WO2005070322A1 - Anorganisch-anorganischer compositwerkstoff und verfahren zu dessen herstellung - Google Patents

Anorganisch-anorganischer compositwerkstoff und verfahren zu dessen herstellung Download PDF

Info

Publication number
WO2005070322A1
WO2005070322A1 PCT/EP2005/050444 EP2005050444W WO2005070322A1 WO 2005070322 A1 WO2005070322 A1 WO 2005070322A1 EP 2005050444 W EP2005050444 W EP 2005050444W WO 2005070322 A1 WO2005070322 A1 WO 2005070322A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
infiltration
oxide
inorganic
oxide ceramic
Prior art date
Application number
PCT/EP2005/050444
Other languages
English (en)
French (fr)
Inventor
Frank Rothbrust
Christian Ritzberger
Wolfram HÖLAND
Volker Rheinberger
Original Assignee
Ivoclar Vivadent Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ivoclar Vivadent Ag filed Critical Ivoclar Vivadent Ag
Priority to JP2006550191A priority Critical patent/JP2007534368A/ja
Priority to EP05716619.1A priority patent/EP1711122B1/de
Priority to US10/587,728 priority patent/US8080189B2/en
Publication of WO2005070322A1 publication Critical patent/WO2005070322A1/de
Priority to US13/240,705 priority patent/US9090511B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/481Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing silicon, e.g. zircon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4505Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application
    • C04B41/4535Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application applied as a solution, emulsion, dispersion or suspension
    • C04B41/4537Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application applied as a solution, emulsion, dispersion or suspension by the sol-gel process
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00836Uses not provided for elsewhere in C04B2111/00 for medical or dental applications
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3246Stabilised zirconias, e.g. YSZ or cerium stabilised zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/441Alkoxides, e.g. methoxide, tert-butoxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/549Particle size related information the particle size being expressed by crystallite size or primary particle size
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/608Green bodies or pre-forms with well-defined density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/616Liquid infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6587Influencing the atmosphere by vaporising a solid material, e.g. by using a burying of sacrificial powder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/765Tetragonal symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9661Colour
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63488Polyethers, e.g. alkylphenol polyglycolether, polyethylene glycol [PEG], polyethylene oxide [PEO]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49567Dental appliance making
    • Y10T29/49568Orthodontic device making

Definitions

  • the present invention relates to an inorganic-inorganic composite material, a process for its production and its use.
  • oxide ceramics in the dental field has long been known.
  • a method is known from WO 95/35070 in which the ceramic is infiltrated.
  • the production of such an oxide ceramic is relatively complex; for example, the infiltration step alone takes four hours.
  • a ceramic workpiece is known from EP-A1 -834 366, which is produced by infiltration of a molten matrix material into the cavities of a blank.
  • a special particle size with two different size levels is provided for the infiltration substance.
  • This solution uses a wrapping material that is provided with a water-soluble salt and must be removed after infiltration and solidification.
  • the disadvantage of this solution is the high process temperature during the shaping and the complicated device-technical manufacture.
  • a porous A ⁇ Os blank is infiltrated with a zirconium oxide infiltration substance, so that the finished ceramic workpiece contains 1 to 15% by volume of zirconium oxide, thereby solidifying the aluminum oxide ceramic thus formed.
  • This procedure requires several infiltration steps and is suitable if a ceramic such as aluminum oxide is to be reinforced on the surface, while it is understood that a zirconium oxide ceramic with a high critical stress intensity factor cannot be further reinforced by adding zirconium oxide.
  • Such an alumina ceramic shows only a superficial reinforcement, and the process steps would often have to be used in succession to implement this solution.
  • DE-A1 100 61 630 discloses the production of an all-ceramic dental prosthesis from a dental ceramic made of zirconium oxide and aluminum oxide, infiltration with glass being carried out in a volume range of 0 to 40%.
  • This solution requires the additional implementation of a veneering ceramic when used as a denture.
  • the low strength of the ceramic solidified by the glass phase and the low translucency are disadvantageous.
  • EP-A1-1 025 829 discloses the production of a cap from a ceramic material infiltrated with a glass. To provide the desired translucency, two additional layers are provided which are applied to the cap. The provision of dental restoration parts is over For aesthetic reasons, it is essential to reproduce the natural tooth enamel, which has an increased translucency, while dentin has a lower translucency. Layers 7 and 6 are used for this purpose in accordance with the above-mentioned solution. In such a method, the cumbersome further processing by grinding the infiltrated solid to a powder is disadvantageous, but also the low strength of the ceramic solidified by the glass phase.
  • a method for producing an oxide ceramic molded part in which milling is carried out from a zirconium or aluminum oxide ceramic after the pre-sintering using a large CAD / CAM system.
  • the milled blank is then sintered at 1200 to 1650 ° C without pressure.
  • the oxide ceramic phase thus produced has a lower translucency than a hot isostatically pressed ceramic, the mechanical properties are poorer than with hot isostatically pressed ceramics, and these ceramics are very difficult to etch.
  • zirconium oxide mixed ceramics which contain 7 to 12 percent by weight of Ti0 2 and other additives which inhibit grain growth and are suitable for stabilization. It can also contain 0 to 30 percent by weight of Al 2 0 3 .
  • the powder mixtures are sintered at 1100 to 1300 ° C.
  • the disadvantage of these ceramics is that the density that can be achieved is only 98% of the theoretical density (TD) and is therefore lower than with hot isostatically pressed ceramics. The creation of a retentive pattern on the surface is very difficult with this ceramic.
  • WO 03/057065 describes how an oxide ceramic molded part is produced from aluminum oxide in which the average grain size is not is greater than 1 ⁇ m and the degree of translucency is 70% of T * nm, integrated over the wavelength range of 475-650 nm.
  • the process step of hot isostatic pressing is used to achieve these properties, a body of a desired shape is first obtained from a powdery raw material, which is sintered in a thermal process, so that the body only has closed porosity.
  • the sintered molded body is post-densified hot isostatically in order to achieve complete compaction.
  • This process step is very complex: the body is compressed at 100 to 219 MPa and a temperature of 1200 ° C to 1300 ° C.
  • the invention has for its object to provide a method for producing an inorganic-inorganic composite material which is suitable for the dental field and allows a cost-optimized production with improved aesthetic effect at the same time, without deteriorating the performance properties, in particular the possibility of producing a retentive To offer patterns and to ensure attachment to the natural tooth.
  • This object is achieved by a process for producing an inorganic-inorganic composite material, in which
  • An infiltration substance is preferably applied to this under vacuum and at room temperature and
  • the oxide ceramic molded part is sintered to form the inorganic-inorganic composite material.
  • an open-pore crystalline oxide ceramic molded part is used, the pores of which are filled at room temperature under vacuum, preferably in the range from 2 to 90% of the thickness of the open-pore oxide ceramic, with an infiltration substance with or without solvent, with or without coloring additives.
  • the entire coated oxide ceramic is preferably subjected to a sealing sintering process at high temperatures. This creates a multi-layer composite material that has a translucent area or core inside. In the outer area, the composite material is white, colorless or colored. According to the invention, a translucent-colored product can accordingly be produced.
  • the invention further relates to an inorganic-inorganic composite material which contains components of oxide ceramics and of infiltration substances and whose main use is in the dental field.
  • a powder or a powder mixture is provided as the starting material, which are made up of appropriate oxide ceramic or a mixed ceramic.
  • the powder is preferably in the form of granules, and a binder is preferably added.
  • the metal oxides are preferably partially or completely coated with at least one monolayer of an organic polymer.
  • the binders or polymers used according to the invention are preferably water-soluble.
  • the binders or polymers preferred according to the invention include synthetic polymers or biopolymers.
  • the polymers which can be used according to the invention include, for. B. polyvinyl alcohol, polyethyleneimine, polyacrylamide, polyethylene oxide, polyethylene glycol, homo- and copolymers (meth) acrylic acid, maleic acid, vinylsulfonic acid and vinylphosphonic acid, polyvinylpyrrolidone, starch, alginates, gelatin, cellulose ethers, for example carboxymethyl cellulose, can be used in particular as biopolymers.
  • during or after the shaping processing for. B. by uniaxial or cold isostatic pressing of the powdery starting material presintered to preferably 50% of the theoretical density in an ambient air atmosphere without pressure. -
  • the binders or organic polymers are removed without residue, as a result of which the crystalline, open-pore oxide ceramic has a density of 10 to 90% of the theoretical density.
  • the pre-sintering temperature is significantly less than the sintering temperature and can be, for example, between 600 and 1300 ° C., preferably between 800 and 1200 ° C.
  • the open-pore, crystalline oxide ceramic molded part obtained by the pre-sintering essentially contains oxides or oxide mixtures of the elements zirconium or aluminum or mixtures of these elements. These metal oxides or metal oxide mixtures can be present in a mixture with other metal oxides.
  • the elements of the groups purple, IIIb and IVb are particularly suitable for this, with a denoting the main group elements of the periodic table and b the subgroup elements of the periodic table.
  • further oxides of the metals Hf, Y, Al, Ce, Sc, Er and / or Ti are suitable as further metal oxides.
  • the crystalline, open-pore oxide ceramic molded part essentially contains zirconium oxide with additions of yttrium oxide, preferably in the range from 0.1 to 10 mol%.
  • the zirconium oxide contains additives of 2 to 4 mol% of yttrium oxide, 2.5 to 15 mol% of cerium oxide, 2.5 to 5 mol% of erbium oxide, 2.5 to 5 mol% of scandium oxide or 0.1 to 15 mol% of titanium oxide or mixtures of the oxides mentioned in the ranges mentioned. , , , ,
  • the zirconium oxide can in particular be in the form of a tetragonal oxide.
  • the partially sintered, open-pore oxide ceramic molded part it is expedient to evacuate the partially sintered, open-pore oxide ceramic molded part.
  • less than 100 mbar preferably less than 50 mbar, e.g. about 20 mbar, preferred.
  • the negative pressure is applied, for example, for 1 minute to 4 hours, so that pressure equalization takes place in the sense of the formation of a vacuum inside the partially sintered, open-pore oxide ceramic.
  • the gases are removed from the porous, partially sintered oxide ceramic.
  • the sol according to the invention is stirred for the provision of the further material to be applied.
  • This further material is applied in a manner known per se following the evacuation in the negative pressure atmosphere.
  • An infiltration substance is preferably applied under vacuum and at room temperature to the crystalline, open-pore oxide ceramic molded part produced in the manner described.
  • the thickness of the infiltration substance layer is preferably 2 to 30%, preferably 5 to 20% and particularly preferably approximately 10 to 15%, in each case based on the largest diameter of the oxide ceramic molded part.
  • a much greater thickness of the infiltration layer may be required for coloring than for sealing sintering: 5 - 90%, preferably 10 - 90%, particularly preferably 30 - 85% of the thickness of the molded part.
  • the infiltration substance can a solvent ⁇ be applied in the present.
  • Both polar and non-polar solvents are suitable as solvents. Examples are water or alcohol.
  • the infiltration substance can either be the precursor of a non-metallic-inorganic phase, an amorphous glass phase, a hydrolyzable compound of a metal or an alcoholate of a metal.
  • the precursor of the non-metallic-inorganic phase can have ionogenic or covalent compounds of the elements of the following main groups (denoted by a) and subgroups (denoted by b): la, Ha, lila, IVa, llbb, IVb, Vb, Vlb, Vllb and Vlllb. Mixtures of the elements mentioned are also suitable. According to the invention, covalent compounds of silicon or zircon are preferred. Known coloring ionogenic compounds of the elements cerium, manganese, vanadium, iron and others can also be used.
  • the infiltration substance made of nonmetallic-inorganic phase, which at least partially covers the inner region is chemically much less resistant to acids than the pure crystalline oxide ceramic in the core or inner region. The layer can be easily etched. However, the chemical resistance is not significantly lower than in the core or inner area if the covering layer has only microcrystalline zirconium oxide.
  • a retentive pattern can be achieved there by etching.
  • the depth of this pattern can be determined by the etchant, its concentration and the time in the etching process. According to the invention, it corresponds at most to the thickness of the covering layer, since the core or inner region is considerably more resistant to chemical attack.
  • the amorphous glass phase can be a silicate glass. Among others, alkali-free silicate glasses are preferred.
  • Tetraethyl orthosilicate inter alia, can be used as the hydrolyzable compound.
  • Hydrolyzable silanes are also used.
  • Alcoholate compounds are also preferred. This means that alcoholates of metals, selected from the group of the elements aluminum, titanium, zirconium or silicon, are used.
  • Alcoholates of silicon or aluminum are particularly preferred. Mixtures of the alcoholates mentioned can also be used according to the invention.
  • the infiltration substances are in sol form and react further to form a gel. You are preferred
  • Precursor products of a glassy or ceramic material are introduced into a vacuum chamber, for example a desiccator. there the infiltration substance must completely cover the molded body. Supported by the existing vacuum, the penetration of the infiltration substance into the oxide ceramic molded body takes place over a period of time, according to the invention, of about one to a few minutes. Due to the negative pressure, the stirred sol is sucked into the negative pressure chamber and penetration takes place over a period that is quite short according to the invention, for example preferably 1 minute. This creates an infiltration layer with the desired layer thickness, which can be adjusted via the infiltration time, the viscosity of the sol, the porosity of the partially sintered ceramic molded part, but also the size of the negative pressure.
  • the molded parts In order to achieve the required aesthetics of modern dentistry, the molded parts must have different colors. Therefore, the coloring components themselves can be added to the infiltration substance, or the coloring can take place in a separate process step.
  • the formation of the layer of the infiltration substance can be realized in a simple manner with a fairly uniform thickness. Due to the short infiltration time, the infiltration substance only has time to cover the surface of the molding. When the vacuum chamber is ventilated, the infiltration substance is practically sucked into the molded body by the vacuum. It is understood that the viscosity of the preferably gel-like infiltration substance has a significant influence on the depth of penetration. A low viscosity produces a large layer thickness of the infiltration substance layer due to the capillary action of the pores of the open-pore oxide ceramic molded part, while a high viscosity reduces the depth of penetration.
  • the firing is carried out at the preselected sintering temperature in an ambient air atmosphere.
  • the sintering temperature is, for example, 1000 to 1600 ° C, and the sintering takes place under ambient pressure in an air atmosphere.
  • the sintering properties of the pure crystalline oxide ceramic are improved by the method according to the invention in such a way that an almost complete sealing sintering of the ceramic is achieved.
  • the sintering at, for example, 1480 ° C. results in a theoretical density of the composite material of 99.9%, it being favorable that it is possible to work in ambient air during the sintering.
  • the open-pore oxide ceramic molded part can be pre-pressed in the desired shape. It is possible to carry out milling or another type of machining either after the pre-sintering or after the sealing sintering.
  • milling or another type of machining either after the pre-sintering or after the sealing sintering.
  • very hard tools such as diamond grinding wheels have to be used for machining the inorganic-inorganic composite material, although the geometry is not influenced by a further shrinking process.
  • the method according to the invention allows the production of an inorganic-inorganic composite material made of zirconium oxide with a predominantly tetragonal phase component and only a very small cubic phase component, provided the sintering temperature of 1500 ° C. does not exceeded.
  • a translucency that is comparable to the hot isostatic pressing process can be produced in a surprisingly simple manner.
  • adhesion by etching to the infiltration layer is readily possible.
  • the invention can be used particularly advantageously in conjunction with zirconium oxide ceramics or mixed ceramics with a high zirconium oxide content, suitable doping, such as with yttrium, and admixtures also being advantageous.
  • suitable doping such as with yttrium, and admixtures also being advantageous.
  • the bending strength in the core or inner area is high, but the fracture toughness is particularly high in the infiltration material layer, which consists of the open-pore, crystalline oxide ceramic and the infiltration material that penetrates the open-pore, crystalline oxide ceramic or penetrates into the pores of the oxide ceramic ,
  • the composite material according to the invention thus produced contains optical and mechanical properties in the pure crystalline oxide ceramic core which even have the same values as hot isostatically pressed materials.
  • the properties of the pure crystalline oxide ceramics are apparently realized due to the tightness of the structure.
  • the solution according to the invention makes it possible in a surprisingly simple manner to achieve the strength properties which can be achieved with the hot isostatic pressing according to the prior art known to date, the time-consuming hot isostatic pressing process being able to be avoided.
  • the strength of an inorganic-inorganic composite material obtained according to the invention is not less than 800 MPa in the biaxial strength.
  • the fracture mechanical properties of the pure crystalline oxide ceramic resulted in the Indenter methods and the calculation according to Evans & Charles critical stress intensity factors Kic of, for example, 6.95 MPa * m 1/2 and were comparatively even higher than with corresponding hot isostatically pressed ceramics.
  • the properties of hot isostatically pressed materials have been recreated as crystalline oxide ceramics even with predominantly tetragonal zirconium oxide.
  • an increase in the strength of the inner area of the oxide ceramic can be achieved with the aid of the infiltration layer in a vacuum and the subsequent thermal treatment.
  • the covering or at least partial covering of the open-pore oxide ceramic with the infiltration substance stabilizes it to such an extent that a significantly improved fracture toughness of greater than 6.5 MPa m 1/2 can be achieved.
  • material removal is carried out after the finished sintering, which is preferably carried out using CAD / CAM technology.
  • the covering layer is completely or partially removed and the translucent core comes to the surface. This enables the final shaping of the composite material to be formed. If a covering layer remains in sections on the surface, this is then etched onto it.
  • a retentive pattern can be obtained in the areas where the outer layer remains. At the same time, a dense, translucent structure appears on the surface where the layer has been removed. This creates a surprisingly simple aesthetic effect that corresponds to that of hot isostatically pressed comparable materials. Due to the high density of the structure, a achieves higher light transmission (translucency), which corresponds to the hot isostatically pressed ceramic.
  • the composite materials produced in this way can be used in particular in the dental field. These include, in particular, use as a dental restoration, implant, implant component or orthodeontic product.
  • Dental restorations in particular dental frameworks, crowns, partial crowns, bridges, caps, shells, veneers, abutments or abutments are particularly suitable.
  • the composite material can be present as a monolithic block or as a cylinder. These can be adhesively attached to a holder, for example.
  • the monolithic block and cylinder are designed such that they can be machined, that is to say machined.
  • the solution according to the invention also leads to the aesthetic effect of a dental restoration part being significantly improved when the oxide ceramic part according to the invention is used as a dental restoration part.
  • the inner area of the crystalline oxide ceramic is translucent.
  • the solution according to the invention makes it possible to dispense with an additional veneering ceramic, which also eliminates the problems associated with this, such as the longer duration of the process, the adhesion problems and the required layer thickness of the veneering ceramic.
  • the solution according to the invention is also particularly suitable for the realization of delicate, yet aesthetically appealing dental products. Especially when the
  • Infiltration layer has a silicate phase, it can for example, can be etched away with HF and an adhesive connection with other materials can be realized.
  • a '5 can to form a dental restoration part - single-delusion be applied environmentally even better aesthetic effect to generate.
  • adhesive and cementing materials are possible.
  • the use of adhesive systems is preferred.
  • adhesive attachment is surprisingly simple, which is not possible with comparable hot isostatically pressed materials.
  • Chemically light-curing or dual-curing agents are preferred for the adhesives.
  • Cementing materials are, for example, zinc phosphates.
  • the composite material according to the invention thus offers in a simple manner 5 a better adhesive attachment option with the same aesthetic effect as. hot isostatically pressed comparable materials.
  • the sintering process is considerably simpler and is therefore, in contrast to the hot isostatic pressing process, considerably less expensive. It is also possible in principle to take advantage of the method according to the invention in molded ceramic parts used elsewhere, for example also in providing the parts of artificial joints, the superficial infiltration layer being favorable Properties5 in terms of low abrasion with good hardness and offers a glass-hard surface, but also for surgical implants or parts of them. Endodontic parts such as root posts can also be produced using the method according to the invention, and the good adhesion to other molded parts can also be exploited
  • the duration of the production of an inorganic-inorganic composite material according to the invention strongly depends on the time required for the desiccation, that is to say the production of the negative pressure.
  • the provision of the infiltration substance does require a not inconsiderable stirring time and standing time.
  • the infiltration material can be mixed in advance, for example while the blank is being pressed or at the latest during pre-sintering, so that this time is not included in the cycle time for the provision of a finished oxide ceramic molded part.
  • the pure infiltration time can be, for example, 1 or 2 minutes and in any case usually lasts less than 10 minutes, while finished sintering can be carried out at maximum temperature in, for example, 30 minutes.
  • the entire sintering process for the final sintering takes place in 5 to 9 hours.
  • 1 shows the implementation of the infiltration according to the invention for providing the infiltration layer on the oxide ceramic part in one embodiment of the invention
  • 2 shows the infiltration layer thickness, plotted over the infiltration time
  • 3 shows a schematic representation of a sintering furnace for the infiltrated oxide ceramic part
  • 4 shows a schematic view of a first method according to the invention in one embodiment
  • Fig. 5 is a schematic view of a method according to the invention in a second embodiment.
  • FIG. 1 schematically shows the manner in which an oxide ceramic according to the invention can be infiltrated.
  • the blank 10 is presintered and lies in a beaker 12.
  • the beaker 12 is in a desiccator 14, on the cover of which a dropping funnel 16 is mounted.
  • the desiccator has, in a manner known per se, a vacuum connection hose 18 which is connected to a vacuum pump. In a manner known per se, the desiccator closes by means of negative pressure on its ground sealing edge 20 and can be opened after venting.
  • the dropping funnel has no pressure equalization, but an adjusting valve 22 is provided, which allows the dropping rate to be set sensitively.
  • the reason for the infiltration is that a prepared sol 23 is introduced as an infiltration substance into the dropping funnel 16 after the desiccator 14 has been brought to a negative pressure of, for example, 20 mbar.
  • the control valve 22 is opened in the desired manner.
  • the cup 12 fills up to the fill level 24 with infiltrate material, which later enters the blank 10.
  • the infiltration substance can penetrate the molded part substantially uniformly on all sides. Even if a cylindrical blank 10 is shown in FIG. 1, it goes without saying that, in practice, predetermined shaped bodies are realized which are set up on the bottom of the cup 12 and are wetted with infiltration material. After an infiltration time of 1 minute, an infiltration layer with a thickness of 0.3 to 0.6 mm has already developed.
  • the infiltration depth plotted over the infiltration time can be seen from FIG. According to the invention, it is favorable that the layer thickness can be adapted to the requirements in a wide range. In this way, very fine and thin oxide ceramic parts can also be worked with a very thin infiltration layer, which nevertheless allows the inner area to have good strength.
  • a sintering furnace 26 is shown schematically in FIG. 3. It has a plurality of heating elements 36, a crucible 30 in which the
  • Blank 10 is introduced after infiltration is added.
  • the crucible is equipped with a powder bed in a manner known per se, and the blank 10 is finished-sintered into the
  • the external dimensions of the blanks can be cylindrical with a
  • the cuboid blanks have preferred dimensions
  • the dental molded part produced therefrom has consequently smaller ones due to the use of material-removing processes
  • Example 1 Exemplary embodiments are described in detail below.
  • Example 1
  • a dry pressed granulate made of Zr0 2 powder is used as the raw material for the blank 10. It is doped with yttrium and also has other components such as Al 2 O 3 .
  • dry pressed granules from TOSOH with the designations TZ-3YB and TZ-8YB can be used, which have a primary crystallite size of 280 - 400 nm and a granulate size of 50 ⁇ m, but also the granulate TZ-3Y20AB, which is characterized by 20% Al 2 0 3 additionally distinguished and otherwise corresponds to the other granules.
  • Cylindrical molds with internal diameters of 12 and 16 mm were used for the experiments according to the invention.
  • the blank 10 is pressed in a manner known per se at pressures of 500, 600 to 1100 bar, the pressing pressure being reached in 5 seconds, then the maximum pressure being maintained for 15 seconds and then the pressure being released again within a further 5 seconds ,
  • pre-consolidation which also included debinding, in accordance with the table below, in which the successive periods of pre-sintering are designated by a ramp:
  • the blank 10 was evacuated in the glass desiccator 14 to a final pressure of approximately 20 mbar. Due to the comparatively long evacuation time, which was in any case more than 1 hour, the gases enclosed in the porous blank were largely removed.
  • TEOS tetraethyl orthosilicate
  • the infiltration layer consists of predominantly tetragonal crystalline zirconium oxide phase and amorphous glass phase, essentially of condensed TEOS, while the core of the oxide ceramic part according to the invention essentially consists of zirconium oxide with the aforementioned doping, likewise predominantly in the tetragonal phase.
  • the prepared infiltration material was then introduced into the dropping funnel and the valve 22 opened, to the extent that the blank was in any case completely covered after the sol was let in, but not too much infiltration material in the dropping funnel delayed the ventilation.
  • the ventilation was carried out by opening the valve completely after the dropping funnel 16 was empty.
  • the infiltration substance which penetrated into the desiccator and was thus placed under vacuum initially foamed, the vacuum being maintained.
  • the depth of infiltration depends not only on the viscosity of the infiltration substance used (cf. the difference between ZI015 and ZI016b), but in particular also on the stirring time and the service life of the infiltration substance.
  • the finish sintering was done in the same sintering furnace used for the pre-sintering, and the firing curve was realized in 3 time periods according to the table below.
  • the blanks were encapsulated in a quartz frit or Al 2 ⁇ 3 powder bed in an aluminum oxide crucible.
  • test sintered blanks showed an infiltration layer thickness which was different in thickness depending on the infiltration time.
  • a zirconium (IV) propylate was used instead of TEOS. It was precipitated under atmospheric pressure with water in the pores of the blank to form zirconium oxide particles. This also enabled the pores to be closed, with crystalline particles depositing in the pores that correspond to the actual base material. The minimum layer thickness of the infiltration substance layer achieved in this way was approximately 50 micrometers.
  • a cylindrical shaped body with a diameter of 12 mm and a height of 25 mm was produced by pressing granules from Tosoh (TZ 3YB) and then pre-sintered at 1100 ° C. according to the invention.
  • a crown with oversize was subsequently produced on a Cerec® Inlab milling machine from Sirona for shaping processing. The excess had to be set so that after the shrinkage during sintering and the partial etching away of the covering layer, an optimal fit was created on the model frame.
  • the partially sintered and milled oxide ceramic molded part thus obtained was provided with a covering layer in vacuum, the material applied somewhat into the surface of the porous partially sintered Molded part has penetrated.
  • the L, a, b values are measured in accordance with British Standard BS 5612 (1978). 4 and 5 each show the sequence of the method steps in different embodiments of the method according to the invention.
  • the machining before infiltration is different in the process referred to as technology II, while in the process according to technology I (FIG. 4) the machining takes place after the final sintering.
  • the method according to FIG. 4 requires more tools in view of the high strength of the firmly sintered dental spare part, but offers a somewhat greater precision.
  • the experiments according to the invention resulted in oxide ceramics with a high fracture toughness of at least 6.5 Mpa * m 1/2 , the translucences corresponding to those of oxide ceramics which were produced using hot isostatic pressing.

Abstract

Verfahren zur Herstellung eines anorganisch-anorganischen Compositwerkstoffes, bei welchem aus einem Oxidkeramikpulver oder einem Pulver einer Oxidkeramikmischung nach formgebender Verarbeitung und Vorsintern ein offenporiges, kristallines Oxidkeramik-Formteil hergestellt wird, auf diese ein Infiltrationsstoff unter Vakuum und bei Raumtemperatur aufgebracht wird und bei Luftatmosphäre und Umgebungsdruck die Oxidkeramik zu einem anorganisch-anorganischen Compositwerkstoff verdichtend gesintert wird.

Description

Anorganisch-anorganischer Compositwerkstoff und Verfahren zu dessen Herstellung
Die vorliegende Erfindung betrifft einen anorganisch-anorganischen Compositwerkstoff, ein Verfahren zu dessen Herstellung sowie dessen Verwendung.
Die Verwendung von Oxidkeramiken im Dentalbereich ist seit langem bekannt. Beispielsweise ist aus der WO 95/35070 ein Verfahren bekannt, bei dem die Keramik infiltriert wird. Die Herstellung einer derartigen Oxidkeramik ist jedoch relativ aufwendig; allein der Schritt der Infiltration, die bei dieser Lösung vorgenommen wird, benötigt beispielsweise vier Stunden.
Ferner ist aus der EP-A1 -834 366 ein keramisches Werkstück bekannt, das durch Infiltration eines geschmolzenen Matrixmaterials in die Hohlräume eines Rohlings erzeugt wird. Es ist eine besondere Teilchengröße mit zwei verschiedenen Größenstufen für die Infiltrationssubstanz vorgesehen. Bei dieser Lösung wird ein Umhüllungsmaterial verwendet, das mit einem wasserlöslichen Salz versehen wird und nach Infiltration und Verfestigung entfernt werden muss. Nachteilig bei dieser Lösung ist die hohe Prozesstemperatur bei der Formgebung und die komplizierte gerätetechnische Herstellung.
Aus der Veröffentlichung WO 88/02742 ist die Herstellung eines oberflächengehärteten Keramikteils bekannt. Ein poröser A^Os-Rohling wird mit einem Zirkonoxid-Infiltrationsstoff infiltriert, so daß das fertige Keramik-Werkstück ein Volumenanteil von 1 bis 15 % Zirkonoxid enthält und hierdurch die so gebildete Aluminiurnoxidkeramik verfestigt wird. Dieses Verfahren erfordert mehrere Infiltrationsschritte und ist geeignet, wenn eine Keramik wie Aluminiumoxid an der Oberfläche verstärkt werden soll, während es sich versteht, daß eine Zirkonoxid -Keramik mit hohem kritischem Spannungsintensitätsfaktor durch Hinzufügen von Zirkonoxid nicht weiter verstärkt werden kann. Eine derartige Aluminiumoxid-Keramik zeigt nur oberflächlich eine Verstärkung, und zur Realisierung dieser Lösung müssten die Verfahrensschritte häufig hintereinander angewendet werden.
Ferner ist aus der DE-A1-I98 52 740 die Ausbildung eines Käppchens oder von anderen Zahnersatzteilen aus Aluminiumoxid-Keramik bekannt. Das vorgesinterte Formstück wird im heißen Zustand mit einem Glas infiltriert, das durch Einbringen in den Sinterofen schmilzt. Die Infiltrierung benötigt bei dieser Lösung einen Zeitraum von ca. vier Stunden und eine hohe Prozeßtemperatur. Zudem ist der Prozess nicht ausreichend steuerbar und die mechanischen Eigenschaften des Zahnersatzteils sind verhältnismäßig schlecht.
Außerdem ist aus der DE-A1 100 61 630 die Herstellung eines vollkeramischen Zahnersatzes aus einer Dentalkeramik aus Zirkonoxid und Aluminiumoxid bekannt, wobei eine Infiltration mit Glas in einem Volumenbereich von 0 - 40 % vorgenommen wird. Diese Lösung erfordert bei Verwendung als Zahnersatz die zusätzliche Realisierung einer Verblendkeramik. Nachteilig ist die geringe Festigkeit der durch die Glasphase verfestigten Keramik, sowie die geringe Transluzenz.
Ferner ist aus der EP-A1 -1 025 829 die Herstellung einer Kappe aus einem mit einem Glas infiltrierten Keramikmaterial bekannt. Für die Bereitstellung der erwünschten Transluzenz sind zwei zusätzliche Schichten vorgesehen, die auf die Kappe aufgebracht werden. Bei der Bereitstellung von Dentalrestaurationsteilen ist es nämlich aus ästhetischen Gründen wesentlich, den natürlichen Zahnschmelz nachzubilden, der eine erhöhte Transluzenz hat, während Dentin eine geringere Transluzenz hat. Hierzu dienen die Schichten 7 und 6 gemäß der vorstehend genannten Lösung. Bei einem derartigen Verfahren ist die umständliche Weiterverarbeitung durch Aufmahlen des infiltrierten Festkörpers zu einem Pulver nachteilig, aber auch die geringe Festigkeit der durch die Glasphase verfestigten Keramik.
Aus der DE-A1 101 07 451 ist ein Verfahren zur Herstellung eines Oxidkeramik-Formteils bekannt, bei dem aus einer Zirkon- oder Aluminiumoxidkeramik nach dem Vorsintern über ein großes CAD/CAM- System gefräst wird. Anschließend wird der gefräste Rohling bei 1200 bis 1650 °C drucklos gesintert. Die so hergestellte Oxidkeramikphase weist eine geringere Transluzenz als eine heißisostatisch gepresste Keramik auf, die mechanischen Eigenschaften sind schlechter als bei heißisostatisch gepressten Keramiken, und diese Keramiken sind sehr schlecht ätzbar.
Aus der CH-A5 675 120 sind Zirkonoxid-Mischkeramiken bekannt, die 7 bis 12 Gewichtsprozent Ti02 und andere kornwachstumshemmende und zur Stabilisierung geeignete Zusätze enthalten. Es können auch 0 bis 30 Gewichtsprozent Al203 enthalten sein. Die Pulvergemische werden bei 1100 bis 1300 °c gesintert. Der Nachteil dieser Keramiken ist, daß die erzielbare Dichte nur bei 98 % der theoretischen Dichte (TD) liegt und damit geringer als bei heißisostatisch gepressten Keramiken ist. Die Erzeugung eines retentiven Musters auf der Oberfläche ist bei dieser Keramik nur sehr schwer möglich.
In der WO 03/057065 wird beschrieben, wie ein Oxidkeramikformteil aus Aluminiumoxid hergestellt wird, bei dem die mittlere Korngröße nicht größer als 1 μm ist und der Transluszenzgrad 70 % von T*nm, integriert über den Wellenlängenbereich von 475-650 nm beträgt. Bei diesem Patent wird zur Erreichung dieser Eigenschaften der Prozeßschritt des heißisostatischen Pressens angewendet, wobei zuerst aus einem pulvrigen Rohstoff ein Körper einer gewünschten Form erhalten wird, der in einem thermischen Prozeß gesintert wird, so daß der Körper nur noch geschlossene Porosität erhält. Zur Erreichung der endgültigen Eigenschaften wie Transluszenz, Enddichte und Endfestigkeit wird der gesinterte Formkörper heißisostatisch nachverdichtet, um eine vollständige Verdichtung zu erreichen. Dieser Prozeßschritt ist sehr aufwendig: Bei 100 bis 219 MPa und einer Temperatur von 1200°C bis 1300°C wird der Körper verdichtet.
Schließlich ist aus der Publikation "Heißisostatisches Pressen" von B.W. Hofer (Heißisostatisches Pressen, in: Technische Keramische Werkstoffe, Fachverlag Deutscher Wirtschaftsdienst, Hrsg. Kriegesmann JJ Kap. 3.6.3.0, pp, 1-15, Januar 1993) bekannt, daß durch heißisostatisches Pressen Werkstoffe erzeugt werden, die im Gefüge kaum noch Fehlstellen aufweisen und Dichten erreichen, die fast den theoretisch möglichen Wert erreichen. Um diese Eigenschaften zu erreichen, sind jedoch bei den
Sintertemperaturen von oberhalb 1000 °C Drücke von 30 bis 200 MPa erforderlich. Ferner muss dieser Prozess in inerter Gasatmosphäre erfolgen. Dementsprechend aufwendig ist die Verfahrenstechnik und die daraus resultierende gerätetechnische Realisierung. Nachteilig ist somit der kostenaufwendige Prozess, die komplizierte Verfahrenstechnik und die damit verbundenen hohen Investitions- und Energiekosten, so daß es beispielsweise für kleinere Unternehmen wie Dentallabors nicht möglich ist, diesen Prozess selbst durchzuführen. Demgegenüber liegt der Erfindung die Aufgabe zugrunde, ein Verfahren zur Herstellung eines anorganisch-anorganischen Compositwerkstoffes zu schaffen, der für den Dentalbereich geeignet ist und eine kostenoptimierte Herstellung bei gleichzeitig verbesserter ästhetischer Wirkung erlaubt, ohne die Gebrauchseigenschaften zu verschlechtern, insbesondere die Möglichkeit zur Erzeugung eines retentiven Musters zu bieten und die Befestigung auf dem natürlichen Zahn zu gewährleisten.
Diese Aufgabe wird durch ein Verfahren zur Herstellung eines anorganisch-anorganischen Compositwerkstoffes gelöst, bei welchem
- nach formgebender Verarbeitung und Vorsintern eines Oxidkeramik enthaltenden Pulvers ein offenporiges, kristallines Oxidkeramik-Formteil hergestellt wird,
- auf dieses ein Infiltrationsstoff vorzugsweise unter Vakuum und bei Raumtemperatur aufgebracht wird und
- bei Luftatmosphäre und Umgebungsdruck das Oxidkeramik-Formteil zu dem anorganisch-anorganischen Compositwerkstoff verdichtend gesintert wird.
Bei der Herstellung wird hierbei von einem offenporigen kristallinen Oxidkeramik-Formteil ausgegangen, dessen Poren bei Raumtemperatur unter Vakuum vorzugsweise im Bereich von 2 bis 90 % der Dicke der offenporigen Oxidkeramik mit einem Infiltrationsstoff mit oder ohne Lösungsmittel, mit oder ohne färbende Zusätze, gefüllt werden. Die gesamte beschichtete Oxidkeramik wird vorzugsweise bei hohen Temperaturen einem Dichtsinterprozeß unterworfen. Hierdurch entsteht ein mehrschichtiger Compositwerkstoff, der im Inneren einen transluzenten Bereich bzw. Kern aufweist. Im äußeren Bereich ist der Compositwerkstoff weiß, farblos oder farbig. Erfindungsgemäß kann demgemäß ein transluzent-farbiges Produkt hergestellt werden.
Gegenstand der Erfindung ist ferner ein anorganisch-anorganischer Compositwerkstoff, welcher Komponenten von Oxidkeramiken und von Infiltrationsstoffen enthält und dessen hauptsächliche Verwendung im Dentalbereich liegt.
Bei der Realisierung des erfindungsgemäßen Verfahrens wird als Ausgangsmaterial ein Pulver oder eine Pulvermischung bereitgestellt, die aus entsprechender Oxidkeramik oder einer Mischkeramik aufgebaut sind. Das Pulver liegt bevorzugt als Granulat vor, es wird vorzugsweise mit einem Bindemittel versetzt. Bevorzugt werden hierfür die Metalloxide teilweise oder vollständig mit mindestens einer Monolage eines organischen Polymers belegt.
Die erfindungsgemäß eingesetzten Bindemittel bzw. Polymere sind vorzugsweise wasserlöslich.
Zu den erfindungsgemäß bevorzugten Bindemitteln bzw. Polymeren zählen synthetische Polymere oder Biopolymere. Zu den erfindungsgemäß einsetzbaren Polymeren gehören z. B. Polyvinylalkohol, Polyethylenimin, Polyacrylamid, Polyethylenoxid, Polyethylenglycol, Homo- und Copolymere (Meth)acrylsäure, Maleinsäure, Vinylsulfonsäure- und Vinylphosphonsäure, Polyvinylpyrrolidon, als Biopolymere sind insbesondere Stärke, Alginate, Gelatine, Celluloseether, beispielweise Carboxymethylcellulose einsetzbar. Bei der Realisierung des erfindungsgemäßen Verfahrens wird während oder nach der formgebenden Verarbeitung, z. B. durch uniaxiales oder kaltisostatisches Pressen des pulverförmigen Ausgangsmaterials ein Vorsintern auf vorzugsweise 50 % der theoretischen Dichte in Umgebungsluftatmosphäre drucklos vorgenommen. -
Bei der Herstellung des kristallinen offenporigen Oxidkeramik-Formteils bei hohen Temperaturen werden die Bindemittel bzw. organischen Polymere rückstandslos entfernt, wodurch die kristalline, offenporige Oxidkeramik eine Dichte von 10 bis 90 % der theoretischen Dichte enthält.
Die Vorsintertemperatur beträgt deutlich weniger als die Sintertemperatur und kann beispielsweise zwischen 600 und 1300 °C, bevorzugt zwischen 800 und 1200 °C liegen.
Das durch das Vorsintern erhaltene offenporige, kristalline Oxidkeramik- Formteil enthält im wesentlichen Oxide oder Oxidgemische der Elemente Zirkonium oder Aluminium oder Gemische dieser Elemente. Diese Metalloxide oder Metalloxidgemische können im Gemisch mit weiteren Metalloxiden vorliegen. Hierfür kommen insbesondere die Elemente der Gruppen lila, lllb und IVb in Betracht, wobei a die Hauptgruppenelemente des Periodensystems und b die Nebengruppenelemente des Periodensystems bezeichnen. Erfindungsgemäß kommen als weitere Metalloxide insbesondere Oxide der Metalle Hf, Y, AI, Ce, Sc, Er und/oder Ti in Betracht.
In einer Variante der Erfindung enthält das kristalline, offenporige Oxidkeramik-Formteil im wesentlichen Zirkonoxid mit Zusätzen von Yttriumoxid, vorzugsweise im Bereich von 0,1 bis 10 mol-%. In einer er indungsgemäß besonders bevorzugten Form enthält das Zirkonoxid Zusätze von 2 bis 4 mol-% Yttriumoxid, 2,5 bis 15 mol-% Ceroxid, 2,5 bis 5 mol-% Erbiumoxid, 2,5 bis 5 mol-% Scandiumoxid oder 0,1 bis 15 mol-% Titanoxid oder Gemische der genannten Oxide in den genannten Bereichen. . . .
Das Zirkoniumoxid kann insbesondere in Form eines tetragonalen Oxides vorliegen.
Zur Erreichung der erfindungsgemäßen Lösung ist es günstig, das teilweise gesinterte, offenporige Oxidkeramik-Formteil zu evakuieren. Dabei sind erfindungsgemäß weniger als 100 mbar, vorzugsweise weniger als 50 mbar, z.B. ca. 20 mbar, bevorzugt. Der Unterdruck wird beispielsweise 1 Min. bis 4 h angelegt, damit ein Druckausgleich im Sinne der Ausbildung des Vakuums im Inneren der teilweise gesinterten, offenporigen Oxidkeramik erfolgt. Bei dem Evakuieren werden die Gase aus der porösen teilweise gesinterten Oxidkeramik entfernt. Während dieser Zeit wird das erfindungsgemäße Sol für die Bereitstellung des auszubringenden weiteren Materials angerührt. In an sich bekannter Weise wird das Aufbringen dieses weiteren Materials im Anschluss an das Evakuieren in der Unterdruck-Atmosphäre vorgenommen. Auf das in der beschriebenen Weise hergestellte kristalline, offenporige Oxidkeramik- Formteil wird ein Infiltrationsstoff vorzugsweise unter Vakuum und bei Raumtemperatur aufgebracht.
Für das anschließende Dichtsintern beträgt die Dicke der Infiltrationsstoffschicht bevorzugt 2 bis 30 %, vorzugsweise 5 bis 20 % und besonders bevorzugt etwa 10 bis 15 %, jeweils bezogen auf den größten Durchmesser des Oxidkeramik-Formteils. Für die Einfärbung kann eine wesentlich größere Dicke der Infiltrationsschicht erforderlich sein als für das Dichtsintern: 5 - 90 %, vorzugsweise 10 - 90 %, besonders bevorzugt 30 - 85 % der Dicke des Formteils.
Der Infiltrationsstoff kann in Gegenwart eines Lösungsmittels aufgebracht werden. Als Lösungsmittel kommen sowohl polare als auch unpolare Lösungsmittel in Betracht. Beispiele sind Wasser oder Alkohol.
Der Infiltrationsstoff kann entweder die Vorstufe einer nichtmetallisch- anorganischen-Phase, einer amorphen Glasphase, einer hydrolisierbaren Verbindung eines Metalls oder eines Alkoholats eines Metalls sein.
Die Vorstufe der nichtmetallisch-anorganischen-Phase kann ionogene oder kovalente Verbindungen der Elemente der folgenden Haupt- (bezeichnet mit a) und Nebengruppen (bezeichnet mit b) aufweisen: la, Ha, lila, IVa, lllb, IVb, Vb, Vlb, Vllb und Vlllb. Ebenso kommen Gemische der genannten Elemente in Betracht. Bevorzugt sind erfindungsgemäß kovalente Verbindungen des Siliziums oder des Zirkons. Ebenso können bekannte färbende ionogene Verbindungen der Elemente Cer, Mangan, Vanadium, Eisen und andere zum Einsatz kommen. Der den inneren Bereich zumindest teilweise abdeckende Infiltrationsstoff aus nichtmetallisch-anorganischer Phase ist chemisch gegenüber Säuren wesentlich weniger beständiger als die reine kristalline Oxidkeramik im Kern bzw. inneren Bereich. Die Schicht kann leicht angeätzt werden. Die chemische Beständigkeit ist jedoch nicht wesentlich geringer als im Kern bzw. inneren Bereich, wenn die abdeckende Schicht nur mikrokristallines Zirkoniumoxid aufweist.
Durch die geringere chemische Beständigkeit des den inneren Bereich zumindest teilweise abdeckenden Infiltrationsstoffs kann dort ein retentives Muster durch Ätzen erreicht werden. Die Tiefe dieses Musters lässt sich durch das Ätzmittel, dessen Konzentration und der Zeiteinwirkung im Ätzvorgang bestimmen. Sie entspricht erfindungsgemäß höchstens der Dicke der abdeckenden Schicht, da der Kern bzw. innere Bereich gegenüber dem chemischen Angriff wesentlich beständiger ist.
Die amorphe Glasphase kann ein silikatisches Glas sein. Bevorzugt sind unter anderem alkalifreie Silikatgläser.
Als hydrolysierbare Verbindung kann unter anderem Tetraethylorthosilikat Verwendung finden. Ebenso kommen hydrolysierbare Silane zum Einsatz.
Bevorzugt sind ferner Alkoholatverbindungen. Das heißt, es kommen Alkoholate von Metallen, ausgewählt aus der Gruppe der Elemente Aluminium, Titan, Zirkonium oder Silicium zum Einsatz.
Besonders bevorzugt sind Alkoholate des Siliciums oder Aluminiums. Erfindungsgemäß können auch Gemische der erwähnten Alkoholate verwendet werden.
Erfindungsgemäß besonders günstig ist es, wenn die Infiltrationsstoffe solförmig vorliegen und zu einem Gel weiterreagieren. Sie sind bevorzugt
Vorläufer-Produkte eines glasigen oder keramischen Materials. Das Sol wird in eine Unterdruckkammer, z.B. einen Exsikkator, eingebracht. Dabei muss der Infiltrationsstoff den Formkörper vollständig bedecken. Durch das bestehende Vakuum unterstützt, erfolgt die Penetration des Infiltrationsstoffes in den Oxidkeramik-Formkörper über eine erfindungsgemäß recht kurze Zeit von etwa einer bis wenigen Minuten. Durch den Unterdruck wird das angerührte Sol in die Unterdruckkammer eingesaugt und es erfolgt eine Penetration über eine erfindungsgemäß recht kurze Zeit wie beispielsweise bevorzugt 1 Minute. Hierdurch entsteht eine Infiltrationsstoffschicht mit der erwünschten Schichtstärke, die sich über die Infiltrationsdauer, die Viskosität des Sols, die Porosität des teilweise gesinterten Keramik-Formteils aber auch die Größe des Unterdrucks einstellen lässt.
Um die geforderte Ästhetik der modernen Zahnheilkunde erreichen zu können, müssen die Formteile unterschiedliche Farben aufweisen. Deshalb können dem Infiltrationsstoff selbst die färbenden Komponenten zugesetzt werden oder aber die Einfärbung wird in einem gesonderten Verfahrensschritt erfolgen.
Überraschend lässt sich die Ausbildung der Schicht des Infiltrationsstoffes auf einfache Weise in recht gleichmäßiger Dicke realisieren. Durch die kurze Infiltrationszeit hat der Infiltrationsstoff lediglich Zeit, die Oberfläche des Formlings zu bedecken. Beim Belüften der Unterdruckkammer wird der Infiltrationsstoff durch das Vakuum im Formkörper praktisch in diesen hineingesaugt. Es versteht sich, daß die Viskosität des bevorzugt gelförmigen Infiltrationsstoffs die Eindringtiefe maßgeblich beeinflusst. Eine geringe Viskosität erzeugt aufgrund der Kapillarwirkung der Poren des offenporigen Oxidkeramik-Formteils eine große Schichtstärke der Infiltrationsstoffschicht, während eine hohe Viskosität die Eindringtiefe reduziert. Nach Belüftung der Unterdruckkammer und Verfestigen des aufgebrachten Sols zu einem Gel wird das Brennen bei der vorgewählten Sintertemperatur in Luftumgebungsatmosphäre vorgenommen. Die Sintertemperatur beträgt beispielsweise 1000 bis 1600 °C, und das Sintern erfolgt unter Umgebungsdruck in Luftatmosphäre. Durch das erfindungsgemäße Verfahren werden die Sintereigenschaften der reinen kristallinen Oxidkeramik derart verbessert, dass ein nahezu vollkommenes Dichtsintern der Keramik erreicht wird.
Erfindungsgemäß ergibt sich durch das Sintern bei beispielsweise 1480°C eine theoretischen Dichte des Compositwerkstoffes von 99,9 %, wobei es günstig ist, daß während des Sinterns in Umgebungsluft gearbeitet werden kann.
Das offenporige Oxidkeramik-Formteil kann in der erwünschten Form vorgepresst hergestellt werden. Es ist möglich, ein Fräsen oder eine andere Art der spanabhebenden Bearbeitung entweder nach dem Vorsintern oder nach dem Dichtsintern vorzunehmen. Im ersten Fall besteht der Vorteil, daß die Formgebung aus dem offenporigen Oxidkeramik-Formteil relativ leicht möglich ist, da die Endhärte noch nicht erreicht ist. Demgegenüber müssen im zweiten Fall für die Bearbeitung des anorganisch-anorganischen Compositwerkstoffes sehr harte Werkzeuge wie Diamantschleifscheiben verwendet werden, wobei allerdings die Geometrie nicht durch einen weiteren Schrumpfprozess beeinflusst wird.
Das erfindungsgemäße Verfahren erlaubt die Herstellung eines anorganisch-anorganischen Compositwerkstoffs aus Zirkonoxid mit einem überwiegend tetragonalen Phasenanteil und nur sehr geringem kubischen Phasenanteil, vorausgesetzt, die Sintertemperatur von 1500 °C wird nicht überschritten. Erfindungsgemäß lässt sich in überraschend einfacher Weise eine Transluzenz erzeugen, die mit dem heißisostatischen Pressvorgang vergleichbar ist. Zusätzlich ergibt sich gegenüber den heißisostatischen Presskeramiken der Vorteil, daß eine Adhäsion durch Ätzen an der Infiltrationsstoffschicht ohne weiteres möglich ist.
Die Erfindung läßt sich besonders günstig in Verbindung mit Zirkonoxidkeramik oder Mischkeramiken mit hohem Zirkonoxidanteil einsetzen, wobei auch geeignete Dotierungen - wie mit Yttrium - und Beimischungen günstig sein können. Bei diesen hochfesten Keramiken ist die Biegefestigkeit im Kern bzw. inneren Bereich hoch, die Bruchzähigkeit hingegen ist besonders hoch in der Infiltrationsstoffschicht, die aus der offenporigen, kristallinen Oxidkeramik und dem die offenporige, kristalline Oxidkeramik durchdringenden bzw. in die Poren der Oxidkeramik eindringenden Infiltrationsstoff besteht.
Der so hergestellte erfindungsgemäße Compositwerkstoff enthält damit im reinen kristallinen Oxidkeramikkern optische und mechanische Eigenschaften, die sogar die selben Werte wie heißisostatisch gepresste Materialien aufweisen. Die Eigenschaften der reinen kristallinen Oxidkeramik werden offenbar aufgrund der Dichtheit des Gefüges realisiert.
Die erfindungsgemäße Lösung erlaubt es in überraschend einfacher Weise, die nach dem bisher bekannten Stand der Technik mit dem heißisostatischen Pressen erreichbaren Festigkeitseigenschaften zu erreichen, wobei das zeitaufwendige heißisostatische Pressverfahren vermieden werden kann. Die Festigkeit liegt bei einem erfindungsgemäß erhaltenen anorganisch-anorganischen Compositwerkstoff bei nicht weniger als 800 MPa in der Biaxialfestigkeit. Die bruchmechanischen Eigenschaften der reinen kristallinen Oxidkeramik ergaben mit dem Indenterverfahren und der Berechnung nach Evans & Charles kritische Spannungsintensitätsfaktoren Kic von beispielsweise 6,95 MPa*m1/2 und lagen vergleichsweise sogar höher als bei entsprechenden heißisostatisch gepressten Keramiken. Überraschend ist dabei, daß die Eigenschaften von heißisostatisch gepressten Materialien sogar bei überwiegend tetragonalem Zirkoniumoxid als kristalliner Oxidkeramik nachgestellt worden sind. Überraschend läßt sich mit Hilfe der Infiltrationsstoffschicht im Vakuum und dem anschließenden thermischen Behandeln eine Festigkeitserhöhung des inneren Bereichs der Oxidkeramik erreichen. Insbesondere stabilisiert die Umhüllung oder mindestens teilweise Abdeckung der offenporigen Oxidkeramik mit dem Infiltrationsstoff dieses so weit, daß sich eine deutlich verbesserte Bruchzähigkeit von größer als 6,5 MPa m1/2 erreichen lässt.
Bei einer Ausführungsform erfolgt im Anschluss an das Fertigsintern eine materialabtragende Bearbeitung, die bevorzugt durch CAD/CAM-Technik erfolgt. Dabei wird die abdeckende Schicht vollständig oder teilweise abgetragen und der transluzente Kern kommt an die Oberfläche. Hierdurch kann die endgültige Formgebung des auszubildenden Compositwerkstoffs erfolgen. Bleibt abschnittsweise noch abdeckende Schicht an der Oberfläche erhalten, wird diese hieran anschließend angeätzt.
Ein retentives Muster kann in den Bereichen erhalten werden, wo die äußere Schicht besteben bleibt. Gleichzeitig tritt an den Stellen, wo die Schicht abgetragen wurde, ein dichtes, transluzentes Gefüge an die Oberfläche. Dadurch wird überraschend einfach eine ästhetische Wirkung erzeugt, die der von heißisostatisch gepressten vergleichbaren Werkstoffen entspricht. Durch die hohe Dichtheit des Gefüges wird eine höhere Lichtdurchlässigkeit (Transluzenz) erreicht, die der heißisostatisch gepresster Keramik entspricht.
Die so hergestellten Compositwerkstoffe können insbesondere im Dentalbereich Verwendung finden. Hierzu zählen insbesondere der Einsatz als dentale Restauration, Implantat, Implantatbestandteil oder orthodeontisches Produkt. Bei der dentalen Restauration kommen insbesondere dentale Gerüste, Kronen, Teilkronen, Brücken, Kappen, Schalen, Verblendungen, Abutment oder Stiftaufbauten in Betracht.
Der Compositwerkstoff kann hierbei als monolithischer Block oder als Zylinder vorliegen. Diese können adhäsiv zum Beispiel auf einem Halter befestigt sein. Der monolithische Block und Zylinder sind so ausgestaltet, daß sie maschinell bearbeitbar, das heißt spanabhebend bearbeitbar sind.
Überraschenderweise führt die erfindungsgemäße Lösung auch dazu, daß die ästhetische Wirkung eines Dentalrestaurationsteils, wenn das erfindungsgemäße Oxidkeramikteil als Dentalrestaurationsteil verwendet wird, deutlich verbessert ist. Der innere Bereich der kristallinen Oxidkeramik ist transluzent.
Die erfindungsgemäße Lösung ermöglicht den Wegfall einer zusätzlichen Verblendkeramik, womit auch die hiermit verbundenen Probleme entfallen, wie die längere Verfahrensdauer, die Haftungsprobleme und die erforderliche Schichtstärke der Verblendkeramik. Demgegenüber ist die erfindungsgemäße Lösung auch besonders für die Realisierung von feingliedrigen, aber dennoch ästhetisch sehr ansprechenden Dentalerzeugnissen geeignet. Insbesondere wenn die
Infiltrationsstoffschicht eine silikatische Phase aufweist, kann sie beispielsweise mit HF weggeätzt werden und eine adhäsive Verbindung mit anderen Werkstoffen realisiert werden.
Zur Ausbildung eines Dentalrestaurationsteil kann jedoch auch eine '5 - einschichtige Verblendung aufgebracht werden, um- eine noch bessere ästhetische Wirkung zu erzeugen. In den Bereichen, in deren ein retentives Muster erzeugt wurde, ist die Anwendung beliebiger Klebe- und Zementierungswerkstoffe möglich. Bevorzugt ist die Anwendung adhäsiver Systeme. Erfindungsgemäß ist eine adhäsive Befestigung0 überraschend einfach möglich, was bei vergleichbaren heißisostatisch gepressten Werkstoffen nicht möglich ist. Bei den Kleben ilfsmitten sind chemisch lichthärtende oder dualhärtende Mittel bevorzugt. Zementierungswerkstoffe sind beispielsweise Zinkphosphate. Der erfindungsgemäße Compositwerkstoff bietet somit auf einfache Weise5 eine bessere adhäsive Befestigungsmöglichkeit bei gleicher ästhetischer Wirkung wie . heißisostatisch gepresste vergleichbare Materialien. Außerdem ist der Sintervorgang wesentlich einfacher und ist dadurch, im Gegensatz zum heißisostatischen Pressvorgang erheblich kostengünstiger.0 Auch ist grundsätzlich möglich, die Vorteile des erfindungsgemäßen Verfahrens bei anderweitig verwendeten Keramikformteilen auszunutzen, beispielsweise auch bei der Bereitstellung der Teile künstlicher Gelenke, wobei die oberflächliche Infiltrationsstoffschicht günstige Eigenschaften5 hinsichtlich der geringen Abrasion bei gleichzeitig guter Härte aufweist und eine glasharte Oberfläche bietet, aber auch bei chirurgischen Implantaten oder Teilen dieser. Auch endodontische Teile wie Wurzelstifte lassen sich mit dem erfindungsgemäßen Verfahren herstellen, wobei sich auch die gute Adhäsion an anderen Formteilen ausnutzten lässt.0 Die Dauer der Herstellung eines erfindungsgemäßen anorganischanorganischen Compositwerkstoff hängt stark von der Zeitdauer ab, die für die Exsikkation, also die Herstellung des Unterdrucks, erforderlich ist. Zwar benötigt die Bereitstellung des Infiltrationsstoffs bei einem günstigen Ausführungsbeispiel der Erfindung eine nicht unbeachtliche Rührzeit und Standzeit. Bei zeitlicher Abstimmung kann jedoch das Anrühren des Infiltrationsstoffs bereits vorab begonnen werden, also beispielsweise während der Rohling gepresst wird oder spätestens während des Vorsinterns, so daß diese Zeit nicht in die Zykluszeit für die Bereitstellung eines fertigen Oxidkeramik-Formteils einfließt.
Die reine Infiltrationszeit kann beispielsweise 1 oder 2 Minuten betragen und dauert jedenfalls regelmäßig weniger als 10 Minuten, während sich das Fertigsintern bei maximaler Temperatur in beispielsweise 30 Minuten realisieren läßt. Der gesamte Sinterprozeß für das Fertigsintern erfolgt in 5 bis 9 Stunden.
Weitere Vorteile, Einzelheiten und Merkmale ergeben sich aus der nachfolgenden Beschreibung mehrerer Ausführungsbeispiele anhand der Zeichnungen. Es zeigen:
Fig. 1 die Realisierung der erfindungsgemäßen Infiltration zur Bereitstellung der Infiltrationsschicht an dem Oxidkeramikteil in einer Ausführungsform der Erfindung; Fig. 2 die Infiltrationsschichtstärke, aufgetragen über die Infiltrationszeit; Fig. 3 eine schematische Darstellung eines Sinterofens für das infiltrierte Oxidkeramikteil; Fig. 4 eine schematische Ansicht eines ersten erfindungsgemäßen Verfahrens in einer Ausführungsform; und
Fig. 5 eine schematische Ansicht eines erfindungsgemäßen Verfahrens in einer zweiten Ausführungsform.
Aus Fig. 1 ist schematisch ersichtlich, in welcher Weise eine erfindungsgemäße Oxidkeramik infiltriert werden kann. Der Rohling 10 ist vorgesintert und liegt in einem Becherglas 12. Das Becherglas 12 steht in einem Exsikkator 14, an dessen Deckel ein Tropftrichter 16 montiert ist.
Ferner weist der Exsikkator in an sich bekannter Weise einen Unterdruck- Anschlussschlauch 18 auf, der mit einer Unterdruckpumpe verbunden ist. In an sich bekannter Weise schließt der Exsikkator durch Unterdruck an seinem geschliffenen Dichtungsrand 20 und lässt sich nach dem Belüften öffnen. Der Tropftrichter hat keinen Druckausgleich, jedoch ist ein Stellhahn 22 vorgesehen, der feinfühlig die Einstellung der Tropfrate ermöglicht.
Die Infiltration erfolgt dem Grunde nach so, daß ein vorbereitetes Sol 23 als Infiltrationsstoff in den Tropftrichter 16 eingebracht wird, nachdem der Exsikkator 14 auf einen Unterdruck von beispielsweise 20 mbar gebracht worden ist.
Sobald der gewünschte Druck erreicht ist, wird der Stellhahn 22 in der gewünschten Weise geöffnet. Der Becher 12 füllt sich bis zur Füllhöhe 24 mit Infiltratsstoff, das später in den Rohling 10 eintritt. Der Infiltrationsstoff kann abhängig von der Ausgestaltung der Auflagefläche in dem Becher im wesentlichen auf allen Seiten gleichmäßig in das Formteil eindringen. Auch wenn in Fig. 1 ein zylindrischer Rohling 10 dargestellt ist, versteht es sich, daß in der Praxis vorgegebene Formkörper realisiert werden, die auf den Boden des Bechers 12 aufgestellt sind und mit Infiltrationsstoff benetzt werden. Nach einer Infiltrationszeit von 1 Min. hat sich bereits eine Infiltrationsschicht in einer Stärke von 0,3 bis 0,6 mm herausgebildet.
Aus Fig. 2 ist die Infiltrationstiefe aufgetragen über die Infiltrationszeit ersichtlich. Erfindungsgemäß ist es günstig, daß die Schichtstärke in weiten Bereichen an die Erfordernisse anpassbar ist. So kann bei sehr feingliedrigen und dünnen Oxidkeramikteilen auch mit einer recht geringen Infiltrationsschichtstärke gearbeitet werden, die dennoch eine gute Festigkeit des inneren Bereichs ermöglicht.
In Fig. 3 ist ein Sinterofen 26 schematisch dargestellt. Er weist eine Vielzahl von Heizelementen 36 auf, die einen Tiegel 30, in dem der
Rohling 10 nach Infiltration eingebracht ist, aufgenommen ist. Bevorzugt ist in an sich bekannter Weise der Tiegel mit einem Pulverbett ausgerüstet, und es erfolgt ein Fertigsintern des Rohlings 10 zu dem
Compositwerkstoff innerhalb von weniger als einer Stunde. Die äußeren Abmessungen der Rohlinge können mit zylindrischer Form mit einem
Durchmesser von ca. 5 bis ca. 20 mm und einer Länge bis ca. 100 mm betragen, die quaderförmigen Rohlinge haben bevorzugte Abmessungen
(L*B*H) von ca. 10mm*10mm*5mm bis zu ca. 150mm*150mm*25mm.
Das daraus hergestellte Dentalformteil besitzt durch die Anwendung materialabtragender Verfahren dann konsequenterweise kleinere
Abmessungen.
Im Folgenden werden Ausführungsbeispiele im Einzelnen beschrieben. Ausführunαsbeispiel 1
Als Rohstoff für den Rohling 10 wird ein Trockenpressgranulat aus Zr02- Pulver verwendet. Es ist mit Yttrium dotiert und weist auch andere Komponenten wie AI2O3 auf. . Es können beispielsweise Trockenpressgranulate der Firma TOSOH mit den Bezeichnungen TZ- 3YB und TZ-8YB eingesetzt werden, die eine Primärkristallitgröße von 280 - 400 nm und eine Granulatgröße von 50 μm haben, aber auch das Granulat TZ-3Y20AB, das sich durch 20 % Al203 zusätzlich auszeichnet und im übrigen den anderen Granulaten entspricht.
Gemäß der nachstehenden Tabelle wurden den Zirkonoxidkeramiken pulvrige, oxidische Rohstoffe in bestimmten mol-Anteilen zugesetzt.
Figure imgf000021_0001
Für die erfindungsgemäßen Versuche wurden zylindrische Pressformen mit Innendurchmessern von 12 und 16 mm verwendet. Das Pressen des Rohlings 1 0 erfolgt in an sich bekannter Weise mit Drücken von 500, 600 bis 1100 bar, wobei der Pressdruck in 5 Sekunden erreicht wurde, dann 15 Sekunden der Maximaldruck gehalten wurde und dann innerhalb von weiteren 5 Sekunden der Druck wieder abgebaut wurde. Anschließend hieran erfolgte die Vorverfestigung, die zugleich die Entbinderung einschloss, gemäß der nachstehenden Tabelle, bei der die aufeinander folgenden Zeitabschnitte des Vorsintern mit Rampe bezeichnet sind:
Figure imgf000022_0001
Das Pulver enthielt Bindemittel als Presshilfsmittel und durch das Trockenpressen und das anschließende Entbindern wird das eingesetzte Bindemittel ausgebrannt und der Rohling porös. Hieran schließt sich das Vorsintern an. Nach dem Vorsintern entsteht ein Formteil mit ca. 50 %TD.
Das Evakuieren des Rohlings 10 erfolgte in dem Glas-Exsikkator 14 auf ein Enddruck von etwa 20 mbar. Durch die vergleichsweise lange Evakuierungszeit, die jedenfalls mehr als 1 Stunde betrug, wurden die in dem porösen Rohling eingeschlossenen Gase weitestgehend entfernt.
Als Infiltrationsstoffe wurden solche auf der Basis von Tetraethylorthosilikat (TEOS) verwendet. TEOS wurde zusammen mit Wasser mit einem Katalysator aus Aluminiumnitratnonahydrat (AI (NOβ ) x 9 H20) zusammen zu einem Sol verrührt. In Abhängigkeit von der Rührzeit und der anschließenden Standzeit reagiert das Sol langsam zu einem Gel und kondensiert in einer glasähnlichen Struktur. Es wurde auch Cemitrathexahydrat dem eigentlichen Katalysator hinzugegeben.
Es wurde versucht, das Infiltrat so bereitzustellen, daß sich nach der Infiltration in der Infiltrationsschicht schnell ein festes Gel ausbildet, das sich nach dem Sintern zu einer silikatischen Glasphase umsetzt. Die Infiltrationsschicht besteht erfindungsgemäß aus überwiegend tetragonaler kristalliner Zirkonoxidphase sowie amorpher Glasphase, im wesentlichen aus kondensierten TEOS, während der Kern des erfindungsgemäßen Oxidkeramikteils im wesentlichen aus Zirkonoxid mit der vorstehend genannten Dotierung besteht, ebenfalls überwiegend in tetragonaler Phase.
Die Untersuchung verschiedener Mischungsverhältnisse aus TEOS, AI (N03)3 x 9H2O sowie Ce(N03)3 x 6H20 ergab die Tendenz, daß bei längerer Rührzeit die Verfestigungszeit, also die Standzeit bis zur Verfestigung abnimmt. Die Summe der Zeiten betrug in der Regel 6 bis 7 Stunden, wobei bei Verzicht auf Cemitrathexahydrat sich bei bestimmten Mischungsverhältnissen bereits nach einer Rührzeit von 3 Stunden eine Verfestigung einstellte.
Der vorbereitete Infiltrationsstoff wurde dann in den Tropftrichter eingeführt und der Stellhahn 22 geöffnet, und zwar soweit, daß der Rohling nach dem Einlassen des Sols jedenfalls vollständig bedeckt wurde, aber nicht zuviel Infiltrationsstoff in dem Tropftrichter die Belüftung verzögerte.
Die Belüftung erfolgte durch vollständiges Öffnen des Stellhahns, nachdem der Tropftrichter 16 leer war. Das in den Exsikkator eindringende und hierdurch, unter Unterdruck gesetzte Infiltrationsstoff schäumte zunächst auf, wobei der Unterdruck aufrecht erhalten wurde.
Figure imgf000024_0001
0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 Rührzeit, tR lii
Wie aus Fig. 2 ersichtlich ist, hängt die Infiltrationstiefe nicht nur von der Viskosität des eingesetzten Infiltrationsstoffs (vgl. den Unterschied zwischen ZI015 und ZI016b) ab, sondern insbesondere auch von der Rührzeit und der Standzeit des Infiltrationsstoffs.
Es ist beabsichtigt, die zeitliche Abstimmung so zu wählen, daß die Verfestigung des Infiltrats nach der oder während der Infiltration einsetzt. Es ist unkritisch, wenn der Infiltrationsstoff bereits verfestigt ist, wobei auch bei flüssigem Infiltrationsstoff noch eine Abdichtung der Schicht gegeben ist, nachdem auch ein flüssiges Infiltrationsstoff die Poren des Rohlings 0 verschließt. Infiltratstoffreste auf dem Keramikrohling wurden dann kurzerhand mit einem Tuch beseitigt und es erfolgt eine Lufttrocknung, wobei bei dem erfindungsgemäß durchgeführten Versuchen die Lufttrocknung über 1 bis 2 Stunden erfolgt.
Das Fertigsintern erfolgte in dem gleichen Sinterofen, der für das Vorsintern eingesetzt wurde, und die Brennkurve wurde gemäß der nachstehenden Tabelle in 3 Zeitabschnitten realisiert.
Figure imgf000025_0001
Hierbei wurden die Rohlinge in einem Quarzfritte- oder AI2θ3-Pulverbett in einem Aluminiumoxid-Tiegel gekapselt.
Im Ergebnis erwiesen die probeweise gesinterten Rohlinge eine Infiltrationsstoffschichtstärke auf, die in Abhängigkeit von der Infiltrationszeit verschieden dick war.
Es ergab sich eine gute Transluzenz des Oxidkeramik-Formteils, und im Innern der Rohlinge lag eine tetragonale Phase mit durchschnittlicher Kristallitgröße von 0,4 bis 0,5 Mikrometern vor. Die geringste erreichte Infiltrationstiefe betrug bei der vorstehend genannten Basis der Infiltrate aus TEOS zirka 180 Mikrometern.
Ausführunqsbeispiel 2
In einem modifizierten Ausführungsbeispiel wurde anstelle von TEOS ein Zirkonium(IV)-propylat verwendet. Es wurde unter atmosphärischem Druck mit Wasser in den Poren des Rohlings zu Zirkoniumoxidpartikeln ausgefällt. Auch hierdurch konnten die Poren geschlossen werden, wobei sich kristalline Partikel in den Poren abscheiden, die dem eigentlichen Grundmaterial entsprechen. Die so erreichte minimale Schichtstärke der Infiltrationsstoffschicht betrug etwa 50 Mikrometer.
Ausführungsbeispiel 3
Insgesamt ergab sich durch das erfindungsgemäße Verfahren ein anorganisch-anorganischer Compositwerkstoff mit hoher Bruchzähigkeit, wobei die Transluzenz-Eigenschaften denen von Zirkoniumkeramiken (TZP) entsprachen, die unter Verwendung des heißisostatischen Pressens hergestellt wurden.
Figure imgf000027_0001
Aus dem Vorstehenden wird deutlich, daß die herkömmlich gesinterten und nicht nach dem erfindungsgemäßen Beispiel hergestellten Proben wesentlich schlechtere Eigenschaften in Bezug auf die Lichtdurchlässigkeit und die Bruchzähigkeit aufweisen.
Ausführungsbeispiel 4
Außerdem wurden einige Proben im Anschluss an das erfindungsgemäße Verfahren mit HF geätzt und es ergab sich ein Ätzmuster, das der Dauer des Ätzens entsprach. Es wurden auch Ätzversuche durchgeführt, bei denen die äußere Schicht komplett weggeätzt wurde und nur der innere Oxidkeramikkern verblieb. Durch Abdecken der Infiltrationsstoffschicht mit Wachsen oder einer Polymerschicht können auch gezielt Stellen unangeätzt bleiben.
Ausführungsbeispiel 5
Entsprechend der oben angeführten Art und Weise wurden ein zylindrischer Formkörper mit einem Durchmesser von 12 mm und einer Höhe von 25 mm durch Pressen eines Granulates der Firma Tosoh (TZ 3YB) hergestellt und anschließend bei 1100 °C erfindungsgemäß vorgesintert. Zur form gebenden Bearbeitung wurde im Anschluss auf einer Fräsmaschine Cerec® Inlab der Firma Sirona eine Krone mit Übermaß hergestellt. Das Übermaß rnusste dabei so eingestellt werden, daß nach dem Schrumpf beim Sintern und dem teilweise Wegätzen der abdeckenden Schicht eine optimale Passgenauigkeit auf dem Modellgerüst erzeugt wurde. Erfindungsgemäß wurde das so erhaltene teilweise gesinterte und gefräste Oxidkeramik-Formteil mit einer abdeckenden Schicht in Vakuum versehen, wobei das aufgebrachte Material etwas in die Oberfläche des porösen teilweise gesinterten Formteils eingedrungen ist. Beim anschließenden Sintervorgang in Luftatmosphäre und Umgebungsluftdruck wurde dann eine fertig gesinterte Krone erzeugt, die nach dem teilweisen Wegätzen der abdeckenden Schicht einerseits ein retentives Muster aufwies und andererseits eine gute Passgenauigkeit auf dem Modellgerüst zeigte.
Ausführungsbeispiel 6:
In einem weiteren Versuch wurde eine Lösung bestehend aus 2,03 Ma.-% FeCI3, 1 ,08 Ma.-% MnCI2 * 4H20, 7,0 Ma.-% PEG20000 und dem Lösungsmittel Wasser 2 min lang gemäß der Erfindung infiltriert und anschließend getrocknet.
Nach dem Dichtsintern ergab sich eine gelb-braune Färbung des Materials nach LAB-Werten wie folgt:
L*= 81.6 a* = 0.39 b* = 17.48 C= 17.46
Dagegen zeigte die ungefärbte, drucklos gesinterte Zrθ2-Keramik des Typs (TZ3YB von Tosoh) folgende LAB-Werte:
L*= 90.45 a* = -0.57 b* = 4.36 C= 4.39
Die Messung der L, a, b- Werte erfolgt nach dem British Standard BS 5612 (1978). Fig. 4 und 5 zeigen je Darstellung der Abfolge der Verfahrensschritte in verschiedenen Ausführungsformen des erfindungsgemäßen Verfahrens. Unterschiedlich ist die spanabhebende Bearbeitung vor der Infiltration bei dem als Technologie II bezeichneten Verfahren, während bei dem Verfahren gemäß Technologie I (Fig. 4) die spanabhebende Bearbeitung nach dem Fertigsintern erfolgt. Das Verfahren gemäß Fig. 4 erfordert einen höheren Werkzeugaufwand im Hinblick auf die hohe Festigkeit des fest fertiggesinterten Dentalersatzteils, bietet jedoch eine etwas größere Präzision. Insgesamt ergaben sich durch die erfindungsgemäßen Versuche Oxidkeramiken hoher Bruchzähigkeit von mindestens 6,5 Mpa*m1/2, wobei die Transluzenzen denen von Oxidkeramiken entsprachen, die unter Verwendung des heißisostatischen Pressens hergestellt wurden.

Claims

Patentansprüche
1. Verfahren zur Herstellung eines anorganisch-anorganischen Compositwerkstoffes, bei welchem - nach formgebender Verarbeitung und Vorsintern eines Oxidkeramik enthaltenes Pulvers ein offenporiges, kristallines Oxidkeram ik-Formteil hergestellt, auf dieses ein Infiltrationsstoff vorzugsweise unter Vakuum und bei Raumtemperatur aufgebracht und - bei Luftatmosphäre und Umgebungsdruck die Oxidkeramik zu dem anorganisch-anorganischen Compositwerkstoff verdichtend gesintert wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß das Vorsintern bei einer Temperatur von 600 bis 1.300 °C erfolgt.
3. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß bei weniger als 40 mbar, vorzugsweise 10 bis 30 mbar, evakuiert wird.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß zwecks formgebender Verarbeitung das Oxidkeramik enthaltende Pulver mit einem organischen Bindemittel versehen und gepreßt wird.
5. Verfahren nach Anspruch 1 bis 3, dadurch gekennzeichnet, daß das organische Bindemittel ein ethylenisches Wachsmittel, insbesondere ein ethylenisches Wachs, ein Polyvinylharz, ein Polyvinylpyrrolidon, Polyvinylacetat, ein Polyvinylbutyral und/oder Cellulose, ist.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Infiltrationsstoff in einer Schichtdicke von 2 bis 90 % der Dicke der offenporigen kristallinen Oxidkeramik aufgebracht wird.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Schichtdicke des Infiltrationsstoffs 2 bis 30 %, vorzugsweise 5 - 20 % der Dicke des dichtgesinterten anorganisch-anorganischen Compositwerkstoffs beträgt.
8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Infiltrationsstoff für das Einfärben und Dichtsintern in einer Schichtdicke von 5 - 90%, vorzugsweise 10 - 90% der Dicke des vorgesinterten Oxidkeramik-Formteils aufgetragen wird.
9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Infiltrationsstoff aus einer Vorstufe einer nichtmetallisch-anorganischen Phase, oder einer amorphen Glasphase und einem Lösungsmittel, oder aus einer hydrolysierbaren Verbindung eines Metalls besteht, oder ein Alkoholat eines Metalls, oder einen Vorläufer eines silikatischen Glases, insbesondere ein hydrolysierbares Silan, enthält.
10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Infiltrationsstoff in Gegenwart eines Lösungsmittels aufgebracht wird.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß ein polares oder unpolares Lösungsmittel eingesetzt wird.
12. Verfahren nach Anspruch 10 oder 1 1 , dadurch gekennzeichnet, daß "5 als Lösungsmittel Wasser oder Alkohol eingesetzt werden.
13. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß vor der Infiltration eine weitere äußere Formgebung des Compositwerkstoffs durch materialabtragende0 Bearbeitung und/oder Ätzen erfolgt.
14. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß nach der Infiltration der Compositwerkstoff bei einer Temperatur von 1000°C bis 1600 °C auf eine5 theoretische Dichte von mindestens 99,5 % fertig gesintert wird.
15. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß nach der Infiltration oder nach dem insbesondere unter Umgebungsdruck erfolgenden Fertigsintern die0 äußere Formgebung des Compositwerkstoffs durch materialabtragende Bearbeitung und/oder Ätzen erfolgt.
16. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß auf der Oberfläche des5 Compositwerkstoffs wenigstens abschnittsweise eine mindestens einschichtige Beschichtung aus einem Verblendmaterial aufgetragen wird, die insbesondere nach dem Auftragen einer weiteren thermischen Behandlung unterzogen wird. 0
17. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß auf der Oberfläche des Compositwerkstoffs wenigstens abschnittsweise ein Adhäsiv aufgetragen und ein weiterer Werkstoff befestigt wird.
'5 ' 18. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß anschließend an das teilweise Sintern des Compositwerkstoffs eine materialabtragende Bearbeitung zur Formgebung erfolgt, insbesondere mit einem Übermaß von 10 bis 500 % und bevorzugt mit einem Übermaß von 15 bis 30 %.
19. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Oxidkeramik enthaltende Pulver zu einem offenporigen Oxidkeramik-Formteil in der Form eines monolithischen5 Blocks oder Zylinders verarbeitet wird.
20. Verfahren nach Anspruch 19, dadurch gekennzeichnet, daß der monolithische Block oder Zylinder spanabhebend bearbeitet wird. 0
21. Verfahren nach Anspruch 20, dadurch gekennzeichnet, daß nach dem spanabhebenden Bearbeiten der Infiltrationsstoff unter Vakuum aufgebracht wird.
22. Anorganisch-anorganischer Compositwerkstoff, dadurch5 gekennzeichnet, daß er einen transluzenten inneren Bereich aus einer kristallinen Oxidkeramik und eine den inneren Bereich zumindest teilweise umgebenden oder abdeckenden Schicht eines Infiltrationsstoffes aufweist.
23. Compositwerkstoff nach Anspruch 22, dadurch gekennzeichnet, daß er durch Dichtsintern aus einer offenporigen, kristallinen Oxidkeramik, die Oxide oder Oxidgemische der Elemente Zirkonium, Aluminium oder Titan oder Mischungen der genannten Oxide oder Oxidgemische mit Oxiden der Elemente der Gruppen lila, lllb, IVb des Periodensystems der Elemente, vorzugsweise mit Oxiden der Metalle Hf, Y, AI, Ce, Sc, Er oder Ti oder mit Gemischen dieser Oxide enthält, wobei a die Hauptgruppenelemente und b die Nebengruppenelemente des Periodensystems bezeichnet, erhältlich ist.
24. Compositwerkstoff nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die offenporige, kristalline Oxidkeramik Zirkonoxid und Zusätze von Yttriumoxid enthält.
25. Compositwerkstoff nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Zirkonoxid Zusätze von 2 bis 4 moI-%, insbesondere im Bereich 2 bis 10 mol-% Yttriumoxid oder von 2.5 bis 15 mol-% Ceroxid oder 2.5 bis 5 mol-% Erbiumoxid oder 2.5 bis 5 mol-% Scandiumoxid oder von 0.1 bis 15 mol-% Titandioxid oder Gemische von zwei oder mehreren der vorgenannten Oxide in den genannten Mengen enthält.
26. Compositwerkstoff nach Anspruch 22, dadurch gekennzeichnet, daß das Zirkonoxid Zusätze von 2 bis 4 mol-% Yttriumoxid enthält.
27. Compositwerkstoff nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die offenporige, kristalline Oxidkeramik Aluminiumoxid und Mischungen von weiteren Metalloxiden und/oder Zirkoniumoxid, vorzugsweise tetragonales Zirkoniumoxid enthält.
28. Compositwerkstoff nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Infiltrationsstoff die Vorstufe eine nichtmetallisch-anorganischen Phase oder einer amorphen Glasphase oder eine hydrolysierbare Verbindung eines Metalls oder eines Alkoholats eines Metalls ausgewählt aus der Gruppe der Elemente AI, Ti, Zr oder Si oder ein hydrolysierbares Silan enthält.
29. Compositwerkstoff nach Anspruch 28, dadurch gekennzeichnet, daß die Vorphase der nichtmetallisch-anorganischen Phase ionogene oder kovalente Verbindungen der Elemente der Gruppen la, lla, lila, IVa, lllb, IVb, Vb, Vlb, Vllb, Vlllb enthält, wobei a die Hauptgruppen und b die Nebengruppen des Periodensystems der Elemente bezeichnen.
30. Compositwerkstoff nach Anspruch 28, dadurch gekennzeichnet, daß der Infiltrationsstoff kovalente Bindungen von Si und/oder Zr enthält.
31. Compositwerkstoff nach Anspruch 28, dadurch gekennzeichnet, daß der Infiltrationsstoff ionogene Verbindungen enthält, welche färbend wirken, vorzugsweise Ce, Mn, V, Fe oder Gemische der genannten Elemente.
32. Compositwerkstoff nach Anspruch 28, dadurch gekennzeichnet, daß die amorphe Glasphase silikatisches Glas, vorzugsweise ein alkalifreies Silikatglas ist.
33. Compositwerkstoff nach Anspruch 28, dadurch gekennzeichnet, daß der Infiltrationsstoff als hydrolysierbare Verbindung Tetraethylorthosilikat enthält.
34. Compositwerkstoff nach Anspruch 28, dadurch gekennzeichnet, daß der Infiltrationsstoff Alkoholate des Siliziums oder Aluminiums enthält.
35." Compositwerkstoff nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der innere Bereich transluzent und die Infiltrationsstoffschicht weißtrüb ist.
36. Compositwerkstoff nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der innere Bereich eine theoretische Dichte von >99,5% und eine Biaxialfestigkeit von nicht weniger als 800 MPA und eine Bruchzähigkeit von mehr als 6,5 MPa m1/2, gemessen nach dem Indenterverfahren, aufweist.
37. Compositwerkstoff nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der innere Bereich eine Transluzenz aufweist, die der von heißisostatisch gepreßten Sinterkeramiken entspricht.
38. Verwendung der kristallinen, offenporigen Oxidkeramik und des daraus hergestellten anorganisch-anorganischen Compositwerkstoffes nach einem der Ansprüche 20 bis 36 im Dentalbereich, vorzugsweise als dentale Restauration, Implantat, Implantatbestandteil oder orthodontisches Produkt.
39. Verwendung nach Anspruch 38, dadurch gekennzeichnet, daß die dentale Restauration ein dentales Gerüst, eine Krone, eine Teilkrone, eine Brücke, eine Kappe, eine Schale, eine Verblendung, ein Abutment oder ein Stiftaufbau ist.
PCT/EP2005/050444 2004-01-27 2005-01-27 Anorganisch-anorganischer compositwerkstoff und verfahren zu dessen herstellung WO2005070322A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006550191A JP2007534368A (ja) 2004-01-27 2005-01-27 無機−無機コンポジット原料及びその製造方法
EP05716619.1A EP1711122B1 (de) 2004-01-27 2005-01-27 ANORGANISCH-ANORGANISCHER COMPOSITWERKSTOFF, VERFAHREN ZU DESSEN HERSTELLUNG und dessen Verwendung
US10/587,728 US8080189B2 (en) 2004-01-27 2005-01-27 Inorganic-inorganic composite material and method for producing the same
US13/240,705 US9090511B2 (en) 2004-01-27 2011-09-22 Inorganic-inorganic composite material and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004004059 2004-01-27
DE102004004059.1 2004-01-27

Publications (1)

Publication Number Publication Date
WO2005070322A1 true WO2005070322A1 (de) 2005-08-04

Family

ID=34638758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/050444 WO2005070322A1 (de) 2004-01-27 2005-01-27 Anorganisch-anorganischer compositwerkstoff und verfahren zu dessen herstellung

Country Status (4)

Country Link
US (3) US20050164045A1 (de)
EP (1) EP1711122B1 (de)
JP (1) JP2007534368A (de)
WO (1) WO2005070322A1 (de)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1777206A1 (de) * 2005-10-18 2007-04-25 Universiteit van Amsterdam Oberflächenbehandlung von Materialien auf der Basis von Zirkondioxid
EP1818318A2 (de) * 2006-02-08 2007-08-15 GC Corporation Herstellung und Verfahren für dentales Keramikmaterial
JP2008246131A (ja) * 2007-03-30 2008-10-16 Gc Corp ジルコニア製インプラントブリッジの作製方法
JP2010509336A (ja) * 2006-11-09 2010-03-25 ニューヨーク ユニバーシティ サンドイッチ材料の製造方法、ガラス/セラミック/ガラス複合構造物、ガラス/セラミック/ガラス、医科あるいは歯科補綴、およびガラス/ジルコニア/ガラスサンドイッチ材料
EP2046235B1 (de) * 2006-07-25 2012-12-26 Holger Zipprich Keramisches dentalimplantat
DE102015122857A1 (de) 2015-12-28 2017-06-29 Degudent Gmbh Verfahren zur Herstellung eines Formkörpers sowie Formkörper
DE102015017002A1 (de) * 2015-12-29 2017-06-29 Dcm Dental Creativ Management Gmbh Konditionierung der Oberfläche von Dentalkomponenten
WO2017162571A2 (en) 2016-03-23 2017-09-28 Dentsply Sirona Inc. A method to manufacture a colored blank, and blank
DE102016117395A1 (de) 2016-09-15 2018-03-15 Bredent Gmbh & Co. Kg Verfahren und Vorrichtung zur Oberflächenfunktionalisierung dentaler Restaurationen
WO2018172544A1 (de) 2017-03-23 2018-09-27 Ivoclar Vivadent Ag Verfahren zur herstellung eines glasierten keramischen körpers
EP3318218B1 (de) 2016-11-07 2019-09-11 Shofu Inc. Dentaler zirkonoxidrohling mit hoher relativer dichte
EP4197486A1 (de) 2022-04-27 2023-06-21 DeguDent GmbH Rohling sowie verfahren zur herstellung eines solchen

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7473278B2 (en) 2004-09-16 2009-01-06 Smith & Nephew, Inc. Method of surface oxidizing zirconium and zirconium alloys and resulting product
DE102006052027B4 (de) * 2006-11-03 2009-06-25 Metoxit Ag Verfahren zum Bestimmen des Sinterschwunds eines vorgesinterten Körpers und Bearbeitungsmaschine zur Bearbeitung von Weißlingen
EP2050417A1 (de) * 2007-10-15 2009-04-22 3M Innovative Properties Company Prothese, Prothesenkomponenten und Verfahren zur Herstellung einer Zahnprothese
US8454885B2 (en) * 2008-05-15 2013-06-04 Corning Incorporated Method for making fused ceramic articles of near net shape
US8361381B2 (en) 2008-09-25 2013-01-29 Smith & Nephew, Inc. Medical implants having a porous coated surface
WO2010096824A1 (en) * 2009-02-23 2010-08-26 Bartee Barry K Reinforced ptfe medical barrier
US8696954B2 (en) * 2010-06-09 2014-04-15 Tanaka Dental Products Method, system, and composition for coloring ceramics
DE102010048009A1 (de) * 2010-10-09 2012-04-12 Hoppecke Batterie Systeme Gmbh Verfahren zur Herstellung einer positiven Nickel-Hydroxidelektrode für einen Nickel-Metallhydrid- oder Nickel-Cadmium-Akkumulator
WO2013070451A1 (en) * 2011-11-07 2013-05-16 3M Innovative Properties Company Whitening composition for selectively treating the surface of dental ceramic and related methods
CN104507413B (zh) * 2012-07-31 2016-04-27 可乐丽则武齿科株式会社 牙科用研磨坯料及其制造方法
WO2016137956A1 (en) * 2015-02-26 2016-09-01 Corning Incorporated Additive manufacturing processes for making transparent 3d parts from inorganic materials
CN106830973A (zh) * 2017-02-09 2017-06-13 江苏省陶瓷研究所有限公司 一种新型Al2O3/ZrO2(Y2O3)复相陶瓷的制备方法
JP7407722B2 (ja) 2018-02-28 2024-01-04 スリーエム イノベイティブ プロパティズ カンパニー ガラス粉末を含有する表面処理剤と組み合わせた多孔質ジルコニア物品を高速焼成するための部材のキット及び方法
WO2020049432A1 (en) 2018-09-04 2020-03-12 3M Innovative Properties Company Fluorescent glazing composition for a dental zirconia article, process of sintering and kit of parts
EP3846768A1 (de) 2018-09-04 2021-07-14 3M Innovative Properties Company Glasglanzbeschichtungszusammensetzung für einen dentalen zirkoniumoxidartikel, verfahren zum sintern und kit von teilen
EP3935027A1 (de) 2019-03-04 2022-01-12 3M Innovative Properties Company Verfahren zur herstellung eines gefärbten dentalen zirkoniumoxidartikels
JP7094521B2 (ja) * 2020-11-12 2022-07-04 株式会社トクヤマデンタル ジルコニア歯科用ミルブランク、前記ミルブランクの製造方法、歯科用ジルコニアセラミックス補綴物の製造方法、およびジルコニアセラミックス物品の製造方法
CN116023164B (zh) * 2023-03-29 2023-06-06 湖南康纳新材料有限公司 一种齿科修复用多孔氧化锆瓷块及其制备方法和应用

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4626392A (en) 1984-03-28 1986-12-02 Ngk Spark Plug Co., Ltd. Process for producing ceramic body for surgical implantation
WO1988002742A1 (en) 1986-10-17 1988-04-21 Washington Research Foundation Method for producing a surface-toughened ceramic composite
EP0328316A2 (de) * 1988-02-06 1989-08-16 Shinagawa Shirorenga Kabushiki Kaisha Heizelement aus Zirconiumoxid
US4925492A (en) * 1987-09-21 1990-05-15 The Interlake Corporation Ceramic core for investment casting and method for preparation
CH675120A5 (en) 1988-05-24 1990-08-31 Alusuisse Tetragonal zirconia ceramic - contg. titania and grain growth inhibitor
US5447967A (en) * 1991-10-15 1995-09-05 Tyszblat; Michele Completely ceramic dental prosthesis based on alumina/magnesia spinel and a process for its manufacture
WO1995035070A1 (en) 1994-06-20 1995-12-28 Leonhardt Dirk Procedure for the production of ceramic tooth restorations and materials for distance, separation and substructure for the carrying out of the procedure
EP0834366A1 (de) 1995-06-02 1998-04-08 AEA Technology plc Verfahren zum Herstellen von Verbundwerkstoffen
WO1999052467A1 (en) * 1998-03-27 1999-10-21 Dirk Leonhardt Method for the fabrication of tooth restaurations in the form of all ceramic bridges and material for carrying out the method
DE19852740A1 (de) 1998-11-16 2000-05-25 Stefan Wolz Verfahren und Vorrichtung zur Herstellung von glainfiltrierten Keramikgerüsten für künstliche Zähne
EP1025829A1 (de) 1999-02-05 2000-08-09 Cicero Dental Systems B.V. Keramisches Material, aus diesem Material hergestellte Basis für Zahnersatz und Zahnersatz
DE10061630A1 (de) 2000-12-11 2002-06-27 Rauter Vita Zahnfabrik Vollkeramischer Zahnersatz mit einem Gerüst aus einem cer-stabillisierten Zirkonoxid
DE10107451A1 (de) 2001-02-14 2002-09-12 3M Espe Ag Verfahren zur Herstellung von Zahnersatz
US20020162482A1 (en) * 1994-09-19 2002-11-07 Giordano Russell A. Method for fabricating endodontic, orthodontic, and direct restorations having infused ceramic network
WO2003057065A1 (en) 2001-12-28 2003-07-17 3M Innovative Properties Company Polycrystalline translucent alumina-based ceramic material
WO2004032986A1 (de) * 2002-09-24 2004-04-22 Mathys Orthopädie GmbH Keramische endoprothesenkomponenten und verfahren zu ihrer herstellung

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3322523C2 (de) * 1983-06-23 1985-05-15 Ernst Leitz Wetzlar Gmbh, 6330 Wetzlar Vorrichtung zum Ausformen von aus Glas bestehenden optischen Bauelementen hoher Oberflächengüte
JPS60203263A (ja) * 1984-03-28 1985-10-14 日本特殊陶業株式会社 インプラント用セラミツク体の製造法
US5250352A (en) * 1986-04-11 1993-10-05 Michele Tyszblat Process for the preparation of a dental prosthesis and the prosthesis produced by said process
US5478785A (en) * 1989-11-06 1995-12-26 Pennsylvania Research Corporation Infiltration process for introducing additional phases for multiphase (composite) materials
EP0599187B1 (de) * 1992-11-25 1998-09-30 Vita Zahnfabrik H. Rauter GmbH & Co KG Verfahren zur Herstellung von Zahnersatz auf Keramikbasis
US5702650A (en) * 1993-06-24 1997-12-30 Hintersehr; Josef Process for producing dental prostheses
FR2725358B1 (fr) * 1994-10-05 1997-01-17 Sadoun Michele Tyszblat Procede de realisation d'une prothese dentaire fixee sur un implant et piece intermediaire pour la mise en oeuvre de ce procede
DE19511396A1 (de) 1995-03-28 1996-10-02 Arnold Wohlwend Verfahren zur Herstellung eines prothetischen Zahninlays bzw. einer prothetischen Zahnkrone
AU1794597A (en) * 1996-02-22 1997-09-10 Arnold Wohlwend Implantable tooth replacement, abutment therefor and process for making abutments
US7229286B2 (en) * 1998-07-10 2007-06-12 Jones Derek W Composite veneered cast glass-ceramic dental construct
US6071622A (en) * 1998-10-30 2000-06-06 Beesabathina; Durga Prasad Stabilized two-phase-glass diffusion barrier
US20020010070A1 (en) * 2000-04-25 2002-01-24 Bernard Cales Zirconia-toughened alumina biocomponent having high resistance to low temperature degradation and method for preparing same
JP4006174B2 (ja) * 2000-09-20 2007-11-14 株式会社大井製作所 車両における開閉体の開閉装置
DE20105248U1 (de) * 2001-03-26 2002-08-01 Kaltenbach & Voigt Fräs-/Schleifmaschine zur Herstellung von zahnmedizinischen Werkstücken
NL1017895C2 (nl) * 2001-04-20 2002-10-22 Elephant Dental Bv Persbaar glaskeramiek, werkwijze voor de bereiding daarvan, alsmede een werkwijze voor het vervaardigen van een dentaalrestauratie onder toepassing van genoemd glaskeramiek.
JP2010509336A (ja) * 2006-11-09 2010-03-25 ニューヨーク ユニバーシティ サンドイッチ材料の製造方法、ガラス/セラミック/ガラス複合構造物、ガラス/セラミック/ガラス、医科あるいは歯科補綴、およびガラス/ジルコニア/ガラスサンドイッチ材料
WO2012128149A1 (ja) * 2011-03-18 2012-09-27 日本碍子株式会社 炭化珪素質多孔体、ハニカム構造体及び電気加熱式触媒担体

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4626392A (en) 1984-03-28 1986-12-02 Ngk Spark Plug Co., Ltd. Process for producing ceramic body for surgical implantation
WO1988002742A1 (en) 1986-10-17 1988-04-21 Washington Research Foundation Method for producing a surface-toughened ceramic composite
US4925492A (en) * 1987-09-21 1990-05-15 The Interlake Corporation Ceramic core for investment casting and method for preparation
EP0328316A2 (de) * 1988-02-06 1989-08-16 Shinagawa Shirorenga Kabushiki Kaisha Heizelement aus Zirconiumoxid
CH675120A5 (en) 1988-05-24 1990-08-31 Alusuisse Tetragonal zirconia ceramic - contg. titania and grain growth inhibitor
US5447967A (en) * 1991-10-15 1995-09-05 Tyszblat; Michele Completely ceramic dental prosthesis based on alumina/magnesia spinel and a process for its manufacture
WO1995035070A1 (en) 1994-06-20 1995-12-28 Leonhardt Dirk Procedure for the production of ceramic tooth restorations and materials for distance, separation and substructure for the carrying out of the procedure
US20020162482A1 (en) * 1994-09-19 2002-11-07 Giordano Russell A. Method for fabricating endodontic, orthodontic, and direct restorations having infused ceramic network
EP0834366A1 (de) 1995-06-02 1998-04-08 AEA Technology plc Verfahren zum Herstellen von Verbundwerkstoffen
WO1999052467A1 (en) * 1998-03-27 1999-10-21 Dirk Leonhardt Method for the fabrication of tooth restaurations in the form of all ceramic bridges and material for carrying out the method
DE19852740A1 (de) 1998-11-16 2000-05-25 Stefan Wolz Verfahren und Vorrichtung zur Herstellung von glainfiltrierten Keramikgerüsten für künstliche Zähne
EP1025829A1 (de) 1999-02-05 2000-08-09 Cicero Dental Systems B.V. Keramisches Material, aus diesem Material hergestellte Basis für Zahnersatz und Zahnersatz
DE10061630A1 (de) 2000-12-11 2002-06-27 Rauter Vita Zahnfabrik Vollkeramischer Zahnersatz mit einem Gerüst aus einem cer-stabillisierten Zirkonoxid
DE10107451A1 (de) 2001-02-14 2002-09-12 3M Espe Ag Verfahren zur Herstellung von Zahnersatz
WO2003057065A1 (en) 2001-12-28 2003-07-17 3M Innovative Properties Company Polycrystalline translucent alumina-based ceramic material
WO2004032986A1 (de) * 2002-09-24 2004-04-22 Mathys Orthopädie GmbH Keramische endoprothesenkomponenten und verfahren zu ihrer herstellung

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
B.W. HOFER: "Technische Keramische Werkstoffe", January 1993, FACHVERLAG DEUTSCHER WIRTSCHAFTSDIENST, article "Heißisostatisches Pressen", pages: 1 - 15
DURAN P ET AL: "Nanostructured and near defect-free ceramics by low-temperature pressureless sintering of nanosized Y-TZP powders", JOURNAL OF MATERIALS SCIENCE CHAPMAN & HALL UK, vol. 32, no. 17, 1 September 1997 (1997-09-01), pages 4507 - 4512, XP002331269, ISSN: 0022-2461 *
INWANG I B ET AL: "ZIRCONIA INFILTRATION TOUGHENING OF NA-BETA-ALUMINA", JOURNAL OF MATERIALS SCIENCE, CHAPMAN AND HALL LTD. LONDON, GB, vol. 36, no. 7, 1 April 2001 (2001-04-01), pages 1823 - 1832, XP001048276, ISSN: 0022-2461 *
R.D. SKALA, I.M. LOW, R. RICHARDS: "Synthesis and properties of mullite/zirconia-toughened alumina (ZTA) composites", INTERNATIONAL CERAMIC MONOGRAPHS, vol. 1, no. 1, 2, 1994
YUNG-JEN LIN ET AL: "Cyclic infiltration of porous zirconia preforms with a liquid solution of mullite precursor", JOURNAL OF THE AMERICAN CERAMIC SOCIETY AMERICAN CERAMIC SOC USA, vol. 84, no. 1, January 2001 (2001-01-01), pages 71 - 78, XP002331268, ISSN: 0002-7820 *
ZHAO R ET AL: "Support and CoPcTS effects on the catalytic activity and properties of molybdenum sulfide catalysts", PETROL SCI TECHNOL; PETROLEUM SCIENCE AND TECHNOLOGY JUNE/JULY 2001, vol. 19, no. 5-6, June 2001 (2001-06-01), pages 495 - 502, XP008048279 *

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1777206A1 (de) * 2005-10-18 2007-04-25 Universiteit van Amsterdam Oberflächenbehandlung von Materialien auf der Basis von Zirkondioxid
WO2007046693A1 (en) * 2005-10-18 2007-04-26 Universiteit Van Amsterdam Surface treatment for zirconia based materials
EP1818318A2 (de) * 2006-02-08 2007-08-15 GC Corporation Herstellung und Verfahren für dentales Keramikmaterial
EP1818318A3 (de) * 2006-02-08 2008-04-02 GC Corporation Herstellung und Verfahren für dentales Keramikmaterial
US7494539B2 (en) 2006-02-08 2009-02-24 Gc Corporation Production method of dental ceramics material
US10736717B2 (en) 2006-07-25 2020-08-11 Holger Zipprich Surface area of a ceramic body and ceramic body
EP2046235B1 (de) * 2006-07-25 2012-12-26 Holger Zipprich Keramisches dentalimplantat
US11786342B2 (en) 2006-07-25 2023-10-17 Holger Zipprich Surface area of a ceramic body and ceramic body
JP2010509336A (ja) * 2006-11-09 2010-03-25 ニューヨーク ユニバーシティ サンドイッチ材料の製造方法、ガラス/セラミック/ガラス複合構造物、ガラス/セラミック/ガラス、医科あるいは歯科補綴、およびガラス/ジルコニア/ガラスサンドイッチ材料
JP2008246131A (ja) * 2007-03-30 2008-10-16 Gc Corp ジルコニア製インプラントブリッジの作製方法
WO2017114777A1 (en) 2015-12-28 2017-07-06 Dentsply Sirona Inc. Method for producing a shaped body
DE102015122857A1 (de) 2015-12-28 2017-06-29 Degudent Gmbh Verfahren zur Herstellung eines Formkörpers sowie Formkörper
AU2016383554B2 (en) * 2015-12-28 2019-10-31 Degudent Gmbh Method for producing a shaped body
US10640426B2 (en) 2015-12-28 2020-05-05 Dentsply Sirona Inc. Method for producing a shaped body and molding
EP3189826A1 (de) 2015-12-29 2017-07-12 DCM Dental Creativ Management GmbH Konditionierung der oberfläche von dentalkomponenten
DE102015017002A1 (de) * 2015-12-29 2017-06-29 Dcm Dental Creativ Management Gmbh Konditionierung der Oberfläche von Dentalkomponenten
WO2017162571A2 (en) 2016-03-23 2017-09-28 Dentsply Sirona Inc. A method to manufacture a colored blank, and blank
US10441391B2 (en) 2016-03-23 2019-10-15 Dentsply Sirona Inc. Method to manufacture a colored blank, and blank
DE102016106370A1 (de) 2016-03-23 2017-09-28 Degudent Gmbh Verfahren zur Herstellung eines eingefärbten Rohlings sowie Rohling
WO2018050811A1 (de) 2016-09-15 2018-03-22 Bredent Gmbh & Co. Kg Verfahren und vorrichtung zur funktionalisierung dentaler restaurationen
DE102016117395A1 (de) 2016-09-15 2018-03-15 Bredent Gmbh & Co. Kg Verfahren und Vorrichtung zur Oberflächenfunktionalisierung dentaler Restaurationen
US11534276B2 (en) 2016-09-15 2022-12-27 Bredent Gmbh & Co. Kg Method and device for functionalising dental restorations
EP3318218B1 (de) 2016-11-07 2019-09-11 Shofu Inc. Dentaler zirkonoxidrohling mit hoher relativer dichte
US11660172B2 (en) 2016-11-07 2023-05-30 Shofu Inc. Dental zirconia blank having high relative density
WO2018172544A1 (de) 2017-03-23 2018-09-27 Ivoclar Vivadent Ag Verfahren zur herstellung eines glasierten keramischen körpers
EP4197486A1 (de) 2022-04-27 2023-06-21 DeguDent GmbH Rohling sowie verfahren zur herstellung eines solchen
WO2023208533A1 (en) 2022-04-27 2023-11-02 Degudent Gmbh Blank and method for manufacturing the same

Also Published As

Publication number Publication date
JP2007534368A (ja) 2007-11-29
US9090511B2 (en) 2015-07-28
EP1711122A1 (de) 2006-10-18
EP1711122B1 (de) 2014-11-05
US20120064490A1 (en) 2012-03-15
US20050164045A1 (en) 2005-07-28
US20080118894A1 (en) 2008-05-22
US8080189B2 (en) 2011-12-20

Similar Documents

Publication Publication Date Title
EP1711122B1 (de) ANORGANISCH-ANORGANISCHER COMPOSITWERKSTOFF, VERFAHREN ZU DESSEN HERSTELLUNG und dessen Verwendung
KR100203378B1 (ko) 도재내관의 제조방법
EP2707342B1 (de) Verfahren zur dotierung oder zum einfärben von keramik, glaskeramik oder glas
JP5596735B2 (ja) 着色されたブランクおよび歯型部品の調製のためのプロセス
JP2007534368A5 (ja) 無機−無機複合材料及びその製造方法
EP3178463A1 (de) Verfahren zur herstellung eines keramischen körpers, insbesondere eines dentalkeramikrohlings, mit räumlich gezielt einstellbaren ausprägungsgraden physikalischer eigenschaften
EP1764062B1 (de) Formkörper aus einer Dentallegierung zur Herstellung von dentalen Teilen
EP2651839B1 (de) Herstellung dentaler formteile aus porösem glas
WO2014177659A1 (de) Verfahren zur herstellung eines rohlings sowie rohling
WO2013167723A1 (de) Vorgesinterter rohling für dentale zwecke
KR20200022348A (ko) 치과 절삭 가공용 지르코니아 피절삭체 및 그 제조 방법
JP2019508349A (ja) 成形体の製造方法
EP3659574A1 (de) Verfahren zur herstellung eines zirkonoxid-rohlings
DE19626656C2 (de) Beschichtete Gußform aus feuerfester Keramik und Verfahren zu ihrer Herstellung
DE4324438A1 (de) Verfahren zur Herstellung oxidkeramischer Zahnersatzstücke
WO2004006868A1 (de) Modellmaterial für zahntechnische zwecke
EP3128946B1 (de) Verfahren zur herstellung eines formrohlings aus metallpulver
EP3977959A1 (de) Verfahren zur herstellung eines dentalen formkörpers
EP1380277A1 (de) Modellmaterial für zahntechnische Zwecke sowie dessen Herstellung und Verwendung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2005716619

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006550191

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2005716619

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10587728

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10587728

Country of ref document: US