WO2005067131A1 - ブラシレスdcモータの駆動方法及びその装置 - Google Patents

ブラシレスdcモータの駆動方法及びその装置 Download PDF

Info

Publication number
WO2005067131A1
WO2005067131A1 PCT/JP2004/016972 JP2004016972W WO2005067131A1 WO 2005067131 A1 WO2005067131 A1 WO 2005067131A1 JP 2004016972 W JP2004016972 W JP 2004016972W WO 2005067131 A1 WO2005067131 A1 WO 2005067131A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
voltage
brushless
rotor
inverter
Prior art date
Application number
PCT/JP2004/016972
Other languages
English (en)
French (fr)
Inventor
Koji Hamaoka
Yoshinori Takeoka
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US10/579,945 priority Critical patent/US7427841B2/en
Publication of WO2005067131A1 publication Critical patent/WO2005067131A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/182Circuit arrangements for detecting position without separate position detecting elements using back-emf in windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position

Definitions

  • the present invention relates to a method for driving a brushless DC motor (hereinafter, simply referred to as a motor) mounted on a compressor or the like included in a refrigeration / air-conditioning system such as a refrigerator or an air conditioner, and an apparatus therefor.
  • a motor drive device in which the capacity of the smoothing capacitor in the rectifier circuit is significantly reduced and the overall size of the device is reduced, for example, a motor rotor that does not use a special position detection sensor such as a Hall element or an encoder.
  • the present invention relates to a method and an apparatus for detecting the position of an object.
  • a conventional motor drive device for driving a motor incorporated in a compressor in a refrigeration / air-conditioning system generally has the following configuration.
  • a smoothing capacitor with a sufficiently large capacity is connected between the output terminals, and a rectifier circuit for rectifying the AC voltage of the input AC power supply and an inverter connected to the rectifier circuit for driving the motor.
  • the device does not use a special position detection sensor such as a Hall element or an encoder to detect the rotational position of the rotor of the motor.
  • the rotor position is detected from the back electromotive force or the motor current induced by this.
  • the device drives the motor by sequentially switching the energization state of a plurality of switching elements included in the inverter based on the detection signal and controlling the commutation of the current flowing through the stator winding.
  • Such a driving method that does not use a special position detection sensor is generally called sensorless driving.
  • the reason for adopting this sensorless drive in the motor drive incorporated in the compressor in the refrigeration and air conditioning system is that the position detection sensor is remarkably attached in the compressor in a high temperature, high pressure atmosphere, refrigerant atmosphere, or oil atmosphere. This is because it is difficult.
  • FIG. 6 is a block diagram of a conventional motor driving device.
  • the output of the single-phase AC power supply 1 is connected to a diode full-wave rectifier circuit 2.
  • a smoothing capacitor 3 is connected to the output of the diode full-wave rectifier circuit 2.
  • the smoothing capacitor 3 has a sufficiently small capacity, and is a conventional capacitor having a capacity of about 1Z100.
  • the PWM (pulse width modulation) inverter 4 connected to both ends of the smoothing capacitor 3 is configured by connecting six switching elements (including diodes in opposite directions) in a three-phase bridge connection.
  • the stator of the motor 5 is provided with a three-phase winding. One end of each of the three-phase windings is connected to the output of the PWM inverter 4. Thus, the motor 5 is driven by the PWM inverter 4.
  • control circuit 6 receives information such as the voltage of the single-phase AC power supply 1, the DC section current, the output current of the PWM inverter 4, and the position information of the position detection sensor 7, and The gates of the six switching elements that make up the PWM inverter 4 are controlled so that the motor can be driven.
  • the one having an encoder or a hall element as a position detection sensor can detect the position of the rotor even when the DC voltage applied to the inverter decreases.
  • the above-described conventional configuration cannot be applied.
  • a method of driving a brushless DC motor without using a special position detection sensor is based on a back electromotive force induced in a stator winding of the motor.
  • a method of detecting the rotor position and a method of detecting the rotor position from the motor current.
  • the rotor position can be detected only when the smoothing capacitor has a sufficiently large capacitance and the voltage across the smoothing capacitor (rectification) is used. This is when the ripple voltage included in the output voltage of the circuit is small. This is because the output voltage of the rectifier circuit with a sufficiently large smoothing capacitor This is because when the ripple voltage included in the above is small, the back electromotive force and the motor current are stabilized, so that a stable rotor position can be detected.
  • a smoothing capacitor is used to reduce the size of the entire device, such as a driving device having a special position detection sensor shown in FIG. If the capacitance is significantly reduced, the ripple voltage will increase significantly. Therefore, especially when the voltage applied to the PWM inverter is low, the back electromotive force required for detecting the rotor position cannot be detected, or the motor current required for detecting the rotor position may flow. Can not ,.
  • the present invention solves the above-mentioned conventional problems.
  • a sensorless drive that does not require a special position detection sensor, it is possible to significantly reduce the capacity of a smoothing capacitor connected to a rectifier circuit.
  • the driving method of the present motor has the following operation.
  • the operation of detecting the rotational position of the rotor of the motor from either the back electromotive force of the motor or the motor current is performed by the position estimator.
  • the operation includes an operation of estimating the position and an operation of controlling the inverter by the controller based on one of the rotor position detected by the position detector and the rotor position estimated by the position estimator.
  • the drive device of the present motor has the following configuration.
  • Position estimator a position estimator for estimating the rotor position when the position detector cannot detect the position of the rotor, an output signal of the position estimator force and an output of the position estimator force And a controller for switching the signal to operate the inverter.
  • the motor driving method and device of the present invention are characterized in that when it is impossible to detect the rotor position by the position detector, the rotor position is estimated and the inverter is operated. Accordingly, even when the rotor position cannot be detected, the rotor position can be estimated and commutated in accordance with the detected position, so that stable motor operation can be performed.
  • FIG. 1 is a block diagram of a motor driving device according to an embodiment of the present invention.
  • FIG. 2 is a timing chart showing voltage waveforms of capacitors in the motor driving device shown in FIG. 1.
  • FIG. 3 is a characteristic diagram showing an instantaneous minimum voltage and a ripple content ratio with respect to a load current in the motor driving device shown in FIG. 1.
  • FIG. 4 is a flowchart showing an operation of the motor driving device shown in FIG. 1.
  • FIG. 5 is a timing chart showing waveforms at various parts in the motor driving device shown in FIG. 1.
  • FIG. 6 is a block diagram of a conventional motor driving device.
  • FIG. 1 is a block diagram of a motor driving device according to an embodiment of the present invention.
  • the motor drive device shown in FIG. 1 has the following configuration.
  • the position estimator 21 for estimating the position is switched between the output signal from the position detector 20 and the output signal from the position estimator 21.
  • an AC power supply 10 is a general commercial power supply of 100 V, 50 Hz or 60 Hz in Japan.
  • the diode bridge circuit that constitutes the rectifier circuit 11 is a bridge connection of four diodes.
  • the rectifier circuit 11 inputs an AC voltage of the AC power supply 10 and performs full-wave rectification of the AC voltage by a diode bridge circuit.
  • a capacitor 12 is connected between the output terminals of the rectifier circuit 11.
  • the capacitor 12 has a smaller capacity than a smoothing capacitor used in a conventional motor drive device.
  • the capacitor 12 uses the following multilayer ceramic capacitor. In recent years, multilayer ceramic capacitors that have high withstand voltage and larger capacity than conventional ones can be realized with chips!
  • the smoothing capacitor mainly has a large capacity (200 For W output, an electrolytic capacitor of several hundred / z F) is used.
  • this smoothing capacitor is generally used for the output capacity (W or VA) of the inverter or the input capacity (W or VA) of the entire drive, and the smoothing capacitor based on the ripple content and ripple current of the DC voltage.
  • the force such as the characteristic of the ripple current resistance, also determines its capacity. Taking these conditions into account, generally secure a capacity of 2 ⁇ FZW to 4 ⁇ FZW @ degree. In other words, when the output capacity of the inverter is 200 W, an electrolytic capacitor of about 400 ⁇ F to 800 ⁇ F is used.
  • a capacitor having a capacity of 0.1 ⁇ FZW or less is used for capacitor 12. That is, if the inverter 13 has an output capacity of 200 W, use the capacitor 12 of 20 ⁇ F or less.
  • the inverter 13 has a configuration in which six switching elements TR1, TR2, TR3, TR4, TR5, and TR6 are connected in a three-phase bridge. Each of these switching elements uses an insulated gate bipolar transistor (IGBT). A flywheel diode is connected in reverse between the collector and the emitter of each transistor.
  • IGBT insulated gate bipolar transistor
  • the motor 14 is driven by a three-phase output of the inverter 13.
  • the stator of the motor 14 is provided with three-phase star-connected windings. This winding method may be concentrated winding or distributed winding.
  • a permanent magnet is provided on the rotor.
  • the arrangement method may be a surface magnet type (SPM) with permanent magnets arranged on the surface of the stator core or an embedded magnet type (IPM) with permanent magnets embedded inside the stator core.
  • the permanent magnet may be a ferrite magnet or a rare earth magnet.
  • a compression element 15 is connected to a shaft of a rotor of the motor 14.
  • the compression element 15 inhales, compresses, and discharges the refrigerant gas.
  • the compressor 14 is configured by housing the motor 14 and the compression element 15 in the same closed container.
  • the discharge gas compressed by the compressor 16 constitutes a refrigeration / air-conditioning system in which the gas passes through the condenser 17, the pressure reducer 18, and the evaporator 19 and returns to the suction of the compressor. At this time, the condenser 17 releases heat and the evaporator 19 absorbs heat, so that cooling and heating can be performed. If necessary, a blower or the like may be used for the condenser 17 or the evaporator 19 to further promote heat exchange.
  • the position detector 20 also detects the rotational position of the rotor of the motor 14 based on the back electromotive force or the motor current force of the motor 14. In the present embodiment, a method for detecting the rotational position of the rotor from the back electromotive force induced in the stator winding will be described.
  • the inverter 13 is of a three-phase, 120-degree conduction type rectangular wave drive.
  • the stator of the motor 14 is provided with three-phase star-connected windings. These three-phase windings are now referred to as a U-phase winding, a V-phase winding, and a W-phase winding.
  • the inverter 13 sequentially changes the electrical angle by 60 degrees according to the rotational position of the rotor, respectively, to the U-phase force to the V-phase, the U-phase force to the W-phase, the V-phase force to the W-phase, and the V-phase force to the U-phase.
  • the W-phase force also transfers the motor current from the W-phase to the U-phase and from the W-phase to the V-phase.
  • energization is stopped during the electrical angle of 60 degrees, and then, power is applied in the reverse direction during the electrical angle of 120 degrees. Is done. Similar energization is performed in the V-phase winding and the W-phase winding. At this time, the conduction phase difference between the U-phase, V-phase, and W-phase is 120 electrical degrees.
  • the energization is performed, and there is a phase (energization suspension period).
  • the rotor position is detected by detecting the zero-cross point of the back electromotive force generated in the phase when the current is supplied.
  • the detection of the rotor position is performed by the position detector 20.
  • the position estimator 21 performs time measurement of the detection timing when the position detector 20 normally detects the position, and estimates the rotational position of the rotor based on the timing time.
  • the voltage detector 22 detects the voltage between both ends of the capacitor 12, and determines whether the voltage value is larger or smaller than a predetermined value.
  • the switch 23 receives the output signal of the position detector 20, the output signal of the position estimator 21, and the output signal of the voltage detector 22.
  • the switch 23 selects one of the output signal of the voltage detector 22, that is, the output signal of the position detector 20 and the output signal of the position estimator 21 based on the above-mentioned determination result in the voltage detector 22.
  • the output signal (commutation signal) of the commutator 24 is input to the gates of the six IGBTs of the inverter 13 and controls ON / OFF of the IGBTs.
  • the controller 30 includes a switch 23 and a commutator 24.
  • the position detector 20 detects the rotor position of the motor 14 as a back electromotive force or a motor current force induced in the stator windings as the motor rotates.
  • the output voltage of the rectifier circuit 11 is low! At times, the desired voltage or current cannot be sufficiently secured, and the position cannot be detected.
  • the position estimator 21 always detects the timing of the position detection of the position detector 20, and when a position detection signal is not input and a force is applied, the position estimator 21 outputs the position estimation signal at the same timing as the previous timing. Is output.
  • switch 23 switches the output signal of position detector 20. And outputs a position detection signal to the commutator 24. Conversely, if it is lower than the predetermined value, switch 23 selects the output signal of position estimator 21 and outputs a position estimation signal to commutator 24.
  • a predetermined value 50 V in the present embodiment
  • a change in the voltage between both ends of the capacitor 12 is detected by the voltage detector 22 and, although not shown in FIG. 1, feedforward control is performed on the duty of the PWM control, and the output voltage of the inverter 13 or Control is performed to keep the current constant.
  • the duty of the PWM control indicates the ratio of the ON period to (ON period + OFF period) in the PWM control.
  • the duty is reduced, and if the voltage across capacitor 12 is low, the duty is increased. Thereby, the voltage or current of the output of the inverter 13 is adjusted. Thus, the motor 14 is driven smoothly.
  • FIG. 2 is a timing chart showing a voltage waveform of capacitor 12 in the present embodiment.
  • the AC power supply 10 is a power supply for supplying an AC voltage of 100V50HZ.
  • the dashed line A in FIG. 2 indicates a state when the load current is very small (there is almost no current flowing), and the charge of the capacitor 12 is hardly discharged, and the voltage is hardly lowered.
  • the load current is an output current of the rectifier circuit, that is, an input current to the inverter 13.
  • the average voltage at the broken line A is 141V
  • the ripple voltage is OV
  • the ripple content is 0%.
  • the ripple voltage [V] instantaneous maximum voltage [V]-instantaneous minimum voltage [V].
  • the ripple content [%] (ripple voltage [V] Z average voltage [V]) ⁇ 100.
  • the instantaneous minimum voltage decreases as shown by the dashed line B.
  • the maximum instantaneous voltage determined by the power supply voltage remains unchanged at 141V.
  • the instantaneous minimum voltage is 40 V, so the average voltage is about 112 V, the ripple voltage is 101 V, and the ripple content is 90%.
  • the instantaneous minimum voltage drops to almost 0 V as shown by the solid line C.
  • the instantaneous maximum voltage which also determines the power supply voltage, remains unchanged at 141V.
  • the instantaneous minimum voltage is 0 V, so the average voltage is about 100 V, the ripple voltage is 141 V, and the ripple content is 141%.
  • FIG. 3 is a characteristic diagram showing instantaneous minimum voltage and ripple content with respect to load current in the present embodiment.
  • the horizontal axis is the load current
  • the vertical axis is the instantaneous minimum voltage and the ripple content.
  • the solid line shows the characteristics of the instantaneous minimum voltage
  • the broken line shows the characteristics of the ripple content.
  • the load current is OA
  • the instantaneous minimum voltage is 141 V
  • the ripple content is 0%.
  • the load current is 0.25A
  • the instantaneous minimum voltage is 40V
  • the ripple content is 90%.
  • the load current is 0.35 A
  • the instantaneous minimum voltage OV the ripple content are 141%.
  • the instantaneous minimum voltage nor the ripple content is changed.
  • the actual use range is 0.
  • a small-capacity capacitor 12 is selected so that the ripple content is always 90% or more.
  • the position cannot be detected when the output voltage of the rectifier circuit is 50 V or less.
  • the rotor position cannot be detected in any of the actual use ranges. An impossible part will be included.
  • FIG. 4 is a flowchart showing the operation in the present embodiment.
  • the DC voltage Vdc is detected by the voltage detector 22 in STEP 1.
  • the DC voltage Vdc is the output voltage of the rectifier circuit 11, that is, the voltage across the capacitor 12.
  • the DC voltage Vdc detected in STEP 1 is compared with a predetermined value 50 V of a voltage at which position detection by the position detector 20 becomes impossible, and if the DC voltage Vdc is less than 50 V, Proceed to.
  • the disconnection selects the position estimator 21 and switches from the previous position detector 20.
  • the position estimator 21 determines whether or not the position detection signal has passed a predetermined time from the previous change. This fixed time is a time determined in advance by position detection, and the time varies depending on the number of rotations. If the fixed time has not passed, the passage is completed as it is, and if the fixed time has passed, the process proceeds to STEP5. In STEP5, an operation of switching the switching element group of the inverter 13 by the commutator 24 is performed assuming that commutation, that is, position detection has been performed.
  • step 2 the DC voltage Vdc detected in step 1 is compared with a predetermined voltage of 50 V at which the position cannot be detected. If the DC voltage Vdc is 50 V or more, the process proceeds by STEP 6. In STEP 6, the translator 23 selects the position detector 20.
  • the position detector 20 changes the state of the change force before the position detection signal. Judge if you have the power. If the state has not changed, it passes and completes as it is, and if the state has changed, it proceeds to STEP8. In STEP 8, commutation, that is, position detection is performed, and the switching element group of the inverter 13 is switched by the commutator 24.
  • the state of the DC voltage is always detected by the voltage detector 22, and the output signal of the position detector 20 and the output signal of the position estimator 21 are switched according to the state. Can be switched with.
  • the commutation operation can be performed even in a state where the position cannot be detected because the DC voltage is low, and the operation can be continued.
  • FIG. 5 is a timing chart showing waveforms of various parts of the motor driving device according to the present embodiment shown in FIG.
  • the DC voltage (A) is the voltage across capacitor 12.
  • Voltage detection (B) is the output of voltage detector 22.
  • the voltage detector 22 outputs a result obtained by comparing the DC voltage (A) with a predetermined voltage (50 V in the present embodiment).
  • a high level signal is output if the DC voltage (A) is 50V or higher, and a low level signal is output if the DC voltage (A) is lower than 50V.
  • FIG. 5 shows a case where the DC voltage (A) is 50 V or less at times T6 and T7.
  • the position detection (C) indicates the output of the position detector 20.
  • the position estimation (D) indicates the output of the position estimator 21.
  • the signal of position estimator 21 is used as a commutation signal.
  • the position estimator 21 measures the time from the previous commutation timing T5, and commutates at the timing of time T6 when a predetermined time elapses.
  • commutation is performed after a lapse of a predetermined time from time T6.
  • the fixed time is defined as a predetermined time by measuring a time during which the position can be normally detected, for example, a time from time T4 to time T5.
  • the measurement of the predetermined time can be performed by, for example, a timer included in the position estimator 21.
  • the switch 23 selects and outputs the output signal of the position detector 20.
  • switch 23 selects and outputs the output signal of position estimator 21.
  • the output of the switch 23 is input to the commutator 24, and the commutator 24 connects the six switching elements of the inverter 13 as shown in FIG. 5, ie, the energized state (E) of TR1 and the energized state of TR2. Turn ONZ OFF as shown in the energized state (F), energized state of TR3 (G), energized state of TR4 (H), energized state of TR5 (I), energized state of TR6 (J). In Fig. 5, from the energized state (E) to (J), the High level is ON and the Low level is OFF.
  • FIG. 5 shows a U-phase voltage (K) as an example of the output voltage waveform of inverter 13.
  • the maximum output voltage is regulated by the DC voltage (A), and the envelope of the U-phase voltage (indicated by the dashed line) matches the DC voltage (A).
  • the duty of the PWM control is changed according to the voltage level of the DC voltage (A), as shown in the U-phase voltage (K) of FIG.
  • the duty is increased (the ON period is longer) during T5 to T6), and the duty is reduced (the ON period is shorter) when the U-phase voltage is high (for example, between times T11 and T12). .
  • This prevents the U-phase current from becoming unstable due to fluctuations in the U-phase voltage.
  • the V phase and the W phase is the duty of the PWM control is changed according to the voltage level of the DC voltage (A), as shown in the U-phase voltage (K) of FIG.
  • the duty is increased (the ON period is longer) during T5 to T6), and the duty is reduced (the ON period is shorter) when the U-phase voltage is high (for example, between times T11 and T12).
  • the voltage detector 22 detects the voltage level directly.
  • the voltage detector 22 detects a timing such as zero crossing of the voltage level, and estimates the voltage level according to time based on the detection result. What you do is fine.
  • the power position detector 20 is configured to switch between the position detector 20 and the position estimator 21 by switching off by the DC voltage, that is, the voltage across the capacitor 12.
  • a method of automatically switching to the position estimation signal from the position estimator 21 when no position detection signal is output may be used.
  • the position detector 20 detects the rotor position in real time. For example, a method of averaging the timing difference between the entire position detection and the commutation is used. May be used.
  • the motor driving device of the present invention is characterized in that when the position detector 20 cannot detect the rotor position, the rotor position is estimated and the inverter 13 is operated. It is what it was. As a result, even when the rotor position cannot be detected, the position of the rotor can be estimated, and the commutation operation of the inverter 13 can be performed by the position estimation signal corresponding to the position detection signal of the position detector 20, so that the stable operation can be achieved. Operation is possible.
  • the capacitor 12 is characterized in that it has a capacity such that the ripple content of the output voltage of the rectifier circuit 11 is 90% or more in the output range of actual use of driving the motor.
  • the motor can be efficiently and stably driven even with a large ripple voltage, so that a capacitor having a small capacity such that the ripple voltage drops to almost OV can be used. As a result, a very small motor driving device can be realized.
  • the motor driving device of the present invention switches the position every predetermined time when the position cannot be detected! /, Which is characterized by performing estimation as a spider. Therefore, when the position cannot be detected, the motor 14 such as the compressor 16 operates with inertia (moment of inertia), thereby achieving stable operation and preventing the motor from stopping. .
  • the motor driving device of the present invention is characterized in that when the output voltage of the rectifier circuit 11 is equal to or lower than a predetermined voltage, it is determined that position detection is impossible. Since a portion where the position cannot be detected can be accurately determined, more stable operation can be performed.
  • the motor driving device of the present invention cannot detect the position by the position detector 20. Position is not possible by providing a position estimator 21 for estimating the position sometimes, and a controller 23 for switching between the position detector 20 and the position estimator 21 to operate the inverter 13. In any case, stable position detection can be performed, and efficient and stable operation can be realized.
  • the motor driving device of the present invention determines an estimated position by using a timer when the position cannot be detected, thereby providing a suitable inertia (moment of inertia) like a compressor. With this system, stable operation can be realized with a simple and easy configuration.
  • the motor driving device of the present invention detects the voltage across capacitor 12 and operates inverter 13 with the output from position estimator 21 when the voltage is equal to or lower than a predetermined voltage. In this case, it is possible to accurately determine a state in which position detection cannot be performed due to a decrease in the DC voltage, and it is possible to perform appropriate switching, so that more stable operation can be realized.
  • the motor driving device of the present invention is a small-capacity capacitor of the capacitor 13 for use in which a position detection sensor cannot be attached, such as when driving a compressor 16 constituting a refrigeration / air-conditioning system. Since a dagger can be realized, it is possible to realize a drastic reduction in size, which has never been considered before.
  • the motor driving device of the present invention drives a blower that blows air, and particularly in an application having a large moment of inertia (inertia) such as a blower, a large ripple due to a small-capacity capacitor is used. Since the number of rotations can be rotated without being greatly affected, it is possible to realize a drastic reduction in size, which could not be considered before.
  • inertia inertia
  • the position of the rotor is estimated by the position estimator. Since the inverter is operated according to the estimated position, stable motor operation can be performed.
  • the present invention is not limited to driving brushless DC motors mounted in compressors of refrigeration and air conditioning systems such as refrigerators and air conditioners, but also includes motor driving in a wide range of devices. Available to

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

 本ブラシレスDCモータの駆動方法は、出力端子間にコンデンサを接続し交流電源の交流電圧を入力とする整流回路によって交流電源の交流電圧を整流する動作と、整流回路に接続されたインバータによってモータを駆動する動作と、位置検出器によってモータの逆起電力又はモータ電流のいずれか一方からモータの回転子の回転位置を検出する動作と、位置検出器による回転子位置の検出が不可能なときには位置推定器によって回転子位置を推定する動作と、位置検出器により検出された回転子位置又は位置推定器により推定された回転子位置のいずれか一方に基づき制御器によってインバータを制御する動作とを含む。

Description

ブラシレス DCモータの駆動方法及びその装置
技術分野
[0001] 本発明は、冷蔵庫やエアコンなどの冷凍空調システムに含まれる圧縮機などに搭 載されるブラシレス DCモータ(以下、単にモータと言う)の駆動方法及びその装置に 関する。特に、整流回路における平滑用コンデンサを大幅に小容量化し、装置全体 の小型化を図ったモータ駆動装置において、例えば、ホール素子やエンコーダのよ うな特別な位置検出センサを用いることなぐモータの回転子の位置検出を行う方法 及びその装置に関する。
背景技術
[0002] 冷凍空調システムにおける圧縮機に組み込まれるモータを駆動するための従来の モータ駆動装置は、一般的に次のような構成である。すなわち、出力端子間に十分 大きな容量の平滑用コンデンサを接続し、入力される交流電源の交流電圧を整流す るための整流回路と、その整流回路に接続されモータを駆動するためのインバータと を備えている。
[0003] また、同装置は、モータの回転子の回転位置を検出するために、例えば、ホール素 子又はエンコーダのような特別な位置検出センサを用いることなぐモータの固定子 卷線がモータ回転に伴い誘起する逆起電力、又はモータ電流から回転子位置を検 出する。そして、同装置は、その検出信号によりインバータに含まれる複数のスィッチ ング素子の通電状態を順次切り換え、固定子卷線に流れる電流を転流制御すること よりモータを駆動している。
[0004] このような特別な位置検出センサを用いない駆動方式は、一般的にセンサレス駆動 と呼ばれて 、る。冷凍空調システムにおける圧縮機に組み込まれるモータ駆動にお いて、このセンサレス駆動を採用する理由は、圧縮機の高温'高圧雰囲気中、冷媒 雰囲気中、オイル雰囲気中において、位置検出センサを取り付けることが著しく困難 であるためである。
[0005] また、近年、モータの駆動装置を小型化するために、整流回路の平滑用コンデンサ を大幅に小容量ィ匕する取組みもなされている。その関連技術は、例えば、日本特許 出願特開 2002-51589号公報に開示されている。
[0006] この種の従来のモータの駆動装置について、図面を参照しながら説明する。図 6は 、従来のモータの駆動装置のブロック図である。図 6において、単相交流電源 1の出 力は、ダイオード全波整流回路 2に接続されている。そのダイオード全波整流回路 2 の出力には、平滑コンデンサ 3が接続されている。この平滑コンデンサ 3は、十分に 小さい容量のものであり、従来の 1Z100程度の容量のコンデンサである。
[0007] その平滑コンデンサ 3の両端に接続される PWM (パルス幅変調)インバータ 4は、 6 個のスイッチング素子 (逆向きのダイオードを含む)を 3相ブリッジ接続することにより 構成されている。モータ 5の固定子には 3相卷線が施されている。それら 3相卷線の それぞれの一端は、 PWMインバータ 4の出力に接続されている。こうして、モータ 5 は PWMインバータ 4によって駆動される。
[0008] 図 6に示すように、制御回路 6は、単相交流電源 1の電圧、直流部電流、 PWMイン バータ 4の出力電流、位置検出センサ 7の位置情報などの情報を入力として、最適な モータ駆動ができるように PWMインバータ 4を構成する 6つのスイッチング素子のゲ ートを制御している。
[0009] しかしながら、上記従来の構成において、位置検出センサであるエンコーダ又はホ ール素子などを有したものは、インバータに印加される直流電圧が低下しても回転子 の位置検出が可能である。しかし、圧縮機のように位置検出センサを取りつけること が困難な場合は、上記のような従来の構成は適用できない。
[0010] 一般的に、特別な位置検出センサを用いることなくブラシレス DCモータを駆動する 方法 (センサレス駆動方法)として知られているのは、モータの固定子卷線に誘起さ れる逆起電力から回転子位置を検出する方法と、モータ電流から回転子位置を検出 する方法などである。
[0011] し力しながら、上記従来のセンサレス駆動方法を採用したモータの駆動装置におい ては、回転子位置の検出が可能なのは平滑コンデンサの容量が十分に大きぐその 平滑コンデンサの両端電圧 (整流回路の出力電圧)に含まれるリプル電圧が小さいと きである。なぜならば、平滑コンデンサの容量が十分に大きぐ整流回路の出力電圧 に含まれるリプル電圧が小さいときには、逆起電力やモータ電流が安定するので安 定した回転子位置の検出ができるからである。
[0012] し力しながら、従来のセンサレス駆動方法を採用したモータの駆動装置においては 、図 6に示す特別な位置検出センサを有する駆動装置のように、装置全体を小型化 するために平滑コンデンサを大幅に小容量ィ匕すると、リプル電圧が大幅に増加してし まう。そのため、特に、 PWMインバータに印加される電圧が低いときに、回転子位置 の検出に必要な逆起電力の検出ができなかったり、回転子位置の検出に必要なモ ータ電流を流すことができな 、。
[0013] その結果、回転子位置の正確な検出が困難となり、 PWMインバータによる転流タ イミングが大幅にずれ、モータ効率の低下を引き起こすば力りでなぐ大きなモータ電 流が流れてしまう。また、最悪の場合は、モータが停止してしまうという不具合をきた すおそれがあった。
発明の開示
[0014] 本発明は、上記従来の課題を解決するもので、特別な位置検出センサを必要とし ないセンサレス駆動において、整流回路に接続する平滑コンデンサの大幅な小容量 化を可能とするとともに、平滑コンデンサの両端電圧 (整流回路の出力電圧)に大き なリプル電圧が含まれる場合でも安定したモータ駆動を可能としたモータの駆動方 法及びその装置を提供することを目的とする。
[0015] 本モータの駆動方法は、次の動作を有する。出力端子間にコンデンサを接続し、交 流電源の交流電圧を入力とする整流回路によって、その交流電圧を整流する動作と 、整流回路に接続されたインバータによってモータを駆動する動作と、位置検出器に よってモータの逆起電力又はモータ電流のいずれか一方からモータの回転子の回 転位置を検出する動作と、位置検出器による回転子位置の検出が不可能なときには 、位置推定器によって回転子位置を推定する動作と、位置検出器により検出された 回転子位置又は位置推定器により推定された回転子位置のいずれか一方に基づき 、制御器によってインバータを制御する動作とを含む。
[0016] また、本モータの駆動装置は、次の構成を有する。ダイオードブリッジ回路力も構成 され、入力される交流電源の交流電圧を整流するための整流回路と、その整流回路 の出力端子間に接続されるコンデンサと、同じく整流回路に接続されたインバータと 、インバータにより駆動されるモータの逆起電力又はモータ電流の 、ずれか一方から モータの回転子の回転位置を検出するための位置検出器と、位置検出器による回 転子位置の検出が不可能なときに、その位置を推定するための位置推定器と、位置 検出器力 の出力信号と位置推定器力 の出力信号とを切り替えてインバータを動 作させるための制御器とを含む。
[0017] 本発明のモータの駆動方法及びその装置は、位置検出器による回転子位置の検 出が不可能なときにその位置を推定してインバータを動作させることを特徴としたもの である。これによつて、回転子位置の検出が不可能なときにもその位置を推定してそ の位置検出に応じた転流することができるので、安定したモータ運転が可能となる。 図面の簡単な説明
[0018] [図 1]図 1は本発明の実施の形態におけるモータの駆動装置のブロック図である。
[図 2]図 2は図 1に示すモータの駆動装置におけるコンデンサの電圧波形を示すタイ ミングチャートである。
[図 3]図 3は図 1に示すモータの駆動装置における負荷電流に対する瞬時最低電圧 及びリプル含有率を示す特性図である。
[図 4]図 4は図 1に示すモータの駆動装置における動作を示すフローチャートである。
[図 5]図 5は図 1に示すモータの駆動装置における各部の波形を示すタイミングチヤ ートである。
[図 6]図 6は従来のモータの駆動装置のブロック図である。
符号の説明
[0019] 10 交流電源
11 整流回路
12 コンデンサ
13 インバータ
14 ブラシレス DCモータ
16 圧縮機
20 位置検出器 21 位置推定器
22 電圧検出器
23 切
24 転流器
30 制御器
発明を実施するための最良の形態
[0020] 以下、本発明の実施の形態について、図面を参照しながら説明する。図 1は、本発 明の実施の形態におけるモータの駆動装置のブロック図である。図 1に示すモータの 駆動装置は、次の構成を有している。
[0021] ダイオードブリッジ回路力も構成され、入力される交流電源 10の交流電圧を整流す るための整流回路 11と、その整流回路 11の出力端子間に接続されるコンデンサ 12 と、同じく整流回路 11に接続されたインバータ 13と、そのインバータ 13により駆動さ れるモータ 14の逆起電力又はモータ電流のいずれか一方から、モータ 14の回転子 の回転位置を検出するための位置検出器 20と、位置検出器 20による回転子位置の 検出が不可能なときに、その位置を推定するための位置推定器 21と、位置検出器 2 0からの出力信号と位置推定器 21からの出力信号とを切り替えてインバータ 13を動 作させるための制御器 30とを含む。
[0022] 図 1に示すモータの駆動装置をさらに詳細に説明する。図 1において、交流電源 1 0は、日本の場合、 100V50HZ又は 60Hzの一般的な商用電源である。整流回路 1 1を構成するダイオードブリッジ回路は 4個のダイオードをブリッジ接続して 、る。整流 回路 11は、交流電源 10の交流電圧を入力し、ダイオードブリッジ回路にてその交流 電圧を全波整流する。整流回路 11の出力端子間にはコンデンサ 12が接続されてい る。ここで、そのコンデンサ 12は、従来のモータ駆動装置に用いられている平滑コン デンサに比べ小容量のコンデンサである。図 1に示す本実施の形態におけるモータ の駆動装置においては、コンデンサ 12は、 の積層セラミックコンデンサを用いて いる。積層セラミックコンデンサは、近年、高耐圧でかつ従来に比べ容量の大きなも のがチップで実現できるようになってきて!/、る。
[0023] 一方、従来のモータ駆動装置においては、平滑コンデンサは、主には大容量(200 W出力の場合には数百/ z F)の電解コンデンサが使われる。従来、この平滑用コンデ ンサは、一般的にはインバータの出力容量 (W又は VA)又は駆動装置全体の入力 容量 (W又は VA)や、直流電圧のリプル含有量やリプル電流による平滑用コンデン サの耐リプル電流の特性など力もその容量を決定する。これらの条件を加味して、一 般的には 2 μ FZWから 4 μ FZW@度の容量を確保する。すなわち、インバータの 出力容量が 200Wの場合は、 400 μ Fから 800 μ F程度の電解コンデンサを使用し ている。
[0024] これに対して、図 1に示す本実施の形態におけるモータ駆動装置では、コンデンサ 12には 0. 1 μ FZW以下の容量を持つコンデンサを使用する。すなわち、インバー タ 13が 200Wの出力容量の場合は、 20 μ F以下のコンデンサ 12を使用する。
[0025] インバータ 13は、 6個のスイッチング素子 TR1、 TR2、 TR3、 TR4、 TR5及び TR6 を 3相ブリッジ接続した構成を備えている。これらスイッチング素子の各々は、絶縁ゲ ート型バイポーラトランジスタ(IGBT)が使用されている。各々トランジスタのコレクタ、 ェミッタ間にはフライホイールダイオードが逆向きに接続されている。
[0026] モータ 14は、インバータ 13の 3相出力により駆動される。モータ 14の固定子には 3 相スター結線された卷線が施されている。この巻き方は集中巻であっても、分布巻で あっても構わない。
[0027] また、回転子には永久磁石を配設している。その配設方法は、固定子コアの表面 に永久磁石を配した表面磁石型(SPM)でも、固定子コアの内部に永久磁石を埋め 込んだ埋込磁石型 (IPM)であっても構わない。さらに、永久磁石はフェライト磁石で も希土類磁石でも構わな ヽ。
[0028] モータ 14の回転子の軸には圧縮要素 15が接続されている。この圧縮要素 15は、 冷媒ガスを吸入し、圧縮して、吐出する。このモータ 14と圧縮要素 15とを同一の密 閉容器に収納して圧縮機 16を構成する。圧縮機 16で圧縮された吐出ガスは、凝縮 器 17、減圧器 18、蒸発器 19を通って圧縮機の吸い込みに戻るような冷凍空調シス テムを構成する。この時、凝縮器 17では放熱、蒸発器 19では吸熱を行うので、冷却 や加熱を行うことができる。必要に応じて凝縮器 17や蒸発器 19に対して送風機など を使い、熱交換をさらに促進させることもある。 [0029] 位置検出器 20は、モータ 14の逆起電力又はモータ電流力もモータ 14の回転子の 回転位置の検出を行う。本実施の形態では、固定子卷線に誘起される逆起電力から 回転子の回転位置を検出する方法について説明する。インバータ 13は、 3相 120度 通電方式の矩形波駆動とする。
[0030] この駆動方式をさらに詳細に説明する。モータ 14の固定子には 3相スター結線され た卷線が施されているが、今、その 3相卷線を U相卷線、 V相卷線及び W相卷線とす る。インバータ 13は、回転子の回転位置に応じて、順次、それぞれ電気角で 60度ず つ、 U相力 V相へ、 U相力 W相へ、 V相力 W相へ、 V相力も U相へ、 W相力も U 相へ、 W相から V相へとモータ電流を転流する。
[0031] ここで、例えば、 U相卷線に着目すると、電気角 120度期間において通電された後 、電気角 60度期間において通電が休止され、その後、電気角 120度期間において 逆方向に通電される。 V相卷線及び W相卷線においても同様な通電がなされる。こ のとき、 U相、 V相、 W相の互いの通電位相差は電気角 120度である。
[0032] 上記説明から明らかなように、 3相 120度通電、矩形波駆動においては、通電され て 、な 、相(通電休止期間)が存在する。この通電されて!/、な 、相に発生する逆起 電力のゼロクロス点を検出することにより、回転子位置を検出する。この回転子位置 の検出を位置検出器 20によって行っている。
[0033] 位置推定器 21は、位置検出器 20が正常に位置検出しているときに、その検出タイ ミングの時間測定を行い、そのタイミング時間に基づき回転子の回転位置の推定を 行う。電圧検出器 22は、コンデンサ 12の両端電圧を検出し、その電圧値が予め設定 された所定値より大き ヽか小さ ヽかの判断を行う。
[0034] 切換器 23は、位置検出器 20の出力信号、位置推定器 21の出力信号、及び電圧 検出器 22の出力信号を入力する。その切換器 23は、電圧検出器 22の出力信号、 すなわち、電圧検出器 22における上記判断結果に基づき、位置検出器 20の出力信 号力 位置推定器 21の出力信号かのいずれかを選択し、転流器 24に対して出力す る。その転流器 24の出力信号 (転流信号)力 インバータ 13の 6個の IGBTのゲート に入力され、それら IGBTを ONZOFFを制御する。ここで、制御器 30は、切 23 及び転流器 24を含む。 [0035] 以上のように構成された本実施の形態におけるモータの駆動装置につ 、て、その 動作を説明する。交流電源 10の交流電圧は、整流回路 11を構成するダイオードプリ ッジ回路にて全波整流されるものの、コンデンサ 12が従来に比べて非常に小容量で あるため、整流回路 11の出力電圧 (コンデンサ 12の両端の電圧)はほとんど平滑さ れず、大きなリプルを持ったものとなる。
[0036] 位置検出器 20は、モータの回転に伴い固定子卷線に誘起される逆起電力又はモ ータ電流力もモータ 14の回転子位置を検出する力 整流回路 11の出力電圧が低!、 時、所望の電圧又は電流が十分に確保できないため、その位置検出は不可能となる
[0037] 一方、位置推定器 21は、位置検出器 20の位置検出のタイミングを常に検出してお り、位置検出信号が入力されな力つた場合、前のタイミングと同一のタイミングで位置 推定信号を出力する。
[0038] 電圧検出器 22で検出したコンデンサ 12の両端の電圧が、予め設定された所定値( 本実施の形態では 50Vとする。)より高ければ、切換器 23は位置検出器 20の出力信 号を選択し、転流器 24に対して位置検出信号を出力する。逆に、所定値より低けれ ば、切換器 23は位置推定器 21の出力信号を選択し、転流器 24に対して位置推定 信号を出力する。
[0039] ここで、コンデンサ 12の両端電圧の変化を電圧検出器 22で検出し、図 1には省略 しているが、 PWM制御のデューティにフィードフォワード制御を行い、インバータ 13 の出力の電圧又は電流を一定にするように制御を行う。 PWM制御のデューティとは 、 PWM制御における (オン期間 +オフ期間)に対するオン期間の比率を表すものと する。
[0040] すなわち、速度制御で得られた基準デューティに対して、コンデンサ 12の両端電 圧が高い場合は、デューティを低くし、逆に、コンデンサ 12の両端電圧が低い場合 は、デューティを高くすることによって、インバータ 13の出力の電圧又は電流を調整 する。それにより、モータ 14を滑らかに駆動する。
[0041] 次に、コンデンサ 12の両端の電圧波形について、図 2及び図 1を用いて説明する。
図 2は本実施の形態におけるコンデンサ 12の電圧波形を示すタイミングチャートであ る。
[0042] 図 2において、縦軸は電圧を示し、横軸は時間を示す。また、交流電源 10は、交流 電圧 100V50HZを供給する電源とする。図 2における破線 Aは、非常に負荷電流が 小さ ヽ(ほとんど電流が流れて ヽな 、)時の状態で、コンデンサ 12の充電電荷がほと んど放電されず電圧の低下はほとんどな 、。
[0043] なお、ここでいう負荷電流とは、整流回路の出力電流、すなわちインバータ 13への 入力電流である。破線 Aにおける平均電圧は 141Vであり、リプル電圧は OV、リプル 含有率は 0%である。なお、リプル電圧 [V] =瞬時最高電圧 [V]—瞬時最低電圧 [V] である。また、リプル含有率 [%] = (リプル電圧 [V]Z平均電圧 [V]) X 100である。
[0044] 次に、負荷電流を大きくしていくと、コンデンサ 12の充電電荷の一部が放電され、 一点鎖線 Bに示すように瞬時最低電圧が低下してくる。ただし、電源電圧から決まる 瞬時最高電圧は 141Vで変わらない。一点鎖線 Bに示す場合、瞬時最低電圧は 40 Vであるので、平均電圧が約 112Vであり、リプル電圧は 101V、リプル含有率は 90 %となる。
[0045] さらに、負荷電流を大きくしていくと、コンデンサ 1にはほとんど充電電荷が蓄えられ ず、実線 Cに示すように瞬時最低電圧がほとんど 0Vまで低下してくる。ただし、電源 電圧力も決まる瞬時最高電圧は 141Vで変わらない。実線 Cに示す場合、瞬時最低 電圧は 0Vであるので、平均電圧が約 100Vであり、リプル電圧は 141V、リプル含有 率は 141%となる。
[0046] 上記のようにコンデンサ 12が小容量の場合、負荷電流を取り出すと、ほとんど平滑 されず入力の交流電源 10を全波整流したままの波形となる。
[0047] 次に、負荷電流に対する瞬時最低電圧及びリプル含有率の関係について、図 3を 用いてさらに詳しく説明する。図 3は本実施の形態における負荷電流に対する瞬時 最低電圧及びリプル含有率を示す特性図である。図 3において、横軸は負荷電流で あり、縦軸は瞬時最低電圧とリプル含有率を示す。また、実線は瞬時最低電圧の特 性を、破線はリプル含有率の特性をそれぞれ示す。
[0048] 図 2において説明した破線 Aに示す電流波形の時は負荷電流 OAであり、瞬時最 低電圧 141V、リプル含有率 0%である。また、一点鎖線 Bに示す電流波形の時は負 荷電流 0. 25Aであり、瞬時最低電圧 40V、リプル含有率 90%である。また、実線 C に示す電流波形の時は負荷電流 0. 35Aであり、瞬時最低電圧 OV、リプル含有率 1 41%である。 0. 35A以上の電流においては瞬時最低電圧、リプル含有率ともに変 ィ匕はしない。
[0049] 本実施の形態におけるモータの駆動装置においては、実使用範囲は負荷電流 0.
25A以上、 1. 3A以下であるものとする。実使用範囲においては、リプル含有率が常 に 90%以上となるような小容量のコンデンサ 12を選定している。
[0050] 本実施の形態においては、前述したように整流回路の出力電圧が 50V以下におい ては位置検出ができない状態であり、その結果、実使用範囲のいずれにおいても回 転子位置の検出が不可能な部分が含まれることとなる。
[0051] 次に、図 1における動作をさらに詳しぐ図 4と図 1とを用いて説明する。図 4は、本 実施の形態における動作を示すフローチャートである。
[0052] まず、 STEP1〖こお!/、て、電圧検出器 22で直流電圧 Vdcを検出する。ここで、直流 電圧 Vdcは、整流回路 11の出力電圧、すなわち、コンデンサ 12の両端電圧である。
[0053] 次に、 STEP2において、 STEP1において検出された直流電圧 Vdcを、位置検出 器 20による位置検出ができなくなる電圧の所定値 50Vと比較し、直流電圧 Vdcが 50 V未満であれば、 STEP3に進む。 STEP3において、切 は、位置推定器 21 を選択し、それまでの位置検出器 20から切り換える。
[0054] STEP4において、位置推定器 21は、位置検出信号が前の変化から一定時間経 過した力どうかを判断する。この一定時間は、位置検出により予め決められた時間で あり、回転数によりその時間は変化するものである。一定時間が経過していなければ 、そのまま通過、完了し、一定時間が通過していれば、 STEP5に進む。 STEP5にお いては、転流すなわち位置検出を行ったものとしてインバータ 13のスイッチング素子 群を転流器 24で切り換える動作を行う。
[0055] また、 STEP2において、 STEP1において検出された直流電圧 Vdcを、位置検出 ができなくなる電圧の所定値 50Vと比較し、直流電圧 Vdcが 50V以上であれば、 ST EP6〖こ進む。 STEP6において、切翻 23は位置検出器 20を選択する。
[0056] STEP7において、位置検出器 20は、位置検出信号が前の変化力も状態が変化し た力どうかを判断する。状態が変化していなければ、そのまま通過、完了し、状態が 変化していれば、 STEP8に進む。 STEP8において、転流すなわち位置検出を行つ たものとしてインバータ 13のスイッチング素子群を転流器 24で切り換える動作を行う
[0057] これらの動作を一定時間内に繰り返すことにより、常に電圧検出器 22によって直流 電圧の状態を検出し、その状態によって位置検出器 20の出力信号と位置推定器 21 の出力信号とを切 で切り換えることができる。これにより、直流電圧が低ぐ位 置検出ができない状態においても転流動作を行うことができ、運転を継続することが できる。
[0058] 上記説明した動作を行った場合の波形について、さらに図 5と図 1を用いて説明す る。図 5は、図 1に示す本実施の形態におけるモータの駆動装置各部の波形を示す タイミングチャートである。
[0059] 図 5において、直流電圧(A)はコンデンサ 12の両端の電圧である。電圧検出(B) は電圧検出器 22の出力である。電圧検出器 22では、直流電圧 (A)を所定電圧 (本 実施の形態では 50V)と比較した結果を出力する。直流電圧 (A)が 50V以上であれ ば Highレベルを、 50V未満であれば Lowレベルの信号を出力する。図 5において は、時間 T6, T7において直流電圧 (A)が 50V以下である場合を示す。
[0060] 位置検出(C)は位置検出器 20の出力を示す。また、位置推定 (D)は位置推定器 2 1の出力を示す。直流電圧が 50V以上の時は、位置検出器 20による位置検出が可 能であり、図 5の時間 T1から T5まで、 T8から T12までの区間では位置検出を正常な 状態で行うことができる。
[0061] 一方、図 5の時間 T6, T7では、直流電圧が 50V未満であるので位置検出器 20か らの位置検出信号が出てこない。仮に出てきたとしてもタイミングの全く合っておらず 誤動作を引き起こすものが発生する可能性が高い。
[0062] そこで、時間 T6, T7においては、転流信号として位置推定器 21の信号を使用する 。位置推定器 21では前の転流のタイミング T5からの時間を計測しており、予め決め られた所定時間が経過すると時間 T6のタイミングで転流を行う。
[0063] また、同様に、時間 T7でも時間 T6から所定時間経過後に転流を行う。ここでいう所 定時間とは、正常に位置検出ができて 、る時間、例えば時間 T4から T5間までの時 間を測定し所定時間としている。ここで、所定時間の測定は、例えば、位置推定器 21 が備えるタイマーによって行うことができる。
[0064] 以上のように、時間 T1から T5まで、及び時間 T8から T12までにおいては、切換器 23は位置検出器 20の出力信号を選択し出力する。また、時間 T6, T7においては、 切換器 23は位置推定器 21の出力信号を選択し出力する。切換器 23の出力は、転 流器 24に入力され、転流器 24ではインバータ 13の 6個のスイッチング素子を、図 5 に示すよう〖こ、すなわち、 TR1の通電状態(E)、 TR2の通電状態(F)、 TR3の通電 状態 (G)、 TR4の通電状態 (H)、 TR5の通電状態 (I)、 TR6の通電状態 (J)に示す ように、 ONZOFFさせる。図 5において、通電状態(E)から (J)において、 Highレべ ルが ON、 Lowレベルが OFFとする。
[0065] インバータ 13の出力電圧波形の一例として、図 5に U相電圧 (K)を示す。出力の最 大電圧は直流電圧 (A)により規制され、 U相電圧の包絡線 (破線で示す)は直流電 圧 (A)に一致する。
[0066] 前述した通り、直流電圧(A)の電圧レベルにより PWM制御のデューティを変更し ているので、図 5の U相電圧 (K)に示すとおり、 U相電圧の低いところ(例えば、時間 T5から T6までの間)ではデューティを高く(オン期間を長く)し、 U相電圧の高いとこ ろ (例えば、時間 T11から T12までの間)ではデューティを低く(オン期間を短く)して いる。これにより U相電圧の電圧変動により U相電流が不安定になるのを未然に防止 する。 V相及び W相でも同様である。
[0067] 本実施の形態においては、電圧検出器 22は電圧レベルを直接検出するものとした 力 電圧レベルのゼロクロスなどのタイミングを検出し、その検出結果に基づき、時間 に応じて電圧レベルを推定するものなどでも構わない。
[0068] また、本実施の形態においては、直流電圧、すなわち、コンデンサ 12の両端の電 圧により、切 23によって位置検出器 20と位置推定器 21とを切り換えるようにした 力 位置検出器 20から位置検出信号が出ない時に、自動的に位置推定器 21からの 位置推定信号に切り換える方法であっても構わな 、。
[0069] また、本実施の形態にお!ヽては圧縮機で説明を行ったが、送風機のように慣性モ 一メント (イナ一シャ)の大きな用途に応用するもできる。その場合は、コンデンサが小 容量であり、整流電圧が大きなリップルを有していても、大きなイナーシャ負荷のため 、モータは安定した回転を得ることができる。したがって、これまで考えることができな 力 たような大幅な装置の小型化を実現することができる。
[0070] また、本実施の形態においては、位置検出器 20は、リアルタイムに回転子位置を 検出するものとした力 例えば、全体の位置検出と転流とのタイミング差を平均的に 見る方法などを使用してもよい。
[0071] 以上のように、本発明のモータの駆動装置は、位置検出器 20による回転子位置の 検出が不可能なときにその位置を推定してインバータ 13を動作させるようにすること を特徴としたものである。これにより、回転子位置の検出が不可能なときにもその位置 を推定して、位置検出器 20の位置検出信号に相当した位置推定信号によって、イン バータ 13の転流動作ができるので、安定した運転が可能となる。
[0072] また、コンデンサ 12は、モータ駆動の実使用の出力範囲において、整流回路 11の 出力電圧のリプル含有率が 90%以上となる容量であることを特徴として 、る。本発明 のモータの駆動装置においては、大きなリプル電圧であってもモータを効率よく安定 して駆動できるので、リプル電圧がほぼ OVまで降下するような小さな容量のコンデン サを使用することができる。その結果、非常に小型のモータの駆動装置を実現できる
[0073] また、本発明のモータの駆動装置は、位置の検出が不可能なときに所定時間ごと に位置が切り替わって!/、くものとして推定を行うことを特徴としたものである。したがつ て、位置検出ができない状態において、圧縮機 16などのモータ 14はイナーシャ (慣 性モーメント)で動作しているので、安定した運転を実現し、モータ停止を防止するこ とがでさる。
[0074] また、本発明のモータの駆動装置は、整流回路 11の出力電圧が予め定められた 所定電圧以下であるとき、位置検出が不可能であると判断することを特徴とするもの で、位置検出ができない部分を的確に判断することができるので、より安定した運転 を行うことができる。
[0075] また、本発明のモータの駆動装置は、位置検出器 20による位置の検出が不可能な ときにその位置を推定する位置推定器 21と、位置検出器 20と位置推定器 21とを切り 替えてインバータ 13を動作させるようにする制御器 23とを設けることにより、位置検 出が不可能なときにでも安定した位置検出を行うことができ、効率のよい安定した運 転が実現できる。
[0076] また、本発明のモータの駆動装置は、位置の検出が不可能なときに推定位置をタ イマ一を用いて決定することにより、圧縮機のように適度のイナーシャ (慣性モーメント )をもつシステムにおいては、簡単に安易な構成で安定した運転を実現することがで きる。
[0077] また、本発明のモータの駆動装置は、コンデンサ 12の両端電圧を検出して予め定 められた所定電圧以下であるとき、位置推定器 21からの出力でインバータ 13を動作 させるようにしたものであり、直流電圧が低下して位置検出ができなくなる状態を的確 に判断でき、適切な切り替えを行うことができるので、より安定した運転を実現すること ができる。
[0078] また、本発明のモータの駆動装置は、冷凍空調システムを構成する圧縮機 16を駆 動する場合のように、位置検出センサを取り付けることのできない用途でのコンデン サ 13の小容量ィ匕を実現できるので、これまで考えることができな力つたような大幅な 小型化を実現することができる。
[0079] また、本発明のモータの駆動装置は、風を送る送風機を駆動することにより、特に 送風機のように慣性モーメント (イナ一シャ)の大きな用途では、小容量のコンデンサ による大きなリップルにその回転数は大きな影響を与えられることなく回転させること ができるので、これまで考えることができな力つたような大幅な小型化を実現すること ができる。
産業上の利用可能性
[0080] 本発明に力かるブラシレス DCモータの駆動方法及びその装置によると、位置検出 器によるモータ回転子の位置検出が不可能なときにも、位置推定器により回転子位 置を推定し、その推定した位置に応じてインバータを動作させるので安定したモータ 運転ができる。本発明は、冷蔵庫やエアコンなどの冷凍空調システムの圧縮機など に搭載されるブラシレス DCモータの駆動に限らず、幅広い装置におけるモータ駆動 に利用可能である。

Claims

請求の範囲
[1] 出力端子間にコンデンサを接続し、交流電源の交流電圧を入力とする整流回路によ つて、前記交流電圧を整流する動作と、
前記整流回路に接続されたインバータによって、ブラシレス DCモータを駆動する動 作と、
位置検出器によって、前記ブラシレス DCモータの逆起電力又はモータ電流の 、ず れか一方力 前記ブラシレス DCモータの回転子の回転位置を検出する動作と、 前記位置検出器による回転子位置の検出が不可能なときには、位置推定器によって 前記回転子位置を推定する動作と、
前記位置検出器により検出された回転子位置、又は前記位置推定器により推定され た回転子位置のいずれか一方に基づき、制御器によって前記インバータを制御する 動作とを含むブラシレス DCモータの駆動方法。
[2] 前記コンデンサは、ブラシレス DCモータの駆動における実使用の出力範囲におい て、前記整流回路の出力電圧のリプル含有率が 90%以上となる容量であることを特 徴とする請求項 1記載のブラシレス DCモータの駆動方法。
[3] 前記位置検出器による回転子位置の検出が可能であるときの検出時間を基にして 所定時間を定め、前記位置検出器による回転子位置の検出が不可能なときに前記 所定時間ごとに位置が切り替わつていくものとして推定を行うことを特徴とする請求項
1記載のブラシレス DCモータの駆動方法。
[4] 前記整流回路の出力電圧が予め定められた所定電圧以下であるとき、前記位置検 出器による回転子位置の検出が不可能であると判断することを特徴とする請求項 1 項記載のブラシレス DCモータの駆動方法。
[5] ダイオードブリッジ回路カゝら構成され、入力される交流電源の交流電圧を整流するた めの整流回路と、
前記整流回路の出力端子間に接続されるコンデンサと、
前記整流回路に接続されるインバータと、
前記インバータにより駆動されるブラシレス DCモータの逆起電力又はモータ電流の いずれか一方から、前記ブラシレス DCモータの回転子の回転位置を検出するため の位置検出器と、
前記位置検出器による回転子位置の検出が不可能なときに、その位置を推定するた めの位置推定器と、
前記位置検出器からの出力信号と前記位置推定器からの出力信号とを切り替えて 前記インバータを動作させるための制御器とを含むブラシレス DCモータの駆動装置
[6] 前記インバータは、 6個のスイッチング素子を 3相ブリッジ接続した構成であることを特 徴とする請求項 5記載のブラシレス DCモータの駆動装置。
[7] 前記コンデンサは、ブラシレス DCモータの駆動における実使用の出力範囲におい て、前記整流回路の出力電圧のリプル含有率が 90%以上となる容量であることを特 徴とする請求項 5記載のブラシレス DCモータの駆動装置。
[8] 前記位置推定器はタイマーを備え、前記位置検出器による回転子位置の検出が可 能であるときの検出時間を基にして所定時間を定め、前記位置検出器による回転子 位置の検出が不可能なときに、前記タイマーを用いて回転子の推定位置を決定する ことを特徴とする請求項 5記載のブラシレス DCモータの駆動装置。
[9] 前記コンデンサの両端電圧を検出して、その検出電圧が予め定められた所定電圧 以下であるとき、前記位置推定器からの出力で前記インバータを動作させることを特 徴とする請求項 5記載のブラシレス DCモータの駆動装置。
[10] 前記ブラシレス DCモータは、冷凍空調システムに含まれる圧縮機を駆動することを 特徴とする請求項 5記載のブラシレス DCモータの駆動装置。
[11] 前記ブラシレス DCモータは、風を送るための送風機を駆動することを特徴とする請 求項 5記載のブラシレス DCモータの駆動装置。
PCT/JP2004/016972 2004-01-05 2004-11-16 ブラシレスdcモータの駆動方法及びその装置 WO2005067131A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/579,945 US7427841B2 (en) 2004-01-05 2004-11-16 Driving method and driver of brushless DC motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-000084 2004-01-05
JP2004000084A JP2005198376A (ja) 2004-01-05 2004-01-05 ブラシレスdcモータの駆動方法およびその装置

Publications (1)

Publication Number Publication Date
WO2005067131A1 true WO2005067131A1 (ja) 2005-07-21

Family

ID=34746930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/016972 WO2005067131A1 (ja) 2004-01-05 2004-11-16 ブラシレスdcモータの駆動方法及びその装置

Country Status (5)

Country Link
US (1) US7427841B2 (ja)
JP (1) JP2005198376A (ja)
KR (1) KR100799009B1 (ja)
CN (1) CN100440716C (ja)
WO (1) WO2005067131A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008006686A1 (de) * 2006-07-11 2008-01-17 Siemens Aktiengesellschaft Verfahren und einrichtung zum betrieb eines synchronmotors
EP2092633A1 (en) * 2006-12-20 2009-08-26 LG Electronics Inc. Drive control apparatus and method for refrigerator type fan motor

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101203408B1 (ko) * 2005-12-12 2012-11-21 주식회사 대우일렉트로닉스 가속도계를 구비한 냉장고용 압축기의 bldc 모터
US7602157B2 (en) * 2005-12-28 2009-10-13 Flyback Energy, Inc. Supply architecture for inductive loads
JP4957223B2 (ja) * 2006-04-27 2012-06-20 パナソニック株式会社 モータの起動装置
MX2009001244A (es) * 2006-08-04 2009-12-14 Jun Liu Un dispositivo de bomba de tornillo helicoidal de varilla de accionamiento de activacion directa de motor de superficie.
WO2009039305A2 (en) * 2007-09-18 2009-03-26 Flyback Energy, Inc. Current waveform construction to generate ac power with low harmonic distortion from localized energy sources
AU2010343096A1 (en) * 2009-12-28 2012-08-16 Flyback Energy, Inc. Controllable universal power supply with reactive power management
WO2011082188A1 (en) * 2009-12-28 2011-07-07 Flyback Energy Inc. External field interaction motor
WO2012035767A1 (ja) * 2010-09-16 2012-03-22 パナソニック株式会社 インバータ装置一体型電動圧縮機
AU2012232581B2 (en) * 2011-03-18 2015-09-03 Hitachi Koki Co., Ltd. Electric power tool
CN102780429B (zh) * 2011-05-10 2016-01-20 台达电子工业股份有限公司 交流驱动马达
JP5670258B2 (ja) * 2011-05-31 2015-02-18 日立オートモティブシステムズ株式会社 ブラシレスモータの駆動装置
GB2495546B (en) * 2011-10-14 2014-04-23 Dyson Technology Ltd Method of starting a brushless motor
US20130320898A1 (en) * 2012-05-30 2013-12-05 Durq Machinery Corp. Means and method for aligning hall sensors location in a brushless dc motor with hall sensors
CN103840725B (zh) * 2012-11-26 2016-05-18 台达电子工业股份有限公司 永磁同步电机转子位置偏差测量装置及方法
EP2991219B1 (en) * 2013-04-22 2020-11-04 Fuji Electric Co., Ltd. Power conversion device and method for controlling same
CN104753411A (zh) * 2013-12-26 2015-07-01 南京德朔实业有限公司 无刷电机及其控制方法
DE102016110742A1 (de) * 2016-06-10 2017-12-14 Epcos Ag Filterbauelement zur Filterung eines Störsignals
WO2018108090A1 (zh) 2016-12-14 2018-06-21 南京德朔实业有限公司 电动工具
CN108233797B (zh) 2016-12-14 2020-04-07 南京德朔实业有限公司 电动工具
CN108847794B (zh) * 2018-03-30 2020-04-28 江苏美的清洁电器股份有限公司 吸尘器、电机的转子位置检测方法、装置和控制系统
KR20220014398A (ko) 2020-07-24 2022-02-07 현대자동차주식회사 모터 구동 제어 시스템 및 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10150795A (ja) * 1996-11-15 1998-06-02 Toshiba Corp インバータ装置
JP2000083397A (ja) * 1998-07-10 2000-03-21 Matsushita Electric Ind Co Ltd モ―タの制御装置及びその制御装置を有するモ―タユニット
JP2002165482A (ja) * 2000-11-24 2002-06-07 Matsushita Electric Ind Co Ltd モータ制御装置
JP2002359991A (ja) * 2001-03-29 2002-12-13 Matsushita Electric Ind Co Ltd ブラシレスモータの制御方法及び制御装置
JP2003199389A (ja) * 2001-12-27 2003-07-11 Hitachi Ltd モータの制御装置及びその制御方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002051589A (ja) 2000-07-31 2002-02-15 Isao Takahashi モータ駆動用インバータの制御装置
US6879129B2 (en) * 2001-03-29 2005-04-12 Matsushita Electric Industrial Co., Ltd. Brushless motor control method and controller
KR100425721B1 (ko) * 2001-06-25 2004-04-03 엘지전자 주식회사 브러시리스 모터의 회전자 위치 감지 장치
JP2003164187A (ja) * 2001-11-22 2003-06-06 Tamagawa Seiki Co Ltd モータ制御におけるセンサシステム
US6750626B2 (en) * 2002-09-11 2004-06-15 Ford Global Technologies, Llc Diagnostic strategy for an electric motor using sensorless control and a position sensor
US6984948B2 (en) * 2002-12-12 2006-01-10 Matsushita Electric Industrial Co., Ltd. Motor control apparatus
US6989641B2 (en) * 2003-06-02 2006-01-24 General Motors Corporation Methods and apparatus for fault-tolerant control of electric machines
US6906491B2 (en) * 2003-06-20 2005-06-14 Rockwell Automation Technologies, Inc. Motor control equipment
US7002318B1 (en) * 2004-09-23 2006-02-21 General Motors Corporation Position sensor fault tolerant control for automotive propulsion system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10150795A (ja) * 1996-11-15 1998-06-02 Toshiba Corp インバータ装置
JP2000083397A (ja) * 1998-07-10 2000-03-21 Matsushita Electric Ind Co Ltd モ―タの制御装置及びその制御装置を有するモ―タユニット
JP2002165482A (ja) * 2000-11-24 2002-06-07 Matsushita Electric Ind Co Ltd モータ制御装置
JP2002359991A (ja) * 2001-03-29 2002-12-13 Matsushita Electric Ind Co Ltd ブラシレスモータの制御方法及び制御装置
JP2003199389A (ja) * 2001-12-27 2003-07-11 Hitachi Ltd モータの制御装置及びその制御方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008006686A1 (de) * 2006-07-11 2008-01-17 Siemens Aktiengesellschaft Verfahren und einrichtung zum betrieb eines synchronmotors
EP2092633A1 (en) * 2006-12-20 2009-08-26 LG Electronics Inc. Drive control apparatus and method for refrigerator type fan motor
EP2092633A4 (en) * 2006-12-20 2014-03-12 Lg Electronics Inc DRIVE CONTROL DEVICE AND METHOD FOR A FAN MOTOR OF THE REFRIGERATOR TYPE

Also Published As

Publication number Publication date
KR20060118491A (ko) 2006-11-23
CN1883109A (zh) 2006-12-20
US20070145919A1 (en) 2007-06-28
CN100440716C (zh) 2008-12-03
KR100799009B1 (ko) 2008-01-28
JP2005198376A (ja) 2005-07-21
US7427841B2 (en) 2008-09-23

Similar Documents

Publication Publication Date Title
WO2005067131A1 (ja) ブラシレスdcモータの駆動方法及びその装置
JP5195444B2 (ja) ブラシレスdcモータの駆動装置並びにこれを用いた冷蔵庫及び空気調和機
KR0122095B1 (ko) 인버터장치 및 그 인버터장치에 의해 제어되는 에어컨디셔너
US20110279070A1 (en) Motor driving device and electric equipment using the same
JP4341266B2 (ja) ブラシレスdcモータの駆動方法及びその装置
JP5505528B1 (ja) 消費電力削減装置
WO2004084401A1 (ja) 電動圧縮機
US20090164047A1 (en) Method for controlling motor of air conditioner
JP5428746B2 (ja) ブラシレスdcモータの駆動装置およびこれを用いた電気機器
JP5063570B2 (ja) ファン駆動装置及びこれを搭載した空気調和機
JP2005176437A (ja) ブラシレスdcモータの駆動方法及び駆動装置
JP2008005592A (ja) モータ駆動装置およびそのモータ駆動装置を具備した貯蔵装置
JP5521405B2 (ja) モータ駆動装置およびこれを用いた電気機器
JP2008005639A (ja) ブラシレスdcモータの駆動方法およびその装置
JP4277762B2 (ja) 冷蔵庫の制御装置
JP2006109624A (ja) ブラシレスdcモータの駆動装置
CN111034011B (zh) 电动机驱动装置和使用它的冷藏库
JP6182462B2 (ja) 電力変換装置
JP2006223014A (ja) モータ駆動装置
JP6450939B2 (ja) モータ駆動装置、およびこれを用いた圧縮機の駆動装置、冷凍装置および冷蔵庫
KR20090042519A (ko) 전동기 판별 방법 및 그 판별 장치
JP2006034001A (ja) ブラシレスdcモータの駆動装置
JP2003333886A (ja) 永久磁石型同期モータの駆動方法、駆動制御装置および空気調和装置
CN111034026A (zh) 电动机驱动装置和使用它的冷藏库
JP2005253197A (ja) ブラシレスdcモータの駆動装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480034173.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067009547

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007145919

Country of ref document: US

Ref document number: 10579945

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 1020067009547

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10579945

Country of ref document: US