WO2005066707A1 - 光フーリエ変換装置及び方法 - Google Patents

光フーリエ変換装置及び方法 Download PDF

Info

Publication number
WO2005066707A1
WO2005066707A1 PCT/JP2004/019517 JP2004019517W WO2005066707A1 WO 2005066707 A1 WO2005066707 A1 WO 2005066707A1 JP 2004019517 W JP2004019517 W JP 2004019517W WO 2005066707 A1 WO2005066707 A1 WO 2005066707A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
light pulse
signal light
pulse
fourier transform
Prior art date
Application number
PCT/JP2004/019517
Other languages
English (en)
French (fr)
Inventor
Toshihiko Hirooka
Masataka Nakazawa
Original Assignee
Japan Science And Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency filed Critical Japan Science And Technology Agency
Priority to EP04807872.9A priority Critical patent/EP1705516B1/en
Priority to US10/584,932 priority patent/US7352504B2/en
Publication of WO2005066707A1 publication Critical patent/WO2005066707A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/3515All-optical modulation, gating, switching, e.g. control of a light beam by another light beam
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J11/00Measuring the characteristics of individual optical pulses or of optical pulse trains

Definitions

  • the present invention relates to an optical Fourier transform apparatus and method, and particularly relates to the time waveform of an optical pulse in the form of its frequency spectrum (envelope), and the shape of Z or the frequency spectrum of the optical pulse in its form.
  • the present invention relates to an optical Fourier transform apparatus and method for converting a time waveform.
  • the optical Fourier transform technique is also effective in suppressing timing jitter of ultrashort pulses generated from a mode-locked laser (for example, Non-Patent Document 3). Also, there is a document describing generation of a quadratic function type optical pulse using an optical fiber amplifier having normal dispersion (for example, see Non-Patent Document 4).
  • the inventor of the present invention has proposed a method of changing the time and frequency on the receiving side and completely regenerating transmission data since the pulse vector shape is invariable even if there is any linear distortion effect in the optical fiber.
  • Non-distortion transmission Japanese Patent Application No. 2003-23973, “Optical transmission method and optical transmission device”, Japanese Patent Application No. 2003-181964, “ ⁇ TDM transmission method and device”
  • optical pulse compression and optical function generation Japanese Patent Application No. 2003-109708, “Optical”) Application for pulse compressor and optical function generator, optical pulse compression method and optical function generation method ”).
  • FIG. 1 shows a configuration example of a circuit conventionally used for performing optical Fourier transform.
  • this circuit is the Pockels in an electro-optic crystal such as a LiNbO crystal.
  • a phase modulator (LN phase modulator) 2 using the effect and a dispersive medium 3 having a dispersion amount D are provided. If the dispersion parameter of dispersive medium 3 is / 3 [ps 2 / km] and the length is L [km],
  • phase modulator 2 As the dispersive medium 3, an optical fiber or a pair of diffraction gratings, fiber Bragg grating, or the like is used.
  • the peak of the modulation characteristic of the phase modulator 2 coincides with the center position of the light pulse.
  • the magnitude of the chirp applied to the norm by the LN phase modulator 2 (chirp rate K) can be obtained as follows.
  • Voltage V (t) V cos applied to phase modulator 2
  • Equation (1) shows that m 0
  • an optical pulse having a time waveform u (t) and a frequency spectrum U ( ⁇ ) is first split into two by an optical coupler 1, and one of them is input to an LN phase modulator 2.
  • the other is input to a clock signal extraction circuit 4 to extract a clock signal (sine wave signal) from the pulse train.
  • the output signal is applied to the LN phase modulator 2 via the phase shifter 5 and the electric amplifier 6 to drive the LN phase modulator 2.
  • the phase shifter 5 is inserted to apply the phase modulation optimally in synchronization with the optical pulse.
  • the electric amplifier 6 is for driving the LN phase modulator 2.
  • Patent Document 2 M. Romagnoli, P. Franco, R. Corsini, A. Schiffini, and M. Midrio, “Time-domain Fourier optics for polarization-mode dispersion compensation,” Optics Letters, vol. 24, ⁇ 17, pp. 1197—1199 (1999).
  • Non-Patent Document 3 Shi A. Jiang, MEGrein, HAHaus, EPIppen, and H. Yokoyama, "Timing jitter eater for optical pulse trains, Optics Letters, vol.28, no.2, pp.78-80 (2003).
  • ⁇ ltt MEFermann, VIKruglov, BCThomsen, JMDudley, and JDHarvey, "Self-simiar propagation and amplification of parabolic pulses in optical fibers," Phys. Rev. Lett. Vol.84, pp.6010-6013 (2000).
  • FIG. 2 is a schematic diagram showing phase modulation (a) and magnitude of frequency shift (b) applied to an optical pulse by an LN phase modulator.
  • the dotted line shows the phase modulation characteristic represented by a quadratic function and the magnitude of the frequency shift linear with time.
  • the range in which the sinusoidal modulation characteristics of the LN phase modulator can be approximated by a square curve is near the center of the pulse. It will be limited.
  • this is called the allowable window width of the optical Fourier transform.
  • the permissible window width is narrower than the time width of the light pulse, there is a big problem that the optical Fourier transform cannot be executed accurately for the light pulse components outside the window width. .
  • the present invention provides an optical Fourier transform apparatus and method capable of improving the phase modulation characteristic so as to be expressed by a quadratic function and performing optical Fourier transform over a wide time domain.
  • the purpose is to provide.
  • Still another object of the present invention is to provide an optical Fourier transform apparatus and method capable of performing an optical Fourier transform on an ultrahigh-speed optical pulse train whose transmission speed exceeds the limit of the processing speed of the electric circuit.
  • One of the optical Fourier transform apparatuses and methods according to the present invention is to combine a signal light pulse with a parabolic control light pulse whose shape is represented by a quadratic function to obtain a single optical power medium.
  • the signal light pulse is linearly phase-modulated (frequency trapped) over the entire pulse by cross-phase modulation with the control light pulse, and then the signal light pulse is converted into a dispersive medium having group velocity dispersion (secondary dispersion).
  • the present invention also provides the optical Fourier transform apparatus and method as described above, wherein a parabolic control optical noise is generated by an optical fiber amplifier having normal dispersion, and the value of normal dispersion is gradually increased in the longitudinal direction.
  • One of the features is to use either a decreasing dispersion fiber or an optical filter and an optical Fourier transform device whose amplitude transmission characteristics are represented by a quadratic function.
  • the present invention further provides the above-described optical Fourier transform apparatus and method, wherein a low-dispersion optical power medium having a very small dispersion value is used to efficiently generate high-speed cross-phase modulation of control light and signal light.
  • the wavelength of signal light and control light is zero-dispersion wave
  • the wavelengths are set to be symmetrical with each other across the length (walk-off free).
  • the signal light is first passed through a dispersive medium, and the shape of the signal light pulse is represented by a quadratic function.
  • the frequency spectrum of the signal light pulse is obtained by multiplexing the signal light pulse with a parabolic control light pulse and linearly chirping the signal light pulse over the entire pulse in the medium of optical power by the mutual phase modulation with the control light pulse.
  • another optical Fourier transform apparatus and method provides a parabolic control in which a signal light is first passed through a dispersive medium, and then the signal light pulse is represented by a quadratic function.
  • the optical signal is multiplexed with the optical pulse, the optical signal is applied to the medium, and the signal optical pulse is linearly chirped over the entire pulse by cross-phase modulation with the control optical pulse.
  • the signal light passes through the dispersive medium twice to completely compensate for the chirp, and to obtain a transform-limited waveform having no chirp in the output. This is one of the features.
  • another optical Fourier transform apparatus and method combines a signal light pulse with a parabolic control light pulse whose shape is represented by a quadratic function, and converts the signal light pulse into a single optical power medium.
  • the signal light pulse is linearly chirped over the entire pulse by cross-phase modulation with the control light pulse, and then the signal light pulse is passed through a dispersive medium, and then the signal light pulse is multiplexed with the control light pulse again. Then, the signal light pulse is linearly chirped again over the entire pulse by cross-phase modulation with the control light pulse in an optical power medium, so that the time waveform of the signal light pulse is shaped into its frequency spectrum.
  • the signal light has two optical powers and one medium.
  • One of the features is that the pass is completely compensated for by the rounding, and a transform-limited waveform without any chirp is obtained at the output.
  • a quadratic function optical pulse generator that generates a control light pulse having a shape represented by a quadratic function or a parabola
  • a multiplexer for multiplexing the signal light pulse and the control light pulse
  • the input signal light pulse and control light pulse are multiplexed by the multiplexer and are incident on the optical power medium, where the signal light pulse and the control optical pulse
  • the input signal light pulse is linearly chirped by phase modulation, and the signal light pulse output from the optical power medium is passed through the dispersive medium, whereby the time waveform of the input signal light pulse is changed.
  • An optical Fourier transform device for converting into a frequency spectrum shape is provided.
  • a quadratic function optical pulse generator that generates a control light pulse having a shape represented by a quadratic function or a parabola
  • a multiplexer for multiplexing the signal light pulse and the control light pulse
  • the input signal light pulse is passed through the dispersive medium, and the signal light pulse output from the dispersive medium and the control light pulse are multiplexed by the multiplexer to be incident on the optical power medium. Then, in the optical power medium, the signal light pulses output from the dispersive medium force are linearly changed by the mutual phase modulation of the signal light pulses and the control light pulses.
  • the optical Fourier transform apparatus that converts the shape of the frequency spectrum of the input signal light pulse into its time waveform by providing the input signal light pulse is provided.
  • optical Fourier transform apparatus and method of the present invention a parabolic optical pulse is used as control light, and a linear chirp can be applied to the signal light by cross-phase modulation with the signal light. , More accurate optical Fourier transform can be realized. Further, since the optical Fourier transform apparatus and method of the present invention do not require signal processing by an electric circuit, it is possible to execute optical Fourier transform even on a high-speed signal pulse train exceeding the limit of the processing speed by electricity. . Therefore, various applications of the optical Fourier transform limited by the performance of the conventional optical Fourier transform apparatus can be realized by the optical Fourier transform apparatus and method of the present invention.
  • FIG. 1 is a diagram showing a configuration of a conventional optical Fourier transform device.
  • FIG. 2 is a schematic diagram showing magnitudes of phase modulation and frequency shift applied to an optical pulse by an LN phase modulator.
  • the dotted line indicates the ideal phase modulation characteristics and the magnitude of the frequency shift.
  • FIG. 3 is a diagram showing a configuration of an optical Fourier transform device according to a first embodiment of the present invention.
  • FIG. 4 is a diagram showing a configuration (first embodiment) of a quadratic function optical noise generator 7 in FIG.
  • FIG. 5 is a diagram showing a configuration (second embodiment) of the quadratic function type optical noise generator 7 in FIG. 3.
  • FIG. 6 is a diagram showing a configuration (third embodiment) of a quadratic function type optical noise generator 7 in FIG. 3.
  • FIG. 7 is a schematic diagram showing a state where a linear cap is applied to signal light by cross-phase modulation between control light and signal light.
  • FIG. 8 The change in the longitudinal direction of the dispersion value of the normal dispersion decreasing fiber 16 in FIG. 5 (a), and the use of the quadratic function type optical noise generator 7 when the normal dispersion decreasing fiber is used in FIG.
  • FIG. 9 is a diagram showing a time waveform (b) of a control light pulse obtained by output.
  • FIG. 9 is a diagram showing a time waveform and a frequency chirp of the signal light that is split by the optical filter 11 after propagating through the optical power medium 10 in FIG. 3.
  • the thin solid line shows the theoretical value of the frequency chirp applied to the signal light
  • the thin dotted line shows the frequency chirp applied to the signal light by the conventional LN phase modulator.
  • FIG. 10 is a diagram showing a time waveform of signal light at an output of the dispersive medium 12 in FIG. 3.
  • the thin solid line shows the result of the optical Fourier transform when an ideal linear curve is applied to the signal light with the optical power medium 10
  • the thin dotted line shows the result of the signal light using the conventional LN type optical modulator. 4 shows a result of optical Fourier transform when a loop is applied.
  • FIG. 11 is a diagram showing a configuration of a second embodiment of the optical Fourier transform device of the present invention.
  • FIG. 12 is a diagram showing a configuration of an optical Fourier transform device according to a third embodiment of the present invention.
  • FIG. 13 is a diagram showing a configuration of an optical Fourier transform device according to a fourth embodiment of the present invention.
  • FIG. 3 shows a configuration diagram of the optical Fourier transform device according to the first embodiment of the present invention.
  • the optical Fourier transform device includes an optical coupler 1, a clock signal extraction circuit 4, a quadratic function optical pulse generator 7, an optical delay element 8, a multiplexer 9, an optical power medium 10, an optical filter 11, and , A dispersive medium 12.
  • the optical power medium 10 is a medium having a third-order nonlinear refractive index, for example, a single mode optical fiber, a photonic crystal fiber, a semiconductor optical amplifier, an erbium-doped optical fiber amplifier, or an organic nonlinear material.
  • the dispersive medium 12 is, for example, a single mode optical fiber or a pair of diffraction gratings having a group velocity dispersion characteristic in which a zero dispersion region exists near a wavelength band of 1.3 ⁇ m, a fiber Bragg grating, or the like. Can be used.
  • the clock signal extraction circuit 4 receives the signal light pulse branched by the optical coupler 1 and extracts a clock signal based on the signal light pulse.
  • solid lines indicate optical pulses (optical signals), and dotted lines indicate electrical signals. The following The same applies to the diagrams showing the configuration of the one-Lie transform apparatus and the quadratic function type optical pulse generator.
  • the quadratic function type optical pulse generator 7 generates a control optical pulse according to the clock signal output from the clock signal extraction circuit.
  • the optical delay element 8 gives an appropriate time delay so that the center time position of the control light pulse coincides with the timing of the signal light pulse.
  • the optical filter 11 is a filter for splitting the signal light from the control light.
  • the quadratic function optical pulse generator 7 is a device that generates a pulse having a parabolic waveform (hereinafter, also referred to as a control light pulse or a quadratic function light pulse). It can be realized in the form.
  • the first mode uses an optical fiber amplifier having normal dispersion (for example, see Non-Patent Document 4).
  • FIG. 4 shows a configuration of a quadratic function type optical pulse generator according to the first embodiment.
  • the quadratic function type optical pulse generator 7 of the first embodiment has an optical pulse transmitter 13 and a normal dispersion optical fiber amplifier 14.
  • the optical noise transmitter 13 includes, for example, a mode-locked laser, an EA (Electro-Absorption) modulator, or an LN modulator driven by a clock extracted from signal light power using a clock signal extraction circuit 4. It is made by combination.
  • the pulse When an optical pulse output from the optical pulse transmitter 13 is input to the normal dispersion optical fiber amplifier 14, the pulse is linearly chirped over the entire waveform by normal dispersion and nonlinear optical effects, and at the same time, the pulse shape is shaped parabolically. .
  • the second mode uses an optical fiber having a normal dispersion and the magnitude of the dispersion value gradually decreases in the longitudinal direction (see, for example, Japanese Patent Application No. 2003-387563 “Optical pulse generation method and optical fiber”). Pulse compression method ”).
  • FIG. 5 shows a configuration of a quadratic function type optical pulse generator 7 according to the second embodiment.
  • the optical pulse output from the optical pulse transmitter 13 driven by the clock signal is amplified by the optical amplifier 15 and input to the normal dispersion decreasing fiber 16, a parabolic pulse is obtained at the output.
  • a parabolic pulse is obtained at the output.
  • the quadratic function type optical pulse generator 7 includes an optical pulse transmitter 13, an optical amplifier 15, and a normal dispersion decreasing fiber 16.
  • the optical noise transmitter 13 is, for example, a mode-locked fiber laser. Alternatively, a mode-locked semiconductor laser can be used. Considering the use in the optical communication wavelength band, a particularly suitable wavelength is 1. Band power.
  • the wavelength and the waveform of the generated optical pulse are not limited to these, and any arbitrary one can be used.
  • the optical amplifier 15 is used to generate a nonlinear optical effect (self-phase modulation effect) in the normal dispersion decreasing fiber 16.
  • the output from the optical amplifier 15 is a non-linear pulse.
  • the non-linear optical pulse refers to, for example, an optical pulse having a power required to obtain a nonlinear optical effect in the normal dispersion decreasing fiber 16.
  • the normal dispersion decreasing fiber 16 is an optical fiber having a normal dispersion value and the magnitude of the dispersion value decreases in the longitudinal direction.
  • the normal dispersion decreasing fiber 16 one fiber in which the magnitude of the dispersion value changes continuously can be used.
  • the magnitude of the dispersion value decreases means that the absolute value of the dispersion value decreases, and such a normal dispersion fiber is referred to as a normal dispersion decreasing fiber. Called fiber.
  • the normal dispersion decreasing fiber 16 can be realized, for example, by changing the core diameter continuously in the longitudinal direction in a normal optical fiber made of quartz glass.
  • the normal dispersion decreasing fiber 16 has a constant dispersion value, or a cascade connection of several types of fibers that change linearly in the longitudinal direction or that continuously changes the dispersion value, thereby reducing the dispersion value of the fiber.
  • the continuous decrease of may be discretely approximated.
  • a function D (z) representing a change in dispersion value along the longitudinal direction of the normal dispersion decreasing fiber 16 is reduced so as to decrease with distance (longitudinal coordinate) z.
  • represents the rate of decrease in the magnitude of the normal variance.
  • FIG. 5B shows an example of a change in the dispersion value of the normal dispersion-decreasing fiber 16.
  • the dotted line in the figure represents the fiber 16 whose dispersion value changes continuously, and the solid line is an example approximated by cascading three types of fibers whose dispersion value changes linearly in the longitudinal direction.
  • the force using three types of fibers is not limited to this, and an appropriate number of fibers can be used.
  • a parabolic optical filter whose amplitude transmission characteristic is expressed by a quadratic function is used to shape the spectral shape of an optical pulse into a parabolic shape, and a conventional optical Fourier transform device (for example, as shown in FIG. 1)
  • This device converts the parabolic spectrum shape into a parabolic optical pulse waveform by the device.
  • FIG. 6 shows a configuration of a quadratic function type optical pulse generator 7 according to the third embodiment.
  • the quadratic function type optical pulse generator 7 of the third embodiment includes an optical pulse transmitter 13, a parabolic optical filter 17, and an optical Fourier transform device 18.
  • an optical pulse output from an optical pulse transmitter 13 driven by a clock signal is input to a parabolic optical filter 17 and its spectral shape is shaped into a parabolic shape.
  • a quadratic optical pulse whose time waveform is parabolic is obtained at the output.
  • the optical Fourier transform device 18 uses the same one as the conventional one.
  • the characteristics of the optical Fourier transform depend on the relationship between the pulse width having a parabolic spectral shape and the characteristics of the phase modulator. Therefore, in the phase modulator used in the conventional optical Fourier transformer 18, if there is a pulse that has passed through the parabolic optical filter 17 within a time range where the modulation characteristic can be approximated by a quadratic function, the output will be a quadratic function type. The control light noise is obtained.
  • a signal light pulse train is branched by an optical coupler 1, and one of them is connected to a clock signal extraction circuit 4 to extract a clock signal of a noise train.
  • a signal light pulse (wavelength ⁇ ) having a time waveform u (t), a frequency spectrum U ( ⁇ ) and a parabolic control light pulse (wavelength ⁇ ) output from the quadratic function type optical pulse generator 7 are The light is multiplexed by the multiplexer 9 and input to the optical power-medium 10. At this time, an appropriate time delay is given by the optical delay element 8 so that the center time position of the control light pulse coincides with the timing of the signal light pulse.
  • the time waveform u (t) of the signal light pulse and its frequency spectrum U ( ⁇ ) are [0044] Girl 4
  • the instantaneous frequency of the signal light is modulated by the cross-phase modulation of the signal light and the control light in accordance with the time change of the control light intensity.
  • the signal light intensity is sufficiently smaller than the control light, and the self-phase modulation due to the change in the intensity of the signal light itself can be ignored.
  • I (t) is the intensity of control light per unit area
  • n is a constant called the Kerr coefficient
  • the quadratic function type optical pulse which is the control light has a time waveform u (t) given by the following equation.
  • indicates the time width from the center of the quadratic function type optical noise to the base. For example, ⁇
  • Equation (5) is an equation for the pulse amplitude, and the power is expressed in the form of the square of time t. Therefore, the trap generated in the signal light by the cross-phase modulation is given by Eqs. (4) and (5).
  • the phase modulation characteristic of the optical power medium 10 depends on the waveform of the control light as shown in Expression (4), but when the intensity of the control light is parabolic as in the present embodiment, ,
  • FIG. 7 schematically shows a state in which a linear cap is applied to each optical pulse constituting a signal light pulse train by cross-phase modulation with a quadratic function light pulse train.
  • the repetition frequency of the signal light and control light pulse train is set to the inverse of the time width 2T of the quadratic function light pulse.
  • FIG. 7 shows the time waveforms of the signal light (solid line) and the control light (dotted line), and the lower part shows the frequency shift applied to the signal light. As shown in the figure, assuming that the time width from the center of the control light to the tail is T, the signal light has a linear change over a 2T time width.
  • the magnitude of the chirp rate ⁇ depends on the peak power p and light power of the control light pulse.
  • the wavelength difference I between the signal light and the control light is I. It is desirable that the walk-off due to the group velocity mismatch caused by ⁇ - ⁇ I be small (the above sc
  • the walk-off refers to a group delay generated between the control light and the signal light due to a difference in group velocity between the two.
  • ⁇ and ⁇ are the same as those of the optical power medium 10 so that the signal light and the control light receive the same time delay in the optical power medium 10 using the optical power medium 10 having a very small dispersion value.
  • the wavelengths are mutually symmetrical with respect to the zero dispersion wavelength; I and / or I may be set. For example, such; I can be set by the optical pulse transmitter 13 of the quadratic optical pulse generator 7.
  • Time waveform u (t) of the signal light pulse after a linear trap is applied by the optical power medium 10.
  • the signal light After passing through the optical power medium 10, the signal light is demultiplexed from the control light by the optical filter 11 and input to the dispersive medium 12.
  • the time waveform v (t) of the signal light pulse after passing through the dispersive medium 12 is
  • the signal light having a different frequency assigned to each time position in the optical power medium 10 is given a different time delay according to the frequency due to the group velocity dispersion in the dispersive medium 12. .
  • each frequency component of the signal light pulse is separated on the time axis.
  • D l / K
  • a parabolic pulse obtained by a quadratic function type optical pulse generator 7 having a configuration as shown in FIG. 5 is used as the control light.
  • the control light energy is 20 pJ
  • FIG. 8 shows a change (a) in the longitudinal direction of the dispersion value of the normal dispersion decreasing fiber 16 and a waveform (b) of the control light pulse at the output.
  • FIG. 9 is a diagram showing the time waveform and frequency chirp of the signal light that has been split by the optical filter 11 after propagating through the optical power medium 10.
  • a thin solid line is applied to the signal light.
  • the dashed line indicates the frequency trap applied to the signal light by the conventional LN phase modulator.
  • the bold solid lines represent the power and the cap in the present numerical calculation example.
  • the arrows and ellipses in the figure indicate that the left axis is a power graph and the right axis is a chirp graph.
  • FIG. 9 show the signal light having a pulse width lOps having a Gaussian shape and the above-described control light obtained at the output of the normal dispersion decreasing fiber 16.
  • FIG. 6 shows a time waveform and a frequency chirp of signal light that is multiplexed by a multiplexer 9 and propagated through an optical power medium 10 and then demultiplexed from control light by an optical filter 11.
  • the wavelength interval between the signal light and the control light is 2 Onm.
  • a dispersion-shifted fiber having a dispersion value of -0.2 ps / nm / km, a nonlinear coefficient of 3 ⁇ SSW-km- 1 , and a length of 1450 m is used as the optical power medium 10.
  • FIG. 10 shows a waveform (thick line) of the signal light after the captured signal light is input to the dispersive medium 12 and propagated.
  • the thin solid line indicates that the signal light u (t) calculated using Equation (10) after the optical Fourier transform is calculated using Equation (10), assuming that the chirp is completely linear (a linear chirp was applied to the signal light with a medium of light power 10).
  • Waveform v (t) the thin dotted line shows the results when optical Fourier transform was performed using a conventional LN phase modulator (when a LN-type optical modulator was used and a chip was applied to the signal light). It is.
  • the Fourier transform image is distorted, but by using the optical Fourier transform device according to the present embodiment, no distortion occurs in the Fourier transform image, and It can be seen that the pulse width is the same as the pulse width when the cap is assumed to be perfectly linear.
  • FIG. 11 shows a configuration diagram of an optical Fourier transform device according to the second embodiment of the present invention.
  • the dispersive medium 12 is located before the multiplexer 9 in the present embodiment.
  • Other configurations are the same as those described above, and a description thereof will be omitted.
  • the quadratic function light pulse generator 7 can have any one of the configurations shown in FIGS. 4 and 6 as in the first embodiment.
  • a signal light pulse (wavelength; I) having a time waveform u (t) and a frequency spectrum U ( ⁇ ) branched by the optical coupler 1 is first input to the dispersive medium 12.
  • the frequency spectrum U ( ⁇ ) of the signal light pulse at the output of the dispersive medium 12 is
  • the signal light pulse and the parabolic control light pulse (wavelength ⁇ ) output from the quadratic function light pulse generator 7 are multiplexed by the multiplexer 9 and input to the optical power medium 10.
  • an appropriate time delay is given to the control light pulse by the optical delay element 8 so that the center time position of the control light pulse coincides with the timing of the signal light pulse.
  • a linear pickup ⁇ (formula (6)) is applied to the signal light by cross-phase modulation with the control light.
  • the signal light and the control light are split by the optical filter 11.
  • the frequency stutter of the signal light V (co) at the output of the optical filter 11 is given by convolution with U ( ⁇ ),
  • FIG. 12 shows a configuration diagram of an optical Fourier transform device according to the third embodiment of the present invention.
  • the optical Fourier transform device according to the third embodiment includes an optical coupler 1, a clock signal extracting circuit 4, a quadratic function type optical pulse generator 7, an optical delay element 8, a multiplexer 9, an optical power medium 10, an optical It comprises a filter 11, a dispersive medium 12, and optical circulators 20 and 20 '.
  • the signal light split by the optical coupler 1 is first input to the port 20 a of the optical circulator 20.
  • the port 20a is connected to the port 20'a via the port 20b, the dispersive medium 12, and the port 20'b of the optical circuit 20 '.
  • the port 20'a and the port 20'c of the optical circulator 20 ' are connected in a loop through a multiplexer 9, an optical power medium 10, and an optical filter 11.
  • the signal light demultiplexed by the optical filter 11 is applied to port 20'c and port 20 ' After passing through the dispersive medium 12 again through b, the light is output from the port 20c through the port 20b of the optical circulator 20.
  • One input of the multiplexer 9 receives the signal light from the port 20'a of the optical circulator 20 ', and the other input is generated by the quadratic optical pulse generator 7 and the optical delay element 8.
  • the control light is incident.
  • the optical delay element 8 is used to give an appropriate time delay to the control light so that the center time position of the control light pulse coincides with the timing of the signal light pulse in the optical power medium 10.
  • the time waveform u— (t) of the signal light pulse at the output of the dispersive medium 12 is expressed by the following equation by convolution using the time waveform u (t) of the input signal light pulse.
  • the signal light is input to the optical Kerr medium 10, and a linear trap ⁇ ⁇ (Equation (6)) is applied to the signal light by mutual phase modulation with the control light. .
  • the time waveform u (t) of the signal light pulse at the output of the optical power-medium 10 is calculated using u (t).
  • the signal light is demultiplexed from the control light by the optical filter 11 and then input to the dispersive medium 12 again.
  • the time waveform v (t) of the signal light pulse uses u (t).
  • the signal light passes twice through the dispersive medium 12 to completely compensate for the chirp, and unlike the first embodiment, a transform-limited waveform without any chirp is obtained at the output. warn.
  • FIG. 13 shows the configuration of the optical Fourier transform device according to the fourth embodiment of the present invention.
  • the optical Fourier transform device according to the fourth embodiment includes an optical coupler 1, a clock signal extraction circuit 4, a quadratic optical pulse generator 7, optical delay elements 8 and 8 ', multiplexers 9 and 9', It comprises a force medium 10, an optical filter 11, a dispersive medium 12, a duplexer 19, and optical circulators 20 and 20 '.
  • Components having the same reference numerals as those of the optical Fourier transform device shown in FIG. 3 are the same as those described above, and thus description thereof is omitted.
  • the signal light is first multiplexed by the multiplexer 9 with the control light generated by the quadratic function type optical pulse generator 7 and the optical delay element 8.
  • the output of the multiplexer 9 separates the control light and the signal light through the ports 20a and 20b of the optical circulator 20, the optical power medium 10, and the ports 20'b and 20'a of the optical circulator 20 '.
  • the demultiplexer 19 demultiplexes the control light and the signal light.
  • One output (signal light) of the demultiplexer 19 passes through the dispersive medium 12, and the other output (control light) passes through the optical delay element 8 ′.
  • the control light and the signal light are multiplexed again in the multiplexer 9 '.
  • the output of the multiplexer 9 ' is connected to the optical filter 11 via the port 20'c and the port 20'b of the optical circulator 20', the optical power medium 10, the port 20b and the port 20c of the optical circulator 20.
  • the optical filter 11 separates the signal light from the control light.
  • the optical delay elements 8 and 8 ' are used to give an appropriate time delay to the control light so that the center time position of the control light pulse coincides with the timing of the signal light pulse in the optical power medium 10.
  • the time waveform u (t) after the signal light multiplexed with the control light and input to the optical power medium 10 undergoes a linear chirp in the optical power medium 10 is the original signal light pulse. Is expressed by the following equation using the time waveform u (t).
  • the signal light passes twice through the optical power medium 10 to completely compensate for the chirp.
  • a chirpless waveform and a transform-limited waveform are generated at the output. Note that you can get.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

 光フーリエ変換を幅広い時間領域にわたって実行する。  二次関数型光パルス発生器7は、光カップラ1からの信号光パルスに基づくクロック信号に従い、二次関数又は放物線で表される形状の制御光パルスを発生する。入力された信号光パルスは、光遅延素子8により信号光パルスとタイミングが一致するように光遅延が与えられた制御光パルスと合波器9により合波され、光カー媒質10に入射される。光カー媒質10において信号光パルスと制御光パルスとの相互位相変調によって入力された信号光パルスをパルス全体又は広い時間領域にわたって線形に位相変調(周波数チャープ)させる。その後、光フィルタ11により分離された信号光パルスを、群速度分散(二次分散)を有する分散性媒質12に通すことにより、入力された信号光パルスの時間波形をその周波数スペクトルの形状に変換する。  

Description

明 細 書
光フーリエ変換装置及び方法
技術分野
[0001] 本発明は、光フーリエ変換装置及び方法に係り、特に、光パルスの時間波形をそ の周波数スペクトルの形状(包絡線)に、及び Z又は光パルスの周波数スぺタトノレの 形状をその時間波形に変換する光フーリエ変換装置及び方法に関するものである。 背景技術
[0002] 光パルスの時間波形をその周波数スペクトルの形状に、あるいは光パルスの周波 数スペクトルの形状をその時間波形に変換する光フーリエ変換技術を利用したさまざ まな応用が、超高速光通信や超短パルスモード同期レーザ、光信号処理などの分野 において提案されている。例えば超高速光通信においては、信号光パルス列におけ る各パルスの時間位置のランダムな揺らぎ (タイミングジッタ)の低減 (例えば、非特許 文献 1参照)、偏波モード分散の補償 (例えば、非特許文献 2参照)、などへの応用が 提案されている。また、モード同期レーザから発生する超短パルスのタイミングジッタ の抑圧(例えば、非特許文献 3)においても光フーリエ変換技術が有効である。また、 正常分散を有する光ファイバ増幅器を用いた二次関数型の光パルスの発生につい て記載された文献がある(例えば、非特許文献 4参照)。
[0003] 本発明者は、一般的に光ファイバにあらゆる線形歪み効果が存在してもパルスのス ベクトル形状が不変であることから受信側で時間と周波数を入れ替え送信データを 完全に再生する波形無歪み伝送(特願 2003 - 23973「光伝送方法および光伝送装 置」、特願 2003-181964「〇TDM伝送方法及び装置」)、光パルス圧縮ならびに光 関数発生 (特願 2003 - 109708「光パルス圧縮器および光関数発生器、光パルス圧 縮方法および光関数発生方法」)について出願している。また、本発明者は、光ファ ィバ増幅器を用いずに二次関数型で表現される光パルスを発生させる方法及び装 置について出願している(特願 2003-387563「光パルス発生方法および光パルス 圧縮方法等」)。これらの出願の内容は、参照により本明細書に組み込むことができる [0004] 図 1に、光フーリエ変換を行なうために従来用いられている回路の構成例を示す。 同図において、この回路は、 LiNbO結晶などの電気光学結晶におけるポッケルス
3
効果を用いた位相変調器 (LN位相変調器) 2、分散量 Dをもつ分散性媒質 3を備え る。なお、分散性媒質 3の分散パラメータを /3 [ps2/km]、長さを L[km]とすると、
2
分散量は D= β L[ps2]で与えられる。また、図中実線は光パルスを、点線は電気信
2
号を表す。分散性媒質 3には光ファイバあるいは回折格子対、ファイバブラッグダレ 一ティング等が用いられる。位相変調器 2の変調特性のピークは光パルスの中心位 置に一致させる。 LN位相変調器 2によってノルスに印加されるチヤープの大きさ(チ ヤープ率 K)は次のようにして求めることができる。位相変調器 2に電圧 V (t) =V cos
0
( ω t)を印加すると、電気光学効果による屈折率変化がもたらす光の位相変化量 Δ m
Φ (t)は
[0005] [数 1]
Δφ (り = M cos(co ) , Μ = -ΤΓ ( i )
π
[0006] で与えられる。ただし V は半波長電圧(光の位相を π回転させるのに必要な印加電 圧)、 ω は位相変調器の駆動周波数、 Vは電圧の振幅である。式(1)はパルスの中 m 0
心近傍 (t = 0)でティラー展開することにより
[0007] [数 2]
Δφ(ί) Κ =— Μω ( 2 )
Figure imgf000004_0001
[0008] と近似することができる。すなわち LN位相変調器によってチヤープ率 Κの近似的 線形な周波数チヤープ
[0009] [数 3] [0010] が光パルスに印加される。
[0011] 図 1において時間波形 u (t)、周波数スペクトル U ( ω )をもつ光パルスをまず光カツ ブラ 1により 2つに分波し、片方を LN位相変調器 2に入力する。また他方はクロック信 号抽出回路 4に入力し、パルス列からクロック信号 (正弦波信号)を抽出する。出力さ れた信号を位相シフタ 5、電気増幅器 6を介して LN位相変調器 2に印加することによ り、 LN位相変調器 2を駆動する。位相シフタ 5は位相変調を光パルスに最適に同期 して印加するために挿入している。また電気増幅器 6は LN位相変調器 2の駆動用で ある。
[0012] LN位相変調器 2に入力された光パルスは線形チヤープ Δ ω (t) =一 Ktを与えられ 、その結果パルス波形の各時間位置において時間に比例した大きさの周波数シフト を受ける。さらにその線形チヤ一プノ^レスは分散性媒質 3に入力される。分散性媒質 3においては光パルスの時間波形に群速度分散によって周波数成分に応じて異なる 時間遅延 (パルス内群遅延)が与えられる。前記光パルスは LN位相変調器 2におい てあらかじめ線形チヤープを与えられていたので、分散性媒質 3において光パルスの 各周波数成分が時間軸上の異なった位置に分離される。その結果、チヤープ率 に 対して分散量 Dを D = l/Kに選ぶことにより、分散性媒質 3の出力で光フーリエ変換 前の光パルスのスペクトル形状 U ( co ) (ただし ω =t/D)に比例した波形が時間軸 上で生成される。
^^特許乂 l¾ : L.F.Mollenauer ana し. Xu, ime-lens timing- jitter compensator in ultra-long haul DWDM dispersion managed soliton transmissions, in Conference on Lasers and Electro-Optics(CLEO) 2002, paper CPDB1 (2002).
^^特許文献 2 : M.Romagnoli, P.Franco, R.Corsini, A.Schiffini, and M.Midrio, " Time-domain Fourier optics for polarization-mode dispersion compensation," Optics Letters, vol.24, ηο· 17, pp.1197— 1199 (1999).
非特許文献 3 :し A.Jiang, M.E.Grein, H.A.Haus, E.P.Ippen, and H.Yokoyama, "Timing jitter eater for optical pulse trains, Optics Letters, vol.28, no.2, pp.78-80 (2003). ^ltt : M.E.Fermann, V.I.Kruglov, B.C.Thomsen, J.M.Dudley, and J.D.Harvey, "Self-simiar propagation and amplification of parabolic pulses in optical fibers," Phys. Rev. Lett. Vol.84, pp.6010-6013 (2000).
発明の開示
発明が解決しょうとする課題
[0013] し力 従来の光フーリエ変換に用いられる LN位相変調器はパルス全体にわたって 一様に線形なチヤープを与えることができない場合がある。図 2は、 LN位相変調器 によって光パルスに印加される位相変調(a)および周波数シフトの大きさ(b)を示す 模式図である。点線は二次関数で表される位相変調特性および時間に対して線形 な周波数シフトの大きさを示している。図 2に示すように、 LN位相変調器の正弦波的 な変調特性が二乗曲線で近似できる範囲(LN位相変調器が光パルスに印加するチ ヤープが線形とみなせる範囲)はパルスの中心近傍に限定されてしまう。ここではこれ を光フーリエ変換の許容ウィンドウ幅と呼ぶ。光パルスの時間幅に比べてこの許容ゥ インドウ幅が狭いとき、そのウィンドウ幅より外側の領域にある光パルス成分に対して は光フーリエ変換を正確に実行することができないという大きな課題があった。
[0014] また前項で述べたように、光フーリエ変換装置を構成する分散性媒質の分散量 Dと 位相変調器のチヤープ率の大きさ Kは D = 1/Kで関係づけられている。分散性媒 質によって与えることができる分散量 Dの大きさはデバイスの特性によって制限される ため、必要な分散量 Dを小さく抑えるには位相変調器のチヤープ率 Kを大きくとる必 要がある。一方で、 LN位相変調器によって得られるチヤープ率 Kの大きさの上限は LN位相変調器の長さや電圧の印加方向の厚さ、電極の特性などによって決まって しまう。このため従来の光フーリエ変換装置においては、分散性媒質の特性と LN位 相変調器の特性の制限により、実現できる光フーリエ変換特性に大きな制限があつ た。
[0015] さらに、 LN位相変調器において電気回路による処理速度は 40GHz程度に制限さ れるため、伝送速度が 40Gbit/sを超える超高速光パルス列に対して従来の方法で 光フーリエ変換を行なうことは困難であった。
[0016] 以上の課題点は前項で挙げた光フーリエ変換技術の各種応用を実現するうえで大 きな障害となっている。そこで本発明はこれらの課題を解決するために、位相変調特 性を二次関数で表されるように改善し、光フーリエ変換を幅広い時間領域にわたって 実行することができる光フーリエ変換装置及び方法を提供することを目的とする。ま た、本発明は、信号光に印加されるチヤープのチヤープ率 κの調節範囲が広い光フ 一リエ変換装置及び方法を提供することも目的のひとつである。さらに、本発明は、 伝送速度が電気回路による処理速度の制限を越える超高速光パルス列に対して光 フーリエ変換を行なうことができる光フーリエ変換装置及び方法を提供することを目 的する。
課題を解決するための手段
[0017] 本発明に係る光フーリエ変換装置及び方法のひとつは、信号光パルスを形状が二 次関数で表される放物線状の制御光パルスと合波し、光力一媒質にぉレ、て前記制 御光パルスとの相互位相変調によって前記信号光パルスをパルス全体にわたって線 形に位相変調 (周波数チヤープ)させ、その後前記信号光パルスを群速度分散 (二 次分散)を有する分散性媒質に通すことにより、前記信号光パルスの時間波形をそ の周波数スペクトルの形状に変換する光フーリエ変換装置及び方法である。
[0018] 本発明は、上記の光フーリエ変換装置及び方法において、制御光との相互位相変 調によって信号光に印加される周波数チヤープのチヤープ率 Kと分散性媒質の分散 量 Dとが D= l/Kの関係を満たし、チヤープ率 Kは制御光のピークパワー、光力一 媒質の長さ、光力一媒質の非線形屈折率 (n )を変えることにより調節することができ
2
ることを特徴のひとつとする。
[0019] 本発明は、また、上記の光フーリエ変換装置及び方法において、放物線状の制御 光ノ ルスを発生させる方法として、正常分散を有する光ファイバ増幅器、正常分散の 値が長手方向に徐々に減少する分散減少ファイバ、もしくは振幅透過特性が二次関 数で表される光フィルタと光フーリエ変換装置のいずれかを用いることを特徴のひと つとする。
[0020] 本発明は、さらに、上記の光フーリエ変換装置及び方法において、制御光と信号光 の高速な相互位相変調を効率よく発生させるために、分散値が非常に小さい低分散 光力一媒質を用いるか、あるいは信号光と制御光の波長が光力一媒質の零分散波 長を挟んで互いに対称な波長になるよう設定する(ウォークオフフリー)ことも特徴の ひとつである。
[0021] 本発明に係る他の光フーリエ変換装置及び方法は、上述の順序とは逆にまず信号 光を分散性媒質に通過させ、その後前記信号光パルスを形状が二次関数で表され る放物線状の制御光パルスと合波し、光力一媒質において前記制御光パルスとの相 互位相変調によって前記信号光パルスをパルス全体にわたって線形にチヤープさせ ることにより、前記信号光パルスの周波数スペクトルの形状をその時間波形に変換す る光フーリエ変換装置及び方法である。
[0022] また、本発明に係る別の光フーリエ変換装置及び方法は、まず信号光を分散性媒 質に通過させ、その後前記信号光パルスを形状が二次関数で表される放物線状の 制御光ノ ルスと合波し、光力一媒質にぉレ、て前記制御光パルスとの相互位相変調 によって前記信号光パルスをパルス全体にわたって線形にチヤープさせ、さらに前 記信号光ノ^レスをもう一度分散性媒質に通すことにより、前記信号光パルスの時間 波形をその周波数スペクトルの形状に、かつ前記信号光パルスの周波数スペクトル の形状をその時間波形に変換する光フーリエ変換装置及び方法である。
[0023] 本発明は、この光フーリエ変換装置及び方法において、信号光が分散性媒質を 2 回通過することによってチヤープが完全に補償され、出力においてチヤープのないト ランスフォームリミットな波形が得られることを特徴のひとつとする。
[0024] また、本発明に係る他の光フーリエ変換装置及び方法は、信号光パルスを形状が 二次関数で表される放物線状の制御光パルスと合波し、光力一媒質にぉレ、て前記 制御光パルスとの相互位相変調によって前記信号光パルスをパルス全体にわたって 線形にチヤープさせ、その後信号光パルスを分散性媒質に通し、さらに信号光パル スを前記制御光パルスともう一度合波して光力一媒質で前記制御光パルスとの相互 位相変調によって前記信号光パルスを再びパルス全体にわたって線形にチヤープさ せることにより、前記信号光パルスの時間波形をその周波数スペクトルの形状に、 つ前記信号光パルスの周波数スペクトルの形状をその時間波形に変換する光フーリ ェ変換装置及び方法である。
[0025] 本発明は、この光フーリエ変換装置及び方法において、信号光が光力一媒質を 2 回通過することによってチヤープが完全に補償され、出力においてチヤープのないト ランスフォームリミットな波形が得られることを特徴のひとつとする。
[0026] 本発明の第 1の解決手段によると、
二次関数又は放物線で表される形状の制御光パルスを発生する二次関数型光パ ルス発生器と、
信号光パルスと制御光パルスを合波する合波器と、
信号光パルスと制御光パルスとの相互位相変調によって信号光パルスをパルス全 体又は幅広い時間領域にわたって線形にチヤープさせるための光力一媒質と、 群速度分散を有する分散性媒質と
を備え、
入力された信号光パルスと制御光パルスとを前記合波器により合波して前記光力 一媒質に入射し、前記光力一媒質において、前記信号光パルスと前記制御光パル スとの相互位相変調によって前記入力された信号光パルスを線形にチヤープさせ、 前記光力一媒質から出力された信号光パルスを前記分散性媒質に通すことにより、 前記入力された信号光パルスの時間波形をその周波数スペクトルの形状に変換する 光フーリエ変換装置が提供される。
[0027] 本発明の第 2の解決手段によると、
二次関数又は放物線で表される形状の制御光パルスを発生する二次関数型光パ ルス発生器と、
信号光パルスと制御光パルスを合波する合波器と、
信号光パルスと制御光パルスとの相互位相変調によって信号光パルスをパルス全 体又は幅広い時間領域にわたって線形にチヤープさせるための光力一媒質と、 群速度分散を有する分散性媒質と
を備え、
入力された信号光パルスを前記分散性媒質に通過させ、前記分散性媒質から出 力された信号光パルスと制御光パルスとを前記合波器により合波して前記光力ー媒 質に入射し、前記光力一媒質において、前記信号光パルスと前記制御光パルスとの 相互位相変調によって前記分散性媒質力 出力された信号光パルスを線形にチヤ ープさせることにより、前記入力された信号光パルスの周波数スペクトルの形状をそ の時間波形に変換する光フーリエ変換装置が提供される。
発明の効果
[0028] 本発明の光フーリエ変換装置及び方法においては、形状が放物線状である光パ ルスを制御光として用い、信号光との相互位相変調によって信号光に線形チヤープ を印加することができるため、より正確な光フーリエ変換を実現することができる。また 本発明の光フーリエ変換装置及び方法は電気回路による信号処理を必要としないた め、電気による処理速度の限界を超える高速な信号パルス列に対しても光フーリエ 変換を実行することが可能となる。したがって、従来の光フーリエ変換装置の性能に よって制限されていた光フーリエ変換の各種応用が本発明の光フーリエ変換装置及 び方法によって実現可能となる。
図面の簡単な説明
[0029] [図 1]従来の光フーリエ変換装置の構成を示す図である。
[図 2]LN位相変調器によって光パルスに印加される位相変調および周波数シフトの 大きさを示す模式図である。点線は理想的な位相変調特性および周波数シフトの大 きさを示している。
[図 3]本発明の光フーリエ変換装置の第 1の実施形態の構成を示す図である。
[図 4]図 3における二次関数型光ノ ルス発生器 7の構成 (第 1の形態)を示す図である
[図 5]図 3における二次関数型光ノ ルス発生器 7の構成 (第 2の形態)を示す図である
[図 6]図 3における二次関数型光ノ ルス発生器 7の構成 (第 3の形態)を示す図である
[図 7]制御光と信号光との相互位相変調によって信号光に線形チヤ一プが印加され る様子を示す模式図である。
[図 8]図 5における正常分散減少ファイバ 16の分散値の長手方向の変化(a)、ならび に図 5において正常分散減少ファイバを用いたときに二次関数型光ノ^レス発生器 7 の出力で得られる制御光パルスの時間波形 (b)、を示す図である。 [図 9]図 3において光力一媒質 10を伝搬した後光フィルタ 1 1で分波された信号光の 時間波形および周波数チヤープを示す図である。同図で細実線は信号光に印加さ れる周波数チヤープの理論値を、細点線は従来の LN位相変調器によって信号光に 印加される周波数チヤープを示している。
[図 10]図 3中の分散性媒質 12の出力における信号光の時間波形を示す図である。 同図で細実線は光力一媒質 10で理想的な線形チヤープを信号光に印加したときの 光フーリエ変換の結果を、細点線は従来の LN型光変調器を用いて信号光にチヤ一 プを印加したときの光フーリエ変換の結果を示している。
[図 11]本発明の光フーリエ変換装置の第 2の実施形態の構成を示す図である。
[図 12]本発明の光フーリエ変換装置の第 3の実施形態の構成を示す図である。
[図 13]本発明の光フーリエ変換装置の第 4の実施形態の構成を示す図である。 発明を実施するための最良の形態
[0030] 以下、本発明の実施の形態を図面を用いて詳細に説明する。
A.第 1の実施形態
(装置構成)
図 3に、本発明の第 1の実施形態に係る光フーリエ変換装置の構成図を示す。光フ 一リエ変換装置は、光カップラ 1、クロック信号抽出回路 4、二次関数型光パルス発生 器 7、光遅延素子 8、合波器 9、光力一媒質 10、光フィルタ 1 1、及び、分散性媒質 12 を備える。
光力一媒質 10は三次の非線形屈折率をもつ媒質で、例えば単一モード光ファイバ 、フォトニック結晶ファイバ、半導体光増幅器、エルビウム添加光ファイバ増幅器、あ るいは有機非線形材料などが用いられる。
[0031] 分散性媒質 12は、例えば、 1. 3 μ mの波長帯域付近に零分散領域が存在する群 速度分散特性を有するような単一モード光ファイバあるいは回折格子対、ファイバブ ラッググレーティング等を用いることができる。クロック信号抽出回路 4は、光カップラ 1 により分岐された信号光パルスを入射し、信号光パルスに基づいてクロック信号を抽 出する。なお、図中実線は光パルス(光信号)を、点線は電気信号を示す。以下のフ 一リエ変換装置、及び、二次関数型光パルス発生器の構成を示す図についても同 様である。
[0032] 二次関数型光パルス発生器 7は、クロック信号抽出回路から出力されたクロック信 号に従い制御光パルスを発生する。光遅延素子 8は、制御光パルスの中心時間位 置が信号光パルスのタイミングと一致するように適当な時間遅延を与える。光フィルタ 11は、信号光を制御光から分波するためのフィルタである。
[0033] (二次関数型光パルス発生器)
二次関数型光パルス発生器 7は放物線状の波形を有するパルス(以下、制御光パ ルス、二次関数型光パルスと記すこともある)を発生する装置で、例えば、以下の 3つ の形態で実現することができる。
[0034] 第 1の形態は、正常分散をもつ光ファイバ増幅器を用いるものである(例えば、非特 許文献 4参照)。図 4に、第 1の形態による二次関数型光パルス発生器の構成を示す 。第 1の形態の二次関数型光パルス発生器 7は、光パルス送信器 13と正常分散光フ アイバ増幅器 14とを有する。光ノ ルス送信器 13は例えば、クロック信号抽出回路 4を 用いて信号光力ら抽出されたクロックで駆動されるモード同期レーザ、 EA (Electro - Absorption :電界吸収型)変調器あるいは LN変調器の組み合わせによって作製 する。光パルス送信器 13から出力される光パルスを正常分散光ファイバ増幅器 14に 入力すると、正常分散と非線形光学効果によりパルスが波形全体にわたって線形に チヤープされ、同時にパルスの形状が放物線状に整形される。
[0035] 第 2の形態は、正常分散を有し分散値の大きさが長手方向に徐々に減少する光フ アイバを用いるものである(例えば、特願 2003—387563「光パルス発生方法および 光パルス圧縮方法等」参照)。図 5に、第 2の形態による二次関数型光パルス発生器 7の構成を示す。第 1の形態と同様クロック信号によって駆動された光パルス送信器 1 3から出力される光ノ^レスを光増幅器 15によって増幅し正常分散減少ファイバ 16に 入力すると、その出力で放物線状パルスが得られる。
[0036] 二次関数型光パルス発生器 7は、光パルス送信器 13と、光増幅器 15と、正常分散 減少ファイバ 16とを備える。光ノ ルス送信器 13は、例えばモード同期ファイバレーザ やモード同期半導体レーザを用いることができる。光通信波長帯での利用を念頭に 置くと、特に適した波長としては 1. 帯力挙げられる。発生される光パルスの波 長及び波形などは、これに限らず任意のものを用いることができる。光増幅器 15は、 正常分散減少ファイバ 16において非線形光学効果 (自己位相変調効果)を生じさせ るために用いる。なお、光増幅器 15からの出力は非線形パルスである。ここで、非線 形光パルスとは、例えば、正常分散減少ファイバ 16で非線形光学効果を得るために 必要なパワーを持つ光パルスを指す。
[0037] 正常分散減少ファイバ 16は、正常分散値をもち分散値の大きさが長手方向に減少 している光ファイバである。例えば、正常分散減少ファイバ 16は、分散値の大きさが 連続的に変化する 1つのファイバを用いることができる。なお、本実施の形態におい て、また一般に、「分散値の大きさが減少する」とは、分散値の絶対値が減少している ことをいい、このような正常分散ファイバを、正常分散減少ファイバと呼ぶ。正常分散 減少ファイバ 16は、例えば、石英ガラスを材料とする通常の光ファイバにおいて、コ ァ径を長手方向に連続的に変化させることで実現できる。具体的には、例えば、製造 時にファイバを線引きする過程において、線引きの速度を変えることでコア径を変化 させることで実現可能である。また、正常分散減少ファイバ 16は、分散値が一定であ る、あるいは長手方向に線形に変化する又は分散値が連続的に変化する何種類か のファイバを縦続接続することにより該ファイバの分散値の連続的な減少を離散的に 近似してもよい。
[0038] ここで正常分散減少ファイバ 16の長手方向に沿った分散値の変化を表す関数 D ( z)を距離 (長手方向の座標) zとともに減少するように
D (z) =D / (1 + D Γ ζ)
0 0
という形に選ぶことができる。ここで、 Γは正常分散の大きさの減少の比率を表す。
[0039] 図 5 (b)に、正常分散減少ファイバ 16の分散値の変化の例を示す。図中点線は、 分散値が連続的に変化するファイバ 16を表すものであり、実線は分散値が長手方向 に線形に変化する 3種類のファイバを縦続接続することにより近似された例である。な お、この例では 3種類のファイバを用いている力 これに限らず適宜の数のファイバを 用レ、ることができる。また、関数 D (z)を z = 0での値 (例えば、図 5 (b)に示す光フアイ バの例では約— 4psZnm/km)で全て規格化し、 D = 1、入射端(z = 0)での関数
0
値は D (z) = 1として表現してもよい。
[0040] 第 3の形態は、振幅透過特性が二次関数で表される放物線状光フィルタによって、 光パルスのスペクトル形状を放物線状に整形し、従来の光フーリエ変換装置 (例えば 図 1に示す装置)によって放物線状のスペクトル形状を放物線状の光パルス波形に 変換する形態である。図 6に、第 3の形態による二次関数型光パルス発生器 7の構成 を示す。第 3の形態の二次関数型光パルス発生器 7は、光パルス送信器 13と、放物 線状光フィルタ 17と、光フーリエ変換装置 18とを有する。第 1の形態と同様クロック信 号によって駆動された光パルス送信器 13から出力される光パルスを放物線状光フィ ルタ 17に入力してそのスペクトル形状を放物線状に整形し従来の光フーリエ変換装 置 18に入力すると、その出力で時間波形が放物線状である二次関数型光パルスが 得られる。
[0041] ここで、第 3の形態では、光フーリエ変換装置 18は、従来と同様のものを用いてい る。光フーリエ変換の特性は、放物線状のスペクトル形状をもつパルスの時間幅と位 相変調器の特性の関係に依存する。よって、従来の光フーリエ変換器 18に用いられ る位相変調器において、変調特性が二次関数で近似できる時間範囲内に放物線上 光フィルタ 17を通過したパルスがあれば、出力で二次関数型の制御光ノ ルスが得ら れる。
[0042] (詳細な動作説明)
次に本実施形態における光フーリエ変換装置の動作を説明する。図 3において、ま ず信号光パルス列を光カップラ 1により分岐し、一方をクロック信号抽出回路 4に接続 してノ ルス列のクロック信号を抽出する。
[0043] 時間波形 u (t)、周波数スペクトル U ( ω )をもつ信号光パルス(波長 λ )および二次 関数型光パルス発生器 7から出力された放物線状の制御光パルス(波長 λ )を合波 器 9で合波し、光力一媒質 10に入力する。このとき制御光パルスの中心時間位置が 信号光パルスのタイミングと一致するよう光遅延素子 8によって適当な時間遅延を与 えておく。ここで信号光パルスの時間波形 u (t)とその周波数スペクトル U ( ω )は [0044] ほ女 4]
U (ω) = j u(t) &χρ(ϊωί) dt ( 3 )
-οο
[0045] で関係づけられている。
[0046] 光力一媒質 10において、信号光と制御光との相互位相変調によって信号光の瞬 時周波数は制御光強度の時間変化に応じて変調される。なお、信号光の強度は制 御光に比べて十分小さいとし信号光自体の強度変化による自己位相変調は無視す ることができる。長さ 1の光力一媒質 10において信号光に生じる瞬時周波数の変化( チヤープ) δ ωは、相互位相変調による位相変化 δ φ = (2 π / λ ) (2η 1) 1を微分し
2 て
[0047] ほ女 5] ハ θ δφ 4π 7 a/(
[0048] となる。ここで I (t)は制御光の単位面積あたりの強度、 nはカー係数と呼ばれる定数
2
である。
制御光である二次関数型光パルスは次式で与えられる時間波形 u (t)をもつ。
[0049] ほ女 6]
" ) ( 5 )
Figure imgf000015_0001
[0050] ここで、 Τは二次関数型光ノ^レスの中心から裾野までの時間幅を示す。例えば、 Τ
0 0 は、二次関数型光パルスの強度がゼロになる時間と、パルスの中心(ピーク)の時間 との幅を示す。なお、式(5)はパルスの振幅についての式であり、パワーは時間 tの 2 乗の形で表現される。したがって相互位相変調によって信号光に生じるチヤープは、 式 (4)及び(5)より [0051] ほ女 7]
δω( = ( 6 )
Figure imgf000016_0001
[0052] で与えられる。 で Pは制御光のピークパワー、 A はコアの実効断面積であり、 1 ( t)は、
Kt) = I u (t) I /A
c eff
である。すなわち、光力一媒質 10における位相変調特性は、式 (4)に示すように制 御光の波形に依存するが、制御光の強度が本実施の形態のように放物線状であると きは、信号光には時間幅 2Tにわたつて一様に線形チヤープ δ ω =— Kt (すなわち
0
位相変調 δ φ =exp (iKt2/2) )が印加される。ただし、式(6)より
[0053] [数 8]
Figure imgf000016_0002
[0054] ( yは非線形定数)である。
[0055] 図 7に、二次関数型光パルス列との相互位相変調によって信号光パルス列を構成 する各光パルスに線形チヤ一プが印加される様子を模式的に示す。ここでは信号光 および制御光パルス列の繰り返し周波数を、二次関数型光パルスの時間幅 2Tの逆
0 数に選んでいる。図 7上段は、信号光(実線)及び制御光(点線)の時間波形を示し、 下段は信号光に印加される周波数シフトを示す。図示のように、制御光の中心から裾 野までの時間幅を Tとすると、信号光には時間幅 2Tにわたり線形チヤ
0 0 一プが印加 される。なお、チヤープ率 κの大きさは制御光パルスのピークパワー pや光力
0 一媒質
10の長さ 1、光力一媒質 10のカー係数 (非線形屈折率) nを変えることによって調節
2
することができる(式 (7)参照)。
[0056] なお、相互位相変調を最も効率よく発生させるには、信号光と制御光の波長差 I λ - λ I に起因する群速度不整合によるウォークオフが小さいことが望ましい(上の s c
説明ではウォークオフがゼロと仮定している)。ここで、ウォークオフとは、制御光と信 号光の波長における群速度の違いによって、両者の間に生じる群遅延を指す。その ためには例えば分散値が非常に小さい光力一媒質 10を用いる力 \あるいは信号光と 制御光が光力一媒質 10で同じ時間遅延を受けるよう、 λ と λ が光力一媒質 10の零 分散波長を挟んで互いに対称な波長になるように; I及び/又は I を設定すればよ レ、。例えば、このような; I は二次関数型光パルス発生器 7の光パルス送信器 13によ り設定可能である。
[0057] 光力一媒質 10で線形チヤ一プを印加された後の信号光パルスの時間波形 u (t)
+ は
[0058] [数 9]
Figure imgf000017_0001
[0059] と表される。このとき信号光パルスの時間波形に生じる周波数シフトにより、各時間位 置に異なる周波数が割り当てられてレ、る。
[0060] 光力一媒質 10を通過した後、信号光は光フィルタ 11によって制御光から分波され 、分散性媒質 12に入力される。分散性媒質 12を通過した後の信号光パルスの時間 波形 v (t)は
[0061] ほ細
Figure imgf000017_0002
[0062] となる。ここで分散性媒質 12の分散量を D = l/Kに選ぶと、式 (9)は
[0063] [数 11]
Figure imgf000018_0001
[0064] と書くことができる。したがって分散性媒質 12の出力で得られる光パルスの時間波形 v (t)は光フーリエ変換前の光パルスのスぺクトノレ形状 U ( co ) (ただし ω =t/D)に比 例する。
[0065] 以上を言い換えると、光力一媒質 10において各時間位置に異なる周波数が割り当 てられた信号光は、分散性媒質 12における群速度分散によって周波数に応じて異 なる時間遅延を与えられる。その結果、時間軸上で信号光パルスの各周波数成分が 分離され、特に分散量を D= l/Kに選ぶことによって、 u (t)のフーリエ変換像 U ( co )に比例する時間波形すなわち U (t/D)が得られる。
[0066] (数値計算例)
次に、上記実施形態の光フーリエ変換装置に関する数値計算の一例を示す。本数 値計算では制御光として、図 5に示すような構成を有する二次関数型光パルス発生 器 7によって得られる放物線状パルスを用いる。制御光のエネルギーを 20pJとし、二 次関数型光パルスの発生に用いる正常分散減少ファイバ 16の入力における分散値 を D =—17. 5ps/nm/km、非線形係数を γ = 3. 33W— km— 1とする。また、正常
0
分散減少ファイバ 16の分散値の減少の比率を Γ = 0. 062m— 1とする。正常分散減 少ファイバ 16にはパルス幅が 1. Opsのガウス型パルスを入射している。
[0067] 図 8に、正常分散減少ファイバ 16の分散値の長手方向の変化(a)および出力にお ける制御光パルスの波形(b)を示す。得られた制御光のピークパワーは P = 1. 58
0
W、時間幅は T = 12psである。なお、図 8 (b)に示す二次関数型光パルスの裾野部
0
分は緩やかに減少しているため、強度がゼロになるのは 12ps程度のところである。
[0068] 次に、図 9は、光力一媒質 10を伝搬した後光フィルタ 11で分波された信号光の時 間波形および周波数チヤープを示す図である。同図で細実線は信号光に印加され る周波数チヤープの理論値を、細点線は従来の LN位相変調器によって信号光に印 カロされる周波数チヤープを示している。また、太実線は、本数値計算例におけるパヮ 一及びチヤープである。図中の矢印及び楕円は、左軸はパワー、右軸はチヤープの グラフであることを示すものである。図 9に示す波形及びチヤープは、図 3に示すよう な構成を有する系において、ガウス型の形状を有するパルス幅 lOpsの信号光ならび に正常分散減少ファイバ 16の出力で得られた上述の制御光とを合波器 9によって合 波し、光力一媒質 10を伝搬させた後、光フィルタ 11によって制御光から分波された 信号光の時間波形と周波数チヤープを示す。ここで信号光と制御光の波長間隔を 2 Onmとしている。また光力一媒質 10として、分散値- 0. 2ps/nm/km、非線形係 数 3· SSW—km—1、長さ 1450mの分散シフトファイバを用いている。これらの値を式( 7)に代入して得られるチヤープ率の理論値は K=_0. 212ps— 2である。この理論値 から求まる線形チヤープ(同図の細実線)は数値計算結果とよく一致していることがわ かる。また、従来の光フーリエ変換装置に用いられる LN位相変調器によって信号光 に印加される周波数チヤープ(同図の細点線)と比較して、チヤープが線形である領 域が大きく拡大してレ、ることがわかる。
[0069] 図 10に、さらに、チヤープした信号光を分散性媒質 12に入力し伝搬させた後の信 号光の波形 (太線)を示す。ここで分散性媒質 12の分散量は D = l/K=— 4. 72ps2 に設定している。細実線はチヤープが完全に線形である(光力一媒質 10で線形チヤ ープを信号光に印加した)として式(10)を用いて計算した信号光 u (t)の光フーリエ 変換後の波形 v (t)、細点線は従来の LN位相変調器を用いて光フーリエ変換を行な つたとき (LN型光変調器を用レ、て信号光にチヤ一プを印加したとき)の結果である。 LN位相変調器を用いたときはフーリエ変換像に歪みが生じているのに対し、本実施 の形態に係る光フーリエ変換装置を用いることによってフーリエ変換像に歪みは生じ ず、また、変換後のパルス幅がチヤープが完全に線形であるとしたときのパルス幅と 同じであることがわかる。
[0070] B.第 2の実施形態
図 11に、本発明の第 2の実施形態に係る光フーリエ変換装置の構成図を示す。第 1の実施形態に係る光フーリエ変換装置との相違は、分散性媒質 12が本実施形態 では合波器 9の前に位置していることである。他の構成は上述と同様であるので、そ の説明を省略する。また、二次関数光パルス発生器 7は第 1の実施形態と同様、図 4 一図 6のうちのいずれかの構成をとることができる。
[0071] 次に本実施形態における光フーリエ変換装置の動作を説明する。図 11において、 光カップラ 1で分岐された時間波形 u (t)、周波数スペクトル U ( ω )をもつ信号光パル ス (波長; I )をまず分散性媒質 12に入力する。分散性媒質 12の出力における信号 光パルスの周波数スペクトル U ( ω )は
+
[0072] [数 12]
ひ +ιω):ひ ( co)exp ( 1 1 )
2 ノ
[0073] で与えられる。次に信号光パルスおよび二次関数型光パルス発生器 7から出力され た放物線状の制御光パルス(波長 λ )を合波器 9で合波し、光力一媒質 10に入力す る。このとき制御光パルスの中心時間位置が信号光パルスのタイミングと一致するよう 光遅延素子 8によって適当な時間遅延を制御光パルスに与えておく。光力一媒質 10 では第 1の実施形態と同様、制御光との相互位相変調によって信号光に線形チヤ一 プ δ ω (式 (6) )が印加される。光力一媒質 10を通過した後、信号光と制御光は光フ ィルタ 11によって分波される。光フィルタ 11の出力における信号光の周波数スぺタト ル V ( co )は U ( ω )との畳み込み積分で与えられ、
+
[0074] [数 13] f
=、^厂ひ» (ω - ω'Υ ί/ω' = f ひ ( '
Figure imgf000020_0001
[0075] となる。ここで光力一媒質 10によって印加される線形チヤープのチヤープ率 Κと分散 性媒質 12の分散量 Dが D = lZKを満たすよう設定すると、式(12)は
[0076] ほ女 14] (ω)
Figure imgf000021_0001
[0077] と書くこと力できる。ここで、
[0078] ほ女 15]
u(t) =—— f ひ (c^ exp (— ζ·ω )ί θ
J-°°
[0079] を用いた。したがって光フィルタ 11によって分波された信号光ノルスの周波数スぺク トル V ( ω )は光フーリエ変換前の光パルスの時間波形 u (t) (ただし t=_D ω )に比例 する。
[0080] C.第 3の実施形態
図 12に本発明の第 3の実施形態に係る光フーリエ変換装置の構成図を示す。第 3 の実施形態に係る光フーリエ変換装置は、光カップラ 1、クロック信号抽出回路 4、二 次関数型光パルス発生器 7、光遅延素子 8、合波器 9、光力一媒質 10、光フィルタ 11 、分散性媒質 12、光サーキユレータ 20及び 20 'を備える。図 3に示す光フーリエ変 換装置と同符号のものについては、上述と同様であるので説明を省略する。
[0081] 同図において、光カップラ 1で分岐された信号光はまず光サーキユレータ 20のポー ト 20aに入力される。ポート 20aはポート 20b、分散性媒質 12、および光サーキユレ一 タ 20 'のポート 20 ' bを介して、ポート 20 ' aに接続される。光サーキユレータ 20 'のポ ート 20 ' aとポート 20 ' cとは合波器 9、光力一媒質 10、光フィルタ 11を介してループ 状に接続される。光フィルタ 1 1によって分波された信号光はポート 20 ' c、ポート 20 ' bを介して再び分散性媒質 12を通過した後、光サーキユレータ 20のポート 20bを介し てポート 20cより出力される。合波器 9の一方の入力には光サーキユレータ 20'のポ ート 20 'aから信号光が入射され、もう一方の入力には二次関数型光パルス発生器 7 および光遅延素子 8によって生成された制御光が入射される。光遅延素子 8は光力 一媒質 10において制御光パルスの中心時間位置が信号光パルスのタイミングと一 致するために制御光に適当な時間遅延を与えるのに用いられる。
[0082] 次に本実施形態における光フーリエ変換装置の動作を説明する。図 12において、 分散性媒質 12の出力における信号光パルスの時間波形 u—(t)は入力信号光パルス の時間波形 u(t)を用いて畳み込み積分により次式で表される。
[0083] [数 16]
"-(り =、t½ _ [" ') expf— ^(ί- 2 ^' (i 4)
[0084] 次に信号光は制御光と合波された後光カー媒質 10に入力され、制御光との相互位 相変調により信号光に線形チヤープ δ ω (式 (6))が印加される。その結果光力ー媒 質 10の出力における信号光パルスの時間波形 u (t)は u (t)を用いて
[0085] [数 17]
u+(t) = u_ ( exp(iKt 212) (1 5)
[0086] と表される。さらに信号光は光フィルタ 11によって制御光より分波された後もう一度分 散性媒質 12に入力される。その結果信号光パルスの時間波形 v(t)は u (t)を用い
+ て
[0087] [数 18]
Figure imgf000022_0001
[0088] と書くことができる。分散性媒質 12の分散量を D = lZKに設定すると、式(14)一(1
6)より最終的に出力される信号光パルス波形は
2
[0089] ほ女 19]
Figure imgf000023_0001
(t"2+, exp [ 2-2(t"+ty] dfdt
2D 2D
Figure imgf000023_0002
ひ (t/D)
2nD
(1 7)
[0090] となる。ここで U(co) (ただし co=t/D)は u(t)のフーリエ変換(式(1))である。すな わち、光フーリエ変換装置の出力時間波形 v(t)は、光フーリエ変換装置への入力波 形のスペクトル形状 U ( ω )に比例してレ、る。本実施形態では信号光が分散性媒質 1 2を 2回通過することによってチヤープが完全に補償され、第 1の実施形態とは異なり 、出力ではチヤープのないトランスフォームリミットな波形が得られることに注意する。
[0091] なお、出力される信号光ノ ルスの周波数スペクトルは
[0092] [数 20]
Figure imgf000023_0003
= TiiDu{-DS)) となり、光フーリエ変換装置の出力波形のスペクトル形状 V(c )は、光フーリエ変換 装置への入力の時間波形 u (t)に比例してレ、る。 [0094] D.第 4の実施形態
図 13に、本発明の第 4の実施形態に係る光フーリエ変換装置の構成を示す。第 4 の実施形態に係る光フーリエ変換装置は、光カップラ 1、クロック信号抽出回路 4、二 次関数型光パルス発生器 7、光遅延素子 8及び 8 '、合波器 9及び 9 '、光力一媒質 1 0、光フィルタ 11、分散性媒質 12、分波器 19、光サーキユレータ 20及び 20 'を備え る。図 3に示す光フーリエ変換装置と同符号のものについては、上述と同様であるの で説明を省略する。
[0095] 同図において、信号光はまず、二次関数型光パルス発生器 7および光遅延素子 8 によって生成された制御光と合波器 9によって合波される。合波器 9の出力は光サー キユレータ 20のポート 20a、ポート 20b、光力一媒質 10、および光サーキユレータ 20 'のポート 20 ' b、ポート 20 ' aを介して、制御光と信号光を分波する分波器 19に接続 される。分波器 19は、制御光と信号光を分波する。分波器 19の一方の出力(信号光 )は分散性媒質 12を介して、もう一方の出力(制御光)は光遅延素子 8 'を介して、そ れぞれ合波器 9 'の各入力に接続される。合波器 9 'において制御光および信号光が 再び合波される。合波器 9 'の出力は光サーキユレータ 20 'のポート 20 ' c、ポート 20 ' b、光力一媒質 10、光サーキユレータ 20のポート 20b、ポート 20cを介して光フィルタ 11に接続される。光フィルタ 11によって信号光が制御光より分波される。光遅延素子 8および 8 'は光力一媒質 10において制御光パルスの中心時間位置が信号光パルス のタイミングと一致するために制御光に適当な時間遅延を与えるのに用いられる。
[0096] 次に本実施形態における光フーリエ変換装置の動作を説明する。図 13において、 制御光と合波され光力一媒質 10に入力された信号光が光力一媒質 10において線 形チヤープを受けた後の時間波形 u (t)は、もとの信号光パルスの時間波形 u (t)を 用いて次式で表される。
[0097] ほ女 21]
u_ it) = u(t) Qxp(iKt 2 12) ( 1 9 )
[0098] 次に分波器 19によって一旦制御光より分波され分散性媒質 12を通過した後の信号 光の時間波形 u (t)は u (t)を用いて畳み込み積分により次式で表される。
ほ女 22]
Figure imgf000025_0001
[0100] 制御光と再び合波され光力一媒質 10を通過しもう一度線形チヤ一プを印加された後 の信号光の波形 v(t)は u (t)を用いて
+
[0101] ほ 3]
v t) = u+ (0 exp ( 12) (2 i)
[0102] と書くことができる。分散性媒質 12の分散量を D = lZKに設定すると、式(19)一(2 1)より最終的に光フィルタ 11により分離され、出力される信号光パルス波形は
[0103] ほ 4]
)=、l^U(t/D) (22)
1
[0104] となる。ここで U(c ) [ω =tZD]は光フーリエ変換装置への入力時間波形 u(t)のフ 一リエ変換 (式(1))である。本実施形態では信号光が光力一媒質 10を 2回通過する ことによってチヤープが完全に補償され、その結果第 1の実施形態とは異なり、出力 ではチヤープのなレ、トランスフォームリミットな波形が得られることに注意する。
[0105] なお、出力される信号光パルスの周波数スペクトルは、上述の式(18)と同様にして [0106] ほ 5]
Figure imgf000025_0002
[0107] となり、光フーリエ変換装置の出力波形のスペクトル形状 V(co)は、光フーリエ変換 装置への入力の時間波形 u (t)に比例してレ、る。 産業上の利用可能性
光フーリエ変換技術を利用したさまざまな応用が、超高速光通信や超短パルスモ ード同期レーザ、光信号処理などの分野において提案されており、これらに関連する 産業に利用可能である。

Claims

請求の範囲
[1] 二次関数又は放物線で表される形状の制御光パルスを発生する二次関数型光パ ルス発生器と、
信号光パルスと制御光パルスを合波する合波器と、
信号光パルスと制御光パルスとの相互位相変調によって信号光パルスをパルス全 体又は幅広い時間領域にわたって線形にチヤープさせるための光力一媒質と、 群速度分散を有する分散性媒質と
を備え、
入力された信号光パルスと制御光パルスとを前記合波器により合波して前記光力 一媒質に入射し、前記光力一媒質において、前記信号光パルスと前記制御光パル スとの相互位相変調によって前記入力された信号光パルスを線形にチヤープさせ、 前記光力一媒質から出力された信号光パルスを前記分散性媒質に通すことにより、 前記入力された信号光パルスの時間波形をその周波数スペクトルの形状に変換する 光フーリエ変換装置。
[2] 請求項 1に記載の光フーリエ変換装置にぉレ、て、
さらに、前記分散性媒質を通過した信号光パルスと前記制御光パルスとをもう一度 合波して前記光力一媒質に入射し、前記光力一媒質で前記信号光パルスと前記制 御光パルスとの相互位相変調によって前記分散性媒質を通過した信号光パルスを 再び線形にチヤープさせることにより、前記入力された信号光パルスの時間波形をそ の周波数スペクトルの形状に、かつ、前記入力された信号光パルスの周波数スぺタト ルの形状をその時間波形に変換する光フーリエ変換装置。
[3] 請求項 1又は 2に記載の光フーリエ変換装置において、
信号光パルスを前記光力一媒質に 2回通過させることによってチヤープが完全に補 償され、出力においてチヤープのなレ、トランスフォームリミットな波形が得られることを 特徴とする光フーリエ変換装置。
[4] 請求項 2に記載の光フーリエ変換装置において、
前記光力一媒質を通過した前記信号光パルス及び前記制御光パルスを分波し、分 波された信号光パルスを前記分散性媒質に入力するための分波器と、 前記分散性媒質を通過した信号光パルスと分波した制御光パルスとをもう一度合 波し、前記光力一媒質に入射するための合波器と
をさらに備えた光フーリエ変換装置。
[5] 二次関数又は放物線で表される形状の制御光パルスを発生する二次関数型光パ ルス発生器と、
信号光パルスと制御光パルスを合波する合波器と、
信号光パルスと制御光パルスとの相互位相変調によって信号光パルスをパルス全 体又は幅広い時間領域にわたって線形にチヤープさせるための光力一媒質と、 群速度分散を有する分散性媒質と
を備え、
入力された信号光パルスを前記分散性媒質に通過させ、前記分散性媒質から出 力された信号光パルスと制御光パルスとを前記合波器により合波して前記光力ー媒 質に入射し、前記光力一媒質において、前記信号光パルスと前記制御光パルスとの 相互位相変調によって前記分散性媒質力 出力された信号光パルスを線形にチヤ ープさせることにより、前記入力された信号光パルスの周波数スペクトルの形状をそ の時間波形に変換する光フーリエ変換装置。
[6] 請求項 5に記載の光フーリエ変換装置において、
さらに、前記光力一媒質において線形にチヤープされた信号光パルスをもう一度前 記分散性媒質に通すことにより、前記入力された信号光パルスの時間波形をその周 波数スぺタトノレの形状に、かつ、前記入力された信号光パルスの周波数スぺタトノレの 形状をその時間波形に変換する光フーリエ変換装置。
[7] 請求項 5又は 6に記載の光フーリエ変換装置において、
信号光パルスを前記分散性媒質に 2回通過させることによってチヤープが完全に補 償され、出力においてチヤープのなレ、トランスフォームリミットな波形が得られることを 特徴とする光フーリエ変換装置。
[8] 請求項 1又は 5に記載の光フーリエ変換装置において、
前記光力一媒質による信号光パルスと制御光パルスとの相互位相変調によって信 号光ノ ルスに印加される周波数チヤープのチヤープ率 Kと前記分散性媒質の分散 量 Dとが D= l/Kの関係を満たし、かつ、チヤープ率 Kは制御光パルスのピークパ ヮー、前記光力一媒質の長さ及び前記光力一媒質の非線形屈折率のいずれか又は 複数により調節することができることを特徴とする光フーリエ変換装置。
[9] 請求項 1又は 5に記載の光フーリエ変換装置において、
前記二次関数型光パルス発生器は、
光パルスを発生する光パルス送信器と、 正常分散を有し、前記光パルス送信器力らの光パルスが伝搬する光ファイバ増幅 器と
を備える光フーリエ変換装置。
[10] 請求項 1又は 5に記載の光フーリエ変換装置において、
前記二次関数型光パルス発生器は、
光パルスを発生する光パルス送信器と、 正常分散の絶対値が長手方向に減少する分散減少ファイバと
を備える光フーリエ変換装置。
[11] 請求項 10に記載の光フーリエ変換装置において、
前記分散減少ファイバは、分散値が連続的に変化する、又は、分散値が一定ある いは長手方向に線形に変化する複数種類の光ファイバを複数縦続接続することによ り、分散値の変化が区間ごとに離散的に近似されたファイバ、又は、分散値が連続的 に変化するひとつのファイバを含み、分散値の変化は次式で表される又は次式で近 似される光フーリエ変換装置。
D (z) =D / (1 +D Γ ζ)
0 0
(ただし、 D (z);分散値の変化を表す関数、 z :ファイバの長手方向の座標、 D ;入射
0 端 (z = 0)での関数値、 Γ:正常分散の大きさの減少の比率)
[12] 請求項 1又は 5に記載の光フーリエ変換装置において、
前記二次関数型光パルス発生器は、
光パルスを発生する光パルス送信器と、 振幅透過特性が二次関数又は放物線で表され、前記光パルス送信器からの光パ ルスの周波数スペクトルを二次関数型又は放物線状にする光フィルタと、 前記光フィルタを通過した光パルスの周波数スぺクトノレ波形の形状に光パルスの時 間波形を変換する光フーリエ変換装置と
を備える光フーリエ変換装置。
[13] 請求項 1又は 5に記載の光フーリエ変換装置において、
制御光と信号光の高速な相互位相変調を効率よく発生させるために、前記光力一 媒質として分散値が小さい低分散光力一媒質を用いるか、あるいは、信号光と制御 光の波長が前記光力一媒質の零分散波長を挟んで互いに対称な波長になるように 信号光及び/又は制御光の波長を設定することを特徴とする光フーリエ変換装置。
[14] 請求項 1又は 5に記載の光フーリエ変換装置において、
信号光パルスに基づいてクロック信号を抽出するクロック信号抽出回路と、 制御光パルスに光遅延を与える光遅延素子と
をさらに備え、
前記二次関数型光パルス発生器は、前記クロック信号抽出回路からのクロック信号 に従い制御光パルスを発生し、及び/又は、前記光遅延素子は、前記制御光パル スに対し信号光パルスとタイミングが一致するように光遅延を与える光フーリエ変換 装置。
[15] 入力された信号光パルスと二次関数又は放物線で表される形状の制御光パルスと を合波して光力一媒質に入射し、光力一媒質において前記信号光パルスと前記制 御光パルスとの相互位相変調によって前記入力された信号光パルスをパルス全体 又は幅広い時間領域にわたって線形にチヤープさせ、光力一媒質から出力された信 号光パルスを群速度分散を有する分散性媒質に通すことにより、前記入力された信 号光パルスの時間波形をその周波数スペクトルの形状に変換する光フーリエ変換方 法。
[16] 請求項 15に記載の光フーリエ変換方法において、
さらに、分散性媒質を通過した前記信号光パルスと前記制御光パルスとをもう一度 合波して光力一媒質に入射し、光力一媒質で前記信号光パルスと前記制御光パル スとの相互位相変調によって分散性媒質を通過した前記信号光パルスを再び線形 にチヤープさせることにより、前記入力された信号光パルスの時間波形をその周波数 スぺタトノレの形状に、かつ、前記入力された信号光パルスの周波数スぺタトノレの形状 をその時間波形に変換することを特徴とする光フーリエ変換方法。
[17] 入力された信号光パルスを群速度分散を有する分散性媒質に通過させ、その信号 光パルスと二次関数又は放物線で表される形状の制御光パルスとを合波して光力一 媒質に入射し、光力一媒質において前記信号光パルスと前記制御光パルスとの相 互位相変調によって前記分散性媒質力 出力された信号光パルスを線形にチヤ一 プさせることにより、前記入力された信号光パルスの周波数スペクトルの形状をその 時間波形に変換する光フーリエ変換方法。
[18] 請求項 17に記載の光フーリエ変換方法において、
さらに、光力一媒質において線形にチヤープされた前記信号光パルスをもう一度分 散性媒質に通すことにより、前記入力された信号光パルスの時間波形をその周波数 スぺタトノレの形状に、かつ、前記入力された信号光パルスの周波数スぺタトノレの形状 をその時間波形に変換することを特徴とする光フーリエ変換方法。
PCT/JP2004/019517 2004-01-05 2004-12-27 光フーリエ変換装置及び方法 WO2005066707A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP04807872.9A EP1705516B1 (en) 2004-01-05 2004-12-27 Optical fourier transform device and method
US10/584,932 US7352504B2 (en) 2004-01-05 2004-12-27 Optical fourier transform device and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004000464A JP4471666B2 (ja) 2004-01-05 2004-01-05 光フーリエ変換装置及び方法
JP2004-000464 2004-01-05

Publications (1)

Publication Number Publication Date
WO2005066707A1 true WO2005066707A1 (ja) 2005-07-21

Family

ID=34746947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/019517 WO2005066707A1 (ja) 2004-01-05 2004-12-27 光フーリエ変換装置及び方法

Country Status (4)

Country Link
US (1) US7352504B2 (ja)
EP (1) EP1705516B1 (ja)
JP (1) JP4471666B2 (ja)
WO (1) WO2005066707A1 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4471572B2 (ja) * 2003-01-31 2010-06-02 独立行政法人科学技術振興機構 光伝送方法
JP4459547B2 (ja) * 2003-04-15 2010-04-28 独立行政法人科学技術振興機構 光パルス圧縮器および光関数発生器、光パルス圧縮方法および光関数発生方法
JP4495415B2 (ja) * 2003-06-26 2010-07-07 独立行政法人科学技術振興機構 Otdm伝送方法及び装置
EP1866616B1 (en) 2005-04-05 2013-01-16 The Board Of Trustees Of The Leland Stanford Junior University Optical image processing using minimum phase functions
JP5400282B2 (ja) * 2007-06-28 2014-01-29 古河電気工業株式会社 パルス増幅器及びこれを用いたパルス光源
EP2344923A4 (en) 2008-10-14 2017-05-03 Cornell University Apparatus for imparting phase shift to input waveform
US8532398B2 (en) * 2010-03-26 2013-09-10 General Electric Company Methods and apparatus for optical segmentation of biological samples
US9366937B2 (en) * 2012-01-13 2016-06-14 Sumitomo Osaka Cement Co., Ltd. Optical pulse-generator
CN102608833A (zh) * 2012-04-12 2012-07-25 武汉邮电科学研究院 一种全光时域-频域连续傅里叶变换装置
US8903245B2 (en) * 2012-04-30 2014-12-02 I-Shou University Optical radiation signal generating device and tranceiving system, and method of generating an optical radiation signal
CN108205514A (zh) * 2017-12-12 2018-06-26 天津津航计算技术研究所 基于优化稀疏算法的多目标光纤光谱二维模型抽谱方法
US11287721B2 (en) 2018-05-09 2022-03-29 Sharif University Of Technology Reconfigurable optical signal processing
CN111412986B (zh) * 2019-01-07 2023-01-13 中国移动通信有限公司研究院 一种光信号波形检测装置及方法
CN111796469B (zh) * 2019-04-09 2022-08-19 华为技术有限公司 光频率梳光源和产生光频率梳的方法
US11444690B2 (en) * 2019-07-17 2022-09-13 Lawrence Livermore National Security, Llc Timing measurement apparatus
US11209714B2 (en) 2019-07-17 2021-12-28 Lawrence Livermore National Security, Llc Radio frequency passband signal generation using photonics
US11159241B2 (en) 2019-07-18 2021-10-26 Lawrence Livermore National Security, Llc High power handling digitizer using photonics
US11184087B2 (en) 2019-08-08 2021-11-23 Lawrence Livermore National Security, Llc Optical encoder devices and systems
CN111966960B (zh) * 2020-07-21 2023-12-26 北京邮电大学 全光短时傅里叶变换系统及方法
CN113098594B (zh) * 2021-03-22 2022-03-08 杭州电子科技大学 具有复数值输出的光学实时傅里叶变换的装置及方法
CN114967116B (zh) * 2022-03-06 2024-06-25 天津理工大学 时空相干涡旋在色散介质中的传输模型及其相干性调控方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05265057A (ja) * 1992-03-23 1993-10-15 Nippon Telegr & Teleph Corp <Ntt> 全光型タイムスロット変換回路

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6744552B2 (en) * 1998-04-02 2004-06-01 Michael Scalora Photonic signal frequency up and down-conversion using a photonic band gap structure
US6650466B1 (en) * 1999-08-27 2003-11-18 Frank Wise High-energy pulse compression using phase shifts produced by the cascade quadriatic nonlinearity

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05265057A (ja) * 1992-03-23 1993-10-15 Nippon Telegr & Teleph Corp <Ntt> 全光型タイムスロット変換回路

Non-Patent Citations (14)

* Cited by examiner, † Cited by third party
Title
ANDERSON D. ET AL.: "Wave-braking-free pulses in nonlinear-optical fiber.", J. OPT.SOC.AM., vol. 10, no. 7, 1993, pages 1185 - 1190, XP002989821 *
FERMANN M.E. ET AL.: "Self-similar propagation and amplification of parabolic", PHYSICAL REVIEW LETTERS., vol. 84, no. 26, 2000, pages 6010 - 6013, XP002987597 *
HARVEY J. D. ET AL.: "Analytical solutions of the nonlinear Schrodinger equation with gain", LEOS, vol. 1, 2002, pages 319 - 320, XP010620540, DOI: doi:10.1109/LEOS.2002.1134058
HIROOKA T. ET AL.: "Parabolic pulse generation by use of a dispersion-decreasing f", OPTICS LETTERS., vol. 29, no. 5, March 2004 (2004-03-01), pages 498 - 500, XP002987598 *
KOLNER B.H. ET AL.: "Space-time duality and the theory of temporal imaging.", IEEE JOURNAL OF QUANTUM ELECTRONICS., vol. 30, no. 8, 1994, pages 1951 - 1963, XP002980366 *
KRUGLOVV. I. ET AL.: "Self-similar propagation of high-power parabolic pulses in optical fiber amplifiers", OPTICS LETTERS, vol. 25, no. 24, pages 1753 - 1755, XP002474446, DOI: doi:10.1364/OL.25.001753
L.A.JIANG ET AL.: "Timing jitter eater for optical pulse trains", OPTICS LETTERS, vol. 28, no. 2, 2003, pages 78 - 80, XP002980090, DOI: doi:10.1364/OL.28.000078
L.F.MOLLENAUER; C.XU: "Time-lens timing-jitter compensator in ultra-long haul DWDM dispersion managed soliton transmissions", CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO) 2002, PAPER CPDB1, 2002
M.E.FERMANN ET AL.: "Self-simiar propagation and amplification of parabolic pulses in optical fibers", PHYS.REV.LETT., vol. 84, 2000, pages 6010 - 6013, XP002737934, DOI: doi:http://dx.doi.org/10.1103/PhysRevLett.84.6010
M.ROMAGNOLI ET AL.: "Time-domain Fourier Optics for polarization-mode dispersion compensation", OPTICS LETTERS, vol. 24, no. 17, 1999, pages 1197 - 1199, XP002251101, DOI: doi:10.1364/OL.24.001197
MOURADIAN L. ET AL.: "Characterization of optical signals in fiber-optic Fourier converter", PROCEEDINGS OF THE SPIE, vol. 3418, 1998, pages 78 - 85, XP002474445, DOI: doi:10.1117/12.326641
MOURADIAN L. ET AL.: "Spectro-temporal imaging of femtosecond events", IEEE JOURNAL OF QUANTUM ELECTRONIC, vol. 36, no. 7, 2000, pages 795 - 801, XP011449724, DOI: doi:10.1109/3.848351
MOURADIAN L. KH. ET AL.: "Spectro-temporal imaginf of femtosecond events.", IEEE JOURNAL OF QUANTUM ELECTRONICS., vol. 36, no. 7, 2000, pages 795 - 801, XP002987596 *
See also references of EP1705516A4 *

Also Published As

Publication number Publication date
EP1705516A1 (en) 2006-09-27
JP2005195751A (ja) 2005-07-21
EP1705516B1 (en) 2015-06-03
US7352504B2 (en) 2008-04-01
JP4471666B2 (ja) 2010-06-02
US20070273958A1 (en) 2007-11-29
EP1705516A4 (en) 2008-05-14

Similar Documents

Publication Publication Date Title
WO2005066707A1 (ja) 光フーリエ変換装置及び方法
JP4459547B2 (ja) 光パルス圧縮器および光関数発生器、光パルス圧縮方法および光関数発生方法
EP1841100B1 (en) Optical signal waveform shaping apparatus
EP2148242B1 (en) Polarisation-independent optical waveform shaping device
EP2426553A1 (en) Optical signal processing device
US8976445B1 (en) Optical tunable tapped-delay-lines using wavelength conversion and chromatic dispersion based delays
US7538935B2 (en) All-optical, continuously tunable, pulse delay generator using wavelength conversion and dispersion
WO2007148377A1 (ja) 光信号処理装置
US20020005970A1 (en) Dispersion compensator and method of compensating for dispersion
KR100759785B1 (ko) 광전송 방법
JP4495415B2 (ja) Otdm伝送方法及び装置
CN109818237A (zh) 基于光纤环循环调制时间光栅的超短激光脉冲整形系统
JP4252470B2 (ja) Otdm/wdm伝送方法及び装置
Reading-Picopoulos et al. 10Gb/s and 40Gb/s WDM multi-casting using a hybrid integrated Mach-Zehnder interferometer
JP3660597B2 (ja) 高次分散同時補償方法及び装置
JP5455053B2 (ja) 超高速光パルスの波形歪み除去装置及び方法
Willner et al. Recent advances in tunable optical delays and their applications
Wang et al. A short optical pulse source based on chirp compression and Mamyshev 2R regenerator for 200-Gbit/s OTDM System
Qiao et al. Fiber transmission characteristics of phase only pulse and its dispersion compensation in high power regime
JPH0784227A (ja) 光変調回路
Richardson et al. High performance optical processing systems incorporating grating based pulse shaping
Hu et al. All-optical tunable delay line based on wavelength conversion and fiber dispersion
Pitois et al. Design of a continuously tunable delay line using vectorial modulational instability and chromatic dispersion in optical fibers
Samadi et al. Reconfigurable time-domain de-multiplexing of optical signals at 40 Gb/s

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2004807872

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004807872

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10584932

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10584932

Country of ref document: US