WO2005068824A1 - Kraftstoffeinspritzventil für brennkraftmaschinen - Google Patents

Kraftstoffeinspritzventil für brennkraftmaschinen Download PDF

Info

Publication number
WO2005068824A1
WO2005068824A1 PCT/EP2004/052959 EP2004052959W WO2005068824A1 WO 2005068824 A1 WO2005068824 A1 WO 2005068824A1 EP 2004052959 W EP2004052959 W EP 2004052959W WO 2005068824 A1 WO2005068824 A1 WO 2005068824A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
fuel
valve needle
section
bore
Prior art date
Application number
PCT/EP2004/052959
Other languages
English (en)
French (fr)
Inventor
Patrick Mattes
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to DE502004009164T priority Critical patent/DE502004009164D1/de
Priority to EP04798204A priority patent/EP1709321B1/de
Publication of WO2005068824A1 publication Critical patent/WO2005068824A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/042The valves being provided with fuel passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1873Valve seats or member ends having circumferential grooves or ridges, e.g. toroidal

Definitions

  • the present invention is based on a fuel injection valve according to the preamble of patent claim 1.
  • a fuel injection valve as is known for example from published patent application DE 198 18 200 AI, a bore is formed in a valve body, in which a piston-shaped valve needle is arranged.
  • the valve needle interacts with a valve seat so that the opening of at least one injection opening is controlled by the longitudinal movement of the valve needle.
  • a throttle collar is formed on the valve needle and is immersed in a corresponding throttle section when the valve needle rests on the valve seat. During the opening stroke movement of the valve needle, the throttle collar emerges from the throttle section, thereby opening up a flow cross section through which fuel is supplied to the injection openings.
  • the flow cross section is designed as an annular channel which is formed between the valve needle and the wall of the bore.
  • an injection profile can be achieved in which at the start of the opening stroke movement only a little fuel is supplied to the injection openings, while after the throttle collar has emerged from the throttle section, a large amount of fuel is supplied to the injection openings through the flow cross-section.
  • the fuel injection valve has the disadvantage that not enough fuel can be supplied to the injection openings due to the flow cross section, in particular under full load of the corresponding internal combustion engine.
  • the flow cross section which is opened between the valve needle and the wall of the bore by the throttle collar emerging from the throttle section still has a high flow resistance, so that the large amount of fuel, which is necessary in full load operation, can not be supplied in the time available.
  • the fuel injection valve according to the invention with the characterizing features of claim 1 has the advantage that, after the throttle collar has emerged from the throttle section, a great deal of fuel flows into the injection openings at a high rate, so that a very large amount of fuel is injected in a very short time can.
  • a fuel channel is formed in the valve needle, the inlet opening of which is arranged downstream of the throttle collar and which runs in the valve needle in such a way that additional fuel can be fed to the injection openings via the fuel channel, in addition to the annular channel which is formed between the valve needle and the wall of the bore is. This is particularly advantageous if the flow cross section of the ring channel cannot be increased arbitrarily, since the installation space in a fuel injection valve is very limited and this has to withstand ever higher pressures in the course of the development of diesel injection systems.
  • the throttle section is formed by a central opening in an adjusting disc which is arranged in the bore of the valve body. The point in time at which the throttle collar exchanges from the throttle section can be set precisely via the thickness of the shim.
  • the fuel channel opens at the end of the valve needle on the valve seat side. It is particularly advantageous here if the valve sealing surface, which is essentially conical, has two sealing areas. The two sealing areas seal the injection openings both upstream and downstream, so that when the valve needle rests on the valve seat there is no hydraulic connection between the fuel channel and the injection openings. This means that there can be no leakage and thus increased hydrocarbon emissions from the internal combustion engine.
  • the fuel channel is formed by at least one transverse bore and a longitudinal bore intersecting the transverse bore. The longitudinal bore advantageously runs centrally in the axial direction of the valve needle. Bores designed in this way can be formed simply and at low cost in the valve needle.
  • FIG. 1 shows a longitudinal section through a fuel injection valve
  • FIG. 2 shows an enlarged illustration of the section of FIG. 1 labeled II.
  • FIG. 1 an embodiment of the fuel injection valve according to the invention is shown in longitudinal section.
  • the fuel injection valve has a valve body 1, in which a bore 3 is formed.
  • the bore 3 is delimited at its combustion chamber end by an essentially conical valve seat 7, from which a plurality of injection openings 11 extend.
  • the injection openings 11 open into the combustion chamber of the internal combustion engine in the installed position of the fuel injection valve.
  • the bore 3 widens away from the valve seat 7 to form a spring chamber 8, a guide section 103 of the bore 3 being formed in a central section between the spring chamber 8 and the valve seat 7.
  • a valve needle 5 is arranged to be longitudinally displaceable, which is essentially piston-shaped and has a longitudinal axis 6.
  • the valve needle 5 is guided with a central section 30 in the guide section 103 of the bore 3 and has an essentially conical valve sealing surface 9 at its end on the valve seat side.
  • a flow cross section 14 is formed, which has the shape of an annular channel between the central portion 30 and the valve seat 7.
  • the flow cross section 14 continues towards the valve seat via recesses 32 which are formed on the central section 30 of the valve needle 5.
  • a pressure shoulder 12, which faces away from the valve seat 7, is formed on the central section 30 facing the valve seat 7.
  • the piston section 105 is guided in a sleeve 20 which is arranged in the spring chamber 8.
  • Sleeve 20 and the end face of valve needle 5 facing the valve seat delimit a control chamber 17 which is filled with fuel and in which a variable pressure can be set.
  • a closing spring 22 is arranged in the spring chamber 8 surrounding the piston section 105, said spring having a pressure prestress and thereby pressing the valve needle 5 in the direction of the valve seat 7.
  • the sleeve 20 always remains stationary since it is pressed by the closing spring 22 against a further body of the fuel injector which is in contact with the valve body 1 and is not shown in the drawing.
  • valve sealing surface 9 The interaction of the valve sealing surface 9 with the valve seat 7 is shown in more detail in FIG. 2 by an enlarged illustration of the section of FIG. 1 designated II.
  • the valve sealing surface 9 has a first sealing region 109 and a second sealing region 209, which are separated from one another by an annular groove 50.
  • first sealing region 109 When the valve sealing surface 9 is in contact with the valve seat 7, the first sealing region 109 is in contact with the valve seat 7 upstream of the injection openings 11, while the second sealing region 209 is in contact with the downstream side.
  • the valve needle 5 rests on the valve seat 7, there is thus a sealing of the injection openings 11 both upstream and downstream.
  • a throttle collar 34 is arranged on the valve needle.
  • the throttle collar 34 plunges into a throttle section 36 which is formed by a central opening 28 in an adjusting disk 26.
  • the shim 26 is arranged in the bore 3, and the central opening 28 is formed so that a gap remains between the throttle collar 34 and the throttle section 26 formed by the central opening 28, through which fuel can flow from the spring chamber 8 via the recesses 32 to the injection openings 11, but only throttled.
  • an annular groove 38 is formed, in which a transverse bore 44 or a plurality of transverse bores 44 are formed, which intersect in the longitudinal axis 6 of the valve needle 5 in the case of a plurality of transverse bores 44.
  • a longitudinal bore 46 is formed in the valve needle 5, which intersects the one or more transverse bores 44.
  • a fuel channel 42 is formed via the transverse bore 44 and the longitudinal bore 46, the inlet opening 43 of which is formed by the transverse bore 44 and the outlet opening 48 is formed on the end of the valve needle 5 on the valve seat side.
  • the fuel injection valve works as follows: There is always a high fuel pressure in the spring chamber 8 and thus also in the throttle cross section 14, the fuel being supplied to the end of the bore 3 facing away from the valve seat. If the valve needle 5 is to remain in its closed position, a high fuel pressure is provided in the control chamber 17, via its hydraulic force the valve needle
  • valve needle 5 is held in contact with valve seat 7.
  • the fuel pressure in the control chamber 17 is reduced, which also reduces the corresponding hydraulic force.
  • the hydraulic force that is generated by acting on the pressure shoulder 12 on the valve needle 5 now results in a resultant force on the valve needle 5, which is directed away from the valve seat 7.
  • valve needle 5 then lifts off the valve seat 7, so that the injection openings 11 are opened. Since the throttle collar 34 is still immersed in the throttle section 36 at the beginning of the opening stroke movement, fuel can flow to the injection openings 11 only via the narrow gap that remains between the throttle collar 34 and the throttle section 36. This makes the movement supply of the valve needle 5 relatively slow at the beginning and the injection rate correspondingly low. After the valve needle 5 has passed through the stroke h, the throttle collar 34 emerges from the throttle section 36. As a result, the flow cross section 14 is opened, so that a large amount of fuel can now flow through the recesses 32 and the flow cross section 14 to the injection openings 11.
  • fuel flows through the fuel channel 42, that is to say through the transverse bore 44 and the longitudinal bore 46, and exits at the end on the valve seat side through the outlet opening 48 of the valve needle 5.
  • the additional fuel channel allows more fuel to be supplied to the injection openings, since the flow cross section 14 can only be enlarged to a limited extent on account of the narrow dimensions and the limited installation space in the internal combustion engine.
  • the pressure in the control chamber 17 is increased again, so that a resulting closing force directed onto the valve seat 7 results on the valve needle 5, which pushes it back into its closed position.
  • the throttle section 36 in the adjusting disk 26, provision can also be made for the throttle section 36 to be formed directly in the bore 3.
  • the shim 26 would be omitted in this case, but it is about
  • Adjustment disk 26 and its thickness possible to set the stroke h very precisely, which the valve needle 5 traverses before the throttle collar 34 emerges from the throttle section 36.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Das Kraftstoffeinspritzventil weist einen Ventilkörper (1) auf, in dem in einer Bohrung (3) eine kolbenförmige Ventilnadel (5) angeordnet ist, die mit einem Ventilsitz (7) zusammenwirkt. An der Ventilnadel (5) ist ein Drosselbund (34) ausgebildet, der bei Anlage der Ventilnadel (5) am Ventilsitz (7) in einem Drosselabschnitt (36) angeordnet ist und bei einer Öffnungshubbewegung der Ventilnadel (5) aus dem Drosselabschnitt (36) austaucht. Dadurch wird ein Strömungsquerschnitt (14) aufgesteuert, durch den Kraftstoff zwischen der Ventilnadel (5) und der Wand der Bohrung (3) hindurch den Einspritzöffnungen (11) zuströmt. In der Ventilnadel (5) ist ein Kraftstoffkanal (42) ausgebildet, der wenigstens eine Eintrittsöffnung (43) stromabwärts des Drosselbunds (34) und eine Austrittsöffnung (48) aufweist, so dass über den Kraftstoffkanal (42) zusätzlich Kraftstoff den Einspritzöffnungen (11) zuführbar ist.

Description

Kraftstoffeinspritzventil fiir Brennkraflbmaschinen
Stand der Technik
Die vorliegende Erfindung geht von einem Kraftstoffeinspritzventil nach dem Oberbegriff des Patentanspruchs 1 aus. Bei einem solchen Kraftstoffeinspritzventil, wie es beispielsweise aus der Offenlegungsschrift DE 198 18 200 AI bekannt ist, ist in einem Ventilkörper eine Bohrung ausgebildet, in der eine kolbenförmige Ventilnadel angeordnet ist. Die Ventilnadel wirkt mit einem Ventilsitz zusammen, so, dass durch die Längsbewegung der Ventilnadel die Öffnung wenigstens einer Einspritzöffnung gesteuert wird. An der Ventilnadel ist ein Drosselbund ausgebildet, der bei Anlage der Ventilnadel am Ventilsitz in einen entsprechenden Dros- selabschnitt eingetaucht ist. Bei der Öffnungshubbewegung der Ventilnadel taucht der Drosselbund aus dem Drosselabschnitt aus, wodurch ein Strömungsquerschnitt aufgesteuert wird, durch den Kraftstoff den Einspritzöffhungen zugeführt wird. Der Strömungsquerschnitt ist hierbei als Ringkanal ausgebildet, der zwischen der Ventilnadel und der Wand der Bohrung ausgebildet ist. Auf diese Weise lässt sich beispielsweise eine Einspritzverlaufsformung erreichen, bei der zu Be- ginn der Öffnungshubbewegung nur wenig Kraftstoff den Einspritzöffhungen zugeführt wird, während nach dem Austauchen des Drosselbunds aus dem Drosselabschnitt mit großem Druck viel Kraftstoff den Einspritzöffhungen durch den Strömungsquersclrnitt zugeführt wird.
Das Kraftstoffeinspritzventil weist hierbei jedoch den Nachteil auf, dass durch den Strömungsquerschnitt, insbesondere bei Volllast der entsprechenden Brenn- krafhnaschine, nicht genug Kraftstoff den Einspritzöffhungen zugeführt werden kann. Der zwischen der Ventilnadel und der Wand der Bohrung durch das Austauchen des Drosselbunds aus dem Drosselabschnitt aufgesteuerte Strömungs- querschnitt weist einen immer noch hohen Strömungswiderstand auf, so dass die große Menge an Kraftstoff, die bei Volllastbetrieb notwendig ist, nicht in der zur Verfügung stehenden Zeit zugeführt werden kann.
Vorteile der Erfindung
Das erf ndungsgemäße Kraftstoffeinspritzventil mit den kennzeichnenden Merkmalen des Patentanspruchs 1 weist demgegenüber den Vorteil auf, dass nach dem Austauchen des Drosselbunds aus dem Drosselabschnitt sehr viel Kraftstoff mit einer hohen Rate den Einspritzöffhungen zuströmt, so dass eine sehr große Kraft- stoffmenge in kürzester Zeit eingespritzt werden kann. Hierzu ist in der Ventilnadel ein Kraftstoffkanal ausgebildet, dessen Eintrittsöffnung stromabwärts des Drosselbunds angeordnet ist und der so in der Ventilnadel verläuft, dass über den Kraftstofrkanal zusätzlich Kraftstoff den Einspritzöffhungen zuführbar ist, zusätzlich zu dem Ringkanal, der zwischen der Ventilnadel und der Wand der Bohrung ausgebildet ist. Dies ist insbesondere dann von Vorteil, wenn der Strömungsquerschnitt des Ringkanals nicht beliebig vergrößert werden kann, da der Bauraum in einem Kraftstoffeinspritzventil sehr beschränkt ist und dieser im Zuge der Entwicklung von Dieseleinspritzsystemen immer höheren Drücken standhalten muss.
Durch die Unteransprüche sind vorteilhafte Ausgestaltungen des Gegenstandes der Erfindung möglich. In einer ersten vorteilhaften Ausgestaltung wird der Drosselabschnitt durch eine zentrale Öffnung in einer Einstellscheibe gebildet, die in der Bohrung des Ventilkörpers angeordnet ist. Über die Dicke der Einstellscheibe lässt sich der Zeitpunkt, zu dem der Drosselbund aus dem Drosselabschnitt aus- tauscht, exakt einstellen.
In einer weiteren vorteilhaften Ausgestaltung mündet der Kraftstoffkanal am ven- tilsitzseitigen Ende der Ventilnadel. Hierbei ist es besonders vorteilhaft, wenn die Ventildichtfläche, die im wesentlichen konisch ausgebildet ist, zwei Dichtbereiche aufweist. Durch die beiden Dichtbereiche werden die Einspritzöffhungen sowohl stromaufwärts als auch stromabwärts abgedichtet, so dass bei Anlage der Ventilnadel auf dem Ventilsitz keine hydraulische Verbindung zwischen dem Kraftstofrkanal und den Einspritzöffhungen besteht. Dadurch kann es zu keiner Leckage kommen und damit zu erhöhten Kohlenwasserstoffemissionen der Brennkraft- maschine. In einer weiteren vorteilhaften Ausgestaltung ist der Kraftstofrkanal durch wenigstens eine Querbohrung und eine die Querbohrung schneidende Längsbohrung gebildet. Die Längsbohrung verläuft hierbei vorteilhafter Weise mittig in axialer Richtung der Ventilnadel. Derart ausgestaltete Bohrungen können einfach und mit geringem Kostenaufwand in der Ventilnadel ausgebildet werden.
Weitere Vorteile und vorteilhafte Ausgestaltungen sind der Beschreibung und der Zeichnung entnehmbar.
Zeichnung
In der Zeichnung ist ein Ausführungsbeispiel des erfindungsgemäßen Kraftstoffeinspritzventils dargestellt. Es zeigt Figur 1 einen Längsschnitt durch ein Kraftstoffeinspritzventil und
Figur 2 eine vergrößerte Darstellung des mit II bezeichneten Ausschnitts der Figur 1.
Beschreibung des Ausführungsbeispiels
In Figur 1 ist ein Ausführungsbeispiel des erfindungsgemäßen Kraftstoffeinspritzventils im Längsschnitt dargestellt. Das Kraftstoffeinspritzventil weist einen Ventilkörper 1 auf, in dem eine Bohrung 3 ausgebildet ist. Die Bohrung 3 wird an ihrem brennraumseitigen Ende von einem im wesentlichen konischen Ventilsitz 7 begrenzt, von dem mehrere Einspritzöffhungen 11 abgehen. Die Einspritzöffhungen 11 münden in Einbaulage des Kraftstoffeinspritzventils in den Brennraum der Brennkraftmaschine. Die Bohrung 3 erweitert sich dem Ventilsitz 7 äbgewandt zu einem Federraum 8, wobei zwischen dem Federraum 8 und dem Ventilsitz 7 in einem mittleren Abschnitt ein Führungsabschnitt 103 der Bohrung 3 ausgebildet ist. In der Bohrung 3 ist eine Ventilnadel 5 längsverschiebbar angeordnet, die im wesentlichen kolbenförmig ausgebildet ist und eine Längsachse 6 aufweist. Die Ventilnadel 5 wird mit einem mittleren Abschnitt 30 im Führungsabschnitt 103 der Bohrung 3 geführt und weist an ihrem ventilsitzseitigen Ende eine im wesentlichen konische Ventildichtfläche 9 auf. Im Bereich zwischen dem Federraum 8 und dem Ventilsitz 7 ist zwischen der Ventilnadel 5 und der Wand der Bohrung 3 ein Strömungsquerschnitt 14 ausgebildet, der zwischen dem mittleren Abschnitt 30 und dem Ventilsitz 7 die Form eines Ringkanals aufweist. Der Strömungsquerschnitt 14 setzt sich ventilsitzäbgewandt über Ausnehmungen 32 fort, die am mittleren Abschnitt 30 der Ventilnadel 5 ausgebildet sind. Am mittleren Abschnitt 30 ist dem Ventilsitz 7 zugewandt eine Druckschulter 12 ausgebildet, die vom Ventilsitz 7 weggerichtet ist.
Ventilsitzäbgewandt zum mittleren Abschnitt 30 geht die Ventilnadel 5 in einen Kolbenabschnitt 105 über, der im Federraum 8 angeordnet ist. Der Kolbenäb- schnitt 105 ist in einer Hülse 20 geführt, die im Federraum 8 angeordnet ist. Die
Hülse 20 und die ventilsitzäbgewandte Stirnseite der Ventilnadel 5 begrenzen einen Steuerraum 17, der mit Kraftstoff gefüllt ist und in dem ein variabler Druck einstellbar ist. Zwischen der Hülse 20 und einem Federteller 24 ist den Kolbenabschnitt 105 umgebend eine Schließfeder 22 im Federraum 8 angeordnet, die eine Druckvorspannung aufweist und dadurch die Ventilnadel 5 in Richtung des Ventilsitzes 7 drückt. Die Hülse 20 bleibt hierbei stets ortsfest, da sie durch die Schließfeder 22 gegen einen am Ventilkörper 1 anliegenden und in der Zeichnung nicht dargestellten weiteren Körper des Kraftstoffeinspritzventils gedrückt wird.
Das Zusammenwirken der Ventildichtfläche 9 mit dem Ventilsitz 7 ist in Figur 2 durch eine vergrößerte Darstellung des mit II bezeichneten Ausschnitts der Figur 1 näher dargestellt. Die Ventildichtfläche 9 weist einen ersten Dichtbereich 109 und einen zweiten Dichtbereich 209 auf, die durch eine Ringnut 50 voneinander getrennt sind. Bei Anlage der Ventildichtfläche 9 am Ventilsitz 7 liegt der erste Dichtbereich 109 stromaufwärts der Einspritzöffhungen 11 am Ventilsitz 7 an, während der zweite Dichtbereich 209 stromabwärts zur Anlage kommt. Bei Anlage der Ventilnadel 5 auf dem Ventilsitz 7 ergibt sich somit eine Abdichtung der Einspritzöffhungen 11 sowohl stromaufwärts als auch stromabwärts.
Zwischen dem mittleren Abschnitt 30 der Ventilnadel 5 und dem Kolbenabschnitt
105 ist an der Ventilnadel ein Drosselbund 34 angeordnet. In Schließstellung der Ventilnadel 5, also wenn die Ventildichtfläche 9 am Ventilsitz 7 anliegt, taucht der Drosselbund 34 in einen Drosselabschnitt 36 ein, der durch eine zentrale Öffnung 28 einer Einstellscheibe 26 gebildet wird. Die Einstellscheibe 26 ist hierbei in der Bohrung 3 angeordnet, und deren zentrale Öffnung 28 ist so ausgebildet, dass zwischen dem Drosselbund 34 und dem durch die zentrale Öffnung 28 gebildeten Drosseläbschnitt 26 ein Spalt verbleibt, durch den Kraftstoff aus dem Federraum 8 über die Ausnehmungen 32 zu den Einspritzöffhungen 11 fließen kann, jedoch nur gedrosselt.
Zwischen dem Drosselbund 34 und dem mittleren Abschnitt 30 der Ventilnadel 5 ist eine Ringnut 38 ausgebildet, in der eine Querbohrung 44 oder mehrere Querbohrungen 44 ausgebildet sind, wobei sich diese im Falle mehrerer Querbobrungen 44 in der Längsachse 6 der Ventilnadel 5 schneiden. Darüber hinaus ist in der Ventilnadel 5 eine Längsbohrung 46 ausgebildet, die die eine oder mehrere Querbohrungen 44 schneidet. Hierdurch wird über die Querbohrung 44 und die Längsbohrung 46 ein Kraftstoffkanal 42 gebildet, dessen Eintrittsöffhung 43 durch die Querbohrung 44 gebildet wird und dessen Austrittsöffnung 48 am ventilsitzseiti- gen Ende der Ventilnadel 5 ausgebildet ist. Über den Kraftstoffkanal 42 wird so- mit ein zusätzlicher Kraftstoffstrom ermöglicht, der durch die Querbohrung 44 und die Längsbobrung 46 Kraftstoff stromabwärts der Einspritzöffhungen 11 aus der Ventilnadel 5 austreten lässt, so dass die Einspritzöf nungen 11 sowohl über den Strömungsquerschnitt 14 als auch über den Kraftstofrkanal 42 mit Kraftstoff versorgt werden.
Das Kraftstoffeinspritzventil funktioniert wie folgt: Im Federraum 8 und damit auch im Drosselquerschnitt 14 liegt stets ein hoher Kraftstoffdruck an, wobei der Kraftstoff am ventilsitzabgewandten Ende der Bohrung 3 zugeführt wird. Wenn die Ventilnadel 5 in ihrer Schließstellung bleiben soll, ist im Steuerraum 17 ein hoher Kraftstoffdruck vorgesehen, über dessen hydraulische Kraft die Ventilnadel
5 in Anlage am Ventilsitz 7 gehalten wird. Zu Beginn der Einspritzung wird der Kraftstoffdruck im Steuerraum 17 erniedrigt, wodurch sich auch die entsprechende hydraulische Kraft verringert. Die hydraulische Kraft, die durch Beaufschlagung der Druckschulter 12 an der Ventilnadel 5 erzeugt wird, ergibt jetzt eine re- sultierende Kraft auf die Ventilnadel 5, die vom Ventilsitz 7 weggerichtet ist.
Daraufhin hebt die Ventilnadel 5 vom Ventilsitz 7 ab, so dass die Einspritzöffnungen 11 freigegeben werden. Da zu Beginn der Öffnungshubbewegung der Drosselbund 34 noch im Drosselabschnitt 36 eingetaucht ist, kann Kraftstoff nur über den engen Spalt, der zwischen dem Drosselbund 34 und dem Drosselab- schnitt 36 verbleibt, den Einspritzöffhungen 11 zufließen. Dadurch ist die Bewe- gung der Ventilnadel 5 zu Beginn relativ langsam und die Einspritzrate entsprechend gering. Nachdem die Ventilnadel 5 den Hub h durchfahren hat, taucht der Drosselbund 34 aus dem Drosseläbschnitt 36 aus. Dadurch wird der Strömungsquerschnitt 14 aufgesteuert, so dass nunmehr eine große Menge Kraftstoff durch die Ausnehmungen 32 und den Strömungsquerschnitt 14 hindurch zu den Einspritzöffhungen 11 fließen kann. Zusätzlich fließt Kraftstoff durch den Kraftstoffkanal 42, also durch die Querbohrung 44 und die Längsbohrung 46 und tritt am ventilsitzseitigen Ende durch die Austrittsöffhung 48 der Ventilnadel 5 aus. Dadurch strömt Kraftstoff von zwei Richtungen den Einspritzöffnungen 11 zu. Durch den zusätzlichen Kraftstoffkanal kann mehr Kraftstoff den Einspritzöffnungen zugeführt werden, da eine Vergrößerung des Strömungsquerschnitts 14 auf Grund der engen Abmessungen und des begrenzten Bauraums in der Brennkraftmaschine nur begrenzt möglich ist. Zur Beendigung der Einspritzung wird der Druck im Steuerraum 17 wieder erhöht, so dass sich eine resultierende, auf den Ventilsitz 7 gerichtete Schließkraft auf die Ventilnadel 5 ergibt, die diese zurück in ihre Schließstellung drückt.
Neben der Ausbildung des Drosselabschnitts 36 in der Einstellscheibe 26 kann es auch vorgesehen sein, den Drosseläbschnitt 36 direkt in der Bohrung 3 auszubil- den. Die Einstellscheibe 26 würde in diesem Fall entfallen, jedoch ist es über die
Einstellscheibe 26 und deren Dicke möglich, den Hub h sehr exakt einzustellen, den die Ventilnadel 5 durchfährt, ehe der Drosselbund 34 aus dem Drosselabschnitt 36 austaucht.

Claims

Ansprüche
1. Kraftstoffeinspritzventil für Brennkraftmaschinen mit einem Ventilkörper (1), in dem in einer Bohrung (3) eine kolbenförmige Ventilnadel (5) angeordnet ist, die mit einem Ventilsitz (7) zusammenwirkt und durch ihre Längsbewegung die Öffnung wenigstens einer Einspritzöffnung (11) steuert, und mit einem an der Ventilnadel (5) ausgebildeten Drosselbund (34), der bei Anlage der Ventilnadel (5) am Ventilsitz (7) in einem entsprechenden Drosselabschnitt (36) angeordnet ist und bei einer Öffnungshubbewegung der Ventilna- del (5) aus dem Drosselabschnitt (36) austaucht, so dass ein Strömungsquerschnitt (14) aufgesteuert wird, durch den Kraftstoff zwischen der Ventilnadel (5) und der Wand der Bohrung (3) hindurch den Einspritzöffhungen (11) zuströmt, dadurch gekennzeichnet, dass in der Ventilnadel (5) ein Kraftstoffkanal (42) ausgebildet ist, der wenigstens eine Eintrittsöffhung (43) und eine Austrittsöff ung (48) aufweist, wobei die Eintrittsöffnung (43) stromabwärts des Drosselbunds (34) angeordnet ist und die Austrittsöffhung (48) so angeordnet ist, dass über den Kraftstofrkanal (42) zusätzlich Kraftstoff den Einspritzöffhungen (11) zuführbar ist.
2. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, dass der Drosselabschnitt (36) durch eine zentrale Öffnung (28) einer Einstellscheibe (26) gebildet wird, die in der Bohrung (3) angeordnet ist und die die Ventilnadel (5) umgibt.
3. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, dass die Einspritzöffnungen (11) vom Ventilsitz (7) ausgehen, wobei der Ventilsitz (7) im wesentlichen konisch geformt ist.
4. Kraftstoffeinspritzventil nach Anspruch 3, dadurch gekennzeichnet, dass am ventilsitzseitigen Ende der Ventilnadel (5) eine im wesentlichen konische Ventildichtfläche (9) ausgebildet ist, die einen ersten Dichtbereich (109) und einen zweiten Dichtbereich (209) aufweist und mit der die Ventilnadel (5) in ihrer Schließstellung so auf dem Ventilsitz (7) aufliegt, dass die Einspritzöffnungen (11) durch den ersten Dichtbereich (109) steomaufwäfts und durch den zweiten Dichtbereich (209) stromabwärts abgedichtet werden.
5. Kraftstoffeinspritzventil nach Anspruch 4, dadurch gekennzeichnet, dass der Kraftstoffkanal (42) am ventilsitzseitigen Ende der Ventilnadel (5) mündet, so dass der aus dem Kraftstoffkanal (42) austretende Kraftstoff stromabwärts des zweiten Dichtbereichs (209) austritt.
6. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, dass der Kraftstoffkanal (42) durch eine Querbohrung (44) und eine die Querbohrung (44) schneidende Längsbohrung (46) gebildet ist.
7. Kraftstoffeinspritzventil nach Anspruch 6, dadurch gekennzeichnet, dass die Längsbohrung (46) mittig in axialer Richtung der Ventilnadel (5) verläuft und am ventilsitzseitigen Ende der Ventilnadel (5) mündet.
8. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, dass die Ventilnadel (5) stromabwärts des Drosselabschnitts (36) einen mittleren Abschnitt (30) aufweist, mit dem sie in einem Führungsäbschnitt (103) der Bohrung (3) geführt ist und an dem seitliche Ausnehmungen (32) ausgebildet sind, die in diesem Bereich den Strömungsquerschnitt (14) für den Kraftstoff bilden.
9. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, dass an der Ventilnadel (5) eine Druckschulter (12) ausgebildet ist, die stromabwärts des Drosselabschnitts (36) ausgebildet ist und durch die bei Druckbeaufschla- gung eine vom Ventilsitz (7) weggerichtete Öffhungskraft auf die Ventilnadel (5) wirkt.
10. Kraftstoffeinspritzventil nach Ansprach 1 oder 9, dadurch gekennzeichnet, dass die Ventilnadel (5) mit ihrer ventilsitzabgewandten Stirnseite einen Steuerraum (17) begrenzt, der mit Kraftstoff unter einstellbarem Druck befüllbar ist, so dass eine entsprechend variable, auf den Ventilsitz (7) gerichtete Schließkraft auf die Ventilnadel (5) ausübbar ist.
PCT/EP2004/052959 2004-01-15 2004-11-15 Kraftstoffeinspritzventil für brennkraftmaschinen WO2005068824A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE502004009164T DE502004009164D1 (de) 2004-01-15 2004-11-15 Kraftstoffeinspritzventil für brennkraftmaschinen
EP04798204A EP1709321B1 (de) 2004-01-15 2004-11-15 Kraftstoffeinspritzventil für brennkraftmaschinen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004002084.1 2004-01-15
DE102004002084A DE102004002084A1 (de) 2004-01-15 2004-01-15 Kraftstoffeinspritzventil für Brennkraftmschinen

Publications (1)

Publication Number Publication Date
WO2005068824A1 true WO2005068824A1 (de) 2005-07-28

Family

ID=34716562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/052959 WO2005068824A1 (de) 2004-01-15 2004-11-15 Kraftstoffeinspritzventil für brennkraftmaschinen

Country Status (4)

Country Link
EP (1) EP1709321B1 (de)
AT (1) ATE425355T1 (de)
DE (2) DE102004002084A1 (de)
WO (1) WO2005068824A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106014738A (zh) * 2016-07-12 2016-10-12 江西汇尔油泵油嘴有限公司 阻隔式喷油方法及喷油嘴

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008017614A1 (de) * 2006-08-09 2008-02-14 Siemens Aktiengesellschaft Kraftstoffeinspritzvorrichtung für eine brennkraftmaschine
DE102008047385A1 (de) * 2008-09-16 2010-03-25 Continental Automotive Gmbh Düsenbaugruppe für einen Kraftstoffinjektor, sowie Kraftstoffinjektor
DE102015219376A1 (de) 2015-10-07 2017-04-13 Robert Bosch Gmbh Düsenbaugruppe für einen Kraftstoffinjektor und Kraftstoffinjektor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH278720A (de) * 1948-12-30 1951-10-31 Bischof Bernhard Einspritzdüse für Brennkraftmaschinen.
JPS5996475A (ja) * 1982-11-25 1984-06-02 Daihatsu Motor Co Ltd 燃料噴射ノズル
DE19818200A1 (de) 1998-04-23 1999-10-28 Bosch Gmbh Robert Kraftstoffeinspritzventil
DE10148350A1 (de) * 2001-09-29 2003-04-24 Bosch Gmbh Robert Kraftstoff-Einspritzvorrichtung, insbesondere Injektor für Brennkraftmaschinen mit Direkteinspritzung, sowie Kraftstoffsystem und Brennkraftmaschine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH278720A (de) * 1948-12-30 1951-10-31 Bischof Bernhard Einspritzdüse für Brennkraftmaschinen.
JPS5996475A (ja) * 1982-11-25 1984-06-02 Daihatsu Motor Co Ltd 燃料噴射ノズル
DE19818200A1 (de) 1998-04-23 1999-10-28 Bosch Gmbh Robert Kraftstoffeinspritzventil
DE10148350A1 (de) * 2001-09-29 2003-04-24 Bosch Gmbh Robert Kraftstoff-Einspritzvorrichtung, insbesondere Injektor für Brennkraftmaschinen mit Direkteinspritzung, sowie Kraftstoffsystem und Brennkraftmaschine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 008, no. 207 (M - 327) 21 September 1984 (1984-09-21) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106014738A (zh) * 2016-07-12 2016-10-12 江西汇尔油泵油嘴有限公司 阻隔式喷油方法及喷油嘴

Also Published As

Publication number Publication date
DE102004002084A1 (de) 2005-08-04
DE502004009164D1 (de) 2009-04-23
EP1709321A1 (de) 2006-10-11
EP1709321B1 (de) 2009-03-11
ATE425355T1 (de) 2009-03-15

Similar Documents

Publication Publication Date Title
EP0898650A1 (de) Kraftstoffeinspritzeinrichtung für brennkraftmaschinen
EP1733139B1 (de) Common-rail-injektor
EP1772618A1 (de) Common-Rail-Injektor
DE102010036045A1 (de) Fluidinjektor mit der Fähigkeit zur Ratenformgebung
EP0976924B1 (de) Einspritzventil mit einem Servoventil
DE102004053421A1 (de) Kraftstoffeinspritzvorrichtung
DE10100390A1 (de) Einspritzventil
DE102008035087B4 (de) Einspritzventil
EP1709321B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
DE19937677C2 (de) Einspritzventil mit verbesserter Dichtflächenanordnung
WO2001079688A1 (de) Kraftstoffeinspritzventil fur brennkraftmaschinen
DE102005060655A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
DE102005023179B3 (de) Einspritzventil mit einem erhöhten Druck im Ablaufraum
DE69923499T2 (de) Brennstoffeinspritzventil
DE10050599B4 (de) Einspritzventil mit einem Pumpkolben
DE102006050033A1 (de) Injektor, insbesondere Common-Rail-Injektor
WO2007104590A1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
DE10318989A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
DE10353683A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
DE10148350A1 (de) Kraftstoff-Einspritzvorrichtung, insbesondere Injektor für Brennkraftmaschinen mit Direkteinspritzung, sowie Kraftstoffsystem und Brennkraftmaschine
DE10123526A1 (de) Common-Rail-Injektor
DE102005009804A1 (de) Einspritzventil mit verbesserter Kühlung
DE102008000596A1 (de) Injektor
WO2024115000A1 (de) Absperrventileinrichtung für ein brennstoffversorgungssystem zur versorgung einer brennkraftmaschine mit insbesondere gasförmigem brennstoff, brennstoffverteileinrichtung für ein solches brennstoffversorgungssystem, und brennstoffversorgungssystem
EP1442209A1 (de) Steuermodul für einen injektor eines speichereinspritzsystems

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004798204

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004798204

Country of ref document: EP