WO2005071434A1 - Verfahren und vorrichtung zur winkeljustage eines sensors in einem kraftfahrzeug - Google Patents

Verfahren und vorrichtung zur winkeljustage eines sensors in einem kraftfahrzeug Download PDF

Info

Publication number
WO2005071434A1
WO2005071434A1 PCT/DE2004/002537 DE2004002537W WO2005071434A1 WO 2005071434 A1 WO2005071434 A1 WO 2005071434A1 DE 2004002537 W DE2004002537 W DE 2004002537W WO 2005071434 A1 WO2005071434 A1 WO 2005071434A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
sensor
measuring
vehicle
axis
Prior art date
Application number
PCT/DE2004/002537
Other languages
English (en)
French (fr)
Inventor
Thomas Klaas
Thomas Beez
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2005071434A1 publication Critical patent/WO2005071434A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system
    • G01S7/4026Antenna boresight
    • G01S7/403Antenna boresight in azimuth, i.e. in the horizontal plane
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system
    • G01S7/4026Antenna boresight
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system
    • G01S7/4026Antenna boresight
    • G01S7/4034Antenna boresight in elevation, i.e. in the vertical plane
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4052Means for monitoring or calibrating by simulation of echoes
    • G01S7/4082Means for monitoring or calibrating by simulation of echoes using externally generated reference signals, e.g. via remote reflector or transponder
    • G01S7/4086Means for monitoring or calibrating by simulation of echoes using externally generated reference signals, e.g. via remote reflector or transponder in a calibrating environment, e.g. anechoic chamber
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • G01S7/4972Alignment of sensor

Definitions

  • the invention relates to a method for angular adjustment of a sensor installed in a housing in a motor vehicle, in which the driving axis of the vehicle is measured and the angular position of the housing of the sensor with respect to the driving axis is determined by optical measurement, and devices for carrying out this method.
  • a typical example of such a sensor is a radar sensor for a distance radar system.
  • a radar sensor has a housing in which various sensor components are mounted, for example antenna elements and a radar-optical lens. The sensor housing is installed in the front part of the vehicle so that radar waves can be emitted predominantly to the front and the radar waves reflected by objects can be received, so that it is possible to locate vehicles in front and other obstacles.
  • the radar lobe of the sensor must be aligned with respect to the driving axis of the vehicle so that the sensitivity range of the sensor still covers its own lane even at large distances.
  • these radar sensors also have a certain angular resolution capability, so that the transverse offset of vehicles in front can be measured and a distinction can thus be made between vehicles on their own lane and on secondary lanes.
  • Precise angle adjustment of the sensor is crucial for correct classification of the vehicles.
  • an exact angle adjustment is also required for other sensors in motor vehicles, for example for side radars, rear-area radars and the like, and also for lidar sensors that work with light instead of radar waves.
  • the procedure for adjusting the angle of a radar sensor has mostly been as follows.
  • the driving axis of the vehicle is determined by measuring the orientations of the two rear wheels using wheel claws or on an axle measuring stand.
  • the antenna pattern of the sensor is then recorded using pivotable reflectors.
  • the angular position of the radar beam is determined horizontally and vertically by analyzing the antenna diagram.
  • Rotation of at least two adjustment screws is made to correct the angular position of the sensor housing with respect to the chassis of the vehicle.
  • the result of the correction is then checked by recording an antenna diagram again and, if necessary, the adjustment process is repeated several times until the correct adjustment position is reached.
  • the method can also be used with passive sensors that do not emit radiation themselves, for example with magnetic field sensors.
  • the laser-optical angle measurement takes place in the known method z. B. in that a laser beam source is attached to the housing of the sensor and then the point of incidence of the beam is detected on a measuring device arranged some distance away. Alternatively, a laser beam from an external source can also be directed onto a mirror attached to the housing.
  • optical measurement is carried out on at least two surfaces or contours of the housing.
  • the distances of these two surfaces to an optical measuring device can be measured, and the angular position of the housing can then be determined with high accuracy from the difference in distance.
  • the angular position results from the change in the distance between the two contours caused by perspective distortion.
  • it is not necessary to attach a laser source or a mirror to the housing which not only reduces the amount of work, but also eliminates a possible source of error and thus increases the accuracy and reliability of the measurement.
  • the measuring device must be arranged very far from the sensor housing so that a sufficient angular resolution can be achieved in view of the extent and blurring of the point of incidence of the laser beam.
  • the target matrix used to record the point of impact must also be large.
  • the measuring device can be arranged much closer to the sensor. This significantly reduces the dimensions of the measuring stand as a whole.
  • optical distance measurements can be carried out in various ways, for example interferometrically, by triangulation with commercially available laser distance meters.
  • To measure the horizontal angle adjustment it is sufficient to measure two surfaces.
  • a third surface also enables the vertical adjustment to be measured.
  • An alternative measurement method is that the part of the sensor housing visible on the vehicle is recorded with a digital camera or a digital video camera and the angular position of the housing is determined by electronic image evaluation based on the perspective distortion of the contours of the housing.
  • mechanical readjustment of the sensor housing is completely dispensed with and instead the measured angular offset with respect to the driving axis is stored in the electronic control device of the sensor and the measurement data (angle data) are used in the evaluation corrected the sensor signal.
  • the geometry in the direction of the radar lobes can also be influenced by suitable phase control of the various antenna elements.
  • a correction can also be made in that the phase control of the antenna elements is set as a function of the angular offset obtained by the optical measurement of the housing.
  • the position of the driving axis can also be determined indirectly using one of the methods described above by the mentioned reference points can be measured optically.
  • Figure 1 is a schematic diagram of a measuring stand for performing the method according to the invention
  • Figure 2 a partial front view of a vehicle with built-in radar sensor
  • FIG. 3 shows a diagram to explain the principle of the angular adjustment of a radar sensor
  • FIGS. 4 and 5 front views of a radar sensor to illustrate two embodiments of the method according to the invention
  • Figure 6 is a front view of a radar sensor according to another embodiment.
  • Figure 7 is a schematic diagram to explain the determination of the angular position of the sensor according to Figure 6 by electronic image processing.
  • FIG. 1 shows a top view of a vehicle 10 in which a radar sensor 12 is installed in the front section. Only one housing 14 of the radar sensor is shown in FIG. Ideally, the housing 14 is installed in the vehicle 10 such that the radar lobe of the radar sensor 12 is radiated approximately horizontally and parallel to the driving axis of the vehicle 10 to the front.
  • FIG. 1 shows the vehicle 10 in a measuring stand 16, which is used to check and, if necessary, to correct the angular position of the radar sensor 12.
  • This measuring stand comprises an axis measuring stand 18 for measuring the driving axis of the vehicle 10 and an optical measuring device 20 for optically measuring the housing 14 of the radar sensor 12.
  • the measuring device 20 is located opposite the sensor 12 and can be adjusted horizontally and / or vertically for precise alignment with the sensor be, however, should maintain a defined angular position with respect to the axis measuring stand 18.
  • FIG. 2 shows a front view of the vehicle 10.
  • the housing 14 of the radar sensor 12 is visible through an opening 22 formed in the vehicle body.
  • a console 24 fixed to the body can be seen, on which the housing 14 is fastened in an adjustable manner.
  • the housing 14 has projecting flanges 26, 28, 30 with which it is held on the bracket 24.
  • the flange 26 forms a fixed bearing, and the flanges 28 and 30 receive adjusting screws with which the distance between the respective flange and the bracket 24 can be adjusted to adjust the horizontal and vertical angular adjustment of the housing 14.
  • FIG. 3 shows the measuring principle on which the checking and correction of the angular position of the housing 14 of the radar sensor is based.
  • the rear axle 32 of the vehicle 10 with the left and right rear wheels 34 is shown here.
  • the position of a reference axle 36 of the axle measuring stand 18 is indicated by three straight lines parallel to one another and to this reference axle. With the help of the axis measuring stand 18
  • the arithmetic mean ⁇ of the angular deviations ⁇ and ⁇ indicates LR the position of the driving axis 38 of the vehicle 10 relative to the reference axis 36.
  • the radar sensor 12 has a sensitivity axis 40 which corresponds to the main emission and sensitivity direction of the radar lobe and which is fixed in relation to the housing 14 due to the manufacturing process.
  • the radar sensor 12 has an antenna unit 42 with a plurality of antenna elements (not shown in more detail) and a radar-optical lens 44 for focusing the radar beam.
  • the position of the sensitivity axis 40 relative to the housing 14 is determined in particular by the arrangement of the antenna unit 42 relative to the lens 44.
  • the housing 14 is now to be adjusted horizontally in the vehicle 10 so that the sensitivity axis 40 of the sensor is parallel to the driving axis 38 of the vehicle, i. That is, the sensitivity axis 40 forms the same angle ⁇ with the reference axis 36 as the travel axis 38.
  • the measuring device 20 shown in FIG. 1 serves this purpose.
  • a large number of optical, in particular laser-optical measuring methods are known with which the angular position of the housing 14 can be determined.
  • the measuring device 20 has three laser distance measuring devices, each of which directs a laser beam 46 onto the housing 14, in each case onto one of the flanges 26, 28 and 30.
  • the impingement points 48 of the three laser beams 46 are shown.
  • Each distance measuring device has an optical system that is offset to the side of the laser beam depicts the point of impact in question sharply on a high-resolution optoelectronic sensor line. The distance between the flange and the measuring device is then measured very precisely using the known triangular method. The measuring accuracy is of the order of a few ⁇ m.
  • the three flanges lie in a common plane, so that they provide a good reference surface for determining the angular position of the housing.
  • the lateral angular deviation of the sensitivity axis 40 from the reference axis 36 can be calculated with high accuracy.
  • the necessary adjustment path for the adjusting screw can then be determined quantitatively and set either manually or automatically.
  • the necessary correction of the horizontal angular position of the housing 14 can be accomplished with only a single measuring and adjustment step.
  • the vertical angular position of the housing 14 can be adjusted in an analogous manner using the flanges 26 and 28.
  • the angular position of the housing 14 in the vehicle 10 is not changed mechanically, but instead the deviation between the target position and the actual position of the sensitivity axis 40, the so-called offset, determined with the aid of the measuring device 20, is electronically in a control unit 50 belonging to the radar sensor 12 is stored.
  • the offset then becomes electronic corrected. In this embodiment, no mechanical adjustment processes are required, so that the correction of the angle adjustment can be carried out in the shortest possible time.
  • the measuring device 20 contains an interferometer with which the angular position of the housing 14 with respect to the travel axis 38 can be determined interferometrically.
  • the front of the housing is scanned with the aid of two line lasers which draw a vertical line 52 for the horizontal adjustment and a horizontal line 54 for the vertical adjustment on the housing.
  • the corresponding distance sensors of the measuring device 20 e.g. 2D laser line triangulators LLT 2800-100 from Micro-Epsilon, Ortenburg
  • the corresponding distance sensors of the measuring device 20 work according to a similar principle as in the exemplary embodiment according to FIG. 4, but here with a two-dimensional sensor field for everyone Point of line 52 or 54 recorded a distance value, so that you get a height profile of the front of the housing 14 over the entire length of line 52 or 54.
  • This enables an even greater accuracy and robustness of the measurement and also has the advantage that it is not necessary to "aim" so precisely with the laser beams.
  • the angular position of the housing 14 can also be determined by electronic image processing of an image of the housing taken with the aid of a camera.
  • FIGS. 6 and 7 illustrate a development of this method in which the image evaluation is facilitated by suitable markings on the housing 14.
  • FIG. 6 shows a front view of a radar sensor 12, in which the markings 56, 58 have the shape of two concentric frames around the lens 44.
  • the lens 44 lies here in a conical depression 60 of the housing, and the inner and outer edges of the flanks of this depression 60 form the markings 56 and 58. If the housing 14 is arranged obliquely with respect to a camera 62, with which the front of the housing is photographed, the perspective distortion leads to an eccentricity e between the frame-shaped markings 56, 58 in the image 64 taken by the camera.
  • the eccentricity e which can be determined by image evaluation, is a measure of the angular deviation between the reference axis 36 and the sensitivity axis 40 of the sensor. The offset can then be calculated by comparison with the angular deviation ⁇ between the reference axis and the travel axis 38.
  • a nominal value for the eccentricity e can also be calculated on the basis of the measured position of the driving axis 38, and when the housing 14 is observed with a video camera, the housing 14 can then be adjusted until the Eccentricity corresponds to the setpoint.

Abstract

Verfahren zur Winkeljustage eines in einem Gehäuse (14) in ein Kraftfahrzeug eingebauten Sensors (12), bei dem die Fahrachse (38) des Fahrzeugs gemessen wird und die Winkellage des Gehäuses (14) des Sensors (12) in Bezug auf die Fahrachse durch optische Vermessung bestimmt wird, dadurch gekennzeichnet, dass die optische Vermessung an mindestens zwei Flächen (26, 28, 30) oder Konturen des Gehäuses (14) erfolgt.

Description

Verfahren und Vorrichtung zur Winkeljustage eines Sensors in einem Kraftfahrzeug
Stand der Technik
Die Erfindung betrifft ein Verfahren zur Winkeljustage eines in einem Gehäuse in ein Kraftfahrzeug eingebauten Sensors, bei dem die Fahrachse des Fahrzeugs gemessen wird und die Winkellage des Gehäuses des Sensors in Bezug auf die Fahrachse durch optische Vermessung bestimmt wird, sowie Vorrichtungen zur Durchführung dieses Verfahrens.
Kraftfahrzeuge weisen eine zunehmend komplexe Sensorik auf, die es ermöglicht, Sicherheitsfunktionen zu implementieren und/oder den Fahrer bei der Führung des Fahrzeugs zu unterstützen. Häufig werden dabei Sensoren benötigt, die in ihrer Winkellage präzise in bezug auf die Fahrachse des Fahrzeugs justiert werden müssen, also in bezug auf die Achse, die die Geradeaus-Richtung des Fahrzeugs bestimmt. Ein typisches Beispiel für einen solchen Sensor ist ein Radarsensor für ein Abstandradarsystem. Ein solcher Radarsensor weist ein Gehäuse auf, in dem verschiedene Sensorkomponenten montiert sind, beispielsweise Antennenelemente und eine radaroptische Linse. Das Sensorgehäuse wird ho in der Frontpartie des Fahrzeugs eingebaut, daß Radarwellen vorwiegend nach vorn emittiert werden können und die von Objekten reflektierten Radarwellen empfangen werden können, so daß eine Ortung vorausfahrender Fahrzeuge und sonstiger Hindernisse ermöglicht wird. Die Radarkeule des Sensors muß dabei so in bezug auf die Fahrachse des Fahrzeugs ausgerichtet sein, daß der Empfindlichkeitsbereich des Sensors auch bei großen Abständen noch die eigene Fahrspur abdeckt. Gewöhnlich haben diese Radarsensoren auch ein gewisses Winkelauflösungsvermögen, so daß der Querversatz vorausfahrender Fahrzeuge gemessen werden kann und damit zwischen Fahrzeugen auf der eigenen Spur und auf Nebenspuren unterschieden werden kann. Für eine fehlerfreie Klassifizierung der Fahrzeuge ist eine präzise Winkeljustierung des Sensors entscheidend. Eine genaue Winkeljustage ist aber auch bei anderen Sensoren in Kraftfahrzeugen erforderlich, beispielsweise bei Seitenradars, Rückraumradars und dergleichen sowie auch bei Lidar-Sensoren, die mit Licht anstelle von Radarwellen arbeiten.
Bisher geht man bei der Winkeljustage eines Radarsensors zumeist wie folgt vor. Die Fahrachse des Fahrzeugs wird durch Messung der Orientierungen der beiden Hinterräder mittels Radkrallen oder auf einem Achsenmeßstand bestimmt. Mit Hilfe schwenkbarer Reflektoren wird dann das Antennendiagramm des Sensors aufgenommen. Durch Analyse des Antennendiagramms wird die Winkellage des Radarstrahls horizontal und vertikal bestimmt. Durch Vergleich der Lage des Radarstrahls mit der Fahrachse erhält man einen Anhaltspunkt für Richtung und Ausmaß der erforderlichen Korrektur, die dann vom Bedienungspersonal durch Drehung von mindestens zwei Justageschrauben vorgenommen wird, um die Winkellage des Sensorgehäuses in bezug auf das Fahrgestell des Fahrzeugs zu korrigieren. Das Ergebnis der Korrektur wird dann durch erneute Aufnahme eines Antennendiagramms überprüft und erforderlichenfalls wird der Justiervorgang mehrfach wiederholt, bis die korrekte Justageposition erreicht ist.
Dieses herkömmliche Verfahren ist jedoch zeitraubend und daher kostspielig.
Aus DE 196 42 811 AI ist ein Verfahren der eingangs genannten Art bekannt, bei dem die Winkellage des Sensorgehäuses mit Hilfe eines Lasers optisch gemessen wird. Dabei nutzt man die Tatsache aus, daß bei der Herstellung des Sensors der Einbau der verschiedenen Komponenten des Sensors in das Gehäuse im allgemeinen mit engen Maßtoleranzen erfolgt, so daß die Lage der Empfindlichkeitsachse des Sensors in bezug auf das Gehäuse dieses Sensors bei der Serienfertigung mit hoher Genauigkeit reproduzierbar ist. Nach dem Einbau des Sensors in das Fahrzeug genügt es daher, die Winkellage des Gehäuses zu bestimmen. Dies hat den Vorteil, daß die zeitraubende Aufnahme eines Antennendigramms entfallen kann. Vorteilhaft ist auch, daß der Radarsensor während der Messung nicht eingeschaltet zu sein braucht. Somit werden auch Meßfehler vermieden, die dadurch entstehen könnten, daß die Ausbreitung der Radarwellen durch Objekte oder Personen im Bereich des Meßstandes beeinflußt wird. Ein weiterer Vorteil besteht darin, daß sich das Verfahren auch bei passiven Sensoren einsetzen läßt, die selbst keine Strahlung emittieren, beispielsweise bei Magnetfeldsensoren. Die Laseroptische Winkelmessung erfolgt bei dem bekannten Verfahren z. B. dadurch, daß eine Laserstrahlquelle am Gehäuse des Sensors angebracht und dann der Auftreffpunkt des Strahls auf eine in einiger Entfernung angeordnete Meßeinrichtung erfaßt wird. Alternativ kann auch ein Laserstrahl von einer externen Quelle auf einen am Gehäuse angebrachten Spiegel gerichtet werden .
Vorteile der Erfindung
Die Erfindung mit den in den unabhängigen Patentansprüchen angegebenen Merkmalen bietet den Vorteil, daß sie eine einfachere und genauere Justage des Sensors mit einer kompakteren Meßanordnung ermöglicht.
Dies wird erfindungsgemäß dadurch erreicht, daß die optische Vermessung an mindestens zwei Flächen oder Konturen des Gehäuses erfolgt .
Bei der Vermessung zweier Flächen des Gehäuses können z. B. die Abstände dieser beiden Flächen zu einer optischen Meßeinrichtung gemessen werden, und aus der Abstandsdifferenz läßt sich dann Winkellage des Gehäuses mit hoher Genauigkeit bestimmen. Im Fall zweier Konturen des Gehäuses ergibt sich die Winkellage aus der durch perspektivische Verzerrung bedingten Änderung des Abstands zwischen den beiden Konturen. In beiden Fällen erübrigt es sich, an dem Gehäuse eine Laserquelle bzw. einen Spiegel anzubringen, wodurch nicht nur der Arbeitsaufwand reduziert wird, sondern auch einer mögliche Fehlerquelle beseitigt wird und somit die Genauigkeit und Zuverlässigkeit der Messung gesteigert wird. Bei dem bekannten Verfahren muß die Meßeinrichtung sehr weit vom Sensorgehäuse entfernt angeordnet sein, damit man angesichts der Ausdehnung und Unscharfe des Auftreffpunktes des Laserstrahls eine genügende Winkelauflösung erreicht. Auch die Zielmatrix, die zur Erfassung des Auftreffpunktes dient, muß entsprechend groß sein. Dagegen kann bei dem erfindungsgemäßen Verfahren die Meßeinrichtung wesentlich näher am Sensor angeordnet sein. Damit werden die Abmessungen des Meßstandes als Ganzes deutlich verkleinert .
Vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen .
Die optischen Abstandsmessungen können auf verschiedene Weise erfolgen, beispielsweise interferometrisch, durch durch Triangulation mit kommerziell erhältlichen Laser- Abstandsmessern. Für eine Messung der horizontalen Winkeljustage genügt die Vermessung zweier Flächen. Eine dritte Fläche ermöglicht auch die Messung der vertikalen Justage.
Eine alternative Meßmethode besteht darin, daß der am Fahrzeug sichtbare Teil des Sensorgehäuses mit einer digitalen Kamera oder einer digitalen Videokamera aufgenommen wird und die Winkellage des Gehäuses durch elektronische Bildauswertung anhand der perspektivischen Verzerrung der Konturen des Gehäuses bestimmt wird.
All diese optischen Verfahren ermöglichen eine unmittelbare quantitative Bestimmung der Dejustage des Gehäuses, so daß die notwendige Korrektur in einem einzigen Schritt vorgenommen werden kann, gegebenenfalls auch automatisch durch unmittelbare elektronische Ansteuerung geeigneter Stellantriebe für die Justierschrauben oder sonstige Stelleinrichtungen.
In einer besonders vorteilhaften Ausführungsform, insbesondere für die horizontale Winkeljustage, wird auf eine mechanische Nachjustage des Sensorgehäuses ganz verzichtet und statt dessen wird der gemessene Winkelversatz in bezug auf die Fahrachse in der elektronischen Steuereinrichtung des Sensors gespeichert und die Meßdaten (Winkeldaten) werden bei der Auswertung des Sensorsignals rechnerisch korrigiert. Bei einem Radarsensor mit mehreren Antennenelementen läßt sich die Geometrie in Richtung der Radarkeulen auch durch geeignete Phasenansteuerung der verschiedenen Antennenelemente beeinflussen. In diesem Fall kann eine Korrektur auch dadurch erfolgen, daß die Phasenansteuerung der Antennenelemente in Abhängigkeit von dem durch die optische Vermessung des Gehäuses erhaltenen Winkelversatz eingestellt wird.
Wenn mindestens zwei zusätzliche Referenzpunkte am Fahrzeugvorbau (Frontend) oder an der Karosserie mit hinreiched enger Toleranz in ihrer Lage in bezug auf die Fahrachse des Fahrzeugs definiert sind, kann auch die Lage der Fahrachse indirekt mit Hife eines der oben beschriebenen Verfahren bestimmt werden, indem die genannten Referenzpunkte optisch vermessen werden.
Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und in der nachfolgenden Beschreibung näher erläutert . Es zeigen :
Figur 1 eine Prinzipskizze eines Meßstandes zur Durchführung des erfindungsgemäßen Verfahrens;
Figur 2 . eine Teil-Frontansicht eines Fahrzeugs mit eingebautem Radarsensor;
Figur 3 ein Diagramm zur Erläuterung des Prinzips der Winkeljustage eines Radarsensors;
Figuren 4 und 5 Frontansichten eines Radarsensors, zur Illustration zweier Ausführungsbeispiele des erfindungsgemäßen Verfahrens;
Figur 6 eine Frontansicht eines Radarsensors gemäß einem anderen Ausführungsbeispiel; und
Figur 7 eine Prinzipskizze zur Erläuterung der Bestimmung der Winkellage des Sensorstnach Figur 6 durch elektronische Bildverarbeitung.
Figur 1 zeigt in der Draufsicht ein Fahrzeug 10, bei dem in der Frontpartie ein Radarsensor 12 eingebaut ist. Von dem Radarsensor ist in Figur 1 lediglich ein Gehäuse 14 dargestellt. In Idealfall ist das Gehäuse 14 so in das Fahrzeug 10 eingebaut, daß die Radarkeule des Radarsensors 12 annähernd waagerecht und parallel zur Fahrachse des Fahrzeugs 10 nach vorn abgestrahlt wird. Figur 1 zeigt das Fahrzeug 10 in einem Meßstand 16, der zur Überprüfung und gegebenenfalls zur Korrektur der Winkellage des Radarsensors 12 dient. Dieser Meßstand umfaßt einen Achsenmeßstand 18 zur Messung der Fahrachse des Fahrzeugs 10 und eine optische Meßeinrichtung 20 zum optischen Vermessen des Gehäuses 14 des Radarsensors 12. Die Meßeinrichtung 20 liegt dem Sensor 12 gegeüber und kann zur genauen Ausrichtung auf den Sensor horizontal und/oder vertikal verstellbar sein, sollte dabei jedoch eine definierte Winkellage in bezug auf den Achsenmeßstand 18 beibehalten.
Figur 2 zeigt eine Frontansicht des Fahrzeugs 10. Das Gehäuse 14 des Radarsensors 12 ist durch eine in der Fahrzeugkarosserie gebildete Öffnung 22 sichtbar. Weiterhin ist eine karosseriefeste Konsole 24 zu erkennen, an der das Gehäuse 14 justierbar befestigt ist. Das Gehäuse 14 weist vorspringende Flansche 26, 28, 30 auf, mit denen es an der Konsole 24 gehalten ist. Dabei bildet der Flansch 26 ein Festlager, und die Flansche 28 und 30 nehmen Justierschrauben auf, mit denen sich zum Einstellen der horizontalen und vertikalen Winkeljustage des Gehäuses 14 der Abstand zwischen dem jeweiligen Flansch und der Konsole 24 einstellen läßt.
In Figur 3 ist das Meßprinzip dargestellt, das der Überprüfung und Korrektur der Winkellage des Gehäuses 14 des Radarsensors zugrunde liegt. Dargestellt ist hier die Hinterachse 32 des Fahrzeugs 10 mit den linken und rechten Hinterrädern 34. Die Lage einer Bezugsachse 36 des Achsenmeßstands 18 ist durch drei zueinander und zu dieser Bezugsachse parallele Geraden angegeben. Mit Hilfe des Achsenmeßstandes 18 werden die
Winkelabweichungen α und α der linken und rechten Hinterräder L R 34 von der Bezugsachse 36 gemessen. Diese Winkelabweichungen sind in der Zeichnung stark übertrieben dargestellt. Der arithmetische Mittelwert α der Winkelabweichungen α und α gibt L R die Lage der Fahrachse 38 des Fahrzeugs 10 relativ zur Bezugsachse 36 an.
Der Radarsensor 12 hat eine Empfindlichkeitsachse 40, die der Hauptabstrahl- und Empfindlichkeitsrichtung der Radarkeule entspricht und die herstellungsbedingt in bezug auf das Gehäuse 14 festliegt. Gemäß Figur 3 weist der Radarsensor 12 eine Antenneneinheit 42 mit mehreren nicht näher gezeigten Antennenelementen sowie eine radaroptische Linse 44 zur Fokussierung des Radarstrahls auf. Die Lage der Empfindlichkeitsachse 40 relativ zum Gehäuse 14 wird insbesondere durch die Anordnung der Antenneneinheit 42 relativ zur Linse 44 bestimmt.
Das Gehäuse 14 ist nun im Fahrzeug 10 in der Horizontalen so zu justieren, daß die Empfindlichkeitsachse 40 des Sensors zu der Fahrachse 38 des Fahrzeugs parallel ist, d. h., daß die Empfindlichkeitsachse 40 mit der Bezugsachse 36 den gleichen Winkel α bildet wie die Fahrachse 38. Diesem Zweck dient die in Figur 1 gezeigte Meßeinrichtung 20. Es ist eine Vielzahl optischer, insbesondere laseroptischer Meßverfahren bekannt, mit denen die Winkellage des Gehäuses 14 bestimmt werden kann.
Ein erstes .Beispiel soll anhand der Figuren 1 bis 4 erläutert werden. Die Meßeinrichtung 20 weist bei dieser Ausführungsform drei Laser-Abstandsmeßgeräte auf, die jeweils einen Laserstrahl 46 auf das Gehäuse 14 richten, und zwar jeweils auf einen der Flansche 26, 28 und 30. In Figur 4 sind die Auftreffpunkte 48 der drei Laserstrahlen 46 gezeigt. Jedes Abstandsmeßgerät weist eine seitlich zum Laserstrahl versetzte Optik auf, die den betreffenden Auftreffpunkt scharf auf eine hochauflösende optoelektronische Sensorzeile abbildet. Nach dem bekannten Triangularverfahren wird dann der Abstand zwischen Flansch und Meßgerät sehr genau gemessen. Die Meßgenauigkeit liegt in der Größenordnung einiger μm. Wie in Figur 3 zu erkennen ist, liegen die drei Flansche in einer gemeinsamen Ebene, so daß sie eine gute Referenzfläche für die Bestimmung der Winkellage des Gehäuses abgeben. Durch Vergleich der für die Flansche 26 und 30 erhaltenen Abstandswerte läßt sich die laterale Winkelabweichung der Empfindlichkeitsachse 40 von der Bezugsache 36 mit hoher Genauigkeit berechnen.
Anhand dieser gemessenen Winkelabweichung und des gleichfalls bekannten Winkels α zwischen der Bezugsachse 36 und der Fahrachse 38 kann dann der erforderliche Verstellweg für die Justierschraube quantitativ bestimmt und entweder manuell oder automatisch eingestellt werden.
Auf diese Weise läßt sich die nötige Korrektur der horizontalen Winkellage des Gehäuses 14 mit nur einem einzigen Meß- und Justierschritt bewerkstelligen. Die vertikale Winkellage des Gehäuses 14 läßt sich auf analoge Weise unter Benutzung der Flansche 26 und 28 einstellen.
In einer noch eleganteren Ausführungsform wird die Winkellage des Gehäuses 14 im Fahrzeug 10 nicht mechanisch verändert, sondern statt dessen wird die mit Hilfe der Meßeinrichtung 20 bestimmte Abweichung zwischen der Soll-Lage und der Ist-Lage der Empfindlichkeitsachse 40, der sogenannte Offset, elektronisch in einer zu dem Radarsensor 12 gehörenden Steuereinheit 50 gespeichert. Bei der Auswertung der vom Radarsensor 12 gelieferten Richtungssignale wird dann der Offset elektronisch korrigiert. Bei dieser Ausführungsform sind somit keinerlei mechanische Justiervorgänge erforderlich, so daß die Korrektur der Winkeljustage in kürzester Zeit vorgenommen werden kann.
Gemäß einer anderen Ausführungsform enthält die Meßeinrichtung 20 ein Interferometer, mit dem die Winkellage des Gehäuses 14 in bezug auf die Fahrachse 38 interferometrisch bestimmt werden kann.
Gemäß einer weiteren, in Figur 5 dargestellten Ausführungsform wird die Forderfront des Gehäuse mit Hilfe zweier Linienlaser abgetastet, die eine vertikale Linie 52 für die horizontale Justage und eine horizontale Linie 54 für die vertikale Justage auf das Gehäuse zeichenen. Die entsprechenden Abstandssensoren der Meßeinrichtung 20 (z. B. 2D Laser-Line Triangulatoren LLT 2800-100 der Firma Micro-Epsilon, Ortenburg) arbeiten nach einem ähnlichen Prinzip wie bei dem Ausführungsbeispiel nach Figur 4, doch wird hier mit einem zweidimensionalen Sensorfeld für jeden Punkt der Linie 52 bzw. 54 ein Abstandswert aufgenommen, so daß man ein Höhenprofil der Forderfront des Gehäuses 14 über die gesamte Länge der Linie 52 bzw. 54 erhält. Dies ermöglicht eine noch größere Genauigkeit und Robustheit der Messung und hat zudem den Vorteil, daß man mit den Laserstrahlen nicht so genau zu "zielen" braucht. Allerdings ist es auch in diesem Fall vorteilhaft, wenn die Laser-Linien die Flansche 26, 28 und 30 überstreichen.
Da das Gehäuse 14 ein dreidimensionales Objekt ist, von dem durch die Öffnung 22 der Fahrzeugkarosserie nicht nur die Vorderseite, sondern bei Schrägansicht auch Teile der Seitenwände zu sehen sind, kann die Winkellage des Gehäuses 14 auch durch elektronische Bildverarbeitung eines mit Hilfe einer Kamera aufgenommenen Bildes des Gehäuses bestimmt werden.
Figuren 6 und 7 illustrieren eine Weiterbildung dieses Verfahrens, bei dem die Bildauswertung durch geeignete Markierungen am Gehäuse 14 erleichtert wird. Figur 6 zeigt eine Frontansicht eines Radarsensors 12, bei dem Markierungen 56, 58 die Form zweier konzentrischer Rahmen um die Linse 44 haben. Wie Figur 7 zeigt, liegt die Linse 44 hier in einer konischen Vertiefung 60 des Gehäuses, und die inneren und äußeren Ränder der Flanken dieser Vertiefung 60 bilden die Markierungen 56 und 58. Wenn das Gehäuse 14 schräg in bezug auf eine Kamera 62 angeordnet ist, mit der die Frontseite des Gehäuses fotografiert wird, so führt die perspektivische Verzerrung zur einer Exzentrizität e zwischen den rahmenförmigen Markierungen 56, 58 in dem von der Kamera aufgenommenen Bild 64. Wenn die Kamera 62, die Teil der optischen Meßeinrichtung 20 ist, mit ihrer optischen Achse auf die Mitte des Gehäuses 14 und parallel zur Bezugsachse 36 ausgerichtet ist, so ist die Exzentrizität e, die durch Bildauswertung bestimmt werden kann, ein Maß für die Winkelabweichung zwischen der Bezugsachse 36 und der Empfindlichkeitsachse 40 des Sensors. Durch Vergleich mit der Winkelabweichung α zwischen Bezugsachse und der Fahrachse 38 läßt sich dann der Offset berechnen.
Wenn die Winkeljustage des Gehäuses 14 mechanisch korrigiert werden soll, kann auch anhand der gemessenen Lage der Fahrachse 38 ein Sollwert für die Exzentrizität e berechnet werden, und bei Beobachtung des Gehäuses 14 mit einer Videokamera kann dann das Gehäuse 14 so lange verstellt werden, bis die Exzentrizität dem Sollwert entspricht.

Claims

Ansprüche
Verfahren zur Winkeljustage eines in einem Gehäuse (14) in ein Kraft ahrzeug eingebauten Sensors (12), bei dem die Fahrachse (38) des Fahrzeugs (10) gemessen wird und die Winkellage des Gehäuses (14) des Sensors (12) in Bezug auf die Fahrachse durch optische Vermessung bestimmt wird, dadurch gekennzeichnet, daß die optische Vermessung an mindestens zwei Flächen (26, 28, 30) oder Konturen (56, 58) des Gehäuses (14) erfolgt.
Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die optische Vermessung mit mindestens zwei Laser- Abstandssensoren erfolgt, die jeweils einen Laserstrahl (46) auf eine der Flächen (26, 28, 30) des Gehäuses (14) richten, und daß die Winkellage des Gehäuses aus der Differenz der gemessenen Abstände berechnet wird.
Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die Abstandsmessungen nach dem Triangularverf hren erfolgen.
4. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß zur Messung der horizontalen und vertikalen Winkellage des Gehäuses (14) drei gebündelte Laserstrahlen (46) auf drei nicht auf einer Geraden liegende Auftreffpunkte (48) auf dem Gehäuse (14) gerichtet werden.
5. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß mindestens ein zu einer Linie (52, 54) aufgefächerter Laserstrahl auf die Forderfront des Gehäuses (14) gerichtet wird und daß mit dem Abstandssensor ein Höhenprofil des Gehäuses längs der Linie (52, 54) aufgenommen wird.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß mit einer Meßeinrichtung (20) die zum optischen Vermessen des Gehäuses (14) dient, auch die Lage der Fahrachse (38) des Fahrzeugs (10) bestimmt wird, indem mindestens zwei zusätzliche Referenzpunkte am Fahrzeug (10), die in ihrer Lage in bezug auf die Fahrachse (38) definiert sind, optisch vermessen werden.
7. Verfahren nach Anspruch 1 oder 6, dadurch gekennzeichnet, daß, die Winkellage des Gehäuses (14) durch elektronische Bildverarbeitung aus der relativen Lage mindestens zweier mit einer Kamera (62) aufgenommener Konturen (56, 58) des Gehäuses berechnet wird.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß anhand der gemessenen Winkellage des Gehäuses (14) eine Winkelabweicheung zwischen einer Empfindlichkeitsachse (40) des Sensors (12) und der Fahrachse (38) quantitativ berechnet wird und daß die Justage des Gehäuses im Fahrzeug (10) anhand der berechneten Winkelabweicheung in einem Schritt mechanisch korrigiert wird.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß anhand der gemessenen Winkellage des Gehäuses (14) eine Winkelabweicheung zwischen einer Empfindlichkeitsachse (40) des Sensors (12) und der Fahrachse (38) quantitativ berechnet und zu Korrekturzwecken in einer auswertenden Steuereinheit (50) für den Sensor (12) gespeichert wird.
10. Vorrichtung zur Durchführung des Verfahrens nach einem der Ansprüche 2 bis 6, mit einem Meßstand (16) zur Messung der Fahrachse (18) des Fahrzeugs (10) und einer optischen Meßeinrichtung (20) , die in einer definierten Winkelposition in Bezug auf den Meßstand (16) angeordnet ist, dadurch gekennzeichnet, daß die Meßeinrichtung (20) dazu ausgebildet ist, mindestens zwei Laserstrahlen (46) auf verschiedene Flächen (26, 28, 30) des Gehäuses (14) richten, und deren Abstände zu der Meßeinrichtung zu messen .
11. Vorrichtung zur Durchführung des Verfahrens nach Anspruch 6 oder 7, mit einem Meßstand (16) zur Messung der Fahrachse (18) des Fahrzeugs (10) und einer optischen Meßeinrichtung, die im Meßstand in einer definierten Position in Bezug auf den Sensor (12) anzuordnen ist, dadurch gekennzeichnet, daß die Meßeinrichtung eine auf das Gehäuse (14) des Sensors (12) gerichtete digitale Kamera (62) aufweist.
PCT/DE2004/002537 2004-01-27 2004-11-18 Verfahren und vorrichtung zur winkeljustage eines sensors in einem kraftfahrzeug WO2005071434A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004004193A DE102004004193A1 (de) 2004-01-27 2004-01-27 Verfahren und Vorrichtung zur Winkeljustage eines Sensors in einem Kraftfahrzeug
DE102004004193.8 2004-01-27

Publications (1)

Publication Number Publication Date
WO2005071434A1 true WO2005071434A1 (de) 2005-08-04

Family

ID=34801110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2004/002537 WO2005071434A1 (de) 2004-01-27 2004-11-18 Verfahren und vorrichtung zur winkeljustage eines sensors in einem kraftfahrzeug

Country Status (2)

Country Link
DE (1) DE102004004193A1 (de)
WO (1) WO2005071434A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008058785A1 (de) * 2006-11-17 2008-05-22 Robert Bosch Gmbh Verfahren zum justieren einer richtantenne eines radarsystems und radarsystem zur durchführung des verfahrens
EP2113787A1 (de) 2008-05-02 2009-11-04 Harro Koch Anlage zur Prüfung der Ausrichtung von Radarsensoren
EP2439553A1 (de) * 2010-10-11 2012-04-11 Robert Bosch GmbH Sensor, Justageverfahren und Vermessungsverfahren für einen Sensor
EP2447734A1 (de) * 2010-11-02 2012-05-02 Audi AG Verfahren zum Gewinnen von Daten und zum Ausrichten eines Umfeldsensors eines Kraftwagens
EP2233364A3 (de) * 2009-03-23 2012-10-10 Robert Bosch GmbH Abdeckungsmerkmale für fahrzeugmontierte Vorrichtungen
EP3109667A1 (de) * 2015-06-24 2016-12-28 Panasonic Corporation Radarachsenverschiebungsmengenberechnungsvorrichtung und radarachsenverschiebungberechnungsvorrichtung

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006056702A1 (de) * 2006-11-30 2008-06-05 Robert Bosch Gmbh Verfahren und Vorrichtung zum Ausrichten eines Abstandssensors
DE102012003877A1 (de) * 2011-10-15 2013-04-18 S.M.S Smart Microwave Sensors Gmbh Radarsystem für ein Straßenfahrzeug mit verbesserten Kalibriermöglichkeiten
DE102021204477A1 (de) 2021-05-04 2022-11-10 Robert Bosch Gesellschaft mit beschränkter Haftung System zur Bestimmung einer Einbauhöhe und/oder eines Einbauwinkels von an einem Fahrzeug angeordneten Ultraschallsensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19642811A1 (de) * 1996-10-17 1998-04-30 Bosch Gmbh Robert Verfahren zum Justieren einer Richtantenne eines Radarsystems und Radarsystem zur Durchführung des Verfahrens
DE19900362A1 (de) * 1998-01-06 1999-07-15 Hitachi Ltd Verfahren zum Einstellen der Achse eines fahrzeuginternen Radars
EP1001274A1 (de) * 1998-11-12 2000-05-17 Mannesmann VDO Aktiengesellschaft Verfahren und Vorrichtung zur Justierung eines Strahlenganges eines strahlaussendenden Sensors
EP1031852A2 (de) * 1999-02-22 2000-08-30 Volkswagen Aktiengesellschaft Vorrichtung und Verfahren zur Justierung eines Abstandsmessgeräts
DE10042105A1 (de) * 2000-07-12 2002-01-24 Volkswagen Ag Verfahren zum Justieren einer Richtantenne eines Radarsystems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19642811A1 (de) * 1996-10-17 1998-04-30 Bosch Gmbh Robert Verfahren zum Justieren einer Richtantenne eines Radarsystems und Radarsystem zur Durchführung des Verfahrens
DE19900362A1 (de) * 1998-01-06 1999-07-15 Hitachi Ltd Verfahren zum Einstellen der Achse eines fahrzeuginternen Radars
EP1001274A1 (de) * 1998-11-12 2000-05-17 Mannesmann VDO Aktiengesellschaft Verfahren und Vorrichtung zur Justierung eines Strahlenganges eines strahlaussendenden Sensors
EP1031852A2 (de) * 1999-02-22 2000-08-30 Volkswagen Aktiengesellschaft Vorrichtung und Verfahren zur Justierung eines Abstandsmessgeräts
DE10042105A1 (de) * 2000-07-12 2002-01-24 Volkswagen Ag Verfahren zum Justieren einer Richtantenne eines Radarsystems

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008058785A1 (de) * 2006-11-17 2008-05-22 Robert Bosch Gmbh Verfahren zum justieren einer richtantenne eines radarsystems und radarsystem zur durchführung des verfahrens
EP2113787A1 (de) 2008-05-02 2009-11-04 Harro Koch Anlage zur Prüfung der Ausrichtung von Radarsensoren
EP2233364A3 (de) * 2009-03-23 2012-10-10 Robert Bosch GmbH Abdeckungsmerkmale für fahrzeugmontierte Vorrichtungen
US8646823B2 (en) 2009-03-23 2014-02-11 Robert Bosch Gmbh Cover features for vehicle-mounted devices
EP2439553A1 (de) * 2010-10-11 2012-04-11 Robert Bosch GmbH Sensor, Justageverfahren und Vermessungsverfahren für einen Sensor
US8994580B2 (en) 2010-10-11 2015-03-31 Robert Bosch Gmbh Sensor, adjusting method, and measuring method for a sensor
EP2447734A1 (de) * 2010-11-02 2012-05-02 Audi AG Verfahren zum Gewinnen von Daten und zum Ausrichten eines Umfeldsensors eines Kraftwagens
DE102010050279B4 (de) * 2010-11-02 2015-02-12 Audi Ag Verfahren zum Gewinnen von Daten und zum Ausrichten eines Umfeldsensors eines Kraftwagens
EP3109667A1 (de) * 2015-06-24 2016-12-28 Panasonic Corporation Radarachsenverschiebungsmengenberechnungsvorrichtung und radarachsenverschiebungberechnungsvorrichtung
CN106291486A (zh) * 2015-06-24 2017-01-04 松下电器产业株式会社 雷达轴偏移量计算装置和雷达轴偏移量计算方法

Also Published As

Publication number Publication date
DE102004004193A1 (de) 2005-08-18

Similar Documents

Publication Publication Date Title
DE3911307C2 (de) Verfahren zum Feststellen, ob zwei hintereinander angeordnete Wellen hinsichtlich ihrer Mittelachse fluchten oder versetzt sind
DE19707590C2 (de) Verfahren und Vorrichtung zur Justierung der Ausrichtung einer Strahlcharakteristik eines Entfernungssensors
EP2093537B1 (de) Verfahren und Vorrichtung zur Ermittlung einer Ausrichtung von zwei drehbar gelagerten Maschinenteilen
EP1953520B1 (de) Verfahren und Vorrichtung zum Ausrichten eines Fahrzeug-Umfeldsensors oder Scheinwerfers
DE69820370T2 (de) Ausrichtungsvorrichtung für Automobilradar
DE10246067A1 (de) Verfahren und Vorrichtung zur Kalibrierung eines Bildsensorsystems in einem Kraftfahrzeug
DE10354985A1 (de) Verfahren zur Korrektur von Radarfehlausrichtung
EP2933600B1 (de) Verfahren zum ermitteln der ausrichtung einer ersten riemenscheibe eines riemenantriebs in bezug auf eine zweite riemenscheibe des riemenantriebs
DE102009009046A1 (de) Messvorrichtung zum Ausrichten wenigstens einer Sensoreinheit eines Fahrerassistenzsystems eines Fahrzeuges
DE102005037094B3 (de) Kalibrierverfahren für einen Sensor zur Abstandsmessung
EP1953518A2 (de) Verfahren und Vorrichtung zum Ausrichten eines Fahrzeug-Umfeldsensors oder Scheinwerfers
DE102019117821A1 (de) Kalibrieren eines aktiven optischen Sensorsystems anhand eines Kalibriertargets
WO2021104573A1 (de) Verfahren zur bestimmung von parametern der fahrwerkgeometrie eines fahrzeugs
WO2005071434A1 (de) Verfahren und vorrichtung zur winkeljustage eines sensors in einem kraftfahrzeug
EP1031852B1 (de) Vorrichtung und Verfahren zur Justierung eines Abstandsmessgeräts
CH697319B1 (de) Verfahren und Vorrichtung zum geometrischen Kalibrieren von optoelektronischen Messbildkameras.
DE102014113070B4 (de) Justiervorrichtung und Verfahren zum Ausrichten eines Bauteils an einem Fahrzeug
DE102013001449A1 (de) Verfahren zur Justierung eines Abstandssensors an einem Fahrzeug und Messtraverse
EP1798515A2 (de) Mess- bzw. Referenzeinheit und Fahrwerkvermessung damit
DE102019113441A1 (de) Verfahren zur Zuordnung des intrinsischen Koordinatensystems eines ersten Aggregats eines Fahrzeuges zur Erfassung des Raumes seitlich des Fahrzeuges relativ zu einem fahrzeugbezogenen Koordinatensystem und Vorrichtung zur Durchführung des Verfahrens
EP0419916B1 (de) Vorrichtung zum Überprüfen der Parallelität zweier Achsen
DE10117390A1 (de) Vorrichtung zur quantitativen Beurteilung der räumlichen Lage zweier Maschinenteile, Werkstücke oder anderer Gegenstände relativ zueinander
DE102005016718B4 (de) Verfahren zur Justage von Objektsensoren eines Kraftfahrzeugs
EP3449231B1 (de) Verfahren zur ausrichtung eines scheinwerfereinstellgerätes
DE10210472B4 (de) Verfahren zur Justierung der Ausrichtung einer Sensoreinheit und Vorrichtung zur Durchführung des Verfahrens

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase