JPH07214551A - Carbon fiber reinforced resin composite material and prepreg - Google Patents

Carbon fiber reinforced resin composite material and prepreg

Info

Publication number
JPH07214551A
JPH07214551A JP6008388A JP838894A JPH07214551A JP H07214551 A JPH07214551 A JP H07214551A JP 6008388 A JP6008388 A JP 6008388A JP 838894 A JP838894 A JP 838894A JP H07214551 A JPH07214551 A JP H07214551A
Authority
JP
Japan
Prior art keywords
carbon fiber
composite material
reinforced resin
strength
prepreg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6008388A
Other languages
Japanese (ja)
Other versions
JP3136883B2 (en
Inventor
Yoji Matsuhisa
要治 松久
Masanobu Kobayashi
正信 小林
Kazuharu Shimizu
一治 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP06008388A priority Critical patent/JP3136883B2/en
Publication of JPH07214551A publication Critical patent/JPH07214551A/en
Application granted granted Critical
Publication of JP3136883B2 publication Critical patent/JP3136883B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Golf Clubs (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

PURPOSE:To obtain a carbon fiber-reinforced resin composite material which is excellent in impact resistance characteristic by reinforcing the composite material with carbon fiber wherein specific gravity is a specific value or lower, tensil elastic modulus is a specific value or higher, tensil strength is a specific value or higher, and peel strength at end of plate is a specific value or higher. CONSTITUTION:For carbon fiber composing carbon fiber reinforced resin composite material or prepreg, specific gravity is 1.75 or lower, tensile elastic modulus and tensile strength which are measured by a strand tensile test are respectively 29tf/mm<2> or higher and 500kgf/mm<2>, and peel strength at end of plate measured by a composite test is 22kgf/mm<2> or higher. For carbon fiber of which specific gravity is larger than 1.75, neight reducing effect is small. Further for carbon fiber wherein tensile elastic modulus is under 29tf/mm<2>, and tensile strength is under 500kg/mm<2>, impact resistance is low, and besides thick composite material is necessarily produced in order to develop a specific characteristic. Then, merits by the weight-reduction are decreased. Further, when peel strength at end of plate is under 22kgf/mm<2>, the maximum load is decreased because of ply separation at impact.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、炭素繊維強化樹脂複合
材料およびその中間基材であるプリプレグ、特に耐衝撃
性の高い炭素繊維強化樹脂複合材料およびその中間基材
であるプリプレグに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon fiber reinforced resin composite material and a prepreg which is an intermediate base material thereof, and particularly to a carbon fiber reinforced resin composite material having high impact resistance and a prepreg which is an intermediate base material thereof.

【0002】[0002]

【従来の技術】炭素繊維強化樹脂複合材料はスポーツ、
航空宇宙等広く利用されているが、実際の用途において
は静的特性のみでなく衝撃といった動的特性が重要であ
る。従来炭素繊維複合材料の耐衝撃特性と炭素繊維強化
樹脂複合材料を構成する炭素繊維の特性との関係は明確
でなく、耐衝撃性の充分高い炭素繊維強化樹脂複合材料
はなかった。
2. Description of the Related Art Carbon fiber reinforced resin composite materials are used for sports,
It is widely used in aerospace, but in actual applications, not only static characteristics but also dynamic characteristics such as impact are important. Conventionally, the relationship between the impact resistance characteristics of the carbon fiber composite material and the characteristics of the carbon fibers constituting the carbon fiber reinforced resin composite material was not clear, and there was no carbon fiber reinforced resin composite material having sufficiently high impact resistance.

【0003】[0003]

【発明が解決しようとする課題】本発明の課題は、上記
問題点を解決すること、すなわち、耐衝撃特性に優れた
炭素繊維強化樹脂複合材料およびその中間基材である炭
素繊維強化樹脂プリプレグを提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above problems, namely, to provide a carbon fiber reinforced resin composite material excellent in impact resistance and a carbon fiber reinforced resin prepreg which is an intermediate base material thereof. To provide.

【0004】[0004]

【課題を解決するための手段】上記した課題を解決する
ために、本発明の炭素繊維強化樹脂複合材料は以下の構
成を有する。すなわち、比重が1.75以下、引張弾性
率が29 tf/mm2 以上、引張強度が500kgf/mm2
上、板端剥離強度が22kgf/mm2 以上の炭素繊維で強化
することを特徴とする炭素繊維強化樹脂複合材料であ
る。
In order to solve the above problems, the carbon fiber reinforced resin composite material of the present invention has the following constitution. That is, specific gravity of 1.75 or less, a tensile modulus of 29 tf / mm 2 or more, a tensile strength of 500 kgf / mm 2 or more, plate end peel strength and wherein the reinforced with 22 kgf / mm 2 or more carbon fiber It is a carbon fiber reinforced resin composite material.

【0005】また、本発明の炭素繊維強化樹脂プリプレ
グは以下の構成を有する。すなわち、比重が1.75以
下、引張弾性率が29 tf/mm2 以上、引張強度が500
kgf/mm2 以上、板端剥離強度が22kgf/mm2 以上の炭素
繊維で強化することを特徴とする炭素繊維強化樹脂プリ
プレグである。
The carbon fiber reinforced resin prepreg of the present invention has the following constitution. That is, the specific gravity is 1.75 or less, the tensile elastic modulus is 29 tf / mm 2 or more, and the tensile strength is 500.
kgf / mm 2 or more, a carbon fiber-reinforced resin prepreg, characterized in that the plate end peel strength is reinforced with 22 kgf / mm 2 or more carbon fibers.

【0006】本発明の炭素繊維強化樹脂複合材料および
プリプレグについて詳細に説明する。本発明の炭素繊維
強化樹脂複合材料あるいはプリプレグを構成する炭素繊
維は、比重が1.75以下、ストランド引張試験により
測定される引張弾性率および強度がそれぞれ29 tf/mm
2 以上および500kgf/mm2 以上でかつコンポジット試
験により測定される板端剥離強度(Edge Delamination
Strength、以下EDSと略す)が22kgf/mm2 以上とす
るものである。
The carbon fiber reinforced resin composite material and prepreg of the present invention will be described in detail. The carbon fiber constituting the carbon fiber-reinforced resin composite material or prepreg of the present invention has a specific gravity of 1.75 or less, and a tensile modulus and a strength measured by a strand tensile test of 29 tf / mm, respectively.
Edge Delamination of 2 or more and 500 kgf / mm 2 or more and measured by composite test
Strength (hereinafter abbreviated as EDS) is 22 kgf / mm 2 or more.

【0007】比重が1.75より大きい炭素繊維では軽
量化効果が小さく、好ましくは1.74以下、より好ま
しくは1.73以下がよい。引張弾性率が29 tf/mm2
未満あるいは500kgf/mm2 未満では耐衝撃特性が低い
とともに、所望の特性を発現するために厚肉の複合材料
を作る必要があり軽量化メリットが小さく好ましくな
い。弾性率についてはより好ましくは29.5 tf/mm2
以上、さらに好ましくは30 tf/mm2 以上、引張強度に
ついてはより好ましくは520kgf/mm2 以上、さらに好
ましくは550kgf/mm2 以上が軽量化メリットが大きく
良い。
Carbon fibers having a specific gravity of more than 1.75 have a small weight-reducing effect, and are preferably 1.74 or less, more preferably 1.73 or less. Tensile elastic modulus is 29 tf / mm 2
If it is less than 500 kgf / mm 2 , the impact resistance is low, and it is necessary to make a thick composite material in order to express the desired characteristics, which is not preferable because the merit of weight reduction is small. The elastic modulus is more preferably 29.5 tf / mm 2
As described above, more preferably 30 tf / mm 2 or more, and the tensile strength is more preferably 520 kgf / mm 2 or more, and further preferably 550 kgf / mm 2 or more, which is a great advantage for weight reduction.

【0008】またコンポジット試験により測定されるE
DSが22kgf/mm2 未満では衝撃時に層間剥離のために
最大荷重が低くなるため好ましくない。より好ましくは
23kgf/mm2 以上、さらに好ましくは24kgf/mm2 以上
が良い。
E measured by the composite test
If the DS is less than 22 kgf / mm 2, it is not preferable because the maximum load becomes low due to delamination during impact. It is more preferably 23 kgf / mm 2 or more, still more preferably 24 kgf / mm 2 or more.

【0009】すなわち、本発明に用いる炭素繊維は引張
強度、弾性率、および樹脂との接着の指標であるEDS
が高く、かつ比重が低いという特長を有し、それらの総
合効果として炭素繊維強化樹脂複合材料の衝撃特性が優
れたものとなる。
That is, the carbon fiber used in the present invention is an index of the tensile strength, the elastic modulus, and the adhesion with the resin EDS.
The carbon fiber reinforced resin composite material has excellent impact characteristics as a total effect of these characteristics.

【0010】本発明に用いる炭素繊維は次のようにして
得ることができるが、これに限定されるものではない。
The carbon fiber used in the present invention can be obtained as follows, but is not limited thereto.

【0011】本発明炭素繊維としては公知のポリアクリ
ロニトリル(PAN)系、ピッチ系、気相成長炭素繊維
を用いることができるが、高強度糸が得られ易いPAN
系炭素繊維が好ましい。PAN系炭素繊維の場合を例に
とって以下詳細に説明する。
As the carbon fiber of the present invention, known polyacrylonitrile (PAN) -based, pitch-based, vapor-grown carbon fibers can be used, but PAN is easy to obtain high-strength yarn.
Carbon-based fibers are preferred. The case of PAN-based carbon fiber will be described in detail below as an example.

【0012】紡糸法としては湿式、乾式、乾湿式等を採
用できるが高強度糸が得られ易い湿式あるいは乾湿式が
好ましく、特に乾湿式紡糸が好ましい。紡糸原液にはP
ANのホモポリマーあるいは共重合体の溶液あるいは懸
濁液等を用いることができる。凝固、水洗、延伸、油剤
付与されて前駆体原糸とし、さらに耐炎化、炭化、必要
に応じて黒鉛化を行なう。
As the spinning method, a wet method, a dry method, a dry method or the like can be adopted, but a wet method or a dry method, which can easily obtain a high-strength yarn, is preferable, and a dry-wet spinning method is particularly preferable. P for the spinning solution
A solution or suspension of a homopolymer or copolymer of AN can be used. Coagulation, washing with water, drawing, and application of an oiling agent to form a precursor raw yarn, which is further flameproofed, carbonized, and graphitized if necessary.

【0013】炭化あるいは黒鉛化条件としては本発明炭
素繊維を得るためには不活性雰囲気中最高温度は140
0℃以上、好ましくは1600℃以上がよい。焼成温度
が高いほど弾性率は向上するが、引張強度および樹脂と
の接着強度が低下するとともに比重が増加するため最適
化することが好ましく、1400℃以上2200℃以
下、より好ましくは1600℃以上2000℃以下が良
い。また同一焼成温度で引張強度および弾性率を向上さ
せるために延伸を組み合わせることが好ましい。強度お
よび弾性率を向上するためには細繊度の炭素繊維が好ま
しく、炭素繊維の単繊維径で7.5μm以下、好ましく
6.5μm以下、さらに好ましくは5.5μm以下が好
ましい。
As for the carbonization or graphitization condition, the maximum temperature in an inert atmosphere is 140 in order to obtain the carbon fiber of the present invention.
The temperature is 0 ° C or higher, preferably 1600 ° C or higher. The higher the firing temperature is, the higher the elastic modulus is, but the tensile strength and the adhesive strength with the resin are lowered, and the specific gravity is increased, so that it is preferable to optimize the firing temperature, and it is preferably 1400 ° C or higher and 2200 ° C or lower, more preferably 1600 ° C or higher and 2000. ℃ or less is good. Further, it is preferable to combine stretching in order to improve tensile strength and elastic modulus at the same firing temperature. In order to improve the strength and the elastic modulus, carbon fibers having a fineness are preferable, and the single fiber diameter of the carbon fibers is 7.5 μm or less, preferably 6.5 μm or less, and more preferably 5.5 μm or less.

【0014】得られた炭素繊維はさらに表面処理および
サイジング処理がなされて炭素繊維となる。電解処理に
用いられる電解質としては、硫酸、硝酸といった酸、水
酸化ナトリウム、炭酸アンモニウム、テトラエチルアン
モニウムヒドロキシドといったアルカリ、およびそれら
の塩の溶液、好ましくは水溶液が使われる。乾湿式紡糸
によって得られた炭素繊維の場合アルカリあるいは塩の
水溶液が好ましい。電解質としては、塩基性アミン類化
合物あるいはアンモニウム塩を存在させることが有効
で、例えば炭酸アンモニウム、炭酸水素アンモニウム、
炭酸アンモニウム、アンモニア、トリエチルアミン、シ
クロヘキシルアミン、硝酸アンモニウム、硫酸アンモニ
ウム等あるいはそれらの混合物などを用いることができ
る。電解液のpHは8以上がより好ましい。pHが8未
満であると、電解酸化により生成した黒鉛酸化物の溶解
が小さく、樹脂との接着が低下する恐れがある。
The carbon fiber obtained is further subjected to surface treatment and sizing treatment to become carbon fiber. As the electrolyte used in the electrolytic treatment, a solution of an acid such as sulfuric acid or nitric acid, an alkali such as sodium hydroxide, ammonium carbonate or tetraethylammonium hydroxide, and a salt thereof, preferably an aqueous solution is used. In the case of carbon fiber obtained by dry-wet spinning, an aqueous solution of alkali or salt is preferable. As the electrolyte, it is effective to allow a basic amine compound or an ammonium salt to be present. For example, ammonium carbonate, ammonium hydrogen carbonate,
Ammonium carbonate, ammonia, triethylamine, cyclohexylamine, ammonium nitrate, ammonium sulfate, etc., or a mixture thereof can be used. The pH of the electrolytic solution is more preferably 8 or higher. If the pH is less than 8, the graphite oxide produced by electrolytic oxidation is less dissolved and the adhesion to the resin may be reduced.

【0015】電解処理の電気量は、使用する炭素繊維の
弾性率により異なり、高弾性率炭素繊維の場合発達した
表面の黒鉛構造を破壊するエネルギーが必要となるため
に高い通電電気量が必要となる。しかし一度に高電気量
を流すと電圧が高くなり、安全上問題であるとともに、
炭素繊維に欠陥が生じやすくなるという問題がある。従
って、1槽当たりの処理量を低くし処理槽数を多くする
必要がある。具体的には、炭素繊維1gおよび1槽当た
りの電気量が2クーロン/g・槽以上100クーロン/
g・槽以下が好ましく、2クーロン/g・槽以上80ク
ーロン/g・槽以下がより好ましい。2クーロン/g・
槽未満では表層の結晶性の低下が十分に進まず、かつ処
理槽数を多くする必要があり生産性が悪化する。一方、
100クーロン/g・槽を超える場合には炭素繊維基質
の強度低下が大きくなる。また、結晶性の低下を適度な
範囲に維持する観点からは、通電処理の総電気量は2ク
ーロン/g以上1000クーロン/g以下、さらには2
0クーロン/g以上500クーロン/g以下とするのが
好ましい。処理時間については、数秒から10数分が好
ましく、さらには10秒から2分程度が好ましい。
The amount of electricity used in the electrolytic treatment depends on the elastic modulus of the carbon fiber used, and in the case of a high elastic modulus carbon fiber, energy for destroying the developed graphite structure on the surface is required, and thus a high amount of electricity is required. Become. However, if a large amount of electricity is passed at once, the voltage will increase, which is a safety issue and
There is a problem that defects are likely to occur in the carbon fiber. Therefore, it is necessary to reduce the processing amount per tank and increase the number of processing tanks. Specifically, 1 g of carbon fiber and the amount of electricity per tank is 2 coulomb / g · tank or more 100 coulomb /
g · tank or less is preferable, and 2 coulomb / g · tank or more and 80 coulomb / g · tank or less is more preferable. 2 coulomb / g
If it is less than the number of tanks, the crystallinity of the surface layer does not sufficiently decrease, and the number of processing tanks needs to be increased, resulting in deterioration of productivity. on the other hand,
When it exceeds 100 coulomb / g · tank, the strength of the carbon fiber substrate is greatly reduced. Further, from the viewpoint of maintaining the decrease in crystallinity within an appropriate range, the total amount of electricity during energization treatment is 2 coulomb / g or more and 1000 coulomb / g or less, and further 2 coulomb / g or less.
It is preferably 0 coulomb / g or more and 500 coulomb / g or less. The processing time is preferably several seconds to ten minutes, more preferably about 10 seconds to 2 minutes.

【0016】また、電解処理を行った後、水洗・乾燥す
る工程において、乾燥温度が高すぎると炭素繊維の最表
面に存在する官能基は熱分解により消失し易い。したが
って、できる限り低い温度で乾燥することが望ましく、
具体的には乾燥温度が250℃以下、さらに好ましくは
210℃以下で乾燥することが望ましい。
Further, in the step of washing with water and drying after the electrolytic treatment, if the drying temperature is too high, the functional groups existing on the outermost surface of the carbon fiber are likely to disappear by thermal decomposition. Therefore, it is desirable to dry at the lowest temperature possible,
Specifically, it is desirable that the drying temperature is 250 ° C. or lower, more preferably 210 ° C. or lower.

【0017】表面処理後の炭素繊維は光電子分光法(以
下、ESCA)により測定される表面窒素濃度N/Cお
よび表面酸素濃度O/Cが、それぞれ0.02以上、
0.2以下、好ましくは0.03以上、0.15以下で
あることが望ましい。すなわちN/CおよびO/Cが上
記範囲外では樹脂との接着が低下する恐れがある。
The surface treated carbon fiber has a surface nitrogen concentration N / C and a surface oxygen concentration O / C of 0.02 or more, which are measured by photoelectron spectroscopy (hereinafter referred to as ESCA).
It is desirably 0.2 or less, preferably 0.03 or more and 0.15 or less. That is, if N / C and O / C are out of the above ranges, the adhesion to the resin may be reduced.

【0018】サイジング剤として用いられる化合物は、
エポキシ系サイジング剤が好ましく、特に複数のエポキ
シ基を有する脂肪族化合物がよい。エポキシ基の数は炭
素繊維とマトリックス樹脂との橋渡しを有効に行い、か
つサイジング剤間の反応を抑制するため2〜4個である
のが好ましい。また、サイジング剤の骨格は炭素繊維と
マトリックス樹脂の界面に剛直で立体的に大きな化合物
を介在させないため、分子鎖が直鎖状で柔軟性を有し、
かつ分子量が小さいのが望ましい。具体的にはエポキシ
当量は、80以上1000以下、さらには90以上50
0以下が好ましく、分子量は100以上2000以下、
さらには200以上1000以下が好ましい。化合物で
は、グリセロールポリグリシジルエーテル、ジグリセロ
ールポリグリシジルエーテル、ポリエチレングリコール
ジグリシジルエーテル類,ポリプロピレングリコールジ
グリシジルエーテル類、ポリエチレンオキサイドジグリ
シジルエーテル類、ポリプロピレンジグリシジルエーテ
ル類などが有効である。
The compound used as the sizing agent is
Epoxy sizing agents are preferable, and aliphatic compounds having a plurality of epoxy groups are particularly preferable. The number of epoxy groups is preferably 2 to 4 in order to effectively bridge the carbon fiber and the matrix resin and suppress the reaction between the sizing agents. Further, the skeleton of the sizing agent does not have a rigid and sterically large compound at the interface between the carbon fiber and the matrix resin, so that the molecular chain is linear and flexible,
And it is desirable that the molecular weight is small. Specifically, the epoxy equivalent is 80 or more and 1000 or less, and further 90 or more and 50.
0 or less is preferable, the molecular weight is 100 or more and 2000 or less,
Furthermore, 200 or more and 1000 or less are preferable. As the compound, glycerol polyglycidyl ether, diglycerol polyglycidyl ether, polyethylene glycol diglycidyl ethers, polypropylene glycol diglycidyl ethers, polyethylene oxide diglycidyl ethers, polypropylene diglycidyl ethers and the like are effective.

【0019】サイジング剤の付着量としては、炭素繊維
単位重量当たり0.01%以上5%以下とするものであ
り、さらには0.1%以上2%以下が好ましい。0.0
1%未満では炭素繊維とマトリックス樹脂との橋渡しが
不十分で接着特性の向上効果が小さく、また5%を超え
るとサイジング剤間の反応が多くなるために炭素繊維/
マトリックス樹脂間にサイジング剤の重合物が占め、コ
ンポジット特性が変化する恐れがあり好ましくない。
The amount of the sizing agent deposited is 0.01% or more and 5% or less, preferably 0.1% or more and 2% or less, per unit weight of carbon fiber. 0.0
If it is less than 1%, the bridging between the carbon fiber and the matrix resin is insufficient and the effect of improving the adhesive property is small, and if it exceeds 5%, the reaction between the sizing agents is increased, so the carbon fiber /
Polymers of the sizing agent occupy between the matrix resins, which may change the composite characteristics, which is not preferable.

【0020】サイジング剤に使用する溶媒は、水、メタ
ノール、エタノール、ジメチルホルムアミド、ジメチル
アセトアミド、アセトン等が挙げられるが、取扱いが容
易で防災の観点から水が好ましい。従って水に不溶、若
しくは難溶のエポキシ化合物には乳化剤、界面活性剤等
を添加し水分散性にして用いるのが好ましい。
Examples of the solvent used for the sizing agent include water, methanol, ethanol, dimethylformamide, dimethylacetamide, and acetone, but water is preferable from the viewpoint of easy handling and disaster prevention. Therefore, it is preferable to add an emulsifier, a surfactant and the like to the epoxy compound which is insoluble or hardly soluble in water to make it water-dispersible.

【0021】サイジング剤付与処理を行った後、乾燥す
る工程における乾燥温度は150℃以上350℃以下が
好ましく、さらには180℃以上250℃が好ましい。
150℃未満であるとサイジング剤の溶媒が完全に除去
できずコンポジットの接着特性に悪い影響を及ぼす恐れ
があり、かつ乾燥時間が長くなり工業上実際的でない。
また350℃以上であるとサイジング剤の硬化が進み、
炭素繊維束が固くなって束の拡がり性が悪化するため
に、良好なコンポジットの成形ができなくなる恐れがあ
る。
The drying temperature in the step of drying after applying the sizing agent is preferably 150 ° C. or higher and 350 ° C. or lower, more preferably 180 ° C. or higher and 250 ° C.
If the temperature is lower than 150 ° C, the solvent of the sizing agent cannot be completely removed, which may adversely affect the adhesive properties of the composite, and the drying time becomes long, which is not industrially practical.
If the temperature is 350 ° C or higher, curing of the sizing agent proceeds,
Since the carbon fiber bundle becomes hard and the spreadability of the bundle deteriorates, it may be impossible to form a good composite.

【0022】このようにして得られた炭素繊維は、プリ
プレグ法、フィラメントワインド法等の公知の方法によ
り樹脂と組み合わされ、賦型後硬化あるいは熱処理工程
を経て複合材料とされる。
The carbon fibers thus obtained are combined with a resin by a known method such as a prepreg method or a filament winding method, and then a composite material is obtained through a post-molding curing or heat treatment step.

【0023】プリプレグ法の場合、前記した炭素繊維を
一方向、織物、ヤーンあるいはマットなどの形態のもの
に樹脂を含浸し、炭素繊維強化樹脂プリプレグを得た
後、該プリプレグを積層、巻き付けなどの賦型工程を経
て、プレス、オートクレーブあるいはラッピング成形な
どの方法によって加熱成形され炭素繊維強化樹脂複合材
料とされる。
In the case of the prepreg method, the above-mentioned carbon fiber is impregnated with a resin in the form of unidirectional, woven, yarn or mat to obtain a carbon fiber reinforced resin prepreg, and then the prepreg is laminated or wound. After the shaping step, the carbon fiber reinforced resin composite material is obtained by heat molding by a method such as pressing, autoclaving or lapping molding.

【0024】マトリックス樹脂は特に限定されないが、
サイジング剤化合物がエポキシ基を有しているので親和
性の高いエポキシ樹脂が好ましく、その硬化温度があま
りに高すぎると、炭素繊維に付与したサイジング剤の変
質・分解等が生じ易く、樹脂との接着性が阻害される場
合があるため、硬化温度は250℃以下、さらには20
0℃以下のエポキシ樹脂が好ましい。具体的には、特公
昭63−60056号公報で開示された180℃硬化の
エポキシ樹脂や、特公平4−80054号公報で開示さ
れた130℃硬化のエポキシ樹脂などが本発明において
は好適に用いられる。ゴム粒子、熱可塑性粒子混合など
により高靭性化した樹脂を用いたり、プリプレグ層間を
熱可塑性樹脂の粒子や繊維などで補強したりすること
は、複合材料の衝撃特性向上にとってより好ましい。
The matrix resin is not particularly limited,
Since the sizing agent compound has an epoxy group, an epoxy resin having a high affinity is preferable, and if the curing temperature is too high, the sizing agent applied to the carbon fiber is likely to be deteriorated or decomposed, resulting in adhesion with the resin. The curing temperature may be 250 ° C or lower, and even 20
Epoxy resins having a temperature of 0 ° C. or lower are preferable. Specifically, the 180 ° C.-curable epoxy resin disclosed in Japanese Patent Publication No. 63-60056 and the 130 ° C.-curable epoxy resin disclosed in Japanese Patent Publication No. 4-80054 are preferably used in the present invention. To be It is more preferable to improve the impact properties of the composite material by using a resin toughened by mixing rubber particles or thermoplastic particles, or by reinforcing the prepreg layers with particles or fibers of a thermoplastic resin.

【0025】得られた複合材料の衝撃特性をシャルピー
衝撃試験機で測定するが、全吸収エネルギーのみでな
く、衝撃力曲線から最大荷重および最大荷重までの吸収
エネルギーが求められる計装化シャルピーを用いること
が重要である。炭素繊維複合材料のような脆性材料の場
合、破壊が開始する最大荷重以降の吸収エネルギーは分
断しやすさの指標にはなるものの機能保持という意味で
は最大荷重あるいは最大荷重までの吸収エネルギーがよ
り重要と言える。本発明の炭素繊維強化樹脂複合材料
は、この最大荷重が高く、かつ最大荷重までの吸収エネ
ルギーが高いものである。一方向平板をフラットワイズ
で衝撃破壊した時の最大荷重後の吸収エネルギーを最大
荷重までの吸収エネルギーで割った値、いわゆる延性指
標は好ましくは0.1〜0.8、より好ましくは0.2
〜0.6、さらに好ましくは0.3〜0.5が良い。延
性指標が0.8より大きい場合、剪断により破壊が開始
するために最大荷重が低く、さらに剪断破壊が進展する
ことによりエネルギーを吸収することになり、最終破断
までの全吸収エネルギーは高くても実用上の機能保持能
力としては低い恐れがある。一方、延性指標が0.1よ
り小さい場合には非常な脆性破壊となり他の特性、特に
引張強度等が低下する恐れがある。
The impact characteristics of the obtained composite material are measured by a Charpy impact tester, and not only the total absorbed energy but also the instrumented Charpy which is required to determine the absorbed energy from the impact force curve to the maximum load and the maximum load is used. This is very important. In the case of brittle materials such as carbon fiber composite materials, the absorbed energy after the maximum load at which fracture starts becomes an index of easiness of division, but the maximum load or the absorbed energy up to the maximum load is more important in terms of function retention. Can be said. The carbon fiber reinforced resin composite material of the present invention has a high maximum load and a high absorbed energy up to the maximum load. A value obtained by dividing the absorbed energy after the maximum load when the unidirectional flat plate is impact-ruptured by flatwise by the absorbed energy up to the maximum load, the so-called ductility index is preferably 0.1 to 0.8, more preferably 0.2.
Is preferably 0.6 to 0.6, more preferably 0.3 to 0.5. When the ductility index is larger than 0.8, the maximum load is low because the fracture starts due to shearing, and the energy is absorbed as the shear fracture progresses, and the total absorbed energy until the final fracture is high. There is a possibility that the ability to retain functions in practice is low. On the other hand, if the ductility index is less than 0.1, it may result in extremely brittle fracture, and other properties such as tensile strength may decrease.

【0026】本発明の炭素繊維は単独で用いることがで
きるが、他の炭素繊維あるいは他の強化繊維と組み合わ
せて複合材料とすることもでき、用途に応じて最適化す
ることが好ましい。用途としては、ゴルフシャフト、テ
ニスラケット、釣竿等のスポーツ用途および航空宇宙用
途に適用できるが、特に衝撃特性が重要となるゴルフシ
ャフトの場合に有効である。ゴルフシャフトはラッピン
グ法などの従来公知の技術で成形することができるが、
さらにシャフト特性を最大限に発現させるため積層構成
あるいは他の特性を有する炭素繊維あるいは他の強化繊
維との組み合わせを最適化することが好ましい。
Although the carbon fiber of the present invention can be used alone, it can be used as a composite material by combining with other carbon fiber or other reinforcing fiber, and it is preferable to optimize it according to the application. It can be applied to sports applications such as golf shafts, tennis rackets, fishing rods, and aerospace applications, but is particularly effective for golf shafts where impact characteristics are important. The golf shaft can be formed by a conventionally known technique such as a lapping method,
Further, in order to maximize the shaft characteristics, it is preferable to optimize the laminated structure or the combination with carbon fibers having other characteristics or other reinforcing fibers.

【0027】[0027]

【実施例】以下、実施例により本発明をさらに具体的に
説明する。本発明におけるストランド引張弾性率および
強度ならびにEDSは以下の方法により求めた。
EXAMPLES The present invention will be described in more detail below with reference to examples. The strand tensile elastic modulus and strength and EDS in the present invention were determined by the following methods.

【0028】(ストランド引張弾性率および強度)JI
S R−7601の樹脂含浸ストランド試験方法に準じ
て測定した。樹脂処方としては、“BAKELITE”
ERL4221/3フッ化ホウ素モノエチルアミン/ア
セトン=100/3/4部をよく混合して用いた。
(Strand Tensile Modulus and Strength) JI
It was measured according to the resin impregnated strand test method of SR-7601. As resin prescription, "BAKELITE"
ERL4221 / 3 boron fluoride monoethylamine / acetone = 100/3/4 parts were mixed well and used.

【0029】(EDS)樹脂は特公平4−80054号
公報開示の実施例1に従って次のように調整した。すな
わち、油化シェルエポキシ社製エピコート1001を 3.5kg
(35重量部)、油化シェルエポキシ社製エピコート828
を 2.5kg(25重量部)と大日本インキ化学工業社製エピ
クロンN740 を 3.0kg(30重量部)、油化シェルエポキ
シ社製エピコート152 を 1.5kg(15重量部)および電気
化学工業社製デンカホルマール#20を 0.8kg(3 重量
部)とジクロロフェニルジメチルウレア 0.5kg(5 重量
部)を添加し、30分間撹拌して樹脂組成物を得た。これ
を離型紙にコーティングし樹脂フィルムとしたものを用
いた。
The (EDS) resin was prepared as follows according to Example 1 disclosed in Japanese Examined Patent Publication No. 4-80054. That is, 3.5 kg of Epicoat 1001 manufactured by Yuka Shell Epoxy Co., Ltd.
(35 parts by weight), Yuka Shell Epoxy Epicoat 828
2.5 kg (25 parts by weight), 3.0 kg (30 parts by weight) of Epichron N740 manufactured by Dainippon Ink and Chemicals, 1.5 kg (15 parts by weight) of Epicoat 152 manufactured by Yuka Shell Epoxy and Denka manufactured by Denki Kagaku Kogyo 0.8 kg (3 parts by weight) of formal # 20 and 0.5 kg (5 parts by weight) of dichlorophenyldimethylurea were added and stirred for 30 minutes to obtain a resin composition. A release paper was coated with this to form a resin film.

【0030】先ず円周約2.7mの鋼製ドラムに炭素繊
維と組み合わせる樹脂をシリコン塗布ペーパー上にコー
ティングした樹脂フィルムを巻き、次に該樹脂フィルム
上にクリールから引き出した炭素繊維をトラバースを介
して巻き取り、配列して、さらにその繊維の上から前記
樹脂フィルムを再度かぶせて後、加圧ロールで回転加圧
して樹脂を繊維内に含浸せしめ、巾300mm、長さ2.
7mの一方向プリプレグを作製する。
First, a steel drum having a circumference of about 2.7 m is wound with a resin film obtained by coating a silicon-coated paper with a resin to be combined with carbon fibers, and then the carbon fibers drawn from the creel are traversed on the resin film. After winding and arranging, the fiber is covered again with the above resin film, and the fibers are impregnated with the resin by rotating and pressing with a pressure roll, and the width is 300 mm and the length is 2.
A 7 m unidirectional prepreg is prepared.

【0031】このとき、繊維間への樹脂含浸を良くする
ためにドラムは60〜70℃に加熱し、またプリプレグ
の繊維目付はドラムの回転数とトラバースの送り速度を
調整することによって繊維目付約200 g/m2 、樹脂量
約35重量%のプリプレグを作製した。
At this time, in order to improve the resin impregnation between the fibers, the drum is heated to 60 to 70 ° C., and the fiber areal weight of the prepreg is adjusted by adjusting the rotational speed of the drum and the traverse feed speed. A prepreg having 200 g / m 2 and a resin amount of about 35% by weight was prepared.

【0032】このように作製したプリプレグを裁断、
(+25 /−25 /+25 /−25 /90)s の構成で
積層し、オートクレーブを用いて135℃、3kgf/cm2
下で2時間加熱硬化して、EDS測定用として肉厚約2
mmの硬化板を作製した。
The prepreg thus produced is cut,
(+ 25 / −25 / + 25 / −25 / 90) s stacked, and autoclave at 135 ℃, 3kgf / cm 2
It is cured by heating for 2 hours under the thickness of about 2 for EDS measurement.
A mm cured plate was prepared.

【0033】試験片は巾25.4mm、長さ230mmと
し、測定は通常の引張試験治具を用いて、試験長127
mmに設定し、歪速度1mm/ 分で測定した。剥離強度は試
験片の側面で剥離が開始した時点の荷重より求めた。
The test piece had a width of 25.4 mm and a length of 230 mm, and the measurement was carried out by using an ordinary tensile test jig with a test length of 127.
The strain rate was set to 1 mm / min and the strain rate was measured at 1 mm / min. The peel strength was obtained from the load when peeling started on the side surface of the test piece.

【0034】さらに、本例中に記載された炭素繊維の比
重、ESCAにより測定されるO/CおよびN/Cおよ
び計装化シャルピー衝撃エネルギーは次のようにして求
めた。
Further, the specific gravity of the carbon fiber described in this example, O / C and N / C measured by ESCA, and instrumented Charpy impact energy were determined as follows.

【0035】(比重)JIS R−7601の浮沈法に
より測定した。
(Specific gravity) The specific gravity was measured by the float and sink method of JIS R-7601.

【0036】(O/CおよびN/C)ESCAにより測
定される表面酸素濃度O/Cまたは表面窒素濃度N/C
とは、次の手順に従って求められる値をいう。先ず、溶
媒でサイジング剤などを除去した炭素繊維束をカットし
てステンレス製の試料支持台上に拡げて並べた後、光電
子脱出角度を90゜とし、X線源としてMgKα1,2
用い、試料チャンバー内を1×10-8Torrの真空度に保
つ。測定時の帯電に伴うピークの補正として、まずC1S
の主ピークの結合エネルギー値B.E.を284.6 eVに合わせ
る。C1Sピーク面積は、 282〜296 eVの範囲で直線のベ
ースラインを引くことにより求める。O1Sピーク面積
は、 528〜540 eVの範囲で直線のベースラインを引くこ
とにより求め、N1Sピーク面積は、 398〜410 eVの範囲
で直線のベースラインを引くことにより求める。ここ
で、表面酸素濃度O/Cは、上記O1Sピーク面積とC1S
ピーク面積の比を、装置固有の感度補正値で割ることに
より算出した原子数比をいうものである。なお、例え
ば、島津製作所(株)製ESCA−750を用いた場合
には上記装置固有の感度補正値は2.85となる。ま
た、ここで、表面酸素濃度N/Cは、上記N1Sピーク面
積とC1Sピーク面積の比を、装置固有の感度補正値で割
ることにより算出した原子数比をいうものである。な
お、例えば、島津製作所(株)製ESCA−750を用
いた場合には上記装置固有の感度補正値は1.7とな
る。
(O / C and N / C) Surface oxygen concentration O / C or surface nitrogen concentration N / C measured by ESCA
Means a value obtained by the following procedure. First, a carbon fiber bundle from which a sizing agent and the like has been removed with a solvent is cut and spread on a stainless steel sample support table and arranged, and then a photoelectron escape angle is set to 90 °, and MgKα 1,2 is used as an X-ray source. The inside of the sample chamber is kept at a vacuum of 1 × 10 −8 Torr. To correct the peak due to charging during measurement, first use C 1S
Set the binding energy value BE of the main peak of to 284.6 eV. The C 1S peak area is obtained by drawing a straight base line in the range of 282 to 296 eV. The O 1S peak area is obtained by drawing a straight baseline in the range of 528 to 540 eV, and the N 1S peak area is obtained by drawing a straight baseline in the range of 398 to 410 eV. Here, the surface oxygen concentration O / C is the O 1S peak area and the C 1S
It is the atomic number ratio calculated by dividing the ratio of the peak areas by the sensitivity correction value specific to the device. Note that, for example, when ESCA-750 manufactured by Shimadzu Corporation is used, the sensitivity correction value peculiar to the above apparatus is 2.85. The surface oxygen concentration N / C means the atomic number ratio calculated by dividing the ratio of the N 1S peak area and the C 1S peak area by the sensitivity correction value specific to the apparatus. Note that, for example, when ESCA-750 manufactured by Shimadzu Corporation is used, the sensitivity correction value peculiar to the above apparatus is 1.7.

【0037】(計装化シャルピー衝撃エネルギー)前記
した一方向プリプレグを用いて、JIS−K−7077
に従って試験片を作成し、計装化されたシャルピー衝撃
試験機を用いて最大荷重、最大荷重までの吸収エネルギ
ーおよび最大荷重後の吸収エネルギーを測定する。試験
片寸法は厚み6mm、幅10mm、長さ60mmで、ス
パン間距離は40mmを用いた。
(Instrumented Charpy Impact Energy) JIS-K-7077 is prepared by using the above-mentioned one-way prepreg.
A test piece is prepared in accordance with the above, and the maximum load, the absorbed energy up to the maximum load, and the absorbed energy after the maximum load are measured using an instrumented Charpy impact tester. The dimensions of the test piece were 6 mm in thickness, 10 mm in width and 60 mm in length, and the distance between spans was 40 mm.

【0038】(実施例1)アクリロニトリル(AN)9
9.7モル%とメタクリル酸0.3モル%からなる共重
合体を用いて、乾湿式紡糸方法により単繊維デニール
0.6d,フィラメント数18000のアクリル系繊維
を得た。得られた繊維束を240〜280℃の空気中
で、延伸比1.03で加熱し、耐炎化繊維に転換し、つ
いで窒素雰囲気中300〜500℃の温度領域での昇温
速度を180℃/分とし10%の延伸を行なった後、1
700℃まで焼成した。濃度0.2モル/lの炭酸水素
アンモニウム水溶液を電解液として、1槽当たりの通電
電気量を10クーロン/g・槽とし、8槽繰り返すこと
により該炭素繊維を総電気量80クーロン/gで処理し
た。その際、電解液が黒色に変色した。この電解処理を
施された炭素繊維を続いて水洗し、150℃の加熱空気
中で乾燥した。続いて、グリセロールトリグリシジルエ
ーテルにノニオン系の乳化剤を5%添加したサイジング
剤を、成分が1重量%になるように水で希釈してサイジ
ング剤母液を調整し、浸漬法により炭素繊維にサイジン
グ剤を付与し、180℃で乾燥を行なった。付着量は
0.4%であった。
(Example 1) Acrylonitrile (AN) 9
An acrylic fiber having a single fiber denier of 0.6 d and a filament number of 18,000 was obtained by a dry-wet spinning method using a copolymer of 9.7 mol% and methacrylic acid 0.3 mol%. The obtained fiber bundle is heated in the air of 240 to 280 ° C. at a draw ratio of 1.03 to be converted into flame resistant fiber, and then the temperature rising rate in a temperature range of 300 to 500 ° C. in a nitrogen atmosphere is 180 ° C. / Min and 10% stretching and then 1
It was baked up to 700 ° C. An aqueous solution of ammonium hydrogencarbonate having a concentration of 0.2 mol / l was used as an electrolytic solution, and the amount of electricity supplied per tank was 10 coulomb / g · tank. Processed. At that time, the electrolytic solution turned black. The electrolytically treated carbon fiber was subsequently washed with water and dried in heated air at 150 ° C. Next, a sizing agent prepared by adding 5% of a nonionic emulsifier to glycerol triglycidyl ether is diluted with water so that the content of the component is 1% by weight to prepare a sizing agent mother liquor. And was dried at 180 ° C. The adhered amount was 0.4%.

【0039】このようにして得られた炭素繊維の比重は
1.73、ストランド引張強度および弾性率はそれぞれ
570kgf/mm2 、31 tf/mm2 だった。O/CおよびN
/Cはそれぞれ0.09および0.03だった。またE
DSは25kgf/mm2 であった。
The specific gravity of the carbon fiber thus obtained was 1.73, and the strand tensile strength and elastic modulus were 570 kgf / mm 2 and 31 tf / mm 2 , respectively. O / C and N
/ C was 0.09 and 0.03, respectively. Also E
The DS was 25 kgf / mm 2 .

【0040】さらに一方向材のシャルピー衝撃特性を測
定したときの荷重−時間線図を図1に示す。最大荷重が
5.5kNと高く、最大荷重までの吸収エネルギーも6
6kJ/m2 と大きかった。延性指標は0.34だっ
た。この材料を用いてゴルフシャフトを20本作製し、
ヘッドスピード50m/秒、ハイヒールヒットの条件で
ロボット実打試験を行なったところ、100回実打後で
も1本も破損しなかった。
Further, FIG. 1 shows a load-time diagram when the Charpy impact characteristics of the unidirectional material were measured. The maximum load is as high as 5.5 kN, and the absorbed energy up to the maximum load is 6
It was as large as 6 kJ / m 2 . The ductility index was 0.34. 20 golf shafts were made using this material,
A robot actual hitting test was conducted under the conditions of a head speed of 50 m / sec and a high heel hit, and as a result, none of them was damaged even after 100 times of actual hitting.

【0041】(比較例1)実施例1と同様に製糸、焼成
して得られた炭素繊維を用いて、 濃度0.1モル/l
の硫酸水溶液を電解液として、通電電気量を10クーロ
ン/gとし、1槽で処理した。この電解処理を施された
炭素繊維を続いて水洗し、150℃の加熱空気中で乾燥
した。
(Comparative Example 1) Using carbon fibers obtained by spinning and firing in the same manner as in Example 1, the concentration was 0.1 mol / l.
The sulfuric acid aqueous solution was used as an electrolytic solution, and the amount of electricity supplied was set to 10 coulomb / g. The electrolytically treated carbon fiber was subsequently washed with water and dried in heated air at 150 ° C.

【0042】続いて、油化シェルエポキシ社製エピコー
ト828 にノニオン系の乳化剤を5%添加したサイジング
剤を、成分が1重量%になるように水で希釈してサイジ
ング剤母液を調整し、浸漬法により炭素繊維にサイジン
グ剤を付与し、180℃で乾燥を行なった。付着量は
0.5%であった。
Next, a sizing agent prepared by adding 5% of a nonionic emulsifier to Epicoat 828 manufactured by Yuka Shell Epoxy Co., Ltd. was diluted with water so that the content of the components was 1% by weight to prepare a sizing agent mother liquor and dipping. A sizing agent was applied to the carbon fiber by the method and dried at 180 ° C. The adhered amount was 0.5%.

【0043】このようにして得られた炭素繊維の比重は
1.73、ストランド引張強度および弾性率はそれぞれ
560kgf/mm2 、31 tf/mm2 だった。O/CおよびN
/Cはそれぞれ0.12および0.01だった。またE
DSは16kgf/mm2 であった。
The specific gravity of the carbon fiber thus obtained was 1.73, and the strand tensile strength and elastic modulus were 560 kgf / mm 2 and 31 tf / mm 2 , respectively. O / C and N
/ C was 0.12 and 0.01, respectively. Also E
The DS was 16 kgf / mm 2 .

【0044】さらに一方向材のシャルピー衝撃特性を測
定したときの荷重−時間線図を図2に示す。最大荷重が
4.3kNと低く、最大荷重までの吸収エネルギーも4
6kJ/m2 と小さかった。延性指標は0.96だっ
た。この材料を用いてゴルフシャフトを20本作製し、
実施例1と同様の方法でロボット実打試験を行なったと
ころ、100回実打後まで破損しなかったのは4本のみ
だった。
Further, FIG. 2 shows a load-time diagram when the Charpy impact characteristics of the unidirectional material were measured. Maximum load is as low as 4.3 kN, and absorbed energy up to maximum load is 4
It was as small as 6 kJ / m 2 . The ductility index was 0.96. 20 golf shafts were made using this material,
When a robot actual hitting test was conducted in the same manner as in Example 1, only 4 pieces were not damaged after 100 times of actual hitting.

【0045】(比較例2)アクリロニトリル(AN)9
9.7モル%とメタクリル酸0.3モル%からなる共重
合体を用いて、湿式紡糸方法により単繊維デニール0.
6d,フィラメント数18000のアクリル系繊維を得
た。得られた繊維束を実施例1と同様の方法で焼成し、
炭素繊維とした。得られた炭素繊維を濃度0.1モル/
lの硫酸水溶液を電解液として、通電電気量を40クー
ロン/gとし、1槽で処理した。この電解処理を施され
た炭素繊維を続いて水洗し、150℃の加熱空気中で乾
燥した。続いて、グリセロールトリグリシジルエーテル
にノニオン系の乳化剤を5%添加したサイジング剤を、
成分が1重量%になるように水で希釈してサイジング剤
母液を調整し、浸漬法により炭素繊維にサイジング剤を
付与し、180℃で乾燥を行なった。付着量は0.4%
であった。
Comparative Example 2 Acrylonitrile (AN) 9
Using a copolymer of 9.7 mol% and methacrylic acid 0.3 mol%, a single fiber denier of 0.1% was obtained by a wet spinning method.
An acrylic fiber having 6d and 18,000 filaments was obtained. Firing the obtained fiber bundle in the same manner as in Example 1,
Carbon fiber was used. The obtained carbon fiber has a concentration of 0.1 mol /
1 sulfuric acid aqueous solution was used as an electrolytic solution, and the amount of electricity supplied was set to 40 coulomb / g. The electrolytically treated carbon fiber was subsequently washed with water and dried in heated air at 150 ° C. Next, a sizing agent prepared by adding 5% of a nonionic emulsifier to glycerol triglycidyl ether,
The sizing agent mother liquor was prepared by diluting with water so that the components would be 1% by weight, the sizing agent was applied to the carbon fibers by the dipping method, and the sizing agent was dried at 180 ° C. Adhesion amount is 0.4%
Met.

【0046】このようにして得られた炭素繊維の比重は
1.73、ストランド引張強度および弾性率はそれぞれ
450kgf/mm2 、31 tf/mm2 だった。O/CおよびN
/Cはそれぞれ0.16および0.01だった。またE
DSは22kgf/mm2 であった。さらに一方向材のシャル
ピー衝撃特性を測定したときの荷重−時間線図を図3に
示す。最大荷重が4.1kNと低く、最大荷重までの吸
収エネルギーも45kJ/m2 と小さかった。延性指標
は0.17だった。この材料を用いてゴルフシャフトを
20本作製し、実施例1と同様の方法でロボット実打試
験を行なったところ、100回実打後まで破損しなかっ
たのは2本のみだった。
The specific gravity of the carbon fiber thus obtained was 1.73, and the strand tensile strength and elastic modulus were 450 kgf / mm 2 and 31 tf / mm 2 , respectively. O / C and N
/ C was 0.16 and 0.01, respectively. Also E
The DS was 22 kgf / mm 2 . Further, FIG. 3 shows a load-time diagram when the Charpy impact characteristics of the unidirectional material were measured. The maximum load was as low as 4.1 kN, and the absorbed energy up to the maximum load was as small as 45 kJ / m 2 . The ductility index was 0.17. Twenty golf shafts were produced using this material, and a robot actual hitting test was conducted in the same manner as in Example 1. As a result, only two golf shafts were not damaged after 100 actual hits.

【0047】[0047]

【発明の効果】本発明により、ゴルフシャフト、テニス
ラケット、釣竿等のスポーツ用途および航空宇宙用途に
好適な、特に衝撃特性が重要となるゴルフシャフトの場
合に好適な耐衝撃特性に優れた炭素繊維強化樹脂複合材
料を提供することができる。
INDUSTRIAL APPLICABILITY According to the present invention, carbon fibers having excellent impact resistance characteristics suitable for golf shafts, tennis rackets, fishing rods and other sports applications and aerospace applications, particularly for golf shafts where impact characteristics are important. A reinforced resin composite material can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1で得られた複合材料の計装化シャルピ
ー衝撃試験における荷重−時間線図を示す。
1 shows a load-time diagram in an instrumented Charpy impact test of the composite material obtained in Example 1. FIG.

【図2】比較例1で得られた複合材料の計装化シャルピ
ー衝撃試験における荷重−時間線図を示す。
FIG. 2 shows a load-time diagram in an instrumented Charpy impact test of the composite material obtained in Comparative Example 1.

【図3】比較例2で得られた複合材料の計装化シャルピ
ー衝撃試験における荷重−時間線図を示す。
FIG. 3 shows a load-time diagram in the instrumented Charpy impact test of the composite material obtained in Comparative Example 2.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B29L 31:52 Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display area B29L 31:52

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】比重が1.75以下、引張弾性率が29 t
f/mm2 以上、引張強度が500kgf/mm2 以上、板端剥離
強度が22kgf/mm2 以上の炭素繊維で強化することを特
徴とする炭素繊維強化樹脂複合材料。
1. A specific gravity of 1.75 or less and a tensile elastic modulus of 29 t.
f / mm 2 or more, a tensile strength of 500 kgf / mm 2 or more, a carbon fiber reinforced resin composite material plate end peel strength and wherein the reinforced with 22 kgf / mm 2 or more carbon fibers.
【請求項2】炭素繊維強化樹脂複合材料がゴルフシャフ
トであることを特徴とする請求項1記載の炭素繊維強化
樹脂複合材料。
2. The carbon fiber reinforced resin composite material according to claim 1, wherein the carbon fiber reinforced resin composite material is a golf shaft.
【請求項3】比重が1.75以下、引張弾性率が29 t
f/mm2 以上、引張強度が500kgf/mm2 以上、板端剥離
強度が22kgf/mm2 以上の炭素繊維で強化することを特
徴とする炭素繊維強化樹脂プリプレグ。
3. Specific gravity 1.75 or less, tensile elastic modulus 29 t
f / mm 2 or more, a tensile strength of 500 kgf / mm 2 or more, a carbon fiber reinforced resin prepreg plate end peel strength and wherein the reinforced with 22 kgf / mm 2 or more carbon fibers.
JP06008388A 1994-01-28 1994-01-28 Carbon fiber reinforced resin composite and prepreg Expired - Fee Related JP3136883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06008388A JP3136883B2 (en) 1994-01-28 1994-01-28 Carbon fiber reinforced resin composite and prepreg

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06008388A JP3136883B2 (en) 1994-01-28 1994-01-28 Carbon fiber reinforced resin composite and prepreg

Publications (2)

Publication Number Publication Date
JPH07214551A true JPH07214551A (en) 1995-08-15
JP3136883B2 JP3136883B2 (en) 2001-02-19

Family

ID=11691831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06008388A Expired - Fee Related JP3136883B2 (en) 1994-01-28 1994-01-28 Carbon fiber reinforced resin composite and prepreg

Country Status (1)

Country Link
JP (1) JP3136883B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10231372A (en) * 1996-12-18 1998-09-02 Toray Ind Inc Prepreg and its production
JP2015028147A (en) * 2013-06-26 2015-02-12 東レ株式会社 Sizing agent-applied carbon fiber, production method thereof, prepreg, and carbon fiber-reinforced composite material

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61124677A (en) * 1984-11-22 1986-06-12 三菱レイヨン株式会社 Surface treatment of carbon fiber
JPS62149968A (en) * 1985-12-23 1987-07-03 東レ株式会社 Treatment of carbon fiber
JPS63135232A (en) * 1986-11-28 1988-06-07 Toray Ind Inc Carbon fiber reinforced plastic
JPS63221169A (en) * 1987-03-10 1988-09-14 Showa Denko Kk Carbon fiber/high-molecular material composite composition
JPH01272867A (en) * 1988-04-22 1989-10-31 Toray Ind Inc Carbon fiber excellent in high-order processability
JPH02269867A (en) * 1989-04-11 1990-11-05 Nippon Steel Corp Method for carrying out surface electrolytic oxidation of carbon fiber tow having high elasticity
JPH04361619A (en) * 1991-06-04 1992-12-15 Toray Ind Inc Carbon fiber and its production
JPH0542536A (en) * 1990-12-28 1993-02-23 Toho Rayon Co Ltd Prepreg and molded form
JPH0549717A (en) * 1991-08-26 1993-03-02 Somar Corp Shaft for golf club
JPH05170952A (en) * 1991-12-25 1993-07-09 Mitsubishi Rayon Co Ltd Prepreg for carbon fiber-reinforced multifunctional maleimide-based resin composite material
JPH0770925A (en) * 1993-08-23 1995-03-14 Toray Ind Inc Production of carbon fiber

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61124677A (en) * 1984-11-22 1986-06-12 三菱レイヨン株式会社 Surface treatment of carbon fiber
JPS62149968A (en) * 1985-12-23 1987-07-03 東レ株式会社 Treatment of carbon fiber
JPS63135232A (en) * 1986-11-28 1988-06-07 Toray Ind Inc Carbon fiber reinforced plastic
JPS63221169A (en) * 1987-03-10 1988-09-14 Showa Denko Kk Carbon fiber/high-molecular material composite composition
JPH01272867A (en) * 1988-04-22 1989-10-31 Toray Ind Inc Carbon fiber excellent in high-order processability
JPH02269867A (en) * 1989-04-11 1990-11-05 Nippon Steel Corp Method for carrying out surface electrolytic oxidation of carbon fiber tow having high elasticity
JPH0542536A (en) * 1990-12-28 1993-02-23 Toho Rayon Co Ltd Prepreg and molded form
JPH04361619A (en) * 1991-06-04 1992-12-15 Toray Ind Inc Carbon fiber and its production
JPH0549717A (en) * 1991-08-26 1993-03-02 Somar Corp Shaft for golf club
JPH05170952A (en) * 1991-12-25 1993-07-09 Mitsubishi Rayon Co Ltd Prepreg for carbon fiber-reinforced multifunctional maleimide-based resin composite material
JPH0770925A (en) * 1993-08-23 1995-03-14 Toray Ind Inc Production of carbon fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10231372A (en) * 1996-12-18 1998-09-02 Toray Ind Inc Prepreg and its production
JP2015028147A (en) * 2013-06-26 2015-02-12 東レ株式会社 Sizing agent-applied carbon fiber, production method thereof, prepreg, and carbon fiber-reinforced composite material

Also Published As

Publication number Publication date
JP3136883B2 (en) 2001-02-19

Similar Documents

Publication Publication Date Title
KR100333246B1 (en) Carbon fiber and its manufacturing method
JP3003513B2 (en) Carbon fiber and method for producing the same
JP3656864B2 (en) Carbon fiber, method for producing the same, and prepreg using the carbon fiber
JP2010057462A (en) Prepreg for fishing rod tip, fiber-reinforced composite material for fishing rod tip, solid body for fishing rod tip, tubular body for fishing rod tip, and fishing rod tip
JP3003521B2 (en) Carbon fiber and method for producing the same
WO1996021695A1 (en) Prepregs and carbon fiber-reinforced composite material
JP4305081B2 (en) Oil for carbon fiber production and method for producing carbon fiber
JP5059579B2 (en) Sizing agent and sizing treated carbon fiber bundle
JP2002327374A (en) Carbon fiber for fiber reinforced plastic and fiber reinforced plastic
JP3755255B2 (en) Carbon fiber and method for producing the same
JPH07214551A (en) Carbon fiber reinforced resin composite material and prepreg
JP2005256226A (en) Sizing-coated carbon fiber and method for producing the same
JP4953410B2 (en) Carbon fiber and method for producing the same
JP6846868B2 (en) Method for manufacturing carbon fiber and carbon fiber with sizing agent attached
JPS6385167A (en) Surface modified carbon fiber and its production
JP5226238B2 (en) Carbon fiber and composite material using the same
JP7338176B2 (en) Carbon fiber reinforced vinyl ester resin composition and method for producing the same
JP2004277907A (en) Carbon fiber and method for producing the same
JP3557686B2 (en) Carbon fiber and method for producing the same
JP4238436B2 (en) Carbon fiber manufacturing method
JP2002054031A (en) Carbon fiber and method for producing the same
JP3713164B2 (en) Sizing agent for carbon fiber, sizing agent solution for carbon fiber, carbon fiber, carbon fiber sheet using the same, and carbon fiber reinforced resin composition
JPH08296124A (en) Non-circular cross section carbon fiber and carbon fiber-reinforced composite material
JP2000355883A (en) Sizing agent for reinforcing fiber
JPH11124743A (en) Carbon fiber and carbon fiber-reinforced composite material

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071208

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081208

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081208

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees