JPH0676556B2 - Carbon fiber composite polymer composition - Google Patents

Carbon fiber composite polymer composition

Info

Publication number
JPH0676556B2
JPH0676556B2 JP5307487A JP5307487A JPH0676556B2 JP H0676556 B2 JPH0676556 B2 JP H0676556B2 JP 5307487 A JP5307487 A JP 5307487A JP 5307487 A JP5307487 A JP 5307487A JP H0676556 B2 JPH0676556 B2 JP H0676556B2
Authority
JP
Japan
Prior art keywords
carbon fiber
polymer
group
compound
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5307487A
Other languages
Japanese (ja)
Other versions
JPS63221169A (en
Inventor
庸介 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP5307487A priority Critical patent/JPH0676556B2/en
Publication of JPS63221169A publication Critical patent/JPS63221169A/en
Publication of JPH0676556B2 publication Critical patent/JPH0676556B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は炭素繊維をフィラーとして強化した高分子複合
材料に関するものである。
TECHNICAL FIELD The present invention relates to a polymer composite material reinforced with carbon fiber as a filler.

(従来の技術) 炭素繊維で補強された樹脂等の複合材料はスポーツ用
品,レジャー用品,宇宙航空用材料,電磁波シールド用
材料等幅広い分野にわたってその用途開発が進められて
いる。
(Prior Art) Composite materials such as resins reinforced with carbon fibers are being developed for applications in a wide range of fields such as sports goods, leisure goods, aerospace materials, and electromagnetic wave shielding materials.

炭素繊維のもつ優れた特性としての比強度,比弾性率を
生かした分野また優れた電気伝導性を生かした分野等今
後更にその用途は広がっていくことが予想される。
It is expected that the applications will be further expanded in the fields where the specific strength and specific elastic modulus, which are excellent properties of carbon fiber, are utilized, and where the excellent electrical conductivity is utilized.

しかし複合化時、マトリックスとの接着強度が弱く、素
材のもつ特性を十分に生かしきれていないことは現在こ
の分野において克服すべき最大の問題点であり、この改
善を計るため種々の提案がなされている。
However, the fact that the adhesive strength with the matrix during compounding is weak and the properties of the material are not fully utilized are currently the biggest problems to be overcome in this field, and various proposals have been made to measure this improvement. ing.

炭素繊維の改質としては酸化処理が代表的な手法として
挙げられる。酸化処理法としては気相酸化法、薬品によ
る液相酸化法、炭素繊維の電気伝導性を利用した電解酸
化法等があり、商業プラントにおいては効率性,制御性
から電解法が最も広く採用されている。
As a typical method for modifying the carbon fiber, an oxidation treatment can be mentioned. As the oxidation treatment method, there are a gas-phase oxidation method, a liquid-phase oxidation method using chemicals, an electrolytic oxidation method utilizing the electric conductivity of carbon fiber, etc. In a commercial plant, the electrolytic method is most widely adopted because of its efficiency and controllability. ing.

(発明が解決しようとする問題点) 上記いずれの処理法を採用しても過度の酸化処理は炭素
材料そのものの劣化をもたらすためおのずからその処理
には限度があり、酸化処理後、サイジング処理或いはカ
ップリング剤処理され市販されている炭素繊維をそのま
まフィラーとして高分子材料と複合化しても必ずしも高
分子材料との良好な接着性を示さない。例えばマトリッ
クスとしてポリオレフィンを用いた場合、接着性が悪
く、引張り破断後の断面観察ではマトリックスとフィラ
ーの界面でのすっぼ抜け現象が頻繁に見られ、個々のも
つ特性から期待されるコンポジット性能を大きく下回る
特性しか得られていない。その他の種々の、マトリック
スとなり得る高分子材料に対しても、素材に応じ期待さ
れるコンポジット特性の達成度は異なるがいずれかにし
ても十分満足なものとはいい難い。
(Problems to be Solved by the Invention) Even if any of the above-mentioned treatment methods is adopted, the excessive oxidation treatment causes deterioration of the carbon material itself, so that the treatment is naturally limited, and after the oxidation treatment, the sizing treatment or the cup treatment is performed. Even if carbon fiber treated with a ring agent and commercially available is used as a filler as it is to form a composite with a polymer material, it does not necessarily exhibit good adhesiveness with the polymer material. For example, when a polyolefin is used as the matrix, the adhesiveness is poor, and cross-section observation after tensile rupture often shows a slip-out phenomenon at the interface between the matrix and the filler, which increases the composite performance expected from the individual characteristics. Only the characteristics below are obtained. With respect to other various polymer materials that can serve as a matrix, the degree of achievement of the expected composite properties differs depending on the material, but it is difficult to say that any of them is sufficiently satisfactory.

ここにいうコンポジット特性の達成度の指標としては例
えば引張強度については長繊維の場合、体積含有率比に
よる加成性での評価が一般的に使用され、また短繊維の
場合には更に複雑であり、Kelly-Tysonの式等が用いら
れる。
As an index of the degree of achievement of the composite properties here, for example, regarding tensile strength, in the case of long fibers, evaluation by additivity by volume content ratio is generally used, and in the case of short fibers, it is more complicated. Yes, the Kelly-Tyson formula etc. are used.

以上に述べたように従来の技術では炭素繊維の表面改質
のみでは十分な接着性を得るに至らないため、マトリッ
クスがポリオレフィンの場合、複合化にあたり変性ポリ
マーを組成の一部として加えることも試みられている。
例えばオレフィンとエポキシ基を有しラジカル共重合し
得る不飽和モノマーとの共重合体又はグラフト重合体、
或いはオレフィンと不飽和ジカルボン酸またはその無水
物との共重合体又はグラフト重合体等の変性ポリオレフ
ィンである。
As described above, in the conventional technique, sufficient adhesion cannot be obtained only by surface modification of the carbon fiber.Therefore, when the matrix is a polyolefin, it is also attempted to add a modified polymer as a part of the composition when forming a composite. Has been.
For example, a copolymer or a graft polymer of an olefin and an unsaturated monomer having an epoxy group and capable of radical copolymerization,
Alternatively, it is a modified polyolefin such as a copolymer or graft polymer of an olefin and an unsaturated dicarboxylic acid or its anhydride.

これらの組み合わせ、即ち酸化処置後サイジング処理或
いはカップリング剤処理をした市販炭素繊維と変性ポリ
オレフィン及びマトリックスとなるポリオレフィンの単
独或いはコポリマーとの組み合わせにより得られる複合
材料ではこれらの処理を施さない場合と比較すれば力学
的評価での向上がみられる場合もあるが素材の特性から
期待できるものに対しては低いものであり、破断面観察
結果でも依然としてすっぽ抜け状態が多くみられる等ま
た改善の余地は大きい。
The combination of these materials, that is, the composite material obtained by combining the commercially available carbon fiber, which has been subjected to the sizing treatment after the oxidation treatment or the coupling agent treatment, with the modified polyolefin and the polyolefin serving as the matrix alone or with the copolymer, is compared with the case where these treatments are not applied. If this is done, the mechanical evaluation may improve, but it is lower than what can be expected from the characteristics of the material. Is big.

またその他の炭素繊維表面の改質方法としては、各種ポ
リマーのグラフト或いは被覆等種々提案されているもの
の、行程の複雑化等によるコスト面、及びその処理によ
る効果面から広く採用されるまでには至っていない。
Other methods for modifying the surface of the carbon fiber have been proposed, such as grafting or coating of various polymers, but are not widely adopted because of the cost due to the complicated process and the effect of the treatment. I haven't arrived.

本発明者は炭素繊維の特性を低下させることなく、容易
な処理と既存物質との組み合わせにより優れた特性を示
す複合材を得ることを目的として鋭意検討した結果、本
発明に到達したものである。
The present inventor has arrived at the present invention as a result of extensive studies for the purpose of obtaining a composite material having excellent properties by easy treatment and combination with an existing substance without deteriorating the properties of the carbon fiber. .

(問題点を解決するための手段) 本発明は炭素繊維(黒鉛繊維を含む)と高分子化合物と
の複合組成物であって、 (A)エポキシ基を有する化合物 (B)直鎖中もしくは分岐鎖中にカルボン酸基もしくは
その無水物基を有する高分子化合物又は該高分子化合物
と他の高分子化合物であってエポキシ基を有する化合物
以外の高分子化合物との混合物 (C)表面の酸性官能基をアルカリ金属塩とした炭素繊
維 からなることを特徴とする。
(Means for Solving the Problems) The present invention is a composite composition of carbon fiber (including graphite fiber) and a polymer compound, wherein (A) a compound having an epoxy group (B) a straight chain or branched A polymer compound having a carboxylic acid group or its anhydride group in the chain or a mixture of the polymer compound and a polymer compound other than the compound having an epoxy group (C) Acidic functional group on the surface It is characterized by being made of carbon fiber whose base is an alkali metal salt.

本発明によれば炭素繊維の特性を低下させることなく、
炭素繊維と高分子材料との接着性を向上させることによ
り、優れた特性を示す炭素繊維強化高分子複合組成物を
得ることができる。
According to the present invention, without deteriorating the characteristics of the carbon fiber,
By improving the adhesiveness between the carbon fiber and the polymer material, it is possible to obtain a carbon fiber-reinforced polymer composite composition exhibiting excellent properties.

本発明者は先に表面の酸性基をアルカリ金属塩とした炭
素繊維を高分子からなる組成物であって、該高分子中の
直鎖中もしくは分岐鎖中にエポキシ基をもつ高分子を少
くとも一部含むことを特徴とする複合組成物の特許を出
願した。
The present inventors have previously proposed a composition comprising a polymer of carbon fibers whose surface acidic group is an alkali metal salt, in which the polymer having an epoxy group in a straight chain or a branched chain is reduced. Patent application for a composite composition characterized by including both in part.

本発明はこれをさらに研究した結果、炭素繊維表面の酸
性基をアルカリ金属塩とした部分とエポキシ基が反応
後、さらにカルボン酸基もしくはその無水物基との反応
性を利用してさらに優れた性能の複合組成物としたもの
である。
As a result of further study of the present invention, the present invention is further excellent in that after the reaction of the epoxy group with the portion where the acidic group on the carbon fiber surface is an alkali metal salt, and the reaction with a carboxylic acid group or its anhydride group. It is a composite composition of performance.

複合組成物の特性については熱硬化性の場合には層間剪
断強度(ILSS)等により接着力を評価することができ、
熱可塑性の場合にはILSS等で直接の評価はできないもの
の得られた組成物の機械的特性の向上をみればそれが接
着性向上によることは明らかであり、これにより評価す
ることができる。
Regarding the properties of the composite composition, in the case of thermosetting, the adhesive strength can be evaluated by the interlaminar shear strength (ILSS), etc.
In the case of thermoplasticity, it cannot be directly evaluated by ILSS or the like, but it is clear from the improvement of the mechanical properties of the obtained composition that it is due to the improvement of adhesiveness, and this can be evaluated.

炭素繊維の表面に生成する酸性基とは‐COOH,-OH,=O,
及びこれらの複合したラクトン型等である。
The acidic groups formed on the surface of carbon fiber are -COOH, -OH, = O,
And a lactone type compounded with these.

炭素繊維の表面にこれらの酸性基をつけるには炭素繊維
を気相(例えば空気)酸化,電解酸化,液相酸化等の処
理を行なえばよい。
In order to attach these acidic groups to the surface of the carbon fiber, the carbon fiber may be subjected to treatments such as gas phase (for example, air) oxidation, electrolytic oxidation, and liquid phase oxidation.

炭素繊維の表面には表面処理としての酸化処理を施す前
にも少量ではあるが酸性基が存在していることは文献
(「炭素繊維」大谷杉郎編p222昭和58年近代編集社刊)
でも報告されている。しかし、自然に生ずる酸性基はわ
ずかであるので、一般的には前記したような方法で酸化
処理を行なう。そして望ましくは10-5等量/g(CF)以上
の酸性基をつける(CFとは炭素繊維の英名略称)。その
上限は炭素繊維の種類によって異なるが、繊維の損傷に
よる機械的強度の低下をもたらさない程度で処理を停止
すべきであり、例えばPAN系では5×10-4等量/g(CF)
程度である。
The fact that a small amount of acidic groups are present on the surface of carbon fiber even before the oxidation treatment as a surface treatment is documented ("Carbon Fiber" edited by Sugiro Ohtani, p222, published by 1983 Modern Editor).
But it is reported. However, since few acidic groups naturally occur, the oxidation treatment is generally performed by the method described above. And preferably, an acidic group of 10 −5 equivalent / g (CF) or more is attached (CF is an abbreviation of carbon fiber). The upper limit differs depending on the type of carbon fiber, but the treatment should be stopped to such an extent that mechanical strength does not deteriorate due to damage to the fiber. For example, in the case of PAN system, 5 × 10 -4 equivalent / g (CF)
It is a degree.

使用される炭素繊維はPAN系,ピッチ系,気相成長系公
知のすべての炭素繊維であり、これらは炭化繊維,黒鉛
化繊維等熱処理条件の如何にかかわらず使用することが
できる。
The carbon fibers used are all PAN type, pitch type and vapor phase growth type known carbon fibers, and these can be used regardless of heat treatment conditions such as carbonized fiber and graphitized fiber.

炭素繊維の表面の酸性基をアルカリ金属塩にするにはこ
の炭素繊維をアルカリ性物質(NaOH,KOH等)を接触させ
ればよく、アルカリ性物質を含む雰囲気下に炭素繊維を
存在させて実施する気相法、液中に炭素繊維を浸漬、あ
るいは塗布する方法等表面の酸性基の中和が達成できる
ならばいずれの方法も用いることができる。液中処理し
たものはその後水洗,乾燥して使用する。
In order to convert the acidic groups on the surface of carbon fibers into alkali metal salts, it is sufficient to contact the carbon fibers with an alkaline substance (NaOH, KOH, etc.), which is performed in the presence of the alkaline substances. Any method such as a phase method or a method of dipping or applying carbon fiber in a liquid can be used as long as neutralization of the acidic groups on the surface can be achieved. Those treated in liquid are then washed with water and dried before use.

本発明はこのように表面処理した炭素繊維と高分子化合
物との複合材であるが、エポキシ基を有する化合物を、
炭素繊維表面の酸性基をアルカリ金属塩としたものとカ
ルボン酸基又はその無水物基を有する高分子化合物との
カップリング剤的に用いるものである。
The present invention is a composite material of a carbon fiber and a polymer compound thus surface-treated, but a compound having an epoxy group,
It is used as a coupling agent between an alkali metal salt of an acidic group on the surface of carbon fiber and a polymer compound having a carboxylic acid group or an anhydride group thereof.

エポキシ基を有する化合物としてはモノマー,オリゴマ
ー,高分子のいずれでもよく、モノマー又はオリゴマー
としてはメタクリル酸グリシジル,スチレンオキサイ
ド,エピクロルヒドリン等及び公知の方法により得られ
るオリゴマーであり、また高分子としてはビスフェノー
ルA系の他エポキシ樹脂として製造,市販されているも
のが用いられる(垣内弘編「エポキシ樹脂」(昭晃堂昭
和54年6月発行)第51頁ないし第105頁参照)。
The compound having an epoxy group may be a monomer, an oligomer or a polymer, and the monomer or oligomer may be glycidyl methacrylate, styrene oxide, epichlorohydrin or the like and an oligomer obtained by a known method, and the polymer may be bisphenol A. Other epoxy resins manufactured and marketed are used (see “Epoxy Resin” edited by Hiroshi Kakiuchi (Shokodo June 1979), pages 51 to 105).

直鎖中もしくは分岐鎖中にカルボン酸基もしくはその無
水物基を有する高分子化合物としてはカルボン酸基ある
いはその無水物基を有し、ラジカル共重合し得る不飽和
モノマーとポリオレフィン等との共重合体もしくはグラ
フト重合体等を挙げることができる。
The polymer compound having a carboxylic acid group or its anhydride group in a straight chain or a branched chain has a carboxylic acid group or its anhydride group, and has a copolymerization of a radical copolymerizable unsaturated monomer and a polyolefin or the like. Examples thereof include coalesce or graft polymer.

本発明の組成物は後述するようにエポキシを有する化合
物,カルボン酸基等を有する高分子化合物は極くわずか
の量で効果があるので、これらの化合物以外にポリオレ
フィン,エチレン‐酢ビ共重合体等の高分子化合物を含
めることができる。この場合、例えばポリプロピレンを
併用する場合、カルボン酸基等を有する化合物として
は、ポリプロピレンとのなじみを考え、ポリプロピレン
とグラフト重合し得る不飽和モノマーとの共重合体が適
しており、例えば市販されている商品としてアドマー
(三井石油化学(株)製の商標)がある。
As will be described later, the composition of the present invention is effective in a very small amount of a compound having an epoxy and a polymer compound having a carboxylic acid group. Therefore, in addition to these compounds, a polyolefin and an ethylene-vinyl acetate copolymer are used. Polymeric compounds such as In this case, for example, when polypropylene is used in combination, as a compound having a carboxylic acid group or the like, a copolymer of polypropylene and an unsaturated monomer capable of graft polymerization is suitable as a compound having a carboxylic acid group, and is commercially available, for example. There is Admer (trademark of Mitsui Petrochemical Co., Ltd.) as a product.

次に本発明の組成物における組成比について説明する。
エポキシ基を有する化合物は炭素繊維表面のアルカリ金
属塩により開環が促進され、その開環したものがカルボ
ン酸基あるいはその無水物基を有する化合物とこれらの
基を通して結合するものであるから、これらの化合物の
量はその中のエポキシ基,カルボン酸基あるいはその無
水物基の量が前記アルカリ金属塩と等量ないしそれ以上
含むようにすることが望ましいが、しかし実験結果によ
れば、これ以下の量であってもかなりの効果が認められ
る。その量の上限については特に制限はないが、組成物
の特性,用途を考え、また上記以外の高分子化合物の併
用等から適宜定めることができる。
Next, the composition ratio of the composition of the present invention will be described.
The compound having an epoxy group is promoted for ring-opening by the alkali metal salt on the carbon fiber surface, and the ring-opened compound is bonded to the compound having a carboxylic acid group or an anhydride group through these groups. It is desirable that the amount of the compound of (4) is such that the amount of the epoxy group, the carboxylic acid group or the anhydride group therein is equal to or more than that of the alkali metal salt, but the experimental result shows that A considerable effect is recognized even with the amount of. The upper limit of the amount is not particularly limited, but can be appropriately determined by considering the properties and uses of the composition, and from the combined use of polymer compounds other than the above.

本発明の組成物中の炭素繊維の量は用途によってかなり
広範囲に変えることができ、少ないもので1〜2%(重
量%、以下同じ)から多いものでは60%位まで用いられ
る。
The amount of carbon fiber in the composition of the present invention can be varied within a wide range depending on the use, and a small amount is used in the range of 1-2% (weight%, the same applies hereinafter) to a large amount of about 60%.

これらの複合組成物の混合あるいはさらに成形する方法
としては高分子化合物の中に熱可塑性樹脂を含める場
合、先に炭素繊維をエポキシ基を有する化合物で処理
し、次いでカルボン酸基もしくはその無水物基を有する
高分子と熱可塑性樹脂とをドライブレンドした後混練押
出機を用いてペレット化又は射出成形する方法や初めか
らこれをドライブレンド後混練押出機を用いて複合化す
ることが一般的である。
As a method of mixing or further molding these composite compositions, when a thermoplastic resin is included in a polymer compound, carbon fibers are first treated with a compound having an epoxy group, and then a carboxylic acid group or an anhydride group thereof is added. It is common to dry-blend a polymer having a polymer with a thermoplastic resin and then pelletize or injection-mold it using a kneading extruder, or to compound it from the beginning using a dry-blending kneading extruder. .

また熱硬化性高分子を用いる場合はドライブレンド後熱
硬化する方法の他に一旦炭素繊維のプレプレグ組成物と
した後望まれる形状となし、熱硬化することもできる。
When a thermosetting polymer is used, in addition to the method of heat-curing after dry blending, it can be heat-cured after once forming a prepreg composition of carbon fibers into a desired shape.

(作用) 炭素繊維の表面の酸化処理により得られた酸性官能基を
アルカリ金属塩に転化したことによりエポキシ基の開環
が促進され、続いて開環したものとカルボン酸基もしく
はその無水物基が化学的に結合した結果従来の方法によ
り製造された炭素繊維強化高分子材料を上回る特性をも
つ複合材料が得られたものと考えられる。
(Function) By converting the acidic functional group obtained by the oxidation treatment of the carbon fiber surface into an alkali metal salt, the ring-opening of the epoxy group is promoted, and the ring-opened group and the carboxylic acid group or its anhydride group are subsequently promoted. It is considered that, as a result of the chemical bonding, the composite material having the properties superior to those of the carbon fiber reinforced polymer material manufactured by the conventional method was obtained.

炭素繊維は酸処理後アルカリ塩とすることが必要であ
り、これを例えば有機酸のアルカリ金属塩を別につく
り、これを炭素繊維の表面に付着させても本発明のよう
な効果は得られない。
The carbon fiber needs to be treated with an alkali salt after the acid treatment, and even if an alkali metal salt of an organic acid is separately prepared and attached to the surface of the carbon fiber, the effect of the present invention cannot be obtained. .

(効果) 本発明によれば炭素繊維の特性を低下させることなく、
簡単な処理及び特性高分子の組合せにより、後に実施例
に示すように曲げ強さ、曲げ弾性率等の機械的特性を向
上することができる。
(Effect) According to the present invention, without deteriorating the characteristics of the carbon fiber,
By simple treatment and combination of characteristic polymers, mechanical properties such as bending strength and bending elastic modulus can be improved as will be shown later in Examples.

(実施例) (1)炭素繊維とメタクリル酸グリシジンとの反応 市販のPAN系炭素繊維(東邦ベスロン製:HTA-C6)を55℃
で6Hrアセトン抽出しサイジング剤を除去した(この時
点での表面状態は炭化後酸化処理を施した状態であ
る)。
(Example) (1) Reaction of carbon fiber with glycidin methacrylate Commercially available PAN-based carbon fiber (HTA-C6 manufactured by Toho Bethlon) was used at 55 ° C.
Then, the mixture was extracted with 6 Hr-acetone to remove the sizing agent (the surface state at this point is the state after the carbonization and the oxidation treatment).

乾燥後過剰のKOH水溶液(1/50規定)を投入後HCl水溶液
(1/50規定)で逆滴定し、炭素繊維表面の全酸性基を定
量したところ4×10-5等量/g(CF)であった。
After drying, add excess KOH aqueous solution (1/50 normal) and back titrate with HCl aqueous solution (1/50 normal) to quantify total acidic groups on the surface of carbon fiber. 4 × 10 -5 equivalent / g (CF )Met.

サイジング剤除去後乾燥した炭素繊維を10倍等量のKOH
水溶液中に浸漬し、80℃で4Hr処理した後水洗した。水
洗終了後100℃で真空乾燥し、表面の酸性基をアルカリ
金属塩とした炭素繊維を得た。
After removing the sizing agent, dry carbon fiber with 10 times the equivalent amount of KOH
It was immersed in an aqueous solution, treated at 80 ° C. for 4 hours and washed with water. After the completion of washing with water, vacuum drying was carried out at 100 ° C. to obtain carbon fibers whose surface acidic groups were alkali metal salts.

次に上記処理済の炭素繊維30g,メタクリル酸グリシジル
300ml,溶媒としてニトロベンゼン700ml,ラジカル重合禁
止剤としてN-フェニル‐β‐ナフチルアミン2gをセパラ
ブルフラスコに入れ攪拌しながら120℃で2時間処理し
た。反応終了後メタノールを投入してポリマーを析出さ
せ過により分離した。紙上に残ったポリマーと炭素
繊維をクロロホルムにて抽出後乾燥し、エポキシ基をも
つモノマーと反応させた炭素繊維を得た。
Next, 30 g of the above treated carbon fiber, glycidyl methacrylate
300 ml, 700 ml of nitrobenzene as a solvent, and 2 g of N-phenyl-β-naphthylamine as a radical polymerization inhibitor were placed in a separable flask and treated at 120 ° C. for 2 hours with stirring. After completion of the reaction, methanol was added to precipitate a polymer, which was separated by filtration. The polymer and carbon fiber remaining on the paper were extracted with chloroform and dried to obtain carbon fiber which was reacted with a monomer having an epoxy group.

(2)炭素繊維とスチレンオキサイドとの反応 特開昭58-180615に示した方法により、水素ガスをキャ
リアとして、鉄の超微粉末をエチルアルコール中に分散
させた液を反応管内に噴射する方法で得た気相成長炭素
繊維を60%HNO3,100℃の条件で、48Hr酸化処理を施し
た。処理後pH7になるまで水洗した。
(2) Reaction between carbon fiber and styrene oxide A method in which hydrogen gas is used as a carrier and ultrafine iron powder is dispersed in ethyl alcohol is injected into a reaction tube by the method described in JP-A-58-180615. The vapor-grown carbon fiber obtained in 1. was subjected to 48 Hr oxidation treatment under the conditions of 60% HNO 3 and 100 ° C. After the treatment, it was washed with water until the pH reached 7.

この状態で実施例1と同様の手法で定量した表面の全酸
性基は5×10-4当量/g(CF)であった。
In this state, the total amount of acidic groups on the surface determined by the same method as in Example 1 was 5 × 10 −4 equivalent / g (CF).

水洗に引き続き10倍等量のKOH水溶液中に浸漬し80℃で2
Hr処理した後水洗した。
Subsequent to washing with water, dip in 10 times the equivalent amount of KOH aqueous solution and
After Hr treatment, it was washed with water.

水洗終了後100℃で真空乾燥し、表面の酸性基をアルカ
リ金属塩とした炭素繊維を得た。
After the completion of washing with water, vacuum drying was carried out at 100 ° C. to obtain carbon fibers whose surface acidic groups were alkali metal salts.

次に上記処理済の炭素繊維30g,スチレンオキサイド250m
l,溶媒としてニトロベンゼン750mlをセパラブルフラス
コに入れ攪拌しながら110℃で3時間処理した。反応終
了後メタノールを投入してポリマーを析出させ過によ
り分離した。紙上に残ったポリマーと炭素繊維をクロ
ロホロムにて抽出後乾燥し、エポキシ基をもつモノマー
と反応させた炭素繊維を得た。
Next, the above treated carbon fiber 30g, styrene oxide 250m
750 ml of nitrobenzene as a solvent was placed in a separable flask and treated at 110 ° C. for 3 hours while stirring. After completion of the reaction, methanol was added to precipitate a polymer, which was separated by filtration. The polymer remaining on the paper and the carbon fiber were extracted with chloroform and dried to obtain a carbon fiber reacted with a monomer having an epoxy group.

(3)カルボン酸変性ポリプロピレン ポリプロピレン(商標名:シヨウアロマー,銘柄:MA51
0)100g,無水マレイン酸(東京化成製)75g,過酸化ベン
ゾイル(東京化成製)0.75gを溶媒としたキシレン1.6l
中に入れ120℃で2.5時間反応させた。反応終了後アセト
ンを加えポリマー析出後、再溶解,再沈殿により未反応
モノマーを洗い出しカルボン酸無水物基を含有する変性
ポリプロピレンを得た。
(3) Carboxylic acid-modified polypropylene Polypropylene (Trade name: Syo aroma, Brand name: MA51
0) 100g, maleic anhydride (Tokyo Kasei) 75g, benzoyl peroxide (Tokyo Kasei) 0.75g xylene 1.6l as a solvent
The mixture was put in and reacted at 120 ° C. for 2.5 hours. After completion of the reaction, acetone was added to precipitate the polymer, and then the unreacted monomer was washed out by re-dissolving and re-precipitating to obtain a modified polypropylene containing a carboxylic acid anhydride group.

グラフト量は赤外吸収スペクトルにより検量した。グラ
フト量は0.4重量%であった。
The graft amount was calibrated by infrared absorption spectrum. The graft amount was 0.4% by weight.

(4)比較炭素繊維 市販の炭素繊維(東邦ベスロン製 HTA−C6)をそのま
ま用いた。なおこの繊維はメーカー側にて酸化処理及び
サイジング剤付与がなされている。
(4) Comparative carbon fiber A commercially available carbon fiber (HTA-C6 manufactured by Toho Bethlon) was used as it was. This fiber has been subjected to oxidation treatment and sizing agent addition by the manufacturer.

(5)比較炭素繊維 上記の炭素繊維を実施例1に示す、アセトン抽出による
サイジング剤除去処理までを施したもの。即ち炭素繊維
に酸化処理のみを施した表面状態に相当する。
(5) Comparative carbon fiber The carbon fiber described above was subjected to the sizing agent removal treatment by acetone extraction shown in Example 1. That is, it corresponds to a surface state obtained by subjecting the carbon fiber to only the oxidation treatment.

(6)比較炭素繊維 上記(5)の炭素繊維を(1)と同様な手法で、表面の
酸性基をアルカリ金属塩とする処理までを施したもの。
(6) Comparative carbon fiber A carbon fiber obtained by subjecting the carbon fiber of the above (5) to a treatment in which the surface acidic group is changed to an alkali metal salt by the same method as in (1).

(7)比較炭素繊維 (2)に示す、気相成長炭素繊維を酸化処理まで施した
もの。
(7) Comparative carbon fiber The vapor-grown carbon fiber shown in (2) that has been subjected to oxidation treatment.

(8)比較炭素繊維 (2)と同様の処理手順で、気相成長炭素繊維を表面の
酸性基をアルカリ金属塩とする処理までを施したもの。
(8) Comparative carbon fiber In the same procedure as in (2), the vapor-grown carbon fiber was subjected to a treatment in which the acidic group on the surface was changed to an alkali metal salt.

(9)比較炭素繊維 (2)の方法により気相中で生成したままの炭素繊維。(9) Comparative carbon fiber Carbon fiber as produced in the gas phase by the method of (2).

(10)複合材の作成及びその特性 前記した夫々の炭素繊維,カルボン酸無水物基を有する
変性ポリプロピレン及びポリプロピレン(商標名;シヨ
ウアロマー銘柄:MA510)を表1に示す配合割合にてラボ
プラストミル(東洋精器製作所製:型式28-125,ローラ
ミキサー型式R-60)を用い混練した。炭素繊維はPAN系
は長さ約6mmのものを用いたが、混練後は平均300μmと
なった。また気相法の炭素繊維は微細なものを用いた。
(10) Preparation of Composite Material and Its Properties Each of the above-mentioned carbon fibers, modified polypropylene having a carboxylic acid anhydride group, and polypropylene (trade name; Sialoallomer brand: MA510) are blended in the ratio shown in Table 1 by Labo Plastomill. (Toyo Seiki Seisakusho: Model 28-125, roller mixer model R-60) was used for kneading. As the carbon fiber, a PAN-based fiber having a length of about 6 mm was used, but after kneading, the average was 300 μm. Also, fine carbon fibers were used for the vapor phase method.

混練条件 温度 170℃ 時間 樹脂練り 5分 炭素繊維投入 〃 混練 〃 得られた混練物を一旦冷却後平均2〜4mm立方のサイズ
に切断し熱板プレスを用い220℃で成形した。平板から
所定のサイズに試験片を打ち抜き、曲げ強度,曲げ弾性
率,引張り強度,アイゾット衝撃試験に供した。
Kneading conditions Temperature 170 ° C. time Resin kneading 5 minutes Carbon fiber feeding 〃 Kneading 〃 After cooling the obtained kneaded material, it was cut into an average size of 2 to 4 mm cubic and molded at 220 ° C. using a hot plate press. A test piece was punched out from a flat plate into a predetermined size and subjected to bending strength, bending elastic modulus, tensile strength, and Izod impact test.

結果をまとめて表1に示す。The results are summarized in Table 1.

PAN系炭素繊維,気相成長炭素繊維ともに本法による組
み合わせで得られた複合体の特性はその組み合わせの1
つを欠いた場合に比べ大きく向上することが明らかとな
った。
The characteristics of the composite obtained by combining both PAN-based carbon fiber and vapor-grown carbon fiber by this method are 1
It became clear that it was significantly improved compared to the case where one was lacking.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C08K 9/02 KCN 7242−4J C08L 23/12 LCS 7107−4J ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical display location C08K 9/02 KCN 7242-4J C08L 23/12 LCS 7107-4J

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】(A)エポキシ基を有する化合物 (B)直鎖中もしくは分岐鎖中にカルボン酸基もしくは
その無水物基を有する高分子化合物又は該高分子化合物
とエポキシ基を有する化合物以外の他の高分子化合物と
の混合物 (C)表面の酸性官能基をアルカリ金属塩とした炭素繊
維 からなる炭素繊維複合高分子組成物。
1. A compound having (A) an epoxy group, (B) a polymer compound having a carboxylic acid group or an anhydride group thereof in a straight chain or a branched chain, or a compound other than the polymer compound and an epoxy group-containing compound. Mixture with other polymer compound (C) A carbon fiber composite polymer composition comprising carbon fibers having an alkali metal salt as an acidic functional group on the surface.
JP5307487A 1987-03-10 1987-03-10 Carbon fiber composite polymer composition Expired - Lifetime JPH0676556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5307487A JPH0676556B2 (en) 1987-03-10 1987-03-10 Carbon fiber composite polymer composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5307487A JPH0676556B2 (en) 1987-03-10 1987-03-10 Carbon fiber composite polymer composition

Publications (2)

Publication Number Publication Date
JPS63221169A JPS63221169A (en) 1988-09-14
JPH0676556B2 true JPH0676556B2 (en) 1994-09-28

Family

ID=12932662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5307487A Expired - Lifetime JPH0676556B2 (en) 1987-03-10 1987-03-10 Carbon fiber composite polymer composition

Country Status (1)

Country Link
JP (1) JPH0676556B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3136883B2 (en) * 1994-01-28 2001-02-19 東レ株式会社 Carbon fiber reinforced resin composite and prepreg
JP2973111B1 (en) * 1998-07-14 1999-11-08 花王株式会社 Molding composition
JP2001072727A (en) 1999-09-01 2001-03-21 Kao Corp Molding material composition
JP4354776B2 (en) * 2003-10-23 2009-10-28 ダイセル化学工業株式会社 Carbon long fiber reinforced resin pellet, method for producing the same, and molded product
JP2005213478A (en) * 2004-02-02 2005-08-11 Idemitsu Kosan Co Ltd Carbon fiber-reinforced polyolefin resin composition and molded item consisting of it
JP4586372B2 (en) * 2004-02-02 2010-11-24 株式会社プライムポリマー Polyolefin-based carbon fiber reinforced resin composition and molded article comprising the same
AU2007337126B2 (en) 2006-12-20 2010-09-23 Saint-Gobain Ceramics & Plastics, Inc. Composite materials having improved thermal performance
JPWO2011148619A1 (en) * 2010-05-27 2013-07-25 東レコーテックス株式会社 Fiber reinforced composite material

Also Published As

Publication number Publication date
JPS63221169A (en) 1988-09-14

Similar Documents

Publication Publication Date Title
CN106832757B (en) A kind of composite material and preparation method of graphene phenol-formaldehyde resin modified, application
KR20170098913A (en) Composition comprising a multistage polymer, it method of preparation and its use
WO2004067612A1 (en) Carbon fiber-reinforced resin composite materials
EP0117956B1 (en) Sized carbon fibres suitable for use in composites of improved impact resistance
JPH0676556B2 (en) Carbon fiber composite polymer composition
CN111171520B (en) Modified carbon nano tube reinforced shape memory epoxy resin composite material and preparation method thereof
JP2009144262A (en) Surface modified cellulose short fiber and method for producing the same
CN109337066A (en) One kind having reactivity, diffluent rigid chain polymer and preparation method thereof and composition
CN101445646B (en) Preparation method of polymeric based carbon nano tube composite material in the technical field of nano-materials
Bajaj et al. Effect of titanate coupling agents on mechanical properties of mica‐filled polypropylene
CN109456583B (en) Nanowire modified unsaturated polyester resin reinforced material and preparation method thereof
CN108623988A (en) A kind of graphene/phenolic resin composite and application thereof
JPS63120741A (en) Composite composition of carbon fiber high-molecular material
JP3479661B2 (en) Method for producing highly crystalline cellulose-polyethylene composite
CN108997566A (en) Preparation method of the carbon nanotube as the modified unsaturated polyester resin material of filler
CN106047255A (en) Preparation method of inorganic filler-in-graphene composite resin adhesive
CN114479356B (en) Preparation method of chitosan-polyethylene glycol diglycidyl ether modified graphene oxide/epoxy resin composite material
JPS6313444B2 (en)
CN107674161A (en) A kind of epoxide resin material for strengthening metal adhesion and preparation method thereof
CN108976695A (en) A kind of high impact properties ABS resin
CN110437588B (en) Inorganic nanoparticle dispersion method and application thereof
JPS621626B2 (en)
CN113774665B (en) Polyether-polylactic acid-acrylic ester sizing agent and preparation method and application thereof
JPH03113075A (en) Surface coating method for carbon fiber and surface-coated carbon fiber
CN114854139A (en) Conductive polymer composite material and preparation method thereof