WO2005066217A1 - Procedimiento para la preparación de dispersiones poliméricas acuosas reforzadas con resina - Google Patents

Procedimiento para la preparación de dispersiones poliméricas acuosas reforzadas con resina Download PDF

Info

Publication number
WO2005066217A1
WO2005066217A1 PCT/ES2005/000004 ES2005000004W WO2005066217A1 WO 2005066217 A1 WO2005066217 A1 WO 2005066217A1 ES 2005000004 W ES2005000004 W ES 2005000004W WO 2005066217 A1 WO2005066217 A1 WO 2005066217A1
Authority
WO
WIPO (PCT)
Prior art keywords
monomer
mixture
ethylenically unsaturated
weight
polymer
Prior art date
Application number
PCT/ES2005/000004
Other languages
English (en)
French (fr)
Inventor
Marcelo Do Amaral
Jose Maria Asua Gonzalez
Original Assignee
Universidad Del Pais Vasco Euskal Herriko Unibertsitatea
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Del Pais Vasco Euskal Herriko Unibertsitatea filed Critical Universidad Del Pais Vasco Euskal Herriko Unibertsitatea
Priority to DE602005022674T priority Critical patent/DE602005022674D1/de
Priority to AT05701659T priority patent/ATE476452T1/de
Priority to EP05701659A priority patent/EP1710258B1/en
Priority to PL05701659T priority patent/PL1710258T3/pl
Publication of WO2005066217A1 publication Critical patent/WO2005066217A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation

Definitions

  • the present invention relates to the field of polymer dispersions, more specifically to a process for preparing resin-reinforced aqueous polymer dispersions having improved mechanical, physical and colloidal properties.
  • it refers to a process for preparing resin-reinforced aqueous polymer dispersions comprising two stages: a first stage of polymerization in mini-emulsion and a second stage of polymerization in conventional emulsion.
  • mini-emulsion polymerization The preparation of aqueous polymer dispersions by the technique called "mini-emulsion polymerization" has been known for several years.
  • Said mini-emulsion polymerization has great advantages over conventional emulsion polymerization such as the possibility of encapsulating or even incorporating hydrophobic components in the polymer during polymerization.
  • the mini-emulsion polymerization requires the presence of, in addition to the monomers, the water and the surfactant used in conventional emulsion polymerization, an additional component that stabilizes the emulsion droplets formed during the mini-emulsion process, and before and during the process of polymerization.
  • These additional components sometimes referred to as co-stabilizers, are normally hydrophobic components with very low or no water solubility and with good miscibility with the monomer.
  • 030032805.4 which is incorporated as a reference for the present invention, describes a process for the preparation of resin-reinforced aqueous dispersions by means of mini-emulsion polymerization, which reduces the minimum amount of ASR resin needed to obtain a stable latex with a solids content of the 50% by weight, and in which a larger range of resins can be used
  • the resulting reinforced latexes have a viscosity value such that they have poor characteristics in terms of redispersability and wetting of the substrate.
  • current technologies for the preparation of resin-reinforced aqueous polymer dispersions have the following disadvantages: - the reinforced latex obtained has a limited solids concentration, as well as a viscosity that makes it unsuitable in the printing industry; - the type of ASR resins that can be used is restricted; - a high amount of ASR resin is used.
  • the present authors have discovered that a process in which the two stages are combined, that is to say, a first stage of polymerization in miniemulsion and a second stage of polymerization in conventional emulsion, allows to obtain aqueous polymeric resin dispersions reinforced with mechanical properties , improved physical and colloidal.
  • the resulting reinforced latexes have a high solids content, a suitable viscosity and good properties in terms of redispersability and wetting of the substrate, as well as other characteristics such as intensified gloss, dispersibility of pigment wetting, penetration resistance, improved wetting of the substrate, great mechanical and shear stability, great stability against freezing / thawing and large volumetric polymer fraction.
  • the process of preparing resin-reinforced aqueous polymer dispersions according to the invention allows for better viscosity control, requires a smaller total amount of low molecular weight resin, as well as a wide variety of types of such resins that can be used (that is, great flexibility in the use of types and concentration of the main raw materials used in the process), with the consequent technical and economic advantages (lower unit cost, better utilization of installed productive capacity, etc.) .
  • the present invention is intended to provide a method for the preparation of a resin-reinforced aqueous polymer dispersion.
  • the present invention provides a process for the preparation of a resin-reinforced aqueous polymer dispersion, characterized in that it comprises the steps of: i) mini-emulsion polymerization; and ii) emulsion polymerization.
  • step (i) of mini-emulsion polymerization comprises the steps: (a) forming a mixture comprising water, at least one stabilizing amphiphilic polymer, at least one hydrophobic co-stabilizer, and at less an ⁇ , ⁇ -ethylenically unsaturated monomer; (b) subjecting the mixture formed in step (a) to homogenization to form a mini emulsion comprising stabilized droplets, having an average diameter of 10-1000 nm and comprising at least one hydrophobic co-stabilizer and at least one ⁇ , ⁇ monomer -ethylenically unsaturated, dispersed in an aqueous phase; (c) polymerize the monomer within the droplets to obtain an aqueous polymer dispersion.
  • step (ii) of emulsion polymerization comprises the steps: (d) loading the aqueous polymer dispersion obtained in step (c) into a reactor; (e) then loading into said reactor at least one monomer, ⁇ -ethylenically unsaturated, at least one stabilizing amphiphilic polymer and at least one free radical generator; (f) polymerize the mixture resulting from step (e).
  • step (e) is carried out as a preemulsion or in separate streams, preferably in separate streams. If you add them in the form of a preemulsion, it will have previously undergone a homogenization process.
  • step (ii) of emulsion polymerization will be carried out semi-continuously by adding the compounds of step (e) in separate streams.
  • a stabilizing amphiphilic polymer as defined in the present application allows to prepare stable mini-emulsions without the need to add conventional surfactants such as alkyl, aryl, alkylaryl, and arylalkyl sulfates and sulphonates.
  • the amphiphilic stabilizing polymer has a number average molecular weight, Mn, of 800-100000, preferably 900-50,000, more preferably 1000-25000; and an acid number of 50-400 mg KOH / g, preferably 100-350 mg KOH / g, more preferably 150-300 mg KOH / g.
  • the acid number is defined as the amount of potassium hydroxide (expressed in milligrams) necessary to completely neutralize a gram of polymer.
  • amphiphilic stabilizing polymer used in the process of the invention exhibits a suitable hydrophobic / hydrophilic balance so that it is suitable for the stabilization of oil-in-water emulsions.
  • the amphiphilic stabilizing polymer is a polymer derived from a combination of hydrophobic monomers, and hydrophilic monomers incorporating acid functions or acid precursor functions.
  • the amphiphilic polymers suitable for the process of the present invention have a glass transition temperature, Tg, in the range of -60 ° C to 150 ° C, preferably above room temperature, more preferably in the range of 80 ° C at 130 ° C.
  • the stabilizing amphiphilic polymer is a combination of a hydrophobic ethylenically unsaturated monomer and a hydrophilic ethylenically unsaturated monomer with carboxylic acid, sulfonic acid, carboxylate, sulphonate, phosphate, phosphonate, phosphonate, or optionally hydrolyzed anhydride type functions.
  • alcohol or an amine In another preferred embodiment, The stabilizing amphiphilic polymer is a combination of a polyurethane with a polyester with an acid function.
  • the stabilizing amphiphilic polymer is a copolymer derived from the polymerization by the addition of one or more hydrophobic ethylenically unsaturated monomers such as styrene, esters of acrylic and methacrylic acid, isobutylene or derivatives thereof, with one or more ethylenically unsaturated hydrophilic monomers such as carboxylic monomers (acrylic acid, methacrylic acid or itaconic acid, for example); sulfonic monomers or salts (styrenesulfonic acid or acrylamido-2-methyl-propanesulfonic acid, for example); phosphate monomers (ethylene glycol methacrylate phosphate, for example); phosphonate monomers (vinyl phosphonic acid, for example); anhydrides (maleic anhydride, for example), the latter hydrolyzed or optionally modified with an alcohol or an amine.
  • hydrophobic ethylenically unsaturated monomers such as sty
  • said stabilizing amphiphilic polymer is a copolymer derived from styrene and maleic anhydride or a copolymer derived from styrene, ⁇ -methyl styrene and acrylic acid, or a copolymer derived from styrene, 2-ethylhexyl acrylate, butyl acrylate and acrylic acid.
  • amphiphilic polymers suitable for the process of the present invention are those derived from step polymerization such as polyurethanes and polyesters with acidic functions.
  • Suitable polyurethanes are those obtained from a polyurethane prepolymer which is the reaction product of:
  • At least one polyisocyanate such as isophorone diisocyanate, dicyclohexylmethane diisocyanate or tetramethylxilylene diisocyanate
  • Said alcohol or polyol typically has functional groups such as anionic salt groups, or similar precursors that can subsequently be converted into said anionic salt groups such as carboxylic or sulfonic acid groups.
  • the carboxylate salt groups incorporated in the isocyanate-terminated polyurethane prepolymers generally come from hydroxycarboxylic acids represented by the general formula (HO) xR (COOH) and, in which R represents a linear or branched hydrocarbon residue having 1 to 12 atoms of carbon, yxey are, independently, whole numbers from 1 to 3.
  • the stabilizing amphiphilic polymer has a solubility in the aqueous phase of the mini-emulsion of at least 10 "2 g / l, preferably at least 10 " 1 g / l, and more preferably at least 1 g / l .
  • the stabilizing amphiphilic polymer is used in an amount of 0.5% to 35% by weight with respect to the total weight of monomer, ⁇ -ethylenically unsaturated used in both stages (i) and (ii).
  • the amount of stabilizing amphiphilic polymer used should preferably be less than 3% by weight, more preferably less than 1.5% by weight, with respect to the total monomer weight ⁇ , ⁇ - ethnically unsaturated used in both stages (i) and (ii).
  • the amount of stabilizing amphiphilic polymer employed should preferably be at least 1% by weight, more preferably at least 2% by weight, with respect to the total monomer weight ⁇ , ⁇ -ethylenically unsaturated used in said step (i).
  • the amount of stabilizing amphiphilic polymer used should preferably be at least 5% by weight, more preferably at least 10% by weight, with respect to the total weight of monomer ⁇ , ⁇ -ethylenically unsaturated used in both stages (i) and (ii).
  • the amphiphilic stabilizing polymer is suitable for use in each of the two stages of the process of the invention.
  • the amphiphilic stabilizing polymer is employed in step (i) of polymerization in miniemulsion in an amount of 2% to 25% by weight with respect to the total weight of the amphiphilic stabilizing polymer used.
  • hydrophobic co-stabilizer refers to a compound that is both very water soluble and very soluble in the ⁇ , ⁇ -ethylenically unsaturated monomer or monomers.
  • the hydrophobic co-stabilizer used in the process of the invention generally has a water solubility of less than 5.10 " ⁇ g / l, preferably less than 5.10"
  • Hydrophobic co-stabilizers suitable for the process of the invention are hydrocarbons, especially alkanes or cycloalkanes, which contain at least 12 carbon atoms (hexadecane or octadecane, for example), long chain alcohols (hexadecanol or octadecanol, for example), halogenated hydrocarbons, organosilicon compounds, long chain esters, oils such as vegetable oils (olive oil, for example), hydrophobic coloring molecules, blocked isocyanates, as well as oligomeric polymerization, polycondensation or polyaddition products.
  • Other suitable polymeric co-stabilizers have been described, for example, in US Patent 5,686,518.
  • a reactive hydrophobic co-stabilizer can also be used, alone or in combination with a non-reactive hydrophobic co-stabilizer.
  • reactive hydrophobic co-stabilizer refers to those co-stabilizers that participate in the subsequent polymerization reaction.
  • hydrophobic monomers or comonomers such as stearyl acrylate and other long chain acrylates and methacrylates, macromonomers
  • hydrophobic chain transfer agents such as dodecyl mercaptan, octadecyl mercaptan and other long chain mercaptans
  • hydrophobic initiators such as 2,5-dimethyl-2-5-di (2-ethylhexanoylperox!) hexane and other azo initiators, peroxides or long chain hydroperoxides.
  • UV curing monomers as potential hydrophobic monomers found, for example, under the trade names of Actilane®, acrylate monomers, (Akzo Nobel Resins) or Tone® (Union Carbide / Dow).
  • the hydrophobic co-stabilizer used in the process of the invention is preferably selected from alkanes or alcohols containing from 12 to 24 carbon atoms, especially hexadecane, and from acrylates containing from 18 to 22 carbon atoms, and mixtures of the same.
  • a mixture of acrylates is marketed, for example, under the trade name of Norsocryl TM A-18-22 (ATOFINA).
  • the hydrophobic co-stabilizer is added in an amount of 0.05% to 40% by weight, preferably 0.1% to 10% by weight, and particularly preferably 0.2% to 5% by weight, based on the total weight of monomers of the mixture prepared in step (a) of the process of the invention.
  • the amount of said hydrophobic monomer or comonomer may be of the order of 70% by weight based in the total weight of the mixture prepared in step (a).
  • hydrophobic co-stabilizer is not a monomer or comonomer
  • said hydrophobic co-stabilizer is preferably added in an amount of 0.1% to 10% by weight, more preferably 0.2% to 8% by weight, and particularly preferably 0.5% to 5% by weight, based on the total monomer weight of the mixture prepared in step (a).
  • the hydrophobic co-stabilizer is preferably used exclusively in the step (i) of mini-emulsion polymerization described.
  • the ⁇ , ⁇ -ethylenically unsaturated monomers that can be used in both stages (i) and (ii) of the process of the invention are those that have low water solubility.
  • the ⁇ , ⁇ -ethylenically unsaturated monomers have a water solubility of less than 15%, preferably less than 5%, and more preferably less than 3%.
  • the solubilities of these monomers they are measured at 25 ° C and express the grams of monomer dissolved in 100 grams of water.
  • Suitable ⁇ , ⁇ -ethylenically unsaturated monomers are alkyl acrylates or alkyl methacrylates (methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, n-butyl acrylate, n-butyl methacrylate, 2- ethylhexyl acrylate , cyclohexyl methacrylate, 2-ethylhexyl methacrylate, stearyl methacrylate, isobornyl methacrylate, and lauryl methacrylate, for example), polymerizable aromatic compounds (styrene, ⁇ -methyl styrene, vinyl toluene and t-butyl styrene, for example) , polymerizable nitriles (acrylonitrile and methacrylonitrile, for example), polymerizable amide compounds, ⁇ -olefinic compounds such as ethylene,
  • Suitable ⁇ , ⁇ -ethylenically unsaturated monomers are those with fluorine or silicon atoms, such as 1H, 1H, 5H-octafluoropentyl acrylate or ethyl trimethylsiloxyacrylate.
  • the ⁇ , ⁇ -ethylenically unsaturated monomers are selected from styrenes, acrylates, methacrylates, vinyl halides and vinylidene, dienes, vinyl esters and mixtures thereof. Particularly preferred are: methyl methacrylate, styrene, vinyl acetate, methyl acrylate, butyl acrylate, ethyl acrylate, 2-ethylhexyl acrylate, butadiene and vinyl chloride.
  • the amount of ⁇ , ⁇ -ethylenically unsaturated monomers used in the process of the invention is generally from 10% to 70%, preferably from 18% to 60% by weight, based on the total weight of the stage mixture ( to).
  • one or more water soluble monomers (hereinafter referred to as "
  • secondary monomers to the mixture formed in step (a) or to the mixture formed in step (e), in addition to the ⁇ , ⁇ -ethylenically unsaturated monomer or monomers.
  • These secondary monomers are generally addition polymerizable ethylenically unsaturated organic compounds having a Water solubility greater than 15% and used only in a small percentage in the monomer mixture and only in the presence of at least one ⁇ , ⁇ -ethylenically unsaturated monomer, as previously described.
  • the percentage of secondary monomer present in the monomer mixture is preferably less than 6% by weight, more preferably is 0% to 4% by weight, and more preferably 0% to 2% by weight, based on the total weight of monomer used in both stages (i) and (ii).
  • Examples of secondary monomers are: acrylic acid, methacrylic acid, 2-sulfoethyl methacrylate, and maleic anhydride.
  • the use of secondary monomers can confer the desired properties to the coatings produced when the polymer dispersions obtained by the process of the present invention are used.
  • At least one surfactant selected from anionic, cationic and non-ionic surfactants is added to the mixture formed in step (a) or to the mixture formed in step (e).
  • Suitable surfactants include alkyl sulfates, such as sodium lauryl sulfate; alkyl, aryl, alkylaryl and arylalkyl sulfonates such as sodium dodecylbenzenesulfonate; fatty acid salts such as sodium stearate; polyvinyl alcohol, or polyglycol ethers of fatty alcohols such as linear ethoxylated fatty alcohols containing from 10 to 100 units of ethylene oxide.
  • alkyl sulfates such as sodium lauryl sulfate
  • alkyl, aryl, alkylaryl and arylalkyl sulfonates such as sodium dodecylbenzenesulfonate
  • fatty acid salts such as sodium stearate
  • polyvinyl alcohol, or polyglycol ethers of fatty alcohols such as linear ethoxylated fatty alcohols containing from 10 to 100 units of ethylene oxide.
  • the amount of surfactant is generally less than 2% by weight with respect to the total weight of monomer used in both stages (i) and (ii). Preferably, the amount of surfactant is less than 1% by weight, and more preferably, the amount of surfactant is less than 0.5% by weight with respect to the total weight of monomer used in both steps (i) and (ii).
  • the mixture formed in step (a) or the mixture of step (e) may also contain one or more components that modify the pH.
  • the stabilizing amphiphilic polymer contains carboxylic acid functions, it may be necessary to prepare and polymerize the mini emulsion at a high pH so that the stabilizing polymer exhibits the appropriate amphiphilicity.
  • an adequate pH range is 6.0 to 10.0, depending on the nature of the rest of the polymer components.
  • Another preferred pH range is 7.5 to 10.0.
  • a suitable pH range is 2.0 to 10.0.
  • Compounds capable of adjusting the pH are: ammonia, amines, (triethyl amine, trietanol amine or dimethylamino hydroxypropane, for example), carbonate salts (sodium carbonate, for example), bicarbonate salts (sodium bicarbonate, for example), hydroxides (sodium hydroxide , for example) or oxides (calcium oxide, for example).
  • the pH adjusting compound is preferably selected from ammonia and sodium hydroxide.
  • the pH adjusting compound can be added during step (a) or during step (e).
  • the pH adjusting compound is added to the amphiphilic stabilizing polymer before using this in step (a) or in step (e).
  • Said pH adjusting compound that can be added during steps (a) and (e) can be the same or not.
  • step (a) of the process of the invention is preferably carried out by mixing a premix (1) comprising the stabilizing amphiphilic polymer and water with a premix (2) comprising the hydrophobic co-stabilizer and the monomer or monomers ⁇ , ⁇ -ethylenically unsaturated.
  • the premix (1) is generally prepared by adding the amphiphilic stabilizing polymer to water, preferably at a temperature of 0 ° C to 100 ° C.
  • one or more surfactants can be added, optionally, as previously described, one or more secondary water-soluble monomers as previously described, a pH adjusting compound and / or an initiator of polymerization.
  • a stabilizing amphiphilic polymer containing carboxylic acid functions is used in the process of the invention, it is preferred to prepare a premix (1) comprising a pH adjusting compound as described above so that the solubility of the stabilizing amphiphilic polymer in this premix (1) becomes at least 10 "2 g / l (measured at 25 ° C), more preferably at least 10 " 1 g / l, and more preferably at least 1 g / l.
  • this pH adjusting compound to the amphiphilic polymer before adding water, and, optionally, the other components of the premix (1).
  • the premix (2) is generally prepared by adding the desired amount of hydrophobic co-stabilizer to the ⁇ , ⁇ -ethylenically unsaturated monomer or monomers, preferably with gentle agitation. This premix is usually prepared at room temperature, preferably until a clear solution is obtained. To this premix (2) one or more water soluble secondary monomers may optionally be added as previously described, and / or a polymerization initiator.
  • step (a) of the process of the invention is generally carried out at a temperature of 0 ° C to 100 ° C, preferably at room temperature.
  • step (a) The mixture obtained in step (a) is then subjected, in step (b) of the process of the invention, to homogenization techniques in order to form a mini emulsion comprising stabilized droplets with an average diameter of 10 to 1000 nm.
  • mini emulsion refers to a monomeric emulsion in which the average droplet diameter is 10 to 1000 nm. This term is used to distinguish the processes of conventional monomer emulsion and emulsion polymerization, in which the size of the droplets or micelles is larger, usually about 1 to 10 ⁇ m.
  • the diameter of the droplets is measured using a dynamic light scattering device, such as a Coulter TM N4 Plus or Nicomp 380 ZLS device.
  • Sample preparation involves dilution of a mini-emulsion sample with deionized water or, preferably, with deionized water that is saturated with the monomer or monomers present in the mini-emulsion. Droplet size It is determined directly after sample preparation, in all cases within 15 minutes.
  • Step (b) of the process of the invention is preferably carried out so that a mini-emulsion is obtained in which the droplets have an average diameter of less than 600 nm, more preferably less than 400 nm, even more preferably less than 300 nm.
  • Step (b) is preferably carried out so that a mini-emulsion is obtained in which the droplets have an average diameter of 80-600 nm.
  • step (b) the mixture is subjected to homogenization or high load techniques.
  • the load is defined as the force per unit area.
  • One way of exerting said load is by shearing. Shear means that the force is such that a layer or plane moves parallel to an adjacent one.
  • the load can also be exerted from all sides as a mass, or compression load, so that the load is practically exerted without shearing.
  • Another way of exerting the load is by cavitation, which occurs when the pressure inside a liquid is reduced enough to cause vaporization. The formation and collapse of vapor bubbles occurs violently in a short period of time and produces a significant load.
  • Another way of exerting a load is through the use of ultrasonic energy.
  • step (b) of the process of the invention it is preferred to use equipment capable of producing a large localized shear, preferably together with moderate mass mixing. More preferably, high shear mixing is obtained using an ultrasonic treatment, a colloid mill and / or a homogenizer.
  • the temperature used during step (b) of the process of the invention is, in general, any temperature between the freezing point and the boiling point of the mixture and the components present therein.
  • the preferred temperature for the formation of the monomer mini emulsion varies between 20 ° C and 50 ° C, the ambient temperature being preferred.
  • step (b) is the formation of a miniemulsion essentially stable comprising an aqueous continuous phase and droplets comprising the ⁇ , ⁇ -ethylenically unsaturated monomer or monomers and the hydrophobic co-stabilizer; said droplets are also called the dispersed phase. It is considered that substantially all or at least most of the amphiphilic stabilizing polymer is located at the interface between the droplets and the aqueous medium or close to it.
  • the solubility of the stabilizing polymer in the monomer, when the stabilizing polymer is in the deprotonated state is normally less than 2% by weight, preferably less than 1% by weight, based on the weight of monomer.
  • mini-emulsion refers to the fact that its storage life is long enough so that the monomer content of the emulsion can be polymerized in less time than is required for phase separation.
  • the mini-emulsions obtained by the process of the invention generally have a storage life of more than 24 hours, even several days.
  • step (c) of the process of the invention the monomer or monomers are polymerized within the droplets.
  • the monomer or monomers are generally polymerized under conditions of free radical polymerization.
  • the polymerization of step (c) is effected in the presence of a free radical initiator.
  • the polymerization initiator can be a water soluble or oil soluble compound. Suitable free radical initiators are known in the state of the art.
  • organic peroxides such as benzoyl peroxide, lauroyl peroxide, tere-butyl hydroperoxide, 2,5-dimethyl 2,5-d ⁇ (2- ethylhexanoylperoxy) hexane and dicumyl peroxide
  • inorganic persulfates such as potassium persulfate or ammonium persulfate
  • azo initiators such as azobis- (isobutyro nitrile) (AIBN) and azobis (1-cyclohexanecarbonitrile); and redox pairs such as Fe 2+ / H2 ⁇ 2; ROH / Ce 4+ (where R is an organic group such as alkyl
  • the free radical initiator may be added to the mini emulsion obtained after stage (b), or before stage (b) and / or during stage (b), of the process described in the present application.
  • the free radical initiator is added in step (e) of the procedure described in the present application.
  • the free radical initiator is preferably added to the premix (2) that is used in step (a) of the process of the invention in cases where the solubility of the initiator in the premix (2) is greater than in the premix (one).
  • the initiator can be added to the mixture formed in stage (a) or during or after the stage ( b) of the process of the invention. In this case, it is preferably added to the mini emulsion obtained after step (b).
  • step (c) of the process of the invention it may be necessary to add a pH adjusting compound as described in relation to steps (a) and (e), in order to keep the stabilizing polymer in the amphiphilic state.
  • a pH adjusting compound as described in relation to steps (a) and (e), in order to keep the stabilizing polymer in the amphiphilic state.
  • This is the particular case in which the pH decreases during the reaction. This may be due to the dissociation of the persulfate initiators (ammonium persulfate, for example) or the evaporation of the pH adjusting compound present in the mixture formed in step (a) (when ammonia is used, for example).
  • the pH adjusting compound added during step (c) may be the same as that added during step (a) or a different one.
  • the polymerization of steps (c) and (f) can be carried out in a wide range of temperatures ranging from about 20 ° C to 90 ° C.
  • the preferred polymerization temperature will depend on the initiator chosen. In any case, the preferred polymerization temperature range ranges from about 25 ° C to 80 ° C.
  • steps (c) and (f) of the process of the invention is usually carried out in a period of 10 min to 24 h.
  • the aqueous polymer dispersion, or polymeric latex, obtained after step (c) of the process of the invention generally contains polymeric particles with an average diameter in the range of about 10 to about 1000 nm.
  • the aqueous polymer dispersion which is often referred to as polymer emulsion or polymeric latex, preferably contains polymer particles with an average diameter in the range of 80 to 400 nm.
  • Polymeric latexes obtained by step (i) of the process of the invention have the advantage of having an improved machine performance (runnability). They also have good storage stability, which is generally longer than 6 months or even longer. Surprisingly, the authors have discovered that the latex obtained by step (i) of the process of the present application can be used in a second stage (ii) described below.
  • the resin-reinforced aqueous polymer dispersions obtained according to the process of the present invention show remarkable characteristics in terms of intensified gloss, pigment wettability dispersibility, penetration resistance, improved substrate wetting, great mechanical and shear stability, great stability against freezing / thawing and large volumetric polymer fraction.
  • aqueous polymer dispersion obtained using the stabilizing amphiphilic polymer employed in the first step (i) of the process of the invention does not possess the desired final characteristics of the resin-reinforced aqueous polymer dispersion obtained by the process of the present application.
  • Said aqueous polymer dispersion obtained by the mini-emulsion polymerization of step (i) is surprisingly useful as an initial charge of an emulsion polymerization process of step (ii) which constitutes a preferred embodiment of the described two-step process. in the present application.
  • Step (ii) of the two-stage process of the present invention comprises the step of initially loading the reactor with the aqueous polymer dispersion obtained in step (i).
  • the total volume of the starting aqueous polymer dispersion normally varies between 10% and 70%, preferably between 30% and
  • Said step (ii) of the two-stage process of the present invention further comprises the step of adding at least one ⁇ , ⁇ - monomer ethylenically unsaturated. It is widely known to those skilled in the art that some of the characteristics of the final product are determined by the choice of the types of monomers used. Likewise, a stabilizing amphiphilic polymer and a free radical initiator are charged into the reactor, as defined in the present invention. Preferably, the addition is carried out in semi-continuous mode. The amount of stabilizing amphiphilic polymer added in step (ii) of emulsion polymerization of the process of the invention is usually 5% to 35% by weight, preferably 10% to 25% by weight, based on the weight of the total mass.
  • step (ii) of the two-stage process of the present invention can be adjusted in order to adjust the desired viscosity and final solids content of the reinforced latex.
  • the amounts are selected in order to obtain a product with a total solids content in the range of 55% to 70%, more preferably 58% to 65% and a viscosity greater than at least
  • the resulting mixture obtained in section 1.3 was then subjected to an ultrasonic treatment using a Branson Sonifier 450 device (output control at 8 and 90% duty cycle) for 5 minutes.
  • the resulting mini-emulsion had a droplet size of approximately 200 nm.
  • the resulting polymer dispersion had a particle size of approximately 250 nm and contained negligible amounts of clot, the solids content being 50%.
  • the mini-emulsion obtained in section 2.4 was transferred to a glass reactor equipped with a mechanical stirrer, nitrogen inlet and with temperature control by means of a water bath. The polymerization was carried out for 4 hours at 70 ° C.
  • the resulting polymer dispersion had a particle size of 240 nm and contained negligible amounts of clot, the solids content being 49%.
  • 260 g of the aqueous polymer dispersion prepared in example 1.5 were mixed with 30 g of the resin solution prepared in example 1.1 and with 1.52 g of ammonium persulfate and 1.4 g of NaHCO 3 dissolved in 80 g of water double deionized. This mixture was loaded into a glass reactor and heated to the polymerization temperature, set at 80 ° C.
  • a solution containing 102.1 g of methyl methacrylate and 110 g of butyl acrylate was then added to the reactor by a metering pump for 120 minutes.
  • a stream of 98 g of the resin solution prepared in Example 1.1 was added to the reactor during the same time.
  • the final latex obtained in the two-stage process had a solids content of 58%, a low viscosity and no clot was obtained at the end of the reaction.
  • Example 3 was repeated, in which the initial charge of the latex obtained according to example 1.5 was replaced by the latex obtained according to example 2.5.
  • the final latex obtained in the two-stage process had a solids content of 57%, a low viscosity and no clot was obtained at the end of the reaction.
  • the rewet analysis was repeated with the resin reinforced aqueous polymer dispersion obtained in Examples 3 and 4 according to the process of the present invention. Similarly to the results obtained for the latex produced according to example 5, after gently scrubbing the latexes obtained in examples 3 and 4 and their respective films, their rewetting is possible without clots forming.
  • the latex obtained by the two-stage process described in the present application differs from the latex obtained according to the prior art procedure of Example 5, among other features previously described, by an increase in solids content for an equivalent value. of latex viscosity, and the use of a significantly lower amount of stabilizing amphiphilic polymer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polymerisation Methods In General (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

La invención se refiere a un procedimiento para la preparación de una dispersión polimérica acuosa reforzada con resina, caracterizado porque comprende las etapas de (i) polimerización en miniemulsión y (ii) polimerización en emulsión. Dicho procedimiento permite obtener dispersiones poliméricas acuosas reforzadas con propiedades mecánicas, físicas y coloidales mejoradas. Así, los látex reforzados resultantes presentan un alto contenido en sólidos, una viscosidad adecuada en cuanto a redispersabilidad y humectación del sustrato, así como otras características tales como: brillo intensificado, dispersabilidad de humectación del pigmento, resistencia de penetración, humectación mejorada del sustrato, gran estabilidad mecánica y al cizallamiento, gran estabilidad frente a la congelación/descongelación y gran fracción volumétrica de polímero. Dichas características confieren especiales ventajas a dichos látex reforzados para su uso en aplicaciones de artes gráficas y en otras aplicaciones de recubrimiento similares.

Description

PROCEDIMIENTO PARA LA PREPARACIÓN DE DISPERSIONES POLIMÉRICAS ACUOSAS REFORZADAS CON RESINA
Campo de la técnica La presente invención se refiere al campo de las dispersiones poliméricas, más concretamente a un procedimiento para preparar dispersiones poliméricas acuosas reforzadas con resina que presentan propiedades mecánicas, físicas y coloidales mejoradas. En particular, se refiere a un procedimiento de preparación de dispersiones poliméricas acuosas reforzadas con resina que comprende dos etapas: una primera etapa de polimerización en miniemulsión y una segunda etapa de polimerización en emulsión convencional.
Estado de la técnica anterior
La preparación de dispersiones poliméricas acuosas mediante la técnica denominada "polimerización en miniemulsión" es conocida desde hace varios años.
Dicha polimerización en miniemulsión presenta grandes ventajas con respecto a la polimerización en emulsión convencional tal como la posibilidad de encapsular o, incluso, incorporar, componentes hidrófobos en el polímero durante la polimerización. La polimerización en miniemulsión requiere la presencia de, además de los monómeros, el agua y el tensioactivo usados en la polimerización en emulsión convencional, un componente adicional que estabilice las gotitas de emulsión formadas durante el proceso de miniemulsión, y antes y durante el proceso de polimerización. Estos componentes adicionales, denominados a veces co-estabilizadores, son normalmente componentes hidrófobos con muy baja o nula solubilidad en agua y con buena miscibilidad con el monómero. En la solicitud de patente WO 0029451 y en la patente US 5,686,518 se describen una serie de componentes hidrófobos adecuados para la estabilización de miniemulsiones. Además de dichos componentes hidrófobos, las miniemulsiones descritas en dichos documentos requieren un tensioactivo tal como laurilsulfato sódico u otros alquilsulfatos, dodecilbencenosulfonato sódico u otros alquil o arilsulfonatos, estearato sódico u otras sales de ácidos grasos, o poli(alcohol vinílico), a fin de estabilizar las gotitas de emulsión antes y durante el proceso de polimerización, y las partículas de polímero obtenidas tras la polimerización. Igualmente, también se conoce desde años la preparación de dispersiones poliméricas acuosas mediante la técnica denominada "polimerización en emulsión". Dicha tecnología está ampliamente descrita y es bien conocida en la práctica industrial.
Por otro lado, la preparación de dispersiones poliméricas acuosas reforzadas con resina también es conocida en el estado de la técnica. Concretamente, en las patentes US 4,839,413 y US 4,954,558 se describe un procedimiento para la preparación de polímeros en emulsión reforzados con resina mediante la adición de una resina de bajo peso molecular durante el proceso de polimerización en emulsión. Sin embargo, los látex reforzados resultantes presentan un limitado contenido en sólidos.
Asimismo, las condiciones generales usadas para la preparación de estos látex reforzados constituyen el objeto de investigación de Lee y col. (véanse Lee Y.D.,
Hwu H.D., J. Polym. Res. 7(2), 115 (2000); Lee Y.D., Hwu H.D., Polymer 41 , 5695 (2000); y Lee Y.D. et al., Colloids Surf. A. Phys Chem. Eng. Asp. 153, 89 (1999)).
Mediante estas técnicas de polimerización en emulsión convencional se obtienen dispersiones poliméricas acuosas reforzadas con resina con un contenido en sólidos de aproximadamente el 50% en peso, usando un rango limitado de tipos de resinas ASR (resinas solubles en álcali) en forma neutralizada en una concentración del 30-43%, en peso basado en el peso total de monómero usado en la polimerización. En la solicitud de patente europea en tramitación de los presentes inventores EP
030032805.4, que se incorpora como referencia para la presente invención, se describe un procedimiento para la preparación de dispersiones acuosas reforzadas con resina mediante polimerización en miniemulsión, que reduce la cantidad mínima necesaria de resina ASR para obtener un látex estable con un contenido en sólidos del 50% en peso, y en el que se puede usar un rango mayor de resinas
ASR. En dicho procedimiento, además, no se usan tensioactivos o se usan en cantidades muy reducidas. Sin embargo, los látex reforzados resultantes tienen un valor de viscosidad tal que presentan unas pobres características en cuanto a redispersabilidad y humectación del sustrato. Así pues, las tecnologías actuales para la preparación de dispersiones poliméricas acuosas reforzadas con resina presentan las siguientes desventajas: - el látex reforzado obtenido tiene una concentración de sólidos limitada, así como una viscosidad que lo hace poco idóneo en la industria de la impresión; - el tipo de resinas ASR que pueden usarse es restringido; - se usa una elevada cantidad de resina ASR.
Sorprendentemente, los presentes autores han descubierto que un proceso en el que se combinan las dos etapas, es decir, una primera etapa de polimerización en miniemulsión y una segunda etapa de polimerización en emulsión convencional, permite obtener dispersiones poliméricas acuosas reforzadas con resina con propiedades mecánicas, físicas y coloidales mejoradas. Así, los látex reforzados resultantes presentan un alto contenido en sólidos, una viscosidad adecuada y buenas propiedades en cuanto a redispersabilidad y humectación del sustrato, así como otras características tales como brillo intensificado, dispersabilidad de humectación del pigmento, resistencia de penetración, humectación mejorada del sustrato, gran estabilidad mecánica y al cizallamiento, gran estabilidad frente a la congelación/descongelación y gran fracción volumétrica de polímero. Dichas características les confieren especiales ventajas para su uso en aplicaciones de artes gráficas y en otras aplicaciones de recubrimiento similares.
Además, el procedimiento de preparación de dispersiones poliméricas acuosas reforzadas con resina de acuerdo con la invención permite un mejor control de la viscosidad, requiere una cantidad total menor de resina de bajo peso molecular, así como una amplia variedad de tipos de dichas resinas que pueden usarse (es decir, una gran flexibilidad en la utilización de tipos y concentración de las principales materias primas empleadas en el proceso), con las consiguientes ventajas técnicas y económicas (coste unitario mas bajo, mejor utilización de la capacidad productiva instalada, etc.).
Objeto de la invención
La presente invención tiene por objeto proporcionar un procedimiento para la preparación de una dispersión polimérica acuosa reforzada con resina.
Descripción de la invención
La presente invención proporciona un procedimiento para la preparación de una dispersión polimérica acuosa reforzada con resina, caracterizado porque comprende las etapas de: i) polimerización en miniemulsión; y ii) polimerización en emulsión.
En una realización particular del procedimiento de la invención, la etapa (i) de polimerización en miniemulsión comprende las etapas: (a) formar una mezcla que comprende agua, al menos un polímero anfifílico estabilizador, al menos un co-estabilizador hidrófobo, y al menos un monómero α,β-etilénicamente insaturado; (b) someter la mezcla formada en la etapa (a) a homogenización para formar una miniemulsión que comprende gotitas estabilizadas, que tienen un diámetro medio de 10-1000 nm y que comprenden al menos un coestabilizador hidrófobo y al menos un monómero α,β-etilénicamente insaturado, dispersas en una fase acuosa; (c) polimerizar el monómero dentro de las gotitas para obtener una dispersión polimérica acuosa.
Una vez preparada la dispersión polimérica acuosa o látex, se lleva a cabo una segunda etapa para obtener la dispersión polimérica acuosa reforzada con resina. Así, en otra realización particular, la etapa (ii) de polimerización en emulsión comprende las etapas: (d) cargar en un reactor la dispersión polimérica acuosa obtenida en la etapa (c); (e) cargar después en dicho reactor al menos un monómero ,β- etilénicamente insaturado, al menos un polímero anfifílico estabilizador y al menos un generador de radicales libres; (f) polimerizar la mezcla resultante de la etapa (e).
La adición de los compuestos de la etapa (e) se realiza como preemulsión o en corrientes separadas, preferiblemente en corrientes separadas. En caso de añadirlos en forma de preemulsión, esta se habrá sometido previamente a un proceso de homogeneización. En una realización preferida, la etapa (ii) de polimerización en emulsión se llevará a cabo de forma semicontinua añadiendo los compuestos de la etapa (e) en corrientes separadas.
El uso de un polímero anfifílico estabilizador tal como se define en la presente solicitud permite preparar miniemulsiones estables sin necesidad de añadir tensioactivos convencionales tales como alquil, aril, alquilaril, y arilalquilsulfatos y sulfonatos.
En una realización particular, el polímero anfifílico estabilizador tiene un peso molecular promedio en número, Mn, de 800-100000, preferiblemente de 900- 50.000, más preferiblemente de 1000-25000; y un índice de acidez de 50-400 mg KOH/g, preferiblemente de 100-350 mg KOH/g, más preferiblemente de 150-300 mg KOH/g. El número ácido se define como la cantidad de hidróxido potásico (expresada en miligramos) necesaria para neutralizar por completo un gramo de polímero.
El polímero anfifílico estabilizador usado en el procedimiento de la invención, exhibe un adecuado equilibrio hidrofobia/hidrofilia de modo que es adecuado para la estabilización de emulsiones de aceite-en-agua. Así, en una realización particular, el polímero anfifílico estabilizador es un polímero derivado de una combinación de monómeros hidrófobos, y de monómeros hidrófilos que incorporan funciones ácido o funciones precursoras de ácido. Los polímeros anfifílicos adecuados para el procedimiento de la presente invención tienen una temperatura de transición vitrea, Tg, en el intervalo de -60 °C a 150 °C, preferiblemente por encima de la temperatura ambiente, más preferiblemente en el intervalo de 80 °C a 130 °C.
En una realización preferida, el polímero anfifílico estabilizador es una combinación de un monómero etilénicamente insaturado hidrófobo y de un monómero etilénicamente insaturado hidrófilo con funciones de tipo ácido carboxílico, ácido sulfónico, carboxilato, sulfonato, fosfato, fosfonato o anhídrido opcionalmente hidrolizado o modificado por un alcohol o una amina. En otra realización preferida, el polímero anfifílico estabilizador es una combinación de un poliuretano con un poliéster con una función ácido.
Preferiblemente, el polímero anfifílico estabilizador es un copolímero procedente de la polimerización por adición de uno o más monómeros etilénicamente insaturados hidrófobos tales como estireno, esteres de ácido acrílico y metacrílico, isobutileno o derivados del mismo, con uno o más monómeros etilénicamente insaturados hidrófilos tales como monómeros carboxílicos (ácido acrílico, ácido metacrílico o ácido itacónico, por ejemplo); monómeros sulfónicos o sales (ácido estirenosulfónico o ácido acrilamido-2-metil-propanosulfónico, por ejemplo); monómeros fosfato (metacrilato fosfato de etilenglicol, por ejemplo); monómeros fosfonato (ácido vinilfosfónico, por ejemplo); anhídridos (anhídrido maleico, por ejemplo), este último hidrolizado o modificado opcionalmente con un alcohol o una amina.
En una realización particular, dicho polímero anfifílico estabilizador es un copolímero derivado de estireno y anhídrido maleico o un copolímero derivado de estireno, α-metil-estireno y ácido acrílico, o un copolímero derivado de estireno, acrilato de 2-etilhexilo, acrilato de butilo y ácido acrílico.
Otros polímeros anfifílicos adecuados para el procedimiento de la presente invención son aquellos derivados de la polimerización en etapas tales como poliuretanos y poliésteres con funciones ácido. Los poliuretanos adecuados son los obtenidos a partir de un prepolímero de poliuretano que es el producto de reacción de:
(A) al menos un poliisocianato (tal como diisocianato de isoforona, diisocianato de diciclohexilmetano o diisocianato de tetrametilxilileno),
(B) al menos un compuesto orgánico que contiene al menos dos grupos reactivos que pueden reaccionar con isocianatos (tales como polioles poliéster, polioles poliéter y polioles policarbonato que tienen un peso molecular promedio en número en el intervalo de 400 a 5.000), y
(C) al menos un alcohol o un poliol capaz de reaccionar con un grupo isocianato y que contiene grupos funcionales adicionales que son susceptibles de proporcionar una buena dispersión en agua y que proporcionan una función ácido. Dicho alcohol o poliol presenta típicamente grupos funcionales tales como grupos sal aniónica, o precursores similares que pueden convertirse posteriormente en dichos grupos sal aniónica tales como grupos ácido carboxílico o sulfónico. Los grupos sal carboxilato incorporados en los prepolímeros de poliuretano terminados en isocianato provienen generalmente de ácidos hidroxicarboxílicos representados por la fórmula general (HO)xR(COOH)y, en la que R representa un residuo hidrocarburo lineal o ramificado con de 1 a 12 átomos de carbono, y x e y son, de modo independiente, números enteros de 1 a 3. Los ácidos hidroxicarboxílicos de mayor preferencia son los ácidos α,α-dimetilolalcanoicos, en los que x=2 e y=1 en la anterior fórmula general, tal como, por ejemplo, el ácido 2,2-dimetilolpropiónico.
En una realización particular, el polímero anfifílico estabilizador tiene una solubilidad en la fase acuosa de la miniemulsión de al menos 10"2 g/l, preferiblemente de al menos 10"1g/l, y más preferiblemente de al menos 1 g/l.
En otra realización particular, el polímero anfifílico estabilizador se emplea en una cantidad del 0,5% al 35% en peso con respecto al peso total de monómero ,β- etilénicamente insaturado usado en ambas etapas (i) e (ii). En la etapa (i) de polimerización en miniemulsión, la cantidad de polímero anfifílico estabilizador empleado debe ser preferiblemente inferior al 3% en peso, más preferiblemente inferior al 1 ,5% en peso, con respecto al peso total de monómero α,β-et¡lénicamente insaturado usado en ambas etapas (i) e (ii). Más en particular, en dicha etapa (i), la cantidad de polímero anfifílico estabilizador empleado debe ser, preferiblemente, de al menos un 1 % en peso, más preferiblemente de al menos un 2% en peso, con respecto al peso total de monómero α,β-etilénicamente insaturado usado en dicha etapa (i).
En la etapa (ii) de polimerización en emulsión, la cantidad de polímero anfifílico estabilizador empleado debe ser preferiblemente de al menos un 5% en peso, más preferiblemente de al menos un 10% en peso, con respecto al peso total de monómero α,β-etilénicamente insaturado usado en ambas etapas (i) e (ii).
Por otro lado, en el contexto de la invención, el polímero anfifílico estabilizador es adecuado para su uso en cada una de las dos etapas del procedimiento de la invención. Así, en una realización particular, el polímero anfifílico estabilizador se emplea en la etapa (i) de polimerización en miniemulsión en una cantidad del 2% al 25% en peso con respecto al peso total del polímero anfifílico estabilizador usado.
El término "co-estabilizador hidrófobo" tal como se usa en el procedimiento de la invención se refiere a un compuesto que es a la vez muy ¡nsoluble en agua y muy soluble en el monómero o monómeros α,β-etilénicamente insaturados. El coestabilizador hidrófobo usado en el procedimiento de la invención tiene por lo general una solubilidad en agua inferior a 5.10"^ g/l, preferiblemente inferior a 5.10"
6 g/l (medida a 25 °C).
Co-estabilizadores hidrófobos adecuados para el procedimiento de la invención son los hidrocarburos, especialmente aléanos o cicloalcanos, que contienen al menos 12 átomos de carbono (hexadecano u octadecano, por ejemplo), alcoholes de cadena larga (hexadecanol u octadecanol, por ejemplo), hidrocarburos halogenados, compuestos organosilíceos, esteres de cadena larga, aceites tales como aceites vegetales (aceite de oliva, por ejemplo), moléculas colorantes hidrófobas, isocianatos bloqueados, así como productos oligoméricos de polimerización, policondensación o poliadición. Otros co-estabilizadores poliméricos apropiados se han descrito, por ejemplo, en la patente US 5,686,518.
Según una realización particular del procedimiento descrito en la presente invención, se puede usar también une co-estabilizador hidrófobo reactivo, solo o en combinación con un co-estabilizador hidrófobo no reactivo. El término "coestabilizador hidrófobo reactivo" se refiere aquellos co-estabilizadores que participan en la reacción de polimerización posterior. Ejemplos de dichos compuestos son monómeros o comonómeros hidrófobos tales como acrilato de estearilo y otros acrilatos y metacrilatos de cadena larga, macromonómeros; agentes de transferencia de cadena hidrófobos tales como dodecil mercaptano, octadecil mercaptano y otros mercaptanos de cadena larga; o, incluso, iniciadores hidrófobos tales como 2,5-dimetil-2-5-di(2-etilhexanoilperox¡) hexano y otros iniciadores azo, peróxidos o hidroperóxidos de cadena larga. El procedimiento descrito presenta ventajas particulares con respecto al uso alternativo de monómeros de curado por UV como monómeros hidrófobos potenciales que se encuentran, por ejemplo, con los nombres comerciales de Actilane®, monómeros de acrilato, (Akzo Nobel Resins) o Tone® (Union Carbide/Dow).
El co-estabilizador hidrófobo usado en el procedimiento de la invención se selecciona preferiblemente de entre alcanos o alcoholes que contienen de 12 a 24 átomos de carbono, especialmente hexadecano, y de entre acrilatos que contienen de 18 a 22 átomos de carbono, y mezclas de los mismos. Una mezcla de acrilatos se comercializa, por ejemplo, con el nombre comercial de Norsocryl™ A-18-22 (ATOFINA).
Generalmente, el co-estabilizador hidrófobo se añade en una cantidad del 0,05% al 40% en peso, preferiblemente del 0,1% al 10% en peso, y con particular preferencia del 0,2% al 5% en peso, basado en el peso total de monómeros de la mezcla preparada en la etapa (a) del procedimiento de la invención. En el caso especial de usar monómeros o comonómeros hidrófobos tales como los descritos anteriormente que funcionan como co-estabilizadores hidrófobos y como monómeros α,β- etilénicamente insaturados, la cantidad de dicho monómero o comonómero hidrófobo puede ser del orden del 70% en peso basado en el peso total de la mezcla preparada en la etapa (a).
Cuando el co-estabilizador hidrófobo no es un monómero o comonómero, dicho coestabilizador hidrófobo se añade preferiblemente en una cantidad del 0,1% al 10% en peso, más preferiblemente del 0,2% al 8% en peso, y con particular preferencia del 0,5% al 5% en peso, basado en el peso total de monómeros de la mezcla preparada en la etapa (a).
El co-estabilizador hidrófobo se usa preferiblemente de modo exclusivo en la etapa (i) de polimerización en miniemulsión descrita.
Los monómeros α,β-etilénicamente insaturados que pueden usarse en ambas etapas (i) e (ii) del procedimiento de la invención son aquellos que presentan una baja solubilidad en agua. Generalmente, los monómeros α,β-etilénicamente insaturados tienen una solubilidad en agua inferior al 15%, preferiblemente inferior al 5%, y más preferiblemente inferior al 3%. Las solubilidades de estos monómeros se miden a 25°C y expresan los gramos de monómero disueltos en 100 gramos de agua.
Monómeros α,β-etilénicamente insaturados adecuados son acrilatos de alquilo o metacrilatos de alquilo (acrilato de metilo, metacrilato de metilo, acrilato de etilo, metacrilato de etilo, acrilato de n-butilo, metacrilato de n-butilo, acrilato de 2- etilhexilo, metacrilato de ciciohexilo, metacrilato de 2-etilhexilo, metacrilato de estearilo, metacrilato de isobornilo, y metacrilato de laurilo, por ejemplo), compuestos aromáticos polimerizables (estireno, α-metil estireno, vinil tolueno y t- butil estireno, por ejemplo), nitrilos polimerizables (acrilonitrilo y metacrilonitrilo, por ejemplo), compuestos amida polimerizables, compuestos α-olefínicos tales como etileno, compuestos vinílicos tales como acetato de vinilo, propionato de vinilo, y homólogos esteres vinílicos de cadena más larga; éteres de vinilo, haluros de vinilo y vinilideno, compuestos dieno tales como butadieno e isopreno. Otros monómeros α,β-etilénicamente insaturados adecuados son aquellos con átomos de flúor o silicio, tales como acrilato de 1H, 1H, 5H-octafluoropentilo o trimetilsiloxiacrilato de etilo.
Preferiblemente, los monómeros α,β-etilénicamente insaturados se seleccionan de entre estírenos, acrilatos, metacrilatos, haluros de vinilo y vinilideno, dienos, esteres de vinilo y mezclas de los mismos. Particularmente preferidos son: metacrilato de metilo, estireno, acetato de vinilo, acrilato de metilo, acrilato de butilo, acrilato de etilo, acrilato de 2-etilhexilo, butadieno y cloruro de vinilo.
La cantidad de monómeros α,β-etilénicamente insaturados usados en el procedimiento de la invención es por lo general del 10% al 70%, preferiblemente del 18% al 60% en peso, basado en el peso total de la mezcla de la etapa (a).
Según otra realización del procedimiento descrito en la presente invención, se puede añadir uno o más monómeros solubles en agua (en adelante denominados
"monómeros secundarios") a la mezcla formada en la etapa (a) o a la mezcla formada en la etapa (e), además del monómero o monómeros α,β-etilénicamente insaturados. Estos monómeros secundarios son generalmente compuestos orgánicos etilénicamente insaturados polimerizables por adición que tienen una solubilidad en agua superior al 15% y que se usan solamente en un pequeño porcentaje en la mezcla de monómeros y sólo en presencia de al menos un monómero α,β-etilénicamente insaturado, tal como se ha descrito previamente.
El porcentaje de monómero secundario presente en la mezcla de monómeros es preferiblemente inferior al 6% en peso, más preferiblemente es del 0% al 4% en peso, y más preferiblemente del 0% al 2% en peso, basado en el peso total de monómero usado en ambas etapas (i) e (ii). Ejemplos de monómeros secundarios son: ácido acrílico, ácido metacrílico, metacrilato de 2-sulfoetilo, y anhídrido maleico. El uso de monómeros secundarios puede conferir las propiedades deseadas a los recubrimientos producidos cuando se usan las dispersiones poliméricas obtenidas por el procedimiento de la presente invención.
En otra realización del procedimiento de la invención, se añade al menos un tensioactivo seleccionado de entre tensioactivos aniónicos, catiónicos y no iónicos a la mezcla formada en la etapa (a) o a la mezcla formada en la etapa (e).
Tensioactivos adecuados incluyen sulfatos de alquilo, tal como laurilsulfato sódico; sulfonatos de alquilo, arilo, alquilarilo y arilalquilo tal como dodecilbencenosulfonato sódico; sales de ácidos grasos tal como estearato de sodio; poli(alcohol vinílico), o éteres poliglicol de alcoholes grasos tales como alcoholes grasos etoxilados lineales que contienen de 10 a 100 unidades de óxido de etileno.
La cantidad de tensioactivo generalmente es inferior al 2% en peso con respecto al peso total de monómero usado en ambas etapas (i) e (ii). Preferiblemente, la cantidad de tensioactivo es inferior al 1 % en peso, y más preferiblemente, la cantidad de tensioactivo es inferior al 0,5% en peso con respecto al peso total de monómero usado en ambas etapas (i) e (ii).
La mezcla formada en la etapa (a) o la mezcla de la etapa (e) puede contener también uno o más componentes que modifican el pH. En particular, cuando el polímero anfifílico estabilizador contiene funciones ácido carboxílico, puede ser necesario preparar y polimerizar la miniemulsión a un pH elevado para que el polímero estabilizador exhiba la anfifilicidad apropiada. En este caso, un intervalo adecuado de pH es de 6,0 a 10,0, dependiendo de la naturaleza del resto de componentes del polímero. Otro intervalo de pH preferido es de 7,5 a 10,0. Cuando el polímero estabilizador contiene funciones ácido derivadas de ácido sulfónico, sulfato, fosfato o fosfonato, un intervalo de pH adecuado es de 2,0 a 10,0.
Compuestos capaces de ajustar el pH son: amoníaco, aminas, (trietil amina, trietanol amina o dimetilamino hidroxipropano, por ejemplo), sales carbonato (carbonato sódico, por ejemplo), sales bicarbonato (bicarbonato sódico, por ejemplo), hidróxidos (hidróxido sódico, por ejemplo) u óxidos (óxido de calcio, por ejemplo). El compuesto ajustador del pH se selecciona preferiblemente de entre amoníaco e hidróxido sódico.
El compuesto ajustador del pH se puede añadir durante la etapa (a) o durante la etapa (e). Preferiblemente, el compuesto ajustador del pH se añade al polímero anfifílico estabilizador antes de usar este en la etapa (a) o en la etapa (e). Dicho compuesto ajustador del pH que se puede añadir durante las etapas (a) y (e) puede ser el mismo o no.
La formación de la mezcla en la etapa (a) del procedimiento de la invención se efectúa preferiblemente mezclando una premezcla (1) que comprende el polímero anfifílico estabilizador y agua con una premezcla (2) que comprende el coestabilizador hidrófobo y el monómero o monómeros α,β-etilénicamente insaturados.
La premezcla (1) se prepara generalmente añadiendo el polímero anfifílico estabilizador al agua, preferiblemente a una temperatura de 0 °C a 100 °C. A esta premezcla (1) se puede añadir, opcionalmente, uno o más tensioactivos tal como se ha descrito previamente, uno o más monómeros secundarios solubles en agua tal y como se ha descrito previamente, un compuesto ajustador del pH y/o un iniciador de polimerización.
Cuando se usa un polímero anfifílico estabilizador que contiene funciones ácido carboxílico en el procedimiento de la invención, se prefiere preparar una premezcla (1) que comprende un compuesto ajustador del pH tal como se ha descrito anteriormente de modo que la solubilidad del polímero anfifílico estabilizador en esta premezcla (1) llegue a ser de al menos 10"2 g/l (medida a 25 °C), más preferiblemente de al menos 10"1 g/l, y más preferiblemente de al menos 1 g/l. En este caso, se prefiere particularmente añadir este compuesto ajustador del pH al polímero anfifílico antes de añadirle el agua, y, opcionalmente, los otros componentes de la premezcla (1).
La premezcla (2) se prepara generalmente añadiendo la cantidad deseada de coestabilizador hidrófobo al monómero o monómeros α,β-etilénicamente insaturados, preferiblemente con agitación suave. Esta premezcla se prepara por lo general a temperatura ambiente, preferiblemente hasta que se obtiene una solución transparente. A esta premezcla (2) se puede añadir opcionalmente uno o más monómeros secundarios solubles en agua tal y como se ha descrito previamente, y/o un iniciador de polimerización.
La formación de la mezcla durante la etapa (a) del procedimiento de la invención se efectúa generalmente a una temperatura de 0 °C a 100 °C, preferiblemente a temperatura ambiente.
La mezcla obtenida en la etapa (a) se somete después, en la etapa (b) del procedimiento de la invención, a técnicas de homogeneización a fin de formar una miniemulsión que comprenda gotitas estabilizadas con un diámetro medio de 10 a 1000 nm.
El término "miniemulsión", tal y como se usa en la presente solicitud, se refiere a una emulsión monomérica en la que el diámetro medio de gotita es de 10 a 1000 nm. Este término se usa para distinguir los procesos de emulsión monomérica convencional y polimerización en emulsión, en los que el tamaño de las gotitas o micelas es mayor, normalmente de aproximadamente 1 a 10 μm.
El diámetro de las gotitas se mide empleando un dispositivo de dispersión dinámica de la luz como, por ejemplo, un dispositivo Coulter™ N4 Plus o Nicomp 380 ZLS. La preparación de la muestra supone la dilución de un muestra de miniemulsión con agua desionizada o, preferiblemente, con agua desionizada que está saturada con el monómero o monómeros presentes en la miniemulsión. El tamaño de las gotitas se determina directamente tras la preparación de la muestra, en todos los casos en un plazo de 15 minutos.
La etapa (b) del procedimiento de la invención se efectúa preferiblemente de modo que se obtenga una miniemulsión en la que las gotitas tengan un diámetro medio inferior a 600 nm, más preferiblemente inferior a 400 nm, aún más preferiblemente inferior a 300 nm. La etapa (b) se efectúa preferiblemente de modo que se obtenga una miniemulsión en la que las gotitas tengan un diámetro medio de 80-600 nm.
En la etapa (b) la mezcla se somete a técnicas de homogeneización o de alta carga. La carga se define como la fuerza por unidad de área. Un modo de ejercer dicha carga es mediante cizallamiento. El cizallamiento significa que la fuerza es tal que una capa o plano se mueve paralelamente a otro adyacente. La carga puede ejercerse también desde todos los lados como una masa, o carga de compresión, de modo que la carga se ejerce prácticamente sin cizallamiento. Otro modo de ejercer la carga es mediante cavitación, que ocurre cuando la presión dentro de un líquido se reduce lo suficiente como para causar la vaporización. La formación y colapso de las burbujas de vapor se produce violentamente en un corto periodo de tiempo y produce una importante carga. Por último, otro modo de ejercer una carga es mediante el uso de energía ultrasónica.
En la etapa (b) del procedimiento de la invención, se prefiere usar un equipo capaz de producir un gran cizallamiento localizado, preferiblemente junto con un mezclado en masa moderado. Más preferiblemente, el mezclado por alto cizallamiento se obtiene usando un tratamiento con ultrasonidos, un molino coloidal y/o un homogeneizador
La temperatura usada durante la etapa (b) del procedimiento de la invención es, en general, cualquier temperatura entre el punto de congelación y el punto de ebullición de la mezcla y los componentes presentes en ella. La temperatura preferida para la formación de la miniemulsión de monómeros varía entre 20 °C y 50° C, siendo preferida la temperatura ambiente.
El resultado de la etapa (b) es la formación de una miniemulsión esencialmente estable que comprende una fase continua acuosa y gotitas que comprenden el monómero o monómeros α,β-etilénicamente insaturados y el co-estabilizador hidrófobo; dichas gotitas se denominan también fase dispersa. Se considera que sustancialmente todo o al menos la mayor parte del polímero anfifílico estabilizador está localizado en la interfaz entre las gotitas y el medio acuoso o próximo a la misma. La solubilidad del polímero estabilizador en el monómero, cuando el polímero estabilizador se encuentra en estado desprotonado es normalmente inferior al 2% en peso, preferiblemente inferior al 1 % en peso, basado en el peso de monómero.
El término "miniemulsión esencialmente estable" se refiere a que su vida de almacenamiento es lo suficientemente larga como para que el contenido de monómero de la emulsión pueda estar polimerizado en menos tiempo que el requerido para la separación de las fases. Las mini-emulsiones obtenidas por el procedimiento de la invención generalmente presentan una vida de almacenamiento de más de 24 h, incluso de varios días.
En la etapa (c) del procedimiento de la invención, el monómero o monómeros se polimerizan dentro de las gotitas. El monómero o monómeros se polimerizan generalmente en condiciones de polimerización por radicales libres. En una realización preferida del procedimiento de la invención, la polimerización de la etapa (c) se efctúa en presencia de un iniciador de radicales libres. El iniciador de polimerización puede ser un compuesto soluble en agua o soluble en aceite. En el estado de la técnica son conocidos iniciadores de radicales libres adecuados. Entre ellos se incluyen, por ejemplo, peróxidos orgánicos tales como peróxido de benzoílo, peróxido de lauroílo, hidroperóxido de tere-butilo, 2,5-dimetil 2,5-d¡(2- etilhexanoilperoxi) hexano y peróxido de dicumilo; persulfatos inorgánicos tales como persulfato potásico o persulfato amónico; e iniciadores azo tales como azobis- (isobutiro nitrilo) (AIBN) y azobis (1-ciclohexanocarbonitrilo); y pares rédox tales como Fe2+/H2θ2; ROH/Ce4+ (en el que R es un grupo orgánico tal como alquilo
C1-C6 o arilo C5-C8) y K2S2O8/Fe2+.
El iniciador de radicales libres se puede añadir a la miniemulsión obtenida tras la etapa (b), o bien antes de la etapa (b) y/o durante la etapa (b), del procedimiento descrito en la presente solicitud. El iniciador de radicales libres se añade en la etapa (e) del procedimiento descrito en la presente solicitud. El iniciador de radicales libres se añade preferiblemente a la premezcla (2) que se usa en la etapa (a) del procedimiento de la invención en los casos en los que la solubilidad del iniciador en la premezcla (2) es mayor que en la premezcla (1). En aquellos casos en los que la solubilidad del iniciador en la premezcla (1) es mayor que en la premezcla (2), el iniciador se puede añadir a la mezcla formada en la etapa (a) o bien durante o después de la etapa (b) del procedimiento de la invención. En este caso, se añade preferiblemente a la miniemulsión obtenida tras la etapa (b).
Durante la etapa (c) del procedimiento de la invención, puede ser necesario añadir un compuesto ajustador del pH tal como se ha descrito en relación con las etapas (a) y (e), a fin de mantener el polímero estabilizador en estado anfifílico. Este es el caso particular en el que el pH disminuye durante la reacción. Esto puede deberse a la disociación de los iniciadores persulfato (persulfato amónico, por ejemplo) o a la evaporación del compuesto ajustador del pH presente en la mezcla formada en la etapa (a) (cuando se usa amoníaco, por ejemplo). El compuesto ajustador del pH añadido durante la etapa (c) puede ser el mismo que el añadido durante la etapa (a) u otro diferente.
Por lo general, la polimerización de la etapas (c) y (f) puede llevarse a cabo en un amplio intervalo de temperaturas que varía de aproximadamente 20 °C a 90 °C. La temperatura de polimerización preferida dependerá del iniciador elegido. En cualquier caso, el intervalo de temperatura de polimerización preferido varía de aproximadamente 25 °C a 80 °C.
Asimismo, la polimerización de la etapas (c) y (f) del procedimiento de la invención se efectúa usualmente en un periodo de tiempo de 10 min a 24 h.
La dispersión polimérica acuosa, o látex polimérico, obtenida tras la etapa (c) del procedimiento de la invención contiene generalmente partículas poliméricas con un diámetro medio en el intervalo de aproximadamente 10 a aproximadamente 1000 nm. La dispersión polimérica acuosa, que se denomina frecuentemente emulsión polimérica o látex polimérico, contiene preferiblemente partículas poliméricas con un diámetro medio en el intervalo de 80 a 400 nm.
Los látex poliméricos obtenidos mediante la etapa (i) del procedimiento de la invención presentan la ventaja de poseer un comportamiento en máquina (runnability) mejorado. Asimismo, tienen una buena estabilidad de almacenamiento que, por lo general, es superior a 6 meses o incluso más. Sorprendentemente, los autores han descubierto que el látex obtenido mediante la etapa (i) del procedimiento de la presente solicitud puede usarse en una segunda etapa (ii) que se describe a continuación. Las dispersiones poliméricas acuosas reforzadas con resina obtenidas según el procedimiento de la presente invención muestran notables características en cuanto a brillo intensificado, dispersabilidad de humectación del pigmento, resistencia de penetración, humectación mejorada del sustrato, gran estabilidad mecánica y al cizallamiento, gran estabilidad frente a la congelación/descongelación y gran fracción volumétrica de polímero.
Se ha descubierto que la dispersión polimérica acuosa obtenida usando el polímero anfifílico estabilizador empleado en la primera etapa (i) del procedimiento de la invención, así como la obtenida según el procedimiento descrito en la solicitud de patente EP 03002805.4, no posee las características finales deseadas de la dispersión polimérica acuosa reforzada con resina obtenida por el procedimiento de la presente solicitud. Dicha dispersión polimérica acuosa obtenida mediante la polimerización en miniemulsión de la etapa (i), no obstante, es sorprendentemente útil como carga inicial de un proceso de polimerización en emulsión de la etapa (ii) que constituye una realización preferida del procedimiento en dos etapas descrito en la presente solicitud.
La etapa (ii) del procedimiento en dos etapas de la presente invención comprende la etapa de cargar inicialmente el reactor con la dispersión polimérica acuosa obtenida en la etapa (i). El volumen total de la dispersión polimérica acuosa de partida varía normalmente entre el 10% y el 70%, preferiblemente entre el 30% y el
50% con respecto al volumen total final de producto.
Dicha etapa (ii) del procedimiento en dos etapas de la presente invención comprende, además, la etapa de adición de al menos un monómero α,β- etilénicamente insaturado. Es ampliamente conocido por los expertos en la materia que algunas de las características del producto final vienen determinadas por la elección de los tipos de monómeros empleados. Igualmente, en el reactor se cargan un polímero anfifílico estabilizador y un iniciador de radicales libres, tal y como se ha definido en la presente invención. Preferiblemente, la adición se lleva a cabo en modo semicontinuo. La cantidad de polímero anfifílico estabilizador añadida en la etapa (ii) de polimerización en emulsión del procedimiento de la invención es normalmente del 5% al 35% en peso, preferiblemente del 10% al 25% en peso, respecto al peso de la masa total de polímero presente en la dispersión polimérica acuosa final. Las cantidades de monómero y estabilizador polimérico usados en la etapa (ii) del procedimiento en dos etapas de la presente invención se pueden adecuar a fin de ajusfar la viscosidad y el contenido de sólidos final deseado del látex reforzado. Preferiblemente, las cantidades se seleccionan a fin de obtener un producto con un contenido de sólidos total en el intervalo del 55% al 70%, más preferiblemente del 58% al 65% y una viscosidad superior a, al menos,
2Pa.s, para asegurar la buena dispersabilidad de humectación de la dispersión polimérica acuosa reforzada con resina que se desea.
Los siguientes ejemplos se exponen para una mejor comprensión de la invención En ningún caso deben considerarse una limitación del alcance de la misma.
EJEMPLOS
Ejemplo 1 :
1.1 Preparación de una solución acuosa de polímero anfifílico estabilizador Se añadieron 300 g de un copolímero de estireno, α-metil estireno y ácido acrílico, con un Mn de 6500 y un número ácido en el intervalo de 193 a 215 (resina Morez™101 , comercializada por Rohm & Haas), a una mezcla de 89,5 g de amoniaco (25% p/p) y 625 g de agua desmineralizada con agitación. La solución se calentó después a 70°C y se dejó en agitación hasta que la resina Morez se disolvió por completo. La solución resultante tenía un contenido en sólidos del 29,7% (p/p).
1.2 Preparación de una solución orgánica que contiene un co-estabilizador hidrófobo y un monómero ,β-etilénicamente insaturado, de acuerdo con la solicitud de patente EP 03002805.4: Se disolvieron 5,0 g de acrilato C18-C22 Norsocryl y 2,5 g de Luperox 256 (ATOFINA) en una mezcla de 120 g de metacrilato de metilo y 130 g de acrilato de butilo.
1.3 Preparación de la mezcla:
Se mezclaron 16,68 g de la solución acuosa preparada en el apartado 1.1 con 238,3 g de agua desmineralizada. A continuación, a esta solución acuosa se añadió la solución orgánica de acrilato C18-C22 Norsocryl y Luperox 256 en los monómeros acrílicos preparada en el apartado 1.2 con agitación (usando una barra de agitación magnética a 1000 rpm). La agitación de esta mezcla continuó durante
10 minutos.
1.4 Preparación de la miniemulsión:
La mezcla resultante obtenida en el apartado 1.3 se sometió después a un tratamiento de ultrasonidos usando un dispositivo Branson Sonifier 450 (control de salida a 8 y ciclo de trabajo del 90%) durante 5 minutos. La miniemulsión resultante tenía un tamaño de gotita de aproximadamente 200 nm.
1.5 Polimerización: La miniemulsión obtenida en el apartado 1.4 se transfirió a un reactor de vidrio equipado con agitador mecánico, entrada de nitrógeno y con control de temperatura mediante un baño de agua. La polimerización se llevó a cabo durante 4 horas a 70 °C.
La dispersión polimérica resultante tenía un tamaño de partícula de aproximadamente 250 nm y contenía cantidades despreciables de coágulo, siendo el contenido en sólidos del 50%.
Ejemplo 2 2.1 Preparación de una solución acuosa de polímero anfifílico estabilizador:
Se añadieron 300 g de un copolímero de estireno, α-metil estireno y ácido acrílico con un Mn de 1200 y un número ácido de 235 (resina Morez™300, comercializada por Rohm & Haas) a una mezcla de 102 g de amoniaco (25% p/p) y 625 g de agua desmineralizada con agitación. La solución se calentó después a 70 °C y se dejó en agitación hasta que la resina Morez se disolvió por completo. La solución resultante tenía un contenido en sólidos del 29,3% (p/p).
2.2 Preparación de una solución orgánica que contiene un co-estabilizador hidrófobo y un monómero α,β-etilénicamente insaturado de acuerdo con la solicitud de patente EP 03002805.4:
Se disolvieron 5,0 g de acrilato C18-C22 Norsocryl y 2,5 g de Luperox 256
(ATOFINA) en una mezcla de 120 g de metacrilato de metilo y 130 g de acrilato de butilo.
2.3 Preparación de la mezcla:
Se mezclaron 16,68 g de la solución acuosa preparada en el apartado 1.1 con 238,3 g de agua desmineralizada. A continuación, a esta solución acuosa se añadió la solución orgánica de acrilato C18-C22 Norsocryl y Luperox 256 en los monómeros acrílicos preparada en el apartado 1.2 con agitación (usando una barra de agitación magnética a 1000 rpm). La agitación de esta mezcla continuó durante 10 minutos.
2.4 Preparación de la miniemulsión: La mezcla resultante obtenida en el apartado 2.3 se sometió después a un tratamiento de ultrasonidos usando un dispositivo Branson Sonifier 450 (control de salida a 8 y ciclo de trabajo del 90%) durante 5 minutos. La miniemulsión resultante tenía un tamaño de gotita de aproximadamente 200 nm, tal y como se midió mediante dispersión luminosa usando un dispositivo Coulter N4 Plus. 2.5 Polimerización:
La miniemulsión obtenida en el apartado 2.4 se transfirió a un reactor de vidrio equipado con agitador mecánico, entrada de nitrógeno y con control de temperatura mediante un baño de agua. La polimerización se llevó a cabo durante 4 horas a 70 °C.
La dispersión polimérica resultante tenía un tamaño de partícula de 240 nm y contenía cantidades despreciables de coágulo, siendo el contenido en sólidos del 49%. Ejemplo 3
Se mezclaron 260 g de la dispersión polimérica acuosa preparada en el ejemplo 1.5 con 30 g de la solución de resina preparada en el ejemplo 1.1 y con 1 ,52 g de persulfato amónico y 1,4 g de NaHCO3 disuelto en 80 g de agua doblemente desionizada. Esta mezcla se cargó en un reactor de vidrio y se calentó a la temperatura de polimerización, fijada en 80 °C.
Se añadió después al reactor una solución que contenía 102,1 g de metacrilato de metilo y 110 g de acrilato de butilo mediante una bomba dosificadora durante 120 minutos. Se añadió al reactor una corriente de 98 g de la solución de resina preparada en el ejemplo 1.1 durante el mismo tiempo.
El látex final obtenido en el procedimiento de dos etapas tenía un contenido en sólidos del 58%, una baja viscosidad y no se obtuvo coágulo al final de la reacción.
Ejemplo 4:
Se repitió el ejemplo 3, en el que se sustituyó la carga inicial del látex obtenido de acuerdo con el ejemplo 1.5 por el látex obtenido de acuerdo con el ejemplo 2.5. El látex final obtenido en el procedimiento de dos etapas tenía un contenido en sólidos del 57%, una baja viscosidad y no se obtuvo coágulo al final de la reacción.
Ejemplo 5:
Ejemplo de acuerdo con el estado de la técnica conocido
Se mezclaron 105 g de agua doblemente desionizada con 178 g de la solución de resina obtenida de acuerdo con el ejemplo 1.1. A esta mezcla se añadió una solución de 3,8 g de agua doblemente desionizada y 0,58 g de persulfato amónico y se cargó a un reactor de vidrio con temperatura controlada a 80 °C. Se añadió al reactor una corriente de 270 g de estireno durante un periodo de 120 minutos. Tras enfriar el medio de reacción, se obtuvo un látex con un tamaño de partícula de 70 nm, medido por dispersión luminosa usando un dispositivo Coulter N4 Plus. El contenido de sólidos total del látex fue del 53%, medido por gravimetría.
A fin de ilustrar aún más las ventajas de la dispersión polimérica acuosa reforzada con resina obtenida según el procedimiento descrito en la presente solicitud, se comparó el rendimiento de rehumectacíón de los látex. Así, se prepararon por colada sobre un sustrato de vidrio diversas películas de los látex obtenidos de acuerdo con los ejemplos 1.5 y 2.5 (polimerización en miniemulsión) y 5 (polimerización en emulsión). Las películas se secaron mediante una corriente de aire caliente. Después, se vertieron gotitas de los mismos látex sobre la película obtenida y se restregó ligeramente dicha película. Sólo se observó rehumectación con la película formada a partir del látex obtenido en el ejemplo 5. Tras restregar suavemente el látex obtenido en los ejemplos 1.5 y 2.5 sobre las películas respectivas, se formó un coágulo. Se repitió el análisis de rehumectación con la dispersión polimérica acuosa reforzada con resina obtenida en los ejemplos 3 y 4 según el procedimiento de la presente invención. Análogamente a los resultados obtenidos para el látex producido de acuerdo con el ejemplo 5, tras restregar suavemente los látex obtenidos en los ejemplos 3 y 4 y sus respectivas películas, es posible su rehumectación sin que se formen coágulos. El látex obtenido por el procedimiento en dos etapas descrito en la presente solicitud se diferencia del látex obtenido de acuerdo con el procedimiento del estado de la técnica del ejemplo 5, entre otras características previamente descritas, por un aumento del contenido en sólidos para un valor equivalente de viscosidad del látex, y el uso de una cantidad significativamente menor de polímero anfifílico estabilizador.

Claims

REIVINDICACIONES
1. Procedimiento para la preparación de una dispersión polimérica acuosa reforzada con resina, caracterizado porque comprende las etapas de: iii) polimerización en miniemulsión; y iv) polimerización en emulsión.
2. Procedimiento según la reivindicación 1, caracterizado porque la etapa (i) de polimerización en miniemulsión comprende las etapas: (a) formar una mezcla que comprende agua, al menos un polímero anfifílico estabilizador, al menos un co-estabilizador hidrófobo, y al menos un monómero ,β-etilénicamente insaturado; (b) someter la mezcla formada en la etapa (a) a homogenización para formar una miniemulsión que comprende gotitas estabilizadas, que tienen un diámetro medio de 10-1000 nm y que comprenden al menos un coestabilizador hidrófobo y al menos un monómero α,β-etilénicamente insaturado, dispersas en una fase acuosa; (c) polimerizar el monómero dentro de las gotitas para obtener una dispersión polimérica acuosa.
3. Procedimiento según la reivindicación 1 , caracterizado porque la etapa (ii) de polimerización en emulsión comprende las etapas: (d) cargar en un reactor la dispersión polimérica acuosa obtenida en la etapa (c); (e) cargar después en dicho reactor al menos un monómero α,β- etilénicamente insaturado, al menos un polímero anfifílico estabilizador y al menos un generador de radicales libres; (f) polimerizar la mezcla resultante de la etapa (e).
4. Procedimiento según las reivindicaciones 1-3, caracterizado porque la adición de los compuestos de la etapa (e) se realiza como preemulsión o en corrientes separadas, preferiblemente en corrientes separadas.
5. Procedimiento según las reivindicaciones 1-4, caracterizado porque el polímero anfifílico estabilizador tiene un peso molecular promedio en número, Mn, de 800- 100000, preferiblemente de 900-50.000, más preferiblemente de 1000-25000; y un índice de acidez de 50-400 mg KOH/g, preferiblemente de 100-350 mg KOH/g, más preferiblemente de 150-300 mg KOH/g.
6. Procedimiento según la reivindicación 5, caracterizado porque el polímero anfifílico estabilizador es un polímero derivado de una combinación de monómeros hidrófobos, y de monómeros hidrófilos que incorporan funciones ácido o funciones precursoras de ácido, preferiblemente la combinación de un monómero etilénicamente insaturado hidrófobo y de un monómero etilénicamente insaturado hidrófilo con funciones de tipo ácido carboxílico, ácido sulfónico, carboxilato, sulfonato, fosfato, fosfonato o anhídrido opcionalmente hidrolizado o modificado por un alcohol o una amina; o la combinación de un poliuretano con un poliéster con una función ácido.
7. Procedimiento según las reivindicación 6, caracterizado porque el polímero anfifílico estabilizador es un copolímero derivado de estireno y anhídrido maleico o un copolímero derivado de estireno, α-metil-estireno y ácido acrílico, o un copolímero derivado de estireno, acrilato de 2-etilhexilo, acrilato de butilo y ácido acrílico.
8. Procedimiento según las reivindicaciones 5-7, caracterizado porque el polímero anfifílico estabilizador tiene una solubilidad en la fase acuosa de la miniemulsión de al menos 10"2 g/l, preferiblemente de al menos 10"1g/l, y más preferiblemente de al menos 1 g/l.
9. Procedimiento según las reivindicaciones 5-8, caracterizado porque el polímero anfifílico estabilizador se emplea en una cantidad del 0,5% al 35% en peso con respecto al peso total de monómero α,β-etilénicamente insaturado.
10. Procedimiento según las reivindicaciones 5-9, caracterizado porque el polímero anfifílico estabilizador se emplea en la etapa (i) de polimerización en miniemulsión en una cantidad del 2% al 25% en peso con respecto al peso total del polímero anfifílico estabilizador.
11. Procedimiento según las reivindicaciones 1-10, caracterizado porque el monómero α,β-etilénicamente insaturado se selecciona entre estírenos, acrilatos, metacrilatos, haluros de vinilo y de vinilideno, dienos, esteres de vinilo y mezclas de los mismos.
12. Procedimiento según la reivindicación 11 , caracterizado porque el monómero α,β-etilénicamente insaturado tiene una solubilidad en agua inferior al 15%.
13. Procedimiento según las reivindicaciones 1-12, caracterizado porque se añade a la mezcla de la etapa (a) o a la mezcla de la etapa (e) un monómero secundario con una solubilidad en agua superior al 15% en una cantidad inferior al 6% en peso con respecto al peso total de monómero.
14. Procedimiento según las reivindicaciones 1-13, caracterizado porque se añade a la mezcla de la etapa (a) o a la mezcla de la etapa (e) un tensioactivo en una cantidad inferior al 2% en peso con respecto al peso total de monómero, seleccionándose dicho tensioactivo entre un tensioactivo aniónico, un tensioactivo catiónico y un tensioactivo no iónico.
15. Procedimiento según las reivindicaciones 1-14, caracterizado porque se añade a la mezcla de la etapa (a) o a la mezcla de la etapa (e) uno o más componentes que modifican el pH.
16. Procedimiento según las reivindicaciones 1-15, caracterizado porque la etapa (b) se lleva a cabo de modo que se forma una miniemulsión que comprende gotitas estabilizadas con un diámetro medio de 80-600 nm.
17. Procedimiento según las reivindicaciones 1-16, caracterizado porque la polimerización de la etapa (c) se efectúa en presencia de un iniciador.
PCT/ES2005/000004 2004-01-07 2005-01-05 Procedimiento para la preparación de dispersiones poliméricas acuosas reforzadas con resina WO2005066217A1 (es)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE602005022674T DE602005022674D1 (de) 2004-01-07 2005-01-05 Verfahren zur herstellung harzverstärkter wässriger polymerer dispersionen
AT05701659T ATE476452T1 (de) 2004-01-07 2005-01-05 Verfahren zur herstellung harzverstärkter wässriger polymerer dispersionen
EP05701659A EP1710258B1 (en) 2004-01-07 2005-01-05 Method for the preparation of resin-reinforced aqueous polymeric dispersions
PL05701659T PL1710258T3 (pl) 2004-01-07 2005-01-05 Sposób wytwarzania wodnych dyspersji polimerowych wzmacnianych żywicami

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200400021 2004-01-07
ES200400021A ES2237327B1 (es) 2004-01-07 2004-01-07 Procedimiento para la preparacion de dispersiones polimericas acuosas reforzadas con resina.

Publications (1)

Publication Number Publication Date
WO2005066217A1 true WO2005066217A1 (es) 2005-07-21

Family

ID=34746251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2005/000004 WO2005066217A1 (es) 2004-01-07 2005-01-05 Procedimiento para la preparación de dispersiones poliméricas acuosas reforzadas con resina

Country Status (6)

Country Link
EP (1) EP1710258B1 (es)
AT (1) ATE476452T1 (es)
DE (1) DE602005022674D1 (es)
ES (2) ES2237327B1 (es)
PL (1) PL1710258T3 (es)
WO (1) WO2005066217A1 (es)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES8501417A1 (es) * 1981-11-27 1984-12-01 Roehm Gmbh Procedimiento para la preparacion de dispersiones acuosas, altamente concentradas, bimodales, de materiales plasticos.
US5990221A (en) * 1996-07-12 1999-11-23 Basf Aktiengesellschaft Preparation of aqueous polymer dispersions with a bimodal particle-size distribution
US20020131941A1 (en) * 2000-09-21 2002-09-19 Thorsten Habeck Colorant-containing aqueous polymer dispersion

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES8501417A1 (es) * 1981-11-27 1984-12-01 Roehm Gmbh Procedimiento para la preparacion de dispersiones acuosas, altamente concentradas, bimodales, de materiales plasticos.
US5990221A (en) * 1996-07-12 1999-11-23 Basf Aktiengesellschaft Preparation of aqueous polymer dispersions with a bimodal particle-size distribution
US20020131941A1 (en) * 2000-09-21 2002-09-19 Thorsten Habeck Colorant-containing aqueous polymer dispersion

Also Published As

Publication number Publication date
ES2237327B1 (es) 2006-11-01
ATE476452T1 (de) 2010-08-15
EP1710258A1 (en) 2006-10-11
EP1710258B1 (en) 2010-08-04
DE602005022674D1 (de) 2010-09-16
PL1710258T3 (pl) 2011-04-29
ES2350444T3 (es) 2011-01-24
ES2237327A1 (es) 2005-07-16

Similar Documents

Publication Publication Date Title
JP4880853B2 (ja) 重合可能な化合物及びその用途
KR930011757B1 (ko) 용매 코어 순차적 중합체 분산을 제조하는 마이크로 서스펜션법
US4680200A (en) Method for preparing colloidal size particulate
US5081166A (en) Process for producing a stabilized latex emulsion adhesive
CN102037065B (zh) 乳液聚合中的苯乙烯酚乙氧基化物
US20100093930A1 (en) Polymer Composition and Process
CN101563369A (zh) 小泡状聚合物颗粒
US20060052529A1 (en) Aqueous polymer dispersion and process
TWI408147B (zh) 一種無乳化劑的壓克力乳液之聚合方法
BR0115384B1 (pt) processo para preparar uma dispersão de polìmero, dispersão de partìculas de polìmero em uma fase aquosa contìnua e pelìcula.
JP2508083B2 (ja) 乳化重合体の製造方法
CN108395504A (zh) 无皂乳液聚合制备双响应性聚合物Janus微球的方法
ES2350444T3 (es) Procedimiento de preparación de dispersiones poliméricas acuosas reforzadas con resina.
KR102691778B1 (ko) 에멀전의 제조방법 및 그에 따라 제조된 에멀전
CA2066596C (en) Stable emulsion polymers and methods of preparing same
JP3465826B2 (ja) 中空ポリマー微粒子の製造方法
EP3243502B1 (en) Chemically asymmetric anisotropic powder and water-in-oil (w/o) emulsification composition containing same
KR100347608B1 (ko) 유화중합방법에 의하여 내부기공을 갖는 미세입자의제조방법
JP2014162912A (ja) 水中摩擦抵抗低減用樹脂粒子
JP5873714B2 (ja) 徐放性粒子の製造方法
ES2215477B1 (es) Procedimiento para preparar dispersiones polimericas acuosas de altas prestaciones.
JP6091114B2 (ja) 合成樹脂エマルジョン組成物の製造方法、及びこの製造方法により得られた合成樹脂エマルジョン組成物を用いてなるコーティング剤の製造方法、塗膜の製造方法
CN107427442A (zh) 化学各向异性粉末和含有该粉末且具有稳定效果原材料的化妆品组合物
JPS63117021A (ja) 非造膜性重合体エマルジヨンの製造方法
JP2001098003A (ja) 水性エマルションの製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2005701659

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005701659

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0418227

Country of ref document: BR