WO2005061717A1 - 新規な核酸導入法 - Google Patents

新規な核酸導入法 Download PDF

Info

Publication number
WO2005061717A1
WO2005061717A1 PCT/JP2004/019160 JP2004019160W WO2005061717A1 WO 2005061717 A1 WO2005061717 A1 WO 2005061717A1 JP 2004019160 W JP2004019160 W JP 2004019160W WO 2005061717 A1 WO2005061717 A1 WO 2005061717A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
metal salt
concentration
salt solution
medium
Prior art date
Application number
PCT/JP2004/019160
Other languages
English (en)
French (fr)
Inventor
Yoshiko Minakuchi
Takahiro Ochiya
Original Assignee
Dainippon Sumitomo Pharma Co., Ltd.
Koken Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Sumitomo Pharma Co., Ltd., Koken Co., Ltd. filed Critical Dainippon Sumitomo Pharma Co., Ltd.
Priority to JP2005516500A priority Critical patent/JP4954550B2/ja
Priority to EP04807517A priority patent/EP1696034A4/en
Priority to US10/583,277 priority patent/US20080318319A1/en
Publication of WO2005061717A1 publication Critical patent/WO2005061717A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1136Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against growth factors, growth regulators, cytokines, lymphokines or hormones
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/111General methods applicable to biologically active non-coding nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/30Special therapeutic applications
    • C12N2320/32Special delivery means, e.g. tissue-specific

Definitions

  • the present invention relates to a novel nucleic acid introduction method. More specifically, the present invention relates to a novel nucleic acid introduction method using a high-concentration metal salt solution.
  • Plasmid DNA (pDNA) and viral vectors are used for gene overexpression, and antisense DNA (AS-DNA) and short interfering RNA (siRNA) are used for gene knockdown. Is used. Since both the nucleic acid and the cell membrane exhibit anionic properties and repel electrically, it is difficult to directly introduce the nucleic acid alone into the cell. For this reason, gene function analysis using cells has been developed to date, including the diluent vector method, electoportion method, calcium phosphate co-precipitation method, DEAE-dextran method, lipofection method, and high-molecular-weight Misenore vector method. It is necessary to use a method for introducing a nucleic acid into cells.
  • the virus vector itself has the ability to infect cells. Therefore, the gene can be introduced into the cells simply by introducing the target gene into the virus vector and adding it to the cell, and the target gene can be expressed with high efficiency.
  • nucleic acid is introduced into cells ⁇ by infection, so that a defense mechanism against infection is generated in the cells, and as a result, noise may be generated in detection of the function of a gene originally intended.
  • the size of the gene that can be inserted into a viral vector is limited, and the complexity of gene transfer and virus amplification and purification operations is complicated. Not suitable.
  • the electroporation method is a method in which cells are suspended in a nucleic acid solution and a high DC voltage pulse is applied to the cells to enhance the membrane permeability of the cells and introduce the cells.
  • this method can introduce nucleic acids with high efficiency, it is characterized by large damage to cells, and is not suitable for analyzing changes in cell functions after nucleic acid introduction.
  • the calcium phosphate coprecipitation method is a method for introducing nucleic acids by utilizing phagocytosis of cells. This method has poor reproducibility and poor introduction efficiency. Therefore, it is not suitable for functional analysis of genes that require stable gene transfer.
  • DEAE-dextran method lipofection method and method using high molecular polymer Is a method of introducing a nucleic acid using membrane fusion with a cell membrane.
  • the Lipofux method is the most superior in terms of introduction efficiency, simplicity, versatility, and reproducibility.
  • the lipofection method is known to have high cytotoxicity, there remains a problem in functional analysis of a gene whose cell viability is important.
  • the riboaction method it is necessary to mix a ribosome reagent and a nucleic acid to form a complex prior to introduction into cells, but the reproducibility is high. Since the efficiency of introduction into cells varies, handling a large number of nucleic acids requires careful attention to each operation, which complicates the operation.
  • An object of the present invention is to provide a novel method for introducing a nucleic acid, which can introduce a nucleic acid into a cell easily with low cytotoxicity and high efficiency.
  • the present inventors mixed nucleic acids (alone) and cells in a culture medium, and then added a high-concentration chloride solution to the culture medium. Surprisingly, the nucleic acid was efficiently introduced into the cells, It has been found that the function can be exhibited. From this new finding, the present inventors have obtained the belief that calcium chloride and metal salts in general can be used as a novel nucleic acid transfer agent.
  • the present invention has been completed based on such findings.
  • the present invention is as follows:
  • a nucleic acid introduction method comprising the following steps (a) and (b):
  • nucleic acid introduction method wherein the nucleic acid is a single-stranded DNA, a double-stranded DNA, a single-stranded RNA, a double-stranded RNA, an oligonucleotide or a lipozyme;
  • Oligonucleotides are deoxyliponucleotides, ribonucleotides, phosphorothioate oligodeoxynucleotides, 2,1-O- (2-methoxy) ethyl-modified nucleic acids (2,1-MOE-modified nucleic acids)
  • nucleic acid introduction method according to any one of (1) to (5), wherein the nucleic acid is in the form of a complex or inclusion body with a biodegradable substance or a biological substance.
  • the amount of the high-concentration metal salt solution to be brought into contact with the medium in step (a) is within the range of 1 ⁇ to 20 ⁇ L per 500 L of the medium in step (a), wherein ) Any of the nucleic acid introduction methods described,
  • the amount of the high-concentration metal salt solution to be brought into contact with the medium of step (a) is in the range of 2 L to 10 / iL per 5 OOL of medium of step (a).
  • nucleic acid introducing agent containing a solid metal salt or a high-concentration metal salt solution as a component
  • nucleic acid introducing agent comprising a solid metal salt or a highly concentrated metal salt solution
  • a nucleic acid introduction method comprising the following steps (a) and (b):
  • nucleic acid introduction method wherein the nucleic acid is a single-stranded DNA, a double-stranded DNA, a single-stranded RNA, a double-stranded RNA, an oligonucleotide or a lipozyme.
  • Oligonucleotides are deoxyliponucleotides, liponucleotides, phosphorothioate oligodeoxynucleotides, 2, -0- (2-methoxy) ethyl-modified nucleic acids (2,-MOE-modified nucleic acids)
  • nucleic acid introduction method according to any one of (23) to (27), wherein the nucleic acid is in the form of a complex or an inclusion body with a biodegradable substance or a biological substance.
  • the amount of the high-concentration calcium chloride solution to be brought into contact with the medium of step (a) is in the range of l / i L to 20 / z L per 500 L of medium of step (a), 2 3)
  • the amount of the high-concentration calcium chloride solution to be brought into contact with the medium of step (a) is within the range of 2 / XL / 500 ⁇ L of the medium of step (a); L 0 / zL. (32)
  • nucleic acid transfer agent containing solid calcium chloride or a high-concentration calcium chloride solution as a component
  • nucleic acid transfer agent comprising solid calcium chloride or a highly concentrated calcium chloride solution
  • nucleic acid transfer agent according to any of (34) to (36), wherein the concentration of the high-concentration calcium chloride solution is in the range of 0.1 0 to 6.0 ⁇ .
  • a nucleic acid introduction kit comprising the nucleic acid introduction agent according to any of (34) to (38), and
  • FIG. 1 is a graph showing the result of introducing a GFP expression plasmid into 293 cells by using the nucleic acid introduction method of the present invention.
  • FIG. 2 is a graph showing the expression efficiency of GFP when 293 cells were suspended and seeded in a medium to which a salt solution was previously added.
  • FIG. 3 is a graph showing the result of introducing GFP expression plasmid into HeLa cells by using the nucleic acid introduction method of the present invention.
  • FIG. 4 is a graph showing the results of introducing siRNA into NEC8 cells by using the nucleic acid introduction method of the present invention.
  • FIG. 5 is a graph showing the result of introducing a complex of a GFP expression plasmid and atelocollagen into 293 cells and HeLa cells by using the nucleic acid introduction method of the present invention.
  • FIG. 6 is a graph showing the result of introducing a complex of siRA and atelocollagen into PC-3M-Luc-C6 cells by using the nucleic acid introduction method of the present invention.
  • A) shows the results of siRNA introduction into human enhancer of zeste homolog2 (EZH2)
  • B) shows the results of siRNA introduction into phosphoinositide 3'-hydroxykinase pllO-alpha subunit (pi10-alpha).
  • the present invention comprises at least the following steps (a) and (b):
  • the nucleic acid used for introduction in the nucleic acid introduction method of the present invention is not limited in its kind in principle of the method, and any nucleic acid can be used as an introduction target. That is, it may be any nucleic acid such as a polynucleotide (DNA, RNA), an oligonucleotide, or a ribozyme, and may be in the form of a single strand, a double strand, or any of their analogs. May be.
  • nucleic acid of the present invention examples include a single-stranded DNA, a double-stranded DNA, a single-stranded RNA, a double-stranded RNA, an oligonucleotide and a oligonucleotide. Pozaim and the like.
  • nucleic acid of the present invention When the nucleic acid of the present invention is double-stranded DNA or double-stranded RNA, it may be in any form of linear or cyclic. Further, when the nucleic acid of the present invention is a circular double-stranded DNA, it can be in the form of a plasmid.
  • the plasmid may be in the form of an expression plasmid or a non-expression plasmid.
  • nucleic acid of the present invention is single-stranded DNA or single-stranded RNA
  • either a sense strand or an antisense strand can be used.
  • the type of the oligonucleotide to be introduced is not limited, and a single-stranded oligonucleotide, a double-stranded oligonucleotide or an analog thereof can be used.
  • deoxyribonucleotides DNA
  • liponucleotides RNA
  • phosphorothioate oligodeoxynucleotides 2'-0- (2-methoxy) ethyl-modified nucleic acids (2,- M0E-modified nucleic acid), short interfering RNA (small siRNA), cross-linked nucleic acid (Locked Nucleic Acid: LNA; Singh, et al, Chera.
  • the nucleic acids can be used at a concentration usually used for gene transfer (0. 001 ⁇ 1000 ⁇ ⁇ ⁇ ).
  • the nucleic acid can be used for introduction by dissolving it in a solvent that does not hinder cell culture.
  • a solvent that does not hinder cell culture.
  • the solvent include distilled water, physiological saline, HEPES buffer (Sigma), TRIS buffer (Sigma), PBS buffer (Invitrogen), cell culture medium, and the like.
  • the nucleic acid may be in the form of a complex with a biodegradable substance having no cytotoxicity or a biological substance, or in a form encapsulated in these substances.
  • examples of the in vivo eccentric substance include polylactic acid, polyglycolic acid and copolymers thereof, rataton-based polymers, polyethylene glycol-based polymers, and the like.
  • examples of biological substances include chitosan, gelatin, collagen, enzyme-solubilized collagen (atherocollagen), and modified products thereof. it can.
  • the biological substance is preferably collagen or enzyme-solubilized collagen (atherocollagen), and there is no particular limitation on its type, origin, type, and the like.
  • examples of the type include unmodified products and modified products thereof.
  • As the modified product it is possible to use a chemical modification of a side chain amino group or a carboxyl group, or use a chemically-physical crosslinked product.
  • the concentration of the collagen solution can be used in the range of 0.000001% to 3% (0.0001 mg / mL to 30 mg / mL), preferably 0.0001% to 0.3%, more preferably 0. It can be used in the range of 0005% to 0.1%.
  • the nucleic acid By forming a complex or inclusion body with the biodegradable substance or biological substance, the nucleic acid is stabilized and gradually released, and the complex or inclusion body is introduced into cells. Thereby, the effect of the nucleic acid can be maintained.
  • the cells used in the nucleic acid introduction method of the present invention are not limited in the type of cell adapted to the principle of the method. Specifically, the nucleic acid transfer method of the present invention is used for fibroblasts, epithelial cells, endothelial cells, neuroblasts, lymphoblasts, floating cells, astrocytes, round cells, spindle cells, amoeba-like cells, and the like. Can be applied.
  • the medium used in the nucleic acid transfer method of the present invention may be any medium as long as it does not kill cells and does not hinder the uptake of nucleic acid into cells by the nucleic acid transfer method of the present invention. Is also good. Specific examples include a culture medium, a buffer, and a culture medium and a buffer further containing a serum used for ordinary cell culture.
  • the culture medium may be any medium as long as it is a culture medium suitable for each cell.
  • RPMI 1640 Invitrogen
  • DULBECCO'S MODIFIED EA GLE MEDIA Invitrogen
  • F-10 Nutrient Mixture Invitrogen
  • F-12 Nutrient Mixture Invitrogen
  • Iscove's Modified Dulbecco's Media Invitro Gen.
  • MINIMUM ESSENTIAL MEDIA Invitrogen
  • buffer examples include HEPES buffer (Sigma), TRIS buffer (Sigma), PBS buffer (Invitrogen) and the like.
  • the serum examples include fetal calf serum, calf serum, calf serum, and calf serum.
  • concentration of serum in the medium may be any concentration that is suitable for cell culture. Preferably, the range is 0 to 20% (v / v), and more preferably, the range is 5 to 10% (v / v).
  • any metal salt solution may be used as long as it does not affect cell culture. Whether or not cell culture is affected can be easily examined by comparing the cell growth rate (cell density) and the like with and without the addition of a metal salt solution to the cell culture solution.
  • the metal salt specifically includes salts of metals such as calcium, potassium, magnesium, sodium, manganese, iron, copper, and dumbbell. More specifically, examples of the metal salt include a hydrochloride, a phosphate, a sulfate, a carbonate, and a nitrate of the metal. Preferably, a hydrochloride of the metal is used, and more preferably, a chloride of a divalent metal is used.
  • chloride of the divalent metal examples include calcium chloride, magnesium chloride, zinc chloride, iron chloride, manganese chloride and the like, and preferably calcium chloride. That is, the most preferred metal salt solution of the present invention is a calcium chloride solution.
  • metal salts described above can be used alone or in combination of two or more as components of the metal salt solution of the present invention.
  • the metal salt solution (preferably a calcium chloride solution) used in the nucleic acid introduction method of the present invention is a highly concentrated metal salt solution.
  • “high concentration” means a concentration of 0.1 M or more. Specific examples include a range of 0.1M to 3.0M, preferably a range of 0.3M to 3.0M, more preferably a range of 0.5M to 3.0M, and further preferably 0. The range is from 5M to 2.5M, particularly preferably from 0.5M to 2.0M, most preferably from 1.0M to 2.0M.
  • the solvent for dissolving the metal salt may be any solvent that does not interfere with cell culture.
  • distilled water physiological saline, HEPES buffer (Sigma), TRIS buffer (Sigma), PBS buffer (Invitrogen
  • a nucleic acid for introduction and a cell to be introduced are brought into contact in a medium.
  • the contact is performed in a culture vessel suitable for ordinary cell culture.
  • the culture container include a cell culture dish, a flask, and a multiple well plate.
  • Examples of the method of contacting the nucleic acid with the cell include a method of adding the nucleic acid to a cell suspension medium and seeding the cell in a cell culture container, a method of suspending the cell in a medium containing the nucleic acid and seeding the cell culture container, A method in which cells are suspended in a culture medium and seeded in a cell culture container, and nucleic acids are added thereto.
  • a method in which nucleic acids are added to a cell culture container in advance and a culture medium in which cells are suspended thereon is added.
  • the culture medium is added to a cell culture vessel in advance, dried or adsorbed, and a culture medium in which cells are suspended is added thereto.
  • the nucleic acid used here may be in the form of a complex with a biodegradable substance or a biological substance or an inclusion body as described above.
  • the complex or inclusion body is suitably used in a method in which an aqueous nucleic acid solution is added to a cell culture vessel to dryness or adsorption.
  • a method in which a complex solution of a nucleic acid solution and an aqueous atelocollagen solution is added to a multi-well plate, dried, and a culture medium in which cells are suspended thereon is added thereto is exemplified.
  • the amount (concentration) and number of cells (density) of the nucleic acid to be brought into contact are not particularly limited as long as they are used for normal gene transfer.
  • the contact temperature is preferably in the range of 0 ° C to 42 ° C, more preferably in the range of room temperature to 37 ° C.
  • a high-concentration metal salt solution (preferably a high-concentration calcium chloride solution) is added to a medium in which the nucleic acid is brought into contact with the cells (hereinafter, also referred to as the “medium in step (a)”).
  • the contacting method include a method of adding a high-concentration metal salt solution to a culture vessel containing the medium of step (a), and a method of adding a high-concentration metal salt solution to a cell culture vessel in advance, and A method of adding the medium of the step (a), and the like.
  • the timing of contact (addition) of the high-concentration metal salt solution is not particularly limited, but the high-concentration metal salt solution is contacted within 2 hours, preferably within 30 minutes, more preferably within 10 minutes after contacting the cells with the nucleic acid. It is appropriate to let them.
  • the amount of the contact (addition) of the high-concentration metal salt solution is not particularly limited as long as the nucleic acid is successfully introduced into the cells. It is preferable to contact (add) 1 ⁇ 1 ⁇ ⁇ 20 ⁇ high concentration metal salt solution. Further, it is more preferable to contact (add) 2 ⁇ L to 100 / L of a high concentration metal salt solution per 500 ⁇ L of the culture medium in step (a). It is more preferable to contact (add) a metal salt solution having a concentration of 5 / ! To 10 ⁇ .
  • the medium generally contains about 500 cells per well (a)
  • l / z L to 20 L / well is more preferable.
  • a high-concentration metal salt solution at a concentration of 2 ⁇ 1 to 10 / well, more preferably 5 to 10 ⁇ 17 / well.
  • the culture vessel After adding the high-concentration metal salt solution, the culture vessel is stirred so that the metal salt is uniformly mixed in the step (a) medium, and the cells are cultured for about 1 hour to 1 day.
  • Conditions of cultivation is not particularly limited as long as it does not disturb the nucleic acid introduction into a cell, 5% C0 2 presence in the range of 0 ° C ⁇ 42 ° C, preferably in the range of room temperature ⁇ 37 ° C And more preferably at 37 ° C.
  • the nucleic acid introduction method according to the present invention can be applied not only to the analysis of gene capacity at the cell level, but also to the production of a genetically modified cell line and the introduction of nucleic acid into cells in ex vivo gene therapy.
  • the present invention provides a nucleic acid transfer agent used for the nucleic acid transfer method of the present invention.
  • the nucleic acid transfer agent of the present invention is characterized by containing a solid metal salt or a highly concentrated metal salt solution as a component.
  • a nucleic acid introducing agent comprising a solid metal salt or a highly concentrated metal salt solution is exemplified.
  • metal salt may be any metal salt solution as long as it does not affect cell culture. Whether or not it affects cell culture can be easily examined by comparing the cell growth rate (cell density) with and without the addition of a metal salt solution to the cell culture.
  • Specific examples include salts of metals such as calcium, potassium, magnesium, sodium, manganese, iron, copper, and zinc. More specifically, examples of the metal salt include a hydrochloride, a phosphate, a sulfate, a carbonate, and a nitrate of the metal.
  • the metal hydrochloride is used, and more preferably, a divalent metal salt is used.
  • the chloride of the divalent metal include calcium chloride, magnesium chloride, zinc chloride, iron chloride, manganese chloride and the like, and preferably calcium chloride. That is, as a preferable example of the nucleic acid transfer agent of the present invention, the present invention provides a nucleic acid transfer agent containing, as a component, a solid salt calcium or a high-concentration calcium chloride solution. More specifically, a nucleic acid transfer agent comprising solid calcium chloride or a high-concentration calcium chloride solution is exemplified.
  • the metal salts described above can be used alone or in combination of two or more as components of the nucleic acid transfer agent of the present invention.
  • the nucleic acid transfer agent of the present invention contains a high-concentration metal salt solution as a component, its concentration may be any concentration as long as it is 0.1 M or more.
  • the concentration of the metal salt solution to be brought into contact with the medium of step (a) includes a range of 0.1M to 3.0M, preferably a range of 0.3M to 3.0M, and more preferably.
  • the range of 0.5M to 3.OM more preferably the range of 0.5 ⁇ to 2.5 ⁇ , particularly preferably the range of 0.5M to 2.OM, most preferably the range of 1.0M to 2.OM Range. Therefore, the concentration of the metal salt in the nucleic acid transfer agent of the present invention needs to be adjusted to the above-mentioned concentration by dilution or by directly using it.
  • the concentration may be 0.1 M or more, preferably 0.1 M.
  • a high-concentration metal salt solution preferably a high-concentration calcium chloride solution
  • the concentration may be 0.1 M or more, preferably 0.1 M.
  • OM more preferably 0.1 to 4.0 OM, and still more preferably 0.5 to 4. OM.
  • the solvent for dissolving the metal salt may be any solvent as long as it does not hinder cell culture.
  • distilled water physiological saline, HEPES buffer (Sigma), TRIS buffer (Sigma), PBS buffer (Invitrogen3 ⁇ 4), cell culture medium, etc. Wear.
  • the nucleic acid introduction agent of the present invention as described above can be used as a component of a nucleic acid introduction kit.
  • the kit may be a kit comprising only the nucleic acid transfer agent of the present invention or a kit containing the nucleic acid transfer agent of the present invention and other components.
  • Other components in the kit include fluorescently labeled oligonucleotides, positive control siRNA, and the like.
  • the kit contains a solid metal salt as a component, as a solvent for dissolving the same, distilled water, physiological saline, HEPES buffer (Sigma), TRIS buffer (Sigma), PBS buffer (Invitrogen), a cell culture medium, and the like.
  • IraM 10.2 mM, 14.2 mM, 19.5 raM, 24.8 mM, 30. ImM. Two days after cell seeding, the cells were observed with a fluorescence microscope, the number of cells expressing GFP was counted, and the transfection efficiency was calculated.
  • the gene transfer efficiency was examined in the same manner as in Example 1 except that cells were suspended in a medium to which calcium chloride solution had been added in advance and seeded in a well.
  • 24 Ueru cell culture plates GFP expression plasmid solution of 100 mu g / mL was added 100 mu L in, dried in a way that blowing cool air.
  • 293 cells were suspended using the medium described above, and 2.5 ⁇ 10 4 cells (500 ⁇ L) were seeded per 1 ⁇ l. Two days after cell seeding, the cells were observed with a fluorescence microscope, the number of cells expressing GFP was counted, and the transduction efficiency was calculated.
  • Example 2 shows that the effect of promoting gene transfer into cells is not due to an increase in the concentration of calcium chloride in the medium, but to the way in which the calcium chloride solution is added. That is, it has become clear that it is important to mix cells and genes in advance and then contact them with a high concentration of calcium chloride.
  • HeLa cells ATCC: Cell Biology Collection
  • DMEM medium Sigma
  • FBS fetal bovine serum
  • SiRNA that specifically suppresses human FGF-4 mRNA (hereinafter referred to as hEx3-1) was used as a nucleic acid for introduction.
  • human testis tumor-derived epithelial cells NEC8 (ATCC: Cell Biology Collection), which is a cell line that strongly expresses human FGF-4 protein, were used as cells for introduction.
  • hEx3-1 aqueous solution 350 L of a 10 / ig / mL hEx3-1 aqueous solution was added to a 6-well cell culture plate, and dried by blowing cold air. NEC8 cells were suspended in DMEM medium (Sigma) containing 10% FBS, and seeded at 3.75 ⁇ 10 5 cells (1.5 mL) per plate. Immediately after the cell seeding, 20 L of a 1.7 M calcium chloride aqueous solution was added, and the plate was stirred to make it uniform. As a control, the same operation was performed using a well to which hEx3-1 was not applied and dried.
  • the medium was recovered, and the FGF-4 concentration in the medium was quantified by ELISA (Human FGF-4 Quantikine ELISA kit; R & D Systems).
  • the cells in the gel were collected and the amount of protein was quantified by the Bradford method (Bio-Rad Protein Assay; BioRad).
  • the FGF-4 concentration in the medium was reduced by the obtained protein amount, and the FGF-4 production amount in each well was calculated.
  • Fig. 4 shows the results.
  • the introduction of hEx3-1 suppressed the production of FGF-4 in the medium.
  • sily thighs were efficiently introduced into NEC8 cells, and that the siRNAs exhibited the desired effects.
  • This result indicates that the nucleic acid introduction method of the present invention does not depend on the type of nucleic acid.
  • Atelocollagen (Koken Co., Ltd.) was used as the biological substance.
  • Fig. 5 shows the results.
  • the atelocollagen complex could be introduced into the cells by adding a 1.7% calcium chloride solution to the wells after seeding the cells. This indicates that by introducing the nucleic acid as a complex, the action of the nucleic acid can be maintained.
  • RNA small interfering RNA
  • EZH2 human enhancer of zeste homolog 2
  • pi 10-alpha phosphoinositide 3'-hydroxykinase pi 10-alpha subunit
  • a 0.016% aqueous atelocollagen solution To prepare a complex solution. The complex solution was added to each well of a 6-well cell culture plate by adding 2 ⁇ 0, and the mixture was dried by blowing cold air.
  • PC-3M-Luc-C6 cells (Xenogen Corp.), cells derived from human prostate cancer, were seeded at 5 ⁇ 10 4 cells / well. Immediately after cell seeding, 20 ⁇ L of 1.7 M calcium chloride aqueous solution was added. On day 4 after cell seeding, RA extraction and cDNA synthesis were performed, and the expression level of ttiRNA of the target gene was analyzed by quantitative PCR. The results were collected based on the expression level of GAPDH used as an internal standard.
  • Fig. 6 shows the results.
  • the siRNA could be introduced into the cells by adding a 1.7 M calcium chloride solution to the wells after seeding the cells.
  • the nucleic acid transfer method of the present invention is simple, has low cytotoxicity, has high transfer efficiency, and is inexpensive. Also, the type of cells and nucleic acids Regardless, it can be used widely.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Endocrinology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

 (a)核酸と細胞とを培地中で接触させる工程、および(b)前記(a)の工程の後、高濃度の金属塩溶液を前記(a)の培地と接触させる工程、を含む核酸導入法、ならびに固形金属塩または高濃度の金属塩溶液を成分として含有する核酸導入剤などを提供する。

Description

明細書
新規な核酸導入法 技術分野
本発明は、 新規な核酸導入法に関する。 より詳細には、 本発明は、 高濃度の金属 塩溶液を利用した新規な核酸導入法に関する。 背景技術
ゲノムサイエンスの発展により新しい疾患関連遺伝子が数多く発見され、 これら の遺伝子の機能解析が急務となっている。 現在汎用されている遺伝子の機能解析手 法である DNAマイクロアレイを用いたトランスタリプトームゃ酵母 two- hybrid法で は、 直接培養細胞内における機能を解析することは困難である。 このため、 治療標 的分子の同定および治療創薬への直接的な結びつけを可能とするための、 細胞もし くは個体レベルでの遺伝子機能の網羅的な解析技術の確立が望まれている。 細胞お よび固体レベルでの解析では、 評価対象とする遺伝子の配列をもとに核酸を利用し て遺伝子がコードする mRNAを細胞内で過剰発現もしくはノックダウンさせ、 その結 果生じる細胞の機能変化を解析する手法が利用される。 近年、 細胞の機能をマルチ イメージアナライザ一により様々なパラメーターで解析する方法が確立され、 これ を用いることにより細胞レベルでの網羅的な遺伝子機能解析も可能となっているこ とから、 遺伝子発現を調節する手段の確立は遺伝子の機能解析の重要な課題となつ ている。
遺伝子の発現を制御する核酸として、 遺伝子過剰発現にはプラスミド DNA (pDNA) やウィルスベクターが、 遺伝子のノックダウンにはアンチセンス DNA (AS-DNA) や 短い干渉腿 (short interfering RNA;siRNA) などが用いられる。 これら核酸と細 胞膜は共にァニオン性を示し電気的に反発してしまうため、 核酸を単独で直接細胞 内に導入することは困難である。 このため、 細胞を用いた遺伝子機能解析では、 ゥ ィルスべクタ一法、 エレクト口ポレーシヨン法、 リン酸カルシウム共沈法、 DEAE- デキストラン法、 リポフエクシヨン法、 高分子ミセノレベクター法など、 これまでに 開発された核酸の細胞内導入方法の利用が必要となる。 ウイノレスべクタ一法 (Mah C et al, Virus-based gene delivery systems. , CI in Pharmacokinet. 2002 ; 41 (12) : 901-911) は、 ウィルスベクター自体が細胞への 感染能力を保持しているため、 目的の遺伝子をゥィルスべクターに揷入し細胞に添 加するだけで遺伝子が細胞に導入され、 高効率で目的とする遺伝子を発現すること ができる。 しかし、 この方法では感染により細胞內に核酸が導入されるため、 感染 に対する防御機構などが細胞に生じる結果、 本来目的とする遺伝子の機能の検出に ノイズが生じる恐れがある。 また、 ウィルスベクターに挿入可能な遺伝子の大きさ に制限があること、 遺伝子の導入およびウイルスの増幅と精製作業が煩雑であるこ となど力ゝら、 多種類の遺伝子機能の網羅的な解析には適さない。
pDNA、 AS-DNA、 siRNAの細胞内への導入に関しては、 上記のエレクト口ポレーシ
3ン法 (Gehl J, Electroporation : theory and methods, perspectives for drug delivery, gene therapy and research. , Acta Phisiol scand. 2003; 117 (4): 43 7-47) 、 ])ン酸カノレシゥム共沈、法 (Batard P et al, Transfer of high copy numb er plasmid into mammalian ceils by calcium phosphate transfrection. , Gene , 2001 ; 270 : 61-68) 、 DEAE -デキストラン法 (Holter W et al, Efficient gene tra nsfer by sequential treatment of mammalian cells with DEAE-dextran and deo xyribonucleic acid., Exp Cell Res. 1989 ; 184 (2) : 546— 551) 、 リポフエクシヨン 法 (Rocha A et al, Improvement of DNA transfection with cationic liposomes ., L Physiol Biochera. 2002 ; 58 (1):45-56) 、 または高分子ポリマーを用いた方法 (De Smedt SC, et al, Cationic polymer Based Gene Delivery Systems. , Pharm
. Res. 2000; 17 (2): 113-26) などの利用が必要となる。
エレク トロボレーション法は細胞を核酸溶液中に懸濁して直流高電圧のパルスを かけることで細胞の膜透過性を亢進させて導入する方法である。 この方法は高効率 で核酸を導入することができる反面、 細胞へのダメージが大きいことを特徴として おり、 核酸導入後の細胞機能変化の解析を目的とする場合には適さない。
リン酸カルシウム共沈法は細胞の食作用を利用して核酸を導入する方法である。 この方法は再現性が乏しく、 また導入効率も悪い。 そのため安定した遺伝子導入が 必要となる遺伝子の機能解析には適さない。
DEAE-デキストラン法、 リポフエクション法および高分子ポリマーを用いた方法 は、 細胞膜との膜融合を利用して核酸を導入する方法である。 これらの方法のなか では、 導入効率や簡便性、 汎用性、 再現性という点でリポフエクシヨン法が最も優 れている。 しかしリポフエクション法では細胞毒性が高いことが知られているため 、 細胞のビアビリティが重要である遺伝子の機能解析には問題が残る。 またリボフ ェクシヨン法では、 細胞への導入に先立ってリボソーム試薬と核酸を混合して複合 体を形成させる必要があるが、 再現性が高いとは ヽえ複合体調製時の微妙な差よつ て細胞への導入効率が異なってくることから、 多数の核酸を取り扱う場合には個々 の操作に細心の注意が必要となり、 操作が煩雑となる。
以上から、 細胞レベルで多数の遺伝子機能を網羅的に解析するためには、 低細胞 毒性でより簡便にかつ効率的に細胞内に核酸を導入する方法の開発が望まれている 状況にあった。 発明の開示
本発明の目的は、 低細胞毒性で簡便かつ高効率で細胞へ核酸を導入することので きる、 新規な核酸導入法を提供することにある。
本発明者らは、 核酸 (単独) と細胞とを培地中で混合し、 その後高濃度の塩化力 ルシゥム溶液を培地に添加したところ、 驚くべきことに、 核酸が効率よく細胞に導 入されその機能を発現できることを見出した。 この新たな知見から、 本発明者らは 、 塩化カルシウム、 さらには金属塩全般について、 新規な核酸導入剤として利用で きるとの確信を得た。
本発明はこのような知見に基づき完成するに至ったものである。
すなわち本発明は、 下記に掲げるものである:
(1) 以下の工程 (a) 及ぴ (b) を含む核酸導入法:
(a) 核酸と細胞とを培地中で接触させる工程、
(b) 前記 (a) の工程の後、 高濃度の金属塩溶液を前記 (a) の培地と接触させ る工程、
(2) 核酸が一本鎖 DNA、 二本鎖 DNA、 一本鎮 RNA、 二本鎖 RNA、 オリ ゴヌクレオチドまたはリポザィムである、 前記 (1) 記載の核酸導入法、
(3) 二本鎖 DNAまたは二本鎖 RNAが、 直鎖状または環状の形態である、 前 記 (2) 記載の核酸導入法、
(4) 環状二本鎖 DN Aが発現プラスミドの形態である、 前記 (3) 記載の核酸 導入法、
(5) オリゴヌクレオチドが、 デォキシリポヌクレオチド、 リボヌクレオチド、 ホスホロチォエートオリゴデォキシヌクレオチド、 2, 一 O— (2—メ トキシ) ェ チルー修飾核酸 (2, 一 MOE—修飾核酸) 、 短い干渉 RNA (s i RNA) 、 架 橋型核酸 (LNA) 、 ペプチド核酸 (PNA) またはモルフォリノ 'アンチセンス 核酸である、 前記 (2) 記載の核酸導入法、
(6) 核酸が生体内分解性の物質または生体由来物質との複合体若しくは封入体 の形態である、 前記 (1) 〜 (5) いずれか記載の核酸導入法、
(7) 生体由来物質がァテロコラーゲンである、 前記 (6) 記載の核酸導入法、
(8) 工程 (a) の培地と接触させる高濃度金属塩溶液の濃度が 0. 1M〜3, 0Mの範囲内である、 前記 (1) 〜 (7) いずれか記載の核酸導入法、
(9) 工程 (a) の培地と接触させる高濃度金属塩溶液の濃度が 0. 5M〜2. 0Mの範囲内である、 前記 (8) 記載の核酸導入法、
(10) 工程 (a) の培地と接触させる高濃度金属塩溶液の量が、 工程 (a) の 培地 500 L当たり 1 μ ί〜20 μ Lの範囲内である、 前記 (1) 〜 (9) いず れか記載の核酸導入法、
(1 1) 工程 (a) の培地と接触させる高濃度金属塩溶液の量が、 工程 (a) の 培地 5 O O L当たり 2 L〜1 0 /i Lの範囲内である、 前記 (1 0) 記載の核酸 導人法、
(12) 金属塩溶液が二価金属の塩化物溶液である、 前記 (1) ~ (1 1) いず れか記載の核酸導入法、
(1 3) 二価金属の塩化物溶液が塩化カルシウム溶液である、 前記 (12) 記載 の核酸導入法、
(14) 固形金属塩または高濃度金属塩溶液を成分として含有する核酸導入剤、
(15) 固形金属塩または高濃度金属塩溶液からなる核酸導入剤、
(16) 前記 (1) 〜 (13) いずれか記載の核酸導入法のために用いられる、 前記 (14) または (15) 記載の核酸導入剤、 (17) 高濃度金属塩溶液の濃度が 0. 1M〜6. OMの範囲内である、 前記 ( 14) 〜 (16) いずれか記載の核酸導入剤、
(18) 高濃度金属塩溶液の濃度が 0. 5 M〜 4. 0 Mの範囲内である、 前記 ( 17) 記載の核酸導入剤、
(19) 金属塩が二価金属の塩化物である、 前記 (14) ~ (18) いずれ力記 載の核酸導入剤、
(20) 二価金属の塩ィヒ物が塩化カルシウムである、 前記 (19) 記載の核酸導 入剤、
(21) 前記 (14) 〜 (20) いずれ力記載の核酸導入剤を含有する核酸導入 用キット、
(22) 前記 (14) 〜 (21) いずれか記載の核酸導入剤またはキットの、 核 酸導入における使用、
(23) 以下の工程 (a) 及び (b) を含む核酸導入法:
(a) 核酸と細胞とを培地中で接触させる工程、
(b) 前記 (a) の工程の後、 高濃度の塩ィ匕カルシウム溶液を前記 (a) の培地と 接触させる工程、
(24) 核酸が一本鎖 DNA、 二本鎖 DNA、 一本鎖 RNA、 二本鎖 RNA、 ォ リゴヌクレオチドまたはリポザィムである、 前記 (23) 記載の核酸導入法、
(25) 二本鎖 DNAまたは二本鎖 RNAが、 直鎖状または環状の形態である、 前記 (24) 記載の核酸導入法、
(26) 環状二本鎖 DNAが発現プラスミドの形態である、 前記 (25) 記載の 核酸導入法、
(27) オリゴヌクレオチドが、 デォキシリポヌクレオチド、 リポヌクレオチド 、 ホスホロチォエートオリゴデォキシヌクレオチド、 2, -0- (2—メ トキシ) ェチル—修飾核酸 (2, — MOE—修飾核酸) 、 短い干渉 RNA (s i RNA) 、 架橋型核酸 (LNA) 、 ペプチド核酸 (PNA) またはモルフォリノ 'アンチセン ス核酸である、 前記 (24) 記載の核酸導入法、
(28) 核酸が生体内分解性の物質または生体由来物質との複合体若しくは封入 体の形態である、 前記 (23) 〜 (27) いずれか記載の核酸導入法、 (2 9) 生体由来物質がァテロコラーゲンである、 前記 (2 8) 記載の核酸導入 法、
(3 0) 工程 (a) の培地と接触させる高濃度塩化カルシウム溶液の濃度が 0. 1M〜3. 0Mの範囲内である、 前記 (2 3) ~ (2 9) いずれか記載の核酸導入 法、
(3 1) 工程 (a) の培地と接触させる高濃度塩化カルシウム溶液の濃度が 0. 5M〜2. 0Mの範囲内である、 前記 (3 0) 記載の核酸導入法、
(3 2) 工程 (a) の培地と接触させる高濃度塩化カルシウム溶液の量が、 工程 (a) の培地 5 0 0 L当たり l /i L〜20 /z Lの範囲内である、 前記 (2 3) 〜 (3 1) いずれか記載の核酸導入法、
(3 3) 工程 (a) の培地と接触させる高濃度塩化カルシウム溶液の量が、 工程 (a) の培地 5 00 μ L当たり 2 /X L〜; L 0 /z Lの範囲内である、 前記 (3 2) 記 載の核酸導入法、
(34) 固形塩化カルシウムまたは高濃度塩化カルシウム溶液を成分として含有 する核酸導入剤、
(3 5) 固形塩化カルシウムまたは高濃度塩化カルシウム溶液からなる核酸導入 剤、
(3 6) 前記 (2 3) 〜 (3 3) いずれか記載の核酸導入法のために用いられる 、 前記 (34) または (3 5) 記載の核酸導入剤、
(3 7) 高濃度塩化カルシウム溶液の濃度が 0. 1Μ〜6. 0Μの範囲内である 、 前記 (34) 〜 (3 6) いずれか記載の核酸導入剤、
(3 8) 高濃度塩化カルシウム溶液の濃度が 0. 5Μ〜4. 0Μの範囲内である 、 前記 (3 7) 記載の核酸導入剤、
(3 9) 前記 (34) 〜 (3 8) いずれか記載の核酸導入剤を含有する核酸導入 用キット、 ならびに
(40) 前記 (34) 〜 (3 9) いずれか記載の核酸導入剤またはキットの、 核 酸導入における使用。 図面の簡単—な説明 図 1は、 本発明の核酸導入法を用いることにより、 GFP発現プラスミドを 293細胞 へ導入した結果を示すグラフである。
図 2は、 予め塩ィ匕カルシウム溶液を添加した培地で 293細胞を懸濁して播種した 場合の GFPの発現効率を示すグラフである。
図 3は、 本発明の核酸導入法を用いることにより、 GFP発現プラスミ ドを HeLa細 胞へ導入した結果を示すグラフである。
図 4は、 本発明の核酸導入法を用いることにより、 siRNAを NEC8細胞へ導入しすこ 結果を示すグラフである。
図 5は、 本発明の核酸導入法を用いることにより、 GFP発現プラスミドとァテロ コラーゲンとの複合体を 293細胞および HeLa細胞へ導入した結果を示すグラフであ る。
図 6は、 本発明の核酸導入法を用いることにより、 siR Aとァテロコラーゲンと の複合体を PC- 3M- Luc- C6細胞へ導入した結果を示すグラフである。 A)はヒト enhanc er of zeste homolog2 (EZH2)に対する siRNA導入の結果を、 B)は phosphoinositide 3' -hydroxykinase pllO-alpha subunit (pi 10- alpha)に対する siRNA導入の結果を 、 それぞれ示す。 発明を実施するための最良の形態
本発明は、 少なぐとも以下の工程 (a ) 及ぴ (b ) :
( a ) 核酸と細胞とを培地中で接触させる工程、
( b ) 前記 (a ) の工程の後、 高濃度の金属塩溶液を前記 (a ) の培地と接触させ る工程、
を含む核酸導入法を提供する。
本発明の核酸導入法において導入に用いられる核酸は、 方法の原理上、 その種類 に制限は無くどのような核酸であっても導入対象として用いることができる。 すな わちポリヌクレオチド (D NA、 R NA) 、 オリゴヌクレオチド、 またはリボザィ ム等のいずれの核酸であっても良く、 また一本鎮.二本鎖およびこれらの類縁体の いずれの形態であっても良い。 すなわち本発明の核酸として具体的には、 一本鎮 D NA、 二本鎖 D NA、 一本鎖 R NA、 二本鎖 R NA、 オリゴヌクレオチドまたはリ ポザィム等が挙げられる。
本発明の核酸が二本鎖 D N Aまたはニ本鎮 R N Aである場合、 直鎖状または環状 のいずれの形態であっても良い。 さらに本発明の核酸が環状二本鎖 D N Aの場合、 プラスミドの形態とすることができる。 当該プラスミドは、 発現プラスミドまたは 非発現プラスミドのいずれの形態であっても良い。
本発明の核酸が一本鎖 D N Aまたは一本鎮 R N Aである場合、 センス鎖またはァ ンチセンス鎖のいずれも用いることができる。
本発明の核酸がオリゴヌクレオチドである場合、 導入するオリゴヌクレオチドの 種類に制限はなく、 一本鎖ォリゴヌクレオチド、 二本鎖ォリゴヌクレオチドまたは これらの類縁体のいずれも用いることができる。 具体的には、 デォキシリボヌクレ ォチド (DNA) 、 リポヌクレオチド (RNA) 、 ホスホロチォエートオリゴデォキシヌ クレオチド、 2'-0- (2 -メトキシ) ェチル -修飾核酸(2,- M0E-修飾核酸)、 短い干渉 RNA (small interfering RNA: siRNA) 、 架橋型核酸 (Locked Nucleic Acid: LNA ; S ingh, et al, Chera. Commun. , 455, 1998)、 ペプチド核酸 (Peptide Nucleic Acid: PNA; Nielsen, et al. , Science, 254, 1497, 1991)、 またはモノレフオリノ 'アン チセンス核酸 (Morpholino antisense ; Suramerton and We Her, Antisense & Nucl eic Acid Drug Development, 7, 187, 1997)などを例示することができる。
前記核酸は、 通常の遺伝子導入に用いられる濃度 (0. 001〜1000 μ εΑΛ) で使用 することができる。
前記核酸は、 細胞培養に支障のない溶媒に溶解して導入に用いることができる。 当該溶媒としては、 例えば蒸留水、 生理的食塩水、 HEPES緩衝液 (シグマ社) 、 TRI S緩衝液 (シグマ社) 、 PBS緩衝液 (Invitrogen社) 、 細胞培養培地等を挙げること ができる。
前記核酸は、 細胞毒性のない生体内分解性の物質や生体由来物質と複合体を形成 した形態、 あるいはこれらの物質に封入された形態であっても良い。 ここで生体内 分角性の物質としては、 例えばポリ乳酸、 ポリグリコール酸およびこれらの共重合 体やラタトン系ポリマー、 ポリエチレングリコール系ポリマー等を挙げることがで きる。 また生体由来物質としては、 例えばキトサン、 ゼラチン、 コラーゲン、 酵素 可溶化コラーゲン (ァテロコラーゲン) 、 またはこれらの修飾物等を挙げることが できる。 核酸とこれら生体内分解性の物質や生体由来物質との複合体あるいは封入 体の作製は、 例えば文献、 Panyman et al, Biodegradable nanopartic丄 es for dru g and gene delivery to cel ls ant tissue. , Adv Drug Deliv Rev. 2003 ; 55 (3):3 29-47, Li XW et al, Sustained expression in mammalian cells with DNA comp lexed with chitosan, nanoparticles. , Biochem Biophys Acta. 2003; 1630 (1): ί-1 8 、 W0 03/000297号公報などに従い行うことができる。
前記で生体由来物質としてはコラーゲンあるいは酵素可溶化コラーゲン (ァテロ コラーゲン) が好ましく、 その種類、 由来、 型等に特に制限はない。 種類としては 未修飾物あるいはその修飾物を挙げることができる。 修飾物としては、 側鎖ァミノ 基、 カルボキシル基の化学修飾、 あるいは化学的 '物理的架橋物を用いることがで さる。
当該コラーゲン溶液の濃度は 0. 00001%〜3% (0. 0001mg/mL〜30mg/mL)の範囲で使 用することができ、 好ましくは 0. 0001%〜0. 3%、 より好ましくは 0. 0005%〜0. 1 % の範囲で使用することができる。
前記生体内分解性の物質や生体由来物質と複合体あるいは封入体を形成すること により核酸は安定化されかつ徐放化されること力、ら、 当該複合体あるいは封入体を 細胞内に導入することにより、 核酸の効果の持続を図ることができる。
本発明の核酸導入法において用いられる細胞は、 方法の原理上、 適応細胞種に制 限はない。 具体的には、 線維芽細胞、 上皮細胞、 内皮細胞、 神経芽細胞、 リンパ芽 球、 浮遊細胞、 星状膠細胞、 円形細胞、 紡錘細胞、 アメーバ様細胞などに対して本 発明の核酸導入法を適用することができる。
本発明の核酸導入法において用いられる培地は、 細胞が死滅せず、 かつ本発明の 核酸導入法による細胞内への核酸の取り込みに支障をきたさないような培地であれ ば、 如何なる培地であっても良い。 具体的には、 通常の細胞培養に用いられる培養 用培地、 緩衝液、 または血清をさらに含有する培養用培地や緩衝液が挙げられる。 ここで培養用培地としては、 各々の細胞に合った培養用培地であればどのような 培地であっても良い。 例えば RPMI 1640 (Invitrogen社) 、 DULBECCO' S MODIFIED EA GLE MEDIA (Invitrogen社) 、 F- 10 Nutrient Mixture (Invitrogen社) 、 F- 12 Nut rient Mixture (Invitrogen社) 、 Iscove' s Modified Dulbecco' s Media (Invitro gen社) または MINIMUM .ESSENTIAL MEDIA (Invitrogen社) などが例示される。
また緩衝液としては、 HEPES緩衝液 (シグマ社) 、 TRIS緩衝液 (シグマ社) 、 PBS 緩衝液 (Invitrogen社) などが例示される。
また血清としては、 ゥシ胎児血清、 ゥシ血清、 仔ゥシ血清、 ゥマ血清などが例示 される。 培地中の血清の濃度は、 細胞培養に適した濃度であればどのような濃度で あっても良い。 好ましくは 0〜20% (v/v) の範囲が挙げられ、 より好ましくは 5 〜10% (v/v) の範囲が挙げられる。
本発明の核酸導入法において用いられる 「金属塩溶液」 は、 細胞培養に影響しな い範囲内であれば、 如何なる金属塩溶液を用いても良い。 細胞培養に影響するカ否 かは、 細胞培養液に金属塩溶液を添加した場合としない場合とで細胞増殖速度 (細 胞密度) 等を比較することにより、 容易に調べることができる。
ここで金属塩とは、 具体的には、 カルシウム、 カリウム、 マグネシウム、 ナトリ ゥム、 マンガン、 鉄、 銅、 または亜鈴等の金属の塩が挙げられる。 当該金属の塩と して、 より具体的には、 例えば前記金属の塩酸塩、 リン酸塩、 硫酸塩、 炭酸塩、 ま たは硝酸塩等が挙げられる。 好ましくは前記金属の塩酸塩が挙げられ、 より好まし くは二価金属の塩化物が挙げられる。
ここで二価金属の塩化物としては、 具体的には塩化カルシウム、 塩化マグネシゥ ム、 塩化亜鉛、 塩化鉄、 塩化マンガン等が例示され、 好ましくは塩ィ匕カルシウムが 挙げられる。 すなわち本発明の最も好ましい金属塩溶液は塩化カルシウム溶液であ る。
以上に示した金属塩は、 単独で、 若しくは 2種以上を組み合わせることにより、 本発明の金属塩溶液の成分とすることができる。
本発明の核酸導入法において用いられる金属塩溶液 (好ましくは塩化カルシウム 溶液) は、 高濃度の金属塩溶液である。 ここで 「高濃度」 とは、 0. 1M以上の濃 度であることを指す。 具体的には 0. 1M〜 3. 0Mの範囲が挙げられ、 好ましく は 0. 3M〜3. 0Mの範囲が、 より好ましくは 0. 5M〜3. 0Mの範囲が、 さ らに好ましくは 0. 5M〜2. 5 Mの範囲が、 特に好ましくは 0. 5M〜2. 0M の範囲が、 最も好ましくは 1. 0M〜2. 0Mの範囲が挙げられる。
前記金属塩を溶解する溶媒は、 細胞培養に支障のない溶媒であれば如何なるもの でもよいが、 例えば蒸留水、 生理的食塩水、 HEPES緩衝液 (シグマ社) 、 TRIS緩衝 液 (シグマ社) 、 PBS緩衝液 (Invitrogen|±) 、 細胞培養培地等を用いることがで さる。
次に、 本発明の核酸導入の方法について具体的に説明する。
まず、 導入用の核酸と導入対象となる細胞とを培地中で接触させる。 接触は、 通 常の細胞培養に適した培養容器中で行われる。 ここで培養容器としては、 細胞培養 用ディッシュ、 フラスコ、 マルティプルゥエルプレートなどが挙げられる。
核酸と細胞との接触方法としては、 例えば、 細胞懸濁培地に核酸を添加して細胞 培養容器に播く方法、 核酸を添加した培地で細胞を懸濁して細胞培養容器に播く方 法、 細胞を培養培地で懸濁して細胞培養容器に播き、 その上に核酸を加える方法、 核酸を予め細胞培養容器に添加しておき、 その上に細胞を懸濁した培養培地を加え る方法、 核酸水溶液を予め細胞培養容器に添加して乾固又は吸着させ、 その上に細 胞を懸濁した培養培地を加える方法等がある。
ここで用いる核酸は、 前述のように生体内分解性物質や生体由来物質との複合体 あるいは封入体の形態であっても良い。 特に、 核酸水溶液を細胞培養容器に添カロし て乾固又は吸着させる方法において、 当該複合体あるいは封入体が好適に用いられ る。
具体的には、 例えば核酸溶液とァテロコラーゲン水溶液との複合体溶液をマルテ ィプルゥエルプレートに添加して乾固させ、 その上に細胞を懸濁した培養培地を加 える方法が例示される。
接触させる核酸の量 (濃度) および細胞数 (密度) は、 通常の遺伝子導入に用い られる程度であれば特に制限は無い。 また接触の温度としては、 0°C〜42°Cの範囲 力 より好ましくは室温〜 37°Cの範囲が挙げられる。
次に、 前記核酸と細胞とを接触させた培地 (以下、 「工程 (a ) の培地」 と称す ることもある) に対し、 高濃度の金属塩溶液 (好ましくは高濃度の塩化カルシウム 溶液) を接触させる。 接触方法としては、 例えば、 工程 ( a ) の培地を含有する培 養容器中に高濃度金属塩溶液を添加する方法や、 高濃度金属塩溶液を予め細胞培養 容器に添加しておき、 そこに前記工程 (a ) の培地を添加する方法等が挙げられる 高濃度金属塩溶液の接触 (添加) の時期は特に制限されないが、 細胞と核酸を接 触後 2時間以内、 好ましくは 30分以内、 より好ましくは 10分以内に高濃度金属塩溶 液を接触させることが適当である。
高濃度金属塩溶液 (好ましくは高濃度塩ィヒカルシウム溶液) の接触 (添加) 量は 、 細胞への核酸導入が良好に行われる限り特に制限されないが、 工程 (a ) の培地 5 0 0 1^当たり高濃度金属塩溶液1 ^ 1^〜2 0 ^しを接触 (添加) することが好 ましい。 また、 工程 (a ) の培地 5 0 0 μ L当たり高濃度金属塩溶液 2 μ L〜l 0 / Lを接触 (添加) することがより好ましく、 工程 (a ) の培地 5 0 0 L当たり 高濃度金属塩溶液5 /! 〜1 0 1^を接触 (添加) することがさらに好ましい。 より具体的には、 例えば 24穴ゥエルにおいては、 1ゥエルあたり 500 し程度のェ 程 (a ) 培地を含有するのが一般的であるため、 l /z L〜20 L/ゥエル、 より好まし くは2 ^ 1 ~10 し/ゥェル、 さらに好ましくは5 〜10 ^ 17ゥェルの高濃度金属塩溶 液を添加することが適切である。
高濃度金属塩溶液を添加した後、 金属塩が均一に工程 ( a ) 培地に混合されるよ うに培養容器を攪拌し、 1時間〜 1日程度培養する。 培養の条件は、 細胞への核酸 導入に支障をきたさない限り特に限定されないが、 5%C02存在下、 0°C〜42°Cの範 囲で、 好ましくは室温〜 37°Cの範囲で、 より好ましくは 37°Cにて行われる。
以上の操作により、 核酸の導入が達成される。
前記本発明による核酸導入法は、 細胞レベルでの遺伝子能解析の他、 遺伝子組换 え細胞株の作出や、 ex vivoの遺伝子治療における細胞への核酸導入にも適用する ことができる。
本発明は、 前記本発明の核酸導入法のために用いられる核酸導入剤を提供する。 本発明の核酸導入剤は、 固形金属塩または高濃度の金属塩溶液を成分として含有 することを特徴とする。 具体的には、 固形金属塩または高濃度の金属塩溶液からな る核酸導入剤が例示される。
ここで 「金属塩」 とは、 細胞培養に影響しない範囲内であれば、 如何なる金属塩 溶液を用いても良い。 細胞培養に影響するか否かは、 細胞培養液に金属塩溶液を添 加した場合としない場合とで細胞増殖速度 (細胞密度) を比較することにより、 容 易に調べることができる。 具体的には、 カルシウム、 カリウム、 マグネシウム、 ナトリウム、 マンガン、 鉄 、 銅、 または亜鉛等の金属の塩が挙げられる。 当該金属の塩として、 より具体的に は、 例えば前記金属の塩酸塩、 リン酸塩、 硫酸塩、 炭酸塩、 または硝酸塩等が挙げ られる。 好ましくは前記金属の塩酸塩が挙げられ、 より好ましくは二価金属の塩ィ匕 物が挙げられる。
ここで二価金属の塩化物としては、 具体的には塩ィヒカルシウム、 塩化マグネシゥ ム、 塩化亜鉛、 塩化鉄、 塩化マンガン等が例示され、 好ましくは塩化カルシウムが 挙げられる。 すなわち本発明の核酸導入剤の好ましい例として、 本発明は、 固形塩 化カルシゥムまたは高濃度塩化カルシゥム溶液を成分として含有する核酸導入剤を 提供する。 より具体的には、 固形塩化カルシウムまたは高濃度塩化カルシウム溶液 力 らなる核酸導入剤が例示される。
以上に示した金属塩は、 単独で、 若しくは 2種以上を組み合わせることにより、 本発明の核酸導入剤の成分とすることができる。
本発明の核酸導入剤が高濃度の金属塩溶液を成分として含有する場合、 その濃度 は、 0. 1M以上であれば如何なる濃度であっても良い。
前記したように、 工程 (a) の培地と接触させる金属塩溶液の濃度としては 0 · 1M〜3. 0Mの範囲が挙げられ、 好ましくは 0. 3M〜3. OMの範囲が、 より 好ましくは 0. 5M〜3. OMの範囲が、 さらに好ましくは 0. 5Μ〜2· 5Μの 範囲が、 特に好ましくは 0. 5M〜2. OMの範囲が、 最も好ましくは 1. 0M〜 2. OMの範囲が挙げられる。 従って本発明の核酸導入剤における金属塩の濃度は 、 希釈により若しくはそのまま使用することにより前記の濃度となるように調製さ れている必要がある。
従って本発明の核酸導入剤が高濃度の金属塩溶液 (好ましくは高濃度の塩化カル シゥム溶液) を成分として含有する場合、 その濃度は、 0. 1M以上であれば良く 、 好ましくは 0. 1M〜6. OMの範囲が挙げられ、 より好ましくは 0· 1M〜4 . OMの範囲が、 さらに好ましくは 0. 5M〜4. OMの範囲が挙げられる。
前記金属塩を溶解する溶媒は、 細胞培養に支障のない溶媒であれば如何なるもの でもよいが、 例えば蒸留水、 生理的食塩水、 HEPES緩衝液 (シグマ社) 、 TRIS緩衝 液 (シグマ社) 、 PBS緩衝液 (Invitrogen¾) 、 細胞培養培地等を挙げることがで きる。
以上のような本発明の核酸導入剤は、 核酸導入用のキットの一成分とすることが できる。 当該キットは、 前記本発明の核酸導入剤のみからなるキットであっても、 また本発明の核酸導入剤と他の成分とを含むキットであっても良い。 当該キット中 の他の成分としては、 蛍光標識ォリゴヌクレオチド、 ポジテイブコント口ール siRN Aなどが挙げられる。 また当該キットが固形金属塩を成分として含有する場合は、 これを溶解する溶媒として、 蒸留水、 生理的食塩水、 HEPES緩衝液 (シグマ社) 、 T RIS緩衝液 (シグマ社) 、 PBS緩衝液 (Invitrogen社) 、 細胞培養培地等をさらに含 有していても良い。 実施例
以下、 実施例により本発明を具体的に説明するが、 本発明はこれらの実施例によ りなんら限定されるものではない。
実施例 1
核酸導入法の検討 (1 )
24ゥエル細胞培養プレートの各ゥエルに 100 μ g/mLの GFP発現プラスミド水溶液を 100 L添加し、 冷風を吹きかける方法で乾燥した。 ヒト副腎由来上皮細胞である 2 93細胞 (ATCC: Cell Biology Collection) を 10%ゥシ血清 (FBS)含有 DMEM培地 (Si gma)に懸濁し、 1ゥエルあたり 2. 5 X 104個 (500 /z L) 播種した。 細胞播種後直ちに 1. 7M塩化カルシウム水溶液を 0, 1. 5, 2. 5, 3. 5, 5. 0, 6. 5, 8. 0 し添加し、 均一と なるようにプレートを攪拌した。 なお、 培地中の最終塩化カルシウム濃度は 1. 8mM, 7. IraM, 10. 2mM, 14. 2mM, 19. 5raM, 24. 8mM, 30. ImMとなる。 細胞播種後 2日目に蛍 光顕微鏡で細胞を観察して GFPを発現している細胞数を計測し、 導入効率を算出し た。
結果を図 1に示す。 図 1より明らかなように、 高濃度 (1. 7M) の塩化カルシウム を添加することにより、 効率良く細胞に遺伝子導入できることが示された。 また細 胞の形態変化や細胞死は認められなかった。 用いた 24ゥエルプレートでは、 各ゥェ ルに添加する 1. 7M塩化カルシウム溶液の量が 2. 5〜8. 0 μ Lで優れた遺伝子発現効率 が得られた。 実施例 2
核酸導入法の検討 (2 )
予め塩化カルシゥム溶液を添加した培地で細胞を懸濁しゥエルに播種する以外は 実施例 1と同様にして、 遺伝子導入効率の検討を行った。 24ゥエル細胞培養プレー トに 100 μ g/mLの GFP発現プラスミド水溶液を 100 μ L添加し、 冷風を吹きかける方法 で乾燥した。 塩化カルシウム濃度がそれぞれ 1. 8mM, 7. ImM, 10. 2raM, 14. 2raM, 19. 5 mM, 24. 8raM, 30. ImMとなるように培地に予め塩化カルシウム溶液を添加しておき、 それぞれの培地を用いて 293細胞を懸濁し、 1ゥエルあたり 2. 5 X 104個 (500 μ L) 播種した。 細胞播種後 2日目に蛍光顕微鏡で細胞を観察して GFPを発現している細胞 数を計測し、 導入効率を算出した。
結果を図 2に示す。 実施例 1の結果 (図 1) と異なり、 予め塩化カルシウム溶液 を添加した培地で細胞を懸濁しプレートに播種した場合は、 遺伝子を導入すること が出来なかった。 これら実施例 1および実施例 2の結果から、 細胞内への遺伝子導 入促進効果は培地中の塩化カルシウム濃度の増加ではなく、 塩化カルシウム溶液の 加え方に起因することが示された。 すなわち、 細胞と遺伝子とをあらかじめ混合し た後に高濃度の塩化カルシゥムと接触させることが重要であることが明らかとなつ た。
実施例 3
本発明の核酸導入法を用いた HeLa細胞への遺伝子導入
実施例 1と異なる細胞においても本発明の遺伝子導入法が適用できるかどう力検 討した。
24ゥエル細胞培養プレートに 100 μ g/mLの GFP発現プラスミド水溶液を 100 L添加 し、 冷風を吹きかける方法で乾燥した。 ヒト子宫頸癌由来上皮細胞である HeLa細 胞 (ATCC: Cell Biology Collection) を 10%FBS含有 DMEM培地 (Sigma)に懸濁し、 1 ゥエルあたり 1. 5 X 104個 (500 μ υ 播種した。 細胞播種後直ちに 1. 7Μ塩化カルシ ゥム水溶液を 0, 1. 5, 2. 5, 3. 5, 5. 0, 6. 5, 8. 0 L添加し均一となるようにプレー トを攪拌した。 細胞播種後 4日目に蛍光顕微鏡で細胞を観察して GFPを発現している 細胞数を計測し、 導入効率を算出した。
結果を図 3に示す。 HeLa細胞においても 1. 7Mの塩ィヒカルシウム溶液を細胞播種後 にゥエルに添加することにより遺伝子を効率よく細胞に導入できた。 また細胞の形 態変化や細胞死も認められなかった。 このことから、 本発明の方法が細胞種に依ら ないことが示された。
実施例 4
本発明の核酸導入法を用いた siRNAの導入
発現ブラスミド以外の核酸も本発明の遺伝子導入法により導入できるかどうか検 討した。
ヒト FGF-4の mRNAを特異的に抑制する siRNA (以下 hEx3 - 1と称する)を導入用核酸 として用いた。 またヒト FGF-4タンパクを強発現する細胞株であるヒト精巣腫瘍由 来上皮細胞 NEC8 (ATCC: Cell Biology Collection) を導入用細胞として用いた。
6ゥ工ル細胞培養プレートに 10 /i g/mLの hEx3 - 1水溶液を 350 L添加し、 冷風を吹 きかける方法で乾燥した。 NEC8細胞を 10%FBS含有 DMEM培地 (Sigma) に懸濁し、 1プ レートあたり 3. 75 X 105個 (1. 5mL) 播種した。 細胞播種後直ちに 1. 7M塩化カルシ ゥム水溶液を 20 L添加し、 プレートを攪拌して均一とした。 対照群として hEx3 - 1 を塗布乾燥していないゥエルで同様の操作を行った。 細胞播種後 3日目に培地を回 収して培地中の FGF- 4濃度を ELISA (Human FGF-4 Quantikine ELISA kit ; R&D Syst ems) で定量した。 またゥヱル中の細胞を回収してタンパク量を Bradford法 (Bio- R ad Protein Assay; BioRad) で定量した。 培地中の FGF- 4濃度を得られたタンパク 量で徐して、 各ゥエル中での FGF- 4産生量を算出した。
結果を図 4に示す。 hEx3- 1の導入により培地中への FGF- 4の産生が抑制された。 すなわち NEC8細胞内に si腿が効率よく導入され、 siRNAが目的とする作用を良好に 発揮することが示された。 この結果から本発明の核酸導入法が核酸の種類に依らな いことが示された。
実施例 5
本発明の核酸導入法を用いた遺伝子一生体由来物質複合体の導入
遺伝子の安定化効果およぴ徐放効果を持つ生体由来物質と遺伝子との複合体が本 発明の核酸導入法により導入できるか検討した。
生体由来物質としてはァテロコラーゲン((株)高研) を用いた。
200 μ g/mLの GFP発現プラスミド水溶液と 0. 016%のァテロコラ一ゲン水溶液を等量 で混合し、 複合体溶液を調製した。 24ゥエル細胞培養プレートの各ゥヱルに複合体 溶液を lOO x L添加し、 冷風を吹きかける方法で乾燥した。 ヒ ト副腎由来上皮細胞で ある 293細胞およびヒ ト子宮頸癌由来上皮細胞である HeLa細胞 (ATCC: Cell Biol ogy Collection) を 10%ゥシ血清 (FBS) 含有 DMEM培地 (Sigma) に懸濁し、 1ゥエル あたり 2. 5 X 104個 (500 // L) 播種した。 細胞播種後直ちに 1. 7M塩化カルシウム水 溶液を 5. 0 μ L添加し、 均一となるようにプレートを攪拌した。 細胞播種後 2日目に 蛍光顕微鏡で細胞を観察して GFPを発現している細胞数を計測し、 導入効率を算出 した。
結果を図 5に示す。 図 5から明らかなように、 1. 7Μの塩化カルシウム溶液を細胞 播種後にゥエルに添加することにより細胞にァテロコラーゲン複合体を導入できた 。 このことは複合体として核酸を導入することにより核酸の作用持続が図れること を示すものである。
実施例 6
本発明の核酸導入法を用いた siRNA—生体由来物質複合体の導入
ヒ ト enhancer of zeste homolog 2 (EZH2)又は phosphoinositide 3' -hydroxyk inase pi 10— alpha subunit (pi 10— alpha) に対する small interfering RNA (siRNA )の 300 nM水溶液と、 0. 016%ァテロコラーゲン水溶液を等量で混合し、 複合体溶液 を調製した。 6ゥエル細胞培養プレートの各ゥエルに複合体溶液を 2δ0 し添カロし、 冷風を吹きかける方法で乾燥した。 ヒト前立腺がん由来細胞である、 PC- 3M- Luc- C6 細胞 (Xenogen Corp. ) を 1ゥエルあたり 5 X 104個播種した。 細胞播種直後直ちに 1. 7M塩化カルシゥム水溶液を 20 μ L添加した。 細胞播種後 4日目に R A抽出及び cDNA 合成を行い、 標的遺伝子の ttiRNAの発現量を、 定量的 PCR法にて解析した。 なお結果 は、 内部標準として用いた GAPDHの発現量で捕正した。
結果を図 6に示す。 図 6から明らかなように、 1. 7Mの塩化カルシウム溶液を細胞 播種後にゥエルに添加することにより、 細胞に siRNAを導入することができた。 産業上の利用可能性
本発明により、 新規な核酸導入法が提供される。 本発明の核酸導入法は簡便かつ 低細胞毒性で導入効率が高く、 しかもローコストである。 また細胞や核酸の種類を 問わず、 幅広く用いることができる。

Claims

9 請求の範囲
1. 以下の工程 (a) 及び (b) を含む核酸導入法:
(a) 核酸と細胞とを培地中で接触させる工程、
(b) 前記 (a) の工程の後、 高濃度の金属塩溶液を前記 (a) の培地と接触させ る工程。
2. 核酸が一本鎖 DNA、 二本鎖 DNA、 一本鎮 RNA、 二本鎖 RNA、 オリゴ ヌクレオチドまたはリボザィムである、 請求項 1記載の核酸導入法。
3. 二本鎖 DNAまたは二本鎖 RNAが、 直鎖状または環状の形態である、 請求 項 2記載の核酸導入法。
4. 環状ニ本鎮 DN Aが発現プラスミドの形態である、 請求項 3記載の核酸導入 法。
5. オリゴヌクレオチドが、 デォキシリボヌクレオチド、 リポヌクレオチド、 ホ スホロチォエートオリゴデォキシヌクレオチド、 2, -0- (2—メ トキシ) ェチ ルー修飾核酸 (2, — MOE—修飾核酸) 、 短い干渉 RNA ( s i RNA) 、 架橋 型核酸 (LNA) 、 ペプチド核酸 (PNA) またはモルフォリノ 'アンチセンス核 酸である、 請求項 2記載の核酸導入法。
6. 核酸が生体内分解性の物質または生体由来物質との複合体若しくは封入体の 形態である、 請求項 1〜 5いずれか記載の核酸導入法。
7. 生体由来物質がァテロコラーゲンである、 請求項 6記載の核酸導入法。
8. 工程 (a) の培地と接触させる高濃度金属塩溶液の濃度が 0. 1M〜3. 0 Mの範囲内である、 請求項 1〜 7いずれ力記載の核酸導入法。
9. 工程 (a) の培地と接触させる高濃度金属塩溶液の濃度が 0. 5M〜2. 0 Mの範囲内である、 請求項 8記載の核酸導入法。
10. 工程 (a) の培地と接触させる高濃度金属塩溶液の量が、 工程 (a) の培 地 500 μ L当たり 1 μ L〜20 μ Lの範囲内である、 請求項 1〜 9いずれか記載 の核酸導入法。
1 1. 工程 (a) の培地と接触させる高濃度金属塩溶液の量が、 工程 (a) の培 地 500 μ L当たり 2 μ L〜l 0 μ Lの範囲内である、 請求項 10記載の核酸導入 法。
1 2 . 金属塩溶液が二価金属の塩化物溶液である、 請求項 1〜 1 1いずれか記載 の核酸導入法。
1 3 . 二価金属の塩ィ匕物溶液が塩ィヒカルシゥム溶液である、 請求項 1 2記載の核 酸導入法。
1 4 . 固形金属塩または高濃度金属塩溶液を成分として含有する核酸導入剤。
1 5 . 請求項 1〜 1 3いずれ力記載の核酸導入法のために用いられる、 請求項 1 4記載の核酸導入剤。
1 6 . 高濃度金属塩溶液の濃度が 0 . 1 M〜 6 . 0 Mの範囲内である、 請求項 1 4または 1 5記載の核酸導入剤。
1 7 . 高濃度金属塩溶液の濃度が 0 · 5 M〜4 . O Mの範囲内である、 請求項 1 6記載の核酸導入剤。
1 8 . 金属塩が二価金属の塩化物である、 請求項 1 4〜 1 7いずれか記載の核酸 導入剤。
1 9 . 二価金属の塩ィヒ物が塩ィヒカルシウムである、 請求項 1 8記載の核酸導入剤
2 0 . 請求項 1 4〜 1 9いずれ力記載の核酸導入剤を含有する核酸導入用キット
2 1 . 請求項 1 4〜 2 0いずれか記載の核酸導入剤またはキットの、 核酸導入に おける使用。
PCT/JP2004/019160 2003-12-19 2004-12-15 新規な核酸導入法 WO2005061717A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005516500A JP4954550B2 (ja) 2003-12-19 2004-12-15 新規な核酸導入法
EP04807517A EP1696034A4 (en) 2003-12-19 2004-12-15 NUCLEIC ACID TRANSFER METHOD
US10/583,277 US20080318319A1 (en) 2003-12-19 2004-12-15 Novel Method of Nucleic Acid Transfer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003423004 2003-12-19
JP2003-423004 2003-12-19

Publications (1)

Publication Number Publication Date
WO2005061717A1 true WO2005061717A1 (ja) 2005-07-07

Family

ID=34708748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/019160 WO2005061717A1 (ja) 2003-12-19 2004-12-15 新規な核酸導入法

Country Status (4)

Country Link
US (1) US20080318319A1 (ja)
EP (1) EP1696034A4 (ja)
JP (1) JP4954550B2 (ja)
WO (1) WO2005061717A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01157388A (ja) * 1987-12-11 1989-06-20 Mitsubishi Heavy Ind Ltd 形質転換方法
JPH0491783A (ja) * 1990-08-07 1992-03-25 Toyobo Co Ltd 大腸菌のコンピテントセル化緩衝液および大腸菌のコンピテントセル化方法
WO2000073414A1 (en) * 1999-05-31 2000-12-07 Kocagoez Tanil Bacteria transformation kit
JP2001335512A (ja) * 2000-05-23 2001-12-04 Yamanouchi Pharmaceut Co Ltd 遺伝子導入のための微粒子
WO2001097857A1 (fr) * 2000-06-20 2001-12-27 Sumitomo Pharmaceuticals Company, Limited Preparations destinees au transfert d'oligonucleotides
JP2002325572A (ja) * 2000-12-25 2002-11-12 Univ Osaka 外来物質の導入方法
JP2003274950A (ja) * 2002-03-25 2003-09-30 Univ Osaka 新規なバイオビーズの作製方法

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5115094B2 (ja) * 1972-11-01 1976-05-14
US5069936A (en) * 1987-06-25 1991-12-03 Yen Richard C K Manufacturing protein microspheres
US5078997A (en) * 1988-07-13 1992-01-07 Cetus Corporation Pharmaceutical composition for interleukin-2 containing physiologically compatible stabilizers
US5098890A (en) * 1988-11-07 1992-03-24 Temple University-Of The Commonwealth System Of Higher Education Antisence oligonucleotides to c-myb proto-oncogene and uses thereof
US5936035A (en) * 1988-11-21 1999-08-10 Cohesion Technologies, Inc. Biocompatible adhesive compositions
US5614587A (en) * 1988-11-21 1997-03-25 Collagen Corporation Collagen-based bioadhesive compositions
US5542935A (en) * 1989-12-22 1996-08-06 Imarx Pharmaceutical Corp. Therapeutic delivery systems related applications
ES2151463T5 (es) * 1989-12-22 2012-10-29 Merck Serono Sa Constructos de ADN para la activación y la modificación de la expresión de genes endógenos
US5264618A (en) * 1990-04-19 1993-11-23 Vical, Inc. Cationic lipids for intracellular delivery of biologically active molecules
FR2694895B1 (fr) * 1992-08-20 1994-11-10 Coletica Procédé de fabrication de microparticules en émulsion par modification de la composition chimique de la phase dispersée après émulsification.
ATE182336T1 (de) * 1993-05-28 1999-08-15 Chiron Corp Peptidinhibitoren der urokinaserezeptor-aktivität
HUT74509A (en) * 1993-09-09 1997-01-28 Schering Ag Active principles and gas containing microparticles, their use for realising active principles in ultrasonically controlled manner, and process for preparing them
CA2140053C (en) * 1994-02-09 2000-04-04 Joel S. Rosenblatt Collagen-based injectable drug delivery system and its use
US5583034A (en) * 1994-02-22 1996-12-10 La Jolla Institute For Allergy And Immunology Enhancement of adoptosis using antisense oligonucleotides
US5563255A (en) * 1994-05-31 1996-10-08 Isis Pharmaceuticals, Inc. Antisense oligonucleotide modulation of raf gene expression
CA2193954A1 (en) * 1994-06-27 1996-01-04 Vu L. Truong Targeted gene delivery system
NO180167C (no) * 1994-09-08 1997-02-26 Photocure As Fotokjemisk fremgangsmåte til å innföre molekyler i cellers cytosol
GB9422495D0 (en) * 1994-11-08 1995-01-04 Medical Res Council DNA transfer method
US6998268B2 (en) * 1995-07-03 2006-02-14 Dainippon Sumitomo Pharma Co. Ltd. Gene preparations
ES2420106T3 (es) * 1995-12-18 2013-08-22 Angiodevice International Gmbh Composiciones de polímeros reticulados y métodos para su uso
CA2248538A1 (en) * 1996-03-14 1997-09-18 The Immune Response Corporation Targeted delivery of genes encoding interferon
US5874006A (en) * 1996-10-31 1999-02-23 Matrix Pharmaceutical, Inc. Aseptic collagen concentration process
US6042820A (en) * 1996-12-20 2000-03-28 Connaught Laboratories Limited Biodegradable copolymer containing α-hydroxy acid and α-amino acid units
US6218112B1 (en) * 1996-12-23 2001-04-17 Cobra Therapeutics Limited Optimization of gene delivery and gene delivery system
EP1054694A2 (en) * 1998-02-13 2000-11-29 Selective Genetics, Inc. Concurrent flow mixing methods and apparatuses for the preparation of gene therapy vectors and compositions prepared thereby
KR100600464B1 (ko) * 1998-05-22 2006-07-13 다이닛본 스미토모 세이야꾸 가부시끼가이샤 안정한 유전자 제제
WO2000044914A1 (en) * 1999-01-28 2000-08-03 Medical College Of Georgia Research Institute, Inc. Composition and method for in vivo and in vitro attenuation of gene expression using double stranded rna
US20020006664A1 (en) * 1999-09-17 2002-01-17 Sabatini David M. Arrayed transfection method and uses related thereto
EP1274410A2 (en) * 2000-03-31 2003-01-15 Trustees Of Boston University Use of locally applied dna fragments
CN1313158C (zh) * 2001-06-20 2007-05-02 大日本住友制药株式会社 促进核酸转移的方法
KR100468316B1 (ko) * 2002-01-29 2005-01-27 주식회사 웰진 Dna의 세포 또는 조직 내 전달 효율을 높이는 펩타이드
AU2003264507A1 (en) * 2002-09-20 2004-04-08 Koken Co., Ltd. Site-specific gene conversion promoter and gene therapeutic

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01157388A (ja) * 1987-12-11 1989-06-20 Mitsubishi Heavy Ind Ltd 形質転換方法
JPH0491783A (ja) * 1990-08-07 1992-03-25 Toyobo Co Ltd 大腸菌のコンピテントセル化緩衝液および大腸菌のコンピテントセル化方法
WO2000073414A1 (en) * 1999-05-31 2000-12-07 Kocagoez Tanil Bacteria transformation kit
JP2001335512A (ja) * 2000-05-23 2001-12-04 Yamanouchi Pharmaceut Co Ltd 遺伝子導入のための微粒子
WO2001097857A1 (fr) * 2000-06-20 2001-12-27 Sumitomo Pharmaceuticals Company, Limited Preparations destinees au transfert d'oligonucleotides
JP2002325572A (ja) * 2000-12-25 2002-11-12 Univ Osaka 外来物質の導入方法
JP2003274950A (ja) * 2002-03-25 2003-09-30 Univ Osaka 新規なバイオビーズの作製方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HONMA K. ET AL: "Atelocollagen-based gene transfer in cells allows high-throughput screening of gene functions", BIOCHEM.BIOPHYS.RES.COMMUN., vol. 289, no. 5, 2001, pages 1075 - 1081, XP002957375 *
OCHIYA T. ET AL: "Tennen Kobunshi ni yoru Idenshi Vector no Atarashii Unpan System", EXPERIMENTAL MEDICINE, vol. 17, no. 17, 1999, pages 2288 - 2291 *

Also Published As

Publication number Publication date
US20080318319A1 (en) 2008-12-25
EP1696034A1 (en) 2006-08-30
JP4954550B2 (ja) 2012-06-20
JPWO2005061717A1 (ja) 2007-07-12
EP1696034A4 (en) 2006-12-27

Similar Documents

Publication Publication Date Title
EP2374884A2 (en) Human miRNAs isolated from mesenchymal stem cells
EP1432799A2 (en) Silencing of gene expression by sirna
US20180208914A1 (en) Lentivirus and non-integrating lentivirus as viral vector to deliver crispr therapeutic
WO2007121326A2 (en) Compositions and methods for modulating gene expression
EP3040414B1 (en) Biomolecular group related to cell anti-aging
EP2071030A2 (en) Oligoribonucleotide or peptide nucleic acid which inhibits action of hepatitis C virus
EP2322608B1 (en) Transfection agent
US6730498B1 (en) Production of functional proteins: balance of shear stress and gravity
WO2005061717A1 (ja) 新規な核酸導入法
Eigenbrod et al. Recognition of specified RNA modifications by the innate immune system
CN111118007B (zh) 一种长非编码rna在制备治疗宫颈癌药物中的应用
CN103597075A (zh) 用于选择性地杀伤细胞的生物活性核苷酸分子、其用途及应用试剂盒
JP2011239726A (ja) ヒト癌化細胞の作製方法
US20060135453A1 (en) Down-regulation of target-gene with pei/single-stranded oligoribonucleotide complexes
Kusunoki et al. Antisense oligodeoxynucleotide complementary to CXCR4 mRNA block replication of HIV-1 in COS cells
JP5789927B2 (ja) 放射線照射コラーゲン様ペプチドを用いた核酸導入法
WO2024190329A1 (ja) 組成物およびその利用
WO2023074873A1 (ja) 細胞純化方法
WO1998045468A1 (en) Production of functional proteins: balance of shear stress and gravity
CN118147140A (zh) 一种rrn3p2基因的靶向抑制剂及其用途
WO2023023529A1 (en) Exported rna reporters for live-cell measurement
Ferizi Modified messenger RNA and its application in bone tissue engineering
CN109112215A (zh) lncRNA H19的靶蛋白FUS及其应用
CN109091491A (zh) lncRNA H19的靶miRNA miR19a-3p及其应用
CN109091492A (zh) lncRNA H19的靶miRNA miR-106b-5p及其应用

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005516500

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004807517

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10583277

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2004807517

Country of ref document: EP