JP4369002B2 - Circuit board inspection equipment - Google Patents

Circuit board inspection equipment Download PDF

Info

Publication number
JP4369002B2
JP4369002B2 JP2000045281A JP2000045281A JP4369002B2 JP 4369002 B2 JP4369002 B2 JP 4369002B2 JP 2000045281 A JP2000045281 A JP 2000045281A JP 2000045281 A JP2000045281 A JP 2000045281A JP 4369002 B2 JP4369002 B2 JP 4369002B2
Authority
JP
Japan
Prior art keywords
circuit board
inspection
pattern
conductor
conductor pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000045281A
Other languages
Japanese (ja)
Other versions
JP2001235502A (en
Inventor
秀明 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hioki EE Corp
Original Assignee
Hioki EE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hioki EE Corp filed Critical Hioki EE Corp
Priority to JP2000045281A priority Critical patent/JP4369002B2/en
Publication of JP2001235502A publication Critical patent/JP2001235502A/en
Application granted granted Critical
Publication of JP4369002B2 publication Critical patent/JP4369002B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Measuring Leads Or Probes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、検査対象の回路基板における導体パターンと基準電極との間の静電容量を測定し、その測定した静電容量に基づいて回路基板の良否を判別可能に構成された回路基板検査装置に関するものである。
【0002】
【従来の技術】
この種の回路基板検査装置として、図4に示す回路基板検査装置51が従来から知られている。この回路基板検査装置51は、表面に絶縁フィルム2aが貼付された平板状の電極2bを有し検査対象の回路基板Pを載置可能に構成された電極部2と、プローブ固定具3aを介して移動機構5aに取り付けられた検査用プローブ3と、電極部2および検査用プローブ3を用いての回路基板Pに対する検査処理や移動機構5aの駆動制御を実行する制御部56と、良品基板から予め吸収した回路基板Pについての検査用基準データや制御部56の演算結果を一時的に記憶するRAM57と、制御部56の動作プログラムを記憶するROM58とを備えている。一方、検査対象の回路基板Pは、図2に示すように、ガラスエポキシ系基材の表面に導体パターン21,22・・が形成されて構成されている。
【0003】
この回路基板検査装置51を用いた回路基板Pの検査に際しては、まず、導体パターン21,22・・の形成面を上向きにして回路基板Pを電極部2の上に載置する。次に、制御部56が、移動機構5aを制御して、図4に示すように、例えば導体パターン21に検査用プローブ3の先端部を接触させる。次いで、制御部56が、検査信号としての交流電圧を検査用プローブ3を介して出力して、導体パターン21および電極2b間の静電容量C11を測定する。続いて、制御部56は、測定した静電容量C11と、RAM57から読み出した検査用基準データとを比較することにより、導体パターン21と他の導体パターンとの間の絶縁状態、および導体パターン21における断線有無を検査する。この際に、例えば、図2に示すように、短絡箇所Aが存在するときには、測定した静電容量C11が、検査用基準データの上限値を超える値となる。したがって、この場合には、導体パターン21が他の導体パターンと短絡していると判別する。また、同図に示すように、導体パターン21に断線箇所Bが存在するときには、測定した静電容量C11が、検査用基準データの下限値を下回る値となる。したがって、この場合には、導体パターン21に断線が生じていると判別する。これらの検査処理をすべての導体パターンに対して順次実行することにより、回路基板Pの良否が判別される。
【0004】
【発明が解決しようとする課題】
ところが、従来の基板検査装置51には、以下の問題点がある。すなわち、従来の回路基板検査装置51では、各導体パターン21,22・・と電極部2の電極2bとの間の静電容量を測定することにより、各導体パターンに対する断線検査、および隣接する導体パターン間に対する短絡検査を行っている。この場合、回路基板Pの導体パターン21、隣接する他の導体パターン(例えば導体パターン22とする)、および電極部2の電極2bは、図3に示す等価回路図で表される。同図における静電容量C1,C2,C3は、それぞれ、導体パターン21および電極2b間の理論的な静電容量、導体パターン22および電極2b間の理論的な静電容量、並びに、導体パターン21,22間の理論的な静電容量を意味する。したがって、測定した静電容量C11,C12は、導体パターン21,22間の結合に起因する静電容量C3の影響を受けるため、下記の▲1▼式および▲2▼式で表される。
C11=C1+(C2・C3/(C2+C3))・・・・▲1▼式
C12=C2+(C1・C3/(C1+C3))・・・・▲2▼式
【0005】
この場合、両導体パターン21,22が長目でかつ互いに接近した状態で対向するように形成されているときなどでは、静電容量C1,C2自体が小さな値であっても、静電容量C3が静電容量C1,C2と比較して十分に大きな値になることがある。かかる場合には、両導体パターン21,22間に短絡が生じていたとしても、測定した静電容量C11,C12に与える影響が小さいため、静電容量C11,C12が共に基準データの上限値を超えないことがある。このため、従来の回路基板検査装置51には、導体パターン間における短絡を確実に検出することが困難であるという問題点がある。この場合、両導体パターン21,22に2本の検査用プローブ3,3をそれぞれ接触させて両導体パターン21,22間の抵抗値を測定することで、短絡を検出することは可能である。しかし、かかる場合であっても、検査用プローブ3が導体パターン21に確実に接触していない場合には、測定した抵抗値が大きな値となるため、短絡を確実に検出するのは困難である。
【0006】
本発明は、かかる問題点に鑑みてなされたものであり、導体パターン間における短絡を確実に検出することが可能な回路基板検査装置を提供することを主目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成すべく請求項1記載の回路基板検査装置は、検査対象の回路基板に接触可能な第1の検査用プローブおよび第2の検査用プローブを備え、回路基板の導体パターンおよび基準電極間の静電容量を第1の検査用プローブを用いて測定し、その測定した静電容量に基づいて回路基板の良否を判別可能に構成された回路基板検査装置において、測定した導体パターンおよび基準電極間の静電容量が所定の基準値を超える導体パターンと、その導体パターンに隣接する他の導体パターンとに第1の検査用プローブおよび第2の検査用プローブをそれぞれ接触させてその両導体パターン間の静電容量を測定し、その測定結果に基づいて両導体パターンに対する短絡検査を行うことを特徴とする。なお、本発明における「導体パターンと、その導体パターンに隣接する他の導体パターン」には、回路基板の一層においてパターン面形成方向で隣接する2つの導体パターン、および多層回路基板において回路基板の厚み方向で隣接する2つの導体パターンの両者が含まれる。また、本発明における基準電極には、多層回路基板を検査対象とする場合、その一層として形成された広い面積を有するグランドパターンや、電源パターンなどが含まれる。
【0009】
請求項記載の回路基板検査装置は、請求項記載の回路基板検査装置において、短絡検査の対象として予め規定された1以上の一対の導体パターンの各パターン番号を記憶するメモリを備え、メモリに記憶されている各パターン番号に対応する一対の導体パターンに対して短絡検査を行うことを特徴とする。
【0010】
請求項記載の回路基板検査装置は、請求項記載の回路基板検査装置において、多層回路基板における一層の全面に形成された電源パターンまたはグランドパターンである導体パターンと、その導体パターンに隣接する他の導体パターンとが一対の導体パターンとしてメモリに記憶されることを特徴とする
【0011】
請求項記載の回路基板検査装置は、請求項1からのいずれかに記載の回路基板検査装置において、基準電極としての電極を有すると共にその電極の表面に絶縁層が形成された電極部を備えていることを特徴とする。
【0012】
【発明の実施の形態】
以下、添付図面を参照して、本発明に係る回路基板検査装置の好適な発明の実施の形態について説明する。なお、従来の回路基板検査装置51と同一の構成要素、および検査対象の回路基板Pについては、同一の符号を付して重複した説明を省略する。
【0013】
最初に、回路基板検査装置1の構成について、図1を参照して説明する。
【0014】
同図に示すように、回路基板検査装置1は、電極部2、検査用プローブ3,4、移動機構5a,5b、制御部6、RAM7およびROM8を備えて構成されている。検査用プローブ3,4は、本発明における第1および第2の検査用プローブにそれぞれ相当し、プローブ固定具3a,4aを介して移動機構5a,5bに取り付けられた状態で電極部2の上方に配設されている。制御部6は、電極部2および検査用プローブ3,4を用いての回路基板Pに対する検査処理や、移動機構5a,5bの駆動制御などを実行する。RAM7は、本発明におけるメモリに相当し、良品回路基板から予め吸収した検査用基準データ、導体パターン同士の短絡を検査すべき1以上の導体パターンを特定するパターン番号データ、各導体パターンと隣接する導体パターンとの対応関係を示す隣接パターンデータ、および制御部6の演算結果などを一時的に記憶する。この場合、検査用基準データとして、各導体パターンおよび電極2b間の静電容量や、後述する短絡検査を行う可能性の高い一対の導体パターン間の静電容量などが記憶される。ROM8は、制御部6の動作プログラムを記憶する。
【0015】
次に、回路基板検査装置1を用いた回路基板Pの検査方法について、図面を参照して説明する。
【0016】
まず、導体パターン21,22・・の形成面を上向きにして回路基板Pを電極部2の上に載置する。次に、制御部6が、移動機構5a,5bを制御して検査用プローブ3,4を回路基板Pの例えば導体パターン21,22にそれぞれ接触させる。次いで、制御部6が、検査信号としての交流電圧を順次出力することにより、導体パターン21と電極2bとの間の静電容量C11、および導体パターン22と電極2bとの間の静電容量C12をそれぞれ測定する。次いで、制御部6が、測定した各静電容量C11,C12と、RAM7から読み出した各検査用基準データとを順次比較することにより、導体パターン21,22の各々についての断線検査、および導体パターン21,22間についての短絡検査を実行する。この際に、測定した静電容量C11(またはC12)が検査用基準データの下限値を下回るときには、その導体パターン21(または22)に断線が生じていると判別する。逆に、測定した静電容量C11(またはC12)が検査用基準データの上限値を超えているときには、その導体パターン21(または22)と他の導体パターンとの間に短絡が生じている可能性が高いと判別する。これらの検査処理を回路基板におけるすべての導体パターンに対して順次実行することにより、各導体パターンについての断線検査、および短絡検査が行われる。この場合、制御部6は、短絡が生じている可能性が高いと判別した導体パターンについて、その導体パターンを特定するためのパターン番号データをRAM7に記憶させる。
【0017】
次に、制御部6は、RAM7に記憶させたパターン番号データに基づいて特定される導体パターンと、その導体パターンに隣接する導体パターンとに対して、短絡検査を実行する。具体的には、例えば、パターン番号データに導体パターン21が対応する場合、導体パターン21に隣接する導体パターンのパターン番号を隣接パターンデータに基づいて判別する。この場合、例えば、導体パターン22が導体パターン21に隣接していると判別する。この際に、制御部6は、移動機構5a,5bを駆動制御して検査用プローブ3,4を導体パターン21,22にそれぞれ接触させ、検査信号としての交流電圧を出力させて導体パターン21,22間の静電容量C13を測定する。次いで、制御部6は、測定した静電容量C13と、RAM7から読み出した検査用基準データとを比較することにより、導体パターン21,22間の短絡の有無を検査する。この際に、静電容量の測定自体が不能のとき(または、測定方法によっては、測定した静電容量C13が検査用基準データの下限値を極端に下回るとき)には、導体パターン21,22間に短絡が生じていると判別する。この場合、図3の例において、導体パターン21,22間の静電容量C13は、下記の▲3▼式で表される。
C13=C3+(C1・C2/(C1+C2))・・・・▲3▼式
【0018】
この場合、両導体パターン21,22間が短絡している場合、検査信号が導体パターン21,22を介して短絡するため、両検査用プローブ3,4間に過大電流が流れる。したがって、上記▲3▼式における静電容量C13の測定自体が不能となるため、パターン間の短絡検査において、短絡が生じていることを確実に判別することができる。一方、両導体パターン21,22間が短絡していない場合には、上記▲3▼式における静電容量C3が正常な値となるため、測定した静電容量C13は、基準データとしての上限値から下限値までの範囲内の値として測定される。このため、かかる場合には、両導体パターン21,22間が短絡していないと判別する。つまり、この短絡検査によれば、静電容量C1,C2が共に小さな容量値であって、静電容量C3が静電容量C1,C2と比較して十分に大きい場合、従来方法では検出できなかった導体パターン21,22間の短絡を確実に検出できる。
【0019】
次いで、制御部6は、RAM7に記憶されているパターン番号データに対応するすべての導体パターンに対してこの短絡処理を順次実行する。これにより、各一対の導体パターン間の短絡検査が行われ、回路基板Pについて良否が最終的に判別されることにより検査が完了する。
【0020】
このように、この回路基板検査装置1によれば、検査用プローブ3,4を接触させた導体パターンおよび電極2b間の静電容量に基づく断線検査および短絡検査に加えて、短絡が生じている可能性の高い一対の導体パターン間に対して短絡検査をさらに実行することにより、回路基板Pに対する良否判別を高い精度で行うことができる。
【0021】
なお、本発明は、上記した本発明の実施の形態に示した構成に限定されない。例えば、本発明の実施の形態では、各導体パターン21,22・・と電極2bとの間の静電容量を測定し、基準データの上限値を超える静電容量が測定された導体パターンと、その導体パターンに隣接する他の導体パターンとに対して、後にまとめて短絡検査を行う例について説明したが、これに限定されない。例えば、導体パターン間で短絡が生じる可能性が高い一対の導体パターンに検査用プローブ3,4をそれぞれ接触させ、その状態において、各導体パターンおよび電極2b間の静電容量をそれぞれ測定すると共に、その一対の導体パターン間の短絡検査を同時に行ってもよい。この場合には、導体パターンの形成数および形成位置によっては、検査用プローブ3,4の移動回数および移動距離が少なくなるため、検査時間を短縮することができる。
【0022】
また、隣接する他の導体パターンとの間の静電容量が大きい可能性の高い導体パターンを、例えば、回路基板のCADデータや、検査時に生成した画像データに基づいて予め特定しておき、その導体パターンと、その導体パターンに隣接する他の導体パターンとを一対のパターン番号データとしてRAM7に予め記憶させておくこともできる。この場合、多層回路基板における一層の全面に形成された電源パターンまたはグランドパターンである導体パターンと、その導体パターンに隣接する他の導体パターンとの一対の導体パターン間に対する短絡検査を行うことで、すべての導体パターン間に対して短絡検査を行う場合と比較して、検査精度をそれほど低下させることなく、短時間で検査を完了することができる。さらに、本発明の実施の形態では、本発明における基準電極として電極部2の電極2bを用いた静電容量測定の例について説明したが、例えば、検査対象の回路基板において広い面積を有するグランドパターンや電源パターンなどを基準電極として用いることもできる。
【0023】
【発明の効果】
以上のように、請求項1記載の回路基板検査装置によれば、互いに隣接する2つの導体パターンに第1の検査用プローブおよび第2の検査用プローブをそれぞれ接触させてその両導体パターン間の静電容量を測定し、その測定結果に基づいて両導体パターンに対する短絡検査を行うことにより、導体パターン同士の短絡を確実に検査できるため、検査対象の回路基板についての良否を正確に判別することができる。
【0024】
また、この回路基板検査装置によれば、測定した導体パターンおよび基準電極間の静電容量が所定の基準値を超える導体パターンと、その導体パターンに隣接する他の導体パターンとに対して短絡検査を行うことにより、すべての一対の導体パターンに対して短絡検査を行う場合と比較して、回路基板に対する検査確度をそれほど低下させることなく、検査時間を短縮することができる。
【0025】
さらに、請求項記載の回路基板検査装置によれば、メモリに記憶されているパターン番号に対応する1以上の一対の導体パターンに対して短絡検査を行うことにより、検査中において短絡検査の対象を特定する処理を不要にすることができるため、検査時間をさらに短縮することができる。
【0026】
また、請求項記載の回路基板検査装置によれば、多層回路基板における一層の全面に形成された電源パターンまたはグランドパターンである導体パターンと、その導体パターンに隣接する他の導体パターンとを一対の導体パターンとしてメモリに記憶しておくことにより、導体パターンおよび基準電極間の静電容量測定では短絡を見つけにくい一対の導体パターン同士の短絡を確実に見つけることができるため、検査精度を高めることができる。また、すべての一対の導体パターンに対して短絡検査を行う場合と比較して、回路基板に対する検査確度をそれほど低下させることなく、検査時間を短縮することができる。
【0027】
また、請求項記載の回路基板検査装置によれば、基準電極としての電極を有する電極部を備えたことにより、広い面積を有するグランドパターンや電源パターンなどが存在しない各種回路基板に対しても、導体パターンおよび基準電極間の静電容量測定を確実に行うことができる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る回路基板検査装置1の構成を示す構成図である。
【図2】検査対象の一例である回路基板Pの上面図である。
【図3】電極部2における電極2b、および回路基板Pにおける導体パターン21,22の等価回路図である。
【図4】従来の回路基板検査装置51の構成を示す構成図である。
【符号の説明】
1 回路基板検査装置
2 電極部
2a 絶縁フィルム
2b 電極
3,4 検査用プローブ
7 RAM
21,22 導体パターン
C11〜C13 静電容量
P 回路基板
[0001]
BACKGROUND OF THE INVENTION
The present invention measures a capacitance between a conductor pattern and a reference electrode in a circuit board to be inspected, and a circuit board inspection apparatus configured to be able to determine whether a circuit board is good or not based on the measured capacitance It is about.
[0002]
[Prior art]
As this type of circuit board inspection apparatus, a circuit board inspection apparatus 51 shown in FIG. 4 is conventionally known. The circuit board inspection apparatus 51 includes a plate-like electrode 2b having an insulating film 2a attached to the surface thereof, an electrode portion 2 configured to be able to place a circuit board P to be inspected, and a probe fixture 3a. From the non-defective substrate, the inspection probe 3 attached to the moving mechanism 5a, the control unit 56 for performing inspection processing on the circuit board P using the electrode unit 2 and the inspection probe 3, and drive control of the moving mechanism 5a, A RAM 57 for temporarily storing inspection reference data and the calculation result of the control unit 56 for the circuit board P absorbed in advance, and a ROM 58 for storing an operation program of the control unit 56 are provided. On the other hand, the circuit board P to be inspected is configured by forming conductor patterns 21, 22,... On the surface of a glass epoxy base material, as shown in FIG.
[0003]
When the circuit board P is inspected using the circuit board inspection apparatus 51, first, the circuit board P is placed on the electrode part 2 with the formation surfaces of the conductor patterns 21, 22,. Next, the control unit 56 controls the moving mechanism 5a to bring the tip of the inspection probe 3 into contact with the conductor pattern 21, for example, as shown in FIG. Next, the control unit 56 outputs an AC voltage as an inspection signal via the inspection probe 3 to measure the capacitance C11 between the conductor pattern 21 and the electrode 2b. Subsequently, the control unit 56 compares the measured capacitance C11 with the reference data for inspection read from the RAM 57, thereby determining the insulation state between the conductor pattern 21 and other conductor patterns, and the conductor pattern 21. Inspect for wire breakage. At this time, for example, as shown in FIG. 2, when the short-circuit portion A exists, the measured capacitance C <b> 11 exceeds the upper limit value of the inspection reference data. Therefore, in this case, it is determined that the conductor pattern 21 is short-circuited with another conductor pattern. Moreover, as shown in the figure, when the broken portion B exists in the conductor pattern 21, the measured capacitance C11 becomes a value lower than the lower limit value of the inspection reference data. Therefore, in this case, it is determined that the conductor pattern 21 is disconnected. The quality of the circuit board P is determined by sequentially executing these inspection processes for all the conductor patterns.
[0004]
[Problems to be solved by the invention]
However, the conventional board inspection apparatus 51 has the following problems. That is, in the conventional circuit board inspection apparatus 51, by measuring the electrostatic capacitance between each of the conductor patterns 21, 22,... And the electrode 2b of the electrode portion 2, the disconnection inspection for each conductor pattern and the adjacent conductors are performed. Short circuit inspection between patterns is performed. In this case, the conductor pattern 21 of the circuit board P, another adjacent conductor pattern (for example, the conductor pattern 22), and the electrode 2b of the electrode part 2 are represented by an equivalent circuit diagram shown in FIG. Capacitances C1, C2, and C3 in the figure are the theoretical capacitance between the conductor pattern 21 and the electrode 2b, the theoretical capacitance between the conductor pattern 22 and the electrode 2b, and the conductor pattern 21, respectively. , 22 is a theoretical capacitance. Accordingly, the measured electrostatic capacitances C11 and C12 are affected by the electrostatic capacitance C3 resulting from the coupling between the conductor patterns 21 and 22, and are expressed by the following formulas (1) and (2).
C11 = C1 + (C2 / C3 / (C2 + C3)) (1) Formula C12 = C2 + (C1 / C3 / (C1 + C3)) (2) Formula
In this case, when the two conductor patterns 21 and 22 are long and formed so as to face each other in a state of being close to each other, even if the capacitances C1 and C2 themselves are small values, the capacitance C3 May have a sufficiently large value compared to the capacitances C1 and C2. In such a case, even if a short circuit occurs between the two conductor patterns 21 and 22, since the influence on the measured capacitances C11 and C12 is small, the capacitances C11 and C12 both have the upper limit value of the reference data. May not exceed. For this reason, the conventional circuit board inspection apparatus 51 has a problem that it is difficult to reliably detect a short circuit between conductor patterns. In this case, it is possible to detect a short circuit by measuring the resistance value between the two conductor patterns 21 and 22 by bringing the two inspection probes 3 and 3 into contact with the two conductor patterns 21 and 22, respectively. However, even in such a case, when the inspection probe 3 is not reliably in contact with the conductor pattern 21, the measured resistance value becomes a large value, so that it is difficult to reliably detect a short circuit. .
[0006]
The present invention has been made in view of such problems, and a main object of the present invention is to provide a circuit board inspection apparatus capable of reliably detecting a short circuit between conductor patterns.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, a circuit board inspection apparatus according to claim 1, comprising a first inspection probe and a second inspection probe that can contact the circuit board to be inspected, and a conductor pattern and a reference electrode of the circuit board. In the circuit board inspection apparatus configured to be able to determine whether the circuit board is good or not based on the measured capacitance using the first inspection probe, the measured conductor pattern and reference The first inspection probe and the second inspection probe are brought into contact with a conductor pattern in which the capacitance between the electrodes exceeds a predetermined reference value and another conductor pattern adjacent to the conductor pattern. The capacitance between the patterns is measured, and a short circuit inspection is performed on both conductor patterns based on the measurement result. The “ conductor pattern and other conductor pattern adjacent to the conductor pattern ” in the present invention includes two conductor patterns adjacent in the pattern surface formation direction in one layer of the circuit board, and the thickness of the circuit board in the multilayer circuit board. Both two conductor patterns adjacent in the direction are included. Further, the reference electrode in the present invention includes a ground pattern having a large area, a power supply pattern, and the like formed as a single layer when a multilayer circuit board is to be inspected.
[0009]
Circuit board inspection apparatus according to claim 2, wherein, in the circuit board inspection apparatus according to claim 1, further comprising a memory for storing the pattern number of 1 or more pair of conductor patterns defined in advance as the target of the short circuit test, the memory A short-circuit inspection is performed on a pair of conductor patterns corresponding to each pattern number stored in.
[0010]
Circuit board inspection apparatus according to claim 3, wherein, in the circuit board inspection apparatus according to claim 2, wherein, the conductor pattern is more power pattern or a ground pattern formed on the entire surface of the multilayer circuit board, adjacent to the conductive pattern Another conductor pattern is stored in the memory as a pair of conductor patterns .
[0011]
A circuit board inspection apparatus according to claim 4 is the circuit board inspection apparatus according to any one of claims 1 to 3 , wherein an electrode portion having an electrode as a reference electrode and having an insulating layer formed on the surface of the electrode is provided. It is characterized by having.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Preferred embodiments of a circuit board inspection apparatus according to the present invention will be described below with reference to the accompanying drawings. In addition, about the same component as the conventional circuit board test | inspection apparatus 51, and the circuit board P of test object, the same code | symbol is attached | subjected and the overlapping description is abbreviate | omitted.
[0013]
First, the configuration of the circuit board inspection apparatus 1 will be described with reference to FIG.
[0014]
As shown in the figure, the circuit board inspection apparatus 1 includes an electrode unit 2, inspection probes 3 and 4, moving mechanisms 5 a and 5 b, a control unit 6, a RAM 7 and a ROM 8. The inspection probes 3 and 4 correspond to the first and second inspection probes in the present invention, respectively, and are attached to the moving mechanisms 5a and 5b via the probe fixtures 3a and 4a. It is arranged. The control unit 6 performs inspection processing on the circuit board P using the electrode unit 2 and the inspection probes 3 and 4, drive control of the moving mechanisms 5a and 5b, and the like. The RAM 7 corresponds to a memory in the present invention, and is adjacent to each conductor pattern, reference data for inspection that has been absorbed in advance from a non-defective circuit board, pattern number data that specifies one or more conductor patterns that should be inspected for short circuits between conductor patterns. The adjacent pattern data indicating the correspondence with the conductor pattern, the calculation result of the control unit 6 and the like are temporarily stored. In this case, as the reference data for inspection, the capacitance between each conductor pattern and the electrode 2b, the capacitance between a pair of conductor patterns that are highly likely to perform a short-circuit inspection described later, and the like are stored. The ROM 8 stores an operation program for the control unit 6.
[0015]
Next, a method for inspecting the circuit board P using the circuit board inspection apparatus 1 will be described with reference to the drawings.
[0016]
First, the circuit board P is placed on the electrode part 2 with the formation surfaces of the conductor patterns 21, 22. Next, the control unit 6 controls the moving mechanisms 5a and 5b to bring the inspection probes 3 and 4 into contact with, for example, the conductor patterns 21 and 22 of the circuit board P, respectively. Next, the control unit 6 sequentially outputs an AC voltage as an inspection signal, whereby the capacitance C11 between the conductor pattern 21 and the electrode 2b and the capacitance C12 between the conductor pattern 22 and the electrode 2b. Measure each. Next, the control unit 6 sequentially compares the measured capacitances C11 and C12 with the inspection reference data read from the RAM 7, thereby performing a disconnection inspection on each of the conductor patterns 21 and 22, and the conductor pattern. A short circuit inspection between 21 and 22 is executed. At this time, if the measured capacitance C11 (or C12) is below the lower limit value of the inspection reference data, it is determined that the conductor pattern 21 (or 22) is disconnected. Conversely, when the measured capacitance C11 (or C12) exceeds the upper limit value of the reference data for inspection, a short circuit may occur between the conductor pattern 21 (or 22) and another conductor pattern. It is determined that the property is high. By sequentially performing these inspection processes on all the conductor patterns on the circuit board, a disconnection inspection and a short circuit inspection are performed for each conductor pattern. In this case, the control unit 6 causes the RAM 7 to store pattern number data for specifying the conductor pattern for the conductor pattern determined to have a high possibility of a short circuit.
[0017]
Next, the control unit 6 performs a short-circuit inspection on the conductor pattern specified based on the pattern number data stored in the RAM 7 and the conductor pattern adjacent to the conductor pattern. Specifically, for example, when the conductor pattern 21 corresponds to the pattern number data, the pattern number of the conductor pattern adjacent to the conductor pattern 21 is determined based on the adjacent pattern data. In this case, for example, it is determined that the conductor pattern 22 is adjacent to the conductor pattern 21. At this time, the control unit 6 drives and controls the moving mechanisms 5a and 5b to bring the inspection probes 3 and 4 into contact with the conductor patterns 21 and 22, respectively, and output an alternating voltage as an inspection signal to output the conductor patterns 21 and The capacitance C13 between 22 is measured. Next, the control unit 6 inspects the presence or absence of a short circuit between the conductor patterns 21 and 22 by comparing the measured capacitance C13 with the inspection reference data read from the RAM 7. At this time, when the capacitance measurement itself is impossible (or, depending on the measurement method, when the measured capacitance C13 is extremely lower than the lower limit of the reference data for inspection), the conductor patterns 21 and 22 are used. It is determined that a short circuit has occurred between them. In this case, in the example of FIG. 3, the capacitance C13 between the conductor patterns 21 and 22 is expressed by the following equation (3).
C13 = C3 + (C1 / C2 / (C1 + C2)) (3) Formula
In this case, when the two conductor patterns 21 and 22 are short-circuited, the inspection signal is short-circuited via the conductor patterns 21 and 22, so that an excessive current flows between the inspection probes 3 and 4. Accordingly, the measurement itself of the capacitance C13 in the above equation (3) becomes impossible, so that it is possible to reliably determine that a short circuit has occurred in the short circuit inspection between patterns. On the other hand, when the conductor patterns 21 and 22 are not short-circuited, the capacitance C3 in the above equation (3) is a normal value, and thus the measured capacitance C13 is an upper limit value as reference data. To a lower limit value. For this reason, in such a case, it is determined that the two conductor patterns 21 and 22 are not short-circuited. That is, according to this short-circuit inspection, when both of the capacitances C1 and C2 have a small capacitance value and the capacitance C3 is sufficiently larger than the capacitances C1 and C2, it cannot be detected by the conventional method. It is possible to reliably detect a short circuit between the conductor patterns 21 and 22.
[0019]
Next, the control unit 6 sequentially executes this short-circuit process on all conductor patterns corresponding to the pattern number data stored in the RAM 7. Thereby, the short circuit inspection between each pair of conductor patterns is performed, and the inspection is completed when the quality of the circuit board P is finally determined.
[0020]
As described above, according to the circuit board inspection apparatus 1, in addition to the disconnection inspection and the short-circuit inspection based on the capacitance between the conductor pattern in contact with the inspection probes 3 and 4 and the electrode 2b, a short circuit occurs. By further executing a short-circuit inspection between a pair of conductor patterns having a high possibility, it is possible to determine whether the circuit board P is good or not with high accuracy.
[0021]
The present invention is not limited to the configuration shown in the above-described embodiment of the present invention. For example, in the embodiment of the present invention, the capacitance between each of the conductor patterns 21, 22,... And the electrode 2b is measured, and a conductor pattern in which the capacitance exceeding the upper limit value of the reference data is measured; Although the example which performs a short circuit test | inspection collectively later with respect to the other conductor pattern adjacent to the conductor pattern was demonstrated, it is not limited to this. For example, each of the inspection probes 3 and 4 is brought into contact with a pair of conductor patterns that are likely to cause a short circuit between the conductor patterns, and in this state, the capacitance between each conductor pattern and the electrode 2b is measured, A short circuit inspection between the pair of conductor patterns may be performed simultaneously. In this case, the inspection time can be shortened because the number of movements and the movement distance of the inspection probes 3 and 4 are reduced depending on the number and positions of the conductor patterns.
[0022]
In addition, a conductor pattern that is likely to have a large capacitance between other adjacent conductor patterns is specified in advance based on, for example, circuit board CAD data or image data generated at the time of inspection. The conductor pattern and another conductor pattern adjacent to the conductor pattern can be stored in advance in the RAM 7 as a pair of pattern number data. In this case, by performing a short circuit inspection between a pair of conductor patterns of a conductor pattern which is a power supply pattern or a ground pattern formed on the entire surface of one layer in the multilayer circuit board and another conductor pattern adjacent to the conductor pattern , Compared with the case where a short-circuit inspection is performed between all conductor patterns, the inspection can be completed in a short time without significantly reducing the inspection accuracy. Furthermore, in the embodiment of the present invention, an example of capacitance measurement using the electrode 2b of the electrode unit 2 as a reference electrode in the present invention has been described. For example, a ground pattern having a large area on a circuit board to be inspected Or a power supply pattern can also be used as a reference electrode.
[0023]
【The invention's effect】
As described above, according to the circuit board inspection apparatus of the first aspect, the first inspection probe and the second inspection probe are brought into contact with two conductor patterns adjacent to each other, and the two conductor patterns are in contact with each other. By measuring the capacitance and performing a short-circuit inspection on both conductor patterns based on the measurement results, it is possible to reliably inspect the short-circuit between the conductor patterns, so that the quality of the circuit board to be inspected can be accurately determined. Can do.
[0024]
Further, according to this circuit board inspection device, a short circuit test with respect to a conductive pattern capacitance between the measured conductor pattern and the reference electrode exceeds a predetermined reference value, and other conductive pattern adjacent to the conductive pattern As a result, the inspection time can be shortened without significantly reducing the inspection accuracy of the circuit board as compared with the case where the short-circuit inspection is performed on all the pair of conductor patterns.
[0025]
Furthermore, according to the circuit board inspection apparatus according to claim 2 , the short circuit inspection is performed during the inspection by performing the short circuit inspection on one or more pairs of conductor patterns corresponding to the pattern numbers stored in the memory. Since the process for specifying the information can be made unnecessary, the inspection time can be further shortened.
[0026]
According to the circuit board inspection apparatus of claim 3 , a pair of a conductor pattern which is a power supply pattern or a ground pattern formed on the entire surface of one layer of a multilayer circuit board and another conductor pattern adjacent to the conductor pattern. By storing in the memory as the conductor pattern of the conductor, it is possible to surely find a short circuit between a pair of conductor patterns that are difficult to find a short circuit in the capacitance measurement between the conductor pattern and the reference electrode. Can do. Moreover, compared with the case where a short circuit inspection is performed on all the pair of conductor patterns, the inspection time can be shortened without significantly reducing the inspection accuracy for the circuit board.
[0027]
Further, according to the circuit board inspection apparatus of the fourth aspect , since the electrode portion having the electrode as the reference electrode is provided, it can be applied to various circuit boards having no large ground pattern or power supply pattern. Further, the capacitance measurement between the conductor pattern and the reference electrode can be reliably performed.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing a configuration of a circuit board inspection apparatus 1 according to an embodiment of the present invention.
FIG. 2 is a top view of a circuit board P which is an example of an inspection target.
3 is an equivalent circuit diagram of an electrode 2b in the electrode section 2 and conductor patterns 21 and 22 on the circuit board P. FIG.
4 is a configuration diagram showing a configuration of a conventional circuit board inspection apparatus 51. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Circuit board inspection apparatus 2 Electrode part 2a Insulating film 2b Electrodes 3 and 4 Inspection probe 7 RAM
21, 22 Conductor patterns C11 to C13 Capacitance P Circuit board

Claims (4)

検査対象の回路基板に接触可能な第1の検査用プローブおよび第2の検査用プローブを備え、前記回路基板の導体パターンおよび基準電極間の静電容量を前記第1の検査用プローブを用いて測定し、その測定した静電容量に基づいて当該回路基板の良否を判別可能に構成された回路基板検査装置において、
前記測定した前記導体パターンおよび前記基準電極間の静電容量が所定の基準値を超える導体パターンと、その導体パターンに隣接する他の導体パターンとに前記第1の検査用プローブおよび前記第2の検査用プローブをそれぞれ接触させてその両導体パターン間の静電容量を測定し、その測定結果に基づいて当該両導体パターンに対する短絡検査を行うことを特徴とする回路基板検査装置。
A first inspection probe and a second inspection probe that can contact the circuit board to be inspected are provided, and the capacitance between the conductor pattern of the circuit board and the reference electrode is measured using the first inspection probe. In a circuit board inspection apparatus configured to measure and determine the quality of the circuit board based on the measured capacitance,
The first inspection probe and the second inspection pattern are connected to a conductor pattern in which the measured capacitance between the conductor pattern and the reference electrode exceeds a predetermined reference value and another conductor pattern adjacent to the conductor pattern . A circuit board inspection apparatus characterized in that an inspection probe is brought into contact with each other to measure a capacitance between both conductor patterns, and a short-circuit inspection is performed on both conductor patterns based on the measurement result.
前記短絡検査の対象として予め規定された1以上の一対の導体パターンの各パターン番号を記憶するメモリを備え、当該メモリに記憶されている前記各パターン番号に対応する前記一対の導体パターンに対して前記短絡検査を行うことを特徴とする請求項記載の回路基板検査装置。A memory for storing each pattern number of one or more pair of conductor patterns defined in advance as a target of the short circuit inspection is provided, and the pair of conductor patterns corresponding to each pattern number stored in the memory circuit board inspection apparatus according to claim 1, characterized in that the short circuit test. 多層回路基板における一層の全面に形成された電源パターンまたはグランドパターンである導体パターンと、その導体パターンに隣接する他の導体パターンとが前記一対の導体パターンとして前記メモリに記憶されることを特徴とする請求項記載の回路基板検査装置。 A conductor pattern that is a power supply pattern or a ground pattern formed on the entire surface of one layer of a multilayer circuit board and another conductor pattern adjacent to the conductor pattern are stored in the memory as the pair of conductor patterns. The circuit board inspection apparatus according to claim 2 . 前記基準電極としての電極を有すると共にその電極の表面に絶縁層が形成された電極部を備えていることを特徴とする請求項1からのいずれかに記載の回路基板検査装置。Circuit board inspection apparatus according to any one of claims 1 to 3, characterized in that it comprises an electrode portion with an insulating layer formed on the surface of the electrode which has a electrode as the reference electrode.
JP2000045281A 2000-02-23 2000-02-23 Circuit board inspection equipment Expired - Fee Related JP4369002B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000045281A JP4369002B2 (en) 2000-02-23 2000-02-23 Circuit board inspection equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000045281A JP4369002B2 (en) 2000-02-23 2000-02-23 Circuit board inspection equipment

Publications (2)

Publication Number Publication Date
JP2001235502A JP2001235502A (en) 2001-08-31
JP4369002B2 true JP4369002B2 (en) 2009-11-18

Family

ID=18567893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000045281A Expired - Fee Related JP4369002B2 (en) 2000-02-23 2000-02-23 Circuit board inspection equipment

Country Status (1)

Country Link
JP (1) JP4369002B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4678989B2 (en) * 2001-06-05 2011-04-27 日置電機株式会社 Short circuit inspection target setting method, circuit board inspection method, and circuit board inspection apparatus

Also Published As

Publication number Publication date
JP2001235502A (en) 2001-08-31

Similar Documents

Publication Publication Date Title
JP3558434B2 (en) Electrical wiring inspection method and apparatus
JP3285215B2 (en) Conductor device inspection method and device
TWI474012B (en) Detecting device of conductive pattern and detecting method
JP4068248B2 (en) Insulation inspection apparatus for substrate and insulation inspection method thereof
JP4987862B2 (en) Method for inspecting a large non-component printed circuit board using a finger tester
JP4582869B2 (en) Circuit board inspection equipment
JP5507363B2 (en) Circuit board inspection apparatus and circuit board inspection method
JP4219489B2 (en) Circuit board inspection equipment
JP2001242211A (en) Circuit board inspection device
JP4369002B2 (en) Circuit board inspection equipment
JPH09230005A (en) Circuit board testing device
JPH09203765A (en) Substrate inspecting device which includes visual inspection
JP2005315775A (en) Four-terminal inspection method and four-terminal inspection jig using single-sided transfer probe
JP2006200973A (en) Circuit board inspection method and its device
JP4987497B2 (en) Circuit board inspection equipment
JPS62187258A (en) Inspecting method for circuit board
JP2001235505A (en) Circuit board inspection device
JP2000232141A (en) Method for testing conduction of substrate for semiconductor package
JP5485012B2 (en) Circuit board inspection apparatus and circuit board inspection method
JPH10170585A (en) Inspection method for circuit board
KR20140009027A (en) Apparatus and method for inspecting board
JP2005017221A (en) Substrate inspecting method and device therefor
JP4264305B2 (en) Substrate inspection apparatus and substrate inspection method
JP2006071567A (en) Method for determining contact state of probe, and method and apparatus for inspecting circuit board
JP4597236B2 (en) Circuit board inspection method and circuit board inspection apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090827

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4369002

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140904

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees