WO2005064354A1 - Circuit pattern testing apparatus and circuit pattern testing method - Google Patents

Circuit pattern testing apparatus and circuit pattern testing method Download PDF

Info

Publication number
WO2005064354A1
WO2005064354A1 PCT/JP2004/019805 JP2004019805W WO2005064354A1 WO 2005064354 A1 WO2005064354 A1 WO 2005064354A1 JP 2004019805 W JP2004019805 W JP 2004019805W WO 2005064354 A1 WO2005064354 A1 WO 2005064354A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
inspection
detection
electrode
supply
Prior art date
Application number
PCT/JP2004/019805
Other languages
French (fr)
Japanese (ja)
Inventor
Shuji Yamaoka
Hiroshi Hamori
Shogo Ishioka
Original Assignee
Oht Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oht Inc. filed Critical Oht Inc.
Publication of WO2005064354A1 publication Critical patent/WO2005064354A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2801Testing of printed circuits, backplanes, motherboards, hybrid circuits or carriers for multichip packages [MCP]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2801Testing of printed circuits, backplanes, motherboards, hybrid circuits or carriers for multichip packages [MCP]
    • G01R31/2805Bare printed circuit boards
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2801Testing of printed circuits, backplanes, motherboards, hybrid circuits or carriers for multichip packages [MCP]
    • G01R31/2806Apparatus therefor, e.g. test stations, drivers, analysers, conveyors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2801Testing of printed circuits, backplanes, motherboards, hybrid circuits or carriers for multichip packages [MCP]
    • G01R31/281Specific types of tests or tests for a specific type of fault, e.g. thermal mapping, shorts testing
    • G01R31/2812Checking for open circuits or shorts, e.g. solder bridges; Testing conductivity, resistivity or impedance

Definitions

  • the present invention relates to a circuit pattern inspection device and a circuit pattern inspection method capable of inspecting the quality of a conductive pattern formed on a substrate.
  • a pin is brought into contact with both ends of a conductive pattern, an electric signal is supplied from the pin on one end to the conductive pattern, and a pin is connected from the other end.
  • a contact-type inspection method pin contact method
  • Electrical signals are supplied by setting up metal probes on all terminals and passing current through the conductive patterns.
  • the probe card is fragile due to its fine structure, and it was necessary to always consider the risk of breakage in actual use.
  • Patent Document 2 a pin probe is brought into direct contact with one end of a conductor pattern to be inspected to apply an inspection signal containing an AC component, and a probe at the other end has a predetermined contact without contacting the conductor pattern.
  • a contact-non-contact system in which the inspection signal is detected through capacitive coupling by positioning the electrodes in a state where they are separated from each other.
  • the probe at the other end of the pattern wire does not need to directly contact the pattern with the pin hole, so that the positioning accuracy can be roughened. Furthermore, since the non-contact portion can be shared for a plurality of pattern lines, the number of probes can be reduced. Therefore, it is possible to cope with a case where the distance between the conductive patterns is fine.
  • Patent Document 1 JP-A-62-26 9 0 7 5
  • Patent Literature 2 Japanese Patent Laid-Open Publication
  • the shape of the conductive pattern Is a predetermined type, and if the conductive pattern is different, the jig also had to be manufactured according to the pattern.
  • one end of the conductor pattern to be inspected for directly contacting the pin probe is also made finer, and it is becoming difficult for the pin probe to make contact.
  • the present invention has been made to solve the above-mentioned problems of the prior art, and it is an object of the present invention to provide an inspection apparatus and an inspection method capable of forming a fine wiring pattern with a simple configuration and capable of responding to a change in the wiring pattern. is there.
  • an embodiment of the present invention has the following configuration.
  • an alternating-current inspection signal is supplied from one of the inspection target areas of the inspection target pattern in which the inspection target areas are formed in a row, and a signal from the inspection target pattern is detected from the other to detect the inspection target pattern.
  • a supply unit having a supply electrode for supplying the inspection signal to the inspection target pattern in one of the inspection target regions of the inspection target pattern, and a signal from the inspection target pattern
  • a detecting means having a detecting electrode for detecting the detection pattern, and a moving means for moving the supply electrode of the supplying means and the detecting electrode of the detecting means apart from the pattern to be inspected while traversing the row pattern portion of the inspection area.
  • a circuit pattern inspection device comprising: a supply unit or a detection unit, wherein at least one of the supply unit and the detection unit Characterized in that it is provided in addition to part.
  • the pattern to be inspected is a conductive pattern formed in a substantially bar shape with a predetermined width on a substrate.
  • the width of the detection electrode is at least two columns of the pattern to be inspected.
  • the detection means comprises: a first detection electrode disposed at the other end position of the pattern to be inspected to which an inspection signal is supplied by the supply electrode at one end position; Inspection signal is supplied by the supply electrode And a second detection electrode disposed at the other end of the inspection target pattern adjacent to the inspection target pattern.
  • the width of the first detection electrode is not more than the pattern width of the pattern to be inspected.
  • the width of the second detection electrode is not more than the pattern width of the pattern to be inspected.
  • the moving unit traverses a row-like portion near both ends of the inspection target area in a state where a supply electrode surface of the supply unit and a detection electrode surface of the detection unit are capacitively coupled to the inspection target pattern. It is characterized by being moved.
  • the apparatus further comprises a determination unit that determines that the inspection target pattern is normal when the detection result by the detection unit is within a predetermined range, and that determines that the inspection target pattern is defective when the detection result is out of the predetermined range.
  • the supply electrode of the supply unit and the detection electrode of the detection unit are moved to both ends of the inspection target pattern that the determination unit has determined to be defective, and the supply electrode of the supply unit or the detection electrode of the detection unit is moved.
  • a second moving means for moving one of them along the pattern toward the other, and a position detecting means for detecting a detected change position based on a detection result of the detecting means are provided.
  • a contact unit is provided for bringing one of the supply electrode of the supply unit and the detection electrode of the detection unit into contact with the pattern to be inspected.
  • an imaging unit is provided on at least one of the supply electrode and the detection electrode moved by the second moving unit.
  • the supply electrode moved by the second moving means and the detection It is characterized by including a separation control means for performing positioning control so that the distance between at least one of the output electrodes and the pattern to be inspected is substantially constant.
  • a separation distance control means for performing positioning control such that a separation distance between at least one of the supply electrode and the detection electrode moved by the movement means and the pattern to be inspected is substantially constant.
  • the separation processing control means includes a displacement meter that moves together with the detection electrode or the supply electrode at a position near the detection electrode or the supply electrode, and inspects the detection electrode or the supply electrode in accordance with a detection result of the displacement meter. Positioning control is performed in a direction orthogonal to the inspection object so that the distance from the object is substantially constant.
  • the separation processing control means sets an average displacement of the detection result of the displacement meter between a plurality of pitches of the pattern to be inspected as a separation distance between the detection electrode or the supply electrode and the inspection object, and is orthogonal to the inspection object. It is characterized by performing positioning control in the direction of movement.
  • a supply unit having a supply electrode for supplying an inspection signal to the inspection target pattern from one of the inspection target regions of the inspection target pattern in which the inspection target regions are formed in a row, and the inspection target pattern A pattern inspection method in a circuit pattern inspection apparatus having a detection means having a detection electrode for detecting a supply signal, wherein a supply electrode of the supply means and a detection electrode of the detection means are connected to a supply electrode surface of the supply means and While maintaining the state in which the detection electrode surface of the detection means is separated from the surface of the pattern to be inspected, one of the supply electrode and the detection electrode is connected to the pattern to be inspected by the line pattern portion of the inspection target area.
  • An end portion is moved across, and the other one of the supply electrode or the detection electrode is connected to the pattern to be inspected by the row pattern portion of the area to be inspected. Moved across the other end, said object putter
  • the inspection target pattern is inspected by supplying an AC inspection signal from one of the inspection target regions and detecting a signal from the inspection target pattern from the other.
  • the circuit pattern is a conductive pattern formed in a substantially bar shape with a predetermined width on a substrate.
  • the width of the detection electrode is at least two columns of the pattern to be inspected, and a signal from a conductive pattern adjacent to the conductive pattern supplying the inspection signal is detected to detect a gap between the adjacent conductive patterns. It is characterized in that a short circuit can be detected.
  • a signal from a conductive pattern supplying an inspection signal from the detection electrode can be detected by a first detection electrode of the detection means to enable a disconnection between the conductive patterns to be detected.
  • a signal from a conductive pattern adjacent to the supplied conductive pattern is detected by a second detection electrode of the detection means, and a short circuit between the adjacent conductive patterns can be inspected.
  • the position of the roughly disconnected portion of the conductive pattern is detected from the position of the detection means which is not detected by the detection means.
  • the pattern to be inspected is determined to be normal when the detection result by the detection means is within a predetermined range, and to be defective when the detection result is out of the predetermined range.
  • the position of the inspection target pattern determined by the determination unit to be defective is identified and held, and the supply electrode of the supply unit and the detection electrode of the detection unit are provided at both ends of the inspection target pattern determined to be defective. Moving one of the supply electrode and the detection electrode along the pattern toward the other, and setting a change position as a defective position of the pattern to be inspected based on a detection result of the detection means. And Further, for example, one of the supply electrode of the supply unit and the other of the detection electrodes of the detection unit is brought into contact with the pattern to be inspected.
  • an imaging means provided on one of the supply electrode and the detection electrode is moved along the pattern toward the other, and an image of a defect state at a defect position of the pattern to be inspected is taken. I do.
  • a displacement meter that moves together with the detection electrode or the supply electrode is disposed at a position near the detection electrode or the supply electrode, and a separation distance between the detection electrode or the supply electrode and the test object is determined according to a detection result of the displacement meter.
  • Positioning control is performed in a direction orthogonal to the inspection object so as to be substantially constant, and the result of the detection electrode is made constant.
  • the position of the inspection object is controlled by setting the average displacement of the detection result of the displacement meter between the plurality of pitches of the inspection object pattern as the distance between the detection electrode or the supply electrode and the inspection object. I do.
  • an inspection signal is supplied from one of the inspection target areas of the inspection target pattern in which the inspection target area is formed in a row, and an inspection signal from the inspection target pattern is detected from the other to detect the inspection target pattern.
  • a moving unit that moves the supply electrode and the detection electrode across the inspection target area while separating the supply electrode and the detection electrode from the inspection target pattern.
  • At least one of the supply unit and the detection unit is provided at a position other than an end of the inspection target pattern.
  • At least one of the plurality of supply units or the detection unit Is disposed at a position other than the end of the pattern to be inspected.
  • a plurality of the detecting means are provided.
  • At least one of the supply unit and the plurality of detection units is provided at a position other than an end of the inspection target pattern.
  • the width of the detection electrode is at least a width of two rows of the inspection target pattern.
  • the width of the detection electrode is at least a width of two rows of the inspection target pattern.
  • the detection means includes: a first detection electrode for detecting a test signal from a test pattern supplied with a test signal by the supply electrode; and a detection pattern adjacent to the test pattern supplied with the test signal by the supply electrode. And a second detection electrode for detecting an inspection signal from the inspection target pattern to be inspected.
  • the detection means includes: a first detection electrode for detecting a test signal from a test pattern supplied with a test signal by the supply electrode; and a detection pattern adjacent to the test pattern supplied with the test signal by the supply electrode. And a second detection electrode for detecting an inspection signal from the inspection target pattern to be inspected.
  • the moving means may move across the inspection target area in a state where the supply electrode surface of the supply means and the detection electrode surface of the detection means are capacitively coupled to the inspection target pattern.
  • the moving means includes a separation distance control means for performing positioning control so that the separation distance between the supply electrode and the detection electrode and the pattern to be inspected is substantially constant.
  • the separation processing control means includes a displacement meter, and is orthogonal to the pattern to be inspected so that the distance between the supply electrode and the detection electrode and the pattern to be inspected is substantially constant according to the detection result of the displacement meter. It is characterized by performing positioning control in the direction in which it moves. .
  • the separation processing control means may determine an average displacement of the detection result of the displacement meter during a plurality of pitches of the test pattern as a separation distance between the detection electrode or the supply electrode and the test object in a direction orthogonal to the test pattern. It is characterized by positioning control.
  • the detection result of the inspection signal by the detection means is within a predetermined range, it is determined that the inspection target pattern is normal, and when the detection result of the inspection signal is out of the predetermined range, a defect of the inspection target pattern and the inspection target pattern are determined. And a determining means for determining a defective position on the terminal.
  • the supply electrode of the supply unit and the detection electrode of the detection unit are moved to the inspection target pattern determined to be defective by the determination unit, and either the supply electrode of the supply unit or the detection electrode of the detection unit is moved.
  • a second moving means for moving the second direction along the pattern toward the other, and a position detecting means for detecting a detected change position based on a detection result of the detecting means.
  • it is characterized in that it comprises a contacting means for bringing the other of the supply electrode of the supply means or the detection electrode of the detection means into contact with the pattern to be inspected.
  • the supply electrode moved by the second moving means or the detection electrode moved by the second moving means is provided with an imaging means.
  • the detection electrode moved by the second moving means is characterized in that it is provided with a separation control means for performing positioning control so as to make the distance substantially constant.
  • the detection result of the inspection signal by the detection means is a detection signal value that is constant to some extent, it is determined that the pattern to be inspected is normal, and when the detection result of the inspection signal is a detection signal value that changes rapidly, It is characterized by comprising a judging means for judging a defect of the inspection target pattern and a defect position on the inspection target pattern.
  • the supply electrode of the supply unit and the detection electrode of the detection unit are moved to the inspection target pattern determined to be defective by the determination unit, and either the supply electrode of the supply unit or the detection electrode of the detection unit is moved.
  • a position detecting means for detecting a detected change position based on a detection result of the detecting means.
  • it is characterized in that it comprises a contacting means for bringing the other of the supply electrode of the supply means or the detection electrode of the detection means into contact with the pattern to be inspected.
  • the supply electrode moved by the second moving means or the detection electrode moved by the second moving means is provided with an imaging means.
  • the supply electrode moved by the second moving means, or the detection electrode moved by the second moving means, and the inspection target panel are so arranged that the distance is substantially constant. It is characterized by including a separation control means for performing positioning control.
  • an inspection signal is supplied from one of the inspection target areas of the inspection target pattern in which the inspection target area is formed in a row, and an inspection signal from the inspection target pattern is detected from the other, thereby detecting the inspection target pattern.
  • Circuit circuit to inspect In the turn inspection method, the supply electrode of the supply unit and the detection electrode of the detection unit are maintained in a state where the supply electrode surface of the supply unit and the detection electrode surface of the detection unit are separated from the surface of the pattern to be inspected.
  • An inspection signal is supplied from one of the inspection target areas of the inspection target pattern in which the inspection target area is formed in a row, and an inspection signal from the inspection target pattern is detected from the other to inspect the inspection target pattern.
  • the supply electrode of the supply unit and the detection electrode of the detection unit are separated from the supply electrode surface of the supply unit and the detection electrode surface of the detection unit from the surface of the pattern to be inspected. Is maintained, and at least one of the supply electrode and the detection electrode is moved across the inspection target area of the inspection target pattern, and the detection result of the inspection signal detected by the detection electrode is a detection signal value that is constant to some extent.
  • the detection result of the inspection signal detected by the detection electrode is a detection signal value that has rapidly changed. Characterized in that the defective inspection object pattern and defective position on the inspection target butter over down to determine if that.
  • the width of the detection electrode is at least two columns of the pattern to be inspected
  • the disconnection is detected by the inspection signal from the pattern to be inspected to which the inspection signal is supplied, and the inspection in which the inspection signal is supplied. It is characterized in that a short circuit is detected by a test signal from a test pattern adjacent to the target pattern.
  • the detection electrode includes a first detection electrode and a second detection electrode, and the first detection electrode detects a disconnection based on a test signal from a test target pattern to which a detection signal is supplied, and performs an inspection. A short circuit is detected by the second detection electrode based on a test signal from a test pattern adjacent to the test pattern to which the signal is supplied.
  • the position of the detection unit which is not detected by the detection unit is identified and held, and the supply electrode of the supply unit and the detection electrode of the detection unit are moved to the detection position, and the detection of the supply electrode or the detection electrode is performed. It is characterized in that either one is moved along the pattern toward the other, and the change position is determined as the defective position of the inspection target pattern based on the detection result of the detection means.
  • one of the supply electrode of the supply means and the other of the detection electrodes of the detection means is brought into contact with the pattern to be inspected.
  • an imaging means provided on one of the supply electrode and the detection electrode is moved along the pattern toward the other, and an image of a defective state at a defective position of the inspection target pattern is taken.
  • FIG. 1 is a diagram for explaining a pattern inspection principle of an embodiment of the present invention.
  • FIG. 2 is a flowchart for explaining inspection control of the inspection apparatus according to the present embodiment.
  • FIG. 3 is a diagram showing an example of detection signals when three adjacent inspection target patterns are short-circuited (short-circuited) in the inspection apparatus according to the present embodiment.
  • FIG. 4 is a diagram showing an example of a detection waveform in a case where one of the inspection target patterns in the inspection apparatus according to the present embodiment is disconnected (open) in the middle.
  • FIG. 5 is a diagram showing a configuration of an inspection apparatus according to the second embodiment'example of the present invention.
  • FIG. 6 is a diagram showing a configuration of an inspection apparatus according to a third embodiment of the present invention.
  • FIG. 7 is a diagram for explaining electrode movement control in the inspection apparatus according to the third embodiment.
  • FIG. 8 is a flowchart for explaining the pattern defect location specifying control according to the third embodiment.
  • FIG. 9 is a diagram showing an example of a defective pattern detection signal waveform at a sensor electrode in the device according to the third embodiment.
  • FIG. 10 is a diagram showing an example of a detection signal waveform of a sensor electrode in a defective pattern.
  • FIG. 11 is a diagram for explaining a configuration of an inspection apparatus according to a fourth embodiment of the present invention.
  • FIG. 12 is a diagram for explaining a configuration of an inspection apparatus according to a fifth embodiment of the present invention.
  • FIG. 13 is a diagram for explaining a configuration of an inspection device according to a modified example 2 of the fifth embodiment according to the present invention.
  • FIG. 14 is a view for explaining a configuration of an inspection apparatus according to a modified example 2 of the fifth embodiment according to the present invention.
  • FIG. 15 is a diagram for explaining a configuration of an inspection device according to a modified example 2 of the fifth embodiment according to the present invention.
  • FIG. 16 is a diagram for explaining a configuration of an inspection device according to a modified example 2 of the fifth embodiment according to the present invention.
  • FIG. 17 is a diagram for explaining a configuration of an inspection apparatus according to a sixth embodiment of the present invention.
  • FIG. 18 is a view for explaining a configuration of an inspection apparatus according to a modified example II of the sixth embodiment according to the present invention.
  • FIG. 19 is a view for explaining a configuration of an inspection apparatus according to a modified example II of the sixth embodiment according to the present invention.
  • FIG. 20 is a view for explaining a configuration of an inspection apparatus according to a modified example II of the sixth embodiment of the present invention.
  • FIG. 21 is a diagram for explaining a configuration of an inspection apparatus according to a modified example II of the sixth embodiment according to the present invention.
  • FIG. 22 is a diagram for explaining a configuration of an inspection apparatus according to a seventh embodiment of the present invention.
  • FIG. 23 is a view for explaining a configuration of an inspection apparatus according to a modified example ⁇ of the seventh embodiment of the present invention.
  • FIG. 24 is a diagram for explaining the configuration of the inspection device of Modification Example II of the seventh embodiment of the present invention.
  • FIG. 25 is a view for explaining a configuration of an inspection apparatus according to a modified example II of the seventh embodiment of the present invention.
  • FIG. 26 is a view for explaining a configuration of an inspection apparatus according to a modified example II of the seventh embodiment of the present invention.
  • FIG. 27 is a view for explaining the configuration of the inspection apparatus according to the eighth embodiment of the present invention.
  • FIG. 28 is a view for explaining the configuration of an inspection apparatus according to a modified example II of the eighth embodiment of the present invention.
  • FIG. 29 is a view for explaining a configuration of an inspection apparatus according to a modified example II of the eighth embodiment of the present invention.
  • FIG. 30 is a view for explaining a configuration of an inspection apparatus according to a modified example II of the eighth embodiment of the present invention.
  • FIG. 31 is a diagram for explaining a configuration of an inspection apparatus according to a modified example II of the eighth embodiment of the present invention.
  • FIG. 32 is a diagram of a substrate to be inspected having a disconnection and a short circuit among the substrates to be inspected according to the present invention.
  • FIG. 33 is a diagram illustrating a detection result of a test signal according to the fifth embodiment of the present invention.
  • FIG. 34 is a diagram showing a detection result of a test signal according to the sixth embodiment of the present invention.
  • FIG. 35 is a diagram showing a detection result of a test signal according to the seventh embodiment of the present invention.
  • FIG. 36 is a diagram showing a detection result of a test signal according to the eighth embodiment of the present invention.
  • FIG. 37 is an example showing another shape of the conductive pattern 15 to be inspected.
  • the present invention is not limited to the examples described below, and is not limited in any way as long as at least the vicinity of both ends of the inspection target area is formed in a row.
  • FIG. 1 illustrates the principle of pattern inspection according to an embodiment of the present invention.
  • reference numeral 10 denotes a substrate on which a conductive pattern to be detected according to the present embodiment is provided.
  • a glass substrate used for a liquid crystal display panel is used. I have.
  • Conductive patterns 15 for forming a dot matrix display panel to be inspected by the circuit pattern inspection apparatus of the present embodiment are arranged in rows on the surface of the glass substrate 10 at regular intervals.
  • the width of each pattern 15 is substantially the same, and the intervals between the patterns are also substantially equal.
  • the inspection can be performed in the same manner even if the pattern intervals are not equal.
  • a control section that controls the entire inspection apparatus 70 is a robot controller that controls the scalar mouth pot 80, 80 is a liquid crystal panel that is positioned and held at the inspection position, and is controlled according to the control of the mouth pot controller 70.
  • This is a slurry pot that scans so that the sensor electrodes of the sensor unit 20 and the supply electrodes of the inspection signal supply unit 30 sequentially cross all the connection terminals of the conductive pattern to be inspected on the liquid crystal panel 10.
  • the scalar robot 80 is configured to be three-dimensionally positionable in order to position the inspection target substrate (liquid crystal panel) 10 at a predetermined inspection position. Similarly, three-dimensional positioning control is possible so that the sensor unit 20 and the inspection signal supply unit 30 are moved on the inspection target pattern while maintaining a predetermined distance from the surface of the inspection target substrate 10. .
  • the sensor unit 20 and the inspection signal supply unit 30 are moved on the inspection target pattern while maintaining the sensor unit 20 and the inspection signal supply unit 30 at a predetermined distance from the surface of the inspection target substrate 10 by the scalar port 80.
  • this embodiment is
  • the sensor section 2 ′ 0 and the inspection signal supply section 30 are fixed, and the substrate to be inspected 10 is the sensor section 20 and the tip electrodes 25 of the inspection signal supply section 30. It may be controlled so that the substrate is moved while maintaining a predetermined distance from the surface of the substrate 35. Even with such control, exactly the same operation and effect can be obtained.
  • the moving distance of the sensor electrode 25 and the moving distance of the supply electrode 35 are mutually set. It is necessary to synchronize and control at least a part of the sensor electrode 25 so that the supply electrode 35 is at the other end position of the pattern to which the test signal is actually supplied. By controlling in this way, even if the pattern intervals are not equal or the pattern pitches at the both ends are different, it is possible to respond simply by controlling the moving speed of both electrodes of the scalar rod.
  • a sensor electrode 25 and a supply electrode 35 are disposed on at least the front end surfaces of the sensor unit 20 and the detection signal supply unit 30 according to the present embodiment.
  • the sensor electrode 25 and the supply electrode 35 are formed of metal, for example, copper (Cu) or gold (Au).
  • Each electrode may be covered with an insulating material for protection. Further, for example, a semiconductor may be used as the electrode, but the reason why the electrode is formed of metal is that the capacitance between the electrode and the conductive pattern can be increased.
  • the inspection signal supply unit 30 is moved by the scalar robot 80 so as to cross one terminal of the pattern to be inspected, such as the liquid crystal panel 10, and sequentially supplies the inspection signal to each pattern to be inspected via capacitive coupling.
  • the width of the supply electrode 35 at the tip end be, for example, equal to or less than the pattern pitch of the pattern to be inspected (the width of the pattern width and the pattern gap of the inspection pattern). This is because when the width of the supply electrode 35 is larger than the pattern pitch of the pattern to be inspected, when the sensor electrode 25 of the sensor unit 20 detects the inspection signal, the inspection signal from the pattern to be inspected other than the pattern to be inspected is detected. Is detected.
  • the width of the supply electrode 35 does not necessarily have to be equal to or smaller than the pattern pitch of the pattern to be inspected. If only a plurality of patterns to be inspected and patterns adjacent to this pattern can be grasped, the present embodiment, which will be described in detail later, will be described. The inspection can be performed by the inspection method of the embodiment.
  • the inspection signal supply unit 30 since the inspection signal supply unit 30 according to the present embodiment supplies the inspection signal in a non-contact manner, it is impossible to completely eliminate the supply of the inspection signal to the adjacent pattern to be inspected. Therefore, even if the width of the supply electrode 35 is set to be equal to or smaller than the pattern pitch of the pattern to be inspected, the inspection signal is generated in the same manner as when the width of the supply electrode 35 is not smaller than the pattern pitch of the pattern to be inspected. Is supplied to an adjacent pattern to be inspected. However, as described later, the inspection apparatus of the present invention inspects a pattern to be inspected by using a ratio of a relative change of a detection signal value of a defective pattern to a detection signal value of a normal pattern. Even if the detection of 25 includes the inspection signal supplied to the adjacent pattern to be inspected, it does not affect the relative change rate, so that the inspection is possible.
  • the sensor section 20 is moved by the scalar port 80 so as to cross one terminal of the pattern to be inspected such as the liquid crystal panel 10 and sequentially supplies an inspection signal to each pattern to be inspected via capacitive coupling.
  • the detection signal supplied by the section 30 is to be detected, and the width of the sensor electrode 25 at the tip end is, for example, wider than the width of the supply electrode 35 by at least one pitch of the pattern to be inspected. Is desirable.
  • the detection signal from the sensor unit 20 is sent to the analog signal processing circuit 50
  • the analog signal is processed.
  • the analog signal processed by the analog signal processing circuit 50 is sent to the control unit 60, and the quality of the test pattern to which the test signal supply unit 30 of the LCD panel 10 is in contact is determined. You.
  • the control section 60 also controls the supply of the test signal to the test signal supply section 30.
  • the analog signal processing circuit 50 amplifies the detection signal from the sensor section 20 by the amplifier 51 and the amplifier 51.
  • the bandpass filter 52 which removes the noise component of the detected signal and allows the detection signal to pass
  • the rectifier circuit 53 which performs full-wave rectification of the signal from the bandpass filter 52, is full-wave rectified by the rectifier circuit 53. It has a smoothing circuit 54 for smoothing the detected signal. It is not necessary to provide the rectifier circuit 53 for performing full-wave rectification and the smoothing circuit 54 for smoothing the detection signal.
  • the control unit 60 controls the entire inspection apparatus of the present embodiment, and processes the computer 62 (CPU) 61, the ROM 62 storing the control procedure of the CPU 61, and the like, and processes the CPU 61.
  • RAM 63 which temporarily stores progress information and detection signals, etc., converts analog signals from analog signal processing circuit 50 into corresponding digital signals, and supplies them to AZD converter 64, inspection signal supply unit 30
  • a signal supply unit 65 for supplying a test signal to be provided, and a display unit 66 for displaying test results, operation instruction guidance, and the like are provided.
  • the signal supply unit 65 generates, for example, a sine wave signal of, for example, AC 200 kHz, 200 V as a test signal, and supplies the signal to the test signal supply unit 30.
  • the band-pass filter 52 is a band-pass filter that passes the test signal 200 kHz. It is needless to say that the inspection signal is not limited to a sine wave signal, but may be a rectangular wave or a pulse wave as long as it is an AC signal.
  • FIG. 2 is a flowchart for explaining inspection control of the inspection apparatus of the present embodiment.
  • the glass substrate on which the conductive pattern to be inspected is formed is moved to a position (work position) of the circuit pattern inspection apparatus according to the present embodiment on a transport path (not shown). It is transported.
  • the liquid crystal panel 10 to be inspected is set in the inspection device.
  • the substrate to be inspected that has been automatically transported may be set in the inspection apparatus by a transport rod (not shown), or may be directly set by an operator.
  • the control unit 60 activates the mouth pot controller 70 to control the scalar robot 80 and positions the inspection target at the inspection position.
  • step S3 an inspection signal is supplied to an initial position on one end side of the inspection target pattern 15 to be inspected (the liquid crystal panel) 10 (the position of the first inspection target pattern separated by a predetermined distance).
  • the sensor electrode 25 of the sensor part 20 is conveyed to the initial position (the position of the endmost pattern to be inspected away from the predetermined distance) on the other end side of the pattern to be inspected. Position.
  • the gap (distance between the pattern to be inspected and the electrode) is kept in a range of, for example, 100 m to 200 m.
  • the gap is not limited to the above example, and the gap in the present embodiment is determined according to the size of the pattern to be inspected. When the size is small, the gap becomes narrow.
  • a coating is formed on the electrode surface with an insulating material so that the pattern and the electrode do not come into direct contact with each other.
  • Supply unit 30 directly on substrate By controlling the gap so that the thickness is substantially equal to the thickness of the material, the distance between the pattern to be inspected and the electrode can be easily and accurately set to a fixed distance to perform the inspection.
  • step S5 the signal supply unit 65 is instructed to start supplying the test signal to the supply electrode 35 of the test supply unit 30.
  • step S7 keeping the distance between the pattern and the electrodes constant, synchronizing the electrodes 25 and 35 of the sensor section 20 and the inspection signal supply section 30 so as to cross the pattern to be inspected.
  • control scanning of the inspection target
  • the sensor electrode 25 thereafter detects the signal potential from the pattern to be inspected to which the inspection signal is supplied by capacitive coupling with the supply electrode 35.
  • the supply electrode 35 when the supply electrode 35 is located at the position of the pattern to which the inspection signal is supplied, at least a part of the sensor electrode 25 is at the other end position of the inspection target pattern to which the inspection signal is supplied, and The sensor electrode 25 at the other end is also controlled to move by one pitch of the pattern to be inspected while 35 moves by one pitch of the pattern to be inspected at the one end.
  • step S 10 the signal processing circuit 50 is started, and control is performed so that the detection signal from the sensor electrode 25 is processed and output to the control unit 60.
  • the detection signal from the sensor electrode 25 of the sensor section 20 is amplified to a required level by the amplifier 51, and the detection signal amplified by the amplifier 51 is converted into a signal of the inspection signal frequency.
  • the signal from the bandpass filter 52 is sent to a bandpass filter 52, which removes noise components, and then the signal from the bandpass filter 52 is subjected to full-wave rectification by a rectifier circuit 53. Is smoothed by the smoothing unit ⁇ 54 and sent to the AZD conversion unit 64 of the control unit 60.
  • the CPU 61 activates the AZD conversion unit 64 to convert the input analog signal into a corresponding digital signal, and reads the detection signal detected by the sensor electrode 25 as a digital value.
  • the RAM 63 sequentially stores the sent detection signals.
  • the read detection signal includes all of the detection signals from the normal inspection target pattern, the detection signals from the disconnected inspection target pattern, and the detection signals from the adjacent inspection target pattern short-circuited with the inspection target pattern. It is.
  • step S14 it is determined whether or not the inspection of the pattern to be inspected is completed, for example, whether or not the sensor electrode 25 has moved to a position beyond the last pattern of the pattern to be inspected. Check whether the inspection of the target pattern has been completed).
  • step S16 If the inspection has been completed only halfway through the pattern to be inspected, the flow advances to step S16 to continue scanning the electrodes and supply an inspection signal to the next pattern. Then, the process returns to step S10 to continue the reading process.
  • step S14 when the inspection for all the inspection target patterns is completed, the process proceeds to step S20, instructing the signal supply unit 65 to stop the supply of the inspection signal, and The processing circuit 50 stops the operation of the AZD conversion unit 64.
  • step S22 the inspection object is removed from the inspection position, positioned and transported to the next transport position, and necessary post-processing is performed.
  • the pattern inspection can be performed without any contact between the sensor electrode 25 and the supply electrode 35 at all. I can do it. For this reason, even a substrate having a low strength of the inspection target pattern can be inspected without causing a problem such as damaging the inspection target pattern.
  • the AC sine wave signal which is a continuous signal from the supply electrode 35 is moved while moving the sensor electrode 25 and the supply electrode 35 across the pattern to be inspected. Is supplied to the pattern to be inspected, and the signal potential from the pattern to be inspected is detected by the sensor electrode 25.Therefore, the detection signal, which is the signal potential obtained from the sensor electrode 25, has a certain constant continuous detection signal value. Is detected as
  • defect inspection target patterns such as open (disconnection inspection target pattern) and short (inspection target pattern short-circuited with the next inspection target pattern).
  • a continuous detection signal value that is constant to some extent that a normal inspection target pattern without open or short circuit is detected in a continuous range
  • a defect detection signal value that is detected at a defect inspection target pattern position that has open or short circuit
  • the detection signal value of a failure due to an open shot appears as a numerical value difference, that is, a change in the numerical value, among the detection signal values that are constant to a certain extent.
  • the inspection device performs inspection while sequentially changing the inspection target substrate, Due to a change in the gap between the sensor electrode 25 and the pattern to be inspected, a change in the gap between the supply electrode 35 and the pattern to be inspected, etc. Each time is changed, the value becomes a different value as the absolute value.
  • the determination of the defect of the inspection target substrate and the identification of the position of the defect inspection target pattern having an open or short circuit by the inspection control of the conductive pattern according to the present embodiment are performed by detecting an open circuit that appears in a certain constant continuous detection signal value. It is possible to use the numerical value difference between the detection signal values of the failures due to the short circuit and the short circuit, that is, the relative change in the detection signal value.
  • a relative value such as a ratio of a failure detection signal value to a continuous detection signal value or a variation ratio of a failure detection signal value can be used as a threshold value for determining a failure and specifying a failure position. Even if the inspection apparatus does not use continuous detection signal values which are constant to some extent as absolute values, even if the inspection apparatus performs inspection while sequentially changing the inspection target board, it is possible to reliably determine a defect and specify a defective position.
  • the inspection control of the conductive pattern according to the present embodiment is not limited to the above example, and the detection read in step S12 is performed between step S12 and step S14. It is checked whether or not the signal is within the threshold range based on the relative value. If the detection result is within the threshold range, the process proceeds to step S14.
  • a step of determining that the pattern is an open or short-circuited defect inspection target pattern and storing the position or state of the inspection target pattern may be provided.
  • FIGS. 3 and 4 show test signal detection results by the sensor electrode 25 under the above control.
  • Fig. 3 is a diagram showing an example of detection of an inspection signal when three points of an inspection pattern in the inspection apparatus according to the present embodiment are broken (open)
  • Fig. 4 is a diagram showing one of the inspection target patterns according to the present embodiment. Short circuit in the middle ( It is a figure which shows the example of an inspection signal detection in case of (short).
  • the inspection signal (AC signal) supplied from the signal supply unit 65 to the supply electrode 35 is supplied to the capacitively coupled inspection target pattern, and the inspection target pattern is And reaches the lower part of the sensor electrode 25 through the sensor, is detected by the sensor electrode 25 by capacitive coupling with the sensor electrode 25, and is output to the controller 60.
  • the supply electrode 35 and the sensor electrode 25 supply and detect the inspection signal (AC signal) while traversing the pattern to be inspected, so that the detection signal is continuously obtained as a somewhat constant detection signal value. Is detected.
  • the detection signal value of the disconnected inspection target pattern portion is smaller than a continuous constant value detected from a normal inspection target pattern.
  • the test signal (alternating power) supplied to the supply electrode 35 from the signal supply unit 65 is short-circuited with the adjacent test pattern.
  • the detection signal from the sensor electrode 25 is superimposed on the detection signal of the adjacent test target pattern, and the detection signal value becomes large. Therefore, as shown in FIG. 4, the detection signal value of the short-circuited pattern to be inspected is larger than a continuous constant value detected from the normal pattern to be inspected.
  • the disconnection and short circuit of the pattern to be detected as described above can be performed with one sensor electrode 25 because the width of the sensor electrode 25 is wider than the width of the supply electrode 35 by at least one pitch of the pattern to be inspected. Because it is set However, the width of the sensor electrode 25 does not necessarily have to be greater than the width of the supply electrode 35 by one pitch or more of the pattern to be inspected. If the inspection target panel that has short-circuited can be inspected, for example, the configuration of the second embodiment described later in detail may be adopted.
  • a threshold value is set within a certain range for a continuous detection signal value having a certain constant value as an absolute value, if the detection signal value is smaller than the threshold value, the disconnection of the pattern to be inspected and the detection signal value are set to the threshold value. If it is larger, it can be determined that the pattern to be inspected is short-circuited. For example, in FIG. 3, if the threshold value is set to 0.02 V pp with respect to a constant detection signal value of 0.60 V pp to a certain extent, the sensor movement distance of 0.58 V pp or less is obtained. The pattern to be inspected at the positions of 2 mm, 2 mm, and 78 mm is judged to be broken.
  • relative values such as the ratio of the detection signal value of the defect to the continuous detection signal Rishi and the rate of change of the detection signal value of the defect are used as the threshold value for determining the defect and specifying the position of the defect. If the continuous detection signal value drops by 3% or more, it can be determined that the inspection pattern is broken, and if the continuous replacement signal value rises by 3% or more, it can be determined that the inspection pattern is short-circuited.
  • the continuous detection signal value which is constant to some extent, changes from about 0.45 V pp (at a position of about 12 mm of the sensor moving distance) to about 0.4 IV pp (about 2 mm of the sensor moving distance). 5 mm position) and about 0.49 It may rise to V pp (sensor movement distance about 48 mm). Even in such a case, the rate of change of the detection signal value at the defective part is somewhat larger than the rate of change of the continuous detection signal value to a certain degree (that is, abrupt). It is possible to do.
  • the absolute value can be used as the threshold value for determining the quality of the pattern, but also the relative change of the detection signal value of the defective pattern with respect to the detection signal value of the normal pattern. Since the ratio can be used as a threshold value, even if the inspection device sequentially inspects the test target substrate while changing it, it is possible to set an optimal threshold value according to the detection result, and the detection signal value varies from inspection to inspection. However, even if the detection signal value is low, these effects can be completely prevented, and an accurate inspection result can be obtained.
  • the inspection device of the present embodiment even in the inspection method in which the detection signal value is minute because both the sensor unit and the inspection signal supply unit are non-contact, by using the inspection device of the present embodiment, The difference can be reliably recognized, and the inspection of the pattern state can be performed easily and surely.
  • the quality of the pattern can be detected very accurately and easily compared to the conventional method of determining the quality using the absolute value of the detection signal value as a threshold.
  • accurate positioning accuracy is not required, and the inspection can be performed with high accuracy even on a substrate having a very fine pattern pitch to be inspected.
  • the detection signal value is not completely constant, it is possible to identify a defective portion based on a sudden change in the detection signal value.
  • FIG. 5 is a diagram for explaining the configuration of the inspection apparatus according to the second embodiment of the present invention.
  • FIG. 5 the same components as those shown in FIG. 1 of the first embodiment are denoted by the same reference numerals, and detailed description will be omitted.
  • a first sensor electrode 22 and a second sensor electrode 24 are provided on at least the tip surface of the sensor section 20.
  • the first sensor electrode 22 and the second sensor electrode 24 are spaced apart from each other by the pattern pitch of the pattern to be inspected, and the first sensor electrode 22 actually has the supply electrode 35.
  • the second sensor electrode 24 is provided adjacent to the inspection target pattern to which the supply electrode 35 actually supplies the inspection signal. It is provided in an offset state at the other end position of the adjacent inspection target pattern.
  • the first sensor electrode 22 is provided so that the supply electrode 35 is located at the other end of the pattern to be inspected to which the inspection signal is actually supplied, the inspection of the disconnection of the pattern to be inspected is performed.
  • the second sensor electrode 24 is provided in a state where the supply electrode 35 is offset to the other end position of the adjacent test pattern adjacent to the test pattern to which the test signal is actually supplied. Inspect the short-circuit between the pattern to be inspected and the adjacent pattern to be inspected. It is desirable that the width of the first sensor electrode 22 and the second sensor electrode 24 be equal to or smaller than the pattern width of the pattern to be inspected.
  • the first sensor electrode 22 performs an inspection for disconnection of the pattern to be inspected
  • the second sensor electrode 24 performs an inspection for a short circuit between the pattern to be inspected and the adjacent pattern to be inspected. This is to realize very high-precision inspection.
  • the width of the first sensor electrode 22 is less than or equal to the pattern width of the pattern to be inspected, the pattern to be inspected is broken, and the pattern to be inspected and the adjacent pattern to be inspected are short-circuited. Even in such a case, the first sensor electrode 22 is less susceptible to the detection signal from the test signal from the adjacent test pattern that has flowed into the adjacent test pattern from the test pattern through the short-circuited portion. Become. If the width of the second sensor electrode 24 is smaller than the pattern width of the pattern to be inspected, there is no disconnection or short circuit in the pattern to be inspected. Even when the target pattern is short-circuited, the second sensor electrode 24 is less likely to be affected by the inspection signal from the inspection target pattern.
  • the inspection of the disconnection / short-circuit by the first sensor electrode 22 and the second sensor electrode 24 depends on whether or not the inspection target pattern is disconnected and whether or not the adjacent inspection target pattern is short-circuited. Even if it is present, very high-precision inspection can be realized.
  • the widths of the first sensor electrode 22 and the second sensor electrode 24 do not necessarily have to be smaller than the pattern width of the pattern to be inspected is different from the sensor electrode 25 according to the first embodiment. Is clearer.
  • the first sensor electrode 22 and the second sensor electrode 24 detect the inspection signal in a non-contact manner, it is impossible to completely eliminate the detection signal from the adjacent inspection target pattern. That is, even if the width of the first sensor electrode 22 and the second sensor electrode 24 is smaller than the pattern pitch of the pattern to be inspected. In the case where the width of the first sensor electrode 22 and the width of the 'second sensor electrode 24' are not smaller than the pattern pitch of the pattern to be inspected, the inspection signal from the adjacent pattern to be inspected is detected. Will be done.
  • the inspection apparatus of the present invention performs the inspection of the inspection target pattern using the relative change ratio of the detection signal value of the defective pattern to the detection signal value of the normal pattern, the first sensor electrode 2 Even if the second and second sensor electrodes 24 detect an inspection signal from an adjacent inspection target pattern, the inspection is possible because it does not affect the relative rate of change.
  • the offset sensor electrode is described to be the second sensor electrode 24, but the adjacent sensor pattern adjacent to the test pattern is different from the adjacent sensor pattern.
  • a third sensor electrode that detects the test signal from the second adjacent test pattern adjacent on the opposite side, a short circuit with two adjacent test patterns adjacent to both sides of the power test pattern is provided. It is also possible to inspect at the same time.
  • the sensor electrode provided in the sensor section 20 is a first sensor electrode 2
  • the present invention is not limited to the above example.
  • one of the sensor electrode 25 and the supply electrode 35 can be moved and controlled along the pattern to be inspected. After identifying the defective pattern, both electrodes are positioned at the position of the defective pattern, one electrode is moved on the pattern along the defective pattern, the detected signal value at sensor electrode 25 is read, and the detected signal value changes. Detects the position and identifies it as a pattern defect occurrence location May be configured.
  • FIG. 6 is a diagram illustrating an inspection apparatus according to a third embodiment of the present invention
  • FIG. 7 is a diagram illustrating electrode movement control in the inspection apparatus according to the third embodiment of the present invention.
  • FIG. 9 is a flowchart for explaining the pattern defect location specifying control of the third embodiment
  • FIG. 9 is an example of a defect pattern detection signal waveform at the sensor electrode 25 in the device of the third embodiment.
  • FIG. 10 is a diagram showing an example of a detection signal waveform of the sensor electrode 25 in a defective pattern.
  • a camera 26 is attached to the detection unit 20.
  • the camera 26 of ⁇ ! is connected to, for example, the display unit 66 of the control unit 60 to display the captured image, and is used to observe the state of occurrence of a pattern failure at the location where the pattern failure has occurred.
  • the inspection signal supply unit 30 is provided with a probe contact means 32 to which an inspection signal supply probe for supplying an inspection signal is attached. The probe contact means 32 and the inspection signal supply probe are used to reliably identify the location where the pattern defect has occurred.
  • the movement of the scalar rod is controlled not only in the direction of the arrow in FIG. 6 but also in the longitudinal direction of the pattern in FIG.
  • the inspection control shown in FIG. 2 of the first embodiment described above is performed to inspect whether or not the inspection target pattern has a defect.
  • the inspection target pattern position of the inspection target pattern which is determined to be the pattern disconnection is held in, for example, RAM63.
  • the process proceeds to the defective portion specifying process.
  • Defective part feature of the third embodiment In the constant processing, the supply electrode 35 and the sensor electrode 25 are first synchronized and moved to the pattern position determined to be defective, as shown by 1 in Fig. 7. Subsequently, as shown by the triangle in FIG. 7, the inspection signal is sequentially read while moving the sensor electrode 25 from the pattern end toward the other end, and the position where the read signal changes rapidly (the detection signal is not detected) , Or a position that changes to a low level), and identifies that position as a pattern defect location.
  • step S14 the detection signal stored in the RAM 63 is checked to determine whether or not a defective pattern has been detected. Then, if no defective pattern is detected, the process proceeds to step S20.
  • the signal supply unit 65 is deenergized, and the electrodes are positioned at the initial position as in step S3, and the process proceeds to the processing shown in FIG. Then, after the processing shown in FIG.
  • a defective pattern position detected in the processing of steps S1 to S'16 shown in FIG. 2 is specified.
  • Fig. 9 shows the detection signal waveform when a part of the pattern is broken.
  • a signal before signal processing in the analog signal processing circuit 50 is shown.
  • the circles indicate the signal waveforms detected as open patterns (when two patterns are broken).
  • step S33 the robot controller 70 is started, and the scalar port pot 80 is controlled to move the sensor electrode 25 and the supply electrode 35 to the defective pattern position while synchronizing with each other.
  • the sensor voltage is placed almost at the center of the width of the defective pattern. Position the electrode 25 and the supply electrode 35 in such a way that the center in the width direction is square (control (1) in Fig. 7).
  • step S35 in which the signal supply unit 65 is activated to apply an inspection signal to the supply electrode 35 and supply the inspection signal to the defective pattern.
  • the mouth pot controller 70 is activated to move the sensor electrode 25 in the direction of the supply electrode 35 along the pattern (control (1) in FIG. 7).
  • step S40 the detection signal from the sensor electrode 25 is read as shown in step S40. Then, in the following step S42, it is checked whether or not the detection signal value from the sensor electrode 25 has changed significantly. If not, the process returns to step S37 to continue the movement of the sensor electrode 25.
  • step S42 if the detection signal value from the sensor electrode 25 greatly changes in step S42, the process proceeds to the change step S44, and the position where the detection signal from the sensor electrode 25 starts to change greatly The position where the large change has disappeared is determined, and the intermediate position between those positions is specified as the pattern defective portion.
  • FIG. 10 shows an example of a detection signal waveform at the sensor electrode 25.
  • the inspection signal supplied by the supply electrode 35 did not reach the sensor electrode 25 up to the disconnection point, and the detection signal value was low, but the inspection signal was supplied beyond the disconnection point. Since the inspection signal arrives, the detection signal value increases. For example, an intermediate position between the position at which the detection signal from the sensor electrode 25 starts to change significantly and the position at which the detection signal no longer changes is identified as a pattern defect portion. Is identified as a defective part.
  • the sensor electrode 25 is moved in the direction of the supply electrode.
  • the supply electrode 35 may be moved in the direction of the sensor electrode 25.
  • the first embodiment In the same way as in the above embodiment, it is possible to perform a high-precision pattern pass / fail inspection without contact, and by controlling the movement of the sensor electrode in the X and Y directions, it is possible to determine whether there is only a defective pattern. Not only inspection but also specific failures can be identified. For this reason, for example, if necessary, a defective portion can be repaired in a short time.
  • the defect occurrence state of the pattern defect occurrence portion In order to determine whether or not repair is possible in repairing the above-mentioned defective portion, it is desirable to be able to observe the defect occurrence state of the pattern defect occurrence portion. For example, if it is found that only dust or the like has adhered to the location where the pattern defect has occurred, it can be determined that the repair can be performed on the spot, and if the failure is fatal, it is determined that the repair is not performed. be able to. 'The camera 26 attached to the detection unit 20 is used for observing the failure occurrence state at the pattern failure occurrence location. Since the camera 26 is attached to the detection unit 20, the photographing of the camera 26 is started in the step S35, and the photographing is performed while the steps S40 and S42 are performed.
  • step S42 The image of the pattern defect location captured in this way is displayed during shooting and after the pattern defect location is specified. Displayed in part 66, it is used to observe the failure occurrence state of the pattern failure occurrence location.
  • the state of a defective portion of the pattern varies from a completely disconnected state or a short-circuited state to a partially disconnected state or a partially short-circuited state due to an attached substance such as dust.
  • a test signal waveform as shown in FIG. 10 may not be obtained in an inspection in which both the sensor electrode 25 and the supply electrode 35 are in non-contact.
  • the probe contact means 32 is operated to bring the inspection signal supply probe into contact with one end of the defective pattern, and then the sensor electrode 25 is moved on the pattern along the defective pattern.
  • a contact-type sensor probe is used in place of the sensor electrode '25 at the other end of the defective pattern, and this sensor probe is brought into contact with the other end to connect the non-contact supply electrode 35 with the defective pattern. It may be moved in the direction of the sensor probe at the other end.
  • FIG. 11 is a view for explaining the configuration of the inspection apparatus according to the fourth embodiment of the present invention. 11, the same components as those shown in FIG. 1 of the above-described first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • a laser displacement meter 28 is attached to the detection unit 20 and a laser displacement meter 38 is attached to the inspection signal supply unit 30. Detection from both displacement meters 28, 38 A distance measuring unit 90 for measuring the distance from the result to the detecting unit 20, the inspection signal supplying unit 30, and the surface of the inspection target substrate is provided.
  • the scalar robot 80 can control the detection unit 20 and the inspection signal supply unit 30 two-dimensionally (X-Y), and can also control the direction orthogonal to the figure (vertical direction, that is, perpendicular to the paper surface). (Z direction).
  • the distance measurement unit 90 activates the laser displacement meters 28 and 38 simultaneously with the movement of the electrodes, so that the distance between each electrode and the surface of the inspection target substrate is increased. The distance is measured, and the measurement result is output to the control unit 60.
  • the control unit 60 also averages the measurement results of the measurement distances from the distance measurement unit 9.0 while the electrodes move a fixed distance, and adjusts the distance between the electrodes and the pattern so that the averaged distance is constant. Controlling.
  • the distance between the electrode and the substrate surface is controlled according to the average of the distances of three inspection target patterns.
  • the reason for averaging the distances in this way is to prevent abrupt Z-direction control and provide gentle control, as well as to reduce the effects of noise and measurement errors.
  • Controlling not only the X-Y direction but also the Z-direction in this way is particularly effective for large-scale board c inspection.
  • the curvature of the substrate surface cannot be avoided, and even in such a case, it is possible to effectively prevent the electrode from coming into contact with the pattern.
  • the range of the measurement distance to be averaged should be narrowed to enable more sensitive detection.
  • the present invention is not limited to the above example.
  • a configuration may be adopted in which the inspection signal supply unit 30 is disposed substantially at the center of the inspection target pattern.
  • FIG. 12 shows the inspection according to the fifth embodiment of the present invention. It is a figure for explaining composition of a device.
  • the sensor unit is composed of a first sensor unit 20a and a second sensor unit.
  • the first sensor section 20a is provided with a sensor electrode 25a
  • the second sensor section 20b is provided with a sensor electrode 25b.
  • the inspection signal supply unit 30 is moved by the scalar port 80 so as to substantially cross the center of the pattern to be inspected, such as the liquid crystal panel 10, and sequentially outputs the inspection signal to each pattern to be inspected via capacitive coupling. Supply.
  • the crossing position of the inspection signal supply section 30 does not have to be approximately at the center of the pattern to be inspected, but is between the first sensor section 20a and the second sensor section 20b. If the configuration is arranged in this manner, the inspection can be performed by the inspection method of the present embodiment.
  • the first sensor unit 20a is moved by the scalar port 80 so as to cross one end of the pattern to be inspected, such as the liquid crystal panel 10, and the second sensor unit 20b is The test signal supply unit moves across the other end of the pattern to be inspected and sequentially connects to the pattern to be inspected via capacitive coupling.
  • the detection of the inspection signal supplied by 30 is performed.
  • the width of each of the sensor electrode 25a of the first sensor unit 20a and the sensor electrode 25b of the second sensor unit 20b is, for example, Although the width is substantially the same as the width of the electrode 35, the present invention is not limited to this configuration. For example, at least one pitch of the pattern to be inspected is larger than the width of the supply electrode 35 described in the first embodiment. As described above, the configuration may be wide, or the configuration in which a plurality of sensor electrodes are provided in one sensor unit as described in the second embodiment.
  • the inspection apparatus provides the inspection apparatus according to the first embodiment. Similarly to the second embodiment, even in the inspection method in which the detection signal value becomes very small because both the sensor unit and the supply of the inspection signal are not in contact with each other, By using the inspection device, the difference can be reliably recognized, and the inspection of the background state can be performed easily and reliably.
  • the supply electrode 35, the sensor electrode 25a, and the sensor electrode 25 are provided by arranging the crossing position of the inspection signal supply unit 30 at a position other than both ends of the pattern to be inspected.
  • the inspection distance supplied to the pattern to be inspected by the supply electrode 35 is transmitted to the adjacent pattern to be inspected, and the inspection object is inspected again without passing through the disconnection point of the pattern to be inspected.
  • the impedance due to the resistance component of the pattern to be inspected increases, and the impedance between the pattern to be inspected and the pattern adjacent thereto increases due to the capacitance. Becomes smaller. As a result, the measurement accuracy is reduced because the impedance of the resistance component and the impedance of the capacitance are close to each other.
  • the supply electrode 35, the sensor electrode 25a, and the sensor Since the distance from the pole 25b can be reduced, the pattern state can be inspected with high accuracy.
  • the sensor unit 20 and the inspection signal supply unit 30 are configured to scan the pattern to be inspected sequentially with the scalar port, so as to sequentially traverse the pattern.
  • the present invention is not limited to the above example.
  • the inspection signal supply unit 30 may be configured as shown in FIG. 13 or FIG. As described above, a configuration may be employed in which the inspection target substrate 10 is fixedly arranged at a predetermined distance from the surface of the inspection target substrate 10.
  • the inspection signal supply unit 30 is disposed on the surface of the inspection target substrate 10 on the side where the inspection target pattern is provided.
  • the inspection signal supply unit 30 is provided on the surface of the inspection target substrate 10 opposite to the surface on which the inspection target pattern is provided.
  • the inspection target substrate 10 is an insulator such as glass, so that the inspection signal supply unit 30 and the inspection target pattern can be closely attached to each other in order to reduce the separation distance. Also, since the dielectric constant of glass is higher than that of air, more reliable measurement is possible.
  • the inspection target pattern is supplied with the inspection signal from the supply electrode 35 of the inspection signal supply unit 30 by supplying the inspection signal from the scalar mouth pot,
  • the pattern state can be inspected accurately.
  • the sensor unit 20 and the inspection signal supply unit 30 are configured to scan the inspection target pattern by the scalar robot so as to sequentially cross the inspection target pattern.
  • the sensor section 20a and the sensor section 20b are separated from the surface of the inspection target substrate 10 by a predetermined distance as shown in FIG. 15 or FIG. It may be configured to be fixedly arranged in this state.
  • the sensor unit 20 a and the sensor unit 20 b are disposed on the surface of the surface of the inspection target substrate 10 on which the inspection target pattern is provided.
  • the sensor unit 20a and the sensor unit 20b are formed on the surface of the surface of the inspection target substrate 10 opposite to the surface on which the inspection target pattern is provided. It is arranged in. Since the inspection target substrate 10 is an insulating material such as glass on the opposite surface, the inspection target substrate 10 is brought into close contact with the inspection target pattern to reduce the separation distance between the sensor portions 20a and 20b and the inspection target pattern. be able to . In addition, since the dielectric constant of glass is higher than that of air, more reliable measurement is possible.
  • the inspection signal is supplied from the supply electrode 35 of the inspection signal supply section 30 by supplying the inspection signal from the scalar port.
  • the inspection signal is detected by the sensor electrode of the sensor section 20a, the sensor electrode 25a of the sensor section 20a and the sensor electrode 25b of the sensor section 20b, and the pattern is accurately determined by the method described in the fifth embodiment of the present invention. An inspection of the condition can be made.
  • the present invention is not limited to the above example.
  • a configuration may be adopted in which the sensor unit 20 is disposed substantially at the center of the inspection target pattern.
  • FIG. 17 is a view for explaining the configuration of the inspection apparatus according to the sixth embodiment of the present invention.
  • the test signal supply unit includes a first test signal supply unit 30 a and a second test signal supply unit 3 Ob, and the first test signal supply unit 30 a
  • a second supply electrode 35b is provided in the first supply electrode 35a and the second inspection signal supply section 30b.
  • the first inspection signal supply unit 30a is moved by the scalar port 80 so as to cross one end of the pattern to be inspected, such as the liquid crystal panel 10, and the second inspection signal supply unit 30a 30b moves across the other end of the pattern to be inspected, and sequentially supplies the inspection signal to the pattern to be inspected via capacitive coupling.
  • the sensor unit 20 is moved by the scalar mouth pot 80 so as to substantially cross the center of the pattern to be inspected such as the liquid crystal panel 10, and the sensor electrode 25 of the sensor unit 20 is moved from each pattern to be inspected.
  • the sequential inspection signal is detected via capacitive coupling.
  • the traversing position of the sensor section 20 does not have to be approximately at the center of the pattern to be inspected, but rather the first inspection signal supply section 30a and the second inspection signal supply section 30b. If the configuration is arranged between the above, the inspection can be performed by the inspection method of the present embodiment.
  • the width of the sensor electrode 25 of the sensor section 20 is substantially the same as the width of the supply electrode 35a and the supply electrode 35b, for example.
  • the present invention is not limited to this configuration.
  • a configuration in which the width of the inspection target pattern is at least one pitch or more wider than the width of the supply electrode 35 As described in the second embodiment, a configuration in which a plurality of sensor electrodes are provided in one sensor unit may be employed.
  • the sensor unit and the inspection signal supply unit are both in non-contact as in the first and second embodiments. Even in the inspection method in which the detection signal value is very small, the difference can be reliably recognized by using the inspection apparatus of the present embodiment, and the inspection of the pattern state can be performed easily and surely. .
  • the supply electrode 3 5a and the supply electrode 35b and the sensor electrode 25 are separated from each other, and the distance between the supply electrode 35b and the sensor electrode 25 is shortened.
  • the impedance due to the resistance component of the pattern to be inspected becomes large, and the pattern to be inspected and the pattern adjacent thereto become large.
  • the impedance due to the capacitance of the capacitor decreases.
  • the impedance of the capacitance component and the impedance of the capacitance component are close to each other, so that the measurement accuracy is low.
  • the supply electrode 35a and the supply electrode 35 Since the distance between .b and the sensor electrode 25 can be reduced, the pattern state can be inspected with high accuracy.
  • the scalar port In the embodiment of the sixth invention, the sensor unit 20 and the inspection signal supply unit 30a and the inspection signal supply unit 30b are arranged so as to sequentially traverse the inspection target pattern by the scalar port. Although it was configured to scan, the present invention is not limited to the above example. For example, as shown in FIG. 18 or FIG. It may be configured to be fixedly arranged at a predetermined distance.
  • the sensor unit 20 is disposed on the surface of the surface of the inspection target substrate 10 on the side where the inspection target panel is provided.
  • the sensor unit 20 is disposed on the surface of the surface of the inspection target substrate 10 opposite to the surface on which the inspection target pattern is provided.
  • the inspection target substrate 10 ′ is made of an inexpensive material such as glass, so that it can be adhered to the sensor unit 20 to reduce the separation distance between the inspection target pattern. Also, since the dielectric constant of glass is higher than that of air, more reliable measurement is possible.
  • the pattern to be inspected is
  • the inspection signal is supplied from the supply electrode 35a of the inspection signal supply section 30a by the supply of the inspection signal from the scalar port, and at the same time, the inspection is performed from the supply electrode 35b of the inspection signal supply section 30b.
  • the signal is supplied, and the pattern state can be inspected accurately by the method described in the sixth embodiment of the present invention.
  • the sensor unit 20 and the inspection signal supply unit 30a and the inspection signal supply unit 30b scan by a scalar drop so as to sequentially traverse the inspection target pattern.
  • the present invention is not limited to the above example.
  • the test signal supply unit 30a and the test signal supply unit 30b may be configured as shown in FIG. 20 or FIG. Alternatively, it may be configured to be fixedly arranged at a predetermined distance from the surface of the inspection target substrate 10.
  • the inspection signal supply unit 30a and the inspection signal supply unit 30b are arranged on the surface of the inspection target substrate 10 on the side where the inspection target pattern is provided.
  • the inspection signal supply unit 30a and the inspection signal supply unit 30b are arranged on the surface of the surface of the inspection target substrate 10 opposite to the side on which the inspection target pattern is provided. ing. On the opposite side, since the inspection target substrate 10 is an insulator such as glass, the separation distance between the inspection signal supply unit 30a and the inspection signal supply unit 30b and the inspection target pattern is reduced. For Can be adhered to. Further, since the dielectric constant of glass is higher than that of air, more reliable measurement is possible.
  • the inspection target pattern is supplied by the inspection signal from the scalar opening pot, and is supplied to the supply electrode 35a of the inspection signal supply unit 30a and the inspection signal supply unit.
  • the inspection signal is supplied from the supply electrode 35b of the 30b, the inspection signal is detected by the sensor electrode 25 of the sensor unit 20, and the inspection signal is accurately obtained by the method described in the sixth embodiment of the invention. Inspection of the pattern state can be performed in a short time.
  • the arrangement of the sensor unit and the test signal supply unit is as follows: from the left in FIG. 12, the first sensor unit 20 a, the test signal supply unit 30, The second sensor unit 20 b is arranged, but this arrangement is not limited to this.
  • the inspection signal supply unit 30, the first sensor unit Needless to say, they may be arranged at 20 a and the second sensor unit 20 b.
  • FIG. 22 is a view for explaining the configuration of the inspection apparatus according to the seventh embodiment of the present invention.
  • FIG. 22 the same components as those shown in FIG. 12 of the fifth embodiment described above are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the sensor section includes a first sensor section 20a and a second sensor section 20b.
  • the first sensor section 20a has a sensor electrode 25a and a second sensor section 20b.
  • the sensor section 20b is provided with a sensor electrode 25b.
  • the test signal supply unit 30 is moved by the scalar port 80 so as to cross one end of the pattern to be inspected, such as the liquid crystal panel 10, and the test signal is sequentially supplied to each pattern to be inspected via capacitive coupling. Supply.
  • the first sensor unit 20a is moved by the scalar port 80 so as to traverse substantially the center of the pattern to be inspected, such as the liquid crystal panel 10, and the second sensor unit 2Ob is Then, the inspection signal is moved across the other end of the pattern to be inspected, and the inspection signal sequentially supplied by the inspection signal supply unit 30 to the inspection pattern via the capacitive coupling is detected.
  • the traversing position of the first sensor section 20a does not have to be approximately at the center of the pattern to be inspected, but is located between the inspection signal supply section 30 and the second sensor section 20b.
  • the inspection can be performed by the inspection method of the present embodiment.
  • the width of each of the sensor electrode 25a of the first sensor unit 20a and the sensor electrode 25b of the second sensor unit 20b is, for example, Although the width is substantially the same as the width of the electrode 35, the present invention is not limited to this configuration.
  • at least one pitch of the pattern to be inspected is larger than the width of the supply electrode 35 described in the first embodiment.
  • the configuration may be wide as described above, or the configuration in which a plurality of sensor electrodes are provided in one sensor unit as described in the second embodiment.
  • the sensor unit and the inspection signal supply unit are both in non-contact as in the first and second embodiments. Even in the inspection method in which the detection signal value is very small, the difference can be reliably recognized by using the inspection apparatus of the present embodiment, and the inspection of the pattern state can be performed easily and surely. .
  • the supply electrode 35 and the sensor electrode 25a As the separation distance becomes shorter, the inspection signal supplied to the pattern to be inspected by the supply electrode 35 is transmitted to the adjacent pattern to be inspected, and the signal to be inspected again does not pass through the disconnection point of the pattern to be inspected. Since the number of detection signals detected by transmission to the turn is reduced, the level of the detection signal at the time of disconnection of the inspection target pattern can be increased, so that the pattern state can be inspected accurately.
  • the sensor unit 20 and the inspection signal supply unit 30 are configured to scan the pattern to be inspected sequentially using a scalar robot. Is not limited to the above example.
  • the inspection signal supply unit 30 is fixedly arranged with a predetermined distance from the surface of the inspection target substrate 10. It may be configured.
  • the inspection signal supply unit 30 is provided on the surface of the inspection target substrate 10 on the side where the inspection target pattern is provided.
  • the inspection signal supply unit 30 is provided on the surface of the inspection target substrate 10 opposite to the surface on which the inspection target pattern is provided.
  • the inspection target substrate 10 is an insulator such as glass, so that the inspection signal supply unit 30 and the inspection target pattern can be closely attached to each other in order to reduce the separation distance. Also, since the dielectric constant of glass is higher than that of air, more reliable measurement is possible.
  • the inspection target pattern is supplied with the inspection signal from the supply electrode 35 of the inspection signal supply unit 30 by supplying the inspection signal from the scalar mouth pot,
  • the pattern state can be inspected accurately.
  • the sensor unit 20 and the inspection signal supply unit 30 are configured to scan the inspection target pattern by the scalar robot so as to sequentially cross the inspection target pattern.
  • the invention is limited to the above examples However, for example, the sensor unit 20a and the sensor unit 20b are fixedly arranged at a predetermined distance from the surface of the inspection target substrate 10 as shown in FIG. 25 or FIG. 26. It may be configured.
  • the sensor unit 20a and the sensor unit 20b are disposed on the surface of the surface of the inspection target substrate 10 on which the inspection target pattern is provided.
  • the sensor unit 20a and the sensor unit 20b are arranged on the surface of the surface of the inspection target substrate 10 opposite to the surface on which the inspection target pattern is provided.
  • the inspection target substrate 10 is an insulator such as glass
  • the inspection target substrate 10 is brought into close contact with the inspection target pattern in order to reduce the separation distance between the sensor portions 20a and 20b and the inspection target pattern. be able to .
  • the dielectric constant of glass is higher than that of air, more reliable measurement is possible. .
  • the inspection signal is supplied from the supply electrode 35 of the inspection signal supply section 30 by supplying the inspection signal from the scalar port.
  • the inspection signal is detected by the sensor electrode 25a of the sensor unit 20a and the sensor electrode 25b of the sensor unit 20b, and the pattern state is accurately determined by the method described in the seventh embodiment of the present invention. Inspections can be performed.
  • the arrangement of the sensor unit and the inspection signal supply unit is as follows from the left in FIG.
  • the second test signal supply unit 30b is arranged, but this arrangement is not limited to this.
  • the signal supply unit 30a and the second inspection signal supply unit 30b may be arranged.
  • An eighth embodiment of the present invention configured as described above will be described below with reference to FIG.
  • FIG. 27 is a view for explaining the configuration of the inspection apparatus according to the eighth embodiment of the present invention.
  • the test signal supply unit includes a first test signal supply unit 30a and a second test signal supply unit 30b, and the first test signal supply unit 30a has A second supply electrode 35b is provided in the first supply electrode 35a and the second inspection signal supply section 30b.
  • the sensor section 20 is moved by the scalar robot 80 so as to cross one end of the pattern to be inspected, such as the liquid crystal panel 10, and the sensor electrode 25 of the sensor section 20 is moved from each pattern to be inspected.
  • the test signals are sequentially detected via capacitive coupling.
  • the first inspection signal supply unit 30a is moved by the scalar rod 8 so as to cross almost the center of the inspection target pattern such as the liquid crystal panel 10, and the second inspection signal supply unit 30a b moves across the other end of the pattern to be inspected, and sequentially supplies the inspection signal to the pattern to be inspected via capacitive coupling.
  • the traversing position of the first inspection signal supply unit 30a does not have to be substantially at the center of the pattern to be inspected, but is between the sensor unit 20 and the second inspection signal supply unit 30b. If the configuration is arranged in the inspection, the inspection can be performed by the inspection method of the embodiment.
  • the width of the sensor electrode 25 of the sensor unit 20 is substantially the same as the width of the supply electrode 35a and the supply electrode 35b, for example.
  • the present invention is not limited to this configuration.
  • the width of the supply electrode 35 may be smaller than the width of the supply electrode 35 described in the first embodiment.
  • the sensor unit and the inspection signal supply unit are both in non-contact as in the first and second embodiments. Even in the inspection method in which the detection signal value is very small, the difference can be reliably recognized by using the inspection apparatus of the present embodiment, and the inspection of the pattern state can be performed easily and surely. .
  • the sensor electrode 25 and the supply electrode are provided by arranging the crossing position of the first inspection signal supply unit 30a at a position other than both ends of the pattern to be inspected.
  • the inspection distance supplied to the test pattern by the supply electrode 35a is shortened, and the test signal is transmitted to the adjacent test pattern, and the test is performed again without passing through the disconnection point of the test pattern. Since the number of detection signals detected by being transmitted to the target pattern is reduced, the level of the detection signal at the time of disconnection of the inspection target pattern can be increased, so that the pattern state can be accurately inspected.
  • the distance between the supply electrode 35a and the sensor electrode 25 is long, the impedance due to the resistance component of the pattern to be inspected increases, and the capacitance between the pattern to be inspected and the pattern adjacent thereto increases. Impedance is reduced. As a result, the impedance of the resistance component and the impedance of the capacitance are close to each other, so that the measurement accuracy is low.
  • the separation distance between the supply electrode 35 a and the sensor electrode 25 is small. Can be shortened, so that the pattern state can be inspected with high accuracy.
  • the sensor unit 20 and the inspection signal supply unit 30a and the inspection signal supply unit 30b are connected to each other by a scalar robot. Although it was configured to scan so as to sequentially traverse the elephant pattern, the present invention is not limited to the above example.
  • a configuration may be adopted in which the inspection target substrate 10 is fixedly arranged at a predetermined distance from the surface of the inspection target substrate 10.
  • the sensor unit 20 is disposed on the surface of the surface of the inspection target substrate 10 on the side where the inspection target panel is provided.
  • the sensor unit 20 is provided on the surface of the surface of the inspection target substrate 10 opposite to the surface on which the inspection target pattern is provided.
  • the inspection target substrate 10 is an insulator such as glass, the inspection target substrate 10 can be in close contact with the inspection target pattern in order to reduce the separation distance between the sensor portion 20 and the inspection target pattern. Also, since the dielectric constant of glass is higher than air,
  • the pattern to be inspected is
  • the inspection signal is supplied from the supply electrode 35a of the inspection signal supply unit 30a by the supply of the inspection signal from the scalar port, and at the same time, the inspection is performed from the supply electrode 35b of the inspection signal supply unit 3Qb.
  • the signal is supplied, and the pattern state can be inspected accurately by the method described in the sixth embodiment of the present invention.
  • the sensor section 20 and the inspection signal supply section 30a and the inspection signal supply section 30b scan by a scalar drop so as to sequentially traverse the pattern to be inspected.
  • the present invention is not limited to the above example.
  • the test signal supply unit 30a and the test signal supply unit 30b may be configured as shown in FIG. 30 or FIG. Alternatively, it may be configured to be fixedly arranged at a predetermined distance from the surface of the inspection target substrate 10.
  • the inspection signal supply unit 30 a and the inspection signal supply unit 30 b are provided on the surface of the inspection target substrate 10 on the side where the inspection target pattern is provided.
  • the inspection signal supply unit 30 a and the inspection signal supply unit 3 Ob are provided on the surface of the surface of the inspection target substrate 10 opposite to the surface on which the inspection target pattern is provided. ing.
  • the inspection target substrate 10 is an insulator such as glass, the separation distance between the inspection signal supply unit 30a and the inspection signal supply unit 30b and the inspection target pattern is reduced. Can be brought into close contact. Also, since the dielectric constant of glass is higher than that of air, more reliable measurement is possible.
  • the inspection target pattern is formed by supplying the inspection signal from the scalar mouth pot, the supply electrode 35a of the inspection signal supply unit 30a and the inspection signal supply unit.
  • the inspection signal is supplied from the supply electrode 35b of the 30b, the inspection signal is detected by the sensor electrode 25 of the sensor section 20, and the inspection signal is accurately obtained by the method described in the sixth embodiment of the present invention.
  • the state of the pattern can be detected in a short time.
  • FIG. 32 shows an example of a substrate to be inspected which has a disconnection and a short circuit among the substrates to be inspected in the present invention.
  • the inspection target board shown in Fig. 32 has two breaks 11 and 13 in the longitudinal direction (horizontal direction in the figure) of the conductor pattern i5.
  • the disconnection portion 11 and the short-circuit portion 17 are on the right side of the longitudinal center of the conductor pattern 15, and the disconnection portion 13 and the short-circuit portion 19 are from the longitudinal center of the conductor pattern 15.
  • On the left. Example of detection result of test signal 'in embodiment of fifth invention
  • an inspection signal as shown in FIG. 33 is detected.
  • the sensor electrodes 25a and 25a of the first sensor section 20a of the fifth embodiment are used.
  • the sensor electrode 25 b of the sensor section 20 b of the second embodiment is configured to be wider than the width of the supply electrode 35 of the first embodiment by at least one pitch of the pattern to be inspected. Either of the configurations in which a plurality of sensor electrodes are provided in one sensor unit was used.
  • S1 indicates a sensor output voltage detected by the sensor electrode 25a of the first sensor unit 20a.
  • S2 indicates a sensor output voltage detected by the sensor electrode 25b of the second sensor unit 20b.
  • the signal supply unit 30 and the first sensor unit 20a and the second sensor unit 20b are scanned, and when the signal reaches the disconnection unit 11, A change in the inspection signal indicating a disconnection in the sensor output voltage S2 is detected. Further, when reaching the disconnection portion 13, a change in the inspection signal indicating disconnection in the sensor output voltage S1 is detected. Further, when the short circuit portion 17 is reached, a change in the inspection signal indicating a short circuit in the sensor output voltage S2 is detected.
  • the disconnection of the pattern to be inspected Can only be increased Therefore, it is possible to know where in the longitudinal direction of the conductor pattern 15 there is a disconnection or short circuit.
  • the number of sensor electrodes is not limited to two.
  • the longitudinal direction of the conductor pattern 15 it is possible to specify a specific point of disconnection or short circuit.
  • an inspection signal as shown in FIG. 34 is detected.
  • the sensor electrode 25 of the sensor section 20 of the sixth embodiment is connected to the sensor electrode 25 of the first embodiment.
  • S 3 indicates a sensor output voltage detected by the sensor electrode 25 of the sensor unit 20.
  • the first inspection signal supply unit 30a and the second inspection signal supply unit 30b and the sensor unit 20 are scanned, and when the inspection unit reaches the disconnection unit 11 A change in the inspection signal indicating a disconnection in the sensor output voltage S3 is detected.
  • the disconnection portion 13 upon reaching the disconnection portion 13, a change in the inspection signal indicating disconnection in the sensor output voltage S3 is detected.
  • the short circuit portion 17 is reached, a change in the inspection signal indicating a short circuit in the sensor output voltage S3 is detected.
  • the short circuit portion 19 when the short circuit portion 19 is reached, a change in the inspection signal indicating a short circuit in the sensor output voltage S3 is detected. It should be noted that similar detection results are obtained in the detection results of these test signals in the modified example 1 of the sixth embodiment and the modified example ⁇ of the sixth embodiment.
  • the first supply electrode 35a of the first inspection signal supply unit 30a and the second supply electrode 3 of the second inspection signal supply unit 30b When two supply electrodes are used as in 5b, the level of change of the inspection signal at the time of disconnection or short circuit of the pattern to be inspected can be made larger than in the first and second embodiments. it can.
  • an inspection signal as shown in FIG. 35 is detected.
  • the sensor electrodes 25a and the second sensor electrode of the first sensor section 20a of the seventh embodiment are used.
  • the sensor electrode 25 b of the sensor section 20 b of the second embodiment is configured to be wider than the width of the supply electrode 35 of the first embodiment by at least one pitch of the pattern to be inspected, or the second embodiment.
  • S 4 is a sensor output voltage detected by the sensor electrode 25 a of the first sensor unit 20 a. Is shown.
  • S5 indicates a sensor output voltage detected by the sensor electrode 25b of the second sensor unit 20b.
  • the signal supply unit 30 and the first sensor unit 20a and the second sensor unit 20b are scanned, and when the signal supply unit 30 reaches the disconnection unit 11, A change in the inspection signal indicating disconnection in the sensor output voltage S5 is detected. Further, when reaching the disconnection portion 13, a change in the inspection signal indicating disconnection is detected in both the sensor output voltage S4 and the sensor output voltage S5. Further, when the short circuit portion 17 is reached, a change in the inspection signal indicating a short circuit is detected in both the sensor output voltage S4 and the sensor output voltage S5.
  • both the sensor output voltage S4 and the sensor output voltage S5 become short. A change in the test signal indicating a fault is detected. It should be noted that the same result can be obtained with the detection result of the above-mentioned inspection signal in the modified example ⁇ of the embodiment of the seventh invention and the modified example ⁇ of the embodiment of the seventh invention.
  • the change of the inspection signal detected at the short-circuit portion 17 is (change of the detection signal value of the sensor output voltage S5)> ( A change in the detection signal value of the sensor output voltage S4).
  • the short-circuit portion 17 is between the sensor electrode 25a and the sensor electrode 25b. That is, the inspection signal detected by the sensor electrode 25a is slightly affected because the inspection signal sneaking from the short-circuit portion 17 is also detected.
  • the change in the inspection signal detected at the short-circuit portion 19 is as follows: (change in detection signal value of sensor output voltage S4)> (change in detection signal value of sensor output voltage S5). This is because the short-circuit portion 19 is between the supply electrode 35 and the sensor electrode 25a. That is, the relationship between the distance between the supply electrode 35 and the sensor electrode 25a and the distance between the supply electrode 35 and the sensor electrode 25b is expressed as (power supply S 35 and sensor electrode 2 ) (Distance between the supply electrode 35 and the sensor electrode 25b), so that the inspection signal detected by the sensor electrode 25a, which is short, has a greater effect. To receive.
  • FIG. 35 shows an example of the detection result of the inspection signal.
  • the change of the inspection signal detected by the sensor electrode 25a at the short-circuit portion 17 (the detection signal at the short-circuit portion 17 of the sensor output voltage S4) Value change) may not be detected due to various conditions.
  • the level of the change of the inspection signal at the time of disconnection and short circuit of the pattern to be inspected is obtained. Not only can be increased, but also where in the longitudinal direction of the conductor pattern 15 It is possible to do.
  • the number of sensor electrodes is not limited to two, and more sensor electrodes may be used.
  • the longitudinal direction of the conductor pattern 15 it is possible to specify a specific point of disconnection or short circuit.
  • an inspection signal as shown in FIG. To detect when the inspection target substrate as shown in FIG. 32 having such a disconnection and a short circuit is inspected according to the eighth embodiment of the present invention, an inspection signal as shown in FIG. To detect.
  • the sensor electrode 25 of the sensor section 20 of the eighth embodiment is connected to the sensor electrode 25 of the first embodiment. Either a configuration in which the width of the pattern to be inspected is at least one pitch wider than the width of the supply electrode 35 or a configuration in which a plurality of sensor electrodes are provided in one sensor unit of the second embodiment is used. . .
  • S 6 indicates a sensor output voltage detected by the sensor electrode 25 of the sensor section 20.
  • the first inspection signal supply unit 30a and the second inspection signal supply unit 30b and the sensor unit 20 are scanned, and when the inspection unit reaches the disconnection unit 11 A change in the inspection signal indicating a disconnection in the sensor output voltage S6 is detected. Further, when reaching the disconnection portion 13, a change in the inspection signal indicating disconnection in the sensor output voltage S6 is detected. Further, when the short circuit portion 17 is reached, a change in the inspection signal indicating a short circuit in the sensor output voltage S6 is detected.
  • the change in the inspection signal indicating the disconnection detected by the sensor output voltage S6 is (change in the inspection signal in the disconnection portion 13)> (change in the inspection signal in the disconnection portion 11).
  • the inspection signal detected by the sensor electrode 25 is detected by superimposing the inspection signals of both the supply electrode 35a and the supply electrode 35b. That is, when the disconnection is at the disconnection portion 11 located between the supply electrode 35a and the supply electrode 35b, only the inspection signal from the supply electrode 35a reaches the sensor electrode 25. This is because, when the disconnection is at the disconnection portion 13, the inspection signal of both the supply electrode 35a and the supply electrode 35b does not reach the sensor electrode 25.
  • the change of the inspection signal indicating the short circuit detected by the sensor output voltage S6 is (change of the inspection signal at the short circuit portion 19). )> (Change of the inspection signal at the short-circuit part 17).
  • the inspection signal detected by the sensor electrode 25 is detected by superimposing the inspection signals of both the supply electrode 35a and the supply electrode 35b.
  • the inspection signal due to the short circuit is generated only by the test signal from the supply electrode 35b.
  • the first supply electrode 35a of the first test signal supply unit 30a and the second supply electrode 35 of the second test signal supply unit 30b When two supply electrodes are used as in b, the level of the change of the inspection signal at the time of disconnection and short circuit of the pattern to be inspected can be made higher than in the first embodiment and the second embodiment. Not only that, it is possible to know where in the longitudinal direction of the conductor pattern 15 there is a disconnection or short circuit.
  • the conductive pattern 15 to be inspected in the inspection target substrate is illustrated as not connected to the adjacent conductive pattern.
  • the embodiment is not limited to this configuration.
  • the conductive patterns are arranged in a row within the range where the sensor electrodes and supply electrodes scan so as to sequentially cross the conductive patterns. Needless to say, any conductive pattern can be inspected.

Abstract

A circuit testing apparatus capable of accurately and easily detecting failures of circuit boards. During testing a pattern arranged in a line, a test signal supplying electrode (35) and test signal detection sensor electrodes (25) are shifted in such a manner that they traverse the tested pattern (15) with a predetermined distance kept therefrom. Meanwhile, test signals, which have been supplied from the supplying electrode (35) through a capacitive coupling to the tested pattern (15), are detected by the sensor electrodes (25) that are also capacitively coupled with the tested pattern. If the successively detected test signal values are constant to some degree, then it is determined that no failures are existent. If the successively detected test signal values exhibit an abrupt change, then it is determined that some failures are existent.

Description

. 明細書 ' 回路パターン検査装置及び回路パターン検査方法 技術分野  Description '' Circuit pattern inspection apparatus and circuit pattern inspection method
本発明は、 基板上に形成された導電パターンの良否を検査可能な回路 パターン検查装置及び回路パターン検査方法に関するものである。 背景技術  The present invention relates to a circuit pattern inspection device and a circuit pattern inspection method capable of inspecting the quality of a conductive pattern formed on a substrate. Background art
基板上に導電パターンを形成してなる回路基板を製造する際には、 基 板上に形成した導電パターンに断線や、 短絡がないかを検査する必要が あった。  When manufacturing a circuit board having a conductive pattern formed on a substrate, it was necessary to inspect the conductive pattern formed on the substrate for disconnections or short circuits.
従来から、 導電パターンの検査手法としては、 例えば、 特許文献 1の ように、 導電パターンの両端にピンを接触させて一端側のピンから導電 パターンに電気信号を給電し、 他端側のピンからその電気信号を受電す ることにより、 導電パターンの導通テスト等を行う接触式の検査手法 ( ピンコンタク ト方式) が知られている。 電気信号の給電は、 金属プロ一 ブを全端子に立ててここから導電パターンに電流を流すことにより行わ れる。  Conventionally, as a conductive pattern inspection method, for example, as in Patent Document 1, a pin is brought into contact with both ends of a conductive pattern, an electric signal is supplied from the pin on one end to the conductive pattern, and a pin is connected from the other end. A contact-type inspection method (pin contact method) that performs a continuity test of a conductive pattern or the like by receiving the electric signal is known. Electrical signals are supplied by setting up metal probes on all terminals and passing current through the conductive patterns.
このピンコンタクト方式は、 直接ピンプローブを接触させるために、 In this pin contact method, in order to directly contact the pin probe,
Sノ N比が高いという長所を有する。 It has the advantage of a high S / N ratio.
しかしながら、 近年では、 導電パターンの高密度化により、 接続用配 線ピッチも細密化しており、 5 0 ; mを下回るものも登場してきている 。 狭ピッチ多本数のプローブで構成されるプローブカードは製造コスト が高い。  However, in recent years, the wiring pitch for connection has become finer due to the increase in the density of conductive patterns, and those having a pitch of less than 50; m have appeared. A probe card composed of a large number of narrow-pitch probes is expensive to manufacture.
また同時に、 配線パターンが異なるごとに (検査対象ごとに) 使用に 応じた新たなプローブカードを製作しなければならなかつ 。 このため 、 検査コストが高くなり電子部品の低コスト化に対して大きな障害とな つていた。 At the same time, use each time the wiring pattern is different (for each inspection object). A new probe card must be produced accordingly. For this reason, the inspection cost is increased, which has been a major obstacle to the cost reduction of electronic components.
また、 微細な構造上プローブカードは脆弱であり、 実際の使用に当た つては常に破損の危険性を考慮する必要があった。  In addition, the probe card is fragile due to its fine structure, and it was necessary to always consider the risk of breakage in actual use.
このため、 特許文献 2に示すような、 検査対象の導体パターンの一端 にピンプローブを直接接触させて交流成分を含む検査信号を印加し、 他 端のプローブでは導体パターンに接触させずに所定の間隔離反させた状 態に位置決めし、 容量結合を介して前記検査信号を検出する接触一非接 触併用方式も提案されていた。  Therefore, as shown in Patent Document 2, a pin probe is brought into direct contact with one end of a conductor pattern to be inspected to apply an inspection signal containing an AC component, and a probe at the other end has a predetermined contact without contacting the conductor pattern. There has been proposed a contact-non-contact system in which the inspection signal is detected through capacitive coupling by positioning the electrodes in a state where they are separated from each other.
この接触一非接触併用方式は、 パターン線の他端のプローブはピンプ 口一ブにょうにパターンに直接接触させる必要がないので、 位置決め精 度を粗くできる。 更に、 非接触部を複数のパターン線について共通化で きるので、 プローブの本数を削減できる。 そのために導電パターンの間 隔が微細な場合にも対応可能である。  In this combined use of contact and non-contact, the probe at the other end of the pattern wire does not need to directly contact the pattern with the pin hole, so that the positioning accuracy can be roughened. Furthermore, since the non-contact portion can be shared for a plurality of pattern lines, the number of probes can be reduced. Therefore, it is possible to cope with a case where the distance between the conductive patterns is fine.
特許文献 1 特開昭 6 2— 2 6 9 0 7 5号  Patent Document 1 JP-A-62-26 9 0 7 5
特許文献 2 特開平 1 1 一 7 2 5 2 4号公報  Patent Literature 2 Japanese Patent Laid-Open Publication
しかしながら、 上記接触一非接触併用方式は、 導電パターンの両端部 位置に配設するプローブやプローブからの検出信号処理などは、 導電性 パターンの配設間隔に従って設けられているため、 導電パターンの形状 はあらかじめ決められた一種類であり、 導電パターンが異なれば治具も またパターンに合わせて製作する必要があった。  However, in the above-mentioned contact-non-contact method, since the probes disposed at both ends of the conductive pattern and the processing of detection signals from the probes are provided in accordance with the intervals at which the conductive patterns are disposed, the shape of the conductive pattern Is a predetermined type, and if the conductive pattern is different, the jig also had to be manufactured according to the pattern.
また、 上記接触一非接触併用方式で、 ピンプローブを直接接触させる 検査対象の導体パターンの一端も細密化しており、 ピンプローブが接触 させることが困難になってきている。 また、 ピンプローブを接触させる ことでの検査対象の導体パターンが破損する危険性も避けられなかった 発明の開示 In addition, in the above-mentioned contact-non-contact method, one end of the conductor pattern to be inspected for directly contacting the pin probe is also made finer, and it is becoming difficult for the pin probe to make contact. In addition, there was an unavoidable risk that the conductor pattern to be inspected might be damaged by contacting the pin probe. Disclosure of the invention
本発明は上記従来技術の課題を解決することを目的としてなされたも ので、 精細な配線パターンを、 簡単な構成で、 かつ配線パターンの変更 にも対応できる検査装置及び検査方法を提供することにある。 係る目的 を達成する一手段として、 例えば本発明に係る一発明の実施の形態例は 以下の構成を備える。  SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems of the prior art, and it is an object of the present invention to provide an inspection apparatus and an inspection method capable of forming a fine wiring pattern with a simple configuration and capable of responding to a change in the wiring pattern. is there. As one means for achieving the above object, for example, an embodiment of the present invention has the following configuration.
即ち、 検査対象領域が列状に形成されている検査対象パターンの前記 検査対象領域の一方より交流の検査信号を供給し、 他方から前記検査対 象パターンよりの信号を検出して前記検査対象パターン ¾検查する回路 パターン検査装置において、 前記検査対象パターンの検査対象領域の一 方 り前記検査信号を前記検査対象パターンに供給する供給電極を有す る供給手段と、 前記検査対象パターンよりの信号を検出する検出電極を 有する検出手段と、 前記供給手段の供給電極と前記検出手段の検出電極 とを前記検査対象パターンから離間させつつ前記検査対象領域の列状パ ターン部を横切り移動させる移動手段とを備える回路パターン検査装置 であって、 前記供給手段または前記検出手段の少なくとも一方は、 前記 検査対象パターンの端部以外に配設されていることを特徴とする。  That is, an alternating-current inspection signal is supplied from one of the inspection target areas of the inspection target pattern in which the inspection target areas are formed in a row, and a signal from the inspection target pattern is detected from the other to detect the inspection target pattern. In a circuit pattern inspection apparatus for inspecting, a supply unit having a supply electrode for supplying the inspection signal to the inspection target pattern in one of the inspection target regions of the inspection target pattern, and a signal from the inspection target pattern A detecting means having a detecting electrode for detecting the detection pattern, and a moving means for moving the supply electrode of the supplying means and the detecting electrode of the detecting means apart from the pattern to be inspected while traversing the row pattern portion of the inspection area. A circuit pattern inspection device comprising: a supply unit or a detection unit, wherein at least one of the supply unit and the detection unit Characterized in that it is provided in addition to part.
そして例えば、 前記検査対象パターンは基板上に所定幅でほぼ棒状に 形成された導電性パターンであることを特徴とする。  For example, the pattern to be inspected is a conductive pattern formed in a substantially bar shape with a predetermined width on a substrate.
また例えば、 前記検出電極の幅は、 少なくとも検査対象パターンの 2 列分の幅であることを特徴とする。  Further, for example, the width of the detection electrode is at least two columns of the pattern to be inspected.
更に例えば、 前記検出手段は、 一方端部位置で前記供給電極により検 査信号を供給される検査対象パターンの他方端部位置に配設された第一 の検出電極と、 一方端部位置で前記供給電極により検査信号を供給され る検査対象パターンに隣接する検査対象パ夕'ーンの他方端部位置に配設 された第二の検出電極とを備えることを特徴とする。 Further, for example, the detection means comprises: a first detection electrode disposed at the other end position of the pattern to be inspected to which an inspection signal is supplied by the supply electrode at one end position; Inspection signal is supplied by the supply electrode And a second detection electrode disposed at the other end of the inspection target pattern adjacent to the inspection target pattern.
また例えば、 前記第一の検出電極の幅は、 検査対象パターンのパター ン幅以下であることを特徴とする。  Also, for example, the width of the first detection electrode is not more than the pattern width of the pattern to be inspected.
また例えば、 更に、 前記第二の検出電極の幅は、 検査対象パターンの パターン幅以下であることを特徴とする。  Further, for example, the width of the second detection electrode is not more than the pattern width of the pattern to be inspected.
更に例えば、 前記移動手段は、 前記供給手段の供給電極面及び前記検 出手段の検出電極面を前記検査対象パターンと容量結合させた状態で前 記検査対象領域の両端近傍の列状部分を横切り移動させることを特徴と する。  Further, for example, the moving unit traverses a row-like portion near both ends of the inspection target area in a state where a supply electrode surface of the supply unit and a detection electrode surface of the detection unit are capacitively coupled to the inspection target pattern. It is characterized by being moved.
また例えば、 更に、 前記検出手段による検出結果が所定範囲にある場 合に検査対象パターンの正常と、 検出結果が所定の範囲より外れる場合 に 査対象パターンの不良と判断する判断手段を備えることを特徴とす る。  In addition, for example, the apparatus further comprises a determination unit that determines that the inspection target pattern is normal when the detection result by the detection unit is within a predetermined range, and that determines that the inspection target pattern is defective when the detection result is out of the predetermined range. Features.
更に例えば、 前記判断手段が不良と判断した検査対象パターンの両端 に、 前記供給手段の供給電極と前記検出手段の検出電極とを移動させ、 前記供給手段の供給電極又は前記検出手段の検出電極のいずれか一方を 他方に向かってパターンに沿って移動させる第 2の移動手段と、 前記検 出手段の検出結果に基づき検出変化位置を検出する位置検出手段とを備 えることを特徴とする。  Further, for example, the supply electrode of the supply unit and the detection electrode of the detection unit are moved to both ends of the inspection target pattern that the determination unit has determined to be defective, and the supply electrode of the supply unit or the detection electrode of the detection unit is moved. A second moving means for moving one of them along the pattern toward the other, and a position detecting means for detecting a detected change position based on a detection result of the detecting means are provided.
また例えば、 前記供給手段の供給電極又は前記検出手段の検出電極の いずれか他方を検査対象パターンに接触させる接触手段を備えることを 特徴とする。  Also, for example, a contact unit is provided for bringing one of the supply electrode of the supply unit and the detection electrode of the detection unit into contact with the pattern to be inspected.
更に例えば、 前記第 2の移動手段により移動される前記供給電極及び 前記検出電極の少なくとも一方に撮像手段を備えることを特徴とする。 又は、 前記第 2の移動手段により移動される前記供給電極及び前記検 出電極の少なくとも一方と、 検査対象パター'ンとの距離がほぼ一定にな るように位置決め制御する離間制御手段を備えることを特徴とする。 そして例えば、 前記移動手段により移動される前記供給電極及び前記 検出電極の少なくとも一方と検査対象パターンとの離間距離がほぼ一定 になるように位置決め制御する離間距離制御手段を備えることを特徴と する。 Further, for example, an imaging unit is provided on at least one of the supply electrode and the detection electrode moved by the second moving unit. Or, the supply electrode moved by the second moving means and the detection It is characterized by including a separation control means for performing positioning control so that the distance between at least one of the output electrodes and the pattern to be inspected is substantially constant. And, for example, a separation distance control means for performing positioning control such that a separation distance between at least one of the supply electrode and the detection electrode moved by the movement means and the pattern to be inspected is substantially constant.
また例えば、 前記離間処理制御手段は、 前記検出電極あるいは供給電 極近傍位置に前記検出電極あるいは前記供給電極と共に移動する変位計 を備え、 前記変位計の検出結果に従って前記検出電極あるいは供給電極 と検査対象との離間距離がほぼ一定になるように前記検査対象に直交す る方向に位置決め制御することを特徴とする。  Also, for example, the separation processing control means includes a displacement meter that moves together with the detection electrode or the supply electrode at a position near the detection electrode or the supply electrode, and inspects the detection electrode or the supply electrode in accordance with a detection result of the displacement meter. Positioning control is performed in a direction orthogonal to the inspection object so that the distance from the object is substantially constant.
更に例えば、 前記離間処理制御手段は、 前記検査対象パターンの複数 ピッチ間の前記変位計の検出結果の平均変位を前記検出電極あるいは前 記供給電極と検査対象との離間距離として前記検査対象に直交する方向 に位置決め制御することを特徴とする。  Further, for example, the separation processing control means sets an average displacement of the detection result of the displacement meter between a plurality of pitches of the pattern to be inspected as a separation distance between the detection electrode or the supply electrode and the inspection object, and is orthogonal to the inspection object. It is characterized by performing positioning control in the direction of movement.
また例えば、 検査対象領域が列状に形成されている検査対象パ夕一ン の検査対象領域の一方より検査信号を前記検査対象パターンに供給する 供給電極を有する供給手段と、 前記前記検査対象パターンよりの信号を 検出する検出電極を有する検出手段とを有する回路パターン検査装置に おけるパターン検査方法において、 前記供給手段の供給電極と前記検出 手段の検出電極とを前記供給手段の供給電極面及び前記検出手段の検出 電極面を前記検査対象パターン表面と離間させた状態を維持しつつ、 前 記供給電極又は前記検出電極の一方は前記検査対象パターンとを前記検 査対象領域の列状パターン部の端部を横切り移動させ、 前記供給電極又 は前記検出電極の他の一方は前記検査対象パターンとを前記検査対象領 域の列状パターン部の端部以外を横切り移動させ、 前記検査対象パター ンの前記検査対象領域の一方より交流の検査'信号を供給し他方から前記 検査対象パターンよりの信号を検出して前記検査対象パターンを検査す ることを特徴とする。 Further, for example, a supply unit having a supply electrode for supplying an inspection signal to the inspection target pattern from one of the inspection target regions of the inspection target pattern in which the inspection target regions are formed in a row, and the inspection target pattern A pattern inspection method in a circuit pattern inspection apparatus having a detection means having a detection electrode for detecting a supply signal, wherein a supply electrode of the supply means and a detection electrode of the detection means are connected to a supply electrode surface of the supply means and While maintaining the state in which the detection electrode surface of the detection means is separated from the surface of the pattern to be inspected, one of the supply electrode and the detection electrode is connected to the pattern to be inspected by the line pattern portion of the inspection target area. An end portion is moved across, and the other one of the supply electrode or the detection electrode is connected to the pattern to be inspected by the row pattern portion of the area to be inspected. Moved across the other end, said object putter The inspection target pattern is inspected by supplying an AC inspection signal from one of the inspection target regions and detecting a signal from the inspection target pattern from the other.
更に例えば、 前記回路パターンは、 基板上に所定幅でほぼ棒状に形成 された導電性パターンであることを特徴とする。  Further, for example, the circuit pattern is a conductive pattern formed in a substantially bar shape with a predetermined width on a substrate.
また例えば、 前記検出電極の幅は、 少なくとも検査対象パターンの 2 列分の幅とし、 検査信号を供給している導電パターンに隣接する導電パ ターンからの信号を検出して隣接する導電パターン間の短絡を検出可能 とすることを特徴とする。  Further, for example, the width of the detection electrode is at least two columns of the pattern to be inspected, and a signal from a conductive pattern adjacent to the conductive pattern supplying the inspection signal is detected to detect a gap between the adjacent conductive patterns. It is characterized in that a short circuit can be detected.
更に例えば、 前記検出電極から検査信号を供給している導電パターン からの信号を前記検出手段の第一の検出電極で検出して導電パターン間 の断線を検出可能とし、 前記検出電極から検査信号を供給している導電 パ ーンに隣接する導電パターンからの信号を前記検出手段の第二の検 出電極で検出して隣接する導電パターン間の短絡を検査可能とすること を特徴とする。  Further, for example, a signal from a conductive pattern supplying an inspection signal from the detection electrode can be detected by a first detection electrode of the detection means to enable a disconnection between the conductive patterns to be detected. A signal from a conductive pattern adjacent to the supplied conductive pattern is detected by a second detection electrode of the detection means, and a short circuit between the adjacent conductive patterns can be inspected.
また例えば、 前記検出手段で非検出となる検出手段位置から導電パ夕 —ンの概略断線箇所位置を検出することを特徴とする。  Also, for example, the position of the roughly disconnected portion of the conductive pattern is detected from the position of the detection means which is not detected by the detection means.
また例えば、 更に、 前記検出手段による検出結果が所定範囲にある場 合に検査対象パターンの正常と、 検出結果が所定の範囲より外れる場合 に検査対象パターンの不良と判断することを特徴とする。  Further, for example, it is characterized in that the pattern to be inspected is determined to be normal when the detection result by the detection means is within a predetermined range, and to be defective when the detection result is out of the predetermined range.
更に例えば、 前記判断手段が不良と判断した検査対象パターン位置を 識別して保持し、 前記識別した不良と判断した検査対象パターンの両端 部に前記供給手段の供給電極と前記検出手段の検出電極を移動させ、 前 記供給電極又は前記検出電極のいずれか一方を他方に向かってパターン に沿って移動させ、 前記検出手段の検出結果に基づき変化位置を検査対 象パターンの不良位置とすることを特徴とする。 また例えば、 前記供給手段の供給電極又ば前記検出手段の検出電極の いずれか他方を検査対象パターンに接触させることを特徴とする。 Further, for example, the position of the inspection target pattern determined by the determination unit to be defective is identified and held, and the supply electrode of the supply unit and the detection electrode of the detection unit are provided at both ends of the inspection target pattern determined to be defective. Moving one of the supply electrode and the detection electrode along the pattern toward the other, and setting a change position as a defective position of the pattern to be inspected based on a detection result of the detection means. And Further, for example, one of the supply electrode of the supply unit and the other of the detection electrodes of the detection unit is brought into contact with the pattern to be inspected.
更に例えば、 前記供給電極又は前記検出電極のいずれか一方に備えら れた撮像手段を他方に向かってパターンに沿って移動させ、 検査対象パ ターンの不良位置の不良状態を撮像することを特徴とする。  Further, for example, an imaging means provided on one of the supply electrode and the detection electrode is moved along the pattern toward the other, and an image of a defect state at a defect position of the pattern to be inspected is taken. I do.
また例えば、 前記検出電極あるいは前記供給電極近傍位置に前記検出 電極あるいは供給電極と共に移動する変位計を配置し、 前記変位計の検 出結果に従って前記検出電極あるいは供給電極と検査対象との離間距離 がほぼ一定になるように前記検査対象に直交する方向に位置決め制御し て前記検出電極の結果を一定化することを特徴とする。  Further, for example, a displacement meter that moves together with the detection electrode or the supply electrode is disposed at a position near the detection electrode or the supply electrode, and a separation distance between the detection electrode or the supply electrode and the test object is determined according to a detection result of the displacement meter. Positioning control is performed in a direction orthogonal to the inspection object so as to be substantially constant, and the result of the detection electrode is made constant.
更に例えば、 前記検査対象パターン複数ピッチ間の前記変位計の検出 結果の平均変位を前記検出電極あるいは前記供給電極と検査対象との離 間 離として前記検査対象との位置決め制御をすることを特徴とする。 また、 検査対象領域が列状に形成されている検査対象パターンの前記 検査対象領域の一方より検査信号を供給し、 他方より前記検査対象バタ ーンからの検査信号を検出して前記検査対象パターンを検査する回路パ ターン検査装置において、 前記検査対象パターンの検査対象領域の一方 より前記検査信号を前記検査対象パターンに供給する供給電極を有する 供給手段と、 前記検査対象パターンからの検査信号を検出する検出電極 を有する検出手段と、 前記供給電極と前記検出電極とを前記検査対象パ ターンから離間させつつ前記検査対象領域を横切り移動させる移動手段 とを備えることを特徴とする。  Further, for example, the position of the inspection object is controlled by setting the average displacement of the detection result of the displacement meter between the plurality of pitches of the inspection object pattern as the distance between the detection electrode or the supply electrode and the inspection object. I do. In addition, an inspection signal is supplied from one of the inspection target areas of the inspection target pattern in which the inspection target area is formed in a row, and an inspection signal from the inspection target pattern is detected from the other to detect the inspection target pattern. A supply means for supplying the inspection signal to the inspection target pattern from one of the inspection target regions of the inspection target pattern, and detecting the inspection signal from the inspection target pattern. And a moving unit that moves the supply electrode and the detection electrode across the inspection target area while separating the supply electrode and the detection electrode from the inspection target pattern.
また、 前記供給手段または前記検出手段の少なくとも一方は、 前記検 査対象パターンの端部以外に配設されていることを特徴とする。  Further, at least one of the supply unit and the detection unit is provided at a position other than an end of the inspection target pattern.
また、 前記供給手段が複数備えられていることを特徴とする。  Further, a plurality of the supply units are provided.
また、 前記複数の供給手段または前記検出手段のうち少なくとも一つ は、 前記検査対象パターンの端部以外に配設'されていることを特徴とす る。 Further, at least one of the plurality of supply units or the detection unit Is disposed at a position other than the end of the pattern to be inspected.
また、 前記検出手段が複数備えられていることを特徴とする。  Further, a plurality of the detecting means are provided.
また、 前記供給手段または前記複数の検出手段のうち少なくとも一つ は、 前記検査対象パターンの端部以外に配設されていることを特徴とす る。  Further, at least one of the supply unit and the plurality of detection units is provided at a position other than an end of the inspection target pattern.
また、 前記検出電極の幅は、 少なくとも前記検査対象パターンの 2列 分の幅であることを特徴とする。  Further, the width of the detection electrode is at least a width of two rows of the inspection target pattern.
また、 前記検出電極の幅は、 少なくとも前記検査対象パターンの 2列 分の幅であることを特徴とする。  Further, the width of the detection electrode is at least a width of two rows of the inspection target pattern.
また、 前記検出手段は、 前記供給電極により検査信号を供給される検 查対象パターンからの検査信号を検出する第一の検出電極と、 前記供給 電極により検査信号を供給される検査対象パターンに隣接する検査対象 パターンからの検査信号を検出する第二の検出電極とを備えることを特 徵とする。  Further, the detection means includes: a first detection electrode for detecting a test signal from a test pattern supplied with a test signal by the supply electrode; and a detection pattern adjacent to the test pattern supplied with the test signal by the supply electrode. And a second detection electrode for detecting an inspection signal from the inspection target pattern to be inspected.
また、 前記検出手段は、 前記供給電極により検査信号を供給される検 査対象パターンからの検査信号を検出する第一の検出電極と、 前記供給 電極により検査信号を供給される検査対象パターンに隣接する検査対象 パターンからの検査信号を検出する第二の検出電極とを備えることを特 徵とする。  Further, the detection means includes: a first detection electrode for detecting a test signal from a test pattern supplied with a test signal by the supply electrode; and a detection pattern adjacent to the test pattern supplied with the test signal by the supply electrode. And a second detection electrode for detecting an inspection signal from the inspection target pattern to be inspected.
また、 前記移動手段は、 前記供給手段の供給電極面及び前記検出手段 の検出電極面を前記検査対象パターンと容量結合させた状態で前記検査 対象領域を横切り移動させることを特徴とする。  The moving means may move across the inspection target area in a state where the supply electrode surface of the supply means and the detection electrode surface of the detection means are capacitively coupled to the inspection target pattern.
また、 前記移動手段は、 前記供給電極及び前記検出電極と検査対象パ ターンとの離間距離をほぼ一定になるように位置決め制御する離間距離 制御手段を備えることを特徴とする。 また、 前記離間処理制御手段は変位計を備'え、 前記変位計の検出結果 に従って前記供給電極及び前記検出電極と検査対象パターンとの離間距 離をほぼ一定になるように検査対象パターンに直交する方向に位置決め 制御することを特徴とする。 . Further, the moving means includes a separation distance control means for performing positioning control so that the separation distance between the supply electrode and the detection electrode and the pattern to be inspected is substantially constant. In addition, the separation processing control means includes a displacement meter, and is orthogonal to the pattern to be inspected so that the distance between the supply electrode and the detection electrode and the pattern to be inspected is substantially constant according to the detection result of the displacement meter. It is characterized by performing positioning control in the direction in which it moves. .
また、 前記離間処理制御手段は、 前記検査対象パターンの複数ピッチ 間の前記変位計の検出結果の平均変位を前記検出電極あるいは前記供給 電極と検査対象との離間距離として検査対象パターンに直交する方向に 位置決め制御することを特徴とする。  Further, the separation processing control means may determine an average displacement of the detection result of the displacement meter during a plurality of pitches of the test pattern as a separation distance between the detection electrode or the supply electrode and the test object in a direction orthogonal to the test pattern. It is characterized by positioning control.
また、 前記検出手段による検査信号の検出結果が所定範囲にある場合 に検査対象パターンの正常と判断し、 検査信号の検出結果が所定の範囲 より外れる場合に検査対象パターンの不良と検査対象パタ一ン上の不良 位置とを判断する判断手段を備えることを特徴とする。  When the detection result of the inspection signal by the detection means is within a predetermined range, it is determined that the inspection target pattern is normal, and when the detection result of the inspection signal is out of the predetermined range, a defect of the inspection target pattern and the inspection target pattern are determined. And a determining means for determining a defective position on the terminal.
また、 前記判断手段が不良と判断した検査対象パターンに、 前記供給 手段の供給電極と前記検出手段の検出電極とを移動させ、 前記供給手段 の供給電極又は前記検出手段の検出電極のいずれか一方を他方に向かつ てパターンに沿って移動させる第 2の移動手段と、 前記検出手段の検出 結果に基づき検出変化位置を検出する位置検出手段とを備えることを特 徴とする。  In addition, the supply electrode of the supply unit and the detection electrode of the detection unit are moved to the inspection target pattern determined to be defective by the determination unit, and either the supply electrode of the supply unit or the detection electrode of the detection unit is moved. A second moving means for moving the second direction along the pattern toward the other, and a position detecting means for detecting a detected change position based on a detection result of the detecting means.
また、 前記供給手段の供給電極又は前記検出手段の検出電極のいずれ か他方を検査対象パターンに接触させる接触手段を備えることを特徴と する。  In addition, it is characterized in that it comprises a contacting means for bringing the other of the supply electrode of the supply means or the detection electrode of the detection means into contact with the pattern to be inspected.
また、 前記第 2の移動手段により移動される前記供給電極、 または、 前記第 2の移動手段により移動される前記検出電極、 に撮像手段を備え ることを特徴とする。  In addition, the supply electrode moved by the second moving means or the detection electrode moved by the second moving means is provided with an imaging means.
また、 前記第 2の移動手段により移動される前記供給電極と、 または The supply electrode moved by the second moving means; or
、 前記第 2の移動手段により移動される前記検出電極と、 検査対象パ夕 一ンとを距離がほぼ一定になるように位置決'め制御する離間制御手段を 備えることを特徴とする。 The detection electrode moved by the second moving means; It is characterized in that it is provided with a separation control means for performing positioning control so as to make the distance substantially constant.
また、 前記検出手段による検査信号の検出結果がある程度一定した検 出信号値である場合に検査対象パターンの正常と判断し、 検査信号の検 出結果が急激に変化した検出信号値である場合に検査対象パターンの不 良と検査対象パターン上の不良位置とを判断する判断手段を備えること を特徴とする。  Further, when the detection result of the inspection signal by the detection means is a detection signal value that is constant to some extent, it is determined that the pattern to be inspected is normal, and when the detection result of the inspection signal is a detection signal value that changes rapidly, It is characterized by comprising a judging means for judging a defect of the inspection target pattern and a defect position on the inspection target pattern.
また、 前記判断手段が不良と判断した検査対象パターンに、 前記供給 手段の供給電極と前記検出手段の検出電極とを移動させ、 前記供給手段 の供給電極又は前記検出手段の検出電極のいずれか一方を他方に向かつ てパターンに沿って移動させる第 2の移動手段と、 前記検出手段の検出 結果に基づき検出変化位置を検出する位置検出手段とを備えることを特 徴^:する。  In addition, the supply electrode of the supply unit and the detection electrode of the detection unit are moved to the inspection target pattern determined to be defective by the determination unit, and either the supply electrode of the supply unit or the detection electrode of the detection unit is moved. , And a position detecting means for detecting a detected change position based on a detection result of the detecting means.
また、 前記供給手段の供給電極又は前記検出手段の検出電極のいずれ か他方を検査対象パターンに接触させる接触手段を備えることを特徴と する。  In addition, it is characterized in that it comprises a contacting means for bringing the other of the supply electrode of the supply means or the detection electrode of the detection means into contact with the pattern to be inspected.
また、 前記第 2の移動手段により移動される前記供給電極、 または、 前記第 2の移動手段により移動される前記検出電極、 に撮像手段を備え ることを特徴とする。  In addition, the supply electrode moved by the second moving means or the detection electrode moved by the second moving means is provided with an imaging means.
また、 前記第 2の移動手段により移動される前記供給電極と、 または 、 前記第 2の移動手段により移動される前記検出電極と、 検査対象パ夕 —ンとを距離がほぼ一定になるように位置決め制御する離間制御手段を 備えることを特徴とする。  Further, the supply electrode moved by the second moving means, or the detection electrode moved by the second moving means, and the inspection target panel are so arranged that the distance is substantially constant. It is characterized by including a separation control means for performing positioning control.
また、 検査対象領域が列状に形成されている検査対象パターンの前記 検査対象領域の一方より検査信号を供給し、 他方より前記検査対象パタ ーンからの検査信号を検出して前記検査対象パターンを検査する回路パ ターン検査方法において、 前記供給手段の供給電極と前記検出手段の検 出電極とを前記供給手段の供給電極面及び前記検出手段の検出電極面を 前記検査対象パターン表面と離間させた状態を維持し、 前記供給電極又 は前記検出電極の少なくとも一方を前記検査対象パターンの前記検査対 象領域を横切り移動させ、 前記検出電極により検出される検査信号の検 出結果が所定範囲にある場合に検査対象パターンの正常と判断し、 前記 検出電極により検出される検査信号の検出結果が所定の範囲より外れる 場合に検査対象パターンの不良と検査対象パターン上の不良位置とを判 断することを特徴とする。 In addition, an inspection signal is supplied from one of the inspection target areas of the inspection target pattern in which the inspection target area is formed in a row, and an inspection signal from the inspection target pattern is detected from the other, thereby detecting the inspection target pattern. Circuit circuit to inspect In the turn inspection method, the supply electrode of the supply unit and the detection electrode of the detection unit are maintained in a state where the supply electrode surface of the supply unit and the detection electrode surface of the detection unit are separated from the surface of the pattern to be inspected. Moving at least one of the supply electrode or the detection electrode across the inspection target area of the inspection target pattern, and when the detection result of the inspection signal detected by the detection electrode is within a predetermined range, Determining that the pattern is normal, and determining a defect of the inspection target pattern and a defect position on the inspection target pattern when a detection result of the inspection signal detected by the detection electrode is out of a predetermined range. .
検査対象領域が列状に形成されている検査対象パターンの前記検査対 象領域の一方より検査信号を供給し、 他方より前記検査対象パターンか らの検査信号を検出して前記検査対象パターンを検査する回路パターン 検耷方法において、 前記供給手段の供給電極と前記検出手段の検出電極 とを前記供給手段の供給電極面及び前記検出手段の検出電極面を前記検 査対象パターン表面と離間させた状態を維持し、 前記供給電極又は前記 検出電極の少なくとも一方を前記検査対象パターンの前記検査対象領域 を横切り移動させ、 前記検出電極により検出される検査信号の検出結果 がある程度一定した検出信号値である場合に検査対象パターンの正常と 判断し、 前記検出電極により検出される検査信号の検出結果が急激に変 化した検出信号値である場合に検査対象パターンの不良と検査対象バタ ーン上の不良位置とを判断することを特徴とする。  An inspection signal is supplied from one of the inspection target areas of the inspection target pattern in which the inspection target area is formed in a row, and an inspection signal from the inspection target pattern is detected from the other to inspect the inspection target pattern. In the detection method, the supply electrode of the supply unit and the detection electrode of the detection unit are separated from the supply electrode surface of the supply unit and the detection electrode surface of the detection unit from the surface of the pattern to be inspected. Is maintained, and at least one of the supply electrode and the detection electrode is moved across the inspection target area of the inspection target pattern, and the detection result of the inspection signal detected by the detection electrode is a detection signal value that is constant to some extent. In this case, it is determined that the pattern to be inspected is normal, and the detection result of the inspection signal detected by the detection electrode is a detection signal value that has rapidly changed. Characterized in that the defective inspection object pattern and defective position on the inspection target butter over down to determine if that.
また、 前記検出電極の幅は少なくとも検査対象パターンの 2列分の幅 とし、 検査信号が供給されている検査対象パターンからの検査信号によ り断線を検出し、 検査信号が供給されている検査対象パターンに隣接す る検査対象パターンからの検査信号により短絡を検出することを特徴と する。 また、 前記検出電極に第一の検出電極と第二の検出電極とを備え、 検 查信号が供給されている検査対象パターンからの検査信号により、 第一 の検出電極で断線を検出し、 検査信号が供給されている検査対象パター ンに隣接する検査対象パターンからの検査信号により、 第二の検出電極 で短絡を検出することを特徴とする。 In addition, the width of the detection electrode is at least two columns of the pattern to be inspected, the disconnection is detected by the inspection signal from the pattern to be inspected to which the inspection signal is supplied, and the inspection in which the inspection signal is supplied. It is characterized in that a short circuit is detected by a test signal from a test pattern adjacent to the target pattern. In addition, the detection electrode includes a first detection electrode and a second detection electrode, and the first detection electrode detects a disconnection based on a test signal from a test target pattern to which a detection signal is supplied, and performs an inspection. A short circuit is detected by the second detection electrode based on a test signal from a test pattern adjacent to the test pattern to which the signal is supplied.
また、 前記検出手段で非検出となる検出手段位置を識別して保持し、 前記検出位置に前記供給手段の供給電極と前記検出手段の検出電極を移 動させ、 前記供給電極又は前記検出電極のいずれか一方を他方に向か.つ てパターンに沿って移動させ、 前記検出手段の検出結果に基づき変化位 置を検査対象パターンの不良位置とすることを特徵とする。  In addition, the position of the detection unit which is not detected by the detection unit is identified and held, and the supply electrode of the supply unit and the detection electrode of the detection unit are moved to the detection position, and the detection of the supply electrode or the detection electrode is performed. It is characterized in that either one is moved along the pattern toward the other, and the change position is determined as the defective position of the inspection target pattern based on the detection result of the detection means.
また、 前記供給手段の供給電極又は前記検出手段の検出電極のいずれ か他方を検査対象パターンに接触させることを特徴とする。  Further, one of the supply electrode of the supply means and the other of the detection electrodes of the detection means is brought into contact with the pattern to be inspected.
また、 前記供給電極又は前記検出電極のいずれか一方に備えられた撮 像手段を他方に向かってパターンに沿って移動させ、 検査対象パ夕一ン の不良位置の不良状態を撮像することを特徴とする。 図面の簡単な説明  Further, an imaging means provided on one of the supply electrode and the detection electrode is moved along the pattern toward the other, and an image of a defective state at a defective position of the inspection target pattern is taken. And Brief Description of Drawings
第 1図は、 本発明に係る一発明の実施の形態例のパターン検査原理を 説明するための図である。  FIG. 1 is a diagram for explaining a pattern inspection principle of an embodiment of the present invention.
第 2図は、 本実施の形態例である検査装置の検査制御を説明するため のフローチヤ一卜である。  FIG. 2 is a flowchart for explaining inspection control of the inspection apparatus according to the present embodiment.
第 3図は、 本実施の形態例である検査装置における隣接検査対象パ夕 ーンが 3本短絡 (ショート) した場合の検出信号例を示す図である。 第 4図は、 本実施の形態例である検査装置における検査対象パターン の 1本が途中で断線 (オープン) 状態となっている場合の検出波形例を 示す図である。 第 5図は、 本発明に係る第 2の実施の形態'例の検査装置の構成を示す 図である。 FIG. 3 is a diagram showing an example of detection signals when three adjacent inspection target patterns are short-circuited (short-circuited) in the inspection apparatus according to the present embodiment. FIG. 4 is a diagram showing an example of a detection waveform in a case where one of the inspection target patterns in the inspection apparatus according to the present embodiment is disconnected (open) in the middle. FIG. 5 is a diagram showing a configuration of an inspection apparatus according to the second embodiment'example of the present invention.
第 6図は、 本発明に係る第 3の実施の形態例の検査装置の構成を示す 図である。  FIG. 6 is a diagram showing a configuration of an inspection apparatus according to a third embodiment of the present invention.
第 7図は、 第 3の実施の形態例の検査装置における電極移動制御を説 明するための図である。  FIG. 7 is a diagram for explaining electrode movement control in the inspection apparatus according to the third embodiment.
第 8図は、 第 3の実施の形態例のパターン不良箇所特定制御を説明す るためのフローチャートである。  FIG. 8 is a flowchart for explaining the pattern defect location specifying control according to the third embodiment.
第 9図は、 第 3の実施の形態例の装置におけるセンサ電極での不良パ ターン検出信号波形の例を示す図である。  FIG. 9 is a diagram showing an example of a defective pattern detection signal waveform at a sensor electrode in the device according to the third embodiment.
第 1 0図は、 不良パターンにおけるセンサ電極の検出信号波形の例を 示す図である。  FIG. 10 is a diagram showing an example of a detection signal waveform of a sensor electrode in a defective pattern.
第 1 1図は、 本発明に係る第 4の実施の形態例の検査装置の構成を説 明するための図である。  FIG. 11 is a diagram for explaining a configuration of an inspection apparatus according to a fourth embodiment of the present invention.
第 1 2図は、 本発明に係る第 5の実施の形態例の検査装置の構成を説 明するための図である。  FIG. 12 is a diagram for explaining a configuration of an inspection apparatus according to a fifth embodiment of the present invention.
第 1 3図は、 本発明に係る第 5の実施の形態例の変形例①の検査装置 の構成を説明するための図である。  FIG. 13 is a diagram for explaining a configuration of an inspection device according to a modified example 2 of the fifth embodiment according to the present invention.
第 1 4図は、 本発明に係る第 5の実施の形態例の変形例①の検査装置 の構成を説明するための図である。  FIG. 14 is a view for explaining a configuration of an inspection apparatus according to a modified example 2 of the fifth embodiment according to the present invention.
第 1 5図は、 本発明に係る第 5の実施の形態例の変形例②の検査装置 の構成を説明するための図である。  FIG. 15 is a diagram for explaining a configuration of an inspection device according to a modified example 2 of the fifth embodiment according to the present invention.
第 1 6図は、 本発明に係る第 5の実施の形態例の変形例②の検査装置 の構成を説明するための図である。  FIG. 16 is a diagram for explaining a configuration of an inspection device according to a modified example 2 of the fifth embodiment according to the present invention.
第 1 7図は、 本発明に係る第 6の実施の形態例の検査装置の構成を説 明するための図である。 第 1 8図は、 本発明に係る第 6の実施の形態例の変形例①の検査装置 の構成を説明するための図である FIG. 17 is a diagram for explaining a configuration of an inspection apparatus according to a sixth embodiment of the present invention. FIG. 18 is a view for explaining a configuration of an inspection apparatus according to a modified example II of the sixth embodiment according to the present invention.
第 1 9図は、 本発明に係る第 6の実施の形態例の変形例①の検査装置 の構成を説明するための図である  FIG. 19 is a view for explaining a configuration of an inspection apparatus according to a modified example II of the sixth embodiment according to the present invention.
第 2 0図は、 本発明に係る第 6の実施の形態例の変形例②の検査装置 の構成を説明するための図である  FIG. 20 is a view for explaining a configuration of an inspection apparatus according to a modified example II of the sixth embodiment of the present invention.
第 2 1図は、 本発明に係る第 6の実施の形態例の変形例②の検査装置 の構成を説明するための図である  FIG. 21 is a diagram for explaining a configuration of an inspection apparatus according to a modified example II of the sixth embodiment according to the present invention.
第 2 2図は、 本発明に係る第 7の実施の形態例の検査装置の構成を説 明するための図である。  FIG. 22 is a diagram for explaining a configuration of an inspection apparatus according to a seventh embodiment of the present invention.
第 2 3図は、 本発明に係る第 7の実施の形態例の変形例①の検査装置 の構成を説明するための図である  FIG. 23 is a view for explaining a configuration of an inspection apparatus according to a modified example の of the seventh embodiment of the present invention.
箄 2 4図は、 本発明に係る第 7の実施の形態例の変形例①の検査装置 の構成を説明するための図である  FIG. 24 is a diagram for explaining the configuration of the inspection device of Modification Example II of the seventh embodiment of the present invention.
第 2 5図は、 本発明に係る第 7の実施の形態例の変形例②の検査装置 の構成を説明するための図である  FIG. 25 is a view for explaining a configuration of an inspection apparatus according to a modified example II of the seventh embodiment of the present invention.
第 2 6図は、 本発明に係る第 7の実施の形態例の変形例②の検査装置 の構成を説明するための図である  FIG. 26 is a view for explaining a configuration of an inspection apparatus according to a modified example II of the seventh embodiment of the present invention.
第 2 7図は、 本発明に係る第 8の実施の形態例の検査装置の構成を説 明するための図である。  FIG. 27 is a view for explaining the configuration of the inspection apparatus according to the eighth embodiment of the present invention.
第 2 8図は、 本発明に係る第 8の実施の形態例の変形例①の検査装置 の構成を説明するための図である  FIG. 28 is a view for explaining the configuration of an inspection apparatus according to a modified example II of the eighth embodiment of the present invention.
第 2 9図は、 本発明に係る第 8の実施の形態例の変形例①の検査装置 の構成を説明するための図である  FIG. 29 is a view for explaining a configuration of an inspection apparatus according to a modified example II of the eighth embodiment of the present invention.
第 3 0図は、 本発明に係る第 8の実施の形態例の変形例②の検査装置 の構成を説明するための図である ° 、J 第 3 1図は、 本発明に係る第 8の実施の形態例の変形例②の検査装置 の構成を説明するための図である。 FIG. 30 is a view for explaining a configuration of an inspection apparatus according to a modified example II of the eighth embodiment of the present invention. FIG. 31 is a diagram for explaining a configuration of an inspection apparatus according to a modified example II of the eighth embodiment of the present invention.
第 3 2図は、 本発明に係る検査対象基板のうち、 断線及び短絡がある 検査対象基板の図である。  FIG. 32 is a diagram of a substrate to be inspected having a disconnection and a short circuit among the substrates to be inspected according to the present invention.
第 3 3図は、 本発明に係る第 5の実施の形態例による検査信号の検出 結果を表す図である。  FIG. 33 is a diagram illustrating a detection result of a test signal according to the fifth embodiment of the present invention.
第 3 4図は、 本発明に係る第 6の実施の形態例による検査信号の検出 結果を表す図である。  FIG. 34 is a diagram showing a detection result of a test signal according to the sixth embodiment of the present invention.
第 3 5図は、 本発明に係る第 7の実施の形態例による検査信号の検出 結果を表す図である。  FIG. 35 is a diagram showing a detection result of a test signal according to the seventh embodiment of the present invention.
第 3 6図は、 本発明【こ係る第 8の実施の形態例による検査信号の検出 結果を表す図である。  FIG. 36 is a diagram showing a detection result of a test signal according to the eighth embodiment of the present invention.
第 3 7図は、 検査対象の導電パターン 1 5の他の形状を示す例である  FIG. 37 is an example showing another shape of the conductive pattern 15 to be inspected.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面を参照して本発明に係る一発明の実施の形態例を詳細に説 明する。 以下の説明は、 検査するべきパターンとして液晶表示パネルを 形成するドットマトリクス表示用パネルにおける張り合わせ前のドット マトリクスパターンの良否を検査する回路パターン検査装置を例として 行う。  Hereinafter, an embodiment of the present invention according to the present invention will be described in detail with reference to the drawings. In the following description, a circuit pattern inspection apparatus for inspecting the quality of a dot matrix pattern before bonding in a dot matrix display panel forming a liquid crystal display panel as a pattern to be inspected will be described as an example.
しかし、 本発明は以下に説明する例に限定されるものではなく、 少な くとも検査対象領域の両端近傍が列状に形成されている検査対象パター ンであればなんら限定されるものではない。  However, the present invention is not limited to the examples described below, and is not limited in any way as long as at least the vicinity of both ends of the inspection target area is formed in a row.
〔第 1の発明の実施の形態例〕  [Example of Embodiment of First Invention]
図 1は本発明に係る一発明の実施の形態例のパターン検査原理を説明 するための図である。 - 図 1において、 1 0が本実施の形態例の検查するべき導電性パターン の配設されている基板であり、 本実施の形態例では液晶表示パネルに用 いるガラス製の基板を用いている。 FIG. 1 illustrates the principle of pattern inspection according to an embodiment of the present invention. FIG. -In FIG. 1, reference numeral 10 denotes a substrate on which a conductive pattern to be detected according to the present embodiment is provided. In the present embodiment, a glass substrate used for a liquid crystal display panel is used. I have.
ガラス製基板 1 0の表面には本実施の形態例の回路パターン検査装置 で検査するドッ トマトリクス表示パネルを形成するための導電パターン 1 5が一定間隔で列状に配設されている。 図 1に示す導電パターン例で は各パターン 1 5の幅がほぼ同一であり、 各パターン間隔もほぼ等間隔 となっている。 しかし、 本実施の形態例では、 各パターン間隔が等間隔 でなくとも同様に検査を行うことができる。  Conductive patterns 15 for forming a dot matrix display panel to be inspected by the circuit pattern inspection apparatus of the present embodiment are arranged in rows on the surface of the glass substrate 10 at regular intervals. In the example of the conductive pattern shown in FIG. 1, the width of each pattern 15 is substantially the same, and the intervals between the patterns are also substantially equal. However, in the present embodiment, the inspection can be performed in the same manner even if the pattern intervals are not equal.
2 0はセンサ部、 3 0は検査信号供給部、 5 0はセンサ部 2 0よりの 検出信号を処理して制御部 6 0に出力するアナログ信号処理回路、 6 0 は本実施の形態例の検査装置全体の制御を司る制御部、 7 0はスカラー 口ポット 8 0を制御するロボットコントローラ、 8 0は液晶パネル 1 0 を検査位置に位置決めしてホールドすると共に口ポッ トコントローラ 7 0の制御に従ってセンサ部 2 0のセンサ電極及び検査信号供給部 3 0の 供給電極が液晶パネル 1 0の検査対象の導電パターンのすべての接続端 子を順次横断するように走査するス ラ一ロポットである。  20 is a sensor unit, 30 is an inspection signal supply unit, 50 is an analog signal processing circuit that processes a detection signal from the sensor unit 20 and outputs it to the control unit 60, and 60 is an example of the present embodiment. A control section that controls the entire inspection apparatus, 70 is a robot controller that controls the scalar mouth pot 80, 80 is a liquid crystal panel that is positioned and held at the inspection position, and is controlled according to the control of the mouth pot controller 70. This is a slurry pot that scans so that the sensor electrodes of the sensor unit 20 and the supply electrodes of the inspection signal supply unit 30 sequentially cross all the connection terminals of the conductive pattern to be inspected on the liquid crystal panel 10.
本実施の形態例ではスカラーロボッ ト 8 0は、 検査対象基板 (液晶パ ネル) 1 0を所定に検査位置に位置決めするために、 三次元位置決め可 能に構成されている。 同様に、 センサ部 2 0、 検査信号供給部 3 0を検 査対象基板 1 0の表面と所定の距離に保ちつつ検査対象パターン上を移 動させるよう三次元位置決め制御が可能に構成されている。  In the present embodiment, the scalar robot 80 is configured to be three-dimensionally positionable in order to position the inspection target substrate (liquid crystal panel) 10 at a predetermined inspection position. Similarly, three-dimensional positioning control is possible so that the sensor unit 20 and the inspection signal supply unit 30 are moved on the inspection target pattern while maintaining a predetermined distance from the surface of the inspection target substrate 10. .
なお、 以上の説明はスカラー口ポッ ト 8 0でセンサ部 2 0、 検査信号 供給部 3 0を検査対象基板 1 0の表面と所定の距離に保ちつつ検査対象 パターン上を移動させる例を説明した。 しかし、 本実施の形態例は以上 の例に限定されるものではなく、 センサ部 2' 0、 検査信号供給部 3 0を 固定とし、 検査対象基板 1 0をセンサ部 2 0、 検査信号供給部 3 0の先 端電極 2 5 , 3 5の表面と所定の距離に保ちつつ基板を移動させるよう · に制御しても良い。 このように制御しても全く同様の作用効果が得られ る。 In the above description, an example has been described in which the sensor unit 20 and the inspection signal supply unit 30 are moved on the inspection target pattern while maintaining the sensor unit 20 and the inspection signal supply unit 30 at a predetermined distance from the surface of the inspection target substrate 10 by the scalar port 80. . However, this embodiment is However, the sensor section 2 ′ 0 and the inspection signal supply section 30 are fixed, and the substrate to be inspected 10 is the sensor section 20 and the tip electrodes 25 of the inspection signal supply section 30. It may be controlled so that the substrate is moved while maintaining a predetermined distance from the surface of the substrate 35. Even with such control, exactly the same operation and effect can be obtained.
なお、 実際の検査制御においては、 各パターン間隔が等間隔でない場 合や双端部のパターンピッチが異なっていた場合に、 センサ電極 2 5の 移動距離と供給電極 3 5の移動距離とを互いに同期させ、 少なくともセ ンサ電極 2 5の一部を必ず供給電極 3 5が実際に検査信号を供給してい るパターンの他方端部位置となるように制御する必要がある。 この様に 制御すれば、 例え各パターン間隔が等間隔でなかったり、 双端部のパ夕 ーンピッチが異なっていたとしても、 単にスカラーロポットの両電極移 動速度の制御で対応することができる。  In the actual inspection control, when the pattern intervals are not equal or when the pattern pitches at both ends are different, the moving distance of the sensor electrode 25 and the moving distance of the supply electrode 35 are mutually set. It is necessary to synchronize and control at least a part of the sensor electrode 25 so that the supply electrode 35 is at the other end position of the pattern to which the test signal is actually supplied. By controlling in this way, even if the pattern intervals are not equal or the pattern pitches at the both ends are different, it is possible to respond simply by controlling the moving speed of both electrodes of the scalar rod.
本実施の形態例に係るセンサ部 2 0及び検查信号供給部 3 0の少なく とも先端部表面には、 それぞれセンサ電極 2 5及び供給電極 3 5が配設 されている。 センサ電極 2 5及び供給電極 3 5は、 金属、 例えば銅 (C u ) や金 (A u ) で形成されている。 なお、 各電極を保護のため絶緣材 で被覆してもよい。 また、 例えば半導体を電極として使用してもよいが 、 金属により電極を形成しているのは、 導電パターンとの間の静電容量 を大きくできるからである。  A sensor electrode 25 and a supply electrode 35 are disposed on at least the front end surfaces of the sensor unit 20 and the detection signal supply unit 30 according to the present embodiment. The sensor electrode 25 and the supply electrode 35 are formed of metal, for example, copper (Cu) or gold (Au). Each electrode may be covered with an insulating material for protection. Further, for example, a semiconductor may be used as the electrode, but the reason why the electrode is formed of metal is that the capacitance between the electrode and the conductive pattern can be increased.
検査信号供給部 3 0は、 スカラーロボット 8 0により液晶パネル 1 0 などの検査対象パターンの一方端子部などを横断するように移動し、 各 検査対象パターンに容量結合を介して順次検査信号を供給するものであ り、 先端部の供給電極 3 5の幅は、 例えば検査対象パターンのパターン ピッチ以下 (検査パターンのパターン幅及びパターン間隙以下の大きさ ) とすることが望ましい。 これは、 供給電極 3 5の幅が検査対象パターンのパターンピッチより 大きいと、 センサ部 2 0のセンサ電極 2 5が検査信号を検出する際に、 検査対象パターン以外の検査対象パターンからの検査信号を検出してし まうからである。 The inspection signal supply unit 30 is moved by the scalar robot 80 so as to cross one terminal of the pattern to be inspected, such as the liquid crystal panel 10, and sequentially supplies the inspection signal to each pattern to be inspected via capacitive coupling. It is desirable that the width of the supply electrode 35 at the tip end be, for example, equal to or less than the pattern pitch of the pattern to be inspected (the width of the pattern width and the pattern gap of the inspection pattern). This is because when the width of the supply electrode 35 is larger than the pattern pitch of the pattern to be inspected, when the sensor electrode 25 of the sensor unit 20 detects the inspection signal, the inspection signal from the pattern to be inspected other than the pattern to be inspected is detected. Is detected.
但し、 供給電極 3 5の幅を、 必ず検査対象パターンのパターンピッチ 以下としなければならないわけではなく、 複数の検査対象パターンとこ のパターンに隣接するパターンさえ把握できれば、 詳細を後述する本実 施の形態例の検査'方法で検査を行うことができる。  However, the width of the supply electrode 35 does not necessarily have to be equal to or smaller than the pattern pitch of the pattern to be inspected. If only a plurality of patterns to be inspected and patterns adjacent to this pattern can be grasped, the present embodiment, which will be described in detail later, will be described. The inspection can be performed by the inspection method of the embodiment.
即ち、 本実施の形態例に係る検査信号供給部 3 0は、 非接触で検査信 号を供給するため、 隣接する検査対象パターンへの検査信号の供給を完 全になくすことは不可能であるので、 たとえ、 供給電極 3 5の幅を検査 対象パターンのパ夕一ンピッチ以下とした場合でも、 供給電極 3 5の幅 が検査対象パターンのパターンピッチ以下でなかった場合と同様に、 検 査信号は隣接する検査対象パターンへ供給されてしまう。 しかしながら 、 本発明の検査装置は、 後述するように、 正常パターンの検出信号値に 対する不良パターンの検出信号値の相対的な変化の割合を利用して検査 対象パターンの検査を行うため、 センサ電極 2 5が隣接する検査対象パ ターンへ供給された検査信号を含めて検出したとしても、 相対的な変化 の割合には影響しないので、 検査が可能である。  That is, since the inspection signal supply unit 30 according to the present embodiment supplies the inspection signal in a non-contact manner, it is impossible to completely eliminate the supply of the inspection signal to the adjacent pattern to be inspected. Therefore, even if the width of the supply electrode 35 is set to be equal to or smaller than the pattern pitch of the pattern to be inspected, the inspection signal is generated in the same manner as when the width of the supply electrode 35 is not smaller than the pattern pitch of the pattern to be inspected. Is supplied to an adjacent pattern to be inspected. However, as described later, the inspection apparatus of the present invention inspects a pattern to be inspected by using a ratio of a relative change of a detection signal value of a defective pattern to a detection signal value of a normal pattern. Even if the detection of 25 includes the inspection signal supplied to the adjacent pattern to be inspected, it does not affect the relative change rate, so that the inspection is possible.
センサ部 2 0は、 スカラー口ポッ ト 8 0により液晶パネル 1 0などの 検査対象パターンの一方端子部などを横断するように移動し、 各検査対 象パターンに容量結合を介して順次検査信号供給部 3 0により供給され た検査信号の検出を行うものであり、 先端部のセンサ電極 2 5の幅は、 例えば供給電極 3 5の幅より少なくとも検査対象パターンの 1 ピッチ以 上、 幅広であることが望ましい。  The sensor section 20 is moved by the scalar port 80 so as to cross one terminal of the pattern to be inspected such as the liquid crystal panel 10 and sequentially supplies an inspection signal to each pattern to be inspected via capacitive coupling. The detection signal supplied by the section 30 is to be detected, and the width of the sensor electrode 25 at the tip end is, for example, wider than the width of the supply electrode 35 by at least one pitch of the pattern to be inspected. Is desirable.
センサ部 2 0よりの検出信号はアナログ信号処理回路 5 0に送られァ ナログ信号処理される。 アナログ信号処理処'理回路 5 0でアナログ信号 処理されたアナログ信号は、 制御部 6 0に送られ液晶パネル 1 0の検査 信号供給部 3 0が接触している検査対象パターンの良否が判断される。 また制御部 6 0は検査信号を検査信号供給部 3 0に供給する制御も行う アナログ信号処理回路 5 0は、 センサ部 2 0よりの検出信号を増幅す る増幅器 5 1、 増幅器 5 1で増幅した検出信号の雑音成分を除去し検出 信号を通過させるためのバンドパスフィル夕 5 2、 バンドパスフィルタ 5 2よりの信号を全波整流する整流回路 5 3、 整流回路 5 3により全波 整流された検出信号を平滑する平滑回路 5 4を有して.いる。 なお、 全波 整流を行う整流回路 5 3及び検出信号を平滑する平滑回路 5 4は必ずし も備える必要はない。 The detection signal from the sensor unit 20 is sent to the analog signal processing circuit 50 The analog signal is processed. The analog signal processed by the analog signal processing circuit 50 is sent to the control unit 60, and the quality of the test pattern to which the test signal supply unit 30 of the LCD panel 10 is in contact is determined. You. The control section 60 also controls the supply of the test signal to the test signal supply section 30.The analog signal processing circuit 50 amplifies the detection signal from the sensor section 20 by the amplifier 51 and the amplifier 51. The bandpass filter 52, which removes the noise component of the detected signal and allows the detection signal to pass, and the rectifier circuit 53, which performs full-wave rectification of the signal from the bandpass filter 52, is full-wave rectified by the rectifier circuit 53. It has a smoothing circuit 54 for smoothing the detected signal. It is not necessary to provide the rectifier circuit 53 for performing full-wave rectification and the smoothing circuit 54 for smoothing the detection signal.
制御部 6 0は、 本実施の形態例検査装置全体の制御を司っており、 コ ンピュー夕 (C P U ) 6 1 、 C P U 6 1の制御手順などを記憶する R O M 6 2、 C P U 6 1の処理経過情報や検出信号などを一時的に記憶する R A M 6 3、 アナログ信号処理回路 5 0よりのアナログ信号を対応する デジタル信号に変換する A Z Dコンバ一夕 6 4、 検査信号供給部 3 0に 供給するべき検査信号を供給する信号供給部 6 5、 検査結果や操作指示 ガイダンスなどを表示する表示部 6 6を備えている。  The control unit 60 controls the entire inspection apparatus of the present embodiment, and processes the computer 62 (CPU) 61, the ROM 62 storing the control procedure of the CPU 61, and the like, and processes the CPU 61. RAM 63, which temporarily stores progress information and detection signals, etc., converts analog signals from analog signal processing circuit 50 into corresponding digital signals, and supplies them to AZD converter 64, inspection signal supply unit 30 A signal supply unit 65 for supplying a test signal to be provided, and a display unit 66 for displaying test results, operation instruction guidance, and the like are provided.
信号供給部 6 5は、 例えば、 検査信号として例えば交流 2 0 0 K H z 、 2 0 0 Vの正弦波信号を生成し、 検査信号供給部 3 0に供給する。 こ の場合には、 バンドパスフィルタ 5 2はこの検査信号である 2 0 0 K H zを通過させるバンドパスフィルタとする。 なお、 検査信号は正弦波信 号に限らず、 交流信号であれば矩形波やパルス波であっても良いことは 言うまでもない。  The signal supply unit 65 generates, for example, a sine wave signal of, for example, AC 200 kHz, 200 V as a test signal, and supplies the signal to the test signal supply unit 30. In this case, the band-pass filter 52 is a band-pass filter that passes the test signal 200 kHz. It is needless to say that the inspection signal is not limited to a sine wave signal, but may be a rectangular wave or a pulse wave as long as it is an AC signal.
以上の構成を備える本実施の形態例の導電パターンの検査制御を図 2 のフローチヤ一トを参照して以下に説明する'。 図 2は本実施の形態例の 検査装置の検査制御を説明するためのフローチヤ一トである。 Inspection control of the conductive pattern of the present embodiment having the above configuration is shown in FIG. This will be described below with reference to the flowchart of FIG. FIG. 2 is a flowchart for explaining inspection control of the inspection apparatus of the present embodiment.
本実施の形態例の検査装置により検査を行う際には、 検査対象導電パ ターンの形成されたガラス基板が不図示の搬送路上を本実施の形態例の 回路パターン検査装置位置 (ワーク位置) に搬送されてくる。 このため 、 まず、 ステップ S 1において、 検査対象である液晶パネル 1 0を検査 装置にセッ トする。 これは、 自動的に搬送されてきた検査対象基板を不 図示の搬送ロポッ トにより検査装置にセットしても、 あるいは操作者が 直接セッ トしても良い。 制御部 6 0は、 検查装置に検査対象がセットさ れると、 口ポッ トコントローラ 7 0を起動してスカラーロボッ ト 8 0を 制御し、 検査対象を検査位置に位置決めする。  When the inspection is performed by the inspection apparatus according to the present embodiment, the glass substrate on which the conductive pattern to be inspected is formed is moved to a position (work position) of the circuit pattern inspection apparatus according to the present embodiment on a transport path (not shown). It is transported. For this reason, first, in step S1, the liquid crystal panel 10 to be inspected is set in the inspection device. In this case, the substrate to be inspected that has been automatically transported may be set in the inspection apparatus by a transport rod (not shown), or may be directly set by an operator. When the inspection target is set in the inspection device, the control unit 60 activates the mouth pot controller 70 to control the scalar robot 80 and positions the inspection target at the inspection position.
続いてステップ S 3において、 検査対象 (液晶パネル) 1 0の検査対 象検査対象パターン 1 5の一方端部側の初期位置 (所定距離離反する一 番端の検査対象パターン位置) に検査信号供給部 3 0の供給電極 3 5を 位置決めすると共に、 検査対象パターンの他方端部側の.初期位置 (所定 距離離反する 番端の検査対象パターン位置) にセンサ部 2 0のセンサ 電極 2 5を搬送位置決めする。  Subsequently, in step S3, an inspection signal is supplied to an initial position on one end side of the inspection target pattern 15 to be inspected (the liquid crystal panel) 10 (the position of the first inspection target pattern separated by a predetermined distance). In addition to positioning the supply electrode 35 of the part 30, the sensor electrode 25 of the sensor part 20 is conveyed to the initial position (the position of the endmost pattern to be inspected away from the predetermined distance) on the other end side of the pattern to be inspected. Position.
なお、 本実施の形態例ではギャップ (検査対象パターンと電極間の距 離) は例えば 1 0 0 m〜 2 0 0 ^ mの範囲に保たれている。 しかしな がら、 ギャップは以上の例に限定されるものではなく、 本実施の形態例 でのギャップは、 検査対象パターンのサイズに応じて決まり、 パターン のサイズが大きければギヤップも広くとれ、 パターンのサイズが小さい 場合にはギャップも狭くなる。  In the present embodiment, the gap (distance between the pattern to be inspected and the electrode) is kept in a range of, for example, 100 m to 200 m. However, the gap is not limited to the above example, and the gap in the present embodiment is determined according to the size of the pattern to be inspected. When the size is small, the gap becomes narrow.
また、 パターンサイズが非常に小さな場合には電極表面に絶縁材で被 覆を形成し、 パターンと電極が直接接触することがないように形成し、 絶縁材を介してセンサ部 2 0あるいは検査信号供給部 3 0を直接基板上 に密着させてギヤップをほぼ絶緣材厚さとな'るように制御することによ り、 検査対象パターンと電極との間の距離を容易かつ正確に一定距離に して検査を行うことができる。 When the pattern size is very small, a coating is formed on the electrode surface with an insulating material so that the pattern and the electrode do not come into direct contact with each other. Supply unit 30 directly on substrate By controlling the gap so that the thickness is substantially equal to the thickness of the material, the distance between the pattern to be inspected and the electrode can be easily and accurately set to a fixed distance to perform the inspection.
これにより、 非常に精細なパターンであっても簡単な構造で、 容易且 つ正確な検查結果が得られる。  Thereby, an easy and accurate detection result can be obtained with a simple structure even with a very fine pattern.
そして続くステップ S 5において、 信号供給部 6 5に指示して検査供 給部 3 0の供給電極 3 5に検査信号の供給を開始する。  Then, in the following step S5, the signal supply unit 65 is instructed to start supplying the test signal to the supply electrode 35 of the test supply unit 30.
次にステップ S 7に進み、 パターンと電極間の距離を一定に保ち、 セ ンサ部 2 0と検査信号供給部 3 0の各電極 2 5 , 3 5を同期させて検査 対象パターンを横切るように、 かつ検査対象パターン表面との離間距離 を一定に保つように制御しつつ移動させる制御 (検査対象の走査) を開 始する。 これにより、 以後センサ電極 2 5は、 供給電極 3 5との容量結 合【こより検査信号の供給された検査対象パターンよりの信号電位を検出 していくことになる。  Next, proceeding to step S7, keeping the distance between the pattern and the electrodes constant, synchronizing the electrodes 25 and 35 of the sensor section 20 and the inspection signal supply section 30 so as to cross the pattern to be inspected. In addition, the control (scanning of the inspection target) that starts moving while controlling so as to keep the separation distance from the surface of the inspection target pattern constant is started. As a result, the sensor electrode 25 thereafter detects the signal potential from the pattern to be inspected to which the inspection signal is supplied by capacitive coupling with the supply electrode 35.
即ち、 供給電極 3 5が検査信号を供給したパターンの位置にある場合 に、 センサ電極 2 5の少なくとも一部は当該検査信号の供給された検査 対象パターンの他方端部位置にあり、 共に供給電極 3 5がー方端部の検 查対象パターンの 1ピッチ移動する間に他方端部のセンサ電極 2 5も検 査対象パターンの 1ピッチ分移動するように制御される。  That is, when the supply electrode 35 is located at the position of the pattern to which the inspection signal is supplied, at least a part of the sensor electrode 25 is at the other end position of the inspection target pattern to which the inspection signal is supplied, and The sensor electrode 25 at the other end is also controlled to move by one pitch of the pattern to be inspected while 35 moves by one pitch of the pattern to be inspected at the one end.
このため、 ステップ S 1 0において信号処理回路 5 0を起動し、 セン サ電極 2 5よりの検出信号を処理して制御部 6 0に出力するように制御 する。 信号処理回路 5 0では、 上述したように、 センサ部 2 0のセンサ 電極 2 5よりの検出信号を増幅器 5 1で必要レベルまで増幅し、 増幅器 5 1で増幅した検出信号を検査信号周波数の信号を通過させるバンドパ スフィルタ 5 2に送って雑音成分を除去し、 その後バンドパスフィル夕 5 2よりの信号を整流回路 5 3で全波整流し、 全波整流された検出信号 を平滑回^ 54で平滑して制御部 6 0の AZD変換部 64に送る。Therefore, in step S 10, the signal processing circuit 50 is started, and control is performed so that the detection signal from the sensor electrode 25 is processed and output to the control unit 60. In the signal processing circuit 50, as described above, the detection signal from the sensor electrode 25 of the sensor section 20 is amplified to a required level by the amplifier 51, and the detection signal amplified by the amplifier 51 is converted into a signal of the inspection signal frequency. The signal from the bandpass filter 52 is sent to a bandpass filter 52, which removes noise components, and then the signal from the bandpass filter 52 is subjected to full-wave rectification by a rectifier circuit 53. Is smoothed by the smoothing unit ^ 54 and sent to the AZD conversion unit 64 of the control unit 60.
C PU 6 1は、 AZD変換部 64を起動して入力されたアナログ信号 を対応するデジタル信号に変換させ、 センサ電極 2 5で検出した検出信 号をデジタル値として読み取る。 The CPU 61 activates the AZD conversion unit 64 to convert the input analog signal into a corresponding digital signal, and reads the detection signal detected by the sensor electrode 25 as a digital value.
C P U 6 1は、 続くステップ S 1 2において、 読み取った検出信号を In a subsequent step S12, the CPU 61 converts the read detection signal
RAM6 3に送る。 RAM 6 3は送られてきた検出信号を順次保存する 。 なお、 この読み取った検出信号には、 正常な検査対象パターンからの 検出信号、 断線した検査対象パターンからの検出信号や検査対象パター ンと短絡した隣接する検査対象パターンからの検出信号の全てが含まれ る。 Send to RAM63. The RAM 63 sequentially stores the sent detection signals. The read detection signal includes all of the detection signals from the normal inspection target pattern, the detection signals from the disconnected inspection target pattern, and the detection signals from the adjacent inspection target pattern short-circuited with the inspection target pattern. It is.
ステップ S 1 4では、 当該検査対象パターンの検査が終了したか否か 、 例えばセンサ電極 2 5が検査対象パターンの一番最後のパターンを超 えた位置まで移動したか否かを判断する (当該検査対象パターンの検査 が終了したか否かを調べる)。  In step S14, it is determined whether or not the inspection of the pattern to be inspected is completed, for example, whether or not the sensor electrode 25 has moved to a position beyond the last pattern of the pattern to be inspected. Check whether the inspection of the target pattern has been completed).
当該検査対象パターンの途中までしか検査が終了していない場合には ステップ S 1 6に進み、 電極の走査を続行して次のパターンへの検査信 号の供給を行う。 そしてステップ S 1 0に戻り、 読み取り処理を続行す る。  If the inspection has been completed only halfway through the pattern to be inspected, the flow advances to step S16 to continue scanning the electrodes and supply an inspection signal to the next pattern. Then, the process returns to step S10 to continue the reading process.
一方、 ステップ S 1 4において、 すべての検査対象パ夕一ンに対する 検査が終了した場合にはステップ S 2 0に進み、 信号供給部 6 5に指示 して検査信号の供給を停止させると共に、 信号処理回路 5 0、 AZD変 換部 64の動作を停止させる。  On the other hand, in step S14, when the inspection for all the inspection target patterns is completed, the process proceeds to step S20, instructing the signal supply unit 65 to stop the supply of the inspection signal, and The processing circuit 50 stops the operation of the AZD conversion unit 64.
そして最後にステップ S 2 2において、 検査対象を検査位置より外し 、 次の搬送位置に位置決め搬送され、 必要な後処理が行われる。  Finally, in step S22, the inspection object is removed from the inspection position, positioned and transported to the next transport position, and necessary post-processing is performed.
以上の様に制御することにより、 センサ電極 2 5と供給電極 3 5との 両方が検査対象パターンに全く接触などすることなくパターンの検査が 行える。 このため、 検査対象パターンの強度が少ない基板であっても、 検査対象パターンに傷をつける等の問題をおこさずに検査を行うことが できる。 By performing the control as described above, the pattern inspection can be performed without any contact between the sensor electrode 25 and the supply electrode 35 at all. I can do it. For this reason, even a substrate having a low strength of the inspection target pattern can be inspected without causing a problem such as damaging the inspection target pattern.
このため、 パ夕一ン強度が十分にとれない小型携帯電話用液晶表示パ ネルに用いる液晶表示パネル用ガラス基板であっても、 配線パターンを 損傷することなく確実に検査することができる。  For this reason, even for a glass substrate for a liquid crystal display panel used for a liquid crystal display panel for a small mobile phone, which does not have sufficient strength, it is possible to reliably inspect the wiring pattern without damaging the wiring pattern.
また、 本実施の形態例の導電パターンの検査制御では、 センサ電極 2 5と供給電極 3 5とを検査対象パターンを横切るように移動させながら 、 供給電極 3 5から連続信号である交流正弦波信号を検査対象パターン に供給し、 検査対象パターンからの信号電位をセンサ電極 2 5により検 出していくので、 センサ電極 2 5より得られる信号電位である検出信号 は、 ある程度一定の連続した検出信号値として検出される。  In the inspection control of the conductive pattern of the present embodiment, the AC sine wave signal which is a continuous signal from the supply electrode 35 is moved while moving the sensor electrode 25 and the supply electrode 35 across the pattern to be inspected. Is supplied to the pattern to be inspected, and the signal potential from the pattern to be inspected is detected by the sensor electrode 25.Therefore, the detection signal, which is the signal potential obtained from the sensor electrode 25, has a certain constant continuous detection signal value. Is detected as
のため、 検査対象基板に設けられた複数の検査対象パターン中に、 オープン (断線した検査対象パターン) やショート (隣の検査対象バタ ーンと短絡した検査対象パターン) の不良検査対象パターンがある場合 、 オープンやショートのない正常な検査対象パターンが連続する範囲で 検出されるある程度一定の連続した検出信号値と、 オープンやショート がある不良検査対象パターン位置で検出される不良の検出信号値との間 に数値差ができる。  Therefore, among the plurality of inspection target patterns provided on the inspection target substrate, there are defect inspection target patterns such as open (disconnection inspection target pattern) and short (inspection target pattern short-circuited with the next inspection target pattern). In this case, a continuous detection signal value that is constant to some extent that a normal inspection target pattern without open or short circuit is detected in a continuous range, and a defect detection signal value that is detected at a defect inspection target pattern position that has open or short circuit There is a numerical difference between.
このように、 ある程度一定の連続した検出信号値の中'にオープンゃシ ョ一トによる不良の検出信号値が数値差、 即ち数値の変化として現れる ので、 例えば検出信号検出結果を、' 詳細を後述する、 図 3や.図 4に示す ようなグラフにすることにより、 検査対象基板の不良の判断やオープン やショートがある不良検査対象パターン位置の特定を容易に行うことが できる。 ' '  As described above, the detection signal value of a failure due to an open shot appears as a numerical value difference, that is, a change in the numerical value, among the detection signal values that are constant to a certain extent. By making a graph as shown in FIG. 3 or FIG. 4, which will be described later, it is possible to easily determine the defect of the inspection target substrate and specify the position of the defect inspection target pattern having an open or short circuit. ''
さらに、 検査装置が検査対象基板を順次替えながら検査していく際に 毎回変化する、 センサ電極 2 5と検査対象パ夕ーンとのギャップの変化 や供給電極 3 5と検査対象パターンとのギヤップの変化等により、 ある 程度一定の連続した検出信号値は検査対象基板を替えるたびに絶対値と して違う数値になる。 In addition, when the inspection device performs inspection while sequentially changing the inspection target substrate, Due to a change in the gap between the sensor electrode 25 and the pattern to be inspected, a change in the gap between the supply electrode 35 and the pattern to be inspected, etc. Each time is changed, the value becomes a different value as the absolute value.
しかし本実施の形態例の導電パターンの検査制御による、 検査対象基 板の不良の判断やオープンやショートがある不良検査対象パターン位置 の特定は、 ある程度一定の連続した検出信号値の中に現れるオープンや ショートによる不良の検出信号値の数値差、 即ち検出信号の相対的な数 値の変化を利甩することが可能である。  However, the determination of the defect of the inspection target substrate and the identification of the position of the defect inspection target pattern having an open or short circuit by the inspection control of the conductive pattern according to the present embodiment are performed by detecting an open circuit that appears in a certain constant continuous detection signal value. It is possible to use the numerical value difference between the detection signal values of the failures due to the short circuit and the short circuit, that is, the relative change in the detection signal value.
このため、 不良の判断や不良位置特定を行うための閾値に、 連続した 検出信号値に対する不良の検出信号値の割合や不良の検出信号値の変化 の割合等の相対値を利用することができ、 絶対値としてのある程度一定 の連続した検出信号値を使用しなくとも、 検査装置が検査対象基板を順 次替えながら検査しても、 確実に不良の判断や不良位置特定を行うこと ができる。  For this reason, a relative value such as a ratio of a failure detection signal value to a continuous detection signal value or a variation ratio of a failure detection signal value can be used as a threshold value for determining a failure and specifying a failure position. Even if the inspection apparatus does not use continuous detection signal values which are constant to some extent as absolute values, even if the inspection apparatus performs inspection while sequentially changing the inspection target board, it is possible to reliably determine a defect and specify a defective position.
な 、 本実施の形態例の導電パターンの検査制御は、 以上の例に限定 されるものではなく、 ステップ S 1 2とステップ S 1 4との間に、 ステ ップ S 1 2で読み取った検出信号を上記の相対値による閾値範囲内であ るか否かを調べ、 検出結果が閾値範囲内であればステップ S 1 4に進み 、 閾値範囲内でなければ検査信号を供給している検査対象パターンがォ ープンまたはショートした不良検査対象パターンであると判断して当該 検査対象パターンの位置や状態を記憶するステップを設けても良い。 以上の制御によるセンサ電極 2 5による検査信号検出結果を図 3及び 図 4に示す。 図 3は本実施の形態例の検査装置における検査対象パター ンの 3箇所が断線 (オープン) した場合の検査信号検出例を示す図、.図 4は本実施の形態例における検査対象パターンの 1箇所が途中で短絡 ( ショート) した場合の検査信号検出例を示す'図である。 Note that the inspection control of the conductive pattern according to the present embodiment is not limited to the above example, and the detection read in step S12 is performed between step S12 and step S14. It is checked whether or not the signal is within the threshold range based on the relative value. If the detection result is within the threshold range, the process proceeds to step S14. A step of determining that the pattern is an open or short-circuited defect inspection target pattern and storing the position or state of the inspection target pattern may be provided. FIGS. 3 and 4 show test signal detection results by the sensor electrode 25 under the above control. Fig. 3 is a diagram showing an example of detection of an inspection signal when three points of an inspection pattern in the inspection apparatus according to the present embodiment are broken (open), and Fig. 4 is a diagram showing one of the inspection target patterns according to the present embodiment. Short circuit in the middle ( It is a figure which shows the example of an inspection signal detection in case of (short).
検査対象パターンが正常である場合には、 信号供給部 6 5より供給電 極 3 5に供給された検査信号 (交流信号) は、 容量結合されている検査 対象パターンに供給され、 当該検査対象パターンを介してセンサ電極 2 5下部に到達し、 センサ電極 2 5との容量結合によりセンサ電極 2 5で 検出され、 制御部 6 0に出力される。  When the inspection target pattern is normal, the inspection signal (AC signal) supplied from the signal supply unit 65 to the supply electrode 35 is supplied to the capacitively coupled inspection target pattern, and the inspection target pattern is And reaches the lower part of the sensor electrode 25 through the sensor, is detected by the sensor electrode 25 by capacitive coupling with the sensor electrode 25, and is output to the controller 60.
このように供給電極 3 5とセンサ電極 2 5とは検査対象パターンを横 断しながら検査信号 (交流信号) を供給 ·検出するため、 検出信号はあ る程度一定した検出信号値として連続的に検出される。  In this way, the supply electrode 35 and the sensor electrode 25 supply and detect the inspection signal (AC signal) while traversing the pattern to be inspected, so that the detection signal is continuously obtained as a somewhat constant detection signal value. Is detected.
検査対象パターンの少なくとも一部が断線している場合には、 信号供 給部 6 5より供給電極 3 5に供給された検査信号 (交流電力) の少なく とも一部が検査対象パターンの断線部によ 0センサ電極 2 5側に到達し ないため、 検出信号値は小さくなる。 このため図 3に示されるように、 断線した検査対象パターン箇所の検出信号値は、 正常な検査対象パター ンから検出される連続的な一定値と比べて小さぐなる。  When at least a part of the pattern to be inspected is disconnected, at least a part of the inspection signal (AC power) supplied to the supply electrode 35 from the signal supply unit 65 is connected to the disconnected part of the pattern to be inspected. Since the light does not reach the sensor electrode 25 side, the detection signal value becomes small. Therefore, as shown in FIG. 3, the detection signal value of the disconnected inspection target pattern portion is smaller than a continuous constant value detected from a normal inspection target pattern.
一方、 検査対象パターンが隣接する検査対象パターンと短絡している 場合には、 信号供給部 6 5より供給電極 3 5に供給された検査信号 (交 流電力) は隣接する検査対象パターンとの短絡部を通じて隣接検査対象 パターンにも流れるため、 センサ電極 2 5よりの検出信号は隣接検査対 象パターンの検出信号と重畳され検出信号値は大きくなる。 このため図 4に示されるように、 短絡した検査対象パターン箇所の検出信号値は、 正常な検査対象パターンから検出される連続的な一定値と比べて大きく なる。  On the other hand, when the test pattern is short-circuited with the adjacent test pattern, the test signal (alternating power) supplied to the supply electrode 35 from the signal supply unit 65 is short-circuited with the adjacent test pattern. The detection signal from the sensor electrode 25 is superimposed on the detection signal of the adjacent test target pattern, and the detection signal value becomes large. Therefore, as shown in FIG. 4, the detection signal value of the short-circuited pattern to be inspected is larger than a continuous constant value detected from the normal pattern to be inspected.
上記のような、 検出対象パターンの断線と短絡を 1つのセンサ電極 2 5で行えるのは、 センサ電極 2 5の幅が供給電極 3 5の幅より、 少なく とも検査対象パターンの 1ピッチ以上幅広に設定されているからである 但し、 必ずセンサ電極 2 5の幅を供給電極 3 5の幅より、 検査対象パ ターンの 1 ピッチ以上としなければならないわけではなく、 断線した検 査対象パターンの検査や隣の検查対象パターンと短絡した検査対象パ夕 —ンの検査を行うことができれば、 例えば詳細を後述する第二の実施の 形態例の構成としても良い。 The disconnection and short circuit of the pattern to be detected as described above can be performed with one sensor electrode 25 because the width of the sensor electrode 25 is wider than the width of the supply electrode 35 by at least one pitch of the pattern to be inspected. Because it is set However, the width of the sensor electrode 25 does not necessarily have to be greater than the width of the supply electrode 35 by one pitch or more of the pattern to be inspected. If the inspection target panel that has short-circuited can be inspected, for example, the configuration of the second embodiment described later in detail may be adopted.
また、 絶対値としてのある程度一定の連続した検出信号値に、 ある程 度の範囲内で閾値を設定すれば、 検出信号値が閾値より小さい場合には 検査対象パターンの断線、 検出信号値が閾値より大きい場合には検査対 象パターンの短絡と判定できる。 例えば、 図 3において、 ある程度一定 の連続した検出信号値 0 . 6 0 V p pに対して閾値を 0 . 0 2 V p pと すれば、 0 . 5 8 V p p以下となっているセンサ移動距離約 2 2 mm、 2 mm、 7 8 mmの位置にある検査対象パターンは断線していると判 定する。  If a threshold value is set within a certain range for a continuous detection signal value having a certain constant value as an absolute value, if the detection signal value is smaller than the threshold value, the disconnection of the pattern to be inspected and the detection signal value are set to the threshold value. If it is larger, it can be determined that the pattern to be inspected is short-circuited. For example, in FIG. 3, if the threshold value is set to 0.02 V pp with respect to a constant detection signal value of 0.60 V pp to a certain extent, the sensor movement distance of 0.58 V pp or less is obtained. The pattern to be inspected at the positions of 2 mm, 2 mm, and 78 mm is judged to be broken.
また、 不良の判断や不良位置特定を行うための閾値に、 連続した検出 信号俥に対する不良の検出信号値の割合や不良の検出信号値の変化の割 合等の相対値を利用して、 例えば連続した検出信号値が 3 %以上低下し た場合には検査対象パターンの断線、 連続した換出信号値が 3 %以上上 昇した場合には検査対象パターンの短絡と判定できる。  Also, relative values such as the ratio of the detection signal value of the defect to the continuous detection signal Rishi and the rate of change of the detection signal value of the defect are used as the threshold value for determining the defect and specifying the position of the defect. If the continuous detection signal value drops by 3% or more, it can be determined that the inspection pattern is broken, and if the continuous replacement signal value rises by 3% or more, it can be determined that the inspection pattern is short-circuited.
即ち、 図 3において、 ある程度一定の連続した検出信号値 0 . 6 0 V p pを 1 0 0とすると、 検出信号値の変化の割合が 3 %以上低下したセ ンサ移動距離約 2 2 mm、 4 2 mm , 7 8 mmの位置にある検査対象パ ターンは断線していると判定する。  That is, in FIG. 3, assuming that the detection signal value 0.60 Vpp, which is constant to some extent, is 100, the rate of change of the detection signal value is reduced by 3% or more. The pattern to be inspected at the positions of 2 mm and 78 mm is judged to be disconnected.
さらには、 図 4のように、 ある程度一定の連続した検出信号値が約 0 . 4 5 V p p (センサ移動距離約 1 2 mmの位置) から、 約 0 . 4 I V p p (センサ移動距離約 2 5 mmの位置) へ低下し、 さらに約 0 . 4 9 V p p (センサ移動距離約 4 8 mm) へ上昇'するような場合がある。 こ のような場合であっても、 不良個所の検出信号値の変化の割合は、 ある 程度一定の連続した検出信号値の変化の割合より大きい (即ち急激であ る) ので、 不良個所を特定することが可能である。 Further, as shown in FIG. 4, the continuous detection signal value, which is constant to some extent, changes from about 0.45 V pp (at a position of about 12 mm of the sensor moving distance) to about 0.4 IV pp (about 2 mm of the sensor moving distance). 5 mm position) and about 0.49 It may rise to V pp (sensor movement distance about 48 mm). Even in such a case, the rate of change of the detection signal value at the defective part is somewhat larger than the rate of change of the continuous detection signal value to a certain degree (that is, abrupt). It is possible to do.
このように、 本実施の形態例では、 パターンの良否判定に絶対値を閾 値として利用可能であることはもちろん、 正常パターンの検出信号値に 対する不良パターンの検出信号値の相対的な変化の割合を閾値として利 用可能であるため、 検査装置が検査対象基板を順次'替えながら検査して も検出結果に応じた最適な閾値を設定でき、 検査ごとに検出信号値にば らつきがあっても、 また検出信号値が低い場合であっても、 これらの影 響を完全に防止することができ、 正確な検査結果が得られる。  As described above, in the present embodiment, not only the absolute value can be used as the threshold value for determining the quality of the pattern, but also the relative change of the detection signal value of the defective pattern with respect to the detection signal value of the normal pattern. Since the ratio can be used as a threshold value, even if the inspection device sequentially inspects the test target substrate while changing it, it is possible to set an optimal threshold value according to the detection result, and the detection signal value varies from inspection to inspection. However, even if the detection signal value is low, these effects can be completely prevented, and an accurate inspection result can be obtained.
このように、 センサ部及び検査信号供給部が両方とも非接触であるた めに検出信号値が微小となる検査方式であっても、 本実施の形態例の検 査装置を使用することにより、 その差異を確実に認識することができ、 容易且つ確実なパターン状態の検査が行える。  As described above, even in the inspection method in which the detection signal value is minute because both the sensor unit and the inspection signal supply unit are non-contact, by using the inspection device of the present embodiment, The difference can be reliably recognized, and the inspection of the pattern state can be performed easily and surely.
このため、 検出信号値の絶対値を閾値として良否を判定する従来の方 法に比べ、 非常に正確且つ容易にパターンの良否を検出できる。 また、 非接触であるため、 正確な位置決め精度が不要であり、 検査対象パター ンピッチが非常に細かい基板であっても、 精度良く検査を行うことがで きる。  For this reason, the quality of the pattern can be detected very accurately and easily compared to the conventional method of determining the quality using the absolute value of the detection signal value as a threshold. In addition, since it is non-contact, accurate positioning accuracy is not required, and the inspection can be performed with high accuracy even on a substrate having a very fine pattern pitch to be inspected.
さらには、 検出信号値が、 完全に一定の値でなくとも、 急激な検出信 号値の変化をもとに、 不良個所の特定が可能である。  Furthermore, even if the detection signal value is not completely constant, it is possible to identify a defective portion based on a sudden change in the detection signal value.
〔第 2の発明の実施の形態例〕  [Example of Embodiment of Second Invention]
以上の説明では、 少なくともセンサ電極 2 5の一部を必ず供給電極 3 5が実際に検査信号を供給しているパターンの他方端部位置となるよう に制御する例を説明した。 しかし、 本発明は以上の例に限定されるもの ではなく、.例えば、 センサ電極 2 5を複数設け、 複数設けたセンサ電極 2 5のうちの 1つは供給電極 .3 5が実際に検査信号を供給しているパ夕 ーンの他方端部位置となるように設け、 複数設けたセンサ電極 2 5のそ の他の少なくとも 1つは供給電極 3 5が実際に検査信号を供給している パターンに隣接するパターンの他方端部位置に設ける構成にしても良い このように構成した本発明に係る第 2の実施の形態例を以下図 5を参 照して以下に説明する。 図 5は本発明に係る第 2の実施の形態例の検査 装置の構成を説明するための図である。 In the above description, an example has been described in which at least a part of the sensor electrode 25 is controlled such that the supply electrode 35 is always at the other end position of the pattern to which the test signal is actually supplied. However, the present invention is not limited to the above examples. However, for example, a plurality of sensor electrodes 25 are provided, and one of the plurality of sensor electrodes 25 is a supply electrode. At least one of the plurality of sensor electrodes 25 provided at the other end of the pattern adjacent to the pattern to which the supply electrode 35 is actually supplying the inspection signal. A second embodiment according to the present invention configured as described above will be described below with reference to FIG. FIG. 5 is a diagram for explaining the configuration of the inspection apparatus according to the second embodiment of the present invention.
図 5において、 上 した第 1の実施の形態例の図 1に示す構成と同様 の構成部には同一番号を付し詳細説明を省略する。  In FIG. 5, the same components as those shown in FIG. 1 of the first embodiment are denoted by the same reference numerals, and detailed description will be omitted.
図 5において、 センサ部 2 0の少なくとも先端部表面には、 第一のセ ンサ電極 2 2と第二のセンサ電極 2 4が設けられている。 この第一のセ ンサ電極 2 2と第二のセンサ電極 2 4は検査対象パターンのパターンピ ツチ分だけ離間配置されており、 また、 第一のセンサ電極 2 2は供給電 極 3 5が実際に検査信号を供給している検査対象パターンの他方端部位 置となるように設け、 第二のセンサ電極 2 4は供給電極 3 5が実際に検 査信号を供給している検査対象パターンに隣接する隣接検査対象パター ンの他方端部位置にオフセッ トされた状態で設けられている。  In FIG. 5, a first sensor electrode 22 and a second sensor electrode 24 are provided on at least the tip surface of the sensor section 20. The first sensor electrode 22 and the second sensor electrode 24 are spaced apart from each other by the pattern pitch of the pattern to be inspected, and the first sensor electrode 22 actually has the supply electrode 35. The second sensor electrode 24 is provided adjacent to the inspection target pattern to which the supply electrode 35 actually supplies the inspection signal. It is provided in an offset state at the other end position of the adjacent inspection target pattern.
また、 第一のセンサ電極 2 2は供給電極 3 5が実際に検査信号を供給 している検査対象パターンの他方端部位置となるように設けられている ので、 検査対象パターンの断線の検査を行う。 また、 第二のセンサ電極 2 4は供給電極 3 5が実際に検査信号を供給している検査対象パターン に隣接する隣接検査対象パターンの他方端部位置にオフセッ 卜された状 態で設けられているので、 検査対象パターンと隣接検査対象パターンと の短絡の検査を行う。 これら第一のセンサ電極 2 2及び第二のセンサ電極 2 4の幅は検査対 象パターンのパターン幅以下とすることが望ましい。 これは、 検査対象 パターンの断線の検査を第一のセンサ電極 2 2が行い、 検査対象パター ンと隣接検査対象パタ一ンとの短絡の検査を第二のセンサ電極 2 4が行 うことにより、 非常に精度の高い検査を実現するためである。 Further, since the first sensor electrode 22 is provided so that the supply electrode 35 is located at the other end of the pattern to be inspected to which the inspection signal is actually supplied, the inspection of the disconnection of the pattern to be inspected is performed. Do. Further, the second sensor electrode 24 is provided in a state where the supply electrode 35 is offset to the other end position of the adjacent test pattern adjacent to the test pattern to which the test signal is actually supplied. Inspect the short-circuit between the pattern to be inspected and the adjacent pattern to be inspected. It is desirable that the width of the first sensor electrode 22 and the second sensor electrode 24 be equal to or smaller than the pattern width of the pattern to be inspected. This is because the first sensor electrode 22 performs an inspection for disconnection of the pattern to be inspected, and the second sensor electrode 24 performs an inspection for a short circuit between the pattern to be inspected and the adjacent pattern to be inspected. This is to realize very high-precision inspection.
具体的には、 第一のセンサ電極 2 2の幅が検査対象パターンのパター ン幅以下であると、 検査対象パターンが断線し、 検査対象パターンと隣 接検査対象パターンとが短絡しているような場合であっても、 第一のセ ンサ電極 2 2は、 検査対象パターンから短絡部を通じて隣接検査対象パ ターンに流れ込んだ、 隣接検査対象パターンからの検査信号からの検出 信号の影響を受けにくくなる。 また、 第二のセンサ電極 2 4の幅が検査 対象パターンのパターン幅以下であると、 検査対象パターンに断線や短 絡がない場合や、 検査対象パターンに断線はないが検査対象パターンと 隣接検査対象パターンが短絡している場合であっても、 第二のセンサ電 極 2 4は、 検査対象パターンからの検査信号の影響を受けにくくなる。  Specifically, if the width of the first sensor electrode 22 is less than or equal to the pattern width of the pattern to be inspected, the pattern to be inspected is broken, and the pattern to be inspected and the adjacent pattern to be inspected are short-circuited. Even in such a case, the first sensor electrode 22 is less susceptible to the detection signal from the test signal from the adjacent test pattern that has flowed into the adjacent test pattern from the test pattern through the short-circuited portion. Become. If the width of the second sensor electrode 24 is smaller than the pattern width of the pattern to be inspected, there is no disconnection or short circuit in the pattern to be inspected. Even when the target pattern is short-circuited, the second sensor electrode 24 is less likely to be affected by the inspection signal from the inspection target pattern.
このように、 第一のセンサ電極 2 2と第二のセンサ電極 2 4とによる 断線 ·短絡の検査は、 検査対象パターンの断線の有無と隣接榼査対象パ ターンの短絡の有無がどのように存在していても非常に精度の高い検査 を実現することができる。  As described above, the inspection of the disconnection / short-circuit by the first sensor electrode 22 and the second sensor electrode 24 depends on whether or not the inspection target pattern is disconnected and whether or not the adjacent inspection target pattern is short-circuited. Even if it is present, very high-precision inspection can be realized.
伹し、 第一のセンサ電極 2 2及び第二のセンサ電極 2 4の幅を必ず検 査対象パターンのパターン幅以下にしなくても良いことは、 第 1の実施 の形態例におけるセンサ電極 2 5により明らかである。  However, the fact that the widths of the first sensor electrode 22 and the second sensor electrode 24 do not necessarily have to be smaller than the pattern width of the pattern to be inspected is different from the sensor electrode 25 according to the first embodiment. Is clearer.
また、 第一のセンサ電極 2 2及び第二のセンサ電極 2 4は、 非接触で 検査信号を検出するため、.隣接検査対象パターンからの検出信号を完全 になくすことは不可能である。 即ち、 たとえ、 第一のセンサ電極 2 2及 び第二のセンサ電極 2 4の幅を検査対象パターンのパターンピッチ以下 とした場合でも、 第一のセンサ電極 2 2及び'第二のセンサ電極 2 4の幅 が検査対象パターンのパターンピッチ以下でなかった場合と同様に、 隣 接検査対象パターンからの検査信号が検出されてしまう。 しかしながら 、 本発明の検査装置は、 正常パターンの検出信号値に対する不良パター ンの検出信号値の相対的な変化の割合を利用して検査対象パターンの検 査を行うため、 第一のセンサ電極 2 2及び第二のセンサ電極 2 4が隣接 検査対象パターンからの検査信号が検出したとしても、 相対的な変化の 割合には影響しないので、 検査が可能である。 In addition, since the first sensor electrode 22 and the second sensor electrode 24 detect the inspection signal in a non-contact manner, it is impossible to completely eliminate the detection signal from the adjacent inspection target pattern. That is, even if the width of the first sensor electrode 22 and the second sensor electrode 24 is smaller than the pattern pitch of the pattern to be inspected. In the case where the width of the first sensor electrode 22 and the width of the 'second sensor electrode 24' are not smaller than the pattern pitch of the pattern to be inspected, the inspection signal from the adjacent pattern to be inspected is detected. Will be done. However, since the inspection apparatus of the present invention performs the inspection of the inspection target pattern using the relative change ratio of the detection signal value of the defective pattern to the detection signal value of the normal pattern, the first sensor electrode 2 Even if the second and second sensor electrodes 24 detect an inspection signal from an adjacent inspection target pattern, the inspection is possible because it does not affect the relative rate of change.
さらにまた、 以上詳細に説明した第 2の実施の形態例では、 オフセッ トされたセンサ電極は第二のセンサ電極 2 4であると説明したが、 検査 対象パターンに隣接する隣接検査対象パターンとは反対側で隣接する第 二の隣接検査対象パターンからの検査信号を検出する、 第三のセンサ電 極 ¾設けることで、 受電検査対象パターンの両隣に隣接する 2つの隣接 検査対象パターンとの短絡を同時に検査することも可能である。  Furthermore, in the second embodiment described in detail above, the offset sensor electrode is described to be the second sensor electrode 24, but the adjacent sensor pattern adjacent to the test pattern is different from the adjacent sensor pattern. By providing a third sensor electrode that detects the test signal from the second adjacent test pattern adjacent on the opposite side, a short circuit with two adjacent test patterns adjacent to both sides of the power test pattern is provided. It is also possible to inspect at the same time.
また、 センサ部 2 0に設けられるセンサ電極は、 第一のセンサ電極 2 Further, the sensor electrode provided in the sensor section 20 is a first sensor electrode 2
2のみや第二のセンサ電極 2 4のみでも問題がないことや、 オフセッ卜 された 3つ以上のセンサ電極を設けても良いことは言うまでもない。 Needless to say, there is no problem with only 2 or only the second sensor electrode 24, and three or more offset sensor electrodes may be provided.
〔第 3の発明の実施の形態例〕  [Example of Embodiment of Third Invention]
以上の説明は、 センサ電極 2 5及び供給電極 3 5を検査対象パターン の端部を横断するように移動させて不良パターンを検出する例を説明し た。 しかし、 本発明は以上の例に限定されるものではなく、 例えば、 セ ンサ電極 2 5又は供給電極 3 5の一方を検査対象パターンに沿っても移 動制御可能に構成し、 上述した制御で不良パターンを特定した後に、 不 良パターン位置に両電極を位置決めし一方の電極を不良パターンに沿つ てパターン上を移動させ、 センサ電極 2 5での検出信号値を読み込み、 検出信号値の変化位置を検出してパターン不良発生箇所として特定可能 に構成しても良い。 In the above description, an example of detecting a defective pattern by moving the sensor electrode 25 and the supply electrode 35 so as to cross the end of the pattern to be inspected has been described. However, the present invention is not limited to the above example. For example, one of the sensor electrode 25 and the supply electrode 35 can be moved and controlled along the pattern to be inspected. After identifying the defective pattern, both electrodes are positioned at the position of the defective pattern, one electrode is moved on the pattern along the defective pattern, the detected signal value at sensor electrode 25 is read, and the detected signal value changes. Detects the position and identifies it as a pattern defect occurrence location May be configured.
このように構成した本発明に係る第 3の実施の形態例を以下図 6乃至 図 1 0を参照して以下に説明する。 図 6は本発明に係る第 3の実施の形 態例の検査装置、 図 7は本発明に係る第 3の実施の形態例の検査装置に おける電極移動制御を説明するための図、 図 8は第 3の実施の形態例の パターン不良箇所特定制御を説明するためのフローチヤ一ト、 図 9は第 3の実施の形態例装置におけるセンサ電極 2 5での不良パターン検出信 号波形の例を示す図、 図 1 0は不良パターンにおけるセンサ電極 2 5の 検出信号波形の例を示す図である。  A third embodiment according to the present invention configured as described above will be described below with reference to FIGS. FIG. 6 is a diagram illustrating an inspection apparatus according to a third embodiment of the present invention, and FIG. 7 is a diagram illustrating electrode movement control in the inspection apparatus according to the third embodiment of the present invention. FIG. 9 is a flowchart for explaining the pattern defect location specifying control of the third embodiment, and FIG. 9 is an example of a defect pattern detection signal waveform at the sensor electrode 25 in the device of the third embodiment. FIG. 10 is a diagram showing an example of a detection signal waveform of the sensor electrode 25 in a defective pattern.
図 6において、 上述した第 1の実施の形態例の図 1に示す構成と同様 の構成部には同一番号を付し詳細説明を省略する。  6, the same components as those shown in FIG. 1 of the first embodiment described above are denoted by the same reference numerals, and detailed description will be omitted.
図 6においては、 検出部 2 0にはカメラ 2 6が取り付けてられている 。 ζ!のカメラ 2 6は、 撮影した映像を表示するために、 例えば制御部 6 0の表示部 6 6に接続されており、 パターン不良発生箇所の不良発生状 態を観察するために使用される。 また、 検査信号供給部 3 0には検査信 号を供給する検査信号供給プローブが取り付けられたプローブ接触手段 3 2が設けられている。 このプローブ接触手段 3 2と検査信号供給プロ ーブは、 パターン不良発生箇所の特定を確実に行うために使用される。 第 3の実施の形態例においては、 スカラーロポッ トは図 6の矢印方向 のみではなく、 図 6のパターン長手方向にも移動制御可能に構成する。 そして、 まず上述した第 1の実施の形態例の図 2に示す検査制御を行 い、 検査対象パターンに不良があるか否かを検査する。 検査の結果、 例 えばパターン断線であるとされた検査対象パターンについて当該検査対 象パターン位置を例えば R A M 6 3などに保持する。  In FIG. 6, a camera 26 is attached to the detection unit 20. The camera 26 of ζ! is connected to, for example, the display unit 66 of the control unit 60 to display the captured image, and is used to observe the state of occurrence of a pattern failure at the location where the pattern failure has occurred. . Further, the inspection signal supply unit 30 is provided with a probe contact means 32 to which an inspection signal supply probe for supplying an inspection signal is attached. The probe contact means 32 and the inspection signal supply probe are used to reliably identify the location where the pattern defect has occurred. In the third embodiment, the movement of the scalar rod is controlled not only in the direction of the arrow in FIG. 6 but also in the longitudinal direction of the pattern in FIG. Then, first, the inspection control shown in FIG. 2 of the first embodiment described above is performed to inspect whether or not the inspection target pattern has a defect. As a result of the inspection, for example, the inspection target pattern position of the inspection target pattern which is determined to be the pattern disconnection is held in, for example, RAM63.
このようにして不良パターンが検出され、 不良パターン位置が特定さ れると不良箇所特定処理に移行する。 第 3の実施の形態例の不良箇所特 定処理では, 図 7の①で示すように、 最初に 給電極 3 5とセンサ電極 2 5とを同期させて不良と判断されたパターン位置まで移動させる。 続いて図 7の②で示す様に、 センサ電極 2 5をパターン端部より他方 端部方向に移動させながら順次検査信号を読み取り、 読み取り信号が急 激に変化する位置 (検出信号が検出されなくなる、 あるいは低レベルに 変化する位置) を求め、 当該位置をパターン不良箇所と特定する。 When the defective pattern is detected in this way and the position of the defective pattern is specified, the process proceeds to the defective portion specifying process. Defective part feature of the third embodiment In the constant processing, the supply electrode 35 and the sensor electrode 25 are first synchronized and moved to the pattern position determined to be defective, as shown by ① in Fig. 7. Subsequently, as shown by the triangle in FIG. 7, the inspection signal is sequentially read while moving the sensor electrode 25 from the pattern end toward the other end, and the position where the read signal changes rapidly (the detection signal is not detected) , Or a position that changes to a low level), and identifies that position as a pattern defect location.
以下、 図 8のフローチャートを参照して詳細に説明する。 第 3の実施 の形態例では、 上述した第 1の実施の形態例におけるステツプ S 1 4の 処理に続いて、 R A M 6 3に保存された検出信号を確認し、 不良パター ンが検出されたか否かを調べ、 不良パターンが検出されていない場合に はステップ S 2 0の処理に移行する。  Hereinafter, this will be described in detail with reference to the flowchart of FIG. In the third embodiment, following the processing of step S14 in the above-described first embodiment, the detection signal stored in the RAM 63 is checked to determine whether or not a defective pattern has been detected. Then, if no defective pattern is detected, the process proceeds to step S20.
一方、 検査の結果不良パターンが検出された場合には信号供給部 6 5 を消勢すると共に、 ステップ S 3と同様に電極を初期位置に位置決めし て図 8に示す処理に移行する。 そして図 8に示す処理の終了後ステツプ S 2 0の処理に移行すればよい。  On the other hand, if a defective pattern is detected as a result of the inspection, the signal supply unit 65 is deenergized, and the electrodes are positioned at the initial position as in step S3, and the process proceeds to the processing shown in FIG. Then, after the processing shown in FIG.
第 3の実施の形態例では最初に図 8のステツプ S 3 1に示す様に、 図 2に示すステップ S 1乃至ステップ S' 1 6の処理で検出した不良パター ン位置を特定する。 例えば一部パターンが断線していた場合の検出信号 波形を図 9に示す。 図 9に示す例では、 アナログ信号処理回路 5 0での 信号処理を行う前の信号を示している。 丸印で示した箇所がパターンの オープン (2本のパターンが断線している場合) と検出された信号波形 である。  In the third embodiment, first, as shown in step S31 of FIG. 8, a defective pattern position detected in the processing of steps S1 to S'16 shown in FIG. 2 is specified. For example, Fig. 9 shows the detection signal waveform when a part of the pattern is broken. In the example shown in FIG. 9, a signal before signal processing in the analog signal processing circuit 50 is shown. The circles indicate the signal waveforms detected as open patterns (when two patterns are broken).
続いてステップ S 3 3において、 ロポットコントローラ 7 0を起動し 、 スカラー口ポッ ト 8 0を制御してセンサ電極 2 5及び供給電極 3 5を 互いに同期させながら不良パターン位置に移動させる。 このとき、 高感 度での検出を行うため、 不良パターンの幅方向ほぼ中央位置にセンサ電 極 2 5及び.供給電極 3 5の幅方向の中心がく ¾ように位置決めする (図 7における①の制御)。 Subsequently, in step S33, the robot controller 70 is started, and the scalar port pot 80 is controlled to move the sensor electrode 25 and the supply electrode 35 to the defective pattern position while synchronizing with each other. At this time, in order to perform detection with high sensitivity, the sensor voltage is placed almost at the center of the width of the defective pattern. Position the electrode 25 and the supply electrode 35 in such a way that the center in the width direction is square (control (1) in Fig. 7).
続いてステツプ S 3 5に進み、 信号供給部 6 5を起動して供給電極 3 5に検査信号を印加して不良パターンに検査信号を供給する。 そして口 ポッ トコントローラ 7 0を起動してセンサ電極 2 5をパターンに沿って 供給電極 3 5方向に移動させる (図 7における②の制御)。  Subsequently, the process proceeds to step S35, in which the signal supply unit 65 is activated to apply an inspection signal to the supply electrode 35 and supply the inspection signal to the defective pattern. Then, the mouth pot controller 70 is activated to move the sensor electrode 25 in the direction of the supply electrode 35 along the pattern (control (1) in FIG. 7).
同時にステツプ S 4 0に示すようにセンサ電極 2 5よりの検出信号を 読み取る。 そして続くステツプ S 4 2でセンサ電極 2 5よりの検出信号 値が大きく変化したか否かを調べる。 大きく変化していない場合にはス テツプ S 3 7に戻りセンサ電極 2 5の移動を続ける。  At the same time, the detection signal from the sensor electrode 25 is read as shown in step S40. Then, in the following step S42, it is checked whether or not the detection signal value from the sensor electrode 25 has changed significantly. If not, the process returns to step S37 to continue the movement of the sensor electrode 25.
一方、 ステップ S 4 2でセンサ電極 2 5よりの検出信号値が大きぐ変 化した場合には変化ステップ S 4 4に進み、 センサ電極 2 5からの検出 信号が、 大きく変化し始めた位置と大きな変化がなくなった位置とを求 め、 それらの位置の中間位置をパターン不良箇所として特定する。  On the other hand, if the detection signal value from the sensor electrode 25 greatly changes in step S42, the process proceeds to the change step S44, and the position where the detection signal from the sensor electrode 25 starts to change greatly The position where the large change has disappeared is determined, and the intermediate position between those positions is specified as the pattern defective portion.
センサ電極 2 5における検出信号波形の例を図 1 0に示す。 図 1 0に 示すように、 断線箇所までは供給電極 3 5により供給された検査信号が センサ電極 2 5に到達しておらず、 検出信号値も低かったが、 断線箇所 を超えると供給された検査信号が到達するので検出信号値が上昇する。 例えば、 センサ電極 2 5からの検出信号が、 大きく変化し始めた位置と 大きな変化がなくなった位置との中間位置をパターン不良箇所として特 定するとしたので、 この傾斜部分のほぼ中間の場所がパターンの不良箇 所として特定される。  FIG. 10 shows an example of a detection signal waveform at the sensor electrode 25. As shown in FIG. 10, the inspection signal supplied by the supply electrode 35 did not reach the sensor electrode 25 up to the disconnection point, and the detection signal value was low, but the inspection signal was supplied beyond the disconnection point. Since the inspection signal arrives, the detection signal value increases. For example, an intermediate position between the position at which the detection signal from the sensor electrode 25 starts to change significantly and the position at which the detection signal no longer changes is identified as a pattern defect portion. Is identified as a defective part.
なお、 以上の説明はセンサ電極 2 5を供給電極方向に移動させたが、 センサ電極 2 5ではなく、 供給電極 3 5をセンサ電極 2 5方向に移動さ せても良い。  In the above description, the sensor electrode 25 is moved in the direction of the supply electrode. However, instead of the sensor electrode 25, the supply electrode 35 may be moved in the direction of the sensor electrode 25.
以上説明した様に第 3の実施の形態例によれば、 上述した第 1の実施 の形態例と同様に高精度でのパターンの良否'検査を非接触で行うことが できると共に、 センサ電極を X— Yの 2方向に移動制御することで、 単 に不良パターンがあるか否かの検査にとどまらず、 具体的不良箇所も特 定できる。 このため、 例えば必要に応.じて不良箇所の修復も短時間で可 能となる。 As described above, according to the third embodiment, the first embodiment In the same way as in the above embodiment, it is possible to perform a high-precision pattern pass / fail inspection without contact, and by controlling the movement of the sensor electrode in the X and Y directions, it is possible to determine whether there is only a defective pattern. Not only inspection but also specific failures can be identified. For this reason, for example, if necessary, a defective portion can be repaired in a short time.
また、 上記の不良箇所の修復において、 修復が可能であるかを判断す るためには、 パターン不良発生箇所の不良発生状態を観察できることが 望ましい。 例えばパターン不良発生箇所にゴミ等が付着しているだけで あることがわかればその場での修復が可能であることが判断でき、 また 、 致命的な不良であれば修復を行わない判断をすることができる。' この パターン不良発生箇所の不良発生状態を観察には、 検出部 2 0に取り付 けてられているカメラ 2 6を使用する。 このカメラ 2 6は、 検出部 2 0 に取り付けられているので、 上記ステップ S 3 5でカメラ 2 6の撮影を 開始し、 ステツプ S 4 0及びステツプ S 4 2が行われている間は撮影を 継続し、 ステップ S 4 2でのパターン不良箇所の特定後まで撮影を続行 する 9 このように撮影されたパターン不良発生箇所の映像は、 撮影の続 行中及びパターン不良発生箇所の特定後も表示部 6 6に表示され、 パ夕 ーン不良発生箇所の不良発生状態を観察するために使用される。 In order to determine whether or not repair is possible in repairing the above-mentioned defective portion, it is desirable to be able to observe the defect occurrence state of the pattern defect occurrence portion. For example, if it is found that only dust or the like has adhered to the location where the pattern defect has occurred, it can be determined that the repair can be performed on the spot, and if the failure is fatal, it is determined that the repair is not performed. be able to. 'The camera 26 attached to the detection unit 20 is used for observing the failure occurrence state at the pattern failure occurrence location. Since the camera 26 is attached to the detection unit 20, the photographing of the camera 26 is started in the step S35, and the photographing is performed while the steps S40 and S42 are performed. Continue to continue shooting until after the pattern defect location is specified in step S42. 9 The image of the pattern defect location captured in this way is displayed during shooting and after the pattern defect location is specified. Displayed in part 66, it is used to observe the failure occurrence state of the pattern failure occurrence location.
また、 パターンの不良箇所の状態は、 完全に断線や短絡している状態 から一部断線ゃゴミ等の付着物による一部短絡の状態まで様々である。 この一部断線や一部短絡の状態においては、 センサ電極 2 5と供給電極 3 5との両方が非接触での検査では、 図 1 0のような検出信号波形が得 られない場合がある。 このような場合には、 プロ一ブ接触手段 3 2を動 作させて検査信号供給プローブを不良パターンの一方端部に接触させて からセンサ電極 2 5を不良パターンに沿ってパターン上を移動させると 、 確実にパターン不良発生箇所を特定することができる。 尚、 不良パターンの他方端部のセンサ電極' 2 5の代わりに接触型のセ ンサプロ一ブを使用し、 このセンサプローブを他方端部に接触させて非 接触の供給電極 3 5を不良パターンの他方端部のセンサプローブ方向に 移動させても良い。 In addition, the state of a defective portion of the pattern varies from a completely disconnected state or a short-circuited state to a partially disconnected state or a partially short-circuited state due to an attached substance such as dust. In this partially disconnected or partially short-circuited state, a test signal waveform as shown in FIG. 10 may not be obtained in an inspection in which both the sensor electrode 25 and the supply electrode 35 are in non-contact. In such a case, the probe contact means 32 is operated to bring the inspection signal supply probe into contact with one end of the defective pattern, and then the sensor electrode 25 is moved on the pattern along the defective pattern. Thus, it is possible to reliably identify the location where the pattern defect occurs. Note that a contact-type sensor probe is used in place of the sensor electrode '25 at the other end of the defective pattern, and this sensor probe is brought into contact with the other end to connect the non-contact supply electrode 35 with the defective pattern. It may be moved in the direction of the sensor probe at the other end.
〔第 4の発明の実施の形態例〕  [Embodiment of the fourth invention]
以上の説明では、 スカラー口ポット 8 0によりセンサ電極 2 5及び供 給電極 3 5移動制御を主に X— Y方向に 2次元制御する例を説明レた。 これは、 検査対象基板が液晶パネルであり、 ガラス基板で平滑度は高か つたからである。 パターン厚さが厚かったり、 検査基板が大型で表面の 凹凸がさけられないような基板を検査する場合には、 以上の 2次元制御 のみならず、 上下方向 (Z方向) にも制御するように構成して、 検査対 象基板の凹凸があっても良好か検査結果が得られる様に構成すればよい  In the above description, an example in which the movement control of the sensor electrode 25 and the supply electrode 35 by the scalar mouth pot 80 is two-dimensionally controlled mainly in the XY direction has been described. This is because the substrate to be inspected was a liquid crystal panel, and the glass substrate had high smoothness. When inspecting a substrate that has a large pattern thickness or a large inspection substrate that cannot prevent surface irregularities, control not only the above two-dimensional control but also the vertical direction (Z direction). It should be configured so that the inspection result can be obtained even if there is unevenness on the inspection target board.
2次元制御のみならず、 上下方向 (Z方向) にも制御するように構成 した本発明に係る第 4の実施の形態例を図 1 1を参照レて以下に説明す る。 図 1 1は本発明に係る第 4の実施の形態例の検査装置の構成を説明 するための図である。 図 1 1において、 上述した第 1の実施の形態例の 図 1に示す構成と同様構成には同一番号を付し詳細説明を省略する。 図 1 1においては、 検出部 2 0にはレーザ変位計 2 8が、 検査信号供 給部 3 0にはレーザ変位計 3 8が取り付けられており、 両変位計 2 8 、 3 8よりの検出結果から検出部 2 0、 検査信号供給部 3 0と検査対象基 板の表面までの距離を測定する距離測定部 9 0が備えられている。 A fourth embodiment according to the present invention configured to control not only two-dimensional control but also in the vertical direction (Z direction) will be described below with reference to FIG. FIG. 11 is a view for explaining the configuration of the inspection apparatus according to the fourth embodiment of the present invention. 11, the same components as those shown in FIG. 1 of the above-described first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted. In Fig. 11, a laser displacement meter 28 is attached to the detection unit 20 and a laser displacement meter 38 is attached to the inspection signal supply unit 30. Detection from both displacement meters 28, 38 A distance measuring unit 90 for measuring the distance from the result to the detecting unit 20, the inspection signal supplying unit 30, and the surface of the inspection target substrate is provided.
また、 スカラーロポット 8 0は、 検出部 2 0、 検査信号供給部 3 0と を 2次元 (X— Y ) 制御可能であるほか、 図に直交する方向 (上下方向 、 即ち紙面に対して垂直な Z方向) にも位置決め制御可能に構成されて いる。 そして、 以上の構成を備える第 4の実施の'形態例では、 電極の移動と 同時に距離測定部 9 0はレーザ変位計 2 8、 3 8を起動して、 各電極と 検査対象基板表面との距離を測定し、 測定結果を制御部 6 0に出力する 。 また、 制御部 6 0は、 距離測定部 9 .0からの電極が一定距離移動する 間の測定距離の測定結果を平均化し、 平均化した距離が一定となるよう に電極とパターン間の距離を制御している。 In addition, the scalar robot 80 can control the detection unit 20 and the inspection signal supply unit 30 two-dimensionally (X-Y), and can also control the direction orthogonal to the figure (vertical direction, that is, perpendicular to the paper surface). (Z direction). In the fourth embodiment having the above-described configuration, the distance measurement unit 90 activates the laser displacement meters 28 and 38 simultaneously with the movement of the electrodes, so that the distance between each electrode and the surface of the inspection target substrate is increased. The distance is measured, and the measurement result is output to the control unit 60. The control unit 60 also averages the measurement results of the measurement distances from the distance measurement unit 9.0 while the electrodes move a fixed distance, and adjusts the distance between the electrodes and the pattern so that the averaged distance is constant. Controlling.
例えば、 検査対象パターンの 3本分の距離の平均に従って電極、 基板 表面間の距離を制钾する。  For example, the distance between the electrode and the substrate surface is controlled according to the average of the distances of three inspection target patterns.
このように距離を平均化するのは、 急激な Z方向制御を防いで緩やか な制御とすると共に、 ノイズ、 測定誤差などの影響を軽減するためであ る。  The reason for averaging the distances in this way is to prevent abrupt Z-direction control and provide gentle control, as well as to reduce the effects of noise and measurement errors.
このように X— Y方向のみでなく Z方向制御を行うのは、 特に大型基 板 c 検査に有効である。 例えば大型フラットディスプレイパネル表面の 検查対象パターンの検査などにおいては、 どうしても基板の表面の湾曲 がさけられず、 このような場合でも電極とパターンが接触してしまうの を有効に防止できる。  Controlling not only the X-Y direction but also the Z-direction in this way is particularly effective for large-scale board c inspection. For example, in the inspection of a pattern to be inspected on the surface of a large flat display panel, the curvature of the substrate surface cannot be avoided, and even in such a case, it is possible to effectively prevent the electrode from coming into contact with the pattern.
また、 パターンの厚さが厚いような場合には、 平均化する測定距離の 範囲を狭くしてより高感度の検出を可能とすれば良い。  When the pattern is thick, the range of the measurement distance to be averaged should be narrowed to enable more sensitive detection.
〔第 5の発明の実施の形態例〕  [Embodiment of the fifth invention]
また、 第 1の発明の実施の形態例の説明では、 センサ部 2 0と検査信 In the description of the embodiment of the first invention, the sensor unit 20 and the inspection signal
' 号供給部 3 0とが検査対象パターンの両端部に配設されている例を説明 した。 しかし、 本発明は以上の例に限定されるものではなく、 例えば、 検査信号供給部 3 0が検査対象パターンのほぼ中央部に配設される構成 にしても良い。 The example in which the signal supply units 30 are provided at both ends of the pattern to be inspected has been described. However, the present invention is not limited to the above example. For example, a configuration may be adopted in which the inspection signal supply unit 30 is disposed substantially at the center of the inspection target pattern.
このように構成した本発明に係る第 5の実施の形態例を図 1 2を参照 して以下に説明する。 図 1 2は本発明に係る第 5の実施の形態例の検査 装置の構成.を説明するための図である。 A fifth embodiment according to the present invention configured as described above will be described below with reference to FIG. FIG. 12 shows the inspection according to the fifth embodiment of the present invention. It is a figure for explaining composition of a device.
図 1 2において、 上述した第 1の実施の形態例の図 1に示す構成と同 様の構成部には同一番号を付し詳細説明を省略する。  12, the same components as those of the first embodiment described above and shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof will be omitted.
図 1 2において、 センサ部は第一のセンサ部 2 0 aと第二のセンサ部 In FIG. 12, the sensor unit is composed of a first sensor unit 20a and a second sensor unit.
2 0 bとが備えられており、 第一のセンサ部 2 0 aにはセンサ電極 2 5 a、 第二のセンサ部 2 0 bにはセンサ電極 2 5 bが設けられている。 検査信号供給部 3 0は、 スカラー口ポッ ト 8 0により液晶パネル 1 0 などの検査対象パターンのほぼ中央部を横断するように移動し、 各検査 対象パターンに容量結合を介して順次検査信号を供給する。 . 但し、 検査信号供給部 3 0の横断位置は、 検査対象パターンのほぼ中 央部としなければならないわけではなく、 第一のセンサ部 2 0 aと第二 のセンサ部 2 0 bとの間に配設される構成であれば、 本実施の形態例の 検査方法で検査を行うことができる。 The first sensor section 20a is provided with a sensor electrode 25a, and the second sensor section 20b is provided with a sensor electrode 25b. The inspection signal supply unit 30 is moved by the scalar port 80 so as to substantially cross the center of the pattern to be inspected, such as the liquid crystal panel 10, and sequentially outputs the inspection signal to each pattern to be inspected via capacitive coupling. Supply. However, the crossing position of the inspection signal supply section 30 does not have to be approximately at the center of the pattern to be inspected, but is between the first sensor section 20a and the second sensor section 20b. If the configuration is arranged in this manner, the inspection can be performed by the inspection method of the present embodiment.
第一のセンサ部 2 0 aは、 スカラー口ポッ ト 8 0により液晶パネル 1 0などの検査対象パターンの一方端部を横断するように移動し、 また、 第二のセンサ部 2 0 bは、 検査対象パターンの他方端部を横断するよう に移動して、 検査対象パターンに容量結合を介して順次検査信号供給部 The first sensor unit 20a is moved by the scalar port 80 so as to cross one end of the pattern to be inspected, such as the liquid crystal panel 10, and the second sensor unit 20b is The test signal supply unit moves across the other end of the pattern to be inspected and sequentially connects to the pattern to be inspected via capacitive coupling.
3 0により供給された検査信号の検出を行うものである。 The detection of the inspection signal supplied by 30 is performed.
尚、 本実施の形態例の検査方法においては、 第一のセンサ部 2 0 aの センサ電極 2 5 aと第二のセンサ部 2 0 bのセンサ電極 2 5 bの各々の 幅は、 例えば供給電極 3 5の幅とほぼ同じとしてあるが、 この構成に限 定されるものではなく、 例えば第 1の実施の形態例で説明した、 供給電 極 3 5の幅より少なくとも検査対象パターンの 1ピッチ以上幅広とした 構成や、 第 2の実施の形態例で説明した、 1つのセンサ部に複数のセン サ電極を設ける構成にしても良い。  In the inspection method of the present embodiment, the width of each of the sensor electrode 25a of the first sensor unit 20a and the sensor electrode 25b of the second sensor unit 20b is, for example, Although the width is substantially the same as the width of the electrode 35, the present invention is not limited to this configuration. For example, at least one pitch of the pattern to be inspected is larger than the width of the supply electrode 35 described in the first embodiment. As described above, the configuration may be wide, or the configuration in which a plurality of sensor electrodes are provided in one sensor unit as described in the second embodiment.
この第 5の実施の形態例での検査装置により、 第 1の実施の形態例及 び第 2の実施の形態例と同様に、 センサ部及'び検査信号供給 が両方と も非接触であるために検出信号値が微小となる検査方式であっても、 本 実施の形態例の検査装置を使用することにより、 その差異を確実に認識 することができ、 容易且つ確実なパ夕 ン状態の検査が行える。 The inspection apparatus according to the fifth embodiment provides the inspection apparatus according to the first embodiment. Similarly to the second embodiment, even in the inspection method in which the detection signal value becomes very small because both the sensor unit and the supply of the inspection signal are not in contact with each other, By using the inspection device, the difference can be reliably recognized, and the inspection of the background state can be performed easily and reliably.
特に、 本実施の形態例の検査方法においては、 検査信号供給部 3 0の 横断位置を検査対象パターンの両端部以外に配設したことにより、 供給 電極 3 5とセンサ電極 2 5 a及びセンサ電極 2 5 bとの離間距離が短く なることや、 供給電極 3 5により検査対象パターンに供給された検査信 号が隣接する検査対象パターンに伝わって検査対象パターンの断線箇所 を通らずに再び検査対象パターンに伝わることで検出される検出信号が 少なくなることで、 検査対象パターンの断線時の検出信号のレベルを大 きくすることができるので、 正確にパターン状態の検査が行うことがで さる。  In particular, in the inspection method of the present embodiment, the supply electrode 35, the sensor electrode 25a, and the sensor electrode 25 are provided by arranging the crossing position of the inspection signal supply unit 30 at a position other than both ends of the pattern to be inspected. The inspection distance supplied to the pattern to be inspected by the supply electrode 35 is transmitted to the adjacent pattern to be inspected, and the inspection object is inspected again without passing through the disconnection point of the pattern to be inspected. By reducing the number of detection signals detected by being transmitted to the pattern, the level of the detection signal at the time of disconnection of the pattern to be inspected can be increased, so that the pattern state can be inspected accurately.
また、 供給電極 3 5とセンサ電極 2 5との離間距離が長いと、 検査対 象パター の抵抗成分によるインピーダンスが大きくなり、 また、 検査 対象パターンとそれに隣接するパターンとの静電容量によるインピーダ ンスは小さくなる。 この結果、 抵抗成分のインピーダンスと静電容量の ィンピーダンスが近くなるため測定精度が低くなるが、 本実施の形態例 の検查方法においては、 供給電極 3 5とセンサ電極 2 5 a及びセンサ電 極 2 5 bとの離間距離を短くすることができるので、 パターン状態の検 査を精度良く行うことができる。  In addition, if the distance between the supply electrode 35 and the sensor electrode 25 is long, the impedance due to the resistance component of the pattern to be inspected increases, and the impedance between the pattern to be inspected and the pattern adjacent thereto increases due to the capacitance. Becomes smaller. As a result, the measurement accuracy is reduced because the impedance of the resistance component and the impedance of the capacitance are close to each other. However, in the detection method of the present embodiment, the supply electrode 35, the sensor electrode 25a, and the sensor Since the distance from the pole 25b can be reduced, the pattern state can be inspected with high accuracy.
〔第 5の発明の実施の形態例の変形例①〕 .  [Variation of Embodiment 5 of the Fifth Invention]
また、 第 5の発明の実施の形態例では、 センサ部 2 0と検査信号供給 部 3 0とがスカラー口ポッ トにより検査対象パターンを順次横断するよ うに走査するように構成されていたが、 本発明は以上の例に限定される ものではなく、 例えば、 検査信号供給部 3 0が図 1 3または図 1 4のよ うに、 検査対象基板 1 0の表面と所定距離離'間した状態で固定配置され る構成にしても良い。 In the embodiment of the fifth invention, the sensor unit 20 and the inspection signal supply unit 30 are configured to scan the pattern to be inspected sequentially with the scalar port, so as to sequentially traverse the pattern. The present invention is not limited to the above example. For example, the inspection signal supply unit 30 may be configured as shown in FIG. 13 or FIG. As described above, a configuration may be employed in which the inspection target substrate 10 is fixedly arranged at a predetermined distance from the surface of the inspection target substrate 10.
図 1 3において、 検査信号供給部 3 0は、 検査対象基板 1 0の表面の 検査対象パ夕一ンが設けられた側の面に配設されている。  In FIG. 13, the inspection signal supply unit 30 is disposed on the surface of the inspection target substrate 10 on the side where the inspection target pattern is provided.
また、 図 1 4において、 検査信号供給部 3 0は、 検査対象基板 1 0の 表面の検查対象パターンが設けられた側とは反対側の面に配設されてい る。 この反対側の面においては、 検査対象基板 1 0はガラス等の絶縁物 であるので、 検査信号供給部 3 0と検査対象パターンとの離間距離を小 さくするために密着させることができる。 また、 ガラスの誘電率は空気 より高いので、 より確実な測定が可能である。  In FIG. 14, the inspection signal supply unit 30 is provided on the surface of the inspection target substrate 10 opposite to the surface on which the inspection target pattern is provided. On the surface on the opposite side, the inspection target substrate 10 is an insulator such as glass, so that the inspection signal supply unit 30 and the inspection target pattern can be closely attached to each other in order to reduce the separation distance. Also, since the dielectric constant of glass is higher than that of air, more reliable measurement is possible.
この第 5の発明の実施の形態例の変形例①では、 検査対象パターンは 、 スカラー口ポットからの検査信号の供給により、 検査信号供給部 3 0 の供給電極 3 5から検査信号が供給され、 第 5の発明の実施の形態例で 説明した方法で、 正確にパターン状態の検査が行うことができる。  In the modified example 1 of the fifth embodiment of the present invention, the inspection target pattern is supplied with the inspection signal from the supply electrode 35 of the inspection signal supply unit 30 by supplying the inspection signal from the scalar mouth pot, By the method described in the fifth embodiment, the pattern state can be inspected accurately.
〔第 5の発明の実施の形態例の変形例②〕  [Variation of Embodiment 5 of the Fifth Invention]
まさこ、 第 5の発明の実施の形態例では、 センサ部 2 0と検査信号供給 部 3 0とがスカラーロボットにより検査対象パターンを順次横断するよ うに走査するように構成されていたが、 本発明は以上の例に限定される ものではなく、 例えば、 センサ部 2 0 a及びセンサ部 2 0 bが図 1 5ま たは図 1 6のように、 検査対象基板 1 0の表面と所定距離離間した状態 で固定配置される構成にしても良い。  In the fifth embodiment of the present invention, the sensor unit 20 and the inspection signal supply unit 30 are configured to scan the inspection target pattern by the scalar robot so as to sequentially cross the inspection target pattern. Is not limited to the above example.For example, the sensor section 20a and the sensor section 20b are separated from the surface of the inspection target substrate 10 by a predetermined distance as shown in FIG. 15 or FIG. It may be configured to be fixedly arranged in this state.
図 1 5において、 センサ部 2 0 a及びセンサ部 2 0 bは、 検査対象基 板 1 0の表面の検査対象パターンが設けられた側の面に配設されている また、 図 1 6において、 センサ部 2 0 a及びセンサ部 2 0 bは、 検査 対象基板 1 0の表面の検査対象パターンが設けられた側とは反対側の面 に配設されている。 この反対側の面においてほ、 検査対象基板 1 0はガ ラス等の絶縁物であるので、 センサ部 2 0 a及びセンサ部 2 0 bと検査 対象パターンとの離間距離を小さくするために密着させることができる 。 また、 ガラスの誘電率は空気より高いのでより確実な測定が可能であ る。 In FIG. 15, the sensor unit 20 a and the sensor unit 20 b are disposed on the surface of the surface of the inspection target substrate 10 on which the inspection target pattern is provided. The sensor unit 20a and the sensor unit 20b are formed on the surface of the surface of the inspection target substrate 10 opposite to the surface on which the inspection target pattern is provided. It is arranged in. Since the inspection target substrate 10 is an insulating material such as glass on the opposite surface, the inspection target substrate 10 is brought into close contact with the inspection target pattern to reduce the separation distance between the sensor portions 20a and 20b and the inspection target pattern. be able to . In addition, since the dielectric constant of glass is higher than that of air, more reliable measurement is possible.
この第 5の発明の実施の形態例の変形例②では、 検査対象パターンは 、 スカラー口ポッ トからの検査信号の供給により、 検査信号供給部 3 0 の供給電極 3 5から検査信号が供給され、 センサ部 2 0 aのセンサ電極、 2 5 a及びセンサ部 2 0 bのセンサ電極 2 5 bで検査信号が検出され、 第 5の発明の実施の形態例で説明した方法で、 正確にパターン状態の検 査が行うことができる。  In the modified example 1 of the fifth embodiment of the present invention, the inspection signal is supplied from the supply electrode 35 of the inspection signal supply section 30 by supplying the inspection signal from the scalar port. The inspection signal is detected by the sensor electrode of the sensor section 20a, the sensor electrode 25a of the sensor section 20a and the sensor electrode 25b of the sensor section 20b, and the pattern is accurately determined by the method described in the fifth embodiment of the present invention. An inspection of the condition can be made.
〔第 6の発明の実施の形態例〕  [Embodiment of the sixth invention]
また、 第 1の発明の実施の形態例の説明では、 センサ部 2 0と検査信 号供給部 3 0とが検査対象パターンの両端部に配設されている例を説明 した。 しかし、 本発明は以上の例に限定されるものではなく、 例えば、 センサ部 2 0が検査対象パターンのほぼ中央部に配設される構成にして も良い。  In the description of the embodiment of the first invention, an example in which the sensor unit 20 and the inspection signal supply unit 30 are arranged at both ends of the pattern to-be-inspected has been described. However, the present invention is not limited to the above example. For example, a configuration may be adopted in which the sensor unit 20 is disposed substantially at the center of the inspection target pattern.
このように構成した本発明に係る第 6の実施の形態例を図 1 7を参照 して以下に説明する。 図 1 7は本発明に係る第 6の実施の形態例の検査 装置の構成を説明するための図である。  A sixth embodiment according to the present invention configured as described above will be described below with reference to FIG. FIG. 17 is a view for explaining the configuration of the inspection apparatus according to the sixth embodiment of the present invention.
図 1 7において、 上述した第 1の実施の形態例の図 1に示す構成と同 様の構成部には同一番号を付し詳細説明を省略する。  17, the same components as those of the first embodiment described above and shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof will be omitted.
図 1 7において、 検査信号供給部は第一の検査信号供給部 3 0 aと第 二の検査信号供給部 3 O bとが備えられており、 第一の検査信号供給部 3 0 aには第一の供給電極 3 5 a、 第二の検査信号供給部 3 0 bには第 二の供給電極 3 5 bが設けられている。 第一の検査信号供給部 3 0 aは、 スカラー口ポッ ト 8 0により液晶パ ネル 1 0などの検査対象パターンの一方端部を横断するように移動し、 また、 第二の検査信号供給部 3 0 bは、 検査対象パターンの他方端部を 横断するように移動して、 検査対象パターンに容量結合を介して順次検 査信号を供給する。 In FIG. 17, the test signal supply unit includes a first test signal supply unit 30 a and a second test signal supply unit 3 Ob, and the first test signal supply unit 30 a A second supply electrode 35b is provided in the first supply electrode 35a and the second inspection signal supply section 30b. The first inspection signal supply unit 30a is moved by the scalar port 80 so as to cross one end of the pattern to be inspected, such as the liquid crystal panel 10, and the second inspection signal supply unit 30a 30b moves across the other end of the pattern to be inspected, and sequentially supplies the inspection signal to the pattern to be inspected via capacitive coupling.
また、 センサ部 2 0は、 スカラー口ポット 8 0により液晶パネル 1 0 などの検査対象パターンのほぼ中央部を横断するように移動し、 センサ 部 2 0のセンサ電極 2 5が各検査対象パターンから容量結合を介して順 次検査信号を検出する。  Further, the sensor unit 20 is moved by the scalar mouth pot 80 so as to substantially cross the center of the pattern to be inspected such as the liquid crystal panel 10, and the sensor electrode 25 of the sensor unit 20 is moved from each pattern to be inspected. The sequential inspection signal is detected via capacitive coupling.
伹し、 センサ部 2 0の横断位置は、 検査対象パターンのほぼ中央部と しなければならないわけではなく、 第一の検査信号供 部 3 0 aと第二 の検査信号供給部 3 0 bとの間に配設される構成であれば、 本実施の形 態例の検査方法で検査を行うことができる。  However, the traversing position of the sensor section 20 does not have to be approximately at the center of the pattern to be inspected, but rather the first inspection signal supply section 30a and the second inspection signal supply section 30b. If the configuration is arranged between the above, the inspection can be performed by the inspection method of the present embodiment.
尚、 本実施の形態例の検査方法においては、 センサ部 2 0のセンサ電 極 2 5の幅は、 例えば供給電極 3 5 a及び供給電極 3 5 bの幅とほぼ同 じとレてあるが、 この構成に限定されるものではなく、 例えば第 1の実 施の形態例で説明した、 供給電極 3 5の幅より少なくとも検査対象パ夕 ーンの 1ピッチ以-上幅広とした構成や、 第 2の実施の形態例で説明した 、 1つのセンサ部に複数のセンサ電極を設ける構成にしても良い。  In the inspection method according to the present embodiment, the width of the sensor electrode 25 of the sensor section 20 is substantially the same as the width of the supply electrode 35a and the supply electrode 35b, for example. However, the present invention is not limited to this configuration. For example, as described in the first embodiment, a configuration in which the width of the inspection target pattern is at least one pitch or more wider than the width of the supply electrode 35, As described in the second embodiment, a configuration in which a plurality of sensor electrodes are provided in one sensor unit may be employed.
この第 6の実施の形態例での検査装置により、 第 1の実施の形態例及 び第 2の実施の形態例と同様に、 センサ部及び検査信号供給部が両方と も非接触であるために検出信号値が微小となる検査方式であっても、 本 実施の形態例の検査装置を使用することにより、 その差異を確実に認識 することができ、 容易且つ確実なパターン状態の検査が行える。  According to the inspection device of the sixth embodiment, the sensor unit and the inspection signal supply unit are both in non-contact as in the first and second embodiments. Even in the inspection method in which the detection signal value is very small, the difference can be reliably recognized by using the inspection apparatus of the present embodiment, and the inspection of the pattern state can be performed easily and surely. .
特に、 本実施の形態例の検査方法においては、 センサ部 2 0の横断位 置を検査対象パターンの両端部以外に配設したことにより、 供給電極 3 5 a及び供.給電極 3 5 bとセンサ電極 2 5とめ離間距離が短くなること や、 供給電極 3 5 a及び供給電極 3 5 bにより検査対象パターンに供給 された検査信号が隣接する検査対象パターンに伝わって検査対象パター ンの断線箇所を通らずに再び検査対象パターンに伝わることで検出され る検出信号が少なくなることで、 検査対象パターンの断線時の検出信号 のレベルを大きくすることができるので、 正確にパターン状態の検査が 行うことができる。 In particular, in the inspection method according to the present embodiment, the supply electrode 3 5a and the supply electrode 35b and the sensor electrode 25 are separated from each other, and the distance between the supply electrode 35b and the sensor electrode 25 is shortened. By reducing the number of detection signals that are detected by transmitting to the pattern to be inspected again without passing through the disconnection point of the pattern to be inspected without passing through the pattern to be inspected, it is possible to increase the level of the detection signal when the pattern to be inspected is disconnected. Because it is possible, the pattern state can be inspected accurately.
また、 供給電極 3 5 a及び供給電極 3 5 bとセンサ電極 2 5との離間 距離が長いと、 検査対象パターンの抵抗成分によるインピーダンスが大 きくなり、 また、 検査対象パターンとそれに隣接するパターンとの静電 容量によるインピーダンスは小さくなる。 この結果、 抵坊成分のインピ 一ダンスと静電容量のインピーダンスが近くなるため測定精度が低くな が、.本実施の形態例の検査方法においては、 供給電極 3 5 a及び供給電 極 3 5 .bとセンサ電極 2 5との離間距離を短くすることができるので、 パターン状態の検査を精度良く行うことができる。  Also, if the distance between the supply electrode 35a and the supply electrode 35b and the sensor electrode 25 is long, the impedance due to the resistance component of the pattern to be inspected becomes large, and the pattern to be inspected and the pattern adjacent thereto become large. The impedance due to the capacitance of the capacitor decreases. As a result, the impedance of the capacitance component and the impedance of the capacitance component are close to each other, so that the measurement accuracy is low. However, in the inspection method of the present embodiment, the supply electrode 35a and the supply electrode 35 Since the distance between .b and the sensor electrode 25 can be reduced, the pattern state can be inspected with high accuracy.
〔第 6の発明の実施の形態例の変形例①〕  [Variation of Embodiment 6 of the Sixth Invention]
また、 第 6の発明の実施の形態例では、 センサ部 2 0と検査信号供給 部 3 0 a及び検査信号供給部 3 0 bとがスカラー口ポッ トにより検査対 象パターンを順次横断するように走査するように構成されていたが、 本 発明は以上の例に限定されるものではなく、 例えば、 センサ部 2 0が図 1 8または図 1 9のように、 検査対象基板 1 0の表面と所定距離離間し た状態で固定配置される構成にしても良い。  In the embodiment of the sixth invention, the sensor unit 20 and the inspection signal supply unit 30a and the inspection signal supply unit 30b are arranged so as to sequentially traverse the inspection target pattern by the scalar port. Although it was configured to scan, the present invention is not limited to the above example. For example, as shown in FIG. 18 or FIG. It may be configured to be fixedly arranged at a predetermined distance.
図 1 8において、 センサ部 2 0は、 検査対象基板 1 0の表面の検査対 象パ夕ーンが設けられた側の面に配設されている。  In FIG. 18, the sensor unit 20 is disposed on the surface of the surface of the inspection target substrate 10 on the side where the inspection target panel is provided.
また、 図 1 9において、 センサ部 2 0は、 検査対象基板 1 0の表面の 検査対象パターンが設けられた側とは反対側の面に配設されている。 こ の反対側の.面においては、 検査対象基板 1 0 'はガラス等の絶緣物である ので、 センサ部 2 0と検査対象パターンとの離間距離を小さくするため に密着させることができる。 また、 ガラスの誘電率は空気より高いので 、 より確実な測定が可能である。 In FIG. 19, the sensor unit 20 is disposed on the surface of the surface of the inspection target substrate 10 opposite to the surface on which the inspection target pattern is provided. This On the other side, the inspection target substrate 10 ′ is made of an inexpensive material such as glass, so that it can be adhered to the sensor unit 20 to reduce the separation distance between the inspection target pattern. Also, since the dielectric constant of glass is higher than that of air, more reliable measurement is possible.
この第 6の発明の実施の形態例の変形例①では、 検査対象パターンは In the modified example 1 of the sixth embodiment, the pattern to be inspected is
、 スカラー口ポッ トからの検査信号の供給により、 検査信号供給部 3 0 aの供給電極 3 5 aから検査信号が供給され、 また同時に検査信号供給 部 3 0 bの供給電極 3 5 bから検査信号が供給され、 第 6の発明の実施 の形態例で説明した方法で、 正確にパターン状態の検査が行うことがで きる。 The inspection signal is supplied from the supply electrode 35a of the inspection signal supply section 30a by the supply of the inspection signal from the scalar port, and at the same time, the inspection is performed from the supply electrode 35b of the inspection signal supply section 30b. The signal is supplied, and the pattern state can be inspected accurately by the method described in the sixth embodiment of the present invention.
〔第 6の発明の実施の形態例の変形例②〕  [Variation of Embodiment 6 of the Sixth Invention]
また、 第 6の発明の実施の形態例では、 センサ部 2 0と検査信号供給 部 3 0 a及び検査信号供給部 3 0 bとがスカラーロポッ トにより検査対 象パターンを順次横断するように走査するように構成されていたが、 本 発明は以上の例に限定されるものではなく、 例えば、 検査信号供給部 3 0 a及び検査信号供給部 3 0 bが図 2 0または図 2 1のように、 検査対 象基板 1 0の表面と所定距離離間した状態で固定配置される構成にして も良い。  Further, in the embodiment of the sixth invention, the sensor unit 20 and the inspection signal supply unit 30a and the inspection signal supply unit 30b scan by a scalar drop so as to sequentially traverse the inspection target pattern. However, the present invention is not limited to the above example. For example, the test signal supply unit 30a and the test signal supply unit 30b may be configured as shown in FIG. 20 or FIG. Alternatively, it may be configured to be fixedly arranged at a predetermined distance from the surface of the inspection target substrate 10.
図 2 0において、 検査信号供給部 3 0 a及び検査信号供給部 3 0 bは 、 検査対象基板 1 0の表面の検査対象パターンが設けられた側の面に配 設されている。  In FIG. 20, the inspection signal supply unit 30a and the inspection signal supply unit 30b are arranged on the surface of the inspection target substrate 10 on the side where the inspection target pattern is provided.
また、 図 2 1において、 検査信号供給部 3 0 a及び検査信号供給部 3 0 bは、 検査対象基板 1 0の表面の検査対象パターンが設けられた側と は反対側の面に配設されている。 この反対側の面においては、 検査対象 基板 1 0はガラス等の絶縁物であるので、 検査信号供給部 3 0 a及び検 査信号供給部 3 0 bと検査対象パターンとの離間距離を小さくするため に密着させる.ことができる。 また、 ガラスの'誘電率は空気より高いので 、 より確実な測定が可能である。 In FIG. 21, the inspection signal supply unit 30a and the inspection signal supply unit 30b are arranged on the surface of the surface of the inspection target substrate 10 opposite to the side on which the inspection target pattern is provided. ing. On the opposite side, since the inspection target substrate 10 is an insulator such as glass, the separation distance between the inspection signal supply unit 30a and the inspection signal supply unit 30b and the inspection target pattern is reduced. For Can be adhered to. Further, since the dielectric constant of glass is higher than that of air, more reliable measurement is possible.
この第 6の発明の実施の形態例の変形例②では、 検査対象パターンは 、 スカラー口ポットからの検査信号の供給により、 検査信号供給部 3 0 aの供給電極 3 5 a及び検査信号供給部 3 0 bの供給電極 3 5 bから検 査信号が供給され、 センサ部 2 0のセンサ電極 2 5で検査信号が検出さ れ、 第 6の発明の実施の形態例で説明した方法で、 正確にパターン状態 の検査が行うことができる。  In the modified example 1 of the sixth embodiment of the present invention, the inspection target pattern is supplied by the inspection signal from the scalar opening pot, and is supplied to the supply electrode 35a of the inspection signal supply unit 30a and the inspection signal supply unit. The inspection signal is supplied from the supply electrode 35b of the 30b, the inspection signal is detected by the sensor electrode 25 of the sensor unit 20, and the inspection signal is accurately obtained by the method described in the sixth embodiment of the invention. Inspection of the pattern state can be performed in a short time.
〔第 7の発明の実施の形態例〕  [Embodiment of the seventh invention]
また、 上記第 5の発明の実施の形態例において、 センサ部と検査信号 供給部の配置は、 図 1 2上で左から、 第一のセンサ部 2 0 a、 検査信号 供給部 3 0、 第二のセンサ部 2 0 bで配置されているが、 この配置はこ れに限定されるものではなく、 例えば、 図 1 2上で左から、 検査信号供 給部 3 0、 第一のセンサ部 2 0 a、 第二のセンサ部 2 0 bで配置しても 良いことは言うまでもない。  In the embodiment of the fifth aspect of the present invention, the arrangement of the sensor unit and the test signal supply unit is as follows: from the left in FIG. 12, the first sensor unit 20 a, the test signal supply unit 30, The second sensor unit 20 b is arranged, but this arrangement is not limited to this. For example, from the left in FIG. 12, the inspection signal supply unit 30, the first sensor unit Needless to say, they may be arranged at 20 a and the second sensor unit 20 b.
このように構成した本発明に係る第 7の実施の形態例を図 2 2を参照 して以下に説明する。 図 2 2は本発明に係る第 7の実施の形態例の検査 装置の構成を説明するための図である。  A seventh embodiment according to the present invention configured as described above will be described below with reference to FIG. FIG. 22 is a view for explaining the configuration of the inspection apparatus according to the seventh embodiment of the present invention.
図 2 2において、 上述した第 5の実施の形態例の図 1 2に示す構成と 同様の構成部には同一番号を付し詳細説明を省略する。  In FIG. 22, the same components as those shown in FIG. 12 of the fifth embodiment described above are denoted by the same reference numerals, and detailed description thereof will be omitted.
図 2 2において、 センサ部は第一のセンサ部 2 0 aと第二のセンサ部 2 0 bとが備えられており、 第一めセンサ部 2 0 aにはセンサ電極 2 5 a、 第二のセンサ部 2 0 bにはセンサ電極 2 5 bが設けられている。 検査信号供給部 3 0は、 スカラー口ポッ ト 8 0により液晶パネル 1 0 などの検査対象パターンの一方端部を横断するように移動し、 各検査対 象パターンに容量結合を介して順次検査信号を供給する。 第一のセンサ部 2 0 aは、 スカラー口ポッ'ト 8 0により液晶パネル 1 0などの検査対象パターンのほぼ中央部を横断するように移動し、 また 、 第二のセンサ部 2 O bは、 検査対象パターンの他方端部を横断するよ うに移動して、 検査対象パターンに容量結合を介して順次検査信号供給 部 3 0により供給された検査信号の検出を行うものである。 In FIG. 22, the sensor section includes a first sensor section 20a and a second sensor section 20b. The first sensor section 20a has a sensor electrode 25a and a second sensor section 20b. The sensor section 20b is provided with a sensor electrode 25b. The test signal supply unit 30 is moved by the scalar port 80 so as to cross one end of the pattern to be inspected, such as the liquid crystal panel 10, and the test signal is sequentially supplied to each pattern to be inspected via capacitive coupling. Supply. The first sensor unit 20a is moved by the scalar port 80 so as to traverse substantially the center of the pattern to be inspected, such as the liquid crystal panel 10, and the second sensor unit 2Ob is Then, the inspection signal is moved across the other end of the pattern to be inspected, and the inspection signal sequentially supplied by the inspection signal supply unit 30 to the inspection pattern via the capacitive coupling is detected.
伹し、 第一のセンサ部 2 0 aの横断位置は、 検査対象パターンのほぼ 中央部としなければならないわけではなく、 検査信号供給部 3 0と第二 のセンサ部 2 0 bとの間に配設される構成であれば、 本実施の形態例の 検査方法で検査を行うことができる。  However, the traversing position of the first sensor section 20a does not have to be approximately at the center of the pattern to be inspected, but is located between the inspection signal supply section 30 and the second sensor section 20b. With the configuration provided, the inspection can be performed by the inspection method of the present embodiment.
尚、 本実施の形態例の検査方法においては、 第一のセンサ部 2 0 aの センサ電極 2 5 aと第二のセンサ部 2 0 bのセンサ電極 2 5 bの各々の 幅は、 例えば供給電極 3 5の幅とほぼ同じとしてあるが、 この構成に限 定されるものではなく、 例えば第 1の実施の形態例で説明した、 供給電 極 3 5の幅より少なくとも検査対象パターンの 1 ピッチ以上幅広とした 構成や、 第 2の実施の形態例で説明した、 1つのセンサ部に複数のセン サ電櫸を設ける構成にしても良い。  In the inspection method of the present embodiment, the width of each of the sensor electrode 25a of the first sensor unit 20a and the sensor electrode 25b of the second sensor unit 20b is, for example, Although the width is substantially the same as the width of the electrode 35, the present invention is not limited to this configuration. For example, at least one pitch of the pattern to be inspected is larger than the width of the supply electrode 35 described in the first embodiment. The configuration may be wide as described above, or the configuration in which a plurality of sensor electrodes are provided in one sensor unit as described in the second embodiment.
この第 7の実施の形態例での検査装置により、 第 1の実施の形態例及 び第 2の実施の形態例と同様に、 センサ部及び検査信号供給部が両方と も非接触であるために検出信号値が微小となる検査方式であっても、 本 実施の形態例の検査装置を使用することにより、 その差異を確実に認識 することができ、 容易且つ確実なパターン状態の検査が行える。  According to the inspection apparatus of the seventh embodiment, the sensor unit and the inspection signal supply unit are both in non-contact as in the first and second embodiments. Even in the inspection method in which the detection signal value is very small, the difference can be reliably recognized by using the inspection apparatus of the present embodiment, and the inspection of the pattern state can be performed easily and surely. .
特に、 本実施の形態例の検査方法においては、 第一のセンサ部 2 0 a の横断位置を検査対象パターンのほぼ中央部に配設したので、 供給電極 3 5とセンサ電極 2 5 aとの離間距離が短くなることや、 供給電極 3 5 により検査対象パターンに供給された検査信号が隣接する検査対象パ夕 ーンに伝わって検査対象パターンの断線箇所を通らずに再び検査対象パ ターンに伝わることで検出される検出信号が'少なくなることで、 検査対 象パターンの断線時の検出信号のレベルを大きくすることができるので 、 正確にパターン状態の検査が行うことができる。 In particular, in the inspection method of the present embodiment, since the crossing position of the first sensor section 20a is disposed substantially at the center of the pattern to be inspected, the supply electrode 35 and the sensor electrode 25a As the separation distance becomes shorter, the inspection signal supplied to the pattern to be inspected by the supply electrode 35 is transmitted to the adjacent pattern to be inspected, and the signal to be inspected again does not pass through the disconnection point of the pattern to be inspected. Since the number of detection signals detected by transmission to the turn is reduced, the level of the detection signal at the time of disconnection of the inspection target pattern can be increased, so that the pattern state can be inspected accurately.
〔第 7の発明の実施の形態例の変形例①〕  [Modification Example 7 of Embodiment of Seventh Invention]
また、 第 7の発明の実施の形態例では、 センサ部 2 0と検査信号供給 部 3 0とがスカラーロポットにより検査対象パターンを順次横断するよ うに走査するように構成されていたが、 本発明は以上の例に限定される ものではなく、 例えば、 検査信号供給部 3 0が図 2 3または図 2 4のよ うに、 検査対象基板 1 0の表面と所定距離離間した状態で固定配置され る構成にしても良い。  In the seventh embodiment of the present invention, the sensor unit 20 and the inspection signal supply unit 30 are configured to scan the pattern to be inspected sequentially using a scalar robot. Is not limited to the above example. For example, as shown in FIG. 23 or FIG. 24, the inspection signal supply unit 30 is fixedly arranged with a predetermined distance from the surface of the inspection target substrate 10. It may be configured.
図 2 3において、 検査信号供給部 3 0は、 検査対象基板 1 0の表面の 検查対象パターンが設けられた側の面に配設されている。  In FIG. 23, the inspection signal supply unit 30 is provided on the surface of the inspection target substrate 10 on the side where the inspection target pattern is provided.
また、 図 2 4において、 検査信号供給部 3 0は、 検査対象基板 1 0の 表面の検査対象パターンが設けられた側とは反対側の面に配設されてい る。 この反対側の面においては、 検査対象基板 1 0はガラス等の絶縁物 であるので、 検査信号供給部 3 0と検査対象パターンとの離間距離を小 さくするために密着させることができる。 また、 ガラスの誘電率は空気 より高いので、 より確実な測定が可能である。  In FIG. 24, the inspection signal supply unit 30 is provided on the surface of the inspection target substrate 10 opposite to the surface on which the inspection target pattern is provided. On the surface on the opposite side, the inspection target substrate 10 is an insulator such as glass, so that the inspection signal supply unit 30 and the inspection target pattern can be closely attached to each other in order to reduce the separation distance. Also, since the dielectric constant of glass is higher than that of air, more reliable measurement is possible.
この第 7の発明の実施の形態例の変形例①では、 検査対象パターンは 、 スカラー口ポットからの検査信号の供給により、 検査信号供給部 3 0 の供給電極 3 5から検査信号が供給され、 第 7の発明の実施の形態例で 説明した方法で、 正確にパターン状態の検査が行うことができる。  In the modified example 1 of the seventh embodiment of the present invention, the inspection target pattern is supplied with the inspection signal from the supply electrode 35 of the inspection signal supply unit 30 by supplying the inspection signal from the scalar mouth pot, By the method described in the seventh embodiment of the present invention, the pattern state can be inspected accurately.
〔第 7の発明の実施の形態例の変形例②〕  [Modification Example 7 of Embodiment of Seventh Invention]
また、 第 7の発明の実施の形態例では、 センサ部 2 0と検査信号供給 部 3 0とがスカラーロボッ トにより検査対象パターンを順次横断するよ うに走査するように構成されてい'たが、 本発明は以上の例に限定される ものではなく、 例えば、 センサ部 2 0 a及び i ンサ部 2 0 bが図 2 5ま たは図 2 6のように、 検査対象基板 1 0の表面と所定距離離間した状態 で固定配置される構成にしても良い。 Further, in the seventh embodiment of the present invention, the sensor unit 20 and the inspection signal supply unit 30 are configured to scan the inspection target pattern by the scalar robot so as to sequentially cross the inspection target pattern. The invention is limited to the above examples However, for example, the sensor unit 20a and the sensor unit 20b are fixedly arranged at a predetermined distance from the surface of the inspection target substrate 10 as shown in FIG. 25 or FIG. 26. It may be configured.
図 2 5において、 センサ部 2 0 a及びセンサ部 2 0 bは、 検査対象基 板 1 0の表面の検査対象パターンが設けられた側の面に配設されている また、 図 2 6において、 センサ部 2 0 a及びセンサ部 2 0 bは、 検査 対象基板 1 0の表面の検査対象パターンが設けられた側とは反対側の面 に配設されている。 この反対側の面においては、 検査対象基板 1 0はガ ラス等の絶縁物であるので、 センサ部 2 0 a及びセンサ部 2 0 bと検査 対象パターンとの離間距離を小さくするために密着させることができる 。 また、 ガラスの誘電率は空気より高いのでより確実な測定が可能であ る。.  In FIG. 25, the sensor unit 20a and the sensor unit 20b are disposed on the surface of the surface of the inspection target substrate 10 on which the inspection target pattern is provided. The sensor unit 20a and the sensor unit 20b are arranged on the surface of the surface of the inspection target substrate 10 opposite to the surface on which the inspection target pattern is provided. On the opposite surface, since the inspection target substrate 10 is an insulator such as glass, the inspection target substrate 10 is brought into close contact with the inspection target pattern in order to reduce the separation distance between the sensor portions 20a and 20b and the inspection target pattern. be able to . In addition, since the dielectric constant of glass is higher than that of air, more reliable measurement is possible. .
この第 7の発明の実施の形態例の変形例②では、 検査対象パターンは 、 スカラー口ポッ トからの検査信号の供給により、 検査信号供給部 3 0 の供給電極 3 5から検査信号が供給され、 センサ部 2 0 aのセンサ電極 2 5 a及びセンサ部 2 0 bのセンサ電極 2 5 bで検査信号が検出され、 第 7の発明の実施の形態例で説明した方法で、 正確にパターン状態の検 査が行うことができる。  In the modified example 1 of the seventh embodiment of the present invention, the inspection signal is supplied from the supply electrode 35 of the inspection signal supply section 30 by supplying the inspection signal from the scalar port. The inspection signal is detected by the sensor electrode 25a of the sensor unit 20a and the sensor electrode 25b of the sensor unit 20b, and the pattern state is accurately determined by the method described in the seventh embodiment of the present invention. Inspections can be performed.
〔第 8の発明の実施の形態例〕  [Eighth embodiment of the invention]
尚また、 上記第 6の発明の実施の形態例において、 センサ部と検査信 号供給部の配置は、 図 1 7上で左から、 第一の検査信号供給部 3 0 a、 センサ部 2 0、 第二の検査信号供給部 3 0 bで配置されているが、 この 配置はこれに限定されるものではなく、 例えば、 図 1 7上で左から、 セ ンサ部 2 0、 第一の検査信号供給部 3 0 a、 第二の検査信号供給部 3 0 bで配置しても良いことは言うまでもない。 このように構成した本発明に係る第 8の実 Ιの形態例を図 2 7を参照 して以下に説明する。 図 2 7は本発明に係る第 8の実施の形態例の検査 装置の構成を説明するための図である。 In the sixth embodiment of the present invention, the arrangement of the sensor unit and the inspection signal supply unit is as follows from the left in FIG. The second test signal supply unit 30b is arranged, but this arrangement is not limited to this. For example, from the left in FIG. It goes without saying that the signal supply unit 30a and the second inspection signal supply unit 30b may be arranged. An eighth embodiment of the present invention configured as described above will be described below with reference to FIG. FIG. 27 is a view for explaining the configuration of the inspection apparatus according to the eighth embodiment of the present invention.
図 2 7において、 上述した第 6の実施の形態例の図 1 7に示す構成と 同様の構成部には同一番号を付し詳細説明を省略する。  27, the same components as those shown in FIG. 17 of the sixth embodiment described above are denoted by the same reference numerals, and detailed description thereof will be omitted.
図 2 7において、 検査信号供給部は第一の検査信号供給部 3 0 aと第 二の検査信号供給部 3 0 bとが備えられており、 第一の検査信号供給部 3 0 aには第一の供給電極 3 5 a、 第二の検査信号供給部 3 0 bには第 二の供給電極 3 5 bが設けられている。  In FIG. 27, the test signal supply unit includes a first test signal supply unit 30a and a second test signal supply unit 30b, and the first test signal supply unit 30a has A second supply electrode 35b is provided in the first supply electrode 35a and the second inspection signal supply section 30b.
センサ部 2 0は、 スカラーロボッ ト 8 0により液晶パネル 1 0などの 検査対象パターンの一方端部を横断するように移動して、 センサ部 2 0 のセンサ電極 2 5は、 各検査対象パターンから容量結合を介して順次検 査信号を検出する。  The sensor section 20 is moved by the scalar robot 80 so as to cross one end of the pattern to be inspected, such as the liquid crystal panel 10, and the sensor electrode 25 of the sensor section 20 is moved from each pattern to be inspected. The test signals are sequentially detected via capacitive coupling.
第一の検査信号供給部 3 0 aは、 スカラーロポッ ト 8 ひにより液晶パ ネル 1 0などの検査対象パターンのほぼ中央を横断するように移動し、 また、.第二の検査信号供給部 3 0 bは、 検査対象パターンの他方端部を 横断するように移動して、 検査対象パターンに容量結合を介して順次検 査信号を供給する。  The first inspection signal supply unit 30a is moved by the scalar rod 8 so as to cross almost the center of the inspection target pattern such as the liquid crystal panel 10, and the second inspection signal supply unit 30a b moves across the other end of the pattern to be inspected, and sequentially supplies the inspection signal to the pattern to be inspected via capacitive coupling.
但し、 第一の検査信号供給部 3 0 aの横断位置は、 検査対象パターン のほぼ中央部としなければならないわけではなく、 センサ部 2 0と第二 の検査信号供給部 3 0 bとの間に配設される構成であれば、 本実施の形 態例の検査方法で検査を行うことができる。  However, the traversing position of the first inspection signal supply unit 30a does not have to be substantially at the center of the pattern to be inspected, but is between the sensor unit 20 and the second inspection signal supply unit 30b. If the configuration is arranged in the inspection, the inspection can be performed by the inspection method of the embodiment.
尚、 本実施の形態例の検査方法においては、 センサ部 2 0のセンサ電 極 2 5の幅は、 例えば供鲩電極 3 5 a及び供給電極 3 5 bの幅とほぼ同 じとしてあるが、 この構成に限定されるものではなく、 例えば第 1の実 施の形態例で説明した、 供給電極 3 5の幅より少なくとも検査対象パ夕 ーンの 1 ピッチ以上幅広とした構成や、 第 2 'の実施の形態例で説明した 、 1つのセンサ部に複数のセンサ電極を設ける構成にしても良い。 In the inspection method of the present embodiment, the width of the sensor electrode 25 of the sensor unit 20 is substantially the same as the width of the supply electrode 35a and the supply electrode 35b, for example. The present invention is not limited to this configuration. For example, the width of the supply electrode 35 may be smaller than the width of the supply electrode 35 described in the first embodiment. Or a configuration in which a plurality of sensor electrodes are provided in one sensor section as described in the second embodiment.
この第 8の実施の形態例での検査装置により、 第 1の実施の形態例及 び第 2の実施の形態例と同様に、 センサ部及び検査信号供給部が両方と も非接触であるために検出信号値が微小となる検査方式であっても、 本 実施の形態例の検査装置を使用することにより、 その差異を確実に認識 することができ、 容易且つ確実なパターン状態の検査が行える。  According to the inspection apparatus of the eighth embodiment, the sensor unit and the inspection signal supply unit are both in non-contact as in the first and second embodiments. Even in the inspection method in which the detection signal value is very small, the difference can be reliably recognized by using the inspection apparatus of the present embodiment, and the inspection of the pattern state can be performed easily and surely. .
特に、 本実施の形態例の検査方法においては、 第一の検査信号供給部 3 0 aの横断位置を検査対象パターンの両端部以外に配設したことによ り、 センサ電極 2 5と供給電極 3 5 aとの離間距離が短くなることや、 供給電極 3 5 aにより検査対象パターンに供給された検査信号が隣接す る検査対象パターンに伝わって検査対象パターンの断線箇所を通らずに 再び検査対象パターンに伝わることで検出される検出信号が少なくなる ことで、 検査対象パターンの断線時の検出信号のレベルを大きくするこ とができるので、 正確にパターン状態の検査が行うことができる。  In particular, in the inspection method of the present embodiment, the sensor electrode 25 and the supply electrode are provided by arranging the crossing position of the first inspection signal supply unit 30a at a position other than both ends of the pattern to be inspected. The inspection distance supplied to the test pattern by the supply electrode 35a is shortened, and the test signal is transmitted to the adjacent test pattern, and the test is performed again without passing through the disconnection point of the test pattern. Since the number of detection signals detected by being transmitted to the target pattern is reduced, the level of the detection signal at the time of disconnection of the inspection target pattern can be increased, so that the pattern state can be accurately inspected.
また、 供給電極 3 5 aとセンサ電極 2 5との離間距離が長いと、. 検査 対象パターンの抵抗成分によるインピーダンスが大きくなり、 また、 検 査対象パターンとそれに隣接するパターンとの静電容量によるィンピー ダンスは小さくなる。 この結果、 抵抗成分のインピーダンスと静電容量 のインピーダンスが近くなるため測定精度が低くなるが、 本実施の形態 例の検査方法においては、 供給電極 3 5 aとセンサ電極 2 5との離間距 離を短くすることができるので、 パターン状態の検査を精度良く行うこ とができる。  In addition, if the distance between the supply electrode 35a and the sensor electrode 25 is long, the impedance due to the resistance component of the pattern to be inspected increases, and the capacitance between the pattern to be inspected and the pattern adjacent thereto increases. Impedance is reduced. As a result, the impedance of the resistance component and the impedance of the capacitance are close to each other, so that the measurement accuracy is low. However, in the inspection method of the present embodiment, the separation distance between the supply electrode 35 a and the sensor electrode 25 is small. Can be shortened, so that the pattern state can be inspected with high accuracy.
〔第 8の発明の実施の形態例の変形例①〕  [Modification of Embodiment 8 of the Eighth Invention]
また、 第 8の発明の実施の形態例では、 センサ部 2 0と検査信号供給 部 3 0 a及び検査信号供給部 3 0 bとがスカラーロポットにより検査対 象パターンを順次横断するように走査するよ'うに構成されていたが、 本 発明は以上の例に限定されるものではなく、 例えば、 センサ部 2 0が図In the embodiment of the eighth invention, the sensor unit 20 and the inspection signal supply unit 30a and the inspection signal supply unit 30b are connected to each other by a scalar robot. Although it was configured to scan so as to sequentially traverse the elephant pattern, the present invention is not limited to the above example.
2 8または図 2 9のように、 検査対象基板 1 0の表面と所定距離離間し た状態で固定配置される構成にしても良い。 As shown in FIG. 28 or FIG. 29, a configuration may be adopted in which the inspection target substrate 10 is fixedly arranged at a predetermined distance from the surface of the inspection target substrate 10.
図 2 8において、 センサ部 2 0は、 検査対象基板 1 0の表面の検査対 象パ夕一ンが設けられた側の面に配設されている。  In FIG. 28, the sensor unit 20 is disposed on the surface of the surface of the inspection target substrate 10 on the side where the inspection target panel is provided.
また、 図 2 9において、 センサ部 2 0は、 検査対象基板 1 0の表面の 検査対象パターンが設けられた側とは反対側の面に配設されている。 こ の反対側の面においては、 検査対象基板 1 0はガラス等の絶縁物である ので、 センサ部 2 0と検査対象パターンとの離間距離を小さくするため に密着させることができる。 また、 ガラスの誘電率は空気より高いので In FIG. 29, the sensor unit 20 is provided on the surface of the surface of the inspection target substrate 10 opposite to the surface on which the inspection target pattern is provided. On the opposite surface, since the inspection target substrate 10 is an insulator such as glass, the inspection target substrate 10 can be in close contact with the inspection target pattern in order to reduce the separation distance between the sensor portion 20 and the inspection target pattern. Also, since the dielectric constant of glass is higher than air,
、 より確実な測定が可能である。 A more reliable measurement is possible.
^の第 8の発明の実施の形態例の変形例①では、 検査対象パターンは In the modified example の of the eighth embodiment of the ^ invention, the pattern to be inspected is
、 スカラー口ポッ トからの検査信号の供給により、 検査信号供給部 3 0 aの供給電極 3 5 aから検査信号が供給され、 また同時に検査信号供給 部 3 Q bの供給電極 3 5 bから検査信号が供給され、 第 6の発明の実施 の形態例で説明した方法で、 正確にパターン状態の検査が行うことがで きる。 The inspection signal is supplied from the supply electrode 35a of the inspection signal supply unit 30a by the supply of the inspection signal from the scalar port, and at the same time, the inspection is performed from the supply electrode 35b of the inspection signal supply unit 3Qb. The signal is supplied, and the pattern state can be inspected accurately by the method described in the sixth embodiment of the present invention.
〔第 8の発明の実施の形態例の変形例②〕  [Modification of Embodiment 8 of the Eighth Invention]
また、 第 8の発明の実施の形態例では、 センサ部 2 0と検査信号供給 部 3 0 a及び検査信号供給部 3 0 bとがスカラーロポッ トにより検査対 象パターンを順次横断するように走査するように構成されていたが、 本 発明は以上の例に限定されるものではなく、 例えば、 検査信号供給部 3 0 a及び検査信号供給部 3 0 bが図 3 0または図 3 1のように、 検査対 象基板 1 0の表面と所定距離離間した状態で固定配置される構成にして も良い。 図 3 0において、 検査信号供給部 3 0 a及^検査信号供給部 3 0 bは 、 検査対象基板 1 0の表面の検査対象パターンが設けられた側の面に配 設されている。 Further, in the embodiment of the eighth invention, the sensor section 20 and the inspection signal supply section 30a and the inspection signal supply section 30b scan by a scalar drop so as to sequentially traverse the pattern to be inspected. However, the present invention is not limited to the above example. For example, the test signal supply unit 30a and the test signal supply unit 30b may be configured as shown in FIG. 30 or FIG. Alternatively, it may be configured to be fixedly arranged at a predetermined distance from the surface of the inspection target substrate 10. In FIG. 30, the inspection signal supply unit 30 a and the inspection signal supply unit 30 b are provided on the surface of the inspection target substrate 10 on the side where the inspection target pattern is provided.
また、 図 3 1において、 検査信号供給部 3 0 a及び検査信号供給部 3 O bは、 検査対象基板 1 0の表面の検査対象パターンが設けられた側と は反対側の面に配設されている。 この反対側の面においては、 検査対象 基板 1 0はガラス等の絶縁物であるので、 検査信号供給部 3 0 a及び検 查信号供給部 3 0 bと検査対象パターンとの離間距離を小さくするため に密着させることができる。 また、 ガラスの誘電率は空気より高いので 、 より確実な測定が可能である。  In FIG. 31, the inspection signal supply unit 30 a and the inspection signal supply unit 3 Ob are provided on the surface of the surface of the inspection target substrate 10 opposite to the surface on which the inspection target pattern is provided. ing. On the opposite surface, since the inspection target substrate 10 is an insulator such as glass, the separation distance between the inspection signal supply unit 30a and the inspection signal supply unit 30b and the inspection target pattern is reduced. Can be brought into close contact. Also, since the dielectric constant of glass is higher than that of air, more reliable measurement is possible.
この第 8の発明の実施の形態例の変形例②では、 検査対象パターンは 、 スカラー口ポットからの検査信号の供給により、 検査信号供給部 3 0 aの供給電極 3 5 a及び検査信号供給部 3 0 bの供給電極 3 5 bかち検 査信号が供給され、 センサ部 2 0のセンサ電極 2 5で検査信号が検出さ れ、 第 6の発明の実施の形態例で説明した方法で、 正確にパターン状態 の検耷が行うことができる。  In the modified example (1) of the eighth embodiment of the present invention, the inspection target pattern is formed by supplying the inspection signal from the scalar mouth pot, the supply electrode 35a of the inspection signal supply unit 30a and the inspection signal supply unit. The inspection signal is supplied from the supply electrode 35b of the 30b, the inspection signal is detected by the sensor electrode 25 of the sensor section 20, and the inspection signal is accurately obtained by the method described in the sixth embodiment of the present invention. The state of the pattern can be detected in a short time.
〔検査信号の検出結果例〕  [Example of test signal detection result]
以下に図 3 2乃至図 3 6を用いて、 検査信号の検出結果の例を説明す る。  Hereinafter, an example of the detection result of the inspection signal will be described with reference to FIGS. 32 to 36.
図 3 2は、 本発明で検査対象となる基板のうち、 断線及び短絡がある 検査対象の基板の一例を示している。 図 3 2の検査対象基板には、 図中 に丸印で示す通り、 導体パターン i 5の長手方向 (図中左右方向) に 2 箇所の断線部 1 1及び断線部 1 3と、 2箇所の短絡部 1 7及び短絡部 1 9とがある。 また、 断線部 1 1及び短絡部 1 7は、 導体パターン 1 5の 長手方向の中心より右側にあり、 また、 断線部 1 3及び短絡部 1 9は、 導体パターン 1 5の長手方向の中心より左側にある。 〔第 5の発明の実施の形態例での検査信号'の検出結果例〕 FIG. 32 shows an example of a substrate to be inspected which has a disconnection and a short circuit among the substrates to be inspected in the present invention. As shown by the circles in the figure, the inspection target board shown in Fig. 32 has two breaks 11 and 13 in the longitudinal direction (horizontal direction in the figure) of the conductor pattern i5. There are short-circuit part 17 and short-circuit part 19. Further, the disconnection portion 11 and the short-circuit portion 17 are on the right side of the longitudinal center of the conductor pattern 15, and the disconnection portion 13 and the short-circuit portion 19 are from the longitudinal center of the conductor pattern 15. On the left. [Example of detection result of test signal 'in embodiment of fifth invention]
このような、 断線及び短絡が存在する図 3 2のような検査対象基板を 、 本発明に係る第 5の実施の形態例により検查を行うと、 図 3 3のよう な検査信号を検出する。 なお、 図 3 3の検査信号を検出するため、 即ち 断線と短絡を同時に検出するために、 第 5の実施の形態例の第一のセン サ部 2 0 aのセンサ電極 2 5 a及び第二のセンサ部 2 0 bのセンサ電極 2 5 bは、 第 1の実施の形態例の供給電極 3 5の幅より少なくとも検査 対象パターンの 1 ピッチ以上幅広とした構成か、 第 2の実施の形態例の 1つのセンサ部に複数のセンサ電極を設ける構成かのどちらかを用いた 。  When the inspection target substrate as shown in FIG. 32 having such a disconnection and a short circuit is inspected according to the fifth embodiment of the present invention, an inspection signal as shown in FIG. 33 is detected. . In order to detect the inspection signal in FIG. 33, that is, to detect disconnection and short circuit simultaneously, the sensor electrodes 25a and 25a of the first sensor section 20a of the fifth embodiment are used. The sensor electrode 25 b of the sensor section 20 b of the second embodiment is configured to be wider than the width of the supply electrode 35 of the first embodiment by at least one pitch of the pattern to be inspected. Either of the configurations in which a plurality of sensor electrodes are provided in one sensor unit was used.
この図 3 3において、 S 1は第一のセンサ部 2 0 aのセンサ電極 2 5 aで検出されるセンサ出力電圧を示している。 また、 S 2は第二のセン サ部 2 0 bのセンサ電極 2 5 bで検出されるセンサ出力電圧を示してい る。 第 5の実施の形態例の検査装置で、 信号供給部 3 0と第一のセンサ 部 2 0 a及び第二のセンサ部 2 0 bとを走査させ、 断線部 1 1に到達す ると、. センサ出力電圧 S 2に断線を示す検査信号の変化が検出される。 また、 断線部 1 3に到達すると、 センサ出力電圧 S 1に断線を示す検査 信号の変化が検出される。 さらに、 短絡部 1 7に到達すると、 センサ出 力電圧 S 2に短絡を示す検査信号の変化が検出される。 さらにまた、 短 絡部 1 9に到達すると、 センサ出力電圧 S 1に短絡を示す検査信号の変 化が検出される。 なお、 上記の検査信号の検出結果は、 第 5の発明の実 施の形態例の変形例①及び第 5の発明の実施の形態例の変形例②でも、 同様の結果が得られる。  In FIG. 33, S1 indicates a sensor output voltage detected by the sensor electrode 25a of the first sensor unit 20a. S2 indicates a sensor output voltage detected by the sensor electrode 25b of the second sensor unit 20b. In the inspection apparatus according to the fifth embodiment, the signal supply unit 30 and the first sensor unit 20a and the second sensor unit 20b are scanned, and when the signal reaches the disconnection unit 11, A change in the inspection signal indicating a disconnection in the sensor output voltage S2 is detected. Further, when reaching the disconnection portion 13, a change in the inspection signal indicating disconnection in the sensor output voltage S1 is detected. Further, when the short circuit portion 17 is reached, a change in the inspection signal indicating a short circuit in the sensor output voltage S2 is detected. Furthermore, when the short circuit portion 19 is reached, a change in the inspection signal indicating a short circuit in the sensor output voltage S1 is detected. It should be noted that the same result can be obtained in the above detection result of the inspection signal also in the modified example の of the embodiment of the fifth invention and the modified example の of the embodiment of the fifth invention.
この第 5の実施の形態例のように、 センサ電極 2 5 aとセンサ電極 2 5 bとのようにセンサ電極を 2個使用すると、 検査対象パターンの断線 •短絡時の検査信号の変化のレベルを大きくすることができるばかりで なく、 導体パターン 1 5の長手方向のどこに'断線や短絡があるかを把握 することが可能である。 When two sensor electrodes such as the sensor electrode 25a and the sensor electrode 25b are used as in the fifth embodiment, the disconnection of the pattern to be inspected Can only be increased Therefore, it is possible to know where in the longitudinal direction of the conductor pattern 15 there is a disconnection or short circuit.
なお、 第 5の実施の形態例での検査信号の検出では、 センサ電極を 2 個使用するとしたが、 センサ電極の数は 2個に限定されるものではなく 、 より多くのセンサ電極を使用すれば、 導体パターン 1 5の長手方向で 、 具体的な断線や短絡の個所の特定が可能である。  In the inspection signal detection according to the fifth embodiment, two sensor electrodes are used. However, the number of sensor electrodes is not limited to two. For example, in the longitudinal direction of the conductor pattern 15, it is possible to specify a specific point of disconnection or short circuit.
〔第 6の発明の実施の形態例での検査信号の検出結果例〕  [Example of detection result of inspection signal in embodiment of sixth invention]
このような、 断線及び短絡が存在する図 3 2のような検査対象基板を 、 本発明に係る第 6の実施の形態例により検査を行うと、 図 3 4のよう な検査信号を検出する。 なお、 図 3 4の検査信号を検出するため、 即ち 断線と短絡を同時に検出するために、 第 6の実施の形態例のセンサ部 2 0のセンサ電極 2 5は、 第 1の実施の形態例の供給電極 3 5の幅より少 なくとも検査対象パターンの 1 ピッチ以上幅広とした構成か、 第 2の実 施の形態例の 1つのセンサ部に複数のセンサ電極を設ける構成かのどち らかを用いた。  When the inspection target substrate as shown in FIG. 32 having such disconnection and short circuit is inspected according to the sixth embodiment of the present invention, an inspection signal as shown in FIG. 34 is detected. In order to detect the inspection signal shown in FIG. 34, that is, to simultaneously detect disconnection and short circuit, the sensor electrode 25 of the sensor section 20 of the sixth embodiment is connected to the sensor electrode 25 of the first embodiment. Either a configuration in which the width of the pattern to be inspected is at least one pitch wider than at least the width of the supply electrode 35, or a configuration in which a plurality of sensor electrodes are provided in one sensor unit in the second embodiment. Was used.
この図 3 4において、 S 3はセンサ部 2 0のセンサ電極 2 5で検出さ れるセンサ出力電圧を示している。 第 6の実施の形態例の検査装置で、 第一の検査信号供給部 3 0 a及び第二の検査信号供給部 3 0 bとセンサ 部 2 0とを走査させ、 断線部 1 1に到達すると、 センサ出力電圧 S 3に 断線を示す検査信号の変化が検出される。 'また、 断線部 1 3に到達する と、 センサ出力電圧 S 3に断線を示す検査信号の変化が検出される。 さ らに、 短絡部 1 7に到達すると、 センサ出力電圧 S 3に短絡を示す検査 信号の変化が検出される。 さらにまた、 短絡部 1 9に到達すると、 セン サ出力電圧 S 3に短絡を示す検査信号の変化が検出される。 なお、 これ らの検査信号の検出結果は、 第 6の発明の実施の形態例の変形例①及び 第 6の発明の実施の形態例の変形例②でも、 同様の結果が得られる。 この第 6の実施の形態例のように、 第一の^査信号供給部 3 0 aの第 一の供給電極 3 5 aと第二の検査信号供給部 3 0 bの第二の供給電極 3 5 bとのように供給電極を 2個使用すると、 第 1の実施の形態例や第 2 の実施の形態例より検査対象パターンの断線 ·短絡時の検査信号の変化 のレベルを大きくすることができる。 In FIG. 34, S 3 indicates a sensor output voltage detected by the sensor electrode 25 of the sensor unit 20. In the inspection apparatus according to the sixth embodiment, the first inspection signal supply unit 30a and the second inspection signal supply unit 30b and the sensor unit 20 are scanned, and when the inspection unit reaches the disconnection unit 11 A change in the inspection signal indicating a disconnection in the sensor output voltage S3 is detected. 'In addition, upon reaching the disconnection portion 13, a change in the inspection signal indicating disconnection in the sensor output voltage S3 is detected. Further, when the short circuit portion 17 is reached, a change in the inspection signal indicating a short circuit in the sensor output voltage S3 is detected. Furthermore, when the short circuit portion 19 is reached, a change in the inspection signal indicating a short circuit in the sensor output voltage S3 is detected. It should be noted that similar detection results are obtained in the detection results of these test signals in the modified example ① of the sixth embodiment and the modified example の of the sixth embodiment. As in the sixth embodiment, the first supply electrode 35a of the first inspection signal supply unit 30a and the second supply electrode 3 of the second inspection signal supply unit 30b When two supply electrodes are used as in 5b, the level of change of the inspection signal at the time of disconnection or short circuit of the pattern to be inspected can be made larger than in the first and second embodiments. it can.
〔第 7の発明の実施の形態例での検査信号の検出結果例〕  [Example of detection result of test signal in embodiment of seventh invention]
このような、 断線及び短絡が存在する図 3 2のような検査対象基板を 、 本発明に係る第 7の実施の形態例により検査を行うと、 図 3 5のよう な検査信号を検出する。 なお、 図 3 5の検査信号を検出するため、 即ち 断線と短絡を同時に検出するために、 第 7の実施の形態例の第一のセン サ部 2 0 aのセンサ電極 2 5 a及び第二のセンサ部 2 0 bのセンサ電極 2 5 bは、 第 1の実施の形態例の供給電極 3 5の幅より少なくとも検査 対象パターンの 1ピッチ以上幅広とした構成か、 第 2の実施の形態例の 1つのセンサ部に複数のセンサ電極を設ける構成かのどちらかを用いた この図 3 5において、 S 4は第一のセンサ部 2 0 aのセンサ電極 2 5 aで検出されるセンサ出力電圧を示している。 また、 S 5は第二のセン サ部 2 0 bのセンサ電極 2 5 bで検出されるセンサ出力電圧を示してい る。 第 7の実施の形態例の検査装置で、 信号供給部 3 0と第一のセンサ 部 2 0 a及び第二のセンサ部 2 0 bとを走査させ、 断線部 1 1に到達す ると、 センサ出力電圧 S 5に断線を示す検査信号の変化が検出される。 また、 断線部 1 3に到達すると、 センサ出力電圧 S 4及びセンサ出力電 圧 S 5の両方に断線を示す検査信号の変化が検出される。 さらに、 短絡 部 1 7に到達すると、 センサ出力電圧 S 4及びセンサ出力電圧 S 5の両 方に短絡を示す検査信号の変化が検出される。 さらにまた、 短絡部 1 9 に到達すると、 センサ出力電圧 S 4及びセンサ出力電圧 S 5の両方に短 絡を示す検査信号の変化が検出される。 なお'、 上記の検査信号の検出結 果は、 第 7の発明の実施の形態例の変形例①及び第 7の発明の実施の形 態例の変形例②でも、 同様の結果が得られる。 When an inspection target substrate as shown in FIG. 32 having such a disconnection and a short circuit is inspected according to the seventh embodiment of the present invention, an inspection signal as shown in FIG. 35 is detected. In order to detect the inspection signal of FIG. 35, that is, to simultaneously detect disconnection and short circuit, the sensor electrodes 25a and the second sensor electrode of the first sensor section 20a of the seventh embodiment are used. The sensor electrode 25 b of the sensor section 20 b of the second embodiment is configured to be wider than the width of the supply electrode 35 of the first embodiment by at least one pitch of the pattern to be inspected, or the second embodiment. In FIG. 35, S 4 is a sensor output voltage detected by the sensor electrode 25 a of the first sensor unit 20 a. Is shown. S5 indicates a sensor output voltage detected by the sensor electrode 25b of the second sensor unit 20b. In the inspection device according to the seventh embodiment, the signal supply unit 30 and the first sensor unit 20a and the second sensor unit 20b are scanned, and when the signal supply unit 30 reaches the disconnection unit 11, A change in the inspection signal indicating disconnection in the sensor output voltage S5 is detected. Further, when reaching the disconnection portion 13, a change in the inspection signal indicating disconnection is detected in both the sensor output voltage S4 and the sensor output voltage S5. Further, when the short circuit portion 17 is reached, a change in the inspection signal indicating a short circuit is detected in both the sensor output voltage S4 and the sensor output voltage S5. Furthermore, when the short-circuit portion 19 is reached, both the sensor output voltage S4 and the sensor output voltage S5 become short. A change in the test signal indicating a fault is detected. It should be noted that the same result can be obtained with the detection result of the above-mentioned inspection signal in the modified example の of the embodiment of the seventh invention and the modified example の of the embodiment of the seventh invention.
また、 本発明に係る第 7の実施の形態例により検査を行った場合、 短 絡部 1 7で検出される検査信号の変化は、 (センサ出力電圧 S 5の検出 信号値の変化) > (センサ出力電圧 S 4の検出信号値の変化) となる。 これは、 短絡部 1 7が、 センサ電極 2 5 aとセンサ電極 2 5 bとの間に あるためである。 即ち、 センサ電極 2 5 aで検出される検査信号は、 短 絡部 1 7から回り込む検査信号も検出するため、 若干の影響を受けるた めである。  Further, when the inspection is performed according to the seventh embodiment of the present invention, the change of the inspection signal detected at the short-circuit portion 17 is (change of the detection signal value of the sensor output voltage S5)> ( A change in the detection signal value of the sensor output voltage S4). This is because the short-circuit portion 17 is between the sensor electrode 25a and the sensor electrode 25b. That is, the inspection signal detected by the sensor electrode 25a is slightly affected because the inspection signal sneaking from the short-circuit portion 17 is also detected.
また、 短絡部 1 9で検出される検査信号の変化は、 (センサ出力電圧 S 4の検出信号値の変化) > (センサ出力電圧 S 5の検出信号値の変化 ) なる。 これは短絡部 1 9が供給電極 3 5とセンサ電極 2 5 aとの間 にあるためである。 即ち、 供給電極 3 5とセンサ電極 2 5 aとの間の距 離と、 供給電極 3 5とセンサ電極 2 5 bとの間の距離との関係が、 (供 給電 S 3 5とセンサ電極 2 5 aとの間の距離) 〉 (供給電極 3 5とセン サ電極 2 5 bとの間の距離) であるため、 距離が近いセンサ電極 2 5 a で検出される検査信号がより大きく影響を受けるためである。  The change in the inspection signal detected at the short-circuit portion 19 is as follows: (change in detection signal value of sensor output voltage S4)> (change in detection signal value of sensor output voltage S5). This is because the short-circuit portion 19 is between the supply electrode 35 and the sensor electrode 25a. That is, the relationship between the distance between the supply electrode 35 and the sensor electrode 25a and the distance between the supply electrode 35 and the sensor electrode 25b is expressed as (power supply S 35 and sensor electrode 2 ) (Distance between the supply electrode 35 and the sensor electrode 25b), so that the inspection signal detected by the sensor electrode 25a, which is short, has a greater effect. To receive.
なお、 図 3 5は検査信号の検出結果の一例であり、 短絡部 1 7でセン サ電極 2 5 aにより検出される検査信号の変化 (センサ出力電圧 S 4の 短絡部 1 7での検出信号値の変化) は、 諸条件により検出されない場合 がある。  FIG. 35 shows an example of the detection result of the inspection signal. The change of the inspection signal detected by the sensor electrode 25a at the short-circuit portion 17 (the detection signal at the short-circuit portion 17 of the sensor output voltage S4) Value change) may not be detected due to various conditions.
この第 7の実施の形態例のように、 センサ電極 2 5 aとセンサ電極 2 5 bとのようにセンサ電極 2個を使用すると、 検査対象パターンの断線 ·短絡時の検査信号の変化のレベルを大きくすることができるばかりで なく、 導体パターン 1 5の長手方向のどこに断線や短絡があるかを把握 することが可能である。 As in the seventh embodiment, when two sensor electrodes such as the sensor electrode 25a and the sensor electrode 25b are used, the level of the change of the inspection signal at the time of disconnection and short circuit of the pattern to be inspected is obtained. Not only can be increased, but also where in the longitudinal direction of the conductor pattern 15 It is possible to do.
なお、 第 7の実施の形態例での検査信号の検出では、 センサ電極を 2 個使用するとしたが、 センサ電極の数は 2個に限定されるものではなく 、 より多くのセンサ電極を使用すれば、 導体パターン 1 5の長手方向で 、 具体的な断線や短絡の個所の特定が可能である。  Note that, in the detection of the inspection signal in the seventh embodiment, two sensor electrodes are used, but the number of sensor electrodes is not limited to two, and more sensor electrodes may be used. For example, in the longitudinal direction of the conductor pattern 15, it is possible to specify a specific point of disconnection or short circuit.
〔第 8の発明の実施の形態例での検査信号の検出結果例〕  [Example of detection result of inspection signal in embodiment of eighth invention]
なおまた、 このような、 断線及び短絡が存在する図 3 2のような検査 対象基板を、 本発明に係る第 8の実施の形態例により検査を行うと、 図 3 6のような検査信号を検出する。 なお、 図 3 6の検査信号を検出する ため、 即ち断線と短絡を同時に検出するために、 第 8の実施の形態例の センサ部 2 0のセンサ電極 2 5は、 第 1の実施の形態例の供給電極 3 5 の幅より少なくとも検査対象パターンの 1ピッチ以上幅広とした構成か 、 第 2の実施の形態例の 1つのセンサ部に複数のセンサ電極を設ける構 成かのどちらかを用いた。 .  Further, when the inspection target substrate as shown in FIG. 32 having such a disconnection and a short circuit is inspected according to the eighth embodiment of the present invention, an inspection signal as shown in FIG. To detect. In order to detect the inspection signal shown in FIG. 36, that is, to simultaneously detect disconnection and short circuit, the sensor electrode 25 of the sensor section 20 of the eighth embodiment is connected to the sensor electrode 25 of the first embodiment. Either a configuration in which the width of the pattern to be inspected is at least one pitch wider than the width of the supply electrode 35 or a configuration in which a plurality of sensor electrodes are provided in one sensor unit of the second embodiment is used. . .
この図 3 6において、 S 6はセンサ部 2 0のセンサ電極 2 5で検出さ れる ンサ出力電圧を示している。 第 8の実施の形態例の検査装置で、 第一の検査信号供給部 3 0 a及び第二の検査信号供給部 3 0 bとセンサ 部 2 0とを走査させ、 断線部 1 1に到達すると、 センサ出力電圧 S 6に 断線を示す検査信号の変化が検出される。 また、 断線部 1 3に到達する と、 センサ出力電圧 S 6に断線を示す検査信号の変化が検出される。 さ らに短絡部 1 7に到達すると、 センサ出力電圧 S 6に短絡を示す検査信 号の変化が検出される。 さらにまた、 短絡部 1 9に到達すると、 センサ 出力電圧 S 6に短絡を示す検査信号 変化が検出される。 なお、 これら の検査信号の検出結果は、 第 8の発明の実施の形態例の変形例①及び第 8の発明の実施の形態例の変形例②でも、 同様の結果が得られる。  In FIG. 36, S 6 indicates a sensor output voltage detected by the sensor electrode 25 of the sensor section 20. In the inspection apparatus according to the eighth embodiment, the first inspection signal supply unit 30a and the second inspection signal supply unit 30b and the sensor unit 20 are scanned, and when the inspection unit reaches the disconnection unit 11 A change in the inspection signal indicating a disconnection in the sensor output voltage S6 is detected. Further, when reaching the disconnection portion 13, a change in the inspection signal indicating disconnection in the sensor output voltage S6 is detected. Further, when the short circuit portion 17 is reached, a change in the inspection signal indicating a short circuit in the sensor output voltage S6 is detected. Furthermore, when the short circuit portion 19 is reached, a change in the inspection signal indicating a short circuit in the sensor output voltage S6 is detected. It should be noted that the same result is obtained in the detection results of these test signals in the modified example の of the embodiment of the eighth invention and the modified example ② of the embodiment of the eighth invention.
また、 本発明に係る第 8の実施の形態例により検査を行った場合、 セ ンサ出力電圧 S 6に検出される断線を示す検'査信号の変化は、 (断線部 1 3での検査信号の変化) > (断線部 1 1での検査信号の変化) となる 。 これは、 センサ電極 2 5で検出される検査信号は、 供給電極 3 5 aと 供給電極 3 5 bとの両方の検査信号が重畳されて検出されるためである 。 即ち、 断線が、 供給電極 3 5 aと供給電極 3 5 bとの間に位置する断 線部 1 1にある場合には、 供給電極 3 5 aからの検査信号だけがセンサ 電極 2 5まで到達することになるが、 断線が断線部 1 3にある場合には 、 供給電極 3 5 aと供給電極 3 5 bとの両方の検査信号がセンサ電極 2 5まで到達しないためである。 When the inspection is performed according to the eighth embodiment of the present invention, The change in the inspection signal indicating the disconnection detected by the sensor output voltage S6 is (change in the inspection signal in the disconnection portion 13)> (change in the inspection signal in the disconnection portion 11). This is because the inspection signal detected by the sensor electrode 25 is detected by superimposing the inspection signals of both the supply electrode 35a and the supply electrode 35b. That is, when the disconnection is at the disconnection portion 11 located between the supply electrode 35a and the supply electrode 35b, only the inspection signal from the supply electrode 35a reaches the sensor electrode 25. This is because, when the disconnection is at the disconnection portion 13, the inspection signal of both the supply electrode 35a and the supply electrode 35b does not reach the sensor electrode 25.
また、 本発明に係る第 8の実施の形態例により検査を行った場合、 セ ンサ出力電圧 S 6に検出される短絡を示す検査信号の変化は、 (短絡部 1 9での検査信号の変化) > (短絡部 1 7での検査信号の変化) となる 。 これは、 センサ電極 2 5で検出される検査信号は、 供給電極 3 5 aと 供給電極 3 5 bとの両方の検査信号が重畳されて検出されるためである 。 即ち、 短絡が、 供給電極 3 5 aと供給電極 3 5 bとの間に位置する短 絡部 1 7にある場合には、 供給電極 3 5 bからの検査信号にだけ短絡に よる検査信号の変化が発生するが、 短絡が短絡部 1 9にある場合には、 供給電極 3 5 aと供給電極 3 5 bとの両方の検査信号に短絡による検査 信号の変化が発生するためである。  Further, when the inspection is performed according to the eighth embodiment of the present invention, the change of the inspection signal indicating the short circuit detected by the sensor output voltage S6 is (change of the inspection signal at the short circuit portion 19). )> (Change of the inspection signal at the short-circuit part 17). This is because the inspection signal detected by the sensor electrode 25 is detected by superimposing the inspection signals of both the supply electrode 35a and the supply electrode 35b. In other words, when the short circuit is at the short circuit portion 17 located between the supply electrode 35a and the supply electrode 35b, the inspection signal due to the short circuit is generated only by the test signal from the supply electrode 35b. Although a change occurs, when the short-circuit is in the short-circuit portion 19, a change in the test signal due to the short-circuit occurs in the test signal of both the supply electrode 35a and the supply electrode 35b.
この第 8の実施の形態例のように、 第一の検査信号供給部 3 0 aの第 一の供給電極 3 5 aと第二の検査信号供給部 3 0 bの第二の供給電極 3 5 bとのように供給電極 2個を使用すると、 第 1の実施の形態例や第 2 の実施の形態例より検査対象パターンの断線 ·短絡時の検査信号の変化 のレベルを大きくすることができるばかりでなく、 導体パターン 1 5の 長手方向のどこに断線や短絡があるかを把握することが可能である。  As in the eighth embodiment, the first supply electrode 35a of the first test signal supply unit 30a and the second supply electrode 35 of the second test signal supply unit 30b When two supply electrodes are used as in b, the level of the change of the inspection signal at the time of disconnection and short circuit of the pattern to be inspected can be made higher than in the first embodiment and the second embodiment. Not only that, it is possible to know where in the longitudinal direction of the conductor pattern 15 there is a disconnection or short circuit.
〔検査対象基板のその他の例〕 上記第 1乃至第 8の発明の実施の形態例では、 検査対象基板において 、 検査対象の導電パターン 1 5は、 隣接する導電パターンとは接続して いないものとして図示されていたが、 本発明の実施の形態はこの構成に 限定されるものではなく、 例えば図 3 .7のように、 導電パターン 1 5の 一方端部で櫛状に接続されているような導電パターンであっても、 また 、 全ての導電パターンが他方端部においても接続されているような導電 パターンであっても、 センサ電極や供給電極が導電パターンを順次横断 するように走査する範囲で、 導電パターンが列状になっていれば、 どの ような導電パターンでも検査を行うことはできることは言うまでもない 。 産業上の利用可能性 [Other examples of substrates to be inspected] In the first to eighth embodiments of the present invention, the conductive pattern 15 to be inspected in the inspection target substrate is illustrated as not connected to the adjacent conductive pattern. The embodiment is not limited to this configuration. For example, as shown in FIG. 3.7, even if the conductive pattern is connected in a comb shape at one end of the conductive pattern 15, Even if all the conductive patterns are connected at the other end, the conductive patterns are arranged in a row within the range where the sensor electrodes and supply electrodes scan so as to sequentially cross the conductive patterns. Needless to say, any conductive pattern can be inspected. Industrial applicability
以上説明したように本発明によれば、 確実に検査対象パターンの不良 を検出することができる。  As described above, according to the present invention, it is possible to reliably detect a defect of a pattern to be inspected.
更に、 パターン不良状況も容易に認識することが可能となり、 具体的 な不良箇所の特定も可能となる。  Further, it is possible to easily recognize the pattern defect status, and it is also possible to specify a specific defective portion.
更に、 検査対象表面に凹凸があってもパターンを損傷することなく確 実に検査することができる。  Furthermore, even if the surface to be inspected has irregularities, it is possible to inspect reliably without damaging the pattern.
更に、 検查対象基板の検査対象パターンの抵抗値が大きい場合であつ ても確実に検査対象パターンの不良を検出することができる。  Further, even when the resistance value of the pattern to be inspected on the substrate to be inspected is large, it is possible to reliably detect the defect of the pattern to be inspected.

Claims

請求の範囲 The scope of the claims
1 . 検査対象領域が列状に形成されている検査対象パターンの前記検 査対象領域の一方より交流の検査信号を供給し、 他方から前記検査対象 パターンよりの信号を検出して前記検査対象パターンを検査する回路パ ターン検查装置において、 1. An AC inspection signal is supplied from one of the inspection target areas of the inspection target pattern in which the inspection target areas are formed in a row, and a signal from the inspection target pattern is detected from the other to thereby inspect the inspection target pattern. Circuit pattern inspection equipment that inspects
前記検査対象パターンの検査対象領域の一方より前記検査信号を前記 検査対象パターンに供給する供給電極を有する供給手段と、 前記検査対 象パターンよりの信号を検出する検出電極を有する検出手段と、 前記供 給手段の供給電極と前記検出手段の検出電極とを前記検査対象パターン から離間させつつ前記検査対象領域の列状パターン部を横切り移動させ る移動手段とを備える回路パターン検査装置であって、  A supply unit having a supply electrode for supplying the inspection signal to the inspection target pattern from one of the inspection target regions of the inspection target pattern; a detection unit having a detection electrode for detecting a signal from the inspection target pattern; A circuit pattern inspection apparatus comprising: a moving unit configured to move a supply electrode of a supply unit and a detection electrode of the detection unit apart from the pattern to be inspected and to move across the row pattern part of the inspection region,
前記供給手段または前記検出手段の少なくとも一方は、 前記検査対象 パターンの端部以外に配設されていることを特徴とする回路パターン検 査装置。  A circuit pattern inspection apparatus, wherein at least one of the supply unit and the detection unit is provided at a position other than an end of the pattern to be inspected.
2 . 前記検査対象パターンは基板上に所定幅でほぼ棒状に形成された 導電性パターンであることを特徴とする請求項 1記載の回路パターン検 査装置。  2. The circuit pattern inspection device according to claim 1, wherein the inspection target pattern is a conductive pattern formed in a substantially bar shape with a predetermined width on a substrate.
3 . 前記検出電極の幅は、 少なくとも検査対象パターンの 2列分の幅 であることを特徴とする請求項 1又は請求項 2に記載の回路パターン検 査装置。  3. The circuit pattern inspection device according to claim 1, wherein a width of the detection electrode is at least a width of two rows of the pattern to be inspected.
4 . 前記検出手段は、 一方端部位置で前記供給電極により検査信号を 供給される検査対象パターンの他方端部位置に配設された第一の検出電 極と、 一方端部位置で前記供給電極により検査信号を供給される検査対 象パターンに隣接する検査対象パターンの他方端部位置に配設された第 二の検出電極とを備えることを特徴とする請求項 1又は請求項 2に記載 の回路パターン検査装置。 4. The detection means comprises: a first detection electrode provided at the other end of the pattern to be inspected to which the inspection signal is supplied by the supply electrode at one end; 3.A second detection electrode disposed at the other end position of the inspection target pattern adjacent to the inspection target pattern to which the inspection signal is supplied by the electrode, wherein the second detection electrode is provided. Circuit pattern inspection equipment.
5 . 前記第一の検出電極の幅は、 検査対象パターンのパターン幅以下 であることを特徴とする請求項 4に記載の回路パターン検査装置。  5. The circuit pattern inspection device according to claim 4, wherein a width of the first detection electrode is equal to or less than a pattern width of a pattern to be inspected.
6 . 前記第二の検出電極の幅は、 検査対象パターンのパターン幅以下 ' であることを特徴とする請求項 4又は請求項 5に記載の回路パターン検 査装置。  6. The circuit pattern inspection device according to claim 4, wherein a width of the second detection electrode is equal to or smaller than a pattern width of a pattern to be inspected.
7 . 前記移動手段は、 前記供給手段の供給電極面及び前記検出手段の 検出電極面を前記検査対象パターンと容量結合させた状態で前記検査対 象領域の両端近傍の列状部分を横切り移動させることを特徴とする請求 項 1乃至請求項 6のいずれかに記載の回路パターン検査装置。  7. The moving means traverses a row portion near both ends of the inspection target area in a state where the supply electrode surface of the supply means and the detection electrode surface of the detection means are capacitively coupled to the pattern to be inspected. 7. The circuit pattern inspection device according to claim 1, wherein:
8 . 更に、 前記検出手段による検出結果が所定範囲にある場合に検査 対象パターンの正常と、 検出結果が所定の範囲より外れる場合に検査対 象ん\°ターンの不良と判断する判断手段を備えることを特徴とする請求項 1乃至請求項 7のいずれかに記載の回路パターン検査装置。  8. Further, there is provided a judging means for judging that the pattern to be inspected is normal when the result of detection by the detecting means is within a predetermined range, and a failure of the turn to be inspected when the detection result is out of the predetermined range. 8. The circuit pattern inspection device according to claim 1, wherein:
9 . 前記判断手段が不良と判断した検査対象パターンの両端に、 前記 供給手段の供給電極と前記検出手段の検出電極とを移動させ、 前記供給 手段の供給電極又は前記検出手段の検出電極のいずれか一方を他方に向 かってパターンに沿って移動させる第 2の移動手段と、 前記検出手段の 検出結果に基づき検出変化位置を検出する位置検出手段とを備えること を特徴とする請求項 8に記載の回路パターン検査装置。  9. The supply electrode of the supply unit and the detection electrode of the detection unit are moved to both ends of the pattern to be inspected determined by the determination unit to be defective, and either the supply electrode of the supply unit or the detection electrode of the detection unit is moved. 9. The apparatus according to claim 8, further comprising: a second moving unit configured to move one of them along the pattern toward the other, and a position detecting unit that detects a detected change position based on a detection result of the detecting unit. Circuit pattern inspection equipment.
1 0 . 前記供給手段の供給電極又は前記検出手段の検出電極のいずれ か他方を検査対象パターンに接触させる接触手段を備えることを特徴と 10. A contact means for contacting either the supply electrode of the supply means or the detection electrode of the detection means with the pattern to be inspected.
• する請求項 9に記載の回路パターン検査装置。 The circuit pattern inspection device according to claim 9, wherein:
1 1 . 前記第 2の移動手段により移動される前記供給電極及び前記検 出電極の少なくとも一方に撮像手段を備えることを特徴とする請求項 9 又は請求項 1 0に記載の回路パターン検査装置。 11. The circuit pattern inspection apparatus according to claim 9, wherein at least one of the supply electrode and the detection electrode moved by the second moving means includes an imaging means.
1 2 . 前記第 2の移動手段により移動され'る前記供給電極及び前記検 出電極の少なくとも一方と、 検査対象パターンとの距離がほぼ一定にな るように位置決め制御する離間制御手段を備えることを特徴とする請求 項 9乃至請求項 1 1のいずれかに記載の回路パターシ検査装置。 12. A separation control means for performing positioning control so that a distance between at least one of the supply electrode and the detection electrode moved by the second moving means and the pattern to be inspected is substantially constant. The circuit patency inspection device according to any one of claims 9 to 11, wherein:
1 3 . 前記移動手段により移動される前記供給電極及び前記検出電極 の少なくとも一方と検査対象パターンとの離間距離がほぼ一定になるよ うに位置決め制御する離間距離制御手段を備えることを特徴とする請求 項 1乃至請求項 1 2のいずれかに記載の回路パターン検査装置。 13. A separation distance control means for performing positioning control such that a separation distance between at least one of the supply electrode and the detection electrode moved by the movement means and the pattern to be inspected is substantially constant. The circuit pattern inspection device according to any one of claims 1 to 12.
1 4 . 前記離間処理制御手段は、 前記検出電極あるいは供給電極近傍 位置に前記検出電極あるいは前記供給電極と共に移動する変位計を備え 14. The separation processing control means includes a displacement meter that moves together with the detection electrode or the supply electrode at a position near the detection electrode or the supply electrode.
、 前記変位計の検出結果に従って前記検出電極あるいは供給電極と検査 対象との離間距離がほぼ一定になるように前記検査対象に直交する方向 に位置決め制御することを特徴とする請求項 1 2又は請求項 1 3に記載 の回路パターン検査装置。 The positioning control in a direction orthogonal to the test object so that the distance between the detection electrode or the supply electrode and the test object is substantially constant according to the detection result of the displacement meter. Item 13. A circuit pattern inspection device according to item 13.
1 5 . 前記離間処理制御手段は、 前記検査対象パターンの複数ピッチ 間の前記変位計の検出結果の平均変位を前記検出電極あるいは前記供給 電極と検査対象との離間距離として前記検査対象に直交する方向に位置 決め制御することを特徴とする請求項 1 4に記載の回路パターン検査装 置。  15. The separation processing control means sets the average displacement of the detection result of the displacement meter between a plurality of pitches of the pattern to be inspected as a separation distance between the detection electrode or the supply electrode and the object to be inspected, and is orthogonal to the object to be inspected. 15. The circuit pattern inspection device according to claim 14, wherein positioning control is performed in a direction.
1 6 . 検査対象領域が列状に形成されている検査対象パターンの検査 対象領域の一方より検査信号を前記検査対象パターンに供給する供給電 極を有する供給手段と、 前記前記検査対象パターンよりの信号を検出す る検出電極を有する検出手段とを有する回路パターン検査装置における パターン検査方法において、  16. Supply means having a supply electrode for supplying an inspection signal from one of the inspection target areas to the inspection target pattern in which the inspection target area is formed in a row, A pattern inspection method in a circuit pattern inspection apparatus having a detection unit having a detection electrode for detecting a signal.
前記供給手段の供給電極と前記検出手段の検出電極とを前記供給手段 の供給電極面及び前記検出手段の検出電極面を前記検査対象パターン表 面と離間さ.せた状態を維持しつつ、 前記供給 ½極又は前記検出電極の一 方は前記検査対象パターンとを前記検査対象領域の列状パターン部の端 部を横切り移動させ、 前記供給電極又は前記検出電極の他の一方は前記 検査対象パターンとを前記検査対象領域の列状パターン部の端部以外を 横切り移動させ、 The supply electrode of the supply unit and the detection electrode of the detection unit are connected to the supply electrode surface of the supply unit and the detection electrode surface of the detection unit by the inspection target pattern table. While maintaining the state of being separated from the surface, one of the supply electrode or the detection electrode is moved across the end of the row pattern portion of the inspection target area with the inspection target pattern, and The other electrode or the other of the detection electrodes is moved across the pattern to be inspected except for the end of the row pattern portion of the inspection area,
前記検査対象パターンの前記検査対象領域の一方より交流の検查信号 を供給し他方から前記検査対象パターンよりの信号を検出して前記検査 対象パターンを検査することを特徴とする回路パターン検査方法。  A circuit pattern inspection method, comprising: supplying an AC detection signal from one of the inspection target areas of the inspection target pattern and detecting a signal from the inspection target pattern from the other to inspect the inspection target pattern.
1 7 . 前記回路パターンは、 基板上に所定幅でほぼ棒状に形成された 導電性パターンであることを特徴とする請求項 1 6に記載の回路パ夕一 ン検查方法。  17. The circuit pattern detection method according to claim 16, wherein the circuit pattern is a conductive pattern formed in a substantially bar shape with a predetermined width on a substrate.
1 8 . 前記検出電極の幅は、 少なくとも検查対象パターンの 2列分の 幅とし、 検査信号を供給している導電パターンに隣接する導電パターン からの信号を検出して隣接する導電パターン間の短絡を検出可能とする ことを特徴とする請求項 1 7に記載の回路パターン検査方法。  18. The width of the detection electrode should be at least the width of two rows of the pattern to be detected, and the width between the adjacent conductive patterns by detecting a signal from the conductive pattern adjacent to the conductive pattern supplying the inspection signal. The circuit pattern inspection method according to claim 17, wherein a short circuit can be detected.
1 9 . . 前記検出電極から検査信号を供給している導電パターンからの 信号を前記検出手段の第一の検出電極で検出して導電パターン間の断線 を検出可能とし、 前記検出電極から検査信号を供給している導電パター ンに隣接する導電パターンからの信号を前記検出手段の第二の検出電極 で検出して隣接する導電パターン間の短絡を検査可能とすることを特徴 とする請求項 1 6又は請求項 1 7に記載の回路パターン検査方法。  19.. A signal from the conductive pattern supplying an inspection signal from the detection electrode is detected by the first detection electrode of the detection means to enable a disconnection between the conductive patterns to be detected. 2. A signal from a conductive pattern adjacent to a conductive pattern that supplies an electric current is detected by a second detection electrode of the detection means so that a short circuit between the adjacent conductive patterns can be inspected. The circuit pattern inspection method according to claim 6 or claim 17.
2 0 . 前記検出手段で非検出となる検出手段位置から導電パターンの 概略断線箇所位置を検出することを特徴とする請求項 1 6乃至請求項 1 9のいずれかに記載の回路パターン検査方法。  20. The circuit pattern inspection method according to any one of claims 16 to 19, wherein a position of a roughly disconnected portion of the conductive pattern is detected from a position of the detection means which is not detected by the detection means.
2 1 . 更に、 前記検出手段による検出結果が所定範囲にある場合に検 査対象パターンの正常と、 検出結果が所定の範囲より外れる場合に検査 対象パターンの不良と判断することを特徴と'する請求項 1 6乃至請求項 2 0のいずれかに記載の回路パターン検査方法。 21. Further, when the detection result by the detection means is within a predetermined range, the inspection target pattern is normal, and when the detection result is out of the predetermined range, the inspection is performed. The circuit pattern inspection method according to any one of claims 16 to 20, wherein it is determined that the target pattern is defective.
2 2 . 前記判断手段が不良と判断した検査対象パターン位置を識別し て保持し、 前記識別した不良と判断した検査対象パターンの両端部に前 記供給手段の供給電極と前記検出手段の検出電極を移動させ、 前記供給 電極又は前記検出電極のいずれか一方を他方に向かってパターンに沿つ て移動させ、 前記検出手段の検出結果に基づき変化位置を検査対象パ夕 ーンの不良位置とすることを特徴とする請求項 2 1に記載の回路パター ン検査方法。  2 2. The position of the pattern to be inspected determined by the determination means to be defective is identified and held, and the supply electrode of the supply means and the detection electrode of the detection means are disposed at both ends of the pattern to be inspected determined to be defective. And moving either the supply electrode or the detection electrode along the pattern toward the other, and set the change position based on the detection result of the detection means as the defective position of the inspection target pattern. 22. The circuit pattern inspection method according to claim 21, wherein:
2 3 . 前記供給手段の供給電極又は前記検出手段の検出電極のいずれ か他方を検査対象パターンに接触させることを特徴とする請求項 2 2に 記載の回路パターン検査方法。 23. The circuit pattern inspection method according to claim 22, wherein one of the supply electrode of the supply unit and the detection electrode of the detection unit is brought into contact with a pattern to be inspected.
2 4 . 前記供給電極又は前記検出電極のいずれか一方に備えられた撮 像手段を他方に向かってパターンに沿って移動させ、 検査対象パターン の不良位置の不良状態を撮像することを特徴とする請求項 2 2又は請求 項 2 3に記載の回路パターン検査方法。  24. An imaging means provided on one of the supply electrode and the detection electrode is moved along the pattern toward the other, and an image of a defective state at a defective position of the inspection target pattern is taken. The circuit pattern inspection method according to claim 22 or claim 23.
2 5 . 前記検出電極あるいは前記供給電極近傍位置に前記検出電極あ るいは供給電極と共に移動する変位計を配置し、 前記変位計の検出結果 に従って前記検出電極あるいは供給電極と検査対象との離間距離がほぼ 一定になるように前記検査対象に直交する方向に位置決め制御して前記 検出電極の結果を一定化することを特徴とする請求項 1 6乃至請求項 2 4のいずれかに記載の回路パターン検査方法。  25. A displacement meter that moves together with the detection electrode or the supply electrode is disposed at a position near the detection electrode or the supply electrode, and a separation distance between the detection electrode or the supply electrode and the inspection object according to a detection result of the displacement meter. The circuit pattern according to any one of claims 16 to 24, wherein positioning control is performed in a direction orthogonal to the inspection object so that a result of the detection electrode is made constant so that is substantially constant. Inspection methods.
2 6 . 前記検査対象パターン複数ピッチ間の前記変位計の検出結果の 平均変位を前記検出電極あるいは前記供給電極と検査対象との離間距離 として前記検査対象との位置決め制御をすることを特徴とする請求項 2 5に記載の回路パターン検査方法。 26. The positioning of the inspection object is controlled by setting the average displacement of the detection result of the displacement meter between the plurality of pitches of the inspection object pattern as the separation distance between the detection electrode or the supply electrode and the inspection object. 26. The circuit pattern inspection method according to claim 25.
2 7 . 検査対象領域が列状に形成されてい'る検査対象パターンの前記 検査対象領域の一方より検査信号を供給し、 他方より前記検査対象パタ ーンからの検査信号を検出して前記検査対 パターンを検査する回路パ ターン検査装置において、 27. An inspection signal is supplied from one of the inspection target areas of the inspection target pattern in which the inspection target area is formed in a row, and an inspection signal from the inspection target pattern is detected from the other to perform the inspection. In a circuit pattern inspection device that inspects a pair pattern,
前記検査対象パターンの検査対象領域の一方より前記検査信号を前記 検査対象パターンに供給する供給電極を有する供給手段と、  Supply means having a supply electrode for supplying the inspection signal from the one of the inspection target areas of the inspection target pattern to the inspection target pattern;
前記検査対象パターンからの検査信号を検出する検出電極を有する検 出手段と、  Detection means having a detection electrode for detecting an inspection signal from the inspection target pattern;
前記供給電極と前記検出電極とを前記検査対象パターンから離間させ つつ前記検査対象領域を横切り移動させる移動手段とを備えることを特 徴どする回路パターン検査装置。  A circuit pattern inspection apparatus, comprising: moving means for moving the supply electrode and the detection electrode across the inspection target area while separating the supply electrode and the detection electrode from the inspection target pattern.
2 8 . 前記供給手段または前記検出手段の少なくとも一方は、 前記検 査対象パターンの端部以外に配設されていることを特徴とする請求項 2 7記載の回路パターン検査装置。  28. The circuit pattern inspection apparatus according to claim 27, wherein at least one of the supply unit and the detection unit is provided at a position other than an end of the pattern to be inspected.
2 9 . 前記供給手段が複数備えられていることを特徴とする請求項 2 7 己載の回路パターン検査装置。  29. The circuit pattern inspection apparatus according to claim 27, wherein a plurality of said supply means are provided.
3 0 . 前記複数の供給手段または前記検出手段のうち少なくとも一つ は、 前記検査対象パターンの端部以外に配設されていることを特徴とす る請求項 2 9記載の回路パターン検査装置。  30. The circuit pattern inspection apparatus according to claim 29, wherein at least one of the plurality of supply units or the detection unit is provided at a position other than an end of the pattern to be inspected.
3 1 . 前記検出手段が複数備えられていることを特徴とする請求項 2 7記載の回路パターン検査装置。  31. The circuit pattern inspection apparatus according to claim 27, wherein a plurality of said detection means are provided.
3 2 . 前記供給手段または前記複数の検出手段のうち少なくとも一つ は、 前記検査対象パターンの端部以外に配設されていることを特徴とす る請求項 3 1記載の回路パターン検査装置。  32. The circuit pattern inspection apparatus according to claim 31, wherein at least one of the supply unit and the plurality of detection units is provided at a position other than an end of the pattern to be inspected.
3 3 . 前記検出電極の幅は、 少なくとも前記検査対象パターンの 2列 分の幅であることを特徴とする請求項 2 7記載の回路パターン検査装置 33. The circuit pattern inspection apparatus according to claim 27, wherein a width of the detection electrode is at least a width of two rows of the pattern to be inspected.
3 4 . 前記検出電極の幅は、 少なくとも前記検査対象パターンの 2列 分の幅であることを特徴とする請求項 3 1記載の回路パターン検査装置 3 5 . 前記検出手段は、 前記供給電極により検査信号を供給される検 査対象パターンからの検査信号を検出する第一の検出電極と、 前記供給 電極により検査信号を供給される検査対象パターンに隣接する検査対象 パターンからの検査信号を検出する第二の検出電極とを備えることを特 徴とする請求項 2 7記載の回路パターン検査装置。 34. The circuit pattern inspection apparatus according to claim 31, wherein the width of the detection electrode is at least a width of two rows of the inspection target pattern. A first detection electrode for detecting a test signal from the test pattern supplied with the test signal; and a test signal from a test pattern adjacent to the test pattern supplied with the test signal by the supply electrode. 28. The circuit pattern inspection device according to claim 27, further comprising a second detection electrode.
3 6 . 前記検出手段は、 前記供給電極により検査信号を供給される検 查対象パターンからの検査信号を検出する第一の検出電極と、 前記供給 電極により検査信号を供給される検査対象パターンに隣接する検査対象 パターンからの検査信号を検出する第二の検出電極とを備えることを特 徵とする請求項 3 1記載の回路パターン検査装置。 36. The detection means comprises: a first detection electrode for detecting a test signal from a test pattern supplied with a test signal by the supply electrode; and a test pattern to be supplied with a test signal by the supply electrode. 31. The circuit pattern inspection device according to claim 31, further comprising a second detection electrode for detecting an inspection signal from an adjacent inspection target pattern.
3 7 . 前記移動手段は、 前記供給手段の供給電極面及び前記検出手段 の検出電極面を前記検査対象パターンと容量結合させた状態で前記検査 対象領域を横切り移動させることを特徴とする請求項 2 7記載の回路パ ターン検査装置。  37. The moving means, wherein the supply electrode surface of the supply means and the detection electrode surface of the detection means are capacitively coupled to the pattern to be inspected, and move across the inspection area. 27 The circuit pattern inspection device described in 7.
3 8 . 前記移動手段は、 前記供給電極及び前記検出電極と検査対象パ ターンとの離間距離をほぼ一定になるように位置決め制御する離間距離 制御手段を備えることを特徴とする請求項 2 7記載の回路パターン検査 装置。  38. The system according to claim 27, wherein the moving unit includes a separation distance control unit that performs positioning control so that a separation distance between the supply electrode and the detection electrode and the pattern to be inspected is substantially constant. Circuit pattern inspection equipment.
3 9 . 前記離間処理制御手段は変位計を備え、 前記変位計の検出結果 に従って前記供給電極及び前記検出電極と検査対象パターンとの離間距 離をほぼ一定になるように検査対象パターンに直交する方向に位置決め 制御することを特徴とする請求項 3 8記載の回路パターン検査装置。 39. The separation processing control means includes a displacement meter, and is orthogonal to the test pattern so that the separation distance between the supply electrode and the detection electrode and the test pattern is substantially constant according to the detection result of the displacement meter. 39. The circuit pattern inspection apparatus according to claim 38, wherein the circuit pattern is controlled in a direction.
4 0 . 前記離間処理制御手段は、 前記検査 象パターンの複数ピッチ 間の前記変位計の検出結果の平均変位を前記検出電極あるいは前記供給 電極と検査対象との離間距離として検査対象パターンに直交する方向に 位置決め制御することを特徴とする請求項 3 9に記載の回路パターン検 査装置。 40. The separation processing control means sets the average displacement of the detection result of the displacement meter between a plurality of pitches of the pattern to be inspected as a separation distance between the detection electrode or the supply electrode and the object to be inspected, and is orthogonal to the pattern to be inspected. The circuit pattern inspection device according to claim 39, wherein positioning control is performed in a direction.
4 1 . 前記検出手段による検査信号の検出結果が所定範囲にある場合 に検査対象パターンの正常と判断し、 検査信号の検出結果が所定の範囲 より外れる場合に検查対象パターンの不良と検査対象パターン上の不良 位置とを判断する判断手段を備えることを特徴とする請求項 2 7乃至請 求項 4 0のいずれかに記載の回路パターン検査装置。  4 1. If the detection result of the inspection signal by the detection means is within a predetermined range, it is determined that the pattern to be inspected is normal. If the detection result of the inspection signal is out of the predetermined range, it is determined that the pattern to be inspected is defective. The circuit pattern inspection device according to any one of claims 27 to 40, further comprising a determination unit configured to determine a defective position on the pattern.
4 2 . 前記判断手段が不良と判断した検査対象パターンに、 前記供給 手段の供給電極と前記検出手段の検出電極とを移動させ、 前記供給手段 の供給電極又は前記検出手段の検出電極のいずれか一方を他方に向かつ てパターンに沿って移動させる第 2の移動手段と、 前記検出手段の検出 結果に基づき検出変化位置を検出する位置検出手段とを備えることを特 徴とする請求項 4 1記載の回路パターン検査装置。 42. The supply electrode of the supply unit and the detection electrode of the detection unit are moved to the inspection target pattern determined to be defective by the determination unit, and either the supply electrode of the supply unit or the detection electrode of the detection unit is moved. 41. A method according to claim 41, further comprising: a second moving unit that moves one of the moving units toward the other along the pattern; and a position detecting unit that detects a detection change position based on a detection result of the detecting unit. The circuit pattern inspection device according to the above.
4 3 . 前記供給手段の供給電極又は前記検出手段の検出電極のいずれ か他方を検査対象パターンに接触させる接触手段を備えることを特徴と する請求項 4 1記載の回路パターン検査装置。  43. The circuit pattern inspection apparatus according to claim 41, further comprising: a contact unit configured to contact one of a supply electrode of the supply unit and a detection electrode of the detection unit with a pattern to be inspected.
4 4 . 前記第 2の移動手段により移動される前記供給電極、 または、 前記第 2の移動手段により移動される前記検出電極、 に撮像手段を備え ることを特徴とする請求項 4 1記載の回路パターン検査装置。  44. The imaging device according to claim 41, further comprising an imaging unit provided at the supply electrode moved by the second moving unit, or the detection electrode moved by the second moving unit. Circuit pattern inspection equipment.
4 5 . 前記第 2の移動手段により移動される前記供給電極と、 または 、 前記第 2の移動手段により移動される前記検出電極と、 検査対象パ夕 一ンとを距離がほぼ一定になるように位置決め制御する離間制御手段を 備えることを特徴とする請求項 4 1記載の回路パターン検査装置。 45. The distance between the supply electrode moved by the second moving means, or the detection electrode moved by the second moving means, and the inspection object pattern is substantially constant. 42. The circuit pattern inspection apparatus according to claim 41, further comprising a separation control unit for performing positioning control.
4 6 . 前記検出手段による検査信号の検出結果がある程度一定した検 出信号値である場合に検査対象パターンの正常と判断し、 検査信号の検 出結果が急激に変化した検出信号値である場合に検査対象パターンの不 良と検査対象パターン上の不良位置とを判断する判断手段を備えること を特徴とする請求項 2 7乃至請求項 4 0のいずれかに記載の回路パター ン検査装置。 4 6. If the detection result of the inspection signal by the detection means is a detection signal value that is constant to some extent, it is determined that the pattern to be inspected is normal, and the detection result of the inspection signal is a detection signal value that changes rapidly. The circuit pattern inspection apparatus according to any one of claims 27 to 40, further comprising determining means for determining a defect of the inspection target pattern and a defective position on the inspection target pattern.
4 7 . 前記判断手段が不良と判断した検査対象パターンに、 前記供給 手段の供給電極と前記検出手段の検出電極とを移動させ、 前記供給手段 の供給電極又は前記検出手段の検出電極のいずれか一方を他方に向かつ てパターンに沿って移動させる第 2の移動手段と、 前記検出手段の検出 結果に基づき検出変化位置を検出する位置検出手段とを備えることを特 徵とする請求項 4 6記載の回路パターン検査装置。  47. The supply electrode of the supply unit and the detection electrode of the detection unit are moved to the pattern to be inspected determined by the determination unit to be defective, and either the supply electrode of the supply unit or the detection electrode of the detection unit is moved. 47. A method according to claim 46, further comprising: a second moving unit that moves one of the moving units toward the other along the pattern; and a position detecting unit that detects a detected change position based on a detection result of the detecting unit. The circuit pattern inspection device according to the above.
4 8 . 前記供給手段の供給電極又は前記検出手段の検出電極のいずれ か他方を検査対象パターンに接触させる接触手段を備えることを特徴と する請求項 4 6記載の回路パターン検査装置。 48. The circuit pattern inspection device according to claim 46, further comprising: a contact unit configured to contact one of a supply electrode of the supply unit and a detection electrode of the detection unit with a pattern to be inspected.
4 9 , 前記第 2の移動手段により移動される前記供給電極、 または、 前記第 2の移動手段により移動される前記検出電極、 に撮像手段を備え ることを特徴とする請求項 4 6記載の回路パターン検査装置。  49.The supply electrode moved by the second moving means, or the detection electrode moved by the second moving means, wherein an imaging means is provided. Circuit pattern inspection equipment.
5 0 . 前記第 2の移動手段により移動される前記供給電極と、 または 、 前記第 2の移動手段により移動される前記検出電極と、 検査対象パ夕 一ンとを距離がほぼ一定になるように位置決め制御する離間制御手段を 備えることを特徴とする請求項 4 6記載の回路パターン検査装置。  50. The distance between the supply electrode moved by the second moving means, or the detection electrode moved by the second moving means, and the inspection object pattern is substantially constant. 47. The circuit pattern inspection apparatus according to claim 46, further comprising a separation control means for performing positioning control.
5 1 . 検査対象領域が列状に形成されている検査対象パターンの前記 検査対象領域の一方より検査信号を供給し、 他方より前記検査対象パ夕 ーンからの検査信号を検出して前記検査対象パターンを検査する回路パ 夕一ン検査方法において、 前記供給手段の供給電極と前記検出手段の検出電極とを前記供給手段 の供給電極面及び前記検出手段の検出電極面を前記検査対象パターン表 面と離間させた状態を維持し、 前記供給電極又は前記検出電極の少なく とも一方を前記検査対象パターンの前記検査対象領域を横切り移動させ 、 5 1. An inspection signal is supplied from one of the inspection target areas of the inspection target pattern in which the inspection target area is formed in a row, and an inspection signal from the inspection target pattern is detected from the other to perform the inspection. In the circuit pattern inspection method for inspecting the target pattern, Maintaining the state in which the supply electrode of the supply unit and the detection electrode of the detection unit are separated from the supply electrode surface of the supply unit and the detection electrode surface of the detection unit from the surface of the pattern to be inspected; Moving at least one of the detection electrodes across the inspection target area of the inspection target pattern;
前記検出電極により検出される検査信号の検出結果が所定範囲にある 場合に検査対象パターンの正常と判断し、  When the detection result of the inspection signal detected by the detection electrode is within a predetermined range, it is determined that the inspection target pattern is normal,
前記検出電極により検出される検査信号の検出結果が所定の範囲より 外れる場合に検査対象パターンの不良と検査対象パターン上の不良位置 とを判断することを特徴とする回路パターン検査方法。  A circuit pattern inspection method, comprising: judging a defect of an inspection target pattern and a defect position on the inspection target pattern when a detection result of an inspection signal detected by the detection electrode is out of a predetermined range.
5 2 . 検査対象領域が列状に形成されている検査対象パターンの前記 検査対象領域の一方より検査信号を供給し、 他方より前記検査対象パ夕 ーンからの検査信号を検出して前記検査対象パターンを検査する回路パ ターン検査方法において、  5 2. An inspection signal is supplied from one of the inspection target areas of the inspection target pattern in which the inspection target area is formed in a row, and an inspection signal from the inspection target pattern is detected from the other to perform the inspection. In a circuit pattern inspection method for inspecting a target pattern,
前記供給手段の供給電極と前記検出手段の検出電極とを前記供給手段 の供給電極面及び前記検出手段の検出電極面を前記検査対象パターン表 面と離間させた状態を維持し、 前記供給電極又は前記検出電極の少なく とも一方を前記検査対象パターンの前記検査対象領域を横切り移動させ 前記検出電極により検出される検査信号の検出結果がある程度一定し た検出信号値である場合に検査対象パターンの正常と判断し、  Maintaining the state in which the supply electrode of the supply unit and the detection electrode of the detection unit are separated from the supply electrode surface of the supply unit and the detection electrode surface of the detection unit from the surface of the pattern to be inspected; At least one of the detection electrodes is moved across the inspection target area of the inspection target pattern, and when the detection result of the inspection signal detected by the detection electrode has a somewhat constant detection signal value, the inspection target pattern is normal. Judge,
前記検出電極により検出される検査信号の検出結果が急激に変化した 検出信号値である場合に検査対象パターンの不良と検査対象パターン上 の不良位置とを判断することを特徴とする回路パターン検査方法。 5 3 . 前記検出電極の幅は少なくとも検査対象パターンの 2列分の幅 とし、 検査信号が供給されている検査対象パターンからの検査信号によ り断線を検出し、 A circuit pattern inspection method comprising: judging a defect of a pattern to be inspected and a defect position on the pattern to be inspected when a detection result of the inspection signal detected by the detection electrode is a detection signal value that has changed rapidly. . 5 3. The width of the detection electrode should be at least the width of two rows of the pattern to be inspected, and should be based on the inspection signal from the inspection pattern to which the inspection signal is supplied. Disconnection is detected,
検査信号が供給されている検査対象パターンに隣接する検査対象パ夕 ーンからの検査信号により短絡を検出することを特徴とする請求項 5 1 または請求項 5 2に記載の回路パターン検査方法。  The circuit pattern inspection method according to claim 51 or 52, wherein a short circuit is detected by an inspection signal from an inspection target pattern adjacent to the inspection target pattern to which the inspection signal is supplied.
5 4 . 前記検出電極に第一の検出電極と第二の検出電極とを備え、 検査信号が供給されている検査対象パターンからの検査信号により、 第一の検出電極で断線を検出し、 5 4. The detection electrode includes a first detection electrode and a second detection electrode, and based on a test signal from a pattern to be tested to which a test signal is supplied, disconnection is detected by the first detection electrode,
検査信号が供給されている検査対象パターンに隣接する検査対象パタ ーンからの検査信号により、 第二の検出電極で短絡を検出することを特 徴とする請求項 5 1または請求項 5 1に記載の回路パターン検査方法。 5 5; 前記検出手段で非検出となる検出手段位置を識別して保持し、 前記検出位置に前記供給手段の供給電極と前記検出手段の検出電極を移 動させ、 前記供給電極又は前記検出電極のいずれか一方を他方に向かつ てパターンに沿って移動させ、 前記検出手段の検出結果に基づき変化位 置を検查対象パターンの不良位置とすることを特徴とする請求項 5 1ま たは請求項 5 2に記載の回路パターン検査方法。  Claim 51 or Claim 51 characterized in that a short circuit is detected by the second detection electrode based on a test signal from a test pattern adjacent to the test pattern to which the test signal is supplied. The described circuit pattern inspection method. 55: Identifying and holding the position of the detection means that is not detected by the detection means, moving the supply electrode of the supply means and the detection electrode of the detection means to the detection position, the supply electrode or the detection electrode 51.A method according to claim 51, further comprising: moving any one of them along the pattern toward the other, and setting a change position as a defective position of the pattern to be detected based on a detection result of the detection means. The circuit pattern inspection method according to claim 52.
5 6 . 前記供給手段の供給電極又は前記検出手段の検出電極のいずれ か他方を検査対象パターンに接触させることを特徴とする請求項 5 5に 記載の回路パターン検査方法。  56. The circuit pattern inspection method according to claim 55, wherein one of the supply electrode of the supply unit and the detection electrode of the detection unit is brought into contact with a pattern to be inspected.
5 7 . 前記供給電極又は前記検出電極のいずれか一方に備えられた撮 像手段を他方に向かってパターンに沿って移動させ、 検査対象パターン の不良位置の不良状態を撮像するととを特徴とする請求項 5 5記載の回 路パ夕一ン検査方法。  57. An imaging means provided on one of the supply electrode and the detection electrode is moved along the pattern toward the other, and an image of a defective state at a defective position of the inspection target pattern is taken. A circuit inspection method according to claim 55.
PCT/JP2004/019805 2003-12-26 2004-12-27 Circuit pattern testing apparatus and circuit pattern testing method WO2005064354A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-436849 2003-12-26
JP2003436849 2003-12-26
JP2004-382849 2004-12-25
JP2004382849A JP2005208058A (en) 2003-12-26 2004-12-25 Circuit pattern inspection device and circuit pattern inspection method

Publications (1)

Publication Number Publication Date
WO2005064354A1 true WO2005064354A1 (en) 2005-07-14

Family

ID=34742164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/019805 WO2005064354A1 (en) 2003-12-26 2004-12-27 Circuit pattern testing apparatus and circuit pattern testing method

Country Status (3)

Country Link
JP (1) JP2005208058A (en)
TW (1) TW200537112A (en)
WO (1) WO2005064354A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2516141A1 (en) * 2005-08-17 2007-02-17 Intelligent Devices Inc. Printing press control system
KR100799161B1 (en) * 2006-07-20 2008-01-29 마이크로 인스펙션 주식회사 Non-contact type single side probe and inspection apparatus and method for open/short test of pattern electrodes used thereof
JP5533169B2 (en) * 2010-04-13 2014-06-25 日本電産リード株式会社 Inspection device
JP5305111B2 (en) * 2011-01-21 2013-10-02 オー・エイチ・ティー株式会社 Circuit pattern inspection device
KR101933547B1 (en) * 2012-04-27 2018-12-31 엘지디스플레이 주식회사 Non contact resistance inspecting apparatus
JP6202452B1 (en) * 2016-06-01 2017-09-27 オー・エイチ・ティー株式会社 Non-contact type substrate inspection apparatus and inspection method thereof
CN108226695B (en) * 2018-01-02 2021-10-15 京东方科技集团股份有限公司 Device and method for detecting and positioning short circuit of adjacent metal wire
CN110672948B (en) 2019-09-29 2021-04-20 云谷(固安)科技有限公司 Touch panel detection equipment and system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0331894A (en) * 1989-06-29 1991-02-12 Asahi Glass Co Ltd Method and device for detecting short circuit between electrodes
JP2002365325A (en) * 2001-06-11 2002-12-18 Oht Inc Circuit pattern inspection device, circuit pattern inspection method and storage medium

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0331894A (en) * 1989-06-29 1991-02-12 Asahi Glass Co Ltd Method and device for detecting short circuit between electrodes
JP2002365325A (en) * 2001-06-11 2002-12-18 Oht Inc Circuit pattern inspection device, circuit pattern inspection method and storage medium

Also Published As

Publication number Publication date
TW200537112A (en) 2005-11-16
JP2005208058A (en) 2005-08-04

Similar Documents

Publication Publication Date Title
JP3978178B2 (en) Circuit pattern inspection apparatus and circuit pattern inspection method
KR100766624B1 (en) Circuit Pattern Inspection Device and Circuit Pattern Inspection Method
WO2006112543A1 (en) Inspection device and conductive pattern inspection method
US20060043153A1 (en) Circuit pattern inspection device and circuit pattern inspection method
JPH09264919A (en) Method and device for inspecting board
KR101196587B1 (en) Inspection device, inspection method, and inspection device sensor
TWI474012B (en) Detecting device of conductive pattern and detecting method
US6353327B2 (en) Circuit board misalignment detection apparatus and method
US7088107B2 (en) Circuit pattern inspection instrument and pattern inspection method
WO2005064354A1 (en) Circuit pattern testing apparatus and circuit pattern testing method
JP4008949B2 (en) Circuit pattern inspection apparatus and circuit pattern inspection method
JP4582869B2 (en) Circuit board inspection equipment
JP2003344474A (en) Inspection device and inspection method
JP4394113B2 (en) Circuit pattern inspection apparatus and circuit pattern inspection method
JP2008014918A (en) Circuit pattern inspecting device and circuit pattern inspection method
KR100982830B1 (en) Short inspecting apparatus and short inspecting method for circuit substrate pattern
JP2000097983A (en) Method for inspecting wiring part in wiring integrated type suspension
JP4369002B2 (en) Circuit board inspection equipment
JPH07244106A (en) Electric component connector and method and apparatus for inspecting its electric circuit

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase