WO2005066080A1 - Method of cleaning wastewater and cleaning method - Google Patents

Method of cleaning wastewater and cleaning method Download PDF

Info

Publication number
WO2005066080A1
WO2005066080A1 PCT/JP2004/007315 JP2004007315W WO2005066080A1 WO 2005066080 A1 WO2005066080 A1 WO 2005066080A1 JP 2004007315 W JP2004007315 W JP 2004007315W WO 2005066080 A1 WO2005066080 A1 WO 2005066080A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorine
adsorption
calcium fluoride
wastewater
hydrotalcites
Prior art date
Application number
PCT/JP2004/007315
Other languages
French (fr)
Japanese (ja)
Inventor
Hodaka Ikeda
Kenichi Ito
Naoko Akita
Koji Kanagawa
Tsutomu Sato
Original Assignee
Sophia Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sophia Co., Ltd. filed Critical Sophia Co., Ltd.
Publication of WO2005066080A1 publication Critical patent/WO2005066080A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/12Halogens or halogen-containing compounds
    • C02F2101/14Fluorine or fluorine-containing compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/08Multistage treatments, e.g. repetition of the same process step under different conditions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters

Definitions

  • the present invention relates to a wastewater purification method and a purification method for removing fluorine from fluorine-containing wastewater discharged from, for example, a semiconductor factory or a power plant.
  • a method of reacting calcium hydroxide and calcium chloride with fluorine to produce calcium fluoride and coagulating and precipitating is used. Is being done.
  • a pH adjuster is added to an acidic wastewater containing fluorine to adjust the pH, and the pH-adjusted wastewater is sent to a reaction tank, where calcium hydroxide or calcium chloride is added. To produce calcium fluoride.
  • reaction solution containing calcium fluoride is sent to a coagulation tank, a coagulant is added to coagulate calcium fluoride, and sludge containing calcium fluoride coagulated in the settling tank is settled and removed. Things.
  • Patent Document 1 is a known document relating to a technology for removing fluorine from fluorine-containing wastewater.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 7-214702 describes a treatment method for removing fluorine in wastewater using calcium chloride, and a method for adding a chloride solution to a wastewater before adding the solution to the wastewater.
  • the total or partial pH of the calcium chloride solution is adjusted to 11.5 or more in advance, and the solution is allowed to react with wastewater.This reduces the amount of calcium chloride used or uses a large amount of flocculant. that you can avoid is disclosed. Disclosure of the invention At this time, when calcium fluoride is generated by the above-mentioned reaction of calcium chloride etc.
  • the present invention has been proposed in view of the above problems, and does not require a large amount of a calcium compound such as calcium chloride or calcium hydroxide or a coagulant, and does not discharge a large amount of sludge.
  • Another object of the present invention is to provide a wastewater purification method capable of removing fluorine from a fluorine-containing wastewater to a high level, thereby obtaining treated water having a very low fluorine concentration.
  • Another object of the present invention is to provide a wastewater purification method and a purification method capable of regenerating and efficiently using hydrotalcites and performing advanced fluorine purification at a low cost.
  • the method for purifying wastewater of the present invention comprises the steps of adjusting the pH as necessary to the fluorine-containing wastewater, adding a calcium compound to generate calcium fluoride, and solidifying the reaction solution after the generation of the fluorinated water.
  • a step of liquid separation to remove calcium fluoride a step of adjusting the pH of the treated water after the removal of calcium fluoride, and a step of adding hydrotalcites to adsorb remaining fluorine on the hydrotalcites.
  • solid-liquid separation in the case of removing calcium fluoride or talcites at the mouth after adsorption of fluorine by solid-liquid separation is performed by, for example, adding a flocculant to coagulate and precipitate the solid phase. or to recover the solid phase in flotation by Bapuri ring of air, or Ri appropriately der like to recover the solid phase membrane filtration using a filter Chief, also forces Rushiumu compound Karushiumu chloride Wakashi Ku hydroxide It is suitable to the Karushiumu
  • any material capable of producing calcium fluoride by reacting with fluorine may be used.
  • calcium carbonate may be used.
  • the pH of the treated water or the like in the case where fluorine is adsorbed to the hydrotalcites is preferably pH 4 to 10 and more preferably pH 5 to 7.
  • the method for purifying waste water of the present invention includes a step of performing a fluorine desorption treatment on the removed hydrosites after the adsorption of fluorine, and a step of dehydrating the hydrotalcites after the fluorine desorption treatment with fluorine.
  • the method further comprises the step of combining the fluorine-containing water generated by the fluorine desorption treatment with the fluorine-containing wastewater before the generation of the calcium fluoride.
  • the fluorine-adsorbed hydrotalcites may be stirred in a solution having a pH of 9 and ⁇ ⁇ 11 to obtain a fluorine solution. It is characterized in that it is subjected to a desorption treatment, and preferably, the pH of the solution to be subjected to the fluorine desorption treatment is set to approximately 10.
  • the method for purifying wastewater of the present invention comprises the steps of adjusting the pH as necessary to the fluorine-containing wastewater, adding a calcium compound to generate calcium fluoride, and after the formation of the calcium fluoride, A step of adding hydrosites to the reaction solution to adsorb remaining fluorine on the hydrosites, and a step of solid-liquid separation of the adsorbed reaction solution to adsorb calcium fluoride and adsorbed fluorine. And a step of removing the hydrosites.
  • the high Dorotarusai Bok compound is characterized that it is a Hydro barrel site.
  • the fluorine or high Dorotarusai preparative acids to adsorb full Tsu containing Ion of the present invention have the general formula: [MS + i— xM 3 " 1 " x (OH) 2] [ ⁇ ⁇ - ⁇ / ⁇ ⁇ ⁇ ⁇ 20 ] (M 2 + is divalent metal, M 3 + is trivalent metal, An is n-valent It is possible to use any of the hydrotalcites represented by (anion), for example, hydrotalcite: Mg 6 A12 (OH)!
  • purification methods of the present invention in the purification method of adsorbing fluorine by adding Hyde port Tarusai preparative acids to be purified which contains fluorine, Hyde port Tarusai preparative such after fluorine adsorption of 9 rather ⁇ Eta ⁇ stirred at 1 1 in solution subjected to fluorine desorption process, characterized that you adsorbing off Tsu containing added again Hydro Tarusai preparative such after the fluorine desorption process for the purification target
  • the pH of the solution to be subjected to the fluorine desorption treatment is approximately 10. It should be noted that the object of purification containing fluorine can be soil or the like in addition to wastewater.
  • the wastewater purification method of the present invention does not use a large amount of calcium compounds such as calcium chloride or calcium hydroxide, a large amount of coagulant, does not discharge a large amount of sludge, and eliminates a fluorine-containing wastewater.
  • Very high levels of fluorine can be removed.
  • a large amount of calcium chloride or the like or a flocculant need not be used, and a large amount of sludge is not discharged, chemical and sludge treatment costs are reduced, and a high level of fluorine removal is achieved. Is possible at low cost and efficiently.
  • the wastewater purification method or purification method of the present invention desorbs fluorine from the hydrosites after the adsorption of fluorine, and causes the hydrosites after the desorption treatment to adsorb fluorine again.
  • the dehydration treatment is performed by stirring the hydrotalcites after the adsorption of fluorine in a solution having a pH of 9 and more preferably in a solution having a pH of about 10. Therefore, extremely high regeneration efficiency can be realized.
  • FIG. 1 is an explanatory diagram showing a flow of waste water purification process of the first embodiment
  • FIG. 2 is an explanatory diagram showing a flow of waste water purification process of the second embodiment shaped condition
  • Fig 3 is fluorine ions from the stirring time and the high Dorotarusai DOO Graph showing the relationship with the amount of desorption
  • Figure 4 shows pH 9
  • 10 and 11 4 is a graph showing the amount of fluorine adsorbed by re-adsorption of each hydrotalcite from which fluorine was desorbed in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • a wastewater purification treatment of the first embodiment for circulating and reusing a hydrotalcite to remove and purify fluorine from a fluorine-containing wastewater will be described.
  • wastewater containing fluorine is introduced into the primary reaction coagulation / sedimentation tank 1, and a PH adjuster is added to the primary reaction coagulation / sedimentation tank 1.
  • the fluorine-containing wastewater is adjusted to a predetermined pH, for example, a pH of about 8 to 10.
  • a pH adjusting agent to be added an appropriate one of an acid and an alkali can be used.
  • sodium hydroxide (Na) OH) is added as a pH adjuster.
  • the settled sludge is led out of the primary reaction coagulation sedimentation tank 1 to the dewatering machine 4, where the sludge is dewatered by the dewatering machine 4 and discharged as a dewatered cake.
  • the primary treated water obtained by removing the sludge in the first reaction coagulating sedimentation tank 1 is introduced into the second reaction flocculation tank 2, the secondary reaction flocculation tank 2 by the addition of p H adjusting agent , to adjust the primary treated water a predetermined PH, for example, before and after p H 6 adsorption performance of Hyde port Tarusai Bok is Mizunoto ⁇ the best to be described later.
  • the p H adjusting agent wherein the addition are possible and Mochiiruko those suitable Yichun, for example in the primary treated water, hydrochloric acid (HC 1), etc. Is added as pH adjuster.
  • secondary reaction flocculation precipitation tank 2 by adding a coagulant such as sulfuric pan de and PAC, fluorine ions Hyde port Tarusai preparative adsorbed: M g 6 A l 2 ( OH) 1 6 (F one 1 ) 2 ⁇ 4 H 2 O, and Hydro Tarusai preparative fluoride ions could not be adsorbed: M g 6 a l 2 ( OH) 1 6 C 0 3 - to 4 by agglomerating of H 2 O precipitation.
  • a coagulant such as sulfuric pan de and PAC
  • Hyde port Tarusai preparative adsorbed the fluorine ion: M g 6 A l 2 ( OH) 1 6 (F - 1) 2 • 4 H high Dorotarusai bets or the precipitate was suspended in a solution containing 2 0, was added p H adjusting agent such as hydroxide Na Application Benefits um (N a OH) to the solution, given the p H of the solution
  • p H adjusting agent such as hydroxide Na Application Benefits um (N a OH) to the solution, given the p H of the solution
  • the pH is adjusted to, for example, pH 911, preferably around 10, and carbon dioxide (co 2 ) is added to facilitate the desorption of fluorine.
  • the separated solid phase is sent from fluorine DatsuHanareso 3 is introduced into the secondary reaction flocculation tank 2, it is circulated using a new high Dorotarusai into double-order flocculation tank 2 as required : introducing M g 6 a l 2 (OH ) 1 6 C 0 3 '4 H 2 0. Moreover, the separation and the liquid phase or a solution containing fluorine ions (F-) was sends back to the primary reaction flocculation precipitation buttocks tank 1, both the process and new fluorine-containing waste water to be introduced in the first reaction coagulating sedimentation tank 1 to.
  • the primary reaction coagulation / sedimentation tank 1 and the secondary reaction coagulation / sedimentation tank 2, the fluorine desorption tank 3, and the dehydrator 4 are used to remove fluorine from the fluorine-containing wastewater. Since the hydrosite separated in the desorption tank 3 is reused, it is only necessary to add the hydrosite for the loss if necessary, and the hydrosite can be used effectively. Further, it is possible to reduce the consumption of the hydro-site and reduce the cost. Furthermore, by adsorbing the fluoride ions remaining after the formation of calcium fluoride on the hydrotalcite, it is possible to efficiently treat the treated water with a very low fluorine concentration and to use calcium chloride or the like. The need to use a large amount of coagulant is eliminated. Furthermore, it is possible to circulate the fluorine and finally recover the fluorine adsorbed on the hydrosite as calcium fluoride.
  • pH adjustment treatment, fluorine ion adsorption treatment using a hydrotalcite, coagulation treatment, and precipitation treatment are performed.
  • the configuration is, for example, a pH adjustment tank, a reaction tank that performs fluorine ion adsorption treatment, a condensing tank, a sedimentation tank, or a combination of these appropriate treatments in the same tank. it is possible to.
  • Wastewater purification process of the second embodiment Remind as in FIG. 2, the wastewater containing fluorine is introduced into the reaction flocculation tank 5, addition of P H modifiers alkaline or acid to the reaction flocculation tank 5 Then, the fluorine-containing wastewater is adjusted to a predetermined pH, for example, about pH 6.
  • the hydrotalcite Mg 6 Al 2 (OH)! It was added 6 C 0 3 '4 H 2 0, is adsorbed fluorine ions (F-) remaining in the waste water after the formation of calcium fluoride (C a F 2) to Hyde port Tarusai bets.
  • the added high Dorotarusai Bok Most of M g 6 A 1 2 (OH ) i 6 CO 3 ⁇ 4 H 2 O is adsorbed crowded Captures the fluorine ion (F-) between the eyebrows, a fluorine ion adsorbed Hyde port Tarusai DOO: M g 6 A l 2 ( OH) 1 6 (F - 1) 2 ⁇ 4 ⁇ 2 0 is generated.
  • reaction flocculation tank 5 by adding a coagulant such as sulfuric pan de and PAC, full Tsu of calcium (C a F 2), and fluorine adsorbed high Dorotarusai DOO: M g 6 A 1 2 ( OH ) 1 6 (F - 1) 2 ⁇ 4 ⁇ 2 0, and Hyde port Tarusai preparative fluorine could not be adsorbed: M g 6 a l 2 ( OH) 1 6 (F - 1) 2 ⁇ 4 ⁇ 2 0 Coagulate and sediment sludge containing these.
  • a coagulant such as sulfuric pan de and PAC
  • the precipitated sludge is derived in the dehydrator 6 from the reaction coagulating sedimentation tank 5, and dehydrated sludge dehydrator 6, together with discharged as a dehydrated cake, the treated water obtained by removing the sludge is discharged out of the system that.
  • the wastewater purification treatment of the second embodiment is performed by one reaction coagulation sedimentation tank 5 and one A fluorine-containing waste water carafe Tsu iodine was removed by machine 6, with a small capital-investment Ri by the low-cost, fluorine can and child removal and space-saving. Further, Ri by the and this to adsorb fluorine ion-remaining after generation of fluoride Karushiu beam at Hydro Tarusai Bok, with efficient fluorine concentration can very low treated water and child, calcium chloride It is not necessary to use a large amount of a coagulant or the like.
  • a pH adjustment treatment a treatment for generating calcium fluoride by reaction with calcium chloride, and a fluoride ion treatment using hydrotalcite It is configured to perform the adsorption treatment, the aggregation treatment, and the sedimentation treatment, but it is possible to use a modification example of the first embodiment and the like in the second embodiment as appropriate.
  • a reaction tank that performs fluorine ion adsorption treatment, a coagulation tank, a precipitation tank, or a combination of these appropriate treatments in the same tank, or calcium fluoride It is possible to add a tank for performing coagulation or sedimentation after the production process of water.
  • FIG. 3 is a graph showing the relationship between the amount of desorbed fluorine and the stirring time obtained by measuring the fluorine content of the filtrate R2 by the filtration.
  • the graph in Fig. 3 shows that the higher the pH and the longer the stirring time, the greater the desorption amount of fluorine for each of the beakers of pH 9, 10 and 11
  • pH II stirred for 60 minutes
  • solid phase K lg Fluorine: 1 3 2.
  • O mg was desorbed.
  • the F desorption amounts at 60,000 minutes of stirring at pH 9, 10, and 11 are shown in Tables 2 and 2 below, and after desorption at 60 minutes of stirring time. This solid phase is referred to as solid phase K 2.
  • FIG. 1 shows that the fluorine content per 1 L of about 0.1 mo1 / L of the calcium fluoride solution before adding the solid phase K 2: , 10 and 11, the fluorine content of filtrate R 3 after re-adsorption of fluorine by solid phase K 2 (filtrate: F), the amount of fluorine absorbed by solid phase K 3 (solid phase: F), and solid phase K 3 shows the amount of fluorine adsorbed per lg, and FIG.
  • Solid K 3 is Hyde port Tarusai bets with adsorbed fluorine: M g 6 A l 2 ( OH) i 6 (F - 1) 2 - 4 H 2 0, or fluorine adsorbed high
  • Dorotarusai DOO M g 6 Al 2 (OH) 16 (F- 1 ) 2 ⁇ 4 ⁇ 20 and normal high ⁇ ⁇
  • Dotal site Mg 6 Al 2 (OH)! Consisting of 6 CO a ⁇ 4 H 2 0 .
  • Table 2 shows the amount of fluorine adsorbed after the re-adsorption of fluorine at pH 9, 10 and 11 based on the above-mentioned simulation tests of adsorption, desorption and re-adsorption of fluorine.
  • the amount of fluorine adsorbed after resorption in Table 2 is the value obtained by subtracting the amount of fluorine desorption from the fluorine desorption test in (2) from the amount of fluorine adsorption in the adsorption test (2) and adding the amount of fluorine adsorption from the resorption test in (3). is there.
  • the amount of fluorine adsorbed at the time of re-adsorption is lower than that at the time of desorption, while at pH 9 and 10, the amount of adsorption at the time of fluorine re-adsorption is lower.
  • the amount was larger than the amount desorbed at the time of desorption. This is probably because there was room for fluorine adsorption between the layers of the hydro- talcite after the adsorption test (1).
  • Table 3 shows the amount of fluorine desorbed when the desorption rate after desorption is assumed to be the same as the desorption rate in the desorption test in Table 2 and (2).
  • the amount of fluorine adsorbed and the amount of desorbed fluorine show that in the case of pH 9, the amount of adsorption during re-adsorption is large, but the amount of desorption is small, so Regeneration efficiency decreases when hydrotalcite is repeatedly used to remove fluorine by adsorption.
  • the amount of desorption is large, but the amount of adsorption when re-adsorbing is small.
  • the regeneration efficiency of the hydro-site is reduced.
  • fluorine is removed from, for example, fluorine-containing wastewater discharged from a semiconductor plant, a power plant, or the like, and the fluorine-containing wastewater is efficiently reduced to a low fluorine concentration.
  • Effluent for example, effluent below the emission standard determined in view of environmental protection.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

A method of wastewater cleaning which comprises: a step in which a calcium compound is added to a fluorine-containing wastewater to generate calcium fluoride; a step in which the liquid resulting from the reaction for generating calcium fluoride is subjected to solid-liquid separation through, e.g., flocculation, to remove the calcium fluoride; a step in which the pH of the treated water after the calcium fluoride removal is regulated and a hydrotalcite is added thereto to adsorb the residual fluorine onto the hydrotalcite; a step in which the treated water after the adsorption is subjected to solid-liquid separation through, e.g., flocculation, to remove the hydrotalcite on which fluorine has been adsorbed; a step in which the hydrotalcite having fluorine adsorbed thereon is subjected to a fluorine desorption treatment; a step in which the hydrotalcite which has undergone the fluorine desorption treatment is added again in the fluorine adsorption step; and a step in which the fluorine-containing water yielded in the fluorine desorption treatment is added to a fluorine-containing wastewater to be subjected to calcium fluoride generation. The method enables the fluorine contained in a fluorine-containing wastewater to be efficiently removed. Thus, treated water having an exceedingly low fluorine concentration is obtained.

Description

明 細 書 排水浄化方法及び浄化方法 技術分野  Description Wastewater purification method and purification method
本発明は、 例えば半導体工場や発電所等から排水されるフッ素含有排水から フッ素を除去する排水浄化方法及び浄化方法に関する。 背景技術  The present invention relates to a wastewater purification method and a purification method for removing fluorine from fluorine-containing wastewater discharged from, for example, a semiconductor factory or a power plant. Background art
例えば半導体工場や発電所等から排水されるフッ素含有排水からフッ素を除 去する技術と して、水酸化カルシウムや塩化カルシウムとフッ素を反応させて フッ化カルシウムを生成し、 凝集 ' 沈殿する方式が行われている。 その除去ェ 程は、 例えばフッ素を含有する酸性排水に p H調整剤を添加して p H調整し、 p H調整した排水を反応槽に送出し、反応槽で水酸化カルシウムや塩化カルシ ゥムを添加してフッ化カルシウムを生成する。 その後、 フッ化カルシウムを有 する反応液を凝集槽に送出し、 凝集剤を添加してフッ化カルシウムを凝集し、 更に、沈殿槽で凝集したフッ化カルシゥムを含有する汚泥を沈殿して除去する ものである。  For example, as a technology for removing fluorine from fluorine-containing wastewater discharged from semiconductor factories and power plants, a method of reacting calcium hydroxide and calcium chloride with fluorine to produce calcium fluoride and coagulating and precipitating is used. Is being done. In the removal process, for example, a pH adjuster is added to an acidic wastewater containing fluorine to adjust the pH, and the pH-adjusted wastewater is sent to a reaction tank, where calcium hydroxide or calcium chloride is added. To produce calcium fluoride. Thereafter, the reaction solution containing calcium fluoride is sent to a coagulation tank, a coagulant is added to coagulate calcium fluoride, and sludge containing calcium fluoride coagulated in the settling tank is settled and removed. Things.
また、 フッ素含有排水からフッ素を除去する技術に関連する公知文献と して は特許文献 1 がある。 特許文献 1 (特開平 7— 2 1 4 0 7 2号公報) には、 塩 化カルシウムを用いて排水中のフッ素を除去する処理方法が記載され、塩化力 ルシゥムの溶液を排水に添加する前に、塩化カルシウムの溶液の全量或いは一 部の p Hを予め 1 1 . 5以上に調整し、 その溶液を排水と反応させるもので、 塩化カルシウムの使用量を低減し、或いは凝集剤の多量使用を回避できるこ と が開示されている。 発明の開示 と ころで、 上記塩化カルシウム等と フッ素の反応でフッ化カルシウムを生成 し、 フッ化カルシウムを含有する汚泥を除去する場合、 高いレベルの基準値以 下の処理水とするよ う にフッ素を除去するには、多量に塩化カルシウムや水酸 化カルシウム等のカルシウム化合物を必要と し、 加えて、 凝集沈殿で回収する 場合には多量な凝集剤等を必要と し、 又、 排出される汚泥量が極めて多量にな るため、 フッ素が高レベルの基準値以下の処理水となるよ う にフッ素を除去す るこ とは現実的に困難である。 そのため、 かよ う な問題点を有せず、 排水から フッ素を高レベルに除去するこ とができる技術が切望されていた。 Patent Document 1 is a known document relating to a technology for removing fluorine from fluorine-containing wastewater. Patent Document 1 (Japanese Patent Application Laid-Open No. 7-214702) describes a treatment method for removing fluorine in wastewater using calcium chloride, and a method for adding a chloride solution to a wastewater before adding the solution to the wastewater. In addition, the total or partial pH of the calcium chloride solution is adjusted to 11.5 or more in advance, and the solution is allowed to react with wastewater.This reduces the amount of calcium chloride used or uses a large amount of flocculant. that you can avoid is disclosed. Disclosure of the invention At this time, when calcium fluoride is generated by the above-mentioned reaction of calcium chloride etc. with fluorine, and sludge containing calcium fluoride is removed, the fluorine is removed so that the treated water has a high level or lower than the standard value. to require large amounts of calcium such as calcium and hydroxide of calcium chloride compound, in addition, in the case of recovery by coagulation sedimentation requires large amount of aggregating agent, also the amount of sludge to be discharged There is practically difficult and very large amount of such order, Turkey to fluorine remove fluorine cormorants by a reference value or less of the treated water of high level. For this reason, we do not have a cormorant problem either, technology that fluorine can be that you remove the high level has been desired from the waste water.
本発明は上記課題に鑑み提案するものであって、 多量の塩化カルシウム若し く は水酸化カルシウム等のカルシウム化合物や、 凝集剤を必要とせず、 且つ多 量な汚泥量を排出することが無く 、 フッ素含有排水のフッ素を高レベルに除去 し、非常に低フッ素濃度の処理水とする こ とができる排水浄化方法を提供する こ とを目的とする。 また、 他の目的は、 ハイ ドロタルサイ ト類を再生して効率 的に利用し、低コス 卜で高度なフッ素の浄化を行う こ とができる排水浄化方法 及び浄化方法を提供するこ とにある。  The present invention has been proposed in view of the above problems, and does not require a large amount of a calcium compound such as calcium chloride or calcium hydroxide or a coagulant, and does not discharge a large amount of sludge. Another object of the present invention is to provide a wastewater purification method capable of removing fluorine from a fluorine-containing wastewater to a high level, thereby obtaining treated water having a very low fluorine concentration. Another object of the present invention is to provide a wastewater purification method and a purification method capable of regenerating and efficiently using hydrotalcites and performing advanced fluorine purification at a low cost.
本発明の排水浄化方法は、 フッ素含有排水に、 必要に応じて p Hを調整し、 カルシウム化合物を添加してフッ化カルシウムを生成する工程と、該フッ化力 ルシゥム生成後の反応液を固液分離してフッ化カルシウムを除去する工程と、 該フッ化カルシウム除去後の処理水の p Hを調整し、ハイ ドロタルサイ ト類を 添加してハイ ドロタルサイ ト類に残留するフッ素を吸着させる工程と、該吸着 後の処理水を固液分離してフ ッ素吸着後のハイ ドロ タルサイ ト類を除去する 工程とを、 少なく と も有するこ とを特徴とする。  The method for purifying wastewater of the present invention comprises the steps of adjusting the pH as necessary to the fluorine-containing wastewater, adding a calcium compound to generate calcium fluoride, and solidifying the reaction solution after the generation of the fluorinated water. A step of liquid separation to remove calcium fluoride, a step of adjusting the pH of the treated water after the removal of calcium fluoride, and a step of adding hydrotalcites to adsorb remaining fluorine on the hydrotalcites. And a step of solid-liquid separation of the treated water after the adsorption to remove hydrosites after the fluorine adsorption.
尚、 本発明に於ける、 フッ化カルシウムやフッ素吸着後のハイ ド口 タルサイ ト類を固液分離して除去する場合の固液分離は、例えば凝集剤を添加して固相 を凝集沈殿する、 或いは空気のバプリ ングによる浮上分離で固相を回収する、 或いはフィルタ一等を用いる膜濾過で固相を回収するなど適宜であ り 、 又、 力 ルシゥム化合物は、塩化カルシゥム若しく は水酸化カルシゥムとする と好適で あるが、 フッ素と反応してフッ化カルシウムを生成できるものであれば適宜で あり 、 例えば炭酸カルシウム等と してもよい。 また、 ハイ ドロタルサイ ト類に フッ素を吸着させる場合の処理水等の p Hは、 p H 4〜 1 0 と し、 よ り好適に は p H 5〜 7 とする と よい。 In the present invention, solid-liquid separation in the case of removing calcium fluoride or talcites at the mouth after adsorption of fluorine by solid-liquid separation is performed by, for example, adding a flocculant to coagulate and precipitate the solid phase. or to recover the solid phase in flotation by Bapuri ring of air, or Ri appropriately der like to recover the solid phase membrane filtration using a filter Chief, also forces Rushiumu compound Karushiumu chloride Wakashi Ku hydroxide It is suitable to the Karushiumu However, any material capable of producing calcium fluoride by reacting with fluorine may be used. For example, calcium carbonate may be used. Further, the pH of the treated water or the like in the case where fluorine is adsorbed to the hydrotalcites is preferably pH 4 to 10 and more preferably pH 5 to 7.
更に、 本発明の排水浄化方法は、 前記除去したフッ素吸着後のハイ ドロ タル サイ ト類に対してフッ素脱離処理を施す工程と、該フッ素脱離処理後のハイ ド 口 タルサイ 卜類をフッ素吸着工程で再度添加する工程を有する と共に、該フッ 化カルシウム生成前のフッ素含有排水に該フッ素脱離処理で生成されるフ ッ 素含有水を合わせる工程を有するこ とを特徴とする。  Further, the method for purifying waste water of the present invention includes a step of performing a fluorine desorption treatment on the removed hydrosites after the adsorption of fluorine, and a step of dehydrating the hydrotalcites after the fluorine desorption treatment with fluorine. In addition to the step of adding again in the adsorption step, the method further comprises the step of combining the fluorine-containing water generated by the fluorine desorption treatment with the fluorine-containing wastewater before the generation of the calcium fluoride.
更に、 本発明の排水浄化方法は、 前記フッ素脱離処理工程が、 前記フッ素吸 着後のハイ ドロ タルサイ ト類を p Hが 9 く ρ Η < 1 1 の溶液中で攪拌してフ ッ素脱離処理を施すものであるこ とを特徴と し、好適には前記フッ素脱離処理 を施す溶液の p Hは略 1 0 とする と よい。  Furthermore, in the wastewater purification method of the present invention, in the fluorine desorption treatment step, the fluorine-adsorbed hydrotalcites may be stirred in a solution having a pH of 9 and ρΗ <11 to obtain a fluorine solution. It is characterized in that it is subjected to a desorption treatment, and preferably, the pH of the solution to be subjected to the fluorine desorption treatment is set to approximately 10.
また、 本発明の排水浄化方法は、 フ ッ素含有排水に、 必要に応じて p Hを調 整し、 カルシウム化合物を添加してフッ化カルシウムを生成する工程と、 該フ ッ化カルシウム生成後の反応液にハイ ドロ タルサイ 卜類を添加してハイ ドロ タルサイ ト類に残留するフッ素を吸着させる工程と、該吸着後の反応液を固液 分離してフ ッ化カルシウム及ぴフッ素吸着後のハイ ドロ タルサイ ト類を除去 する工程とを、 少なく と も有するこ とを特徴とする。  Further, the method for purifying wastewater of the present invention comprises the steps of adjusting the pH as necessary to the fluorine-containing wastewater, adding a calcium compound to generate calcium fluoride, and after the formation of the calcium fluoride, A step of adding hydrosites to the reaction solution to adsorb remaining fluorine on the hydrosites, and a step of solid-liquid separation of the adsorbed reaction solution to adsorb calcium fluoride and adsorbed fluorine. And a step of removing the hydrosites.
更に、 本発明の排水浄化方法は、 前記ハイ ドロタルサイ 卜類がハイ ドロ タル サイ トであるこ とを特徴とする。 ハイ ドロタルサイ ト類 (層状複水酸化鉱物、 L D H) は良好な陰イオン吸着特性を示すこ とから、 本発明のフッ素或いはフ ッ素ィオンを吸着するハイ ドロタルサイ ト類には、 一般式 : [M S + i— xM 3 "1" x (O H) 2 ] [Α η- χ / η · ζ Η 20] (M2 +は 2価金属、 M3 +は 3価金属、 An は n価の陰イオン) で表されるハイ ドロ タルサイ ト類の適宜のものを用 いるこ とが可能であるが、 例えばハイ ドロ タルサイ ト : M g 6 A 1 2 (O H) ! 6 C O 3 · 4 H 20とする と好適である。 また、 本発明の浄化方法は、 フッ素を含有する浄化対象にハイ ド口 タルサイ ト類を添加してフッ素を吸着させる浄化方法に於いて、 フッ素吸着後のハイ ド 口タルサイ ト類を 9 く ρ Η < 1 1 の溶液中で攪拌してフッ素脱離処理を施し、 該フッ素脱離処理後のハイ ドロ タルサイ ト類を浄化対象に再度添加してフ ッ 素を吸着させるこ とを特徴と し、好適には前記フッ素脱離処理を施す溶液の p Hは略 1 0 とする と よい。 尚、 フッ素を含有する浄化対象は、 排水以外に土壌 等とするこ と も可能である。 Furthermore, waste water purification process of the present invention, the high Dorotarusai Bok compound is characterized that it is a Hydro barrel site. From high Dorotarusai preparative acids (layered double hydroxide minerals, LDH) and this exhibits good anion adsorption characteristics, the fluorine or high Dorotarusai preparative acids to adsorb full Tsu containing Ion of the present invention have the general formula: [MS + i— xM 3 " 1 " x (OH) 2] [Α η - χ / η · ζ Η 20 ] (M 2 + is divalent metal, M 3 + is trivalent metal, An is n-valent It is possible to use any of the hydrotalcites represented by (anion), for example, hydrotalcite: Mg 6 A12 (OH)! 6 CO 3 · 4H 20 is preferable. Furthermore, purification methods of the present invention, in the purification method of adsorbing fluorine by adding Hyde port Tarusai preparative acids to be purified which contains fluorine, Hyde port Tarusai preparative such after fluorine adsorption of 9 rather ρ Eta <stirred at 1 1 in solution subjected to fluorine desorption process, characterized that you adsorbing off Tsu containing added again Hydro Tarusai preparative such after the fluorine desorption process for the purification target Preferably, the pH of the solution to be subjected to the fluorine desorption treatment is approximately 10. It should be noted that the object of purification containing fluorine can be soil or the like in addition to wastewater.
本発明の排水浄化方法は、 多量の塩化カルシゥム若しく は水酸化カルシゥム 等のカルシウム化合物や、 多量の凝集剤を用いるこ と無く 、 且つ多量な汚泥を 排出するこ とが無く 、 フッ素含有排水のフ ッ素を非常に高レベルに除去する こ とができる。例えばフッ素含有排水を公共用水域排出基準であ り 8 p p m以下 にする等、 フッ素含有排水を非常に低フッ素濃度の処理水にするこ とが可能で ある。 更に、 多量の塩化カルシウム等や凝集剤を用い無く ても良く 、 又、 多量 の汚泥を排出するこ と も無いこ とから、 薬剤費や汚泥処理費等を削減し、 高レ ベルのフッ素除去が低コス トで効率的に可能である。  The wastewater purification method of the present invention does not use a large amount of calcium compounds such as calcium chloride or calcium hydroxide, a large amount of coagulant, does not discharge a large amount of sludge, and eliminates a fluorine-containing wastewater. Very high levels of fluorine can be removed. For example, it is possible to convert fluorine-containing wastewater to treated water with a very low fluorine concentration, for example, by setting the emission standard for public water bodies to 8 ppm or less. Furthermore, since a large amount of calcium chloride or the like or a flocculant need not be used, and a large amount of sludge is not discharged, chemical and sludge treatment costs are reduced, and a high level of fluorine removal is achieved. Is possible at low cost and efficiently.
また、 本発明の排水浄化方法或いは浄化方法は、 フッ素吸着後のハイ ドロタ ルサイ ト類からフッ素を脱離し、脱離処理後のハイ ドロタルサイ ト類で再度フ ッ素を吸着させるこ とによ り 、ハイ ドロタルサイ ト類を再生して有効利用する こ とが可能であ り 、 非常に低コス トで高度なフッ素の浄化を行う こ とができ る。 特に、 フッ素吸着後のハイ ドロ タルサイ 卜類を 9 く溶液 p Hく 1 1 の溶液 中、 よ り好適には p Hが略 1 0 の溶液中で攪拌して脱離処理を行う こ と によ り、 非常に高い再生効率を実現することができる。 図面の簡単な説明  Further, the wastewater purification method or purification method of the present invention desorbs fluorine from the hydrosites after the adsorption of fluorine, and causes the hydrosites after the desorption treatment to adsorb fluorine again. In addition, it is possible to regenerate and effectively use the hydrotalcites, and it is possible to perform advanced fluorine purification at a very low cost. In particular, the dehydration treatment is performed by stirring the hydrotalcites after the adsorption of fluorine in a solution having a pH of 9 and more preferably in a solution having a pH of about 10. Therefore, extremely high regeneration efficiency can be realized. Brief Description of Drawings
図 1 は第 1実施形態の排水浄化処理の流れを示す説明図、 図 2は第 2実施形 態の排水浄化処理の流れを示す説明図、 図 3は攪拌時間とハイ ドロタルサイ ト からのフッ素イオン脱離量との関係を示すグラフ、 図 4は p H 9、 1 0、 1 1 でフッ素を脱離した各ハイ ドロタルサイ トの再吸着でのフッ素吸着量を示す グラフである。 発明を実施するための最良の形態 1 is an explanatory diagram showing a flow of waste water purification process of the first embodiment, FIG. 2 is an explanatory diagram showing a flow of waste water purification process of the second embodiment shaped condition, Fig 3 is fluorine ions from the stirring time and the high Dorotarusai DOO Graph showing the relationship with the amount of desorption, Figure 4 shows pH 9, 10 and 11 4 is a graph showing the amount of fluorine adsorbed by re-adsorption of each hydrotalcite from which fluorine was desorbed in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
以下では、 本発明について、 第 1 、 第 2実施形態の排水浄化処理及ぴ実施例 に基づき具体的に説明するが、本発明は係る実施形態や実施例に限定されるも のではない。  Hereinafter, the present invention will be specifically described based on wastewater purification treatments and examples of the first and second embodiments, but the present invention is not limited to such embodiments and examples.
先ず、 ハイ ドロタルサイ トを循環して再利用し、 フッ素含有排水からフッ素 を除去して浄化する第 1 実施形態の排水浄化処理について説明する。第 1実施 形態の排水浄化処理は、 図 1 に示すよ う に、 フッ素を含有する排水を 1 次反応 凝集沈殿槽 1 に導入し、 1 次反応凝集沈殿槽 1 に P H調整剤を添加して、 フッ 素含有排水を所定の P H、 例えば p H 8〜 1 0程度に調整する。 前記添加する p H調整剤には酸やアル力 リ の適宜のものを用いるこ とが可能であ り 、例えば フッ素含有排水が酸性排水である場合には、 水酸化ナ ト リ ウム (N a O H) 等 のアル力 リ を p H調整剤と して添加する。  First, a wastewater purification treatment of the first embodiment for circulating and reusing a hydrotalcite to remove and purify fluorine from a fluorine-containing wastewater will be described. In the wastewater purification treatment of the first embodiment, as shown in Fig. 1, wastewater containing fluorine is introduced into the primary reaction coagulation / sedimentation tank 1, and a PH adjuster is added to the primary reaction coagulation / sedimentation tank 1. Then, the fluorine-containing wastewater is adjusted to a predetermined pH, for example, a pH of about 8 to 10. As the pH adjusting agent to be added, an appropriate one of an acid and an alkali can be used. For example, when the fluorine-containing wastewater is an acidic wastewater, sodium hydroxide (Na) OH) is added as a pH adjuster.
そして、 1次反応凝集沈殿槽 1 内の p Hを調整したフッ素含有排水に塩化力 ルシゥム (C a C l 2) を添加して、 フッ素含有排水中のフッ素イオン ( F—) と塩化カルシウムを反応させ、 C a 2 + + 2 F—→ C a F 2 の反応によってフ ッ化カルシウム ( C a F 2) を生成する。 更に、 1 次反応凝集沈殿槽 1 に硫酸 バン ドや P A C等の凝集剤を添加してフッ化カルシウムを凝集し、 フッ化カル シゥムを含む汚泥を沈殿させる。沈殿した汚泥は 1 次反応凝集沈殿槽 1 から脱 水機 4に導出され、 脱水機 4で汚泥を脱水し、 脱水ケーキと して排出する。 また、 1次反応凝集沈殿槽 1 で汚泥を除去して得られる 1次処理水は、 2次 反応凝集沈殿槽 2 に導入され、 2次反応凝集沈殿槽 2 に p H調整剤を添加し て、 1次処理水を所定の P H、 例えば後述するハイ ド口 タルサイ 卜の吸着性能 が最も効果を癸揮する p H 6前後に調整する。前記添加する p H調整剤には適 宜のものを用いるこ とが可能であり、 例えば 1 次処理水に、 塩酸 (H C 1 ) 等 の酸を p H調整剤と して添加する。 Then, by adding chloride force Rushiumu (C a C l 2) in the fluorine-containing waste water was adjusted to p H of the primary reaction coagulating sedimentation tank 1, the fluorine ions (F-) and calcium chloride in the fluorine-containing waste water It reacted to generate the full Tsu of calcium (C a F 2) by the reaction of C a 2 + + 2 F- → C a F 2. Furthermore, a flocculant such as a band of sulfuric acid or PAC is added to the primary reaction flocculation and sedimentation tank 1 to flocculate calcium fluoride and precipitate sludge containing calcium fluoride. The settled sludge is led out of the primary reaction coagulation sedimentation tank 1 to the dewatering machine 4, where the sludge is dewatered by the dewatering machine 4 and discharged as a dewatered cake. Further, the primary treated water obtained by removing the sludge in the first reaction coagulating sedimentation tank 1 is introduced into the second reaction flocculation tank 2, the secondary reaction flocculation tank 2 by the addition of p H adjusting agent , to adjust the primary treated water a predetermined PH, for example, before and after p H 6 adsorption performance of Hyde port Tarusai Bok is Mizunoto揮 the best to be described later. The p H adjusting agent, wherein the addition are possible and Mochiiruko those suitable Yichun, for example in the primary treated water, hydrochloric acid (HC 1), etc. Is added as pH adjuster.
そして、 2次反応凝集沈殿槽 2 内の p Hを調整した 1 次処理水に、 ハイ ドロ タルサイ トを添加し、 1 次処理水中に残留するフッ素イオン ( F— ) をハイ ド 口 タルサイ トに吸着させる。 前記添加するハイ ドロタルサイ 卜は組成式 : M g 6 A 1 a (O H) 1 6 C 03 ' 4 H 20の層状複水酸化鉱物であ り、 ァニオン交換 性を有し、 様々なァニオンを層間に挿入することが可能である。 ハイ ドロ タル サイ ト : M g 6 A l 2 (O H) ! 6 C O 3 - 4 H 20の大部分は、 前記フッ素ィォ ン ( F— ) を層間に取り込こんで吸着し、 フッ素イオンを吸着したハイ ドロタ ルサイ ト : M g 6 A l 2 (OH) 1 6 ( F - 1 ) 2 · 4 Η 20が生成される。 Then, the primary treated water was adjusted p H of the secondary reaction flocculation tank 2, was added Hydro Tarusai DOO, fluorine ions (F-) remaining in the primary treated water in Hyde port Tarusai DOO It is adsorbed. High Dorotarusai I composition formula the additive: the layered double hydroxide mineral der of M g 6 A 1 a (OH ) 1 6 C 0 3 '4 H 2 0 is, have Anion exchange, various Anion It can be inserted between the layers. Hydrotal site: Mg 6 Al 2 (OH)! 6 CO 3 - 4 most of the H 2 0, the fluorine-I O emissions (F-) adsorbed crowded Captures the layers and high Dorota Rusai preparative adsorbed fluorine ions: M g 6 A l 2 ( OH ) 1 6 (F- 1 ) 2 · 4 Η 20 is generated.
更に、 2次反応凝集沈殿槽 2 に硫酸パン ドや P A C等の凝集剤を添加して、 フッ素イオンを吸着したハイ ド口タルサイ ト : M g 6 A l 2 (O H) 1 6 ( F一 1 ) 2 · 4 H 2 O、 及びフッ素イオンを吸着できなかったハイ ドロ タルサイ ト : M g 6 A l 2 (O H) 1 6 C 03 - 4 H 2 Oを凝集して沈殿させる。 前記凝集沈殿 によ り、ハイ ドロタルサイ トによるフッ素イオン吸着で一層フッ素濃度が低下 した処理水が得られ、 前記処理水は系外に排出され、 又、 フッ素を吸着したハ ィ ドロ タルサイ トを含むハイ ドロタルサイ ト或いは沈殿物はフッ素脱離槽 3 に送出される。 Furthermore, secondary reaction flocculation precipitation tank 2 by adding a coagulant such as sulfuric pan de and PAC, fluorine ions Hyde port Tarusai preparative adsorbed: M g 6 A l 2 ( OH) 1 6 (F one 1 ) 2 · 4 H 2 O, and Hydro Tarusai preparative fluoride ions could not be adsorbed: M g 6 a l 2 ( OH) 1 6 C 0 3 - to 4 by agglomerating of H 2 O precipitation. Ri by the flocculation, high Dorotarusai preparative process water is more fluorine concentration in the fluorine ion adsorption was reduced is obtained by, the treated water is discharged outside the system also includes a hard I mud Tarusai bets with adsorbed fluorine The hydrotalcite or sediment is sent to the fluorine desorption tank 3.
フッ素脱離槽 3或いはフッ素脱離槽 3 至る送出経路に於いては、 前記フッ 素イオンを吸着したハイ ド口タルサイ ト : M g 6 A l 2 (O H) 1 6 ( F - 1 ) 2 • 4 H 20を含むハイ ドロタルサイ ト或いは前記沈殿物を溶液に懸濁し、 その 溶液に水酸化ナ ト リ ウム (N a OH) 等の p H調整剤を添加して、 溶液の p H を所定の P H、 例えば p H 9 1 1 、 好適には 1 0前後に調整する と共に、 フ ッ素を脱離しやすくするために二酸化炭素 (c o 2) を添加する。 Is In the fluorine DatsuHanareso 3 or fluorine DatsuHanareso 3 reaches the delivery channels, Hyde port Tarusai preparative adsorbed the fluorine ion: M g 6 A l 2 ( OH) 1 6 (F - 1) 2 • 4 H high Dorotarusai bets or the precipitate was suspended in a solution containing 2 0, was added p H adjusting agent such as hydroxide Na Application Benefits um (N a OH) to the solution, given the p H of the solution The pH is adjusted to, for example, pH 911, preferably around 10, and carbon dioxide (co 2 ) is added to facilitate the desorption of fluorine.
そして、 フッ素脱離槽 3では、 前記溶液を攪拌して、 フッ素イオンを吸着し たハイ ド口タルサイ ト : M g 6 A l 2 (O H) 1 6 ( F - 1 ) 2 · 4 Η 20からフ ッ素イオン (F—) を脱離してハイ ド口タルサイ ト : M g 6 A l 2 (O H) 1 6 C O a · 4 H 20と し、 フッ素を脱離した大部分のハイ ドロタルサイ ト : M g 6 A 1 2 (O H) i 6 C O 3 · 4 H 2 O、 及ぴフッ素を脱離しきれなかったハイ ド 口 タルサイ ト : M g 6 A l 2 (O H) 1 6 ( F - 1 ) 2 · 4 Η 20で構成される固 相と、 フッ素イオン ( F を含む液相を固液分離する。 Then, in the fluorine desorption tank 3, the solution was stirred, and a fluoride-adsorbed hydrated talcite: Mg 6 Al 2 (OH) 16 (F- 1 ) 2 · 4 Η 20 carafe Tsu-containing ion (F-) the desorbed Hyde port Tarusai Application: a M g 6 a l 2 (OH ) 1 6 CO a · 4 H 2 0, most of the high Dorotarusai with fluorine desorbed Doo: M g 6 A 1 2 (OH) i 6 CO 3 · 4 H 2 O, and the fluoride-free talcite that could not completely desorb fluorine: Mg 6 Al 2 (OH) 16 (F- 1 ) 2 · 4固 Solid-liquid separation of the solid phase composed of 20 and the liquid phase containing fluorine ions (F).
前記分離した固相は、 フッ素脱離槽 3から送出して 2次反応凝集沈殿槽 2 に 導入し、 循環させて使用し、 必要に応じて 2次反応凝集沈殿槽 2に新たなハイ ドロタルサイ ト : M g 6 A l 2 (OH) 1 6 C 03 ' 4 H 20を導入する。 また、 前記分離したフッ素イオン ( F— ) を含む液相或いは溶液は、 1 次反応凝集沈 殿槽 1 に返送し、 1 次反応凝集沈殿槽 1 で新たに導入されるフッ素含有排水と 共に処理する。 The separated solid phase is sent from fluorine DatsuHanareso 3 is introduced into the secondary reaction flocculation tank 2, it is circulated using a new high Dorotarusai into double-order flocculation tank 2 as required : introducing M g 6 a l 2 (OH ) 1 6 C 0 3 '4 H 2 0. Moreover, the separation and the liquid phase or a solution containing fluorine ions (F-) was sends back to the primary reaction flocculation precipitation buttocks tank 1, both the process and new fluorine-containing waste water to be introduced in the first reaction coagulating sedimentation tank 1 to.
上記第 1 実施形態の排水浄化処理は、 1 次反応凝集沈殿槽 1及び 2次反応凝 集沈殿槽 2 と フッ素脱離槽 3 、 脱水機 4 でフッ素含有排水からフ ッ素を除去 し、 フッ素脱離槽 3で分離するハイ ドロ タルサイ トを再度利用するので、 必要 に応じてロス分のハイ ドロ タルサイ トを追加投入するのみで済み、ハイ ドロタ ルサイ 卜の有効利用が可能である。 更に、 ハイ ドロタルサイ 卜の消費量を低減 し、 低コス ト化を図ることができる。 更に、 フッ化カルシウムの生成後に残留 するフッ素イオンをハイ ドロタルサイ 卜で吸着するこ とによ り 、効率的にフ ッ 素濃度が非常に低い処理水とする こ とができる と共に、塩化カルシウム等や凝 集剤を多量に用いる必要が無く なる。 更に、 フッ素を循環処理し、 ハイ ドロタ ルサイ 卜に吸着したフッ素も最終的にフ ッ化カルシウムと して回収する こ と が可能である。  In the wastewater purification treatment of the first embodiment, the primary reaction coagulation / sedimentation tank 1 and the secondary reaction coagulation / sedimentation tank 2, the fluorine desorption tank 3, and the dehydrator 4 are used to remove fluorine from the fluorine-containing wastewater. Since the hydrosite separated in the desorption tank 3 is reused, it is only necessary to add the hydrosite for the loss if necessary, and the hydrosite can be used effectively. Further, it is possible to reduce the consumption of the hydro-site and reduce the cost. Furthermore, by adsorbing the fluoride ions remaining after the formation of calcium fluoride on the hydrotalcite, it is possible to efficiently treat the treated water with a very low fluorine concentration and to use calcium chloride or the like. The need to use a large amount of coagulant is eliminated. Furthermore, it is possible to circulate the fluorine and finally recover the fluorine adsorbed on the hydrosite as calcium fluoride.
尚、 上記第 1実施形態の排水浄化処理では、 同一の 1 次反応凝集沈殿槽 1 で、 p H調整処理、 塩化カルシウムとの反応によるフッ化カルシウムの生成処理、 凝集処理、 沈殿処理を行う構成と したが、 変形例と して、 例えば p H調整槽、 フッ化カルシウムを生成する反応槽、 凝集槽、 沈殿槽で各処理を行う構成、 或 いはこれらの適宜の処理の組み合わせを同一槽で行う構成等とするこ とが可 能である。 また、 同様に、 同一の 2次反応凝集沈殿槽 2で、 p H調整処理、 ハ ィ ドロタルサイ トによるフッ素イオンの吸着処理、 凝集処理、 沈殿処理を行う 構成と したが、 例えば p H調整槽、 フッ素ィオンの吸着処理を行う反応槽、 凝 集槽、 沈殿槽で各処理を行う構成、 或いはこれらの適宜の処理の組み合わせを 同一槽で行う構成等とすることが可能である。 Incidentally, in the waste water purification process of the first embodiment, the same first reaction coagulating sedimentation tank 1, p H adjusting process, generating process, the aggregation treatment of calcium fluoride by reaction with calcium chloride, configured to perform precipitation process and it was, but a modification, for example, p H adjusting tank, a reaction tank for generating calcium fluoride, coagulating tank, configured to perform the processes in the sedimentation tank, the same tank combinations of certain There are suitable for these processes It is possible to adopt a configuration that is performed by using. Similarly, in the same secondary reaction coagulation and sedimentation tank 2, pH adjustment treatment, fluorine ion adsorption treatment using a hydrotalcite, coagulation treatment, and precipitation treatment are performed. The configuration is, for example, a pH adjustment tank, a reaction tank that performs fluorine ion adsorption treatment, a condensing tank, a sedimentation tank, or a combination of these appropriate treatments in the same tank. it is possible to.
次に、 一槽式の設備でハイ ドロタルサイ トを利用し、 フッ素含有排水からフ ッ素を除去して浄化する第 2実施形態の排水浄化処理について説明する。 第 2実施形態の排水浄化処理は、 図 2に示すよ う に、 フッ素を含有する排水 を反応凝集沈殿槽 5 に導入し、反応凝集沈殿槽 5 にアルカ リ又は酸の P H調整 剤を添加して、 フッ素含有排水を所定の p H、 例えば p H 6程度に調整する。 反応凝集沈殿槽 5 内の p Hを調整したフッ素含有排水に塩化カルシウム ( C a C 1 2 ) を添加し、 フ ッ素含有排水中のフッ素イオン ( F— ) と塩化カルシゥ ムを反応させ、 C a 2 + + 2 F—→ C a F 2 の反応によ り フツイ匕カルシウム ( C a F 2 ) を生成する。 Next, a wastewater purification process according to a second embodiment for removing and purifying fluorine from fluorine-containing wastewater by using a hydrotalcite in a single-tank type facility will be described. Wastewater purification process of the second embodiment, Remind as in FIG. 2, the wastewater containing fluorine is introduced into the reaction flocculation tank 5, addition of P H modifiers alkaline or acid to the reaction flocculation tank 5 Then, the fluorine-containing wastewater is adjusted to a predetermined pH, for example, about pH 6. The p H of the reaction coagulating sedimentation tank 5 by adding calcium chloride adjusted fluorine-containing waste water (C a C 1 2), fluorine ions in the full Tsu-containing wastewater (F-) is reacted with chloride Karushiu arm, C a 2 + + 2 F- → C a by Ri Futsui spoon calcium to the reaction of F 2 (C a F 2) to generate.
更に、 反応凝集沈殿槽 5内にハイ ドロ タルサイ ト : M g 6 A l 2 (O H) ! 6 C 03 ' 4 H 20を添加し、 フッ化カルシウム (C a F 2) の生成後の排水中に 残留するフッ素イオン ( F— ) をハイ ド口 タルサイ トに吸着させる。 前記添加 したハイ ドロタルサイ 卜 : M g 6 A 1 2 (O H) i 6 C O 3 · 4 H 2 Oの大部分は、 前記フッ素イオン ( F— ) を眉間に取り込こんで吸着し、 フッ素イオンを吸着 したハイ ド口 タルサイ ト : M g 6 A l 2 (O H) 1 6 ( F - 1 ) 2 · 4 Η 20が生 成される。 Furthermore, the hydrotalcite: Mg 6 Al 2 (OH)! It was added 6 C 0 3 '4 H 2 0, is adsorbed fluorine ions (F-) remaining in the waste water after the formation of calcium fluoride (C a F 2) to Hyde port Tarusai bets. Wherein the added high Dorotarusai Bok: Most of M g 6 A 1 2 (OH ) i 6 CO 3 · 4 H 2 O is adsorbed crowded Captures the fluorine ion (F-) between the eyebrows, a fluorine ion adsorbed Hyde port Tarusai DOO: M g 6 A l 2 ( OH) 1 6 (F - 1) 2 · 4 Η 2 0 is generated.
その後、 反応凝集沈殿槽 5 に硫酸パン ドや P A C等の凝集剤を添加して、 フ ッ化カルシウム ( C a F 2 ) 、 及びフッ素を吸着したハイ ドロタルサイ ト : M g 6 A 1 2 (O H) 1 6 ( F - 1 ) 2 · 4 Η 20、 及びフッ素を吸着できなかった ハイ ド口タルサイ ト : M g 6 A l 2 (O H) 1 6 ( F - 1 ) 2 · 4 Η 20を凝集し、 これらを含む汚泥を沈殿させる。沈殿した汚泥は反応凝集沈殿槽 5から脱水機 6 に導出され、 脱水機 6で汚泥を脱水し、 脱水ケーキと して排出する と共に、 汚泥を除去して得られる処理水は系外に排出される。 Thereafter, the reaction flocculation tank 5 by adding a coagulant such as sulfuric pan de and PAC, full Tsu of calcium (C a F 2), and fluorine adsorbed high Dorotarusai DOO: M g 6 A 1 2 ( OH ) 1 6 (F - 1) 2 · 4 Η 2 0, and Hyde port Tarusai preparative fluorine could not be adsorbed: M g 6 a l 2 ( OH) 1 6 (F - 1) 2 · 4 Η 2 0 Coagulate and sediment sludge containing these. The precipitated sludge is derived in the dehydrator 6 from the reaction coagulating sedimentation tank 5, and dehydrated sludge dehydrator 6, together with discharged as a dehydrated cake, the treated water obtained by removing the sludge is discharged out of the system that.
上記第 2実施形態の排水浄化処理は、 一基の反応凝集沈殿槽 5 と一基の脱水 機 6 でフッ素含有排水からフ ッ素を除去し、 小さな設備投资によ り低コス ト で、 且つ省スペースでフッ素を除去するこ とができる。 更に、 フッ化カルシゥ ムの生成後に残留するフッ素イ オンをハイ ドロ タルサイ 卜で吸着する こ と に よ り 、 効率的にフッ素濃度が非常に低い処理水とするこ とができる と共に、 塩 化カルシウム等や凝集剤を多量に用いる必要が無く なる。 The wastewater purification treatment of the second embodiment is performed by one reaction coagulation sedimentation tank 5 and one A fluorine-containing waste water carafe Tsu iodine was removed by machine 6, with a small capital-investment Ri by the low-cost, fluorine can and child removal and space-saving. Further, Ri by the and this to adsorb fluorine ion-remaining after generation of fluoride Karushiu beam at Hydro Tarusai Bok, with efficient fluorine concentration can very low treated water and child, calcium chloride It is not necessary to use a large amount of a coagulant or the like.
尚、 上記第 2実施形態の排水浄化処理では、 同一の反応凝集沈殿槽 5 に於い て、 p H調整処理、 塩化カルシウム と の反応によるフッ化カルシウムの生成処 理、 ハイ ドロタルサイ トによるフッ素イオンの吸着処理、 凝集処理、 沈殿処理 を行う構成と したが、 第 1実施形態の変形例等を適宜第 2実施形態に用いるこ とが可能であり 、 例えば p H調整槽、 フッ化カルシウムを生成する反応槽、 フ ッ素イオンの吸着処理を行う反応槽、 凝集槽、 沈殿槽で各処理を行う構成、 或 いはこれらの適宜の処理の組み合わせを同一槽で行う構成、或いはフッ化カル シゥムの生成処理の後に凝集や沈殿を行う槽を付加する構成等とする こ とが 可能である。  In the wastewater purification treatment of the second embodiment, in the same reaction coagulation sedimentation tank 5, a pH adjustment treatment, a treatment for generating calcium fluoride by reaction with calcium chloride, and a fluoride ion treatment using hydrotalcite It is configured to perform the adsorption treatment, the aggregation treatment, and the sedimentation treatment, but it is possible to use a modification example of the first embodiment and the like in the second embodiment as appropriate. , A reaction tank that performs fluorine ion adsorption treatment, a coagulation tank, a precipitation tank, or a combination of these appropriate treatments in the same tank, or calcium fluoride It is possible to add a tank for performing coagulation or sedimentation after the production process of water.
次に、 上記第 1実施形態の排水浄化処理過程に対応する、 ハイ ドロ タルサイ 卜のフッ素の吸着、 脱離、 再吸着の模擬試験及びその結果について説明する。 先ず、 ハイ ドロ タノレサイ 卜のフッ素吸着試験では、 約 0. l m o 1 Z Lのフ ッ化カ リ ゥム溶液 1 L (イオンクロマ トグラフィ一によるフッ素含有量実測値 : 1 8 5 0. 0 m g / L ) を準備し、 そこにハイ ド口タルサイ ト : M g 6 A l 2 (O H) i 6 C 03 ' 4 H 20を 1 0 g添加して、 H C 1 を用いて溶液の p H を 6前後に調整しながら 1 時間攪拌した。前記攒拌後に、その懸濁液を濾過し、 残存した固相 K 1 を定温乾燥器にて 5 0 ¾で乾燥させた。 Next, a description will be given of a simulation test of the adsorption, desorption, and re-adsorption of fluorine on the hydrosite, which corresponds to the wastewater purification treatment process of the first embodiment, and the results thereof. First, the fluorine adsorption test of Hydro Tanoresai Bok, about 0. lmo 1 ZL of full Kkaka Li © beam solution 1 L (fluorine content measured values by ion chroma Togurafi one: 1 8 5 0. 0 mg / L ), And then add 10 g of a talcite at the mouth: Mg 6 Al 2 (OH) i 6 C 0 3 '4 H 20, and adjust the pH of the solution using HC 1. The mixture was stirred for 1 hour while adjusting to around 6. After the 攒拌, the suspension was filtered and the solid phase K 1 remaining dried 5 0 ¾ at a constant temperature dryer.
前記濾過による濾液 R 1 のフッ素含有量をィオンクロマ トグラフィーによ り 測定したと ころ、 2 3 1 . O m g /Lであ り 、 添加したハイ ドロタルサイ ト 1 O gは 1 8 5 0. 0 - 2 3 1 . 0 = 1 6 1 9. 0 m g /Lのフッ素イオンを吸 着し、 添加したハイ ドロタルサイ ト 1 g 当たり のフッ素吸着量は 1 6 1 . 9 m g gであった (後記表 2、 ①参照) 。 残存した固相 K 1 は、 フッ素を吸着し たハイ ド口タルサイ ト : M g 6 A l 2 (O H) ! 6 ( F - 1 ) 2 · 4 Η 20 と、 通 常のハイ ドロタルサイ ト : M g 6 A l 2 (O H) ! 6 C O a · 4 H 20で構成され る。 . The filtration through the filtrate was measured Ri by a fluorine content of R 1 to Ionkuroma preparative chromatography and rollers, 2 3 1 O mg / L der is, high Dorotarusai sheet 1 was added O g is 1 8 5 0.0 - 2 31.0 = 16 19.0 mg / L of fluoride ion was adsorbed, and the amount of fluorine adsorbed per 1 g of the added hydrotalcite was 161.9 mgg (see Table 2 below). ① reference). The remaining solid phase K 1 absorbs fluorine and Hide mouth talcite: Mg 6 Al 2 (OH)! 6 (F - 1) and 2 · 4 Η 2 0, normal high Dorotarusai door: M g 6 A l 2 ( OH)! Consists of 6 CO a · 4 H 20 .
次いで、 フッ素を吸着したハイ ドロタルサイ 卜のフッ素脱離試験では、 先ず、 N a OHを用い、 それぞれ p Hを 9、 1 0、 1 1 に調節した N a O H溶液を各 々 5 0 O m Lずつビーカーに準備し、 固液比が 1 g / Lになるよ う にして、 各 ビーカーにフ ッ素を吸着したハイ ドロ タルサイ トを含む固相 K 1 を 5 0 0 m gずつ添加し、 N a O Hを用いて p Hをそれぞれ 9、 1 0、 1 1 に維持するよ う に調整しながら攪拌し、 5分、 1 0分、 1 5分、 3 0分、 6 0分の攪拌時間 毎にそれぞれ濾過を行った。  Next, in the fluorine desorption test of the hydrofluoric acid-adsorbed hydrosite, first, NaOH solutions were adjusted to 9, 10, and 11 using NaOH, and 50 OmL of each NaOH solution was adjusted. In a beaker, add 50 mg of the solid phase K1 containing hydrofluoric acid adsorbed to each beaker so that the solid-liquid ratio becomes 1 g / L, and add N to each beaker. Stir while adjusting the pH to 9, 10, and 11 using aOH, and every 5 minutes, 10 minutes, 15 minutes, 30 minutes, and 60 minutes of stirring time , Respectively.
前記濾過による濾液 R 2のフッ素含有量を測定して得たフッ素脱離量と攪拌 時間の関係を図 3のグラフに示す。 図 3 のグラフは、 p H 9、 1 0、 1 1 の各 ビーカーと も、 全般的に p Hが高ければ高い程、 又、 攪拌時間が長ければ長い 程、 フッ素の脱離量が增加するこ とを示しており 、 例えば p H 9の 5分攪拌で は固相 K : l g 当たり でフッ素 : 4 4. 2 m g / g , p H l l の 6 0分攪拌で は固相 K : l g当たりでフッ素 : 1 3 2. O m gが脱離した。 尚、 各 p H 9、 1 0、 1 1 の攪拌時間 6 0分の場合の F脱離量を後記表 2、 ②に示し、 又、 攪 拌時間 6 0分の場合に於ける脱離後の固相を固相 K 2 とする。  FIG. 3 is a graph showing the relationship between the amount of desorbed fluorine and the stirring time obtained by measuring the fluorine content of the filtrate R2 by the filtration. The graph in Fig. 3 shows that the higher the pH and the longer the stirring time, the greater the desorption amount of fluorine for each of the beakers of pH 9, 10 and 11 For example, when pH 9 is stirred for 5 minutes, fluorine: 44.2 mg / g per solid phase K: lg, and when pH II is stirred for 60 minutes, solid phase K: lg Fluorine: 1 3 2. O mg was desorbed. The F desorption amounts at 60,000 minutes of stirring at pH 9, 10, and 11 are shown in Tables 2 and 2 below, and after desorption at 60 minutes of stirring time. This solid phase is referred to as solid phase K 2.
その後、 ハイ ドロ タルサイ 卜のフッ素再吸着試験では、 上記ハイ ドロタルサ ィ 卜のフッ素吸着試験と基本的に同様の試験方法を行い、 先ず、 p H 9、 1 0、 1 1 のそれぞれに対応させ、約 O . l m o 1 Z Lのフッ化カ リ ウム溶液 1 L (ィ オンク ロマ トグラフィ一によるフッ素含有量実測値 : 1 8 5 0. 0 m g / L ) を準備し、試料と して脱離試験の攪拌時間 6 0分によ り濾過して得られた p H 9、 1 0、 1 1 のそれぞれの固相 K 2 を 1 0 gZLの割合で添加し (後記表 2、 ②参照) 、 H C 1 を用いて各溶液の p Hを 6前後に調整しながら 1 時間攪拌し た。 その後、 メ ンブランフィルター ( 0. 2 /I m) で固液分離を行って濾過し、 液相の濾液 R 3 と固相 K 3 にし、 分析を行った。 その結果を表 1及び図 4に示す。 表 1 は、 固相 K 2 を添加する前の約 0. 1 m o 1 /Lのフッ化カ リ ゥム溶液 1 L当たり に於けるフッ素含有量: 1 8 5 0 tn gZLに対する、 p H 9、 1 0、 1 1 の各固相 K 2 によるフッ素再吸着後の 濾液 R 3 のフッ素含有量 (濾液 : F ) 、 固相 K 3のフッ素吸着量 (固相 : F ) 、 及び固相 K 3の l g当たり のフッ素吸着量を示し、 図 4は各 p H 9、 1 0、 1 1 に於ける固相 K 3 の 1 g 当た り のフッ素吸着量を示している。 固相 K 3は、 フッ素を吸着したハイ ド口 タルサイ ト : M g 6 A l 2 (O H) i 6 ( F - 1 ) 2 - 4 H 20、 或いはフッ素を吸着したハイ ドロタルサイ ト : M g 6 A l 2 (O H) 1 6 ( F - 1 ) 2 · 4 Η 20及び通常のハイ 'ドロタルサイ ト : M g 6 A l 2 (O H) ! 6 C O a · 4 H 20で構成される。 After that, in the fluorine re-adsorption test of the hydrotalcite, a test method basically similar to that of the above-mentioned hydrotalcite fluorine adsorption test was carried out.First, each of pH 9, 10 and 11 was applied. Prepare about 1 lL of potassium fluoride solution of about 0.1 mol (actual value of fluorine content by ion chromatography: 1850.0 mg / L), and use it as a sample for the desorption test. The solid phase K 2 of each of pH 9, 10 and 11 obtained by filtration with a stirring time of 60 minutes was added at a ratio of 10 gZL (see Tables 2 and 2 below), and HC 1 The solution was stirred for 1 hour while adjusting the pH of each solution to around 6 using. Thereafter, solid-liquid separation was performed using a membrane filter (0.2 / Im), and the mixture was filtered to obtain a filtrate R 3 in a liquid phase and a solid phase K 3, and analysis was performed. The results are shown in Table 1 and FIG. Table 1 shows that the fluorine content per 1 L of about 0.1 mo1 / L of the calcium fluoride solution before adding the solid phase K 2: , 10 and 11, the fluorine content of filtrate R 3 after re-adsorption of fluorine by solid phase K 2 (filtrate: F), the amount of fluorine absorbed by solid phase K 3 (solid phase: F), and solid phase K 3 shows the amount of fluorine adsorbed per lg, and FIG. 4 shows the amount of fluorine adsorbed per 1 g of solid phase K 3 at pH 9, 10, and 11 respectively. Solid K 3 is Hyde port Tarusai bets with adsorbed fluorine: M g 6 A l 2 ( OH) i 6 (F - 1) 2 - 4 H 2 0, or fluorine adsorbed high Dorotarusai DOO: M g 6 Al 2 (OH) 16 (F- 1 ) 2 · 4 Η 20 and normal high ド ロ Dotal site: Mg 6 Al 2 (OH)! Consisting of 6 CO a · 4 H 2 0 .
表 1  table 1
Figure imgf000013_0001
Figure imgf000013_0001
そして、 上記フッ素の吸着、 脱離、 再吸着の模擬試験によ り 、 前記各 p H 9、 1 0、 1 1 のフッ素再吸着後に於けるフッ素吸着量を表 2 に示す。 表 2の再吸 着後のフッ素吸着量は①の吸着試験によるフッ素吸着量から②のフッ素脱離 試験のフッ素脱離量を減算し、③の再吸着試験によるフッ素吸着量を加算した 数値である。  Table 2 shows the amount of fluorine adsorbed after the re-adsorption of fluorine at pH 9, 10 and 11 based on the above-mentioned simulation tests of adsorption, desorption and re-adsorption of fluorine. The amount of fluorine adsorbed after resorption in Table 2 is the value obtained by subtracting the amount of fluorine desorption from the fluorine desorption test in (2) from the amount of fluorine adsorption in the adsorption test (2) and adding the amount of fluorine adsorption from the resorption test in (3). is there.
表 2  Table 2
Figure imgf000013_0002
Figure imgf000013_0002
表 2が示すよ う に、 フッ素脱離時の p Hが 9、 1 0、 1 1へと高く なる程、 フッ素の脱離量は増加するが、フッ'素の再吸着時には脱離時の p Hが 9、 1 0、 1 1へと高く なる程、 フッ素の吸着量は低下しており 、 その原因と しては、 例 えば脱離時のアル力 リ の程度が異なる とハイ ドロ タルサイ トの層間に入る も のが OH -、 C 0 3 2 と異なるものになるこ と等が考えられる。 また、 p H l 1 ではフッ素の再吸着時の吸着量が脱離時の脱離量よ り低下しているのに対 し、 p H 9、 1 0ではフッ素の再吸着時の吸着量が脱離時の脱離量よ り多く な つており、 これは①の吸着試験後のハイ ドロタルサイ 卜の層間にはフ ッ素を吸 着する余裕があつたためと考えられる。 As shown in Table 2, as the pH at the time of fluorine desorption increases to 9, 10, and 11, Although the amount of desorbed fluorine increases, the amount of adsorbed fluorine decreases as the pH at the time of desorption increases to 9, 10, and 11 when re-adsorbing fluorine. is, and the also the degree of Al force Li at the time of leaving if example example enters between the layers of different and high mud Tarusai door is OH -, the Son and the like can be considered to be C 0 3 2 different. At pH 11, the amount of fluorine adsorbed at the time of re-adsorption is lower than that at the time of desorption, while at pH 9 and 10, the amount of adsorption at the time of fluorine re-adsorption is lower. The amount was larger than the amount desorbed at the time of desorption. This is probably because there was room for fluorine adsorption between the layers of the hydro- talcite after the adsorption test (1).
更に、 再吸着後の脱離した際に、 その脱離割合が表 2、 ②の脱離試験の脱離 割合と同等と仮定した場合のフッ素脱離量を表 3 に示す。  In addition, Table 3 shows the amount of fluorine desorbed when the desorption rate after desorption is assumed to be the same as the desorption rate in the desorption test in Table 2 and (2).
表 3
Figure imgf000014_0001
Table 3
Figure imgf000014_0001
表 2、 表 3のフッ素吸着量やフッ素脱離量が示すよ う に、 p H 9の場合には、 再吸着する際の吸着量が多いが脱離量が少なく なるため、脱離と再吸着でフッ 素除去にハイ ドロタルサイ トを繰り返して使用する際の再生効率が低く なり 、 p H 1 1 の場合には、 脱離量が多いが再吸着する際の吸着量が少なく なるた め、 同様にハイ ドロタルサイ 卜の再生効率が低く なる。 これに対し、 p H l 0 の場合には、 再吸着する際の吸着量と脱離量が共に多いため、 脱離と再吸着で フッ素除去にハイ ドロ タルサイ トを繰り返して使用する際の再生効率が最も 高く なる。 また、 p H l 0前後はハイ ドロ タルサイ 卜の合成に最適な p Hであ るため、 溶解度が低く 、 再生して使用する際にハイ ドロタルサイ 卜のロスが少 ない。 かかる観点からも p H 1 0前後の脱離は、 再生効率の向上に寄与する。 尚、 上記再吸着試験で p H調整に H C 1 を添加した際に、 固相 K 2 : l g 当 たり換算の H C 1 添加量は、 p H 9の再吸着の場合 : 7 6 6 . 7 /i L、 p H l 0の再吸着の場合 : 3 8 4. 6 /i L、 p H l l の再吸着の場合 : 4 5 8. 3 μ Lであり 、ハイ ドロタルサイ 卜の再生効率が高い p H l 0で必要な H C 1 添加 量は最も少なかった。 これは、 p H 1 0で脱離後のハイ ドロタルサイ ト或いは 固相 K 2が層間に弱酸の C O 3 2_を多く有するためと考えられ、 p H l 0の 再生効率の高さを示している。 産業上の利用可能性 As shown in Tables 2 and 3, the amount of fluorine adsorbed and the amount of desorbed fluorine show that in the case of pH 9, the amount of adsorption during re-adsorption is large, but the amount of desorption is small, so Regeneration efficiency decreases when hydrotalcite is repeatedly used to remove fluorine by adsorption.In the case of pH 11, the amount of desorption is large, but the amount of adsorption when re-adsorbing is small. Similarly, the regeneration efficiency of the hydro-site is reduced. On the other hand, in the case of pH l 0, both the amount of adsorption and the amount of desorption when re-adsorbing are large, so the regeneration when repeatedly using a hydrotalcite for fluorine removal by desorption and re-adsorption efficiency is highest. Further, p H l 0 optimum p H Der because the synthesis of the front and rear Hydro Tarusai Bok, have low solubility, the loss of high Dorotarusai Bok is not less when used in reproduction. From such a viewpoint, desorption around pH 10 contributes to improvement of the regeneration efficiency. In addition, when HC 1 was added for pH adjustment in the above re-adsorption test, the amount of HC 1 added in terms of solid phase K 2: lg was calculated as follows. In the case of re-adsorption of iL and pH10: 388.4 / iL, in the case of re-adsorption of pHll: 458.3 μL, indicating that the regeneration efficiency of the hydrosite is high. required HC 1 added in H l 0 The amount was the fewest. This is considered to be because the hydrotalcite or solid phase K2 desorbed at pH 10 has a large amount of weak acid CO 3 2 _ between layers, indicating the high regeneration efficiency of pH 10. there. Industrial applicability
本発明の排水浄化方法或いは浄化方法を用いるこ とによ り 、 例えば半導体ェ 場や発電所等から排出されるフッ素含有排水からフッ素を除去して、 フッ素含 有排水を効率的に低フッ素濃度の処理水、例えば環境保護に鑑み定められてい る排出基準以下の処理水にするこ とができる。  By using the wastewater purification method or the purification method of the present invention, fluorine is removed from, for example, fluorine-containing wastewater discharged from a semiconductor plant, a power plant, or the like, and the fluorine-containing wastewater is efficiently reduced to a low fluorine concentration. Effluent, for example, effluent below the emission standard determined in view of environmental protection.

Claims

請 求 の 範 囲 The scope of the claims
1 . フッ素含有排水にカルシウム化合物を添加してフッ化カルシウムを生成す る工程と、該フッ化カルシウム生成後の反応液を固液分離してフッ化カルシゥ ムを除去する工程と、 該フッ化カルシウム除去後の処理水の p Hを調整し、 ハ ィ ドロ タルサイ ト類を添加してハイ ドロ タルサイ ト類に残留するフッ素を吸 着させる工程と、該吸着後の処理水を固液分離してフッ素吸着後のハイ ドロタ ルサイ ト類を除去する工程とを、少なく と も有するこ とを特徴とする排水浄化 方法。 1. a step of adding a calcium compound to the fluorine-containing wastewater to produce calcium fluoride, a step of solid-liquid separation of the reaction solution after the production of calcium fluoride to remove calcium fluoride, Adjusting the pH of the treated water after removing calcium, adding hydrotalcites to adsorb fluorine remaining on the hydrosites, and solid-liquid separating the treated water after the adsorption. A method for removing hydrosites after fluorine adsorption by at least a method for purifying wastewater.
2 . 前記除去したフッ素吸着後のハイ ドロ タルサイ ト類に対してフッ素脱離処 理を施す工程と、該フッ素脱離処理後のハイ ドロタルサイ ト類をフッ素吸着工 程で再度添加する工程を有する と共に、該フッ化カルシウム生成前のフッ素含 有排水に該フッ素脱離処理で生成される フッ素含有水を合わせる工程を有す るこ とを特徴とする請求の範囲第 1項記載の排水浄化方法。  2. A step of performing a fluorine desorption treatment on the removed hydrosites after the adsorption of fluorine, and a step of re-adding the hydrosites after the desorption of fluorine in the fluorine adsorption step 2. The method according to claim 1, further comprising a step of combining the fluorine-containing wastewater generated by the fluorine desorption treatment with the fluorine-containing wastewater before the formation of calcium fluoride. .
3 . 前記フッ素脱離処理工程が、 前記フッ素吸着後のハイ ドロタルサイ ト類を p Hが 9 く p H < 1 1 の溶液中で攪拌してフッ素脱離処理を施すものである こ とを特徴とする請求の範囲第 2項記載の排水浄化方法。  3. The fluorine desorption process is characterized in that the hydrotalcites after the adsorption of fluorine are subjected to a fluorine desorption process by stirring in a solution having a pH of 9 and a pH of <11. 3. The method for purifying wastewater according to claim 2, wherein:
4 . フッ素含有排水にカルシウム化合物を添加してフッ化カルシウムを生成す る工程と、該フッ化カルシウム生成後の反応液にハイ ドロタルサイ ト類を添加 してハイ ドロタルサイ 卜類に残留するフッ素を吸着させる工程と、該吸着後の 反応液を固液分離してフッ化カルシウム及びフ ッ素吸着後のハイ ドロ タルサ ィ ト類を除去する工程と を、 少なく と も有する こ と を特徴とする排水浄化方 法。  4. Step of adding calcium compound to fluorine-containing wastewater to generate calcium fluoride, and adding hydrotalcites to the reaction solution after the formation of calcium fluoride to adsorb fluorine remaining on hydrotalcites Wastewater characterized by comprising at least a step of removing the calcium fluoride and hydrotalcites after the adsorption of calcium fluoride and fluorine by solid-liquid separation of the reaction solution after the adsorption. Purification method.
5 . 前記ハイ ドロ タルサイ ト類がハイ ドロ タルサイ トであることを特徴とする 請求の範囲第 1項、 第 2項、 第 3項又は第 4項記載の排水浄化方法。  5. The wastewater purification method according to claim 1, wherein the hydrotalcites are hydrotalcites.
6 . フッ素を含有する浄化対象にハイ ドロ タルサイ ト類を添加してフッ素を吸 着させる浄化方法に於いて、 フッ素吸着後のハイ ドロタルサイ ト類を 9 く p H く 1 1 の溶液中で攪拌してフッ素脱離処理を施し、該フッ素脱離処理後のハイ ドロ タルサイ 卜類を浄化対象に再度添加してフッ素を吸着させる こ と を特徴 とする浄化方法。 6. In a purification method in which hydrotalcites are added to a fluorine-containing substance to be purified and the fluorine is adsorbed, the hydrotalcites after the adsorption of fluorine are reduced to 9 pH. Ku 1 stirring subjected to fluorine desorption process in the first solution, purification method, characterized that you adsorbing fluorine high mud Tarusai Bok such after the fluorine desorption process was again added to be purified.
PCT/JP2004/007315 2004-01-08 2004-05-21 Method of cleaning wastewater and cleaning method WO2005066080A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004002597A JP2005193167A (en) 2004-01-08 2004-01-08 Drainage purification method and purification method
JP2004-2597 2004-01-08

Publications (1)

Publication Number Publication Date
WO2005066080A1 true WO2005066080A1 (en) 2005-07-21

Family

ID=34747051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/007315 WO2005066080A1 (en) 2004-01-08 2004-05-21 Method of cleaning wastewater and cleaning method

Country Status (2)

Country Link
JP (1) JP2005193167A (en)
WO (1) WO2005066080A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103303996A (en) * 2013-04-02 2013-09-18 中国科学院生态环境研究中心 Application of activated aluminum oxide defluorination adsorbing material with different surface features
CN103708679A (en) * 2013-12-26 2014-04-09 浙江工商大学 Treatment process for fluorine chemical wastewater
CN104193028A (en) * 2014-06-16 2014-12-10 江苏永冠给排水设备有限公司 Fluorine removal method for compound drinking water
CN104591435A (en) * 2015-01-04 2015-05-06 刘树芹 Treatment method for industrial wastewater
CN107252675A (en) * 2017-08-11 2017-10-17 江苏海普功能材料有限公司 A kind of support type defluorinating agent and preparation method thereof
CN114592125A (en) * 2022-02-28 2022-06-07 中南大学 Method for mineralizing and removing fluorine in fluorine-containing acidic system

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4338705B2 (en) * 2006-01-31 2009-10-07 日本エコロジー株式会社 Method for treating waste liquid containing borofluoride ions
JP2007209886A (en) * 2006-02-09 2007-08-23 Bokuto Kasei Kogyo Kk Fluorine removing agent, and method and apparatus for treating drain containing fluorine using the agent
JP4845188B2 (en) * 2006-03-14 2011-12-28 協和化学工業株式会社 Waste water treatment agent and method for reducing fluorine ions in waste water
PL2055675T3 (en) * 2006-07-31 2016-03-31 Japan Dev & Construction Hydrotalcite-like particulate material and method for production thereof
JP5363817B2 (en) * 2006-11-17 2013-12-11 日本国土開発株式会社 Liquid processing apparatus and liquid processing method using hydrotalcite-like granular material
JP5320323B2 (en) * 2009-10-26 2013-10-23 株式会社東芝 Waste liquid treatment method and treatment apparatus
JP5794422B2 (en) * 2011-09-30 2015-10-14 三菱マテリアル株式会社 Treatment method and treatment apparatus for removing fluorine and harmful substances
JP7249602B1 (en) * 2021-11-22 2023-03-31 栗田工業株式会社 Method for regenerating carbonate-type layered double hydroxide, method for treating acidic exhaust gas, and facility for treating acidic exhaust gas

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58214338A (en) * 1982-06-04 1983-12-13 Kyowa Chem Ind Co Ltd Composite adsorbent
JPS59157035A (en) * 1983-02-28 1984-09-06 Kyowa Chem Ind Co Ltd Removal of halogen component from organic compound containing halogen-containing catalyst
JPH0592187A (en) * 1991-10-01 1993-04-16 Kurita Water Ind Ltd Treatment of fluorine-containing water

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58214338A (en) * 1982-06-04 1983-12-13 Kyowa Chem Ind Co Ltd Composite adsorbent
JPS59157035A (en) * 1983-02-28 1984-09-06 Kyowa Chem Ind Co Ltd Removal of halogen component from organic compound containing halogen-containing catalyst
JPH0592187A (en) * 1991-10-01 1993-04-16 Kurita Water Ind Ltd Treatment of fluorine-containing water

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KAZAMA F. ET AL: "Hydrotalcite-yo kagobutsu ni yoru fusso jokyo", DAI 36 KAI JAPAN SOCIETY ON WATER ENVIRONMENT NENKAN KOENSHU, 2002, pages 71, XP002989387 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103303996A (en) * 2013-04-02 2013-09-18 中国科学院生态环境研究中心 Application of activated aluminum oxide defluorination adsorbing material with different surface features
CN103708679A (en) * 2013-12-26 2014-04-09 浙江工商大学 Treatment process for fluorine chemical wastewater
CN104193028A (en) * 2014-06-16 2014-12-10 江苏永冠给排水设备有限公司 Fluorine removal method for compound drinking water
CN104591435A (en) * 2015-01-04 2015-05-06 刘树芹 Treatment method for industrial wastewater
CN107252675A (en) * 2017-08-11 2017-10-17 江苏海普功能材料有限公司 A kind of support type defluorinating agent and preparation method thereof
CN114592125A (en) * 2022-02-28 2022-06-07 中南大学 Method for mineralizing and removing fluorine in fluorine-containing acidic system

Also Published As

Publication number Publication date
JP2005193167A (en) 2005-07-21

Similar Documents

Publication Publication Date Title
JP7083875B2 (en) Method for Producing Lithium Hydroxide Monohydrate from Boiled Water
WO2005066080A1 (en) Method of cleaning wastewater and cleaning method
JPH09276875A (en) Treatment of waste water
WO2007052618A1 (en) Method for removing metals from waste water and apparatus for removing metals from waste water
WO2000003952A1 (en) Method for treating a fluorine-containing waste water and treating apparatus
CN108840354B (en) Deep impurity removal method for battery-grade lithium chloride
JP2007209886A (en) Fluorine removing agent, and method and apparatus for treating drain containing fluorine using the agent
JP4543481B2 (en) Method for treating water containing boron and fluorine
JP4631425B2 (en) Method and apparatus for treating fluorine-containing wastewater containing phosphoric acid
JP3942235B2 (en) Method for treating boron-containing water
JP6820510B2 (en) Water treatment system and water treatment method
JPH1157695A (en) Treatment process for phosphorus-containing wastewaer
JP2004000846A (en) Treatment method for fluorine-containing water
CN108117145A (en) Utilize the method for magnesium carbonate trihydrate phase transition processing heavy metal ion-containing waste water
JP3175625B2 (en) Treatment method for wastewater containing fluorine
JP3709156B2 (en) Treatment method for fluorine-containing wastewater
KR100201179B1 (en) Process for valorizing a liquid acid effluent containing heavy metals
JP2010069413A (en) Organic waste water treatment method
JP2008200599A (en) Method for cleaning waste water containing ammonia nitrogen
JP3900591B2 (en) Method for treating water containing fluoride ion and COD component
JP4761612B2 (en) Treatment method for boron-containing wastewater
JP2002143607A (en) Water treating flocculant, method for producing the same and method for treating water
JP2737610B2 (en) Treatment of flue gas desulfurization wastewater
JP4306917B2 (en) Anion scavenger and method for recovering inorganic anion from waste water
TWI845331B (en) Method for producing aqueous solution containing iodine component by inorganic coagulant with selective removal of fluoride ion and phosphate ion

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase