and its properties The above-mentioned carbon fibers, modified I-ligropyrene and polyzorogylene having a carmono-anhydride group (trade name: Nijiyo Aroma - Brand: MA510) Radezolast Mill (manufactured by Toyo Seiki Seisakusho: Type 2B-1) was prepared using the compounding ratio shown in Table 1.
25, Roller mixer model 1'! -60) was used for kneading. The carbon fiber used was a PAN type carbon fiber with a length of about 6 fibers, and after kneading, the average length was 300 μm. Further, fine carbon fibers were used in the vapor phase method.

混線条件 温度  170℃ 時 間    樹脂線シ   5分 炭素繊維投入  〃 混練      〃 得られた混線物を一旦冷却後平均2〜4fl立方のサイ
ズに切断し熱板プレスを用い220Cで成形した。平板
から所定のサイズに試験片を打ち抜き、曲げ強度2曲げ
弾性率、引張シ強度、アイゾツト衝撃試験に供した。
Mixed wire conditions Temperature: 170° C. Time: Resin wire: 5 minutes Addition of carbon fiber: Kneading After cooling, the obtained mixed wire material was cut into an average size of 2 to 4 fl cubes, and molded at 220 C using a hot plate press. Test pieces were punched out to a predetermined size from a flat plate and subjected to bending strength, flexural modulus, tensile strength, and Izot impact tests.

結果をまとめて表1に示す。The results are summarized in Table 1.

PAN系炭素炭素繊維相成長炭素繊維ともに末法による
組み合わせで得られた複合体の特性はその組み合わせの
1つを欠いた場合に比べ大きく向上することが明らかと
なった。
It has become clear that the properties of a composite obtained by combining both PAN-based carbon fiber and phase-grown carbon fiber using the powder method are significantly improved compared to the case where one of the combinations is missing.

Claims (1)

【特許請求の範囲】 (A)エポキシ基を有する化合物 (B)直鎖中もしくは分岐鎖中にカルボン酸基もしくは
その無水物基を有する高分子化合物又は該高分子化合物
とエポキシ基を有する化合物以外の他の高分子化合物と
の混合物 (C)表面の酸性官能基をアルカリ金属塩とした炭素繊
維 からなる炭素繊維複合高分子組成物。
[Scope of Claims] (A) A compound having an epoxy group (B) A polymer compound having a carboxylic acid group or its anhydride group in a straight or branched chain, or a compound other than the polymer compound and an epoxy group. (C) A carbon fiber composite polymer composition comprising carbon fibers in which the acidic functional group on the surface is an alkali metal salt.
JP5307487A 1987-03-10 1987-03-10 Carbon fiber composite polymer composition Expired - Lifetime JPH0676556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5307487A JPH0676556B2 (en) 1987-03-10 1987-03-10 Carbon fiber composite polymer composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5307487A JPH0676556B2 (en) 1987-03-10 1987-03-10 Carbon fiber composite polymer composition

Publications (2)

Publication Number Publication Date
JPS63221169A true JPS63221169A (en) 1988-09-14
JPH0676556B2 JPH0676556B2 (en) 1994-09-28

Family

ID=12932662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5307487A Expired - Lifetime JPH0676556B2 (en) 1987-03-10 1987-03-10 Carbon fiber composite polymer composition

Country Status (1)

Country Link
JP (1) JPH0676556B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07214551A (en) * 1994-01-28 1995-08-15 Toray Ind Inc Carbon fiber reinforced resin composite material and prepreg
JP2000026615A (en) * 1998-07-14 2000-01-25 Kao Corp Molding material composition
US6767971B1 (en) 1999-09-01 2004-07-27 Kao Corporation Molding composition
JP2005125581A (en) * 2003-10-23 2005-05-19 Daicel Chem Ind Ltd Carbon long fiber-reinforced resin pellet, its manufacturing method, and molded article
WO2005073306A1 (en) * 2004-02-02 2005-08-11 Idemitsu Kosan Co., Ltd. Carbon fiber-reinforced polyolefin resin composition and molded article thereof
WO2005073291A1 (en) * 2004-02-02 2005-08-11 Idemitsu Kosan Co., Ltd. Carbon fiber-reinforced polyolefin resin composition and formed article made therefrom
WO2011148619A1 (en) * 2010-05-27 2011-12-01 東レコーテックス株式会社 Fiber-reinforced composite material
US8383702B2 (en) 2006-12-20 2013-02-26 Saint-Gobain Ceramics & Plastics, Inc. Composite materials having improved thermal performance

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07214551A (en) * 1994-01-28 1995-08-15 Toray Ind Inc Carbon fiber reinforced resin composite material and prepreg
JP2000026615A (en) * 1998-07-14 2000-01-25 Kao Corp Molding material composition
US6767971B1 (en) 1999-09-01 2004-07-27 Kao Corporation Molding composition
JP2005125581A (en) * 2003-10-23 2005-05-19 Daicel Chem Ind Ltd Carbon long fiber-reinforced resin pellet, its manufacturing method, and molded article
WO2005073306A1 (en) * 2004-02-02 2005-08-11 Idemitsu Kosan Co., Ltd. Carbon fiber-reinforced polyolefin resin composition and molded article thereof
WO2005073291A1 (en) * 2004-02-02 2005-08-11 Idemitsu Kosan Co., Ltd. Carbon fiber-reinforced polyolefin resin composition and formed article made therefrom
US8383702B2 (en) 2006-12-20 2013-02-26 Saint-Gobain Ceramics & Plastics, Inc. Composite materials having improved thermal performance
US8835543B2 (en) 2006-12-20 2014-09-16 Saint-Gobain Ceramics & Plastics, Inc. Composite materials having improved thermal performance
WO2011148619A1 (en) * 2010-05-27 2011-12-01 東レコーテックス株式会社 Fiber-reinforced composite material
JPWO2011148619A1 (en) * 2010-05-27 2013-07-25 東レコーテックス株式会社 Fiber reinforced composite material

Also Published As

Publication number Publication date
JPH0676556B2 (en) 1994-09-28

Similar Documents

Publication Publication Date Title
JP4695510B2 (en) Carbon fiber reinforced resin composite material
CN111171520B (en) Modified carbon nano tube reinforced shape memory epoxy resin composite material and preparation method thereof
CN106832757A (en) A kind of composite of Graphene phenol-formaldehyde resin modified and preparation method thereof, application
JP2009144262A (en) Surface modified cellulose short fiber and method for producing the same
JPS5959724A (en) Production of modified thermoplastic resin
JPS63221169A (en) Carbon fiber/high-molecular material composite composition
CN106811822B (en) Modified phenolic resin fiber and preparation method and application thereof
EP3157982A1 (en) Polymer blend compositions and methods of preparation
EP0117956A1 (en) Sized carbon fibres suitable for use in composites of improved impact resistance
CN109354816A (en) A kind of corrosion-resistant lead storage battery plastic housing and preparation method thereof
CN101445646B (en) Preparation method of polymeric based carbon nano tube composite material in the technical field of nano-materials
JPS6335583B2 (en)
CN105968805A (en) Modified material capable of replacing metal and preparation method thereof
CN109456583B (en) Nanowire modified unsaturated polyester resin reinforced material and preparation method thereof
CN108976607A (en) A kind of antistatic automobile interior material preparation method
JPS63120741A (en) Composite composition of carbon fiber high-molecular material
CN108587098B (en) Corrosion-resistant unsaturated polyester resin and preparation method and application thereof
JP4114048B2 (en) Epoxy resin composition and process for producing the same
CN113717455B (en) Resin composition, thermoplastic resin composite material, and thermoplastic resin article
Ma et al. Pultruded fiber reinforced novolac type phenolic composite—processability, mechanical properties and flame resistance
CN106811824B (en) Modified phenolic resin fiber and preparation method and application thereof
CN108976695A (en) A kind of high impact properties ABS resin
JPH055210A (en) Epoxy fiber
CN107674161A (en) A kind of epoxide resin material for strengthening metal adhesion and preparation method thereof
CN114479356B (en) Preparation method of chitosan-polyethylene glycol diglycidyl ether modified graphene oxide/epoxy resin composite material