WO2005068925A1 - Kühlvorrichtung, insbesondere zum kühlen von druckluft - Google Patents

Kühlvorrichtung, insbesondere zum kühlen von druckluft Download PDF

Info

Publication number
WO2005068925A1
WO2005068925A1 PCT/EP2005/000289 EP2005000289W WO2005068925A1 WO 2005068925 A1 WO2005068925 A1 WO 2005068925A1 EP 2005000289 W EP2005000289 W EP 2005000289W WO 2005068925 A1 WO2005068925 A1 WO 2005068925A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
air inlet
fan
pressure chamber
air
Prior art date
Application number
PCT/EP2005/000289
Other languages
English (en)
French (fr)
Inventor
Wolfgang Riese
Original Assignee
Wolfgang Riese
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34673274&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2005068925(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Wolfgang Riese filed Critical Wolfgang Riese
Priority to EP05700897A priority Critical patent/EP1711770B1/de
Priority to AT05700897T priority patent/ATE488741T1/de
Priority to DE502005010550T priority patent/DE502005010550D1/de
Publication of WO2005068925A1 publication Critical patent/WO2005068925A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/0233Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with air flow channels
    • F28D1/024Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with air flow channels with an air driving element

Definitions

  • Cooling device in particular for cooling compressed air
  • the invention relates to a cooling device according to the preamble of claim 1, which generally serves for cooling a hot flow medium and preferably for cooling the compressed air generated by a compressor.
  • the cooling device is provided for use in compressors, in particular screw compressors, which are mounted on silo vehicles and provide compressed air for the pneumatic conveying of a bulk material to be transported in the silo vehicle.
  • the compressed air coolers are usually installed in the immediate vicinity of the compressor stage and inserted into the compressed air system.
  • Compressed air coolers are known in which the radiator body through which the compressed air flows, which has the form of a cooling grid or cooling network, is acted on by an axial fan with cooling air. This is because of the cramped space in the smallest possible distance from the plane Lucaseintritts- surface of the cooling grid arranged.
  • the cooling air flow generated by the axial fan is circular and acts essentially only on a circular partial surface of the total square air inlet surface of the cooling grid.
  • the surface areas of the cooling grid which lie outside this circular partial area remain more or less unaffected by the cooling air.
  • the effective efficiency of the cooling grid is thus utilized only to about 60 to 70%. This applies regardless of whether the axial fan is arranged in sucking or pressing assignment to the cooling grid.
  • axial fans Another disadvantage of axial fans is their low power density and low efficiency.
  • the air flow rate of the axial fan is highly dependent on the backpressure, and the curves show that even at the back pressure of 200 Pa, the air flow and thus also the cooling capacity is reduced by about 50%.
  • the cooling capacity was not sufficient to z. B. at an ambient temperature of 30 ° C and a compressed air flow rate of 1,000 m 3 / h, the compressed air to a final temperature of less than 100 ° C to cool.
  • the object of the invention is to improve a cooling device of the specified type so that it is the cramped space conditions of silo vehicles justice and provides optimum cooling performance, which is sufficient to a compressed air flow to a temperature in the range of ambient or the intake temperature to cool, without the space required for the cooling device is increased.
  • Another condition is to ensure by controlling or regulating the cooling capacity that a shortfall of the dew point is prevented.
  • the falling below the dew point in the compressed air condensate may indeed in the promotion of certain goods such.
  • B. PVC granules may be advantageous because it prevents the electrostatic charge. In general, especially in absorbent goods such. As flour, gypsum and cement, condensate is undesirable because it leads to sticking and pneumatic delivery can even make impossible.
  • a comparison of the performance parameters of axial and radial fans shows that Axialventialtoren already at a flow resistance or back pressure of 200 Pa have a power loss of 50%, while in radial blowers such a power loss occurs only at a back pressure or flow resistance of 600 Pa.
  • radial blowers there is the difficulty that their air outlet surface has relatively small dimensions, which in itself unfavorable for the uniform application of a larger cooling surface, such.
  • the invention overcomes this difficulty in that a pre-pressure chamber is arranged in front of the heat sink, which has at least one Beereinbergsöffhung to which the air outlet of a radial blower is connected.
  • the admission pressure chamber makes it possible for the algebläse, preferably generated by a plurality of radial fans cooling air flow evenly distributed to the surface of the heat sink. For this purpose, a minimum height of the admission pressure chamber is required.
  • Fig. 3 is a perspective view of the main components of the cooling device prior to assembly.
  • the cooling device shown in the drawings has a heat sink serving as a heat sink 1 of flat cuboid or box shape with a cooling grid or cooling network 3 and an upper and lower manifold chamber 5.
  • a heat sink serving as a heat sink 1 of flat cuboid or box shape with a cooling grid or cooling network 3 and an upper and lower manifold chamber 5.
  • In operation flows from a compressor (not shown) compressed and thereby heated compressed air, z. B. from the upper manifold chamber 5 to the lower manifold chamber 5 by a plurality of provided with cooling fins or cooling fins tubes, which together form the cooling grid 3.
  • each radial fan 7 has a fan with a rectangular air outlet opening 14 facing the cooling grid 3. More specifically, each radial fan 7, which may be of a known and commercially available design, has its own fan housing with a curved circumferential wall 8 circumferentially surrounding the radial fan motor (not shown) and parallel to its axis, and two towards the radial axis of the fan.
  • the rectangular air outlet opening 14 (FIG. 2) bounded by the peripheral wall 8 and the end walls 10 lies in a plane parallel to the axis of the fan rotor.
  • a pressure chamber 11 which has the shape of a flat, one-sided open box, the open side of the cooling grid 3 is facing.
  • the closed wall of the pressure chamber 11 has a number of rectangular Beerteintrittsöfn openings 13, the size, number and arrangement of which corresponds to the Heilaustrittsöffiiache 14 of the individual radial fan 7.
  • the radial fan 7 are mounted on the rear wall of the pressure chamber 11 such that their HeilaustrittsöffiiInstitut 14 come with the Lufteintrittsöffiiungen 13 of the pressure chamber 11 to cover. Subsequently, the pressure chamber 11 is sealingly attached to the heat sink 1. For this purpose, the pressure chamber 11 z. B. flanges 15 with holes for mounting screws.
  • the individual radial fan 7 have in comparison to the surface of the heat sink 1 small dimensions, so that the limited space is taken into account.
  • a plurality of radial fans are evenly distributed over the surface of the pressure chamber 11 and thus evenly over the air inlet surface of the cooling grid 3, the total area of the cooling grid 3 is uniformly acted upon by the cooling air flow.
  • the height h of the pressure chamber 11 see Fig.
  • the height h of the pressure chamber 11 is 4 cm.
  • the product of the height h and the circumferential length of each Heileintrittsöffiiung 13 is thus 128 cm 2 .
  • This product is a measure of the flow area available to the blower airstram entering through each air inlet opening 13 for lateral spread prior to impingement on the chilled goods 13.
  • the double-radial fans 7 can be controlled or regulated by means of an integrated electronic control unit (not shown) , Via an externally controlled control control device (not shown), in which inter alia an analog-digital temperature display and a control potentiometer is located, can the fan speed or the cooling temperature continuously between 40 ° C and 120 ° C, based on an outside temperature of 20 ° C, adjust or regulate.
  • an integrated electronic control unit not shown
  • an externally controlled control control device in which inter alia an analog-digital temperature display and a control potentiometer is located, can the fan speed or the cooling temperature continuously between 40 ° C and 120 ° C, based on an outside temperature of 20 ° C, adjust or regulate.
  • the invention is not limited to the details of the illustrated embodiment.
  • the number and arrangement of the radial fan 7 can be changed and adapted to the predetermined dimensions of the cooling grid 3, to the predetermined dimensions of the heat sink 1 and to the available space.
  • a protective housing 17 is shown (in Fig. 1 and Fig. 3 omitted), which at least partially consists of perforated plate and through which the sucked by the radial fan 7 cooling air can flow.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

Eine Kühlvorrichtung zum Kühlen eines heißen Strömungsmediums, insbesondere aus einem Kompressor austretender Druckluft, hat einen als Wärmetauscher dienenden Kühlkörper in Form eines von dem zu kühlenden Medium durchströmten Kühlergitters und eine Gebläseanordnung zum Richten eines Kühlluftstromes auf eine im wesentli­chen ebene Kühlluft-Eintrittsfläche des Kühlkörpers. Erfindungsgemäß weist die Geblä­seanordnung mindestens einen, vorzugsweise mehrere Radialventilatoren auf, und vor der Kühlluft-Eintrittsfläche des Kühlkörpers ist eine Vordruckkammer angeordnet, die mindestens eine Lufteintrittsöffnung aufweist, an die der Luftauslass jeweils eines Radi­alventilators angeschlossen ist.

Description

Kühlvorrichtung, insbesondere zum Kühlen von Druckluft
Die Erfindung betrifft eine Kühlvorrichtung gemäß dem Oberbegriff des Anspruchs 1, die allgemein zum Kühlen eines heißen Strömungsmediums und vorzugsweise zum Kühlen der von einem Kompressor erzeugten Druckluft dient. Vorzugsweise ist die Kühlvorrichtung vorgesehen zur Verwendung bei Kompressoren, insbesondere Schraubenkompressoren, die an Silo-Fahrzeugen montiert sind und Druckluft zur pneumatischen Förderung eines im Silo-Fahrzeug zu transportierenden Schüttgutes liefern.
Wegen der stark eingeschränkten Platzverhältnisse an Silo-Fahrzeugen werden die Druckluftkühler in der Regel in unmittelbarer Nähe der Kompressorstufe installiert und in das Druckluftsystem eingefügt. Bekannt sind Druckluftkühler, bei denen der von der Druckluft durchströmte Kühlerkörper, der die Form eines Kühlgitters oder Kühlnetzes hat, durch einen Axialventilator mit Kühlluft beaufschlagt wird. Dieser ist wegen der beengten Platzverhältnisse in kleinstmöglichem Abstand von der ebenen Lufteintritts- fläche des Kühlgitters angeordnet. Der vom Axialventilator erzeugte Kühlluftstrom ist kreisförmig und beaufschlagt im wesentlichen nur eine kreisförmige Teilfläche der insgesamt quadratischen Lufteintrittsfläche des Kühlgitters. Die außerhalb dieser kreisförmigen Teilfläche liegenden Flächenbereiche des Kühlgitters bleiben mehr oder weniger von der Kühlluft unbeaufschlagt. Der effektive Wirkungsgrad des Kühlgitters wird somit nur zu ca. 60 bis 70 % ausgenutzt. Dies gilt unabhängig davon, ob der Axialventilator in saugender oder drückender Zuordnung zum Kühlgitter angeordnet ist.
Ein weiterer Nachteil von Axialventilatoren ist deren geringe Leistungsdichte bzw. niedriger Wirkungsgrad. Die Luftfördermenge des Axialventilators ist stark vom Gegendruck abhängig, und die Kennlinien zeigen, dass schon bei dem Gegendruck von 200 Pa die Luftfördermenge und damit auch die Kühlleistung sich um ca. 50 % verringert. Bei den bisherigen Systemen war die Kühlleistung nicht ausreichend, um z. B. bei einer Umgebungstemperatur von 30°C und einem Druckluft- Volumenstrom von 1.000 m3/h die Druckluft auf eine Endtemperatur von weniger als 100°C zu kühlen.
Aufgabe der Erfindung ist es, eine Kühlvorrichtung der angegebenen Art so zu verbessern, dass sie den beengten Platzverhältnissen an Silo-Fahrzeugen gerecht wird und eine optimale Kühlleistung bietet, die ausreicht, um einen Druckluftstrom auf eine Temperatur im Bereich der Umgebungs- bzw. der Ansaugtemperatur zu kühlen, ohne dass der Platzbedarf für die Kühlvorrichtung vergrößert wird.
Eine weitere Bedingung besteht darin, durch Steuerung oder Regelung der Kühlleistung sicherzustellen, dass eine Unterschreitung des Taupunktes verhindert wird. Das bei Unterschreitung des Taupunktes in der Druckluft anfallende Kondensat kann zwar bei der Förderung bestimmter Güter wie z. B. PVC-Granulat vorteilhaft sein, da es die elektrostatische Aufladung verhindert. In der Regel, insbesondere bei saugfähigen Fördergütern wie z. B. Mehl, Gips und Zement, ist Kondensat aber unerwünscht, da es zu Verklebungen führt und eine pneumatische Förderung sogar unmöglich machen kann.
Die erfindungsgemäße Lösung der Aufgabe ist im Anspruch 1 angegeben. Die Unteransprüche beziehen sich auf weitere vorteilhafte Ausgestaltungen der Erfindung.
Ein Vergleich der Leistungsparameter von Axialventilatoren und Radialgebläsen zeigt, dass Axialventialtoren bereits bei einem Strömungswiderstand bzw. Gegendruck von 200 Pa einen Leistungsverlust von 50 % aufweisen, während bei Radialgebläsen ein solcher Leistungsverlust erst bei einem Gegendruck bzw. Strömungswiderstand von 600 Pa eintritt. Bei Radialgebläsen besteht jedoch die Schwierigkeit, dass ihre Luftaustrittsfläche relativ kleine Abmessungen aufweist, die an sich ungünstig für die gleichmäßige Beaufschlagung einer größeren Kühlfläche, wie z. B. der quadratischen Lufteinströmfläche eines Kühlgitters oder Kühlnetzes, ist. Die Erfindung überwindet diese Schwierigkeit dadurch, dass vor dem Kühlkörper eine Vordruckkammer angeordnet wird, die mindestens eine Lufteintrittsöffhung aufweist, an die der Luftauslass eines Radialgebläses angeschlossen ist. Die Vordruckkammer ermöglicht es, dass sich der von dem Radi- algebläse, vorzugsweise von einer Mehrzahl von Radialgebläsen erzeugte Kühlluftstrom gleichmäßig auf die Fläche des Kühlkörpers verteilt. Hierzu ist eine Mindesthöhe der Vordruckkammer erforderlich.
Eine Ausf hrungsfoπn der Erfindung wird anhand der Zeichnungen näher erläutert. Es zeigt:
Fig. 1 eine perspektivische Ansicht der Kühlvorrichtung,
Fig. 2 in etwas größerem Maßstab einen Schnitt durch die Kühlvorrichtung etwa entlang ihrer vertikalen Mittelebene,
Fig. 3 eine perspektivische Darstellung der Hauptkomponenten der Kühlvorrichtung vor dem Zusammenbau.
Die in den Zeichnungen dargestellte Kühlvorrichtung hat einen als Wärmetauscher dienenden Kühlkörper 1 von flacher Quader- bzw. Kastenform mit einem Kühlgitter oder Kühlnetz 3 sowie einer oberen und unteren Verteilerkammer 5. Im Betrieb strömt von einem Kompressor (nicht dargestellt) verdichtete und dabei erwärmte Druckluft, z. B. aus der oberen Verteilerkammer 5 zur unteren Verteilerkammer 5 durch eine Vielzahl von mit Kühlrippen oder Kühllamellen versehene Röhren, die zusammen das Kühlgitter 3 bilden.
In den Zwischenräumen zwischen den Kühlrippen oder -lamellen wird das Kühlgitter 3 durchströmt von einem Kühlluftstrom, der von einer Mehrzahl von Radialgebläsen 7 erzeugt wird. Bei dem Ausfuhrungsbeispiel sind sechs Radialgebläse 7 vorgesehen, wobei jeweils zwei Radialgebläse 7 einen gemeinsamen, zwischen ihnen angeordneten Antriebsmotor 9 aufweisen und somit ein Radial-Doppelgebläse bilden. Jedes Radialgebläse 7 hat ein Gebläse mit einer rechteckigen, dem Kühlgitter 3 zugewandten Luftaus- trittsöf&iung 14. Genauer gesagt hat jedes Radialgebläse 7, das von bekannterund im Handel erhältlicher Bauart sein kann, ein eigenes Gebläsegehäuse mit einer gekrümmten, den Radial- Gebläserotor (nicht dargestellt) mit Abstand umgebenden und zu dessen Achse parallelen Umfangswand 8, und zwei zur Achse des Radial-Gebläserotors senkrechten Stirnwänden 10, in denen die Einströmöffiiungen 12 des Radialgebläses angeordnet sind. Die von der Umfangswand 8 und den Stirnwänden 10 umgrenzte rechteckige Luftaustritts- öf&iung 14 (Fig. 2) liegt in einer zur Achse des Gebläserotors parallelen Ebene.
Zwischen dem Kühlgitter 3 und den Radialgebläsen 7 befindet sich eine Druckkammer 11, die die Form eines flachen, einseitig offenen Kastens hat, dessen offene Seite dem Kühlgitter 3 zugewendet ist. Die geschlossene Wandung der Druckkammer 11 weist eine Anzahl von rechteckigen Lufteintrittsöfn ungen 13 auf, deren Größe, Anzahl und Anordnung diejenigen der Luftaustrittsöffiiungen 14 der einzelnen Radialgebläse 7 entspricht.
Für den Zusammenbau der Kühlvorrichtung werden die Radialgebläse 7 auf der Rückwand der Druckkammer 11 derart montiert, dass ihre Luftaustrittsöffiiungen 14 mit den Lufteintrittsöffiiungen 13 der Druckkammer 11 zur Deckung kommen. Anschließend wird die Druckkammer 11 abdichtend an dem Kühlkörper 1 befestigt. Zu diesem Zweck kann die Druckkammer 11 z. B. Flansche 15 mit Löchern für Befestigungsschrauben aufweisen.
Die einzelnen Radialgebläse 7 haben im Vergleich zur Fläche des Kühlkörpers 1 kleine Abmessungen, so dass den beengten Platzverhältnissen Rechnung getragen wird. Da jedoch mehrere Radialgebläse gleichmäßig über die Fläche der Druckkammer 11 und damit auch gleichmäßig über die Lufteintrittsfläche des Kühlgitters 3 verteilt sind, wird die Gesamtfläche des Kühlgitters 3 gleichmäßig von dem Kühlluftstrom beaufschlagt wird. Dabei muss jedoch sichergestellt werden, dass der aus jeder Lufteintritts- öffhung 13 in die Druckkammer 11 eintretende Luftstrom sich auch seitlich ohne ü- bermäßigen Strömungswiderstand ausbreiten kann, um die Lufteintrittsfläche des Kühlgitters 3 gleichmäßig, auch außerhalb der Kontur jeder Lufteintrittsöffiiung 13, zu beaufschlagen. Um dies zu gewährleisten, ist erfindungsgemäß die Höhe h der Druckkammer 11 (s. Fig. 2) so bemessen, dass sie in einer vorgegebenen Relation zu der Umfangslänge und der Fläche jeder der Lufteintrittsöfϊhungen 13 steht. Diese Relation ist derart, dass das Produkt aus der Höhe h und der Umfangslänge jeder Lufteintritts- öffhung 13 das 1- bis 3-fache, vorzugsweise ca. das 2-fache, der Fläche jeder Lufteintrittsöföiung 13 beträgt.
Bei einem konkreten Ausführungsbeispiel hat jede Lufteintrittsöföiung 13 Seitenlängen von 10 bzw. 6 cm und somit eine Fläche von 60 cm2 und eine gesamte Umfangslänge von 32 cm. Die Höhe h der Druckkammer 11 beträgt 4 cm. Das Produkt aus der Höhe h und der Umfangslänge jeder Lufteintrittsöffiiung 13 beträgt somit 128 cm2. Dieses Produkt ist ein Maß für den Strömungsquerschnitt, der dem durch jede Lufteintrittsöffiiung 13 eintretenden Gebläseluftstram für die seitliche Ausbreitung vor dem Auftreffen auf das Kühlgüter 13 zur Verfügung steht.
Es hat sich gezeigt, dass bei einer erfindungsgemäßen Kühlvorrichtung, bei der derbis- her verwendete Axialventilator durch die dargestellte Anordnung von Radialgebläsen 7 mit Druckkammer 11 ersetzt wurde, die Austrittstemperatur der Druckluft aus der Kühlvorrichtung von bisher 100°C auf 50°C gesenkt werden konnte. Dies liegt daran, dass die von den Doppel-Radialgebläsen 7, aufgrund der zur Verfügung stehenden höheren Leistungsdichte, mit erhöhtem Druck in die Druckkammer 11 eingebrachte Luftmenge das Kühlgitter 3 flächendeckend beaufschlagt und mit maximaler Strömungsgeschwindigkeit gleichmäßig durchströmt.
Um dem Betreiber die Möglichkeit zu bieten, die für das jeweilige Fördergut erforderliche Kühlleistung einzustellen und ggf. eine durch zu starke Kühlung verursachte Unterschreitung des Taupunktes zu vermeiden, sind die Doppel-Radialgebläse 7 mittels einer integrierten elektronischen Steuereinheit (nicht dargestellt) steuerbar bzw. regelbar. Ü- ber ein extern gesteuertes Steuerkontrollgerät (nicht dargestellt), in dem sich unter anderem eine analog-digitale Temperaturanzeige sowie ein Regel-Potentiometer befindet, läßt sich die Gebläseleistung bzw. die Kühltemperatur stufenlos zwischen 40°C und 120°C, bezogen auf eine Außentemperatur von 20°C, einstellen bzw. regeln.
Die Erfindung ist nicht auf die Einzelheiten der dargestellten Ausfuhrungsform beschränkt. So kann insbesondere die Anzahl und Anordnung der Radialgebläse 7 geändert und an die vorgegebenen Abmessungen des Kühlgitters 3, an die vorgegebenen Abmessungen des Kühlkörpers 1 und an die vorhandenen Platzverhältnisse anpassen.
In Fig. 2 ist ein Schutzgehäuse 17 dargestellt (in Fig. 1 und Fig. 3 weggelassen), welches mindestens teilweise aus Lochblech besteht und durch welches die von den Radialgebläsen 7 angesaugte Kühlluft einströmen kann.

Claims

Ansprüche
1. Kühlvorrichtung zum Kühlen eines heißen Strömungsmediums, insbesondere von aus einem Kompressor austretender Druckluft, mit einem als Wärmetauscher dienenden Kühlkörper (1) in Form eines von dem zu kühlenden Medium durchströmten Kühlergitters (Kühlernetzes) (3), und einer Gebläseanordnung zum Richten eines Kühlluftstromes auf eine im wesentlichen ebene Kühlluft- Eintrittsfläche des Kühlkörpers, dadurch gekennzeichnet, dass vor der Kühlluft-Eintrittsfläche des Kühlkörpers (1) eine Vordruckkammer (11) angeordnet ist, die mindestens eine Lufteintrittsöffiiung (13) aufweist, an die der Luftauslass eines Radialventilators (7) angeschlossen ist.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass in der Wandung der Druckkammer (11) mehrere Lufteintrittsöffiiungen (13), vorzugsweise gleichmäßig verteilt, angeordnet sind, an die jeweils ein Radial Ventilator (7) angeschlossen ist.
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass je zwei Axialventilatoren (7) zu einem Axialdoppelventilator mit gemeinsamem Antriebsmotor (9) zusammengefasst sind.
4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die mit den Lufteintrittsöffiiungen versehene Wandung der Druckkammer (11) im wesentlichen parallel zur Lufteintrittsfläche des Kühlkörpers (1) verläuft in einem Abstand (h), der so bemessen ist, dass das Produkt aus dem Abstand (h) und der Umfangslänge jeder Lufteintrittsöffiiung (13) gleich oder größer als die Fläche jeder Lufteintrittsöffiiung ist.
5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass das Produkt gleich dem 1- bis 3 -fachen, vorzugsweise etwa gleich dem 2-fachen der Fläche der Lufteintrittsöffiiung (13) ist.
6. Vorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass sie eine Einrichtung zum Verändern oder Regeln der Drehzahl jedes Axialventilators (7) aufweist.
PCT/EP2005/000289 2004-01-19 2005-01-13 Kühlvorrichtung, insbesondere zum kühlen von druckluft WO2005068925A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05700897A EP1711770B1 (de) 2004-01-19 2005-01-13 Kühlvorrichtung, insbesondere zum kühlen von druckluft
AT05700897T ATE488741T1 (de) 2004-01-19 2005-01-13 Kühlvorrichtung, insbesondere zum kühlen von druckluft
DE502005010550T DE502005010550D1 (de) 2004-01-19 2005-01-13 Kühlvorrichtung, insbesondere zum kühlen von druckluft

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE202004000733.9 2004-01-19
DE202004000733U DE202004000733U1 (de) 2004-01-19 2004-01-19 Kühlvorrichtung, insbesondere zum Kühlen von Druckluft

Publications (1)

Publication Number Publication Date
WO2005068925A1 true WO2005068925A1 (de) 2005-07-28

Family

ID=34673274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/000289 WO2005068925A1 (de) 2004-01-19 2005-01-13 Kühlvorrichtung, insbesondere zum kühlen von druckluft

Country Status (4)

Country Link
EP (1) EP1711770B1 (de)
AT (1) ATE488741T1 (de)
DE (2) DE202004000733U1 (de)
WO (1) WO2005068925A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7122305B2 (en) 1993-03-31 2006-10-17 Cadus Technologies, Inc. Methods and compositions for identifying receptor effectors

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6164909A (en) * 1997-04-03 2000-12-26 Modine Manufacturing Company Radial fan
US6363892B1 (en) * 1999-10-21 2002-04-02 Modine Manufacturing Company Cooling system, especially for a vehicle
US20020152766A1 (en) * 2001-04-21 2002-10-24 Daniela Fischer Cooling system for a vehicle
US20030047151A1 (en) * 2001-08-17 2003-03-13 Behr Gmbh & Co. Motor vehicle cooling system and motor vehicle embodying same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5709175A (en) * 1995-12-19 1998-01-20 Caterpillar Inc. Cooling air system for an engine
EP0840073B1 (de) * 1996-11-01 2003-07-23 Martin Frei Warmluftheizeinrichtung
DE10018089A1 (de) * 2000-04-12 2001-11-29 Modine Mfg Co Kastenförmige Kühlanlage für Kraftfahrzeuge
DE10120483A1 (de) * 2001-04-25 2002-10-31 Modine Mfg Co Anordnung zur Kühlung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6164909A (en) * 1997-04-03 2000-12-26 Modine Manufacturing Company Radial fan
US6363892B1 (en) * 1999-10-21 2002-04-02 Modine Manufacturing Company Cooling system, especially for a vehicle
US20020152766A1 (en) * 2001-04-21 2002-10-24 Daniela Fischer Cooling system for a vehicle
US20030047151A1 (en) * 2001-08-17 2003-03-13 Behr Gmbh & Co. Motor vehicle cooling system and motor vehicle embodying same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7122305B2 (en) 1993-03-31 2006-10-17 Cadus Technologies, Inc. Methods and compositions for identifying receptor effectors

Also Published As

Publication number Publication date
DE202004000733U1 (de) 2005-06-09
DE502005010550D1 (de) 2010-12-30
EP1711770B1 (de) 2010-11-17
EP1711770A1 (de) 2006-10-18
ATE488741T1 (de) 2010-12-15

Similar Documents

Publication Publication Date Title
EP3388621B1 (de) Kompressoranlage mit interner luft-wasser-kühlung
EP3538829A1 (de) Trockenraum
EP1417442B1 (de) Vorrichtung und verfahren zur rückkühlung von kühlmitteln oder rückkühlmedien oder zur kältegewinnung
DE202010011138U1 (de) Ventilatoreneinheit zur Beförderung eines Luftstroms in einem Kanal
DE202019100059U1 (de) Inverteranordnung
EP1711770B1 (de) Kühlvorrichtung, insbesondere zum kühlen von druckluft
EP2295881A1 (de) Heizungs-, Klima- und Lüftungsanlage
DE102017112269A1 (de) Klimatisierungsvorrichtung mit Befeuchtung
DE60122823T2 (de) Statischer Kühlschrank mit Verdampfer im Luftkanal
DE102011050323B3 (de) Kühlvorrichtung zur Klimatisierung einer Datenverarbeitungsanlage
DE1931155A1 (de) Geraet zum Zufuehren von Luft in einen Raum
EP1673580A1 (de) Arbeitsraumluftkühler
WO2007107193A1 (de) Bodenkonvektor
DE2801258A1 (de) Raum-klimaanlage
EP0890802B1 (de) Be- und Entlüftungsanlage mit regenerativer Wärmerückgewinnung
DE202018105654U1 (de) Ventilatorbetriebene Ablufthaube
DE102017117682A1 (de) Ventilatoreinrichtung, Konditioniervorrichtung und Behandlungsanlage mit einer solchen
DE202019003044U1 (de) Trocknungsvorrichtung
DE3832915A1 (de) Reinraum
EP3277958A1 (de) Kompressoranlage zur erzeugung von druckluft sowie verfahren zum betrieb einer druckluft erzeugenden kompressoranlage
DE202021102189U1 (de) Vorrichtung zum Klimatisieren von Räumen
DE3224693C2 (de) Trocknungsvorrichtung für körniges Gut
DE202011051350U1 (de) Luftkühlermodul
EP3747619A1 (de) Vorrichtung zumindest zum kühlen eines zylinders eines extruders
DE202018107186U1 (de) Kammer zum Lagern, Reifen und/oder Kühlen von Waren

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005700897

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2005700897

Country of ref document: EP