WO2005064029A1 - STRUCTURAL Fe-Cr BASED STEEL PLATE AND METHOD FOR PRODUCTION THEREOF - Google Patents

STRUCTURAL Fe-Cr BASED STEEL PLATE AND METHOD FOR PRODUCTION THEREOF Download PDF

Info

Publication number
WO2005064029A1
WO2005064029A1 PCT/JP2004/019288 JP2004019288W WO2005064029A1 WO 2005064029 A1 WO2005064029 A1 WO 2005064029A1 JP 2004019288 W JP2004019288 W JP 2004019288W WO 2005064029 A1 WO2005064029 A1 WO 2005064029A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
less
coil
steel
temperature
Prior art date
Application number
PCT/JP2004/019288
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroki Ota
Takumi Ujiro
Osamu Frukimi
Original Assignee
Jfe Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfe Steel Corporation filed Critical Jfe Steel Corporation
Publication of WO2005064029A1 publication Critical patent/WO2005064029A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper

Definitions

  • the present invention is intended for civil engineering such as bridges and housing structures, which are required to have excellent strength such as corrosion resistance, durability, weldability, and welded properties, equivalent to that of SS 400 steel specified in JISG 3101 (1995).
  • structural Fe-Cr steel sheets used for building structures in particular, we propose structural Fe-Cr steel sheets that have small strength variations in the coil after winding and have excellent toughness in welds, and a method of manufacturing the same. Is what you do.
  • Fe-Cr steel which is excellent in corrosion resistance and design, requires almost no maintenance work for rust such as plating, anti-corrosion coating, drilling and touch-up after welding, so its life cycle cost (LC It is a very attractive material in terms of C).
  • austenitic stainless steel represented by S US 304 A specified in JI SG 4321 (2000).
  • This austenitic stainless steel has properties such as strength, corrosion resistance, fire resistance and weld toughness that can be sufficiently satisfied as civil engineering and construction materials.
  • austenitic stainless steel is much more expensive than ordinary steel because it contains a large amount of alloying elements such as Ni and Cr. Plating and painting It is difficult to use it as a substitute for general-purpose materials that have been treated, and there is a problem that the applicable range is extremely narrow.
  • 51-013463 discloses that Cr: 10 to 18 wt%, Ni: 0.1 to 3.4 wt%, Si: 1.0 wt% or less, and Mn: 4.0 wt% or less. Further, C: 0.03% or less, N: 0.02.
  • Japanese Patent Publication No. 57-028738 contains Cr: 10-13.5 wt%, Si: 0.5 wt% or less, and Mn: 1.0-3.5 wt%, and C: 0.02 wt% or less.
  • N Reduced to less than 0.02 wt%, and by further limiting Ni to less than 0.1 wt%, excellent pre- and post-weld pre- and post-heating toughness and workability of welds
  • a structural martensitic stainless steel is disclosed.
  • Japanese Patent Application Laid-Open No. 2002-053938 discloses that a Fe—Cr alloy containing Cr in a range of more than 8 mass% and less than 15 mass%, in particular, by adding Co, V, and W in combination, is added.
  • JP-B-51-013463 and JP-B-57-028738 have too high strength in the hot-rolled state, so that it is necessary to perform annealing after hot-rolling. Had left problems in terms of delivery.
  • the technique disclosed in Japanese Patent Application Laid-Open No. 2002-053938 requires the complex addition of Co, V, and W, and recommends hot-rolled sheet annealing for softening.
  • Japanese Patent Application Laid-Open No. H11-302737 discloses that Cr: 8 to 16 wt%, Si: 0.05 to 1.5 wt%, Mn: 0.05 to 1.5 wt%, and C: 0.005 to 0.
  • An object of the present invention is to solve the above-mentioned problems of the prior art, and to obtain a tensile strength of 400 to 400 mm over the entire length of the coil as hot rolled, that is, without hot-rolled sheet annealing.
  • An object of the present invention is to propose a structural Fe—Cr steel sheet that is in the range of 500 MPa and that can be produced at a low cost at a low yield. Disclosure of the invention
  • the present inventors have focused on Fe_Cr-based steel having a Cr content of 6 mass% or more and less than 10 mass%, which can provide low cost and sufficient corrosion resistance when used for civil engineering and building structures.
  • a method for keeping the tensile strength of hot-rolled steel sheet within the range of 400 to 500 MPa over the entire length of the coil as hot-rolled was studied.
  • the above problem can be achieved by reducing the cooling rate of the coil after hot rolling by any method to an average cooling rate of 800 ° C to 400 ° C over the entire length of 2 ° C / min or less. I found that.
  • the toughness of the steel is reduced due to the coarsening of the crystal grains and carbonitrides as described above.
  • Coil The present inventors have found that the problem of a decrease in the toughness of steel that occurs when the cooling rate is too slow can be avoided by adding Nb in an appropriate range, and completed the present invention.
  • the present invention developed on the basis of the above findings is as follows: C: 0.0025 to 0.010 mass%, N: 0.0025 to 0.010 mass%, C + N: 0.015 mass% or less, Si: 0.01 to 1 0 mass%, Mn: 0.01 to 0.50 mass%, P: 0.04 mass% or less, S: 0.03 mass% or less, Cr: 6 mass% to less than 10 mass%, Cu: 0.01 to 1.0 mass %, Ni: 0.01 to 1.0 mass%, V: 0.003 to
  • the steel sheet of the present invention preferably further contains Mo: 0.03% by mass to 1.0% by mass in addition to the above component composition.
  • the present invention provides: C: 0.0025 to 0.010 mass%, N: 0.0025 to 0.010 mass%, C + N: 0.015 mass% or less, Si: 0.01 to 1.0 mass%, Mn: 0.01 to 0.50 mass%, P: 0.04 mass% or less, S: 0.03 mass% or less, Cr: 6 mass% to less than 10 mass%, Cu: 0.01 to 1.0 mass%, Ni: 0.01 to 1.0 mass%, V: 0.003 to 0.20 mass%, A1:
  • a steel slab containing not more than 0.05 mass% and Nb: 0.01 to 0.15 raass% is heated to a temperature of 1100 to 1280 ° C, and after rough rolling, at a finish rolling end temperature of more than 930 ° C. Hot rolled and wound at a temperature above 810 ° C, then the coil is cooled at an average cooling rate between 800 and 400 ° C
  • the copper slab of the present invention further contains Mo: 0.03% by mass to 1.0% by mass in addition to the above composition of the steel slab. Is preferred.
  • At least one pass of the rough rolling is performed at a temperature of more than 1000 ° C. and a rolling reduction of 30% or more.
  • the average cooling rate between 800 and 400 ° C. at all positions of the coil is set to 2 ° C./min or less. cover, it forces s preferably carried out using any of the heat-retaining box or Honetsuro.
  • the steel sheet by appropriately combining the composition of the steel sheet with the hot rolling conditions and the cooling conditions after hot rolling, the steel sheet has the same strength as SS400 steel in the hot rolled state, and has a total coil length.
  • a soft Fe—Cr steel sheet for structural use can be obtained over the entire width. Therefore, the Fe—Cr-based steel sheet of the present invention can be used for the production of various section steels on the existing production line under the same conditions as the conventional material.
  • the Fe—Cr-based steel sheet of the present invention can be processed by various kinds of welding, it can also be used for manufacturing a welded structural section steel. Furthermore, since the Fe—Cr steel sheet of the present invention has sufficient corrosion resistance and durability even when used for civil engineering and construction structures, life cycle costs can be reduced, and its industrial utility value is extremely large. . Brief Description of Drawings
  • Figure 1 Graph showing one example of the result of calculating the temperature history of the hot-rolled coil after winding.
  • Fig. 2 Graph showing an example of the result of calculating the temperature history when the heat insulation cover is placed on the hot-rolled coil after winding.
  • Fig. 3 The cooling curve of Fig. 2 and the cooling curve at 2 ° C / min are superimposed on the CCT diagram.
  • Figure 4 An example of a thermal cover. BEST MODE FOR CARRYING OUT THE INVENTION
  • the inventors have studied a method in which the strength is in the range of 400 to 500 MPa over the entire length of the wound coil while hot rolling is performed.
  • a thermocouple was attached to the hot-rolled coil, and the aging of the temperature at each position in the coil was measured.
  • Tmax the portion of the coil after winding, which has the slowest cooling, Tmax (hereinafter referred to as the “highest point. Normally, the coil thickness is near the center in the width direction”), and the coil cools fastest
  • a prediction was made by calculating the temperature change of the portion Tmin (hereinafter referred to as the "coldest point". Normally, both edges in the width direction of the outermost winding of the coil).
  • a coil after hot rolling with a weight of 12300 kg, a coil width of 1450 sq. And a diameter of 760 mm was wound at 850 ° C and then cooled under the condition of being allowed to cool in an air atmosphere of 20 ° C. Calculation of time The results are shown in FIG. As is evident from Fig. 1, at the coldest point Tmin of the coil, the temperature drops to about 400 ° C in only about 30 minutes, and it is as fast as about 13 ° C / min between 800 and 400 ° C. It turned out that it was cooling at a speed.
  • the inventors collected metallurgical data such as continuous cooling transformation curves (CCT diagrams) and isothermal transformation curves (TTT diagrams) for alloy steels with a Cr content of 6 mass% or more and less than 10 mass%. The transformation behavior when heat retention was performed on the way was examined.
  • CCT diagrams continuous cooling transformation curves
  • TTT diagrams isothermal transformation curves
  • the average cooling rate referred to in the present invention is a cooling rate obtained by dividing a temperature difference of 400 ° C from 800 ° C to 400 ° C by a total time required for cooling from 800 ° C to 400 ° C. It is not a temporary cooling rate during cooling.
  • Fig. 2 the coil was wound 30 minutes after winding under the same conditions as in Fig. 1, and as one method of heat retention, a 100-mm-thick heat insulating cover lined with heat-insulating material was placed over the coil. It shows the results of calculating the time-dependent changes in temperature at the coil's highest point Tinax and coldest point Tmin. From Fig. 2, it can be seen that the use of the heat retention cover allows the cooling time from 800 ° C to 400 ° C at the coldest point Tmin of the coil with the fastest cooling rate to be 400 minutes or more, that is, the average cooling rate is 1 ° C It can be seen that it can be reduced to min or less.
  • FIG. 3 is a diagram in which the cooling curve of FIG. 2 and the cooling curve when continuously cooled at 2 ° C./min are superimposed on a CCT diagram. From Fig. 3, if the cooling time from 800 ° C to 400 ° C is 12000 seconds (200 minutes) or more, that is, the average cooling rate is 2 ° C / min or less, the bainite (B in the figure) It can be seen that a soft ferrite (in the figure: F) single-phase structure can be obtained without the formation of. Also, at the coldest point Tmin of the coil, by starting heat retention before the coil is cooled to less than 400 ° C, the formation of a hard martensite phase (M in the figure: M) is completely suppressed. The bainite produced by cooling before the start of heat retention It can be seen that it can be transformed into a tempered bainite or ferrite phase by the tempering effect due to reheating and can be softened.
  • the weld heat affected zone of the steel of the present invention has a fine martensitic structure, but C and N greatly affect the hardness of the martensite phase. It is effective to reduce C and N to improve the toughness and workability of the heat affected zone and prevent weld cracking.
  • C and N contents reduces the martensite forming ability of the heat-affected zone of the weld, but promotes the formation of coarse ferrite and significantly reduces the toughness of the weld.
  • the cost of precision will increase. Therefore, the contents of C and N are each set to 0.0025 mass% or more.
  • N Limit to 0.015 mass% or less.
  • C 0.003 to 0.008 mass%
  • N 0.003 to 0.006 mass%
  • C + N 0.012 mass% or less.
  • Si is an element added as a deoxidizing agent and as a strengthening element.
  • the amount of Si is limited to the range of 0.01 to 1.0 ma SS %. Preferably, it is in the range of 0.1 to 0.5 mass%.
  • Mn 0.01 to 0.50 mass%
  • Mn is an austenite ( ⁇ ) phase stabilizing element, and makes the structure of the heat affected zone a fine martensite structure, contributing to the improvement of the toughness of the weld. If added excessively, the ratio of the hard phase as hot rolled increases, and the target tensile strength (400 to 500 MPa) cannot be obtained.
  • the upper limit of the amount of added Mn is limited to 0.50 mass%.
  • Mn is useful as a deoxidizer like Si, so the lower limit is set to 0.01 mass%. Preferably, it is in the range of 0.10 to 0.50 mass%.
  • P is an element that not only reduces hot workability, formability, and toughness but also is harmful to corrosion resistance. In particular, if the content exceeds 0.04 mass%, the adverse effect becomes remarkable, so P is limited to 0.04 mass% or less. It is preferably at most 0.030 mass%. S: 0.03 mass% or less
  • S combines with Mn to form Mn S, which reduces corrosion resistance and durability.
  • S is also a harmful element that segregates at the grain boundaries and promotes grain boundary brittleness, so it is desirable to reduce S as much as possible.
  • the content is more than 0. 03MA SS%, because the adverse effect becomes significant, the content of S is limited to not more than 0. 03mass%. Preferably it is 0.008 mass% or less.
  • Cr is an element effective in improving the corrosion resistance, and if it is less than 6 ma SS %, it is difficult to secure sufficient corrosion resistance for civil engineering and building structures. On the other hand, if Cr is added in an amount of 10 ma SS % or more, the cost is increased, and it is difficult to obtain a desired strength while hot rolling. Therefore, the amount of Cr added is in the range of 6 mass% or more and less than 10 mass%. When importance is attached to corrosion resistance, the range is preferably not less than 8 ma SS % and less than 10 mass%.
  • Cu is an element effective for improving corrosion resistance, and is added for the purpose of prolonging the life of civil engineering and building structures. And then force, 0. In the hydrogenation mosquito ⁇ less than 01Mass% rather poor in the effect of addition, whereas, 1. excessive addition of more than 0 mA SS% is force ho lead to increase in cost, to increase hot cracking sensitivity thermal Embrittlement may occur during rolling. Therefore, Cu is 0.01 1. The range is 0ma SS %. From the viewpoint of achieving both corrosion resistance, hot cracking resistance, and workability, Cu is preferably in the range of 0.1 to 0.7 mass%.
  • Ni is an element effective for improving ductility and toughness. In the present invention, it is particularly added to improve the toughness of the heat affected zone and improve the heat resistance. In addition, Ni is also effective in preventing brittle cracking during hot rolling caused by the addition of Cu. However, when the content is less than 0.01 mass%, the effect of addition is poor. On the other hand, when the content is more than 1.0 mass%, the effect of addition is not only saturated, but also the material becomes harder and the cost increases. Therefore, Ni is limited to the range of 0.01 to 1.0 mass%. A preferred range for satisfying both the strength of the base material and the toughness of the heat affected zone is 0.05 to 0.4 mass%.
  • V is added in the range of 0.003 to 0.20 mass%. Preferably, it is 0.005 to 0.15 mass%.
  • A1 0.05 mass% or less
  • A1 is an additive element useful as a deoxidizing agent, and also effectively contributes to improving the bending workability of a steel sheet. To obtain the effect, it is preferable to add 0.0003 mass% or more. However, when the A1 content exceeds 0.05 mass%, the amount of inclusions increases and mechanical properties deteriorate. Therefore, A1 is limited to 0.05 mass% or less. A1 may not be particularly contained if oxygen in steel can be sufficiently reduced by deoxidation with other components such as Si and Mn.
  • Nb is a very important element in the present invention.
  • the average cooling rate of 800-400 ° C is 15 ° C / hx (0.25 ° C / min) or less due to excessive heat retention after the Fe-Cr-based steel sheet of the present invention is wound around a hot-rolled coil.
  • the ferrite grains and carbonitrides become significantly coarser May occur and the toughness may be significantly reduced.
  • the addition amount is less than 0.01 mass%, the effect is poor.On the other hand, if it exceeds 0.15 mass%, the strength increases, and the tensile strength becomes 400 to
  • the preferred addition range is 0.02 to 0.10 mass%.
  • Mo can be added in the following range in addition to the above essential components.
  • Mo is an element effective for improving corrosion resistance, and in the present invention, Mo can be added as needed. To obtain the effect, it is preferable to add 0.03 ma SS % or more. However, if it is added in excess of 1.0 mass%, the workability will be significantly reduced and the desired tensile strength (400-500 MPa) will not be obtained while hot rolling, so the added amount will be 1.0 mAsS Q / o. It is preferable to limit to the following. From the viewpoint of the balance between corrosion resistance, strength and workability, the range of 0.1 to 0.5 mass% is more preferable.
  • the steel sheet of the present invention may contain Co and Z or W, Co: 0.01 to 0.5 mass%, W: 0.001 to 0.00, in order to improve the initial heat resistance. It can be contained in the range of 05 mass%.
  • the steel sheet of the present invention needs to have a tensile strength in the range of 400 to 500 MPa over the entire length of the hot-rolled coil.
  • the reason for setting the tensile strength in the range of 400 to 500 MPa is that the section steels conventionally used for civil engineering and building structures are manufactured by processing SS400 steel class steel materials. In order to utilize the steel as it is, it is necessary to have the same strength and workability as the SS400 steel. In other words, if the tensile strength exceeds 500 MPa, the processing load on the section steel production line increases, the equipment needs to be strengthened, and the workability deteriorates, which is not preferable.
  • the steel sheet of the present invention is applied to civil engineering and architectural structures, and is required to have sufficient impact resistance even in use in extremely cold regions.
  • one 50 ° absorption E energy V of Sharubi one impact test in C E_ 5. Is preferably 100 J / cm 2 or more.
  • the steel slab is heated to a temperature of 1100 to 1280 ° C and hot-rolled to obtain a hot-rolled steel sheet.
  • the above-mentioned slab heating temperature is preferably as high as possible to achieve softening by self-annealing after winding the hot-rolled coil, but if it exceeds 1280 ° C, dripping of the slab becomes remarkable, and the crystal grains become coarse and It is not preferable because the toughness of the rolled steel sheet is reduced.
  • the heating temperature is lower than 1100 ° C, it is difficult to make the finish temperature (FDT) of the finish rolling of hot rolling higher than 930 ° C.
  • the preferred slab heating temperature range is 1100 to 1250 ° C.
  • the rough rolling step of hot rolling it is preferable to perform at least one or more passes of rolling at a rolling reduction of 30% or more in a temperature range exceeding 1000 ° C.
  • This high-pressure rolling can refine the crystal structure of the hot-rolled steel sheet, which is caused by heat retention after coil winding, which will be described later. It can compensate for the decrease in toughness.
  • the upper limit of the rolling reduction per pass in the rough rolling is preferably 60% or less because there is a risk of deteriorating the surface properties.
  • the above-described heavy rolling under rough rolling is also effective in improving the toughness of a portion heated to a two-phase region of ferrite ( ⁇ ) + austenite ( ⁇ ) during welding.
  • the martensite generated in the heat-affected zone of the weld heated to the two-phase region is formed at the ferrite crystal grain boundaries of the copper plate, but when this martensite becomes excessively hard, it becomes the starting point of cracking and the brittleness decreases. descend. Therefore, if the ferrite structure serving as the matrix is made finer and the toughness of the ferrite phase is improved, the propagation of cracks can be suppressed and brittleness can be suppressed.
  • the steel sheet of the present invention has a single austenite phase at a temperature exceeding 1000 ° C
  • the formation site of the ferrite phase is formed by performing at least one pass of rolling at a rolling reduction of 30% or more in rough rolling.
  • the crystal grains can be refined by increasing the number. The reason why the temperature of the rough rolling is preferably higher than 1000 ° C is also to make the finish rolling finish temperature exceed 930 ° C.
  • the finish temperature in finish rolling following hot rough rolling must exceed 930 ° C, and the coiling temperature of the coil after hot rolling must exceed 810 ° C. This is because, in the present invention, after the hot-rolled coil is wound up, softening is promoted by utilizing self-annealing. For this purpose, the coil winding temperature must be higher than 810 ° C, and in order to secure this coil temperature, the finish rolling finish temperature must be higher than 930 ° C. Further, by setting the finish rolling end temperature to be higher than 930 ° C, it is possible to prevent the introduction of processed ferrite by rolling in the ⁇ + ⁇ 2 phase region.
  • the reason for setting the coil winding temperature to be higher than 810 ° C is that by keeping the temperature inside the coil after winding high, the recuperation effect by heat retention is enhanced. This is also to raise the temperature of all parts to 400 ° C or more, and to promote the softening by the self-annealing more effectively.
  • the end-of-rolling temperature and winding temperature are preferably less than 110 ° C and less than 950 ° C, respectively, in order to prevent a decrease in toughness due to grain coarsening.
  • the average cooling rate inside the coil is set to 2 ° C / min or less, that is, the cooling time from 800 to 400 ° C in the coil after winding is set to 200 minutes or more. is necessary.
  • the steel sheet can be made into a ferrite single phase (partially carbonitride), a tempered bainite single phase or a tempered bainite + ferrite structure, and can be made of a hard martensite. It is possible to completely suppress the formation of phases, and eventually obtain the desired uniform copper plate strength (TS: 400 to 500 MPa). Can.
  • the cooling rate inside the coil means a cooling rate at a central portion in the longitudinal direction of the coil and at a position 50 ° or more inside the edge portion in the plate width direction.
  • the most reliable method of measuring the cooling rate of this part is to insert a thermocouple into the coil, but it can also be estimated by calculation from the temperature outside the coil.
  • the average cooling rate of the coil after winding can be achieved relatively easily within the coil.
  • the average cooling rate tends to be faster than 2 ° C / min at the leading end (inner winding) and the rear end (outer winding) of the coil and at the edge in the width direction of the coil.
  • the bainite-martensite phase is formed and hardens. For this reason, this part of the coil has been cut and used in the past, causing a decrease in yield.
  • the present invention starts the heat retention by some means before the coldest point of the coil after winding is cooled to less than 400 ° C.
  • the coldest point of the coil can be sufficiently tempered, so that the desired strength can be achieved over the entire length and width of the coil.
  • the average cooling rate at all positions in the coil is set to l ° C / min or less.
  • the coldest point of the coil is generally a portion corresponding to both widthwise edges of the outermost winding of the coil. Therefore, the cooling rate can be measured by attaching a thermocouple to this portion by welding or the like. Alternatively, the temperature may be measured using a radiation thermometer.
  • a method of keeping heat for example, as shown in Fig. 4, a method of covering a coil with a heat insulating cover lined with heat insulating material inside an iron box, digging a pit-shaped hole, and attaching heat insulating material to the inner wall
  • Various methods can be applied, such as a method of placing in a heat retention box, or a heat retention furnace having a heating function, and a preferable heat retention means can be adopted according to the manufacturing equipment that the practitioner has.
  • heating means such as induction heating may be used in combination for the front and rear ends and the width wedge of the coil where cooling is remarkable.
  • the cooling time between 800 and 400 ° C at all positions of the coil after winding is 200 minutes or more and the average cooling rate is 2 ° C / min or less. Therefore, the cooling may be continued as it is. However, from the viewpoint of shortening the cooling time and improving the productivity, after cooling with a heat retention device at an average cooling rate between 800 to 400 ° C of 2 ° C / min or less and cooling for 200 minutes or more, It is possible to reduce the cooling time by removing the heat retention device and allowing it to cool before it cools below 400 ° C.
  • the above heat retention method it is possible to keep the tensile strength in the range of 400 to 500 MPa over the entire length of the coil, without performing hot-rolled sheet annealing and keeping hot rolling. As a result, it is possible to suppress the yield reduction due to the truncation of the coil front and rear ends and the trimming of the width direction edge portions, which are problems in the conventional technology, and it is possible to reduce costs.
  • the tensile strength can be made equivalent to that of the SS400 steel, it is possible to perform processing such as bending and drilling using the existing production line as it is.
  • the toughness of the steel sheet of the present invention does not decrease even if the cooling rate becomes excessively low due to heat retention and becomes 15 ° CZhr (0.25 ° C / min) or less. As a result, it is not necessary to precisely control the temperature during heat retention, and the effect of increasing the degree of freedom in designing the heat insulation device can be obtained.
  • the steel sheet of the present invention that has been gradually cooled by heat retention may be used as it is in hot rolling.However, if necessary, shape correction by skin pass rolling or descaling by shot blasting, pickling, or the like is performed. Alternatively, it may be used after being adjusted to a desired surface property by polishing or the like. In order to improve corrosion resistance, mechanical scale removal by shot blasting was performed, and then the steel sheet surface under the scale steel sheet interface was pickled by 10 / zm or more to completely remove the dechromized layer. Removal is preferred. Further, if necessary, it is possible to use after applying a fire retardant or the like.
  • hot-rolled sheet annealing may be additionally performed for the purpose of modifying the scale and the dechromized layer present on the steel sheet immediately below the scale to improve pickling properties.
  • the steel sheet of the present invention obtained by the above-mentioned manufacturing method has excellent workability and toughness in a hot-rolled state, it is used for shaped steels of various shapes manufactured by bending and roll forming. It is suitable for use in civil engineering and architectural structural materials, especially for structural steel for residential structures. Further, the steel sheet of the present invention also has an excellent property that embrittlement of the heat affected zone does not occur.
  • the steel sheet of the present invention can be used as a material for various structures such as a container, a coal wagon, and a bus frame by utilizing the above characteristics.
  • Example 1
  • Copper having the component composition shown in Table 1 was melted through a converter-secondary scouring step, and was made into a 200 mm thick slab by a continuous manufacturing method. After reheating these slabs to 1170 to 1220 ° C, as shown in Table 2, the roughing of a total of 7 passes, with the rolling reduction of the sixth pass being 20 to 40% and the rolling reduction of other passes being less than 30% Rolling, and then finish rolling in 7 passes with a finish rolling finish temperature of 950 to 50 ° C. 6. To make a hot-rolled steel sheet with an Oram thickness, wind up at a temperature of 815 to 910 ° C. A coil was used.
  • the rolled hot-rolled coil is transported to a heat-insulating pad covered with heat-insulating material, and covered with a heat-retaining power bar lined with heat-insulating material with a thickness of 150 as shown in Fig. 4 to keep heat. Cooled slowly.
  • the measurement of the cooling rate of the coil was performed by welding a thermocouple near the outermost end of the coil (edge portion) and inside the coil.
  • the cooling rate was changed by adjusting the weight of the coil or by changing the thickness of the heat insulating material of the heat insulation cover.
  • the heat retention cover was removed and the coils were allowed to cool before the temperature of each part of the coil reached less than 400 ° C.
  • a test sample was taken from the outermost turns of the various hot-rolled coils obtained as described above. A piece was cut out and subjected to a tensile test in accordance with JISZ2241 to measure 0.2% power resistance, tensile strength and elongation. In addition, for the outermost winding plate in the width direction 1 to 4 parts, a 2-stroke V-notch impact test specimen (sub-size test specimen with a test specimen width of 5 mm) in accordance with JISZ 222 was collected. A Charpy impact test at 150 ° C. was performed in accordance with 222, and the absorbed energy V E — 50 (J / cm 2 ) was measured.
  • the steel sheet of the invention example which was gradually cooled by covering the heat retention power had a tensile strength of 400 to 500 MPa comparable to SS400 steel or SN400B, Hardening hardly occurs even at the coldest point near the outermost winding of the coil, which is the coldest point, in the width direction, and the desired strength is obtained. Good toughness is obtained within the desired strength range.
  • the component composition range is within the present invention, in the comparative examples No. 10 and 11 in which the cooling conditions are faster than the range of the present invention, softening of the outermost winding portion of the coil is not obtained. . No.
  • No. 14 is a comparative example where C and C + N are high
  • No. 15 is a comparative example where N and C + N are high
  • No. 16 is a comparative example where C + N is high.
  • the winding part has been strengthened. Also, its toughness is low.
  • No. 17 is a comparative example having a high Cu content
  • No. 18 is a high V content
  • No. 19 is a comparative example having a high Mn content. The value is higher than the steel sheet strength. Also, its toughness is low. Further, in No. 20, since the Nb content was less than the range of the present invention, the toughness after the heat retention and slow cooling was remarkably reduced. Not obtained. On the other hand, No.
  • the steel having the component of the present invention can be applied to various steel materials used in the field of civil engineering and construction, such as thick steel plates, section steels, and steel bars, in addition to hot-rolled copper sheets produced by hot rolling.
  • Steel Chemical composition (mass S %)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

A method for producing a structural Fe-Cr based steel plate having a tensile strength of 400 to 500 MPa, which comprises providing a steel slab containing, in mass %, C : 0.0025 to 0.010 %, N : 0.0025 to 0.010 %, C+N : 0.015 % or less, Si : 0.01 to 1.0 %, Mn : 0.01 to 0.50 mass %, P : 0.04 % or less, S : 0.03 % or less, Cr : 6 % or more and less than 10 %, Cu : 0.01 to 1.0 %, Ni : 0.01 to 1.0 %, V : 0.003 to 0.20 %, Al : 0.05 % or less, Nb : 0.01 to 0.15 %, and optionally further containing Mo : 0.03 to 1.0 %, heating the slab to a temperature of 1100 to 1280°C, completing the hot rolling of the slab at a temperature higher than 930°C, taking up the rolled plate at a temperature higher than 810°C, and cooling the plate at an average rate of 2°C/min or less for the cooling between 800 to 400°C; and a structural Fe-Cr based steel plate produced by the above method. The structural Fe-Cr based steel plate, as it is hot-rolled, exhibits a tensile strength in the range of 400 to 500 MPa over the whole length and the whole width of a coil having been taken up, and can be produced at a low cost in good yield.

Description

明細書  Specification
構造用 Fe— Cr系鋼板とその製造方法 技術分野  Structural Fe-Cr steel sheet and manufacturing method
本発明は、 強度が J I S G 3101 (1995)で規定された S S 400鋼並 で、 耐食性、 耐久性、 溶接性ならびに溶接部の特性が優れることが要求される橋 梁や住宅構造物等の土木 ·建築構造物に用いられる構造用 Fe— Cr系鋼板に関し、 特に、 卷き取り後のコイル内の強度ばらつきが小さく、 溶接部の靭性に優れる構 造用 Fe— Cr系鋼板およびその製造方法を提案するものである。  The present invention is intended for civil engineering such as bridges and housing structures, which are required to have excellent strength such as corrosion resistance, durability, weldability, and welded properties, equivalent to that of SS 400 steel specified in JISG 3101 (1995). With regard to structural Fe-Cr steel sheets used for building structures, in particular, we propose structural Fe-Cr steel sheets that have small strength variations in the coil after winding and have excellent toughness in welds, and a method of manufacturing the same. Is what you do.
¾ 術 術 surgery
土木 ·建築用構造物には、 強度のほか、 耐食性や耐久性が求められる。 そのた め、 これら用途には、 従来から、 J I S G 3 101 (1 995)で規定された. S S 400や J I SG 31 36 (1994)で規定された SN400 B等の普通鋼や、 J I S G 3 106 (1 999)で規定された SM490等の高張力鋼、 ならびに、 これらの鋼材に塗装やめつき、 力チオン電着塗装等の処理を施した材料が多く用 いられている。 一方、 近年では、 設計の多様化や環境問題への意識の高まりに伴 い、 各種材料を用いることが検討されている。 中でも、 耐食性や意匠性に優れた Fe— Cr系の鋼は、 めっき処理ゃ防鲭塗装、 穴あけや溶接後のタッチアップ処理等 の発銹に対する保守作業がほとんど必要ないため、 ライフサイクルコスト(LC C)の点から非常に魅力的な材料である。  Civil engineering · Architectural structures are required to have strength, corrosion resistance and durability. Therefore, these applications have been conventionally specified in JISG 3101 (1 995) .Standard steel such as SS400 and SN400B specified in JI SG 3136 (1994), and JISG 3106 ( High-strength steels such as SM490 specified in 1 999), as well as materials obtained by applying these steel materials to painting, plating, and force-thion electrodeposition coating, are widely used. On the other hand, in recent years, with the diversification of designs and increasing awareness of environmental issues, the use of various materials is being considered. Among them, Fe-Cr steel, which is excellent in corrosion resistance and design, requires almost no maintenance work for rust such as plating, anti-corrosion coating, drilling and touch-up after welding, so its life cycle cost (LC It is a very attractive material in terms of C).
上記 Fe— Cr系鋼の中で、 土木 ·建築用構造材料として最も検討されている材料 は、 強度や耐食性、 溶接の容易さ、 溶接部靭性、 汎用性等の観点から使用実績が 最も多い、 J I SG 4321 (2000)で規定された S US 304 Aに代表され るオーステナイ ト系ステンレス鋼である。 このオーステナイ ト系ステンレス鋼は、 強度、 耐食性、 耐火性および溶接部靭性等の特性において、 土木 '建築用材料と して十分に満足し得る特性を有している。 し力 しながら、 オーステナイ ト系ステ ンレス鋼は、 Niや Cr等の合金元素を多量に含有しているため、 普通鋼に比べて 格段に高価であり、 従来の普通鋼や高張力鋼およびそれにめつき処理や塗装処理 を施した汎用材の代替として使用するのは難しく、 適用範囲が極めて狭いという 問題があった。 Among the above Fe-Cr steels, the materials most studied as structural materials for civil engineering and construction are the most used in terms of strength, corrosion resistance, ease of welding, weld toughness, versatility, etc. This is an austenitic stainless steel represented by S US 304 A specified in JI SG 4321 (2000). This austenitic stainless steel has properties such as strength, corrosion resistance, fire resistance and weld toughness that can be sufficiently satisfied as civil engineering and construction materials. However, austenitic stainless steel is much more expensive than ordinary steel because it contains a large amount of alloying elements such as Ni and Cr. Plating and painting It is difficult to use it as a substitute for general-purpose materials that have been treated, and there is a problem that the applicable range is extremely narrow.
この問題に対しては、 高価な Niを含まず、 かつ、 Cr含有量が比較的少ない S U S 4 1 0や S U S 4 1 0 S ( J I S G 4 3 0 4 ( 1 9 9 9 ) )に代表されるマル テンサイト系ステンレス鋼を改良し、 土木 ·建材用として用いることが検討され ている。 マルテンサイ ト系ステンレス銅は、 高 Cr合金で問題となる σ脆性や 475°C脆性等の心配がなく、 さらにオーステナイト系ステンレス銅で問題となる塩 化物を含む環境下での応力腐食割れの心配もないという優れた特性も有する。 上記検討例として、 例えば、 特公昭 51— 013463号公報には、 Cr: 10〜18wt%、 Ni: 0. 1〜3. 4wt%、 Si: 1. 0wt%以下および Mn: 4. 0wt%以下を含有し、 さらに C : 0. 03 %以下、 N: 0. 02 。/0以下に低減して、 溶接熱影響部にマツシブマル テンサイト組織を生成させることによって、 溶接部の性能を向上させた溶接構造 用マルテンサイト系ステンレス鋼が開示されている。 また、 特公昭 57— 028738号 公報には、 Cr: 10〜13. 5wt%、 Si: 0. 5wt%以下および Mn: 1. 0〜3. 5wt%を含有 し、 C : 0. 02wt%以下、 N: 0. 02wt%以下に低減した上で、 さらに Niを 0. lwt% 未満に制限することによって、 溶接前後における予熱、 後熱を不要とした溶接部 の靭性おょぴ加工性に優れる構造用マルテンサイト系ステンレス鋼が開示されて いる。 また、 特開 2002— 053938号公報には、 Crを 8 mass%超 15mass%未満の範 囲で含有する Fe— Cr合金に、 特に、 Co, V, Wを複合して添カ卩することにより、 Ni, Cu, Cr, Moなどを増量することや、 Ti, N の添加、 さらには C, Nの過度の 低減をすることなく耐初期発鲭性、 加工性および溶接性を改善する技術が開示さ れている。 しかしながら、 特公昭 51— 013463号公報および特公昭 57— 028738号 公報に開示された鋼材は、 熱間圧延のままの状態では強度が高すぎるため、 熱延 後に焼鈍を行う必要があり、 コストや納期の面で問題を残していた。 また、 特開 2002— 053938号公報の技術は、 Co, V, Wの複合添加が必須であり、 かつ軟質化 のためには熱延板焼鈍を推奨しているものである。 To solve this problem, SUS410 and SUS410S (JISG4304 (19999)), which do not contain expensive Ni and have relatively low Cr content Improvement of martensitic stainless steel is being studied for use in civil engineering and construction materials. Martensitic stainless copper is free from σ brittleness and 475 ° C brittleness, which are problems with high Cr alloys, and stress corrosion cracking in chloride-containing environments, which is a problem with austenitic stainless copper. It also has the excellent property of not being. As an example of the above examination, for example, Japanese Patent Publication No. 51-013463 discloses that Cr: 10 to 18 wt%, Ni: 0.1 to 3.4 wt%, Si: 1.0 wt% or less, and Mn: 4.0 wt% or less. Further, C: 0.03% or less, N: 0.02. A martensitic stainless steel for a welded structure, in which the performance of the welded portion is improved by reducing the ratio to / 0 or less and generating a martensitic martensite structure in the heat affected zone of the weld, is disclosed. Japanese Patent Publication No. 57-028738 contains Cr: 10-13.5 wt%, Si: 0.5 wt% or less, and Mn: 1.0-3.5 wt%, and C: 0.02 wt% or less. , N: Reduced to less than 0.02 wt%, and by further limiting Ni to less than 0.1 wt%, excellent pre- and post-weld pre- and post-heating toughness and workability of welds A structural martensitic stainless steel is disclosed. Also, Japanese Patent Application Laid-Open No. 2002-053938 discloses that a Fe—Cr alloy containing Cr in a range of more than 8 mass% and less than 15 mass%, in particular, by adding Co, V, and W in combination, is added. Technology to improve initial spouting resistance, workability and weldability without increasing the amount of Ni, Cu, Cr, Mo, etc., adding Ti and N, and without excessively reducing C and N. It has been disclosed. However, the steel materials disclosed in JP-B-51-013463 and JP-B-57-028738 have too high strength in the hot-rolled state, so that it is necessary to perform annealing after hot-rolling. Had left problems in terms of delivery. The technique disclosed in Japanese Patent Application Laid-Open No. 2002-053938 requires the complex addition of Co, V, and W, and recommends hot-rolled sheet annealing for softening.
そこで、 合金元素の低減や熱延板焼鈍の省略等により低コスト化を図る技術の 開発が行われている。 例えば、 特開平 11一 302737号公報には、 Cr: 8〜16wt%、 Si: 0. 05〜1. 5wt%、 Mn: 0. 05〜1· 5wt%を含有し、 C : 0. 005〜0. lwt%、 N: 0. 05wt%以下、 C + N: 0. lwt%以下に低減した鋼スラブを、 1100〜1250°Cに加熱 し、 800°C以上で熱間圧延を終了し、 700°C以上で巻取った後、 室温までの平均冷 却速度 5 °C/min以下で冷却することにより、 熱延板焼鈍を省略する技術が開示さ れている。 Therefore, technology is being developed to reduce costs by reducing alloying elements and omitting hot-rolled sheet annealing. For example, Japanese Patent Application Laid-Open No. H11-302737 discloses that Cr: 8 to 16 wt%, Si: 0.05 to 1.5 wt%, Mn: 0.05 to 1.5 wt%, and C: 0.005 to 0. lwt%, N: 0.05% by weight or less, C + N: Steel slab reduced to 0.1% by weight or less is heated to 1100 to 1250 ° C, hot rolling is completed at 800 ° C or more, and wound at 700 ° C or more After that, a technique is disclosed in which the hot-rolled sheet annealing is omitted by cooling at an average cooling rate of 5 ° C / min or less to room temperature.
し力 し、 特開平 11一 302737号公報の技術においても、 コイル端部の硬質化に対 する方策が講じられていない。 そのため、 コイル長手方向端部(先端部および後端 部)や幅方向端部(エッジ部)では、 熱間圧延中およぴ卷き取り後に過度に冷却され て硬質化し、 コイル内での材質のばらつきが大きく、 歩留まりが低いという問題 がある。 端部の硬質部を軟質化し、 材質のばらつきをなくすためには、 熱延板焼 鈍を施すことが有効であるが、 製造コストの上昇を招くほか、 焼鈍温度が高過ぎ ると、 結晶粒や炭窒化物が粗大化して靭性が低下するおそれがある。 このように、 従来技術で製造された Fe— Cr系銅板は、 熱延のままでは、 熱延コイルの先後端部 や幅方向端部(エッジ部)での硬化が著しく、 そのため、 このような強度上昇の大 きい部分は切捨てて使用せざるを得ず、 歩留まりの低下を招いていた。  However, even in the technology disclosed in Japanese Patent Application Laid-Open No. H11-302737, no measures have been taken for hardening the coil end. For this reason, at the coil longitudinal end (leading end and trailing end) and the widthwise end (edge), the steel is excessively cooled during hot rolling and after winding, and becomes hardened. There is a problem that the yield is low and the yield is low. In order to soften the hard part at the end and eliminate variations in the material, it is effective to perform hot-rolled sheet annealing.However, this leads to an increase in manufacturing cost and, if the annealing temperature is too high, crystal grains And carbonitrides may be coarsened to lower toughness. As described above, in the Fe-Cr-based copper sheet manufactured by the conventional technology, when hot-rolled as it is, the front and rear ends of the hot-rolled coil and the ends in the width direction (edges) are remarkably hardened. The parts with large increases in strength had to be cut off and used, leading to a decrease in yield.
本発明の目的は、 従来技術が抱える上記問題点を解決し、 熱間圧延のまま、 す なわち熱延板焼鈍なしの状態で、 引張強さがコィルの全長全幅に亘って 400〜  An object of the present invention is to solve the above-mentioned problems of the prior art, and to obtain a tensile strength of 400 to 400 mm over the entire length of the coil as hot rolled, that is, without hot-rolled sheet annealing.
500MPaの範囲であり、 しかも安価に歩留まりょく製造が可能な構造用 Fe— Cr系 鋼板とその製造方法を提案することにある。 発明の開示 An object of the present invention is to propose a structural Fe—Cr steel sheet that is in the range of 500 MPa and that can be produced at a low cost at a low yield. Disclosure of the invention
発明者らは、 土木 ·建築構造物に用いた場合に、 低コストでかつ十分な耐食性 が得られる Cr含有量が 6 mass%以上 10mass%未満の Fe_Cr系鋼に着目し、 この Fe _ Cr系鋼の熱延鋼板の引張強度を、 熱延のままでコィルの全長全幅に亘つて 400〜500MPaの範囲内に収める方法について検討した。 その結果、 熱延後のコィ ルの冷却速度を何らかの方法によつて全長全幅に亘つて 800〜400°C間の平均冷却 速度を 2 °C/min以下とすることにより上記課題を達成し得ることを見出した。 ま た、 高温での卷き取り後に徐冷を行う製造法では、 上述したような結晶粒、 炭窒 化物の粗大化に伴う鋼の靭性低下が問題となるが、 このような熱延後のコイルの 冷却速度が遅くなり過ぎた場合に起こる鋼の靭性低下の問題については、 Nbを適 正範囲で添加することにより回避できることを見出し、 本発明を完成させた。 The present inventors have focused on Fe_Cr-based steel having a Cr content of 6 mass% or more and less than 10 mass%, which can provide low cost and sufficient corrosion resistance when used for civil engineering and building structures. A method for keeping the tensile strength of hot-rolled steel sheet within the range of 400 to 500 MPa over the entire length of the coil as hot-rolled was studied. As a result, the above problem can be achieved by reducing the cooling rate of the coil after hot rolling by any method to an average cooling rate of 800 ° C to 400 ° C over the entire length of 2 ° C / min or less. I found that. In addition, in the manufacturing method in which annealing is performed after winding at a high temperature, the toughness of the steel is reduced due to the coarsening of the crystal grains and carbonitrides as described above. Coil The present inventors have found that the problem of a decrease in the toughness of steel that occurs when the cooling rate is too slow can be avoided by adding Nb in an appropriate range, and completed the present invention.
上記知見に基づき開発された本発明は、 C : 0. 0025〜0. 010mass%、 N: 0. 0025 〜0. 010mass%、 C + N: 0. 015mass%以下、 Si: 0. 01〜1. 0mass%、 Mn: 0. 01〜 0. 50mass%、 P : 0. 04mass%以下、 S : 0. 03mass%以下、 Cr: 6 mass%以上 10mass%未満、 Cu: 0. 01〜1. 0mass%、 Ni: 0. 01〜1. 0mass%、 V: 0. 003〜  The present invention developed on the basis of the above findings is as follows: C: 0.0025 to 0.010 mass%, N: 0.0025 to 0.010 mass%, C + N: 0.015 mass% or less, Si: 0.01 to 1 0 mass%, Mn: 0.01 to 0.50 mass%, P: 0.04 mass% or less, S: 0.03 mass% or less, Cr: 6 mass% to less than 10 mass%, Cu: 0.01 to 1.0 mass %, Ni: 0.01 to 1.0 mass%, V: 0.003 to
0. 20mass%、 A1: 0. 05mass%以下および Nb: 0. 01〜0· 15mass%を含有し、 残部が Feおよび不可避的不純物からなり、 引張強さが 400〜500MPaであることを特徴と する構造用 Fe— Cr系鋼板である。 0.2 mass%, A1: 0.05 mass% or less and Nb: 0.01-0.15 mass%, with the balance being Fe and unavoidable impurities, with a tensile strength of 400-500 MPa Structural Fe-Cr steel sheet.
なお、 本発明の鋼板は、 高い耐食性が要求される場合には、 上記成分組成に加 えてさらに、 Mo: 0. 03mass%〜1. 0mass%を含有することが好ましい。  When high corrosion resistance is required, the steel sheet of the present invention preferably further contains Mo: 0.03% by mass to 1.0% by mass in addition to the above component composition.
また、 本発明は、 C: 0. 0025〜0. 010mass%、 N: 0. 0025〜0. 010mass%、 C + N: 0. 015mass%以下、 Si: 0. 01〜; 1. 0mass%、 Mn: 0. 01〜0. 50mass%、 P : 0. 04mass%以下、 S : 0. 03mass%以下、 Cr: 6 mass%以上 10mass%未満、 Cu: 0. 01〜1. 0mass%、 Ni: 0. 01〜1. 0mass%、 V: 0. 003〜0. 20mass%、 A1:  In addition, the present invention provides: C: 0.0025 to 0.010 mass%, N: 0.0025 to 0.010 mass%, C + N: 0.015 mass% or less, Si: 0.01 to 1.0 mass%, Mn: 0.01 to 0.50 mass%, P: 0.04 mass% or less, S: 0.03 mass% or less, Cr: 6 mass% to less than 10 mass%, Cu: 0.01 to 1.0 mass%, Ni: 0.01 to 1.0 mass%, V: 0.003 to 0.20 mass%, A1:
0. 05mass%以下および Nb: 0. 01〜0. 15raass%を含有する鋼スラブを、 1100〜 1280°Cの温度に加熱し、 粗圧延の後、 930°C超の仕上圧延の終了温度で熱間圧延し、 810°C超の温度で卷取り、 その後、 コイルを 800〜400°C間の平均冷却速度を A steel slab containing not more than 0.05 mass% and Nb: 0.01 to 0.15 raass% is heated to a temperature of 1100 to 1280 ° C, and after rough rolling, at a finish rolling end temperature of more than 930 ° C. Hot rolled and wound at a temperature above 810 ° C, then the coil is cooled at an average cooling rate between 800 and 400 ° C
2 °C/min以下に制御する構造用 Fe— Cr系鋼板の製造方法を提案する。 We propose a method of manufacturing structural Fe-Cr steel sheets that can be controlled at 2 ° C / min or less.
本発明の銅スラブは、 高い耐食性が要求される場合には、 上記成分組成に加え てさらに、 上記鋼スラブの成分組成に加えてさらに、 Mo: 0. 03mass%〜1. 0mass% を含有することが好ましい。  When high corrosion resistance is required, the copper slab of the present invention further contains Mo: 0.03% by mass to 1.0% by mass in addition to the above composition of the steel slab. Is preferred.
また、 本発明の上記製造方法においては、 前記粗圧延の少なくとも 1パスを、 1000°C超の温度で、 30%以上の圧下率で行うことが好ましい。  Further, in the above-described production method of the present invention, it is preferable that at least one pass of the rough rolling is performed at a temperature of more than 1000 ° C. and a rolling reduction of 30% or more.
さらに、 本発明の上記製造方法においては、 コイルの全ての位置における 800 〜400°C間の平均冷却速度を 2 °C/min以下とすること、 その手段は、 コイルの冷 却を、 保熱カバー、 保熱ボックスあるいは保熱炉のいずれかを用いて行うこと力 s 好ましい。 本発明によれば、 鋼板の成分組成と熱延条件および熱延後の冷却条件とを適正 に組み合わせることによって、 熱延ままの状態で S S 4 0 0鋼並みの強度を有し、 しかもコイル全長全幅に亘つて軟質な構造用 Fe— Cr系鋼板を得ることができる。 そのため、 本発明の Fe— Cr系鋼板は、 現有の製造ラインで従来材と同条件で各種 形鋼の製造に供することができる。 また本発明の Fe— Cr系鋼板は、 各種の溶接で も加工できるので、 溶接構造用形鋼の製造にも用いることができる。 さらに、 本 発明の Fe— Cr系鋼板は、 土木 ·建築用の構造物に使用しても充分な耐食性と耐久 性を有するので、 ライフサイクルコストが低減でき、 その工業的利用価値は極め て大きい。 図面の簡単な説明 Further, in the manufacturing method of the present invention, the average cooling rate between 800 and 400 ° C. at all positions of the coil is set to 2 ° C./min or less. cover, it forces s preferably carried out using any of the heat-retaining box or Honetsuro. According to the present invention, by appropriately combining the composition of the steel sheet with the hot rolling conditions and the cooling conditions after hot rolling, the steel sheet has the same strength as SS400 steel in the hot rolled state, and has a total coil length. A soft Fe—Cr steel sheet for structural use can be obtained over the entire width. Therefore, the Fe—Cr-based steel sheet of the present invention can be used for the production of various section steels on the existing production line under the same conditions as the conventional material. Further, since the Fe—Cr-based steel sheet of the present invention can be processed by various kinds of welding, it can also be used for manufacturing a welded structural section steel. Furthermore, since the Fe—Cr steel sheet of the present invention has sufficient corrosion resistance and durability even when used for civil engineering and construction structures, life cycle costs can be reduced, and its industrial utility value is extremely large. . Brief Description of Drawings
図 1 :巻取後の熱延コイルの温度履歴を計算した結果の 1例を示すグラフである。 図 2 :卷取後の熱延コイルに保熱カバ一を被せた際の温度履歴を計算した結果の 一例を示すグラフである。 Figure 1: Graph showing one example of the result of calculating the temperature history of the hot-rolled coil after winding. Fig. 2: Graph showing an example of the result of calculating the temperature history when the heat insulation cover is placed on the hot-rolled coil after winding.
図 3 :図 2の冷却曲線と 2 °C/minの冷却曲線を C C T図に重ねて示したグラフで ある。 Fig. 3: The cooling curve of Fig. 2 and the cooling curve at 2 ° C / min are superimposed on the CCT diagram.
図 4 :保熱カバーの一例である。 発明を実施するための最良の形態 Figure 4: An example of a thermal cover. BEST MODE FOR CARRYING OUT THE INVENTION
本発明を開発する契機となった実験について説明する。  An experiment that triggered the development of the present invention will be described.
発明者らは、 熱間圧延のままで、 卷き取ったコイルの全長全幅にわたって強度 を 400〜500MPaの範囲とする方法の検討を行った。 まず、 コイルの冷却速度を正 確に知るために、 熱間圧延したコイルに熱電対を取り付け、 コイル内各位置の温 度の経時変化を測定した。 そして、 この測定結果を基に、 卷き取り後のコイル内 で最も冷却の遅い部分 Tmax (以降 「最高点」 と称する。 通常、 コイルの肉厚 '幅 方向中央部近傍)と最も速く冷却する部分 Tmin (以降 「最冷点」 と称する。 通常、 コイル最外巻きの幅方向両エッジ部)の温度変化の計算による予測を行った。 一例 として、 重量: 12300kg、 コイル幅: 1450讓、 內径: 760mmの熱延後のコイルを、 850°Cで卷き取った後、 20°Cの大気雰囲気下で放冷する条件で冷却した時の計算結 果を図 1に示す。 図 1から明らかなように、 コイルの最冷点 Tminでは、 わずか 30分ほどで約 400°Cまで温度が低下しており、 800〜400°Cの間を約 13°C/minとい う速い速度で冷却されていることが明らかになった。 そのため、 従来の銅板では、 冷却速度の速いコイル先後端部(内卷部ゃ外卷部)や幅方向エッジ部では、 マルテ ンサイ ト相やべイナィト相のような硬質な相が多く生成し、 硬質化しているもの と考えられた。 The inventors have studied a method in which the strength is in the range of 400 to 500 MPa over the entire length of the wound coil while hot rolling is performed. First, to accurately determine the cooling rate of the coil, a thermocouple was attached to the hot-rolled coil, and the aging of the temperature at each position in the coil was measured. Then, based on this measurement result, the portion of the coil after winding, which has the slowest cooling, Tmax (hereinafter referred to as the “highest point. Normally, the coil thickness is near the center in the width direction”), and the coil cools fastest A prediction was made by calculating the temperature change of the portion Tmin (hereinafter referred to as the "coldest point". Normally, both edges in the width direction of the outermost winding of the coil). As an example, a coil after hot rolling with a weight of 12300 kg, a coil width of 1450 sq. And a diameter of 760 mm was wound at 850 ° C and then cooled under the condition of being allowed to cool in an air atmosphere of 20 ° C. Calculation of time The results are shown in FIG. As is evident from Fig. 1, at the coldest point Tmin of the coil, the temperature drops to about 400 ° C in only about 30 minutes, and it is as fast as about 13 ° C / min between 800 and 400 ° C. It turned out that it was cooling at a speed. For this reason, in the conventional copper plate, many hard phases such as a martensite phase and a bainite phase are generated at the front and rear ends of the coil (inner winding part や outer winding part) and in the width direction edge part where the cooling rate is high. It was thought that it was hardened.
そこで、 発明者らは、 Cr含有量が 6 mass%以上 10mass%未満の合金鋼について の連続冷却変態曲線(C C T図)や等温変態曲線(T T T図)等の金属学的データを 収集し、 冷却途中で保熱を行った場合の変態挙動について検討を行った。 その結 果、 卷取り後、 コイル先後端部や幅方向エッジ部が 400°C未満の温度に達する前 に、 何らかの手段で保熱を行えば、 コイルの内部熱による復熱効果と保熱による 徐冷効果とにより、 熱間圧延ままでもコイル全長全幅に亘つて 800°Cから 400°Cの 間の平均冷却速度を 2 °C/min以下とすることができ、 ひいては目標とする軟質化 が達成できることを見出した。 なお、 本発明で言う平均冷却速度とは、 800°C〜 400°Cの温度差 400°Cを、 800°Cから 400°Cまで冷却するのに要した全時間で除した 冷却速度のことであり、 冷却途中の一時的な冷却速度のことではない。  Therefore, the inventors collected metallurgical data such as continuous cooling transformation curves (CCT diagrams) and isothermal transformation curves (TTT diagrams) for alloy steels with a Cr content of 6 mass% or more and less than 10 mass%. The transformation behavior when heat retention was performed on the way was examined. As a result, if the heat is kept by any means after winding, before the rear end of the coil or the edge in the width direction reaches a temperature of less than 400 ° C, the heat recovery effect due to the internal heat of the coil and the heat retention Due to the gradual cooling effect, the average cooling rate between 800 ° C and 400 ° C over the entire length of the coil can be kept at 2 ° C / min or less over the entire width of the coil even during hot rolling, and the target softening can be achieved. I found what I could achieve. The average cooling rate referred to in the present invention is a cooling rate obtained by dividing a temperature difference of 400 ° C from 800 ° C to 400 ° C by a total time required for cooling from 800 ° C to 400 ° C. It is not a temporary cooling rate during cooling.
図 2は、 図 1と同一条件で卷き取ってから 30分経過した後のコイルに、 保熱の 1つの方法として、 100mm厚の断熱材を内側にライニングした鉄製保熱カバ一を 被せた時の、 コイル最高点 Tinaxと最冷点 Tminにおける温度の経時変化を計算し た結果を示したものである。 この図 2から、 保熱カバーを使用することにより、 冷却速度の最も速いコイル最冷点 Tminにおける 800°Cから 400°Cまでの冷却時間 を 400分以上、 即ち平均冷却速度を 1 °C/min以下にできることがわかる。  In Fig. 2, the coil was wound 30 minutes after winding under the same conditions as in Fig. 1, and as one method of heat retention, a 100-mm-thick heat insulating cover lined with heat-insulating material was placed over the coil. It shows the results of calculating the time-dependent changes in temperature at the coil's highest point Tinax and coldest point Tmin. From Fig. 2, it can be seen that the use of the heat retention cover allows the cooling time from 800 ° C to 400 ° C at the coldest point Tmin of the coil with the fastest cooling rate to be 400 minutes or more, that is, the average cooling rate is 1 ° C It can be seen that it can be reduced to min or less.
また、 図 3は、 図 2の冷却曲線と 2 °C/minで連続冷却した時の冷却曲線を、 C C T図に重ね合わせて示した図である。 この図 3から、 800°Cから 400°Cまでの冷 却時間を 12000秒(200分)以上、 即ち 2 °C/min以下の平均冷却速度とすれば、 ベ ィナイ ト(図中: B )を生成することなく、 軟質なフェライ ト(図中: F )単相組織 が得られることがわかる。 また、 コイルの最冷点 Tminにおいても、 400°C未満に 冷却される前に保熱を開始することで、 硬質なマルテンサイ ト相(図中: M)の生 成を完全に抑制し、 さらに、 保熱開始前の冷却で生成したベイナイトを保熱後の 復熱による焼戻し効果により焼戻しべィナイ トあるいはフェライ ト相に変態させ、 軟質化できることがわかる。 FIG. 3 is a diagram in which the cooling curve of FIG. 2 and the cooling curve when continuously cooled at 2 ° C./min are superimposed on a CCT diagram. From Fig. 3, if the cooling time from 800 ° C to 400 ° C is 12000 seconds (200 minutes) or more, that is, the average cooling rate is 2 ° C / min or less, the bainite (B in the figure) It can be seen that a soft ferrite (in the figure: F) single-phase structure can be obtained without the formation of. Also, at the coldest point Tmin of the coil, by starting heat retention before the coil is cooled to less than 400 ° C, the formation of a hard martensite phase (M in the figure: M) is completely suppressed. The bainite produced by cooling before the start of heat retention It can be seen that it can be transformed into a tempered bainite or ferrite phase by the tempering effect due to reheating and can be softened.
以上のように、 コイル卷取り後、 コイル最冷点 Tminの温度が 400°C未満に冷却 される前に、 何らかの保熱手段を適用し、 鋼板の平均冷却速度を 2 °C/min以下と することにより、 コイル全長、 全幅に亘つて軟質な Fe— Cr系鋼板を得られること がわカゝつた。  As described above, after coil winding and before the temperature of the coil's coldest point Tmin is cooled to less than 400 ° C, some means of heat retention is applied to reduce the average cooling rate of the steel sheet to 2 ° C / min or less. As a result, it was found that a soft Fe—Cr-based steel sheet could be obtained over the entire length and width of the coil.
次に、 本発明の Fe— Cr系銅板の成分組成を上記範囲とする理由について説明す る。  Next, the reason why the composition of the Fe—Cr-based copper plate of the present invention is set in the above range will be described.
C : 0. 0025〜0. 010mass%、 N: 0. 0025〜0. 010mass%およぴ C + N: 0. 015mass% 以下  C: 0.0025-0.010 mass%, N: 0.0025-0.010 mass% and C + N: 0.015 mass% or less
本発明鋼の溶接熱影響部は、 微細なマルテンサイト組織となるが、 C, Nは、 このマルテンサイ ト相の硬さに大きな影響を及ぼす。 溶接熱影響部の靭性および 加工性を改善し、 溶接割れを防止するためには、 C, Nの低減が有効である。 し かし、 C, N含有量の過度の低減は、 溶接熱影響部のマルテンサイ ト生成能を低 下させる反面、 粗大フェライ トの生成を助長して溶接部の靭性を著しく低下させ る。 また、 精鍊コス トの上昇も招く。 そのため、 C, Nの含有量は、 それぞれ 0. 0025mass%以上とする。 一方、 C, Nおよび C + Nの含有量が過度に多くなる と、 溶接熱影響部に生成するマルテンサイ ト相の硬さが極端に高くなり脆性を劣 化させる。 そのため、 C : 0. 010mass%以下、 N : 0. 010mass%以下、 C +  The weld heat affected zone of the steel of the present invention has a fine martensitic structure, but C and N greatly affect the hardness of the martensite phase. It is effective to reduce C and N to improve the toughness and workability of the heat affected zone and prevent weld cracking. However, excessive reduction of the C and N contents reduces the martensite forming ability of the heat-affected zone of the weld, but promotes the formation of coarse ferrite and significantly reduces the toughness of the weld. In addition, the cost of precision will increase. Therefore, the contents of C and N are each set to 0.0025 mass% or more. On the other hand, if the contents of C, N and C + N are excessively high, the hardness of the martensite phase formed in the heat affected zone becomes extremely high, and the brittleness deteriorates. Therefore, C: 0.010 mass% or less, N: 0.010 mass% or less, C +
N : 0. 015mass%以下に制限する。 好ましくは、 C : 0. 003〜0. 008mass%、 N : 0. 003〜0. 006mass%、 C + N : 0. 012mass%以下である。 N: Limit to 0.015 mass% or less. Preferably, C: 0.003 to 0.008 mass%, N: 0.003 to 0.006 mass%, C + N: 0.012 mass% or less.
Si : 0. 01〜1. 0mass% Si: 0.01 to 1.0 mass%
Siは、 脱酸剤としてまた強化元素として添加する元素である。 含有量が  Si is an element added as a deoxidizing agent and as a strengthening element. Content
0. 01mass%未満では十分な脱酸効果が得られず、 一方、 1. 0mass%を超える過剰の 添加は、 靭性ゃ加工性の低下を招くほ力 溶接熱影響部のマルテンサイ ト生成能 を低下させる。 そのため Si量は 0. 01〜1. 0maSS%の範囲に制限する。 好ましくは 0. 1〜0. 5mass%の範囲である。 If the content is less than 0.01 mass%, a sufficient deoxidizing effect cannot be obtained.On the other hand, an excessive addition exceeding 1.0 mass% reduces the toughness and the workability that causes a reduction in workability. Let it. Therefore, the amount of Si is limited to the range of 0.01 to 1.0 ma SS %. Preferably, it is in the range of 0.1 to 0.5 mass%.
Mn: 0. 01〜0. 50mass% Mnは、 オーステナィ ト(γ )相安定化元素であり、 溶接熱影響部の組織を微細な マルテンサイ ト組織とし、 溶接部の靭性改善に寄与する。 し力 し、 過度に添加す ると、 熱延ままでの硬質相の割合が増加し、 目標とする引張強度(400〜500MPa)が 得られなくなる。 また、 溶接した際に、 2相域加熱部に生成するマルテンサイ ト の硬さを上昇させて脆ィヒを招くほ力 Mn Sを形成して耐食性を低下させる。 その ため、 Mn添加量の上限は 0. 50mass%に制限する。 一方、 Mnは、 Siと同様、 脱酸 剤としても有用であるため、 下限を 0. 01mass%とする。 好ましくは、 0. 10〜 0. 50mass%の範囲である。 Mn: 0.01 to 0.50 mass% Mn is an austenite (γ) phase stabilizing element, and makes the structure of the heat affected zone a fine martensite structure, contributing to the improvement of the toughness of the weld. If added excessively, the ratio of the hard phase as hot rolled increases, and the target tensile strength (400 to 500 MPa) cannot be obtained. In addition, when welding, the hardness of the martensite generated in the two-phase zone heating section is increased, and the strength MnS, which causes brittleness, is formed, thereby reducing the corrosion resistance. Therefore, the upper limit of the amount of added Mn is limited to 0.50 mass%. On the other hand, Mn is useful as a deoxidizer like Si, so the lower limit is set to 0.01 mass%. Preferably, it is in the range of 0.10 to 0.50 mass%.
P : 0. 04mass%以下 P: 0.04 mass% or less
Pは、 熱間加工性や成形性、 靱性を低下させるだけでなく、 耐食性に対しても 有害な元素である。 特に、 含有量が 0. 04mass%を超えると、 その悪影響が顕著に なるので、 Pは 0. 04mass%以下に制限する。 好ましくは 0. 030mass%以下である。 S : 0. 03mass%以下  P is an element that not only reduces hot workability, formability, and toughness but also is harmful to corrosion resistance. In particular, if the content exceeds 0.04 mass%, the adverse effect becomes remarkable, so P is limited to 0.04 mass% or less. It is preferably at most 0.030 mass%. S: 0.03 mass% or less
Sは、 Mnと結合して Mn Sを形成し、 耐食性や耐久性を低下させる。 また、 Sは、 結晶粒界に偏析して粒界脆ィヒを促進する有害元素でもあるので、 極力低減するこ とが好ましレ、。 特に、 含有量が 0. 03maSS%を超えると、 その悪影響が顕著になる ので、 Sの含有量は 0. 03mass%以下に制限する。 好ましくは 0. 008mass%以下で ある。 S combines with Mn to form Mn S, which reduces corrosion resistance and durability. S is also a harmful element that segregates at the grain boundaries and promotes grain boundary brittleness, so it is desirable to reduce S as much as possible. In particular, when the content is more than 0. 03MA SS%, because the adverse effect becomes significant, the content of S is limited to not more than 0. 03mass%. Preferably it is 0.008 mass% or less.
Cr: り mass%W上 10raass%7)5、¾  Cr: mass% W on 10raass% 7) 5, ¾
Crは、 耐食性の改善に有効な元素であり、 6 maSS%未満では土木 ·建築用構造 物等として十分な耐食性を確保することが難しい。 一方、 Crを 10maSS%以上添加 することは、 コストの増加を招く上、 熱間圧延のままで所望の強度とすることが 困難となる。 よって、 Cr添加量は 6 mass%以上 10mass%未満の範囲とする。 耐食 性を重視する場合には、 8 maSS%以上 10mass%未満の範囲が好ましい。 Cr is an element effective in improving the corrosion resistance, and if it is less than 6 ma SS %, it is difficult to secure sufficient corrosion resistance for civil engineering and building structures. On the other hand, if Cr is added in an amount of 10 ma SS % or more, the cost is increased, and it is difficult to obtain a desired strength while hot rolling. Therefore, the amount of Cr added is in the range of 6 mass% or more and less than 10 mass%. When importance is attached to corrosion resistance, the range is preferably not less than 8 ma SS % and less than 10 mass%.
Cu: 0. 01〜1. 0mass%、 Cu: 0.01 to 1.0 mass%,
Cuは、 耐食性を向上させるのに有効な元素であり、 土木 ·建築構造物等の長寿 命化を図る目的で添加する。 し力 し、 0. 01mass%未満の添カ卩では添加効果に乏し く、 一方、 1. 0maSS%を超える過度の添加は、 コストの増加を招くほ力、 熱間割れ 感受性を高めて熱延時に脆化を起こすおそれがある。 そのため、 Cuは 0. 01〜 1. 0maSS%の範囲とする。 なお、 耐食性と耐熱間割れ性および加工性とを両立させ る観点からは、 Cuは、 0. 1〜0. 7mass%の範囲とするのが好ましい。 Cu is an element effective for improving corrosion resistance, and is added for the purpose of prolonging the life of civil engineering and building structures. And then force, 0. In the hydrogenation mosquito卩less than 01Mass% rather poor in the effect of addition, whereas, 1. excessive addition of more than 0 mA SS% is force ho lead to increase in cost, to increase hot cracking sensitivity thermal Embrittlement may occur during rolling. Therefore, Cu is 0.01 1. The range is 0ma SS %. From the viewpoint of achieving both corrosion resistance, hot cracking resistance, and workability, Cu is preferably in the range of 0.1 to 0.7 mass%.
Ni: 0. 01〜1. 0mass% Ni: 0.01 to 1.0 mass%
Niは、 延性や靭性を向上させるのに有効な元素である。 本発明では、 特に溶接 熱影響部の靭性を向上させ、 耐鲭性を改善するために添加する。 ざらに、 Niは、 Cu添加に起因した熱間圧延中の脆性割れの防止にも効果がある。 しかし、 含有量 が 0. 01mass%未満では添加効果に乏しく、 一方、 1. 0mass%を超えると添加効果 が飽和するだけでなく、 素材の硬質化やコストの上昇を招く。 よって、 Niは 0. 01 〜1. 0mass%の範囲に限定する。 母材の強度と溶接熱影響部の靭性を両立する上で 好ましい範囲は、 0. 05〜0. 4mass%である。  Ni is an element effective for improving ductility and toughness. In the present invention, it is particularly added to improve the toughness of the heat affected zone and improve the heat resistance. In addition, Ni is also effective in preventing brittle cracking during hot rolling caused by the addition of Cu. However, when the content is less than 0.01 mass%, the effect of addition is poor. On the other hand, when the content is more than 1.0 mass%, the effect of addition is not only saturated, but also the material becomes harder and the cost increases. Therefore, Ni is limited to the range of 0.01 to 1.0 mass%. A preferred range for satisfying both the strength of the base material and the toughness of the heat affected zone is 0.05 to 0.4 mass%.
V : 0. 003〜0. 20mass% V: 0.003 to 0.20 mass%
Vは、 適量添加することにより、 溶接を行った際の溶接熱影響部の脆化を防止 すると共に、 フェライ ト結晶粒の粗大化を防止することができる。 しかしながら、 添加量が 0. 003maSSQ /。未満では、 上記添加効果が十分でなく、 一方、 0. 20mass% を超えて添加すると、 溶接熱影響部のマルテンサイ ト生成能が著しく低下し、 溶 接部の靭性が低下する。 また、 熱延のままで所望の引張強度 (400〜500MPa)を得る ことが困難となる。 そのため、 Vは 0. 003〜0. 20mass%の範囲で添加する。 好ま しくは 0. 005〜0. 15mass%である。 By adding an appropriate amount of V, it is possible to prevent embrittlement of the heat affected zone during welding and also prevent ferrite crystal grains from becoming coarse. However, the addition amount was 0.003ma SS Q /. If it is less than the above, the above effect is not sufficient. On the other hand, if it exceeds 0.20 mass%, the martensite forming ability of the heat affected zone is significantly reduced, and the toughness of the welded portion is lowered. Also, it becomes difficult to obtain a desired tensile strength (400 to 500 MPa) while hot rolling. Therefore, V is added in the range of 0.003 to 0.20 mass%. Preferably, it is 0.005 to 0.15 mass%.
A1 : 0. 05mass%以下 A1: 0.05 mass% or less
A1は、 脱酸剤として有用な添加元素であり、 また、 鋼板の曲げ加工性の改善に も有効に寄与する。 その効果を得るためには 0. 003mass%以上添加することが好 ましい。 し力 し、 A1含有量が 0. 05mass%を超えると、 介在物が多くなつて機械的 性質の劣化を招く。 よって、 A1 は 0. 05mass%以下に制限する。 なお、 この A1 は、 Siや Mn等の他の成分による脱酸で鋼中酸素が十分に低減できる場合には、 特に 含有されていなくてもよい。  A1 is an additive element useful as a deoxidizing agent, and also effectively contributes to improving the bending workability of a steel sheet. To obtain the effect, it is preferable to add 0.0003 mass% or more. However, when the A1 content exceeds 0.05 mass%, the amount of inclusions increases and mechanical properties deteriorate. Therefore, A1 is limited to 0.05 mass% or less. A1 may not be particularly contained if oxygen in steel can be sufficiently reduced by deoxidation with other components such as Si and Mn.
Nb: 0. 01〜0. 15mass% Nb: 0.01 to 0.15 mass%
Nb は、 本発明においては極めて重要な元素である。 本発明の Fe— Cr 系鋼板は、 熱延コイルに巻き取り後、 過度の保熱によって、 800〜400°Cの平均冷却速度が 15°C/hx (0. 25°C/min)以下となると、 フェライ ト結晶粒と炭窒化物の著しい粗大化 が起こり、 靭性が著しく低下することがある。 この靱性の低下を防止するには、 適量の Nb添加が有効であり、 この Nb添加によつて靱性の低下を完全に防止する ことができる。 これは, 熱延中に析出した微細かつ安定な N b ( C, N) のピン 止め効果により, 保熱中に起きる結晶粒および炭窒化物の粗大化が防止されたこ とによるものと考えられる。 しかし、 添加量が 0. 01mass%未満ではその効果に乏 しく、 一方、 0. 15mass%を超えると高強度化し、 熱延ままで引張強度 400〜 Nb is a very important element in the present invention. The average cooling rate of 800-400 ° C is 15 ° C / hx (0.25 ° C / min) or less due to excessive heat retention after the Fe-Cr-based steel sheet of the present invention is wound around a hot-rolled coil. The ferrite grains and carbonitrides become significantly coarser May occur and the toughness may be significantly reduced. In order to prevent this decrease in toughness, it is effective to add an appropriate amount of Nb, and the addition of Nb can completely prevent the decrease in toughness. This is considered to be due to the pinning effect of fine and stable Nb (C, N) precipitated during hot rolling, which prevented the coarsening of crystal grains and carbonitrides during heat retention. However, if the addition amount is less than 0.01 mass%, the effect is poor.On the other hand, if it exceeds 0.15 mass%, the strength increases, and the tensile strength becomes 400 to
500MPaを得ることができなくなるばかりでなく、 加工性が低下する。 また、 溶接 熱影響部でマルテンサイ ト組織が得られなくなり、 靭性が低下する。 強度と靭性 および溶接性とのパランスから好適な添加範囲は 0. 02〜0. 10mass%である。 Not only will it not be possible to obtain 500 MPa, but also the workability will decrease. In addition, a martensite structure cannot be obtained in the heat affected zone of welding, and the toughness decreases. From the balance between strength, toughness and weldability, the preferred addition range is 0.02 to 0.10 mass%.
本発明においては、 上記必須成分以外に Moを下記の範囲で添加することができ る。  In the present invention, Mo can be added in the following range in addition to the above essential components.
Mo: 0. 03mass%~ l. 0mass%  Mo: 0.03mass% ~ l. 0mass%
Moは、 耐食性の改善に有効な元素であり、 本発明では、 必要に応じて添加する ことができる。 その効果を得るためには、 0. 03maSS%以上添加することが好まし い。 しかしながら、 1. 0mass%を超えて添加すると、 加工性が著しく低下するほか、 熱延ままで目的とする引張強度 (400〜500MPa)が得られなくなるため、 添加量は 1. 0masSQ/o以下に制限することが好ましい。 なお、 耐食性と強度 ·加工性のバラン スという観点からは、 0. l〜0. 5mass%の範囲がより好ましい。 Mo is an element effective for improving corrosion resistance, and in the present invention, Mo can be added as needed. To obtain the effect, it is preferable to add 0.03 ma SS % or more. However, if it is added in excess of 1.0 mass%, the workability will be significantly reduced and the desired tensile strength (400-500 MPa) will not be obtained while hot rolling, so the added amount will be 1.0 mAsS Q / o. It is preferable to limit to the following. From the viewpoint of the balance between corrosion resistance, strength and workability, the range of 0.1 to 0.5 mass% is more preferable.
なお、 本発明の鋼板は、 上記の成分以外に、 耐初期鲭性を向上するために、 Co および Zまたは Wを、 Co: 0. 01〜0. 5mass%、 W: 0. 001〜0. 05mass%の範囲で含 有することができる。  In addition, in addition to the above components, the steel sheet of the present invention may contain Co and Z or W, Co: 0.01 to 0.5 mass%, W: 0.001 to 0.00, in order to improve the initial heat resistance. It can be contained in the range of 05 mass%.
次に、 本発明に係る Fe— Cr系鋼板の強度特性について説明する。  Next, the strength characteristics of the Fe—Cr-based steel sheet according to the present invention will be described.
本発明の鋼板は、 引張強さは熱延コイルの全長全幅に亘つて 400〜500MPaの範 囲であることが必要である。 引張強さを 400〜500MPa の範囲とする理由は、 従来、 土木 ·建築構造に用いられてきた形鋼は、 S S 4 0 0鋼クラスの鋼材を加工して 製造されているが、 その生産ラインをそのまま活用するためには、 前記 S S 4 0 0鋼と同程度の強度と加工性を有するものであることが必要だからである。 すな わち、 引張強さが 500MPaを超えると、 形鋼の生産ラインの加工負荷が増加し、 設 備の増強が必要となる他、 加工性も劣化するので好ましくない。 一方、 400MPaを 下回ると、 形鋼に成形加工する際に過度の変形が生じる他、 構造材として必要な 強度が得られなくなる。 また、 上記引張強さが得られる範囲を、 コイル全長全幅 とする理由は、 この要求が満たされない部分は削除して使用する必要があるため、 歩留まり低下を招くからである。 The steel sheet of the present invention needs to have a tensile strength in the range of 400 to 500 MPa over the entire length of the hot-rolled coil. The reason for setting the tensile strength in the range of 400 to 500 MPa is that the section steels conventionally used for civil engineering and building structures are manufactured by processing SS400 steel class steel materials. In order to utilize the steel as it is, it is necessary to have the same strength and workability as the SS400 steel. In other words, if the tensile strength exceeds 500 MPa, the processing load on the section steel production line increases, the equipment needs to be strengthened, and the workability deteriorates, which is not preferable. On the other hand, 400MPa If it is less than this, excessive deformation occurs when forming into a section steel, and the strength required for structural materials cannot be obtained. The reason why the range in which the above tensile strength can be obtained is defined as the entire length of the coil is that it is necessary to remove and use a part that does not satisfy this requirement, which causes a decrease in yield.
また、 本発明の鋼板は、 その適用分野が土木 ·建築構造用であり、 極寒冷地で の使用においても、 十分な耐衝撃性を有していることが求められる。 そのような 場合を考慮して、 本発明の鋼板は、 一 50°Cにおけるシャルビ一衝撃試験の吸収ェ ネルギー V E_5。は、 100 J /cm2以上であることが好ましい。 Further, the steel sheet of the present invention is applied to civil engineering and architectural structures, and is required to have sufficient impact resistance even in use in extremely cold regions. In consideration of such a case, the steel sheet of the present invention, one 50 ° absorption E energy V of Sharubi one impact test in C E_ 5. Is preferably 100 J / cm 2 or more.
次に、 本発明に係る Fe—Cr系鋼板の製造方法について説明する。  Next, a method for producing an Fe—Cr-based steel sheet according to the present invention will be described.
上記成分組成に調整した鋼を、 転炉または電気炉等の通常公知の方法で溶製し たのち、 真空脱ガス(R H)法、 V O D (Vacuum Oxygen Decarburization)法、 A O D (Argon Oxygen Decarburizat ion)等の公知の方法で 2次精練し、 次いで、 連続 铸造法あるいは造塊一分塊圧延法で銅スラブ (鋼素材)とする。 なお、 不可避的不 純物のレベルを低減するためには、 スクラップの選別等、 適正な原料選択を行う ことが望ましい。 鋼スラブの厚さは、 後述する熱間粗圧延での圧下率を確保する ためには、 100膽以上とするのが好ましい。  After the steel adjusted to the above composition is melted by a commonly known method such as a converter or electric furnace, vacuum degassing (RH) method, VOD (Vacuum Oxygen Decarburization) method, AOD (Argon Oxygen Decarburizat ion) method Secondary scouring is performed by a known method such as that described above, and then a copper slab (steel material) is produced by a continuous casting method or an ingot-integral block rolling method. In order to reduce the level of unavoidable impurities, it is desirable to select appropriate raw materials, such as scrap sorting. The thickness of the steel slab is preferably 100 bun or more in order to secure a reduction ratio in hot rough rolling described below.
次いで、 上記鋼スラブを 1100〜1280°Cの温度に加熱し、 熱間圧延して熱延鋼板 とする。 上記スラブ加熱温度は、 熱延コイルを巻き取り後、 自己焼鈍により軟質 化を図るためには高いほど好ましいが、 1280°Cを超えるとスラブ垂れが著しくな り、 また結晶粒が粗大化して熱延鋼板の靭性が低下するため好ましくない。 一方、 1100°C未満の加熱温度では、 熱間圧延の仕上圧延の終了温度(F D T)を 930°C超 えとすることが困難となる。 好ましいスラブ加熱の温度範囲は、 1100〜1250°Cで ある。  Next, the steel slab is heated to a temperature of 1100 to 1280 ° C and hot-rolled to obtain a hot-rolled steel sheet. The above-mentioned slab heating temperature is preferably as high as possible to achieve softening by self-annealing after winding the hot-rolled coil, but if it exceeds 1280 ° C, dripping of the slab becomes remarkable, and the crystal grains become coarse and It is not preferable because the toughness of the rolled steel sheet is reduced. On the other hand, if the heating temperature is lower than 1100 ° C, it is difficult to make the finish temperature (FDT) of the finish rolling of hot rolling higher than 930 ° C. The preferred slab heating temperature range is 1100 to 1250 ° C.
熱間圧延の粗圧延の工程では、 1000°C超の温度域で圧下率が 30%以上となる圧 延を少なくとも 1パス以上行うことが好ましい。 この強圧下圧延によって熱延鋼 板の結晶組織を微細化することができ、 後述するコイル卷き取り後の保熱により 引き起こされ、 特にコイル中央部において問題となるフェライト粒の粗大化によ る靱性の低下を補うことができる。 また、 粗圧延での 1パス当りの圧下率の上限 値は、 表面性状を悪くする恐れがあるので、 6 0 %以下であることが、 好ましレ、。 また、 粗圧延における上記強圧下圧延は、 溶接時にフェライ ト(α ) +オーステ ナイ ト(γ )の 2相域に加熱される部分の靭性向上に対しても効果がある。 という のは、 2相域に加熱された溶接熱影響部に発生するマルテンサイ トは、 銅板のフ ェライ ト結晶粒界に生成するが、 このマルテンサイトが過度に硬質化すると割れ の起点となり脆性が低下する。 そこで、 マトリックスとなるフェライ ト組織を微 細化し、 フェライ ト相の靭性を向上させておけば、 亀裂の伝播が抑えられて脆ィ匕 を抑制することができるからである。 本発明の鋼板は、 1000°C超の温度ではォー ステナイト単相であるが、 粗圧延で、 圧下率が 30%以上の圧延を少なくとも 1パ ス以上行うことにより、 フェライト相の生成サイトを増加させて結晶粒を微細化 することができる。 また、 粗圧延の温度を 1000°C超とするのが好ましい理由は、 仕上圧延終了温度を 930°C超えとするためでもある。 In the rough rolling step of hot rolling, it is preferable to perform at least one or more passes of rolling at a rolling reduction of 30% or more in a temperature range exceeding 1000 ° C. This high-pressure rolling can refine the crystal structure of the hot-rolled steel sheet, which is caused by heat retention after coil winding, which will be described later. It can compensate for the decrease in toughness. In addition, the upper limit of the rolling reduction per pass in the rough rolling is preferably 60% or less because there is a risk of deteriorating the surface properties. Further, the above-described heavy rolling under rough rolling is also effective in improving the toughness of a portion heated to a two-phase region of ferrite (α) + austenite (γ) during welding. This is because the martensite generated in the heat-affected zone of the weld heated to the two-phase region is formed at the ferrite crystal grain boundaries of the copper plate, but when this martensite becomes excessively hard, it becomes the starting point of cracking and the brittleness decreases. descend. Therefore, if the ferrite structure serving as the matrix is made finer and the toughness of the ferrite phase is improved, the propagation of cracks can be suppressed and brittleness can be suppressed. Although the steel sheet of the present invention has a single austenite phase at a temperature exceeding 1000 ° C, the formation site of the ferrite phase is formed by performing at least one pass of rolling at a rolling reduction of 30% or more in rough rolling. The crystal grains can be refined by increasing the number. The reason why the temperature of the rough rolling is preferably higher than 1000 ° C is also to make the finish rolling finish temperature exceed 930 ° C.
熱間粗圧延に続く仕上圧延における圧延終了温度は 930°C超え、 熱延後コイル の卷取温度は 810°C超えとする必要がある。 というのは、 本発明では、 熱延コィ ルを卷き取り後、 自己焼鈍を利用して軟質化を促進する。 そのためには、 コイル の卷取温度を 810°C超えとする必要があり、 この卷取温度を確保するためには、 仕上圧延の終了温度を 930°C超えとする必要があるからである。 また、 仕上圧延 終了温度を 930°C超えとすることにより、 α + γ 2相域での圧延による加工フエ ライ トの導入を防止することができる。 さらに、 コイル卷取温度を 810°C超とす る理由は、 卷き取り後のコイル内部の温度を高く保つことにより、 保熱による復 熱効果を高め、 特に、 保熱開始時のコイルの全ての部分の温度を 400°C以上とし、 上記自己焼鈍による軟質化をより効果的に促進するためでもある。 なお, 圧延終 了温度, 卷取温度は, 結晶粒粗大化による靭性低下を防ぐため, それぞれ 1 1 0 0 °C未満, 9 5 0 °C未満とするのが望ましい.  The finish temperature in finish rolling following hot rough rolling must exceed 930 ° C, and the coiling temperature of the coil after hot rolling must exceed 810 ° C. This is because, in the present invention, after the hot-rolled coil is wound up, softening is promoted by utilizing self-annealing. For this purpose, the coil winding temperature must be higher than 810 ° C, and in order to secure this coil temperature, the finish rolling finish temperature must be higher than 930 ° C. Further, by setting the finish rolling end temperature to be higher than 930 ° C, it is possible to prevent the introduction of processed ferrite by rolling in the α + γ2 phase region. Furthermore, the reason for setting the coil winding temperature to be higher than 810 ° C is that by keeping the temperature inside the coil after winding high, the recuperation effect by heat retention is enhanced. This is also to raise the temperature of all parts to 400 ° C or more, and to promote the softening by the self-annealing more effectively. The end-of-rolling temperature and winding temperature are preferably less than 110 ° C and less than 950 ° C, respectively, in order to prevent a decrease in toughness due to grain coarsening.
次に、 本発明では、 コイル内部の平均冷却速度を 2 °C/min以下とする、 すなわ ち、 卷き取り後のコイルにおける 800から 400°Cまでの冷却時間を 200分以上と することが必要である。 この平均冷却速度とすることにより、 鋼板組織をフェラ ィ ト単相(一部炭窒化物)、 焼戻しべィナイト単相あるいは焼戻しべィナイ ト +フ ェライ ト組織とすることができ、 硬質なマルテンサイ ト相の生成を完全に抑える ことが可能となり、 ひいては目的とする均一な銅板強度(T S : 400〜500MPa)を得 ることができる。 ここで、 上記のコイル内部の冷却速度とは、 コイル長手方向の 中央部でかつ板幅方向エッジ部から 50脑以上内側の部分での冷却速度を意味する。 また、 この部分の冷却速度の測定方法は、 熱電対をコイル内に挿入して行うのが 最も確実であるが、 コイル外部温度から計算により推定することもできる。 Next, in the present invention, the average cooling rate inside the coil is set to 2 ° C / min or less, that is, the cooling time from 800 to 400 ° C in the coil after winding is set to 200 minutes or more. is necessary. By setting this average cooling rate, the steel sheet can be made into a ferrite single phase (partially carbonitride), a tempered bainite single phase or a tempered bainite + ferrite structure, and can be made of a hard martensite. It is possible to completely suppress the formation of phases, and eventually obtain the desired uniform copper plate strength (TS: 400 to 500 MPa). Can. Here, the cooling rate inside the coil means a cooling rate at a central portion in the longitudinal direction of the coil and at a position 50 ° or more inside the edge portion in the plate width direction. The most reliable method of measuring the cooling rate of this part is to insert a thermocouple into the coil, but it can also be estimated by calculation from the temperature outside the coil.
ところで、 卷き取り後のコイルの平均冷却速度を 2 °C/min以下とすることは、 上記コイル内部であれば、 比較的容易に達成することができる。 し力 し、 コイル の先端部(内卷部)や後端部 (外卷部)およびコイルの幅方向エッジ部では、 平均冷 却速度が 2 °C/minより速くなり易'く、 容易にべィナイ ト相ゃマルテンサイ ト相が 生成して硬質化する。 そのため、 従来、 コイルのこの部分は切除されて使用され ており、 歩留まり低下の原因となっている。  By the way, setting the average cooling rate of the coil after winding to 2 ° C./min or less can be achieved relatively easily within the coil. The average cooling rate tends to be faster than 2 ° C / min at the leading end (inner winding) and the rear end (outer winding) of the coil and at the edge in the width direction of the coil. The bainite-martensite phase is formed and hardens. For this reason, this part of the coil has been cut and used in the past, causing a decrease in yield.
この問題への対応策として、 本発明は、 卷き取り後のコイルの最冷点が 400°C 未満に冷却される前に何らかの手段で保熱を開始し、 この保熱による復熱効果を 利用して、 実質的にコイル内の全ての位置における 800〜400°C間の冷却時間を 200分以上、 平均冷却速度を 2 °C/min以下とする方法を提案する。 この保熱を行 うことにより、 コイルの最冷点を十分に焼き戻すことができるので、 コイル全長 全幅に亘つて目的の強度とすることができる。 好ましくは、 コイル内の全ての位 置における平均冷却速度を l °C/min以下とするのがよい。 なお、 上記コイルの最 冷点は、 一般に、 コイル最外巻きの幅方向両エッジ部に相当する部分である。 そ こで、 この部分に熱電対を溶接等により取り付けることにより、 冷却速度を測定 することができる。 また、 放射温度計を用いて測温をしてもよい。  As a countermeasure against this problem, the present invention starts the heat retention by some means before the coldest point of the coil after winding is cooled to less than 400 ° C. Utilizing this method, we propose a method to set the cooling time between 800 and 400 ° C at substantially all positions in the coil to 200 minutes or more and the average cooling rate to 2 ° C / min or less. By performing this heat retention, the coldest point of the coil can be sufficiently tempered, so that the desired strength can be achieved over the entire length and width of the coil. Preferably, the average cooling rate at all positions in the coil is set to l ° C / min or less. The coldest point of the coil is generally a portion corresponding to both widthwise edges of the outermost winding of the coil. Therefore, the cooling rate can be measured by attaching a thermocouple to this portion by welding or the like. Alternatively, the temperature may be measured using a radiation thermometer.
保熱を行う方法としては、 例えば図 4に示すように鉄製の箱の内側に断熱材を ライニングした保熱カバーをコイルに被せる方法、 ピット状の穴を掘り、 内壁に 断熱材を貼り付けた保熱ボックスに納める方法、 さらには、 加熱機能をもった保 熱炉を用いるなど種々の方法が適用でき、 実施者が現有している製造設備に応じ て好ましい保熱手段を採用することができる。 なお、 コイル下部からの冷却にも 配慮し、 断熱材を下面に配置することが好ましい。 また、 冷却が著しいコイルの 先後端部や幅両ェッジ部に対しては、 誘導加熱等による加熱手段を併用してもよ レ、。 なお、 本発明の保熱においては、 卷き取り後のコイルの全位置における 800〜 400°C間の冷却時間を 200 分以上とし、 平均冷却速度を 2 °C/min以下とできれば、 その後のコイルの冷却は特に規定されない。 そのため、 そのまま継続して徐冷し てもよい。 しかし、 冷却時間を短縮し、 生産性を向上する観点からは、 保熱装置 により 800〜400°C間の平均冷却速度を 2 °C/min以下として 200分以上冷却した後 は、 コイルの各部が 400°C以下に冷却される前に保熱装置を取り外して放冷し、 冷却時間を短くすることもできる。 As a method of keeping heat, for example, as shown in Fig. 4, a method of covering a coil with a heat insulating cover lined with heat insulating material inside an iron box, digging a pit-shaped hole, and attaching heat insulating material to the inner wall Various methods can be applied, such as a method of placing in a heat retention box, or a heat retention furnace having a heating function, and a preferable heat retention means can be adopted according to the manufacturing equipment that the practitioner has. . In addition, it is preferable to arrange a heat insulating material on the lower surface in consideration of cooling from the lower part of the coil. In addition, heating means such as induction heating may be used in combination for the front and rear ends and the width wedge of the coil where cooling is remarkable. In the heat retention of the present invention, if the cooling time between 800 and 400 ° C at all positions of the coil after winding is 200 minutes or more and the average cooling rate is 2 ° C / min or less, Cooling of the coil is not specifically defined. Therefore, the cooling may be continued as it is. However, from the viewpoint of shortening the cooling time and improving the productivity, after cooling with a heat retention device at an average cooling rate between 800 to 400 ° C of 2 ° C / min or less and cooling for 200 minutes or more, It is possible to reduce the cooling time by removing the heat retention device and allowing it to cool before it cools below 400 ° C.
上記の保熱方法を採用することにより、 熱延板焼鈍を行うことなく熱間圧延の ままで、 コイルの全長全幅に亘つて引張強さを 400〜500MPaの範囲に収めること ができる。 その結果、 従来技術で問題となっていたコイル先後端の切り捨てや幅 方向エッジ部のトリミングによる歩留まり低下を抑えることができ、 コスト低減 が可能となる。 また、 引張強さを S S 4 0 0鋼と同等とすることができるので、 曲げ加工や穴あけ加工等の加工を、 これまでの製造ラインをそのまま使用して行 うことができる。  By employing the above heat retention method, it is possible to keep the tensile strength in the range of 400 to 500 MPa over the entire length of the coil, without performing hot-rolled sheet annealing and keeping hot rolling. As a result, it is possible to suppress the yield reduction due to the truncation of the coil front and rear ends and the trimming of the width direction edge portions, which are problems in the conventional technology, and it is possible to reduce costs. In addition, since the tensile strength can be made equivalent to that of the SS400 steel, it is possible to perform processing such as bending and drilling using the existing production line as it is.
また、 従来、 卷き取り後のコイルを保熱して緩冷却を行った場合、 フェライ ト 結晶粒と炭窒化物の粗大化により靭性が著しく低下するという問題があつたが、 本発明の鋼板は、 素材成分として適量の Nbを添加しているため、 この靭性の低下 は完全に防止することができる。 そのため、 本発明の鋼板は、 保熱により冷却速 度が過度に低下して 15°CZhr (0. 25°C/min)以下となっても、 靭性が低下しない。 その結果、 保熱時の温度制御を精密に行う必要がないほか、 断熱装置を設計する 上での自由度が広がるという効果も得られる。  In the past, when the coil after winding was kept warm and cooled slowly, there was a problem that the toughness was remarkably reduced due to the coarsening of ferrite crystal grains and carbonitrides. However, since an appropriate amount of Nb is added as a material component, this decrease in toughness can be completely prevented. Therefore, the toughness of the steel sheet of the present invention does not decrease even if the cooling rate becomes excessively low due to heat retention and becomes 15 ° CZhr (0.25 ° C / min) or less. As a result, it is not necessary to precisely control the temperature during heat retention, and the effect of increasing the degree of freedom in designing the heat insulation device can be obtained.
保熱により徐冷した本発明の鋼板は、 熱間圧延のままの状態で使用してもよい が、 その後必要に応じて、 スキンパス圧延による形状矯正やショットブラスト、 酸洗等による脱スケールを行い、 あるいはさらに、 研磨等により所望の表面性状 に調整してから用いてもよい。 なお、 耐食性を向上するためには、 ショットブラ ストによる機械的なスケール除去を行い、 その後、 脱クロム層を完全に除去する 目的で、 スケールノ鋼板界面下の鋼板表面を 10 /z m以上酸洗除去することが好ま しい。 また、 必要に応じて、 防鲭剤等を塗布してから使用することも可能である。 なお、 酸洗を行う場合には、 スケールおよびスケール直下の鋼板に存在する脱ク ロム層を改質し、 酸洗性を改善する目的で、 熱延板焼鈍を付加的に行ってもよい。 上記製造方法により得られる本発明の鋼板は、 熱間圧延のままの状態で優れた 加ェ性ゃ靭性を具備するため、 曲げ加ェゃロールフォーミング等によって製造さ れる各種形状の形鋼に用いることができ、 土木 ·建築用構造材、 中でも住宅構造 用の形鋼に用いて好適である。 また、 本発明の鋼板は、 溶接熱影響部の脆化を生 じないという優れた特性も有する。 そのため、 アーク溶接等の溶接によって組み 立てられる形鋼の材料に用いることができ、 さらに誘導加熱や直接通電加熱によ る電気抵抗溶接法によつて成形加工される溶接軽量 H形鋼ゃ電縫溶接( E R W)管、 角パイプ等の素材としても好適である。 さらに、 本発明の鋼板は、 上記特性を活 かして、 コンテナ、 コールワゴン、 バスフレームといった各種構造用の材料とし ても用いることができる。 実施例 1 The steel sheet of the present invention that has been gradually cooled by heat retention may be used as it is in hot rolling.However, if necessary, shape correction by skin pass rolling or descaling by shot blasting, pickling, or the like is performed. Alternatively, it may be used after being adjusted to a desired surface property by polishing or the like. In order to improve corrosion resistance, mechanical scale removal by shot blasting was performed, and then the steel sheet surface under the scale steel sheet interface was pickled by 10 / zm or more to completely remove the dechromized layer. Removal is preferred. Further, if necessary, it is possible to use after applying a fire retardant or the like. When pickling is performed, hot-rolled sheet annealing may be additionally performed for the purpose of modifying the scale and the dechromized layer present on the steel sheet immediately below the scale to improve pickling properties. Since the steel sheet of the present invention obtained by the above-mentioned manufacturing method has excellent workability and toughness in a hot-rolled state, it is used for shaped steels of various shapes manufactured by bending and roll forming. It is suitable for use in civil engineering and architectural structural materials, especially for structural steel for residential structures. Further, the steel sheet of the present invention also has an excellent property that embrittlement of the heat affected zone does not occur. Therefore, it can be used as a material for shaped steel assembled by welding such as arc welding, and is a lightweight H-shaped steel welded by electric resistance welding that is formed by electric resistance welding using induction heating or direct current heating. It is also suitable as a material for welding (ERW) pipes and square pipes. Further, the steel sheet of the present invention can be used as a material for various structures such as a container, a coal wagon, and a bus frame by utilizing the above characteristics. Example 1
表 1に示す成分組成を有する銅を、 転炉一 2次精練工程を経て溶製し、 連続铸 造法で 200mm厚のスラブとした。 これらのスラブを 1170〜1220°Cに再加熱後、 表 2に示したように 6パス目の圧下率を 20〜40%、 他パスの圧下率を 30%未満とす る計 7パスの粗圧延を行い、 その後、 仕上圧延終了温度が 950〜1050°Cとなる 7 パスの仕上圧延により、 6. Oram厚の熱延鋼板とし、 815〜910°Cの温度で卷き取つ て熱延コイルとした。 巻き取り後の熱延コイルは、 断熱材を敷き詰めた保熱ャ一 ドへ搬送し、 図 4に示すような 150誦厚の断熱材を内側にライニングした保熱力 バーを被せて保熱を行い徐冷した。 コイルの冷却速度の測定は、 コイルの最外巻 きの端部(ェッジ部)近傍およぴコィル内部に熱電対を溶接あるレ、は揷入して行つ た。 また、 一部のコイルについては、 コイル単重を調整しあるいは保熱カバーの 断熱材の厚さを変えることで、 冷却速度を変化させた。 さらに、 一部のコイルに 対しては、 保熱開始後、 コイル各部の温度が 400°C未満に達する前に保熱カバー を取り外して放冷を行った。  Copper having the component composition shown in Table 1 was melted through a converter-secondary scouring step, and was made into a 200 mm thick slab by a continuous manufacturing method. After reheating these slabs to 1170 to 1220 ° C, as shown in Table 2, the roughing of a total of 7 passes, with the rolling reduction of the sixth pass being 20 to 40% and the rolling reduction of other passes being less than 30% Rolling, and then finish rolling in 7 passes with a finish rolling finish temperature of 950 to 50 ° C. 6. To make a hot-rolled steel sheet with an Oram thickness, wind up at a temperature of 815 to 910 ° C. A coil was used. The rolled hot-rolled coil is transported to a heat-insulating pad covered with heat-insulating material, and covered with a heat-retaining power bar lined with heat-insulating material with a thickness of 150 as shown in Fig. 4 to keep heat. Cooled slowly. The measurement of the cooling rate of the coil was performed by welding a thermocouple near the outermost end of the coil (edge portion) and inside the coil. For some coils, the cooling rate was changed by adjusting the weight of the coil or by changing the thickness of the heat insulating material of the heat insulation cover. Furthermore, for some coils, after the heat retention was started, the heat retention cover was removed and the coils were allowed to cool before the temperature of each part of the coil reached less than 400 ° C.
上記のようにして得た各種熱延コイルの最外巻きから試験用サンプルを採取し、 幅方向エッジ部および板幅方向 1/4部から、 圧延方向に平行な J I S 5号試験 片を切り出し、 J I S Z 2 2 4 1に準拠して引張試験を行い、 0. 2%耐カ、 引張 強さおよぴ伸ぴを測定した。 また、 最外卷き板幅方向 1ノ4部については、 J I S Z 2 2 0 2に準拠した 2讓 Vノッチの衝撃試験片(試験片幅 5 mmのサブサイズ試 験片)を採取し、 J I S Z 2 2 4 2に準拠して一 50°Cでのシャルピー衝撃試験を 行い、 吸収エネルギー V E_50 ( J /cm2)を測定した。 A test sample was taken from the outermost turns of the various hot-rolled coils obtained as described above. A piece was cut out and subjected to a tensile test in accordance with JISZ2241 to measure 0.2% power resistance, tensile strength and elongation. In addition, for the outermost winding plate in the width direction 1 to 4 parts, a 2-stroke V-notch impact test specimen (sub-size test specimen with a test specimen width of 5 mm) in accordance with JISZ 222 was collected. A Charpy impact test at 150 ° C. was performed in accordance with 222, and the absorbed energy V E — 50 (J / cm 2 ) was measured.
上記測定の結果を表 2に併記して示す。 この結果から、 本発明に従い、 保熱力 パーを被せて徐冷した発明例の鋼板は、 S S 4 0 0鋼や S N 4 0 0 B並みの 400 〜500MPaの引張強さを有しており、 特に最冷点であるコイル最外巻きの幅方向ェ ッジ部近傍の最冷点においても硬質化がほとんど起きず、 目的とする強度が得ら れ, また板幅方向 1ノ4部においても, 目的とする強度範囲内と良好な靭性が得 られている。 これに対し、 成分組成範囲が本焭明内にあるが、 冷却条件が本発明 範囲より速い比較例の No. 1 0 , 1 1では、 コイル最外卷き部の軟質化が得られ ていない。 また、 No. 1 4はCとC + Nが高ぃ、 No. 1 5は Nと C + Nが高い、 No. 1 6は C + Nが高い比較例であるが、 いずれもコイル最外卷き部は高強度化して いる。 また、 靭性も低い。 さらに、 No. 1 7は Cu含有量が多く、 No. 1 8は V含有 量が多く、 No. 1 9は、 Mn含有量が多い比較例であるが、 いずれも最外卷き部は 所望の鋼板強度より高い値となっている。 また、 靭性も低い。 また、 No. 2 0は、 Nb含有量が本発明の範囲に満たないため、 保熱して徐冷した後の靭性の低下が著 しく、 また、 板幅 1ノ 4部では所望の引張強度が得られていない。 一方、 No. 2 1 は、 Nb含有量が本発明の範囲を超えているため、 徐冷を行っても強度が高く、 靭 性も低い。 なお、 No. 2 4は、 本発明の範囲であるが、 粗圧延の圧下率が、 全ての パスで、 3 0 %未満であったので、 靭性が他の発明例に比べて低めであった。 産業上の利用可能性  The results of the above measurements are also shown in Table 2. From these results, according to the present invention, according to the present invention, the steel sheet of the invention example which was gradually cooled by covering the heat retention power had a tensile strength of 400 to 500 MPa comparable to SS400 steel or SN400B, Hardening hardly occurs even at the coldest point near the outermost winding of the coil, which is the coldest point, in the width direction, and the desired strength is obtained. Good toughness is obtained within the desired strength range. On the other hand, although the component composition range is within the present invention, in the comparative examples No. 10 and 11 in which the cooling conditions are faster than the range of the present invention, softening of the outermost winding portion of the coil is not obtained. . No. 14 is a comparative example where C and C + N are high, No. 15 is a comparative example where N and C + N are high, and No. 16 is a comparative example where C + N is high. The winding part has been strengthened. Also, its toughness is low. Furthermore, No. 17 is a comparative example having a high Cu content, No. 18 is a high V content, and No. 19 is a comparative example having a high Mn content. The value is higher than the steel sheet strength. Also, its toughness is low. Further, in No. 20, since the Nb content was less than the range of the present invention, the toughness after the heat retention and slow cooling was remarkably reduced. Not obtained. On the other hand, No. 21 has a high strength and a low toughness even after slow cooling because the Nb content exceeds the range of the present invention. No. 24 is within the scope of the present invention, but the rolling reduction of the rough rolling was less than 30% in all passes, so that the toughness was lower than the other invention examples. . Industrial applicability
本発明の成分を有する鋼は、 熱間圧延により製造する熱延銅板以外に、 厚鋼板 や形鋼さらには棒鋼といった土木 ·建築分野において利用される種々の鋼材へも 適用することができる。 鋼 化学成分(masS%) The steel having the component of the present invention can be applied to various steel materials used in the field of civil engineering and construction, such as thick steel plates, section steels, and steel bars, in addition to hot-rolled copper sheets produced by hot rolling. Steel Chemical composition (mass S %)
記 備考 号 C Si Mn P S Al Cr N Cu Ni V Nb Mo C + NNote Remarks C Si Mn P S Al Cr N Cu Ni V Nb Mo C + N
A 0.0046 0.20 0.24 0.028 0.004 0.010 9.42 0.0060 0.52 0.18 0.05 0.05 - 0.0106 発明鋼A 0.0046 0.20 0.24 0.028 0.004 0.010 9.42 0.0060 0.52 0.18 0.05 0.05-0.0106 Invention steel
B 0.0038 0.21 0.26 0.025 0.005 0.008 9.97 0.0067 0.40 0.30 0.005 0.10 - 0.0105 発明鋼B 0.0038 0.21 0.26 0.025 0.005 0.008 9.97 0.0067 0.40 0.30 0.005 0.10-0.0105 Invention steel
C 0.0098 0.18 0.06 0.025 0.008 0.008 6.41 0.0025 0.45 0.20 0.03 0.03 - 0.0123 発明鋼C 0.0098 0.18 0.06 0.025 0.008 0.008 6.41 0.0025 0.45 0.20 0.03 0.03-0.0123 Invention steel
D 0.0044 0.21 0.30 0.028 0.005 0.041 9.40 0.0040 0.66 0.20 0.01 0.15 - 0.0084 発明鋼D 0.0044 0.21 0.30 0.028 0.005 0.041 9.40 0.0040 0.66 0.20 0.01 0.15-0.0084 Invention steel
E 0.0048 0.33 0.48 0.032 0.006 0.010 9.14 0.0045 0.35 0.14 0.18 0.06 - 0.0093 発明鋼E 0.0048 0.33 0.48 0.032 0.006 0.010 9.14 0.0045 0.35 0.14 0.18 0.06-0.0093 Invention steel
F 0.0058 0.10 0.27 0.010 0.001 0.011 8.99 0.0040 0.45 0.20 0.09 0.04 - 0.0098 発明鋼F 0.0058 0.10 0.27 0.010 0.001 0.011 8.99 0.0040 0.45 0.20 0.09 0.04-0.0098 Invention steel
G 0.0066 0.22 0.22 0.014 0.003 0.008 8.83 0.0036 0.41 0.20 0.06 0.04 一 0.0102 発明鋼G 0.0066 0.22 0.22 0.014 0.003 0.008 8.83 0.0036 0.41 0.20 0.06 0.04 one 0.0102 Invention steel
H 0.0094 0.45 0.14 0.028 0.004 0.001 9.40 0.0056 0.30 0.03 0.10 0.01 - 0.0150 発明鋼H 0.0094 0.45 0.14 0.028 0.004 0.001 9.40 0.0056 0.30 0.03 0.10 0.01-0.0150 Invention steel
I 0.0051 0.20 0.24 0.030 0.005 0.012 9.12 0.0046 0.05 0.19 0.04 0.02 0.28 0.0097 発明鋼I 0.0051 0.20 0.24 0.030 0.005 0.012 9.12 0.0046 0.05 0.19 0.04 0.02 0.28 0.0097 Invention steel
J 0.0054 0.20 0.26 0.027 0.005 0.023 9.22 0.0039 0.28 0.20 0.05 0.05 0.08 0.0093 発明鋼 κ 0.0108 0.22 0.25 0.035 0.007 0.009 8.89 0.0047 0.33 0.20 0.03 0.04 - 0.0155 比較鋼J 0.0054 0.20 0.26 0.027 0.005 0.023 9.22 0.0039 0.28 0.20 0.05 0.05 0.08 0.0093 Invention steel κ 0.0108 0.22 0.25 0.035 0.007 0.009 8.89 0.0047 0.33 0.20 0.03 0.04-0.0155 Comparative steel
_L 0.0058 0.22 0.26 0.035 0.005 0.009 9.10 0.0105 0.44 0.20 0.04 0.04 - 0.0163 比較鋼_L 0.0058 0.22 0.26 0.035 0.005 0.009 9.10 0.0105 0.44 0.20 0.04 0.04-0.0163 Comparative steel
M 0.0094 0.30 0.14 0.031 0.006 0.012 9.30 0.0066 0.31 0.01 0.03 0.03 - 0.0160 比較鋼M 0.0094 0.30 0.14 0.031 0.006 0.012 9.30 0.0066 0.31 0.01 0.03 0.03-0.0160 Comparative steel
N 0.0090 0.20 0.23 0.029 0.004 0.012 9.25 0.0045 1.20 0.20 0.05 0.03 - 0.0135 比較鋼N 0.0090 0.20 0.23 0.029 0.004 0.012 9.25 0.0045 1.20 0.20 0.05 0.03-0.0135 Comparative steel
0 0.0088 0.24 0.22 0.028 0.006 0.010 9.33 0.0052 0.40 0.30 0.30 0.08 - 0.0140 比較鋼0 0.0088 0.24 0.22 0.028 0.006 0.010 9.33 0.0052 0.40 0.30 0.30 0.08-0.0140 Comparative steel
_P 0.0065 0.23 0.55 0.033 0.005 0.013 8.94 0.0059 0.32 0.20 0.08 0.04 - 0.0124 比較鋼_P 0.0065 0.23 0.55 0.033 0.005 0.013 8.94 0.0059 0.32 0.20 0.08 0.04-0.0124 Comparative steel
_Q 0.0045 0.20 0.25 0.026 0.005 0.009 9.40 0.0063 0.40 0.15 0.03 0.001 - 0.0108 比較鋼_Q 0.0045 0.20 0.25 0.026 0.005 0.009 9.40 0.0063 0.40 0.15 0.03 0.001-0.0108 Comparative steel
_R 0.0048 0.20 0.24 0.029 0.005 0.010 9.22 0.0070 0.45 0.20 0.05 0.18 - 0.0118 比較鋼_R 0.0048 0.20 0.24 0.029 0.005 0.010 9.22 0.0070 0.45 0.20 0.05 0.18-0.0118 Comparative steel
S 0.0025 0.20 0.23 0.027 0.005 0.010 9.40 0.0093 0.49 0.20 0.05 0.05 - 0.0118 発明鋼S 0.0025 0.20 0.23 0.027 0.005 0.010 9.40 0.0093 0.49 0.20 0.05 0.05-0.0118 Invention steel
T 0.0047 0.02 0.24 0.028 0.004 0.009 9.39 0.0061 0.51 0.19 0.05 0.05 - 0.0108 発明鋼T 0.0047 0.02 0.24 0.028 0.004 0.009 9.39 0.0061 0.51 0.19 0.05 0.05-0.0108 Invention steel
U 0.0048 0.65 0.40 0.029 0.004 0.011 9.45 0.0059 0.50 0.18 0.05 0.05 一 0.0107 発明鋼U 0.0048 0.65 0.40 0.029 0.004 0.011 9.45 0.0059 0.50 0.18 0.05 0.05 one 0.0107 Invention steel
V 0.0055 0.15 0.02 0.024 0.028 0.008 9.05 0.0054 0.55 0.64 0.04 0.04 - 0.0109 発明鋼V 0.0055 0.15 0.02 0.024 0.028 0.008 9.05 0.0054 0.55 0.64 0.04 0.04-0.0109 Invention steel
W 0.0055 0.20 0.25 0.027 0.003 0.012 9.44 0.0060 0.01 0.33 0.05 0.05 一 0.0115 発明鋼W 0.0055 0.20 0.25 0.027 0.003 0.012 9.44 0.0060 0.01 0.33 0.05 0.05-0.0115 Invention steel
X 0.0035 0.22 0.08 0.028 0.005 0.009 9.32 0.0044 0.95 0.48 0.05 0.05 - 0.0079 発明鋼X 0.0035 0.22 0.08 0.028 0.005 0.009 9.32 0.0044 0.95 0.48 0.05 0.05-0.0079 Invention steel
Y 0.0055 0.20 0.24 0.028 0.004 0.010 9.41 0.0055 0.52 0.18 0.004 0.07 - 0.0110 発明鋼 した箇所は、本発明外であることを示す。 Y 0.0055 0.20 0.24 0.028 0.004 0.010 9.41 0.0055 0.52 0.18 0.004 0.07-0.0110 Invented steel indicates that it is outside the present invention.
Figure imgf000020_0001
Figure imgf000020_0001
表 2 (続き) Table 2 (continued)
Figure imgf000021_0001
Figure imgf000021_0001
注:下線を付した箇所は、本発明外であることを示す。 *印は、保熱カバーを 300分後に取り出し、放冷した場合である。  Note: The underlined parts indicate that they are outside the scope of the present invention. * Indicates the case where the heat retention cover was removed after 300 minutes and allowed to cool.

Claims

請求の範囲 The scope of the claims
1 . C : 0· 0025〜0. 010mass%、 N: 0. 0025〜0. 010mass%、 C + N: 0. 015mass% 以下、 Si: 0. 01〜1. 0mass%、 Mn: 0. 01〜0. 50mass%、 P : 0. 04mass%以下、 1. C: 0.0025 to 0.010 mass%, N: 0.0025 to 0.010 mass%, C + N: 0.015 mass% or less, Si: 0.01 to 1.0 mass%, Mn: 0.01 ~ 0.50 mass%, P: 0.04 mass% or less,
S : 0. 03mass%以下、 Cr : 6 mass%以上 10mass%未満、 Cu : 0. 01〜1· 0mass%、 Ni: 0. 01〜1. 0mass%、 V: 0. 003〜0. 20mass%、 Al: 0. 05mass%以下および S: 0.03 mass% or less, Cr: 6 mass% to less than 10 mass%, Cu: 0.01 to 1.0 mass%, Ni: 0.01 to 1.0 mass%, V: 0.003 to 0.20 mass% , Al: 0.05 mass% or less and
Nb : 0. 01〜0. 15mass%を含有し、 残部が Feおよび不可避的不純物からなり、 引張 強さが 400〜500MPaである構造用 Fe— Cr系鋼板。 Nb: Structural Fe-Cr steel sheet containing 0.01 to 0.15 mass%, the balance being Fe and unavoidable impurities, and having a tensile strength of 400 to 500 MPa.
2 . 上記成分組成に加えてさらに、 Mo: 0. 03mass%〜1. 0mass%を含有する請求項 1に記載の構造用 Fe - Cr系鋼板。 2. The structural Fe-Cr steel sheet according to claim 1, further comprising Mo: 0.03 mass% to 1.0 mass% in addition to the above component composition.
3 . C: 0. 0025〜0. 010mass%、 N: 0. 0025〜0. 010mass%、 C + N: 0. 015mass% 以下、 Si: 0. 01〜1· 0mass%、 Mn: 0. 01〜0. 50mass%、 P : 0. 04mass%以下、3. C: 0.0025-0.010 mass%, N: 0.0025-0.010 mass%, C + N: 0.015 mass% or less, Si: 0.01-11.0 mass%, Mn: 0.01 ~ 0.50 mass%, P: 0.04 mass% or less,
S : 0. 03mass%以下、 Cr : 6 mass%以上 10mass%未満、 Cu : 0· 01〜1· 0mass%、 Ni: 0. 01〜1. 0mass%、 V: 0. 003〜0. 20mass%、 Al: 0. 05mass%以下おょぴ S: 0.03 mass% or less, Cr: 6 mass% to less than 10 mass%, Cu: 0.01 to 1.0 mass%, Ni: 0.01 to 1.0 mass%, V: 0.003 to 0.20 mass% , Al: less than 0.05 mass%
Nb : 0. 01〜0. 15mass%を含有する鋼スラブを、 1100〜1280°Cの温度に加熱し、 粗 圧延の後、 930°C超の仕上圧延の終了温度で熱間圧延し、 810°C超の温度で卷取り、 その後、 コイルを 800〜400°C間の平均冷却速度を 2 °C/min以下に制御する構造用 Fe— Cr系鋼板の製造方法。 Nb: A steel slab containing 0.01 to 0.15 mass% is heated to a temperature of 1100 to 1280 ° C, and after rough rolling, hot rolled at a finish rolling end temperature of more than 930 ° C, 810 A method for producing structural Fe-Cr steel sheets in which the coil is wound at a temperature higher than ° C and the average cooling rate of the coil between 800 and 400 ° C is controlled to 2 ° C / min or less.
4 . 上記鋼スラブの成分組成に加えてさらに、 Mo: 0. 03mass%〜1. 0mass%を含有 する請求項 3に記載の製造方法。 4. The production method according to claim 3, further comprising Mo: 0.03 mass% to 1.0 mass% in addition to the component composition of the steel slab.
5 . 上記製造方法において、 前記粗圧延の少なくとも 1パスを、 1000°C超の温度 で、 30%以上の圧下率で行う請求項 3または 4に記載の製造方法。 5. The production method according to claim 3, wherein at least one pass of the rough rolling is performed at a temperature of more than 1000 ° C. and a rolling reduction of 30% or more.
6 . 上記製造方法において、 コイルの全ての位置における 800〜400°C間の平均冷 却速度を 2 °C/min以下とする請求項 3〜 5のいずれか 1項に記載の製造方法。 6. The method according to any one of claims 3 to 5, wherein the average cooling rate at 800 to 400 ° C at all positions of the coil is 2 ° C / min or less.
7 . 上記製造方法において、 コイルの冷却を、 保熱力パー、 保熱ボックスあるい は保熱炉のいずれかを用いて行う請求項 6に記載の製造方法。 7. The manufacturing method according to claim 6, wherein the cooling of the coil is performed by using any one of a heat retaining power par, a heat retaining box and a heat retaining furnace.
8 . 請求項 1または、 2において、 前記鋼板の一 50°Cにおけるシャルピー衝撃試 験の吸収エネルギー V E-5。が、 100 J Zcm2以上である構造用 Fe-Cr系鋼板。 8. The absorbed energy VE- 5 in a Charpy impact test at 50 ° C of one of the steel sheets according to claim 1 or 2. Is a Fe-Cr steel sheet for structural use with 100 J Zcm 2 or more.
PCT/JP2004/019288 2003-12-25 2004-12-16 STRUCTURAL Fe-Cr BASED STEEL PLATE AND METHOD FOR PRODUCTION THEREOF WO2005064029A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-430963 2003-12-25
JP2003430963 2003-12-25

Publications (1)

Publication Number Publication Date
WO2005064029A1 true WO2005064029A1 (en) 2005-07-14

Family

ID=34736369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/019288 WO2005064029A1 (en) 2003-12-25 2004-12-16 STRUCTURAL Fe-Cr BASED STEEL PLATE AND METHOD FOR PRODUCTION THEREOF

Country Status (1)

Country Link
WO (1) WO2005064029A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04232231A (en) * 1990-12-28 1992-08-20 Nisshin Steel Co Ltd High strength chromium-containing steel sheet excellent in corrosion resistance and workability
JPH09137230A (en) * 1995-11-10 1997-05-27 Nippon Steel Corp Production of ferritic stainless steel sheet excellent in surface characteristic
JPH1017999A (en) * 1996-06-27 1998-01-20 Kawasaki Steel Corp Hot rolled ferritic stainless steel plate excellent in corrosion resistance, formability, and uniformity of material, and its production
JP2000061524A (en) * 1998-08-21 2000-02-29 Kawasaki Steel Corp Manufacture of ferritic stainless steel hot rolled strip
JP3226278B2 (en) * 1994-07-18 2001-11-05 新日本製鐵株式会社 Method of manufacturing steel material and steel pipe excellent in corrosion resistance and weldability

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04232231A (en) * 1990-12-28 1992-08-20 Nisshin Steel Co Ltd High strength chromium-containing steel sheet excellent in corrosion resistance and workability
JP3226278B2 (en) * 1994-07-18 2001-11-05 新日本製鐵株式会社 Method of manufacturing steel material and steel pipe excellent in corrosion resistance and weldability
JPH09137230A (en) * 1995-11-10 1997-05-27 Nippon Steel Corp Production of ferritic stainless steel sheet excellent in surface characteristic
JPH1017999A (en) * 1996-06-27 1998-01-20 Kawasaki Steel Corp Hot rolled ferritic stainless steel plate excellent in corrosion resistance, formability, and uniformity of material, and its production
JP2000061524A (en) * 1998-08-21 2000-02-29 Kawasaki Steel Corp Manufacture of ferritic stainless steel hot rolled strip

Similar Documents

Publication Publication Date Title
JP5277648B2 (en) High strength steel sheet with excellent delayed fracture resistance and method for producing the same
JP4940882B2 (en) Thick high-strength hot-rolled steel sheet and manufacturing method thereof
JP6149368B2 (en) Manufacturing method of high-tensile steel plate with excellent delayed fracture resistance
EP3276024B1 (en) Thick steel plate for structural pipes or tubes, method of producing thick steel plate for structural pipes or tubes, and structural pipes and tubes.
JP4848966B2 (en) Thick-wall high-tensile steel plate and manufacturing method thereof
KR20140138933A (en) Low yield ratio high-strength steel plate having superior strain aging resistance, production method therefor, and high-strength welded steel pipe using same
WO2007080646A1 (en) Cryogenic steel
EP3276026A1 (en) Thick steel sheet for structural pipe, method for manufacturing thick steel sheet for structural pipe, and structural pipe
WO2006093282A1 (en) High tensile and fire-resistant steel excellent in weldability and gas cutting property and method for production thereof
WO2014175122A1 (en) H-shaped steel and method for producing same
JP4379085B2 (en) Manufacturing method of high strength and high toughness thick steel plate
JP2019199649A (en) Non-tempered low yield ratio high tensile thick steel sheet and its production method
JP6311633B2 (en) Stainless steel and manufacturing method thereof
JP6056235B2 (en) Method for producing high-tensile steel sheet with excellent weldability and delayed fracture resistance and tensile strength of 950 MPa or more
JP4978146B2 (en) Thick high-strength hot-rolled steel sheet and manufacturing method thereof
JP2005256037A (en) Method for producing high strength-high toughness-thick steel plate
JP2021509434A (en) High-strength, high-toughness hot-rolled steel sheet and its manufacturing method
JP5176847B2 (en) Low yield ratio low temperature steel and method for producing the same
JP3290595B2 (en) Method for manufacturing high-tensile steel plate with excellent toughness and weldability
JPWO2019050010A1 (en) Steel sheet and manufacturing method thereof
CN114423878B (en) Thick steel plate and method for producing same
JP4957671B2 (en) Steel pipes for low yield ratio columns for construction, steel plates used therefor, and methods for producing them
JP2008280602A (en) High productivity type high-strength high-toughness steel plate and its production method
JP5552967B2 (en) Thick high-strength steel sheet with excellent low-temperature toughness of welds and method for producing the same
JP2002363650A (en) Method for producing ultrahigh strength cold rolled steel sheet having excellent seam weldability

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase