WO2005064155A1 - Wind turbine - Google Patents
Wind turbine Download PDFInfo
- Publication number
- WO2005064155A1 WO2005064155A1 PCT/KR2004/003394 KR2004003394W WO2005064155A1 WO 2005064155 A1 WO2005064155 A1 WO 2005064155A1 KR 2004003394 W KR2004003394 W KR 2004003394W WO 2005064155 A1 WO2005064155 A1 WO 2005064155A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sail
- wind
- shaft
- guide
- wind turbine
- Prior art date
Links
- 230000005611 electricity Effects 0.000 claims abstract description 17
- 229910000831 Steel Inorganic materials 0.000 claims description 15
- 239000010959 steel Substances 0.000 claims description 15
- 238000005096 rolling process Methods 0.000 claims description 8
- 238000004804 winding Methods 0.000 claims description 8
- 230000001105 regulatory effect Effects 0.000 claims description 7
- 230000002265 prevention Effects 0.000 claims description 6
- 230000008859 change Effects 0.000 claims description 4
- 238000010276 construction Methods 0.000 description 21
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000007664 blowing Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000007792 addition Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- RLQJEEJISHYWON-UHFFFAOYSA-N flonicamid Chemical compound FC(F)(F)C1=CC=NC=C1C(=O)NCC#N RLQJEEJISHYWON-UHFFFAOYSA-N 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D5/00—Other wind motors
- F03D5/02—Other wind motors the wind-engaging parts being attached to endless chains or the like
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D3/00—Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor
- F03D3/005—Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor the axis being vertical
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor
- F03D7/0244—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor for braking
- F03D7/0248—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor for braking by mechanical means acting on the power train
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/20—Rotors
- F05B2240/30—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/20—Rotors
- F05B2240/30—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
- F05B2240/31—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor of changeable form or shape
- F05B2240/312—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor of changeable form or shape capable of being reefed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/40—Use of a multiplicity of similar components
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/74—Wind turbines with rotation axis perpendicular to the wind direction
Definitions
- the present invention relates, in general, to a wind turbine, and more particularly, to a wind turbine in which a plurality of sail structures are connected by a chain so that power generated in the respective sail structures by wind can be collected to produce electricity, thereby obtaining a great amount of electric energy even from wind with low velocity.
- a wind turbine serves as a device for producing electricity by using wind, which is limitlessly generated on the earth.
- the wind turbine has at least one rotor which is rotated by a lift induced by a wind force.
- the rotor of the wind turbine must have a structure capable of obtaining a lift from a light blast of wind and of reliably rotating while not being damaged by a strong blast of wind. That is to say, the rotor must be manufactured to have a large size to obtain a lift from a light blast of wind and a small size not to be damaged by a strong blast of wind. Thus, the rotor must satisfy these two conflicting conditions.
- a conventional propeller type wind turbine has problems in that it occupies a large volume considering its electricity production capacity.
- a rotor, a generator and other parts should be positioned high above the ground, installation costs are high, and it is difficult to conduct repair and maintenance work. Further, the wind turbine can be damaged by exposure to strong wind. In consideration of the structure of the rotor, in order to produce electricity, a wind velocity of at least 5-6 m/sec must be maintained. Therefore, in such areas where a light wind blows and a wind direction frequently changes, satisfactory electricity production cannot be achieved. Furthermore, due to the fact that the center of gravity of the wind turbine is placed at a substantial height, it is difficult to install the wind turbine on an offshore structure. Moreover, a support column and the rotor are likely to be damaged by heavy winds such as a typhoon or a wind gust.
- an object of the present invention is to provide a wind turbine which is constructed in a manner such that electricity can be reliably produced even in a region where light wind blows and a wind receiving area can be adjusted to conform with wind intensity to prevent the wind turbine from being damaged due to a typhoon or a wind gust.
- a wind turbine for producing electricity using wind including a steel tower which is placed on the ground and formed by fastening a plurality of steel pieces oriented in longitudinal and transverse directions, a support plate which is mounted to the steel tower, power generating means which is installed on the support plate and has a plurality of sail structures, an auxiliary sprocket which is placed on the support plate, is connected to a driving shaft of the power generating means by a power transmitting chain and is rotated by power generated by the power generating means, and a rotation shaft which is connected to the auxiliary sprocket by a driving chain to transmit power to a generator, wherein, in the power generating means, the driving shaft, a plurality of columns, and a guide shaft are sequentially installed between a base frame which is fastened to the support plate via a plurality of support rods and a cover frame which is positioned above the base frame in such a way
- the sail structure comprises a frame having a plurality of transverse pipes each of which is hingedly coupled to the sprocket chain at one end thereof and a plurality of longitudinal pipes which connect the transverse pipes with one another in the vertical direction; shaft fastening brackets and connection shaft fastening brackets installed at both ends of the transverse pipes which are positioned along the top and bottom edges of the frame; first sprockets fastened to both ends of a connection shaft which is supported at both ends thereof by the connection shaft fastening brackets; a drum supported at both ends thereof by the shaft fastening brackets; second sprockets installed on fixed shafts which extend upward and downward from both ends of the drum and connected with the first sprockets by chains; the coil spring installed on the fixed shaft which extends through the second sprocket positioned at an upper end of the drum and fastened at one end thereof to the chain which connects the first and second sprockets with each other; the geared motor connected to the fixed shaft
- a braking block having a plurality of rollers is installed under a lower surface of the support plate such that the rollers are brought into rolling contact with a circular rail which is installed on an upper end of the steel tower; a driving motor is mounted to the braking block; a braking shaft which is connected to the driving motor by chain gears and a chain is installed on the braking block; and a brake lining which is threadedly coupled to the braking shaft is installed on the braking block to be moved forward and rearward depending upon a rotating direction of the braking shaft to thereby be brought into contact with the circular rail.
- connection means comprises wire ropes installed in the transverse pipes and each having one end which is fastened to the drum and the other end which is fastened to a winding pulley positioned coaxial to the first sprocket via a guide pulley installed at a distal end of the transverse pipe; a plurality of rings hanging on the wire ropes to be moved along the wire ropes in the transverse pipes; and a plurality of connectors each having one end which is connected to the ring and the other end which projects out of the transverse pipe and is connected with a sail ring provided to the sail, whereby the connection means functions to guide the sail along the transverse pipes .
- connection means comprises a guide block installed on the transverse pipe and defined on a lower or an upper surface thereof with a guide groove which extends in the transverse direction; and a guide member having one end which is fastened to the sail and the other end which has a plurality of projections formed in the shape of zipper teeth and inserted into the guide groove.
- a slack prevention part for preventing slack of the sail structure is integrally formed adjacent to a lower end of each guide rail; and a first support roller which rolls on an upper surface of the slack prevention part and a second support roller which rolls in the guide rail are provided to the sail structure.
- the power supply device comprises a power supply rail having a shape which surrounds the power generating means, the power supply rail being externally supplied with electric power; and a power supply part having a power supply roller which is brought into rolling contact with the power supply rail, the power supply part being installed on the sail structure to be moved integrally with the sail structure and thereby supply power to the sail structure.
- the wind turbine comprises a plurality of limit switches fastened at regular intervals to the transverse pipe which is positioned along the top edge of the frame; a contact block installed on the chain which connects the first and second sprockets with each other, to be sequentially brought into contact with the limit switches when the sail is wound and unwound and thereby sense an unwound degree of the sail; and a control section for receiving switching signals generated from the limit switches to recognize the unwound degree of the sail and comparing the unwound degree of the sail with a wind pressure which is sensed by wind force sensing means provided with a plurality of limit switches to control the geared motor.
- the wind turbine further comprises a wind direction changing plate installed in front of the two power generating means to change a direction of wind which blows from a front of the power generating means toward the gap between the two power generating means, toward the sail structures which are positioned outside the power generating means.
- the wind force sensing means comprises at least one rotation fan which has a plurality of wings and is rotated about a rotation shaft by a wind force; a pump which is connected with the rotation shaft of the rotation fan by a belt and pulleys to pump oil stored in an oil tank using a rotation force of the rotation fan; a cylinder formed in the shape of a vertically extending tube which is filled, from its lower end, with oil supplied from the pump, having a piston which is disposed therein to be raised by supplied oil, and connected at its upper end with a drain pipe; a pressure regulating valve for regulating a pressure of oil supplied to .the cylinder by the pump; first and second signal generating blocks connected to the piston by way of a piston rod which is fastened to the piston and a support column which is coupled to the piston rod, to be moved upward and downward integrally with the piston; a weight installed on an upper end of the piston rod to apply a predetermined pressure to the piston; the plurality of limit switches installed on support
- FIG. 1 is a side view illustrating a construction of a wind turbine in accordance with an embodiment of the present invention
- FIG. 2 is a plan view illustrating a structure of a braking block according to the present invention
- FIG. 3 is a plan view illustrating the construction of the wind turbine according to the present invention
- FIG. 4 is a plan view illustrating a construction of power generating means according to the present invention
- FIG. 5 is a front view illustrating a construction of a sail structure according to the present invention
- FIG. 6 is a plan view illustrating the construction of the sail structure according to the present invention
- FIG. 7 is a cross-sectional view taken along the line
- FIG. 8 is a plan view illustrating a construction of connection means according to the present invention
- FIGs. 9 and 10 are side and plan views illustrating a construction of another connection means according to the present invention
- FIG. 11 is a front view illustrating a construction of wind direction sensing means
- FIG. 12 is a plan view illustrating the construction of the wind direction sensing means
- FIG. 13 is a front view illustrating a construction of wind force sensing means
- FIG. 14 is a side view illustrating a state in which limit switches constituting the , wind force sensing means are installed
- FIG. 15 is a plan view illustrating a structure for supporting first and second signal generating blocks of the wind force sensing means.
- FIG. 1 is a side view illustrating a construction of a wind turbine in accordance with an embodiment of the present invention
- FIG. 2 is a plan view illustrating a structure of a braking block according to the present invention
- FIG. 3 is a plan view illustrating the construction of the wind turbine according to the present invention
- FIG. 4 is a plan view illustrating a construction of power generating means according to the present invention
- FIG. 5 is a front view illustrating a construction of a sail structure according to the present invention
- FIG. 6 is a plan view illustrating the construction of the sail structure according to the present invention
- FIG. 1 is a side view illustrating a construction of a wind turbine in accordance with an embodiment of the present invention
- FIG. 2 is a plan view illustrating a structure of a braking block according to the present invention
- FIG. 3 is a plan view illustrating the construction of the wind turbine according to the present invention
- FIG. 4 is a plan view illustrating a construction of power generating means according to the present invention
- FIG. 7 is a cross-sectional view taken along the line A-A of FIG. 6;
- FIG. 8 is a plan view illustrating a construction of connection means according to the present invention;
- FIGs. 9 and 10 are side and plan views illustrating a construction of another connection means according to the present invention;
- FIG. 11 is a front view illustrating a construction of wind direction sensing means;
- FIG. 12 is a plan view illustrating the construction of the wind direction sensing means;
- FIG. 13 is a front view illustrating a construction of wind force sensing means;
- FIG. 14 is a side view illustrating a state in which limit switches constituting the wind force sensing means are installed;
- FIG. 15 is a plan view illustrating a structure for supporting first and second signal generating blo ⁇ is of the wind force sensing means.
- a wind turbine in accordance with an embodiment of the present invention is constructed in a manner such that a pair of power generating means 100 and 100 ' each of which is provided with a plurality of sail structures 200 are installed on a supporting plate 700, and power generated in the two power generating means 100 and 100 ' is used to produce electricity.
- the power generating means 100 and 100' are fastened to the support plate 700 which is installed on the upper end of a steel tower 600.
- the steel tower 600 allows the power generating means 100 and 100 ' to be positioned high above the ground and obtain a greater wind force.
- the steel tower 600 is formed by fastening a plurality of steel pieces in longitudinal and transverse directions or may be formed by connecting several steel towers to one another.
- the support plate 700 installed on the steel tower 600 functions to support the power generating means 100 and 100 ' and rotate the power generating means 100 and 100' depending upon a wind direction.
- a braking block 710 which has a plurality of rollers 711 is installed under a lower surface of the support plate 700 such that the rollers 711 are brought into rolling contact with a circular rail 610 which is installed on the steel tower 600.
- a driving motor 712 is mounted to the braking block 710.
- a braking shaft 716 which is connected to the driving motor 712 by chain gears 713 and 714 and a chain 715 is installed on the braking block 710.
- a brake lining 717 which is threadedly coupled to the braking shaft 716 is installed on the braking block 710 to be moved forward and rearward depending upon a rotating direction of the braking shaft 716 to thereby be brought into contact with the circular rail 610. Accordingly, if the driving motor 712 is actuated and rotates the braking shaft 716 as a signal is generated by wind direction sensing means 800 which will be described later in detail, the brake lining 717 which is threadedly coupled to the braking shaft 716 is moved forward and brought into contact with a circumferential outer surface of the circular rail 610 to prevent the rotation of the support plate 700.
- the power generating means 100 and 100' generate power using wind. Referring to FIG.
- the two power generating means 100 and 100 ' are installed on the support plate 700 such, that they have symmetrical structures with respect to a transverse center line SI of the support plate 700.
- the pair of power generating means 100 and 100' are fastened to tlie support plate 700 such that a distance measured between them gradually increases from the front toward the rear.
- a wind clirection changing plate 1000 is installed in front of and between the two power generating means 100 and 100' .
- the windL direction changing plate 1000 is fastened to the power generating means 100 and 100 ' or the support plate 700 to be rotated integrally with the power generating means 100 and 100 ' .
- the wind direction changing plate 1000 functions to change a direction of wind which blows from the front of the power generating means 100 and 100' toward the gap between the two power generating means 100 and 100', toward the sail structures 200 which are positioned outside the power generating means 100 and 100 ' , to improve electricity production efficiency. Further, the wind direction changing plate 1000 functions to dampen vibration generated when the sail structures 200 which are positioned on the insides of the power generating means 100 and 100' are abruptly folded by wind. Since the two power generating means 100 and 100' which have the symmetrical structures are constructed in the same manner, hereafter, description will be given only for a construction of one power generating means. Referring to FIGs.
- a support frame 101 and a cover frame 102 are provided in a manner such that they are spaced apart from each other in a vertical direction and are held parallel to each other.
- the support frame 101 is fastened to the support plate 700 by a plurality of support rods 106.
- a driving shaft 103, a guide shaft 104 and a plurality of columns 105 are installed between the base frame 101 and the cover frame 102.
- the guide shaft 104 and the plurality of columns 105 are fixed and connect the base frame 101 and the cover frame 102 with each other, whereas the driving shaft 103 is constructed to be rotatably supported at both ends thereof by the frames 101 and 102.
- a driving sprocket 107 is arranged below the driving shaft 103.
- Power transmitting chains 730 and 740 for transmitting power generated by the sail structures 200 are connected to the driving sprocket 107.
- a plurality of guide rails 110 are installed on the guide shaft 104 and the plurality of columns 105. As shown in FIGs. 4 and 5, each guide rail 110 has a shape which surrounds the driving shaft 103, the guide shaft 104 and the plurality of columns 105.
- the plurality of guide rails 110 are regularly spaced apart from one another in a vertical direction.
- a sprocket chain 120 is disposed in each guide rail 110, and a sprocket 103' which is meshed with each sprocket chain 120 is installed on the driving shaft 103.
- a slack prevention part 111 for preventing slack of the sail structure 200 is integrally formed adjacent to the lower end of each guide rail 110.
- the plurality of sail structures 200 are fastened at regular intervals to the sprocket chains 120 which are disposed in the guide rails 110, respectively.
- the plurality of sail structures 200 function to rotate the sprocket chains 120 along the guide rails 110 by a wind force, thereby generating power through the driving shaft 103.
- a frame 210 is hingedly coupled to the sprocket chains 120 which are disposed in the guide rails 110, a sail 270 is installed on the frame 210, and a geared motor 250 and a coil spring 260 are provided to allow the sail 270 to be wound and unwound depending upon a wind force.
- the frame 201 is composed of a plurality of transverse pipes 211, 212 and 213, each of which is hingedly coupled to the sprocket chain 120, and a plurality of longitudinal pipes 214 which connect the plurality of transverse pipes 211, 212 and 213 with one another.
- Support brackets 220 for preventing reverse rotation of the frame 210 are installed on the rear sides of the transverse pipes 211, 212 and 213 which are hingedly coupled to the sprocket chains 120. That is to say, as shown in FIG. 6, each support bracket 220 has a substantially L-shaped configuration in a manner such that one end of the support bracket 220 is fastened to the transverse pipe 211, 212 and 213 and the other end of the support bracket 220 is provided with a plurality of rollers 221 which are brought into rolling contact with the outer surface of the guide rail 110.
- the support brackets 220 ensure reliable movement of the frame 210 by the sprocket chains 120 along the gruide rails 110.
- the support brackets 220 maintain an unfolded state of the frame 210, that is, the sail structure 200, when a wind direction and a moving direction of the frame 210 are the same as each other, and maintain a folded state of the frame 210, that is, the sail structure, when a wind direction and a moving direction of the frame 210 are opposite to each other.
- First and second support rollers 218 and 219 are provided to each of the transverse pipes 211, 212 and 213.
- the first support roller 218 is brought into roiling contact with the slack prevention part 111 of the guide rail 110, and the second support roller 119 is installed in the guide rail 110 to implement rolling movement, whereby it is possible to ensure reliable pivoting movement of the sail structure 200 and prevent the frame 210 from -being slacked downward due to a load applied thereto.
- Shaft fastening brackets 215 and connection shaft fastening brackets 216 are installed at both ends , respectively, of the transverse pipes 211 and 212 which are positioned along the top and bottom edges of the frame 210 , to extend forward of the sail structure 200.
- a drum 240 on which the sail 270 is wound is installed on the shaft fastening brackets 215, and a connection shaft 234 is installed on the connection shaft fastening brackets 216.
- both ends of the drum 240 are supported by the shaft fastening brackets 215, and second sprockets 231 are installed on fixed shafts 241 which extend upward and downward from both ends of the drum 240.
- the second sprockets 231 are connected with first sprockets 230 by chains 280.
- the geared motor 250 and the coil spring 260 are respectively installed on the fixed shafts 241 which extend upward and downward through the second sprockets 231.
- the coil spring 260 is installed on the fixed shaft 241 which extends through the second sprocket 231 positioned on the upper end of the drum 240.
- One end of the coil spring 260 is fastened to the chain 280 which connects the first and second sprockets 230 and 231 with each other.
- the coil spring 260 which is fastened at one end thereof to the chain 280 is lengthened and held in a tensed state.
- the sail 270 has a plurality of sail rings 272 which are fastened to the upper and lower sides of the sail 270 to be spaced apart from one another by the same interval.
- the sail rings 272 are connected to the frame 210 by virtue of connection means 300.
- One end of the sail 270 is fastened to the drum 240, and a fixing rod 271 for connecting the upper and lower sides of the sail 270 with each other is provided to the other end of the sail 270.
- Connection wires 290 connect both ends of the fixed rod 271 which is installed at the other end of the sail 270 with the chains 280 which connect the first and second sprockets 230 and 231 with each other, so that the chains 280 can be moved integrally with the sail 270 when the sail is wound on or unwound from the drum 240.
- the connection means 300 functions to connect the frame 210 and the sail 270 with each other and allow the sail 270 to be reliably moved along the frame 210 when the sail 270 is wound on or unwound from the drum 240.
- wire ropes 310 are installed in the transverse pipes 211 and 212 which are positioned along the top and bottom edges of the frame 210.
- One end of the wire rope 310 is fastened to each end of the drum 240, and the other end of the wire rope 310 is fastened to a winding pulley 233 which is positioned coaxial to the first sprocket 230, via a guide pulley 232 which is installed at the distal end of the transverse pipe 211 and 212.
- a winding pulley 233 which is positioned coaxial to the first sprocket 230, via a guide pulley 232 which is installed at the distal end of the transverse pipe 211 and 212.
- side portions of the transverse pipes 211 and 212 ' are partially cut away to define desired openings.
- the winding pulleys 233 are constructed in a manner such that they are installed on the connection shaft 234 both ends of which are supported by the connection shaft fastening brackets 216 provided to the transverse brackets 211 and 212, to be rotated integrally with the first sprockets 230.
- the drum 240, the first and second sprockets 230 and 231 and the winding pulleys 233 have the same diameter to be rotated at the same rotation ratio.
- a plurality of rings 320 hang on the wire ropes 310.
- each of connectors 330 is connected to each ring 320, and the other end of each of the connectors 330 is connected to the sail ring 272 provided to the sail 270, to connect the sail 270 and the frame 210 with each other.
- each transverse pipe 211 and 212 is defined with a guide groove 217 which extends in a lengthwise direction. Referring to FIGs. 9 and 10, there is shown another connection means which is structured in a different way.
- guide blocks 340 each of which is defined with a guide groove 341, are installed on the transverse pipes 211, 212 and 213, and guide members 350 each having a plurality of projections 351 which are inserted into the guide groove 341 of the guide block 340 are installed on the sail 270. Accordingly, when the sail 270 is wound on or unwound from the drum 240, the sail 270 can be smoothly moved along the frame 210.
- the guide blocks 340 are installed to be positioned on the upper or lower ends of the transverse pipes 211, 212 and 213, and the guide grooves 341 which extend in the transverse direction are defined on the upper or lower surfaces of the guide blocks 340.
- the guide member 350 has a structure similar to a conventional zipper in that one end thereof is stitched to the sail 270 and the other end thereof is formed with the plurality of projections 351 which have the same shape as the teeth of the zipper. Therefore, when the sail 270 is wound on or unwound from the drum 240, as the projections 351 of the guide member 350 are moved along the guide groove 341 integrally with the sail 270.
- power supply devices 400 for supplying power to the geared motor 250 are installed on the power generating means 100 and 100'.
- Each power supply device 400 comprises a power supply rail 410 and a power supply part 430 which are fastened to the sail structure 200 to supply power to the geared motor 250 of the sail structure 200 which is moved along the guide rails 110.
- the power supply rail 410 has a shape that surrounds the driving shaft 103, the columns 105 and the guide shaft 104 of the power generating means 100 and 100 ' and is externally supplied with electric power.
- the power supply part 430 has power supply rollers 420 which are brought into rolling contact with the power supply rail 410.
- the wind turbine according to the present invention is provided with wind direction sensing means 800 and wind force sensing means 500.
- the wind direction sensing means 800 and wind force sensing means 500 are installed at a location where a wind velocity and a wind direction can be easily sensed in consideration of the place at which the wind turbine is installed. Referring to FIGs.
- the wind direction sensing means 800 comprises a wind direction indicator 810.
- a first cam plate 830 is attached integrally to the middle portion of a shaft 820 to which the wind direction indicator 810 is connected, to be rotated integrally with the shaft 820.
- a first limit switch 840 for generating an electric signal is arranged adjacent to the first cam plate 830. Projecting cams 850 to be brought into contact with the first limit switch 840 are formed on an outer edge of the first cam plate 830. In the wind direction sensing means 800 constructed in this way, as the support plate 700 is rotated, if the pair of power generating means 100 and 100' oppose wind, the first limit switch 840 and the projecting cam 850 are brought into contact with each other to generate a switching signal.
- the wind force sensing means 500 at least one rotation fan 510 which has a plurality of wings, to be rotated by wind force; a pump 520 which is connected with the rotation fan 510 by a belt 514 and pulleys 512 and 513, to be operated in an interlocked manner with the rotation fan 510 and thereby pump oil stored in an oil tank 530; a cylinder 540 which has a piston 541 vertically disposed therein to be raised by oil discharged from the pump 520 and is connected at its upper end with a drain pipe 542 which in turn is connected with the oil tank 530; a pressure regulating valve 570 for regulating a pressure of oil supplied to the cylinder 540 by the pump 520; first and second signal generating blocks 551 and 552 which extend parallel to a piston rod 543 of the piston 541 and are installed on a support column 550 coupled to the
- the pulley 512 which is installed on the rotation shaft 511 has at least two pulley grooves so that the pulley 512 can be connected to at least two pumps.
- An amount of oil which is discharged by the pump 520 and introduced into the cylinder 540 is determined depending upon a rotational velocity of the rotation fan 510 and an establishment value of the pressure regulating valve 570.
- the piston 541 As oil is introduced into the cylinder 540, the piston 541 is raised in the cylinder 540.
- the piston rod 543 of the piston 541 and the first and second signal generating blocks 551 and 552 which are connected to the support column 550 are raised by a distance through which the piston 541 is moved upward.
- a weight -544 is installed on the upper end of the piston rod 543.
- the weight 544 applies a predetermined pressure to the piston 541 to allow the oil introduced into the cylinder 540 to be discharged through the pressure control valve 570 into the oil tank 520, to thereby lower the piston 541.
- the unexplained reference numeral 531 designates a filter.
- a quadrangular rod 553 is installed adjoining the support column 550 to extend parallel to the support column 550.
- Rollers 554 which are installed on the quadrangular rod 553 are connected to the first and second signal generating blocks 551 and 552, in a manner such that the rollers 554 can be moved on the quadrangular rod 553 when the first and second signal generating blocks 551 and 552 are moved upward and downward, to support the first and second signal generating blocks 551 and 552. Also, rollers 554 ' which have the same structure as the rollers 554 are installed to connect the upper end of the support column 550 and the quadrangular rod 553 with each other to guide the movement of the support column 550. Depending upon a position of the first and second signal generating blocks 551 and 552 which are moved integrally with the piston 541, the limit switches installed on the support bars 560 generate signals.
- first and second signal generating blocks 551 and 552 are installed on the support column 550 so that they can be moved integrally with the support column 550, they respectively face opposite directions and have distal ends which are inclined in opposite directions, and the limit switches 581, 582 and 583 are operationally related to the first signal generating block 551 and the limit switches 591, 592 and 593 are operationally related to the second signal generating block 552.
- the first and second signal generating blocks 551 and 552 are installed to face opposite directions and have distal ends which are inclined in opposite directions, when the piston 541 is moved upward, the first signal generating block 551 is brought into contact with the limit switches 581, 582 and 583 to generate signals for winding the sail 270, and when the piston 541 is moved downward, the second signal generating block 552 is brought into contact with the limit switches 591, 592 and 593 to generate signals for unwinding the sail 270.
- the signals generated by the respective limit switches are transmitted to a control section 900. If a signal is generated by the uppermost limit switch 583, it means that heavy wind such as a typhoon or a wind gust is blowing.
- the sail 270 is fully wound on the drum 240, and oil introduced into the cylinder 540 is discharged into the oil tank 530 through the drain pipe 542.
- a plurality of limit switches 201a, 201b, 201c and 201d for sensing an unwinding degree of the sail 270 are installed at regular intervals on the transverse pipe 211 which constitutes the frame 210 which in turn constitutes the sail structure 200.
- a contact block 202 is installed on the chain 280 to be sequentially brought into contact with the plurality of limit switches 201 when the sail 270 is wound on or unwound from the drum 240. Switching signals 201 which are generated by the limit switches 201 are transmitted to the control section 900.
- control section 900 controls the geared motor 250 depending upon a wind force determined using the switching signals generated in the limit switches 581, 582, 583, 591, 592 and 593 which are provided to the wind force sensing means 500 and the limit switches 201a, 201b, 201c and 201d which are provided to the sail structure 200, it is possible to reliably produce electricity without causing breakage of the sail structures 200.
- operation of the wind turbine constructed as mentioned above will be described in detail.
- the wind turbine according to the present invention receives a wind force through the sail structure 200.
- the power generating means 100 and 100' which are provided with the plurality of sail structures 200 rotate due to the presence of the support plate 700 and the circular rail 610 in the same direction as the wind blows.
- the driving motor 712 is actuated by a signal generated by the wind direction sensing means 800
- the brake lining 717 is squeezed against the circular rail 610 to prevent the rotation of the support plate 700.
- the sail structures 200 which are positioned outside the power generating means 100 and 100' are held by the support brackets 220 in an unfolded state to receive the wind force, and, conversely, the sail structures 200' which are positioned on the insides of the power generating means 100 and 100' are rotated about a hinge point P and held in a folded state.
- the sail structures 200 are pushed rearward and moved along the guide rails 110.
- the driving shaft 103 which is meshed with the sprocket chains 120 is rotated.
- the driving shaft 103 is rotated, the auxiliary sprocket 720 which is connected with the driving shaft 103 by the power transmitting chains 730 and 740 is rotated.
- the auxiliary sprocket 720 which is connected to the rotation shaft 760 by the driving chain 750 rotates the rotation shaft 760.
- the auxiliary sprocket 720 is connected to the driving shafts 103 which are respectively provided for the two power generating means 100 and 100 ' to collect power generated in the respective power generating means 100 and 100 ' and transmit the collected power to the rotation shaft 760.
- power is transmitted to a generator 790 through a bevel gear 770 meshed with the rotation shaft 760 and a step-up gear 780, so that electricity can be produced.
- the wind pressure acting area of the sail 270 provided to the sail structure 200 is adjusted depending upon a magnitude of a wind force, in that it is wound on or unwound from the drum 240.
- the wind force sensing means 500 senses the change and generates stepwise electric signals depending upon a wind force.
- the control section 900 combines these signals and the signals generated from the limit switches 201 provided to the sail structure 200, the geared motor 250 for rotating the drum 240 is controlled in its operation in conformity with the intensity of wind.
- the piston 541 is moved upward.
- the first and second signal generating blocks 551 and 552 are also moved upward.
- the first limit switch 581 is brought into contact with the first signal generating block 551 to generate a signal, and this switching signal is transmitted to the control section 900 to actuate the geared motor 250 to wind the sail 270.
- the contact block 202 which is provided to the . chain 280 is brought into contact with the limit switch 201b which is provided to the sail structure 200.
- the limit switch 201b transmits a switching signal generated by sensing a wound state of the sail 270 to the control section 900.
- the control section 900 interrupts operation of the geared motor 250 so that electricity can be continuously produced with the sail 270 partially unwound from the drum 240.
- the present invention is not limited to this concrete number of limit switches, and more or fewer limit switches can instead be used as desired by a user. If an intensity of wind further increases, as an increased amount of oil is supplied to the cylinder 540, the piston 541 and the first and second signal generating blocks 551 and 552 are further moved upward. At this time, the first signal generating block 551 is sequentially brought into contact with the second and third limit switches 582 and 583 which are positioned above the first limit switch 581, to generate a signal for further winding the sail 270. By these signals, the sail 270 is wound on the drum 240.
- the wire ropes 310 are also wound along with the sail 270. If the sail 270 is wound in this way, the chains 280 which are coupled to the fixing rods 271 by the connection wires 290 are rotated in a direction in which the coil spring 260 is tensed. In this way, when an intensity of wind increases as the sail 270 is wound on the drum 240, a wind pressure acting area is reduced. Thereafter, if an intensity of wind decreases again, the geared motor 250 is rotated in the backward direction by the signal from the wind force sensing means 500.
- the wind turbine according to the present invention provides advantages in that electricity can be reliably produced using a plurality of sails even in a region where a light wind blows, an increased amount of electricity can be produced under the same wind blowing conditions , and a wind pressure acting area is automatically adjusted to conform with wind intensity to prevent the wind turbine from being damaged due to a typhoon .or a wind gust .
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Wind Motors (AREA)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006545244A JP2007528464A (ja) | 2003-12-27 | 2004-12-22 | 風力発電装置 |
US10/582,795 US20070147998A1 (en) | 2003-12-27 | 2004-12-22 | Wind turbine |
EP04808525A EP1704326A1 (en) | 2003-12-27 | 2004-12-22 | Wind turbine |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2003-0098238A KR100535991B1 (ko) | 2003-12-27 | 2003-12-27 | 풍력발전장치 |
KR10-2003-0098238 | 2003-12-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2005064155A1 true WO2005064155A1 (en) | 2005-07-14 |
Family
ID=36847677
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2004/003394 WO2005064155A1 (en) | 2003-12-27 | 2004-12-22 | Wind turbine |
Country Status (7)
Country | Link |
---|---|
US (1) | US20070147998A1 (ja) |
EP (1) | EP1704326A1 (ja) |
JP (1) | JP2007528464A (ja) |
KR (1) | KR100535991B1 (ja) |
CN (1) | CN1898470A (ja) |
RU (1) | RU2006127169A (ja) |
WO (1) | WO2005064155A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ITMO20100194A1 (it) * | 2010-06-28 | 2011-12-29 | Claudio Cagnolati | Generatore eolico |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DK177081B1 (da) * | 2005-12-16 | 2011-06-20 | Lm Glasfiber As | Vindenergianlæg med strømningsflader |
CN101100974A (zh) * | 2007-06-29 | 2008-01-09 | 陈崟 | 转叶车式流体机 |
KR101010049B1 (ko) * | 2008-12-12 | 2011-01-27 | 백 희 원 | 풍향과 풍속의 변화에 따라 조절되는 풍력 발전기 |
CN101846043B (zh) * | 2010-05-19 | 2011-11-30 | 华中科技大学 | 一种混合型垂直轴风力发电机 |
US20110232630A1 (en) * | 2011-06-03 | 2011-09-29 | Jason Tsao | Solar collector/wind deflector conversion of a solar and wind converter |
KR200469609Y1 (ko) * | 2012-05-04 | 2013-10-22 | 주식회사 현대미포조선 | 선박용 로드뱅크 고정 구조체 |
CN103147921A (zh) * | 2013-02-05 | 2013-06-12 | 彭再军 | 轨道风帆车发电装置 |
CN103061981A (zh) * | 2013-02-19 | 2013-04-24 | 徐秋实 | 一种垂直风力发电可变面积驱动桨 |
US10823140B2 (en) * | 2015-11-06 | 2020-11-03 | Linton K. Samarasinha | Vertical axis wind turbine structure |
CN109834134B (zh) * | 2019-04-02 | 2024-01-30 | 张家港润盛科技材料有限公司 | 一种便于抽开的铝片材卷绕辊轴结构 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4756666A (en) * | 1984-07-19 | 1988-07-12 | Labrador Gaudencio A | United sail windmill |
US4859146A (en) * | 1984-07-19 | 1989-08-22 | Labrador Gaudencio A | United sail windmill |
WO2002029248A1 (en) * | 2000-10-05 | 2002-04-11 | Tihomir Culjak | The prefab variable surface sail |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1266472A (en) * | 1916-03-31 | 1918-05-14 | Olaf L Howe | Air-motor. |
US4134469A (en) * | 1976-10-08 | 1979-01-16 | Turbopanel Motors, Inc. | Linear turbine |
US4174923A (en) * | 1977-05-19 | 1979-11-20 | Williamson Glen A | Wind driven engine |
US4494008A (en) * | 1983-03-03 | 1985-01-15 | Patton Bennie N | Wind-driven generator |
US4545729A (en) * | 1983-07-28 | 1985-10-08 | Joe Storm | Wind turbine apparatus |
-
2003
- 2003-12-27 KR KR10-2003-0098238A patent/KR100535991B1/ko not_active IP Right Cessation
-
2004
- 2004-12-22 RU RU2006127169/06A patent/RU2006127169A/ru unknown
- 2004-12-22 EP EP04808525A patent/EP1704326A1/en not_active Withdrawn
- 2004-12-22 WO PCT/KR2004/003394 patent/WO2005064155A1/en active Application Filing
- 2004-12-22 US US10/582,795 patent/US20070147998A1/en not_active Abandoned
- 2004-12-22 CN CNA2004800382693A patent/CN1898470A/zh active Pending
- 2004-12-22 JP JP2006545244A patent/JP2007528464A/ja active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4756666A (en) * | 1984-07-19 | 1988-07-12 | Labrador Gaudencio A | United sail windmill |
US4859146A (en) * | 1984-07-19 | 1989-08-22 | Labrador Gaudencio A | United sail windmill |
WO2002029248A1 (en) * | 2000-10-05 | 2002-04-11 | Tihomir Culjak | The prefab variable surface sail |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ITMO20100194A1 (it) * | 2010-06-28 | 2011-12-29 | Claudio Cagnolati | Generatore eolico |
Also Published As
Publication number | Publication date |
---|---|
RU2006127169A (ru) | 2008-02-10 |
JP2007528464A (ja) | 2007-10-11 |
EP1704326A1 (en) | 2006-09-27 |
CN1898470A (zh) | 2007-01-17 |
KR20050067354A (ko) | 2005-07-01 |
KR100535991B1 (ko) | 2005-12-13 |
US20070147998A1 (en) | 2007-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4607597B2 (ja) | 海洋タービン設備のための支持装置 | |
US20070147998A1 (en) | Wind turbine | |
KR101762663B1 (ko) | 발전소의 장치 | |
JP4210540B2 (ja) | ブレードのメンテナンスが容易な風車及び風力発電装置 | |
EP2475883B1 (en) | Method and apparatus for wind turbine erection | |
CN103306199B (zh) | 桥梁底幅面检修吊篮安装方法 | |
CN113386916B (zh) | 一种牵引绳固定的海上风电用防浪底座 | |
CN111837752A (zh) | 一种具有除雪功能的上展下卷温室保温系统 | |
KR20070078521A (ko) | 승강구동식 조명타워 | |
JP7060265B2 (ja) | 流水発電装置 | |
KR100995969B1 (ko) | 수문 시스템 | |
ES2347654T3 (es) | Un metodo para modernizar un ascensor. | |
KR200381378Y1 (ko) | 풍력발전장치 | |
CN213187407U (zh) | 一种具有除雪功能的上展下卷温室保温系统 | |
JP2009127439A (ja) | 潮汐エネルギ利用負荷駆動方法及び装置 | |
KR200345078Y1 (ko) | 풍력발전장치 | |
CN102654102A (zh) | 自控风筝组发电机 | |
KR200263045Y1 (ko) | 양망기 | |
JP2006322440A5 (ja) | ||
RU2269672C1 (ru) | Наплавная гидроэлектростанция с подводной турбиной | |
CN211664047U (zh) | 非金属链条刮泥机自动张紧装置 | |
CN116639224B (zh) | 一种漂浮式刚性光伏支撑系统 | |
CN114855644A (zh) | 一种便于维护的桥梁主塔结构及其施工方法 | |
WO2010150406A1 (ja) | 流水を用いた発電装置 | |
CN117341910A (zh) | 一种水面光伏设备及其使用方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200480038269.3 Country of ref document: CN |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
DPEN | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2004808525 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007147998 Country of ref document: US Ref document number: 10582795 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006545244 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2222/CHENP/2006 Country of ref document: IN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006127169 Country of ref document: RU |
|
WWP | Wipo information: published in national office |
Ref document number: 2004808525 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 10582795 Country of ref document: US |