WO2005059339A1 - Mode de fonctionnement d'un actionneur de soupape d'injection - Google Patents

Mode de fonctionnement d'un actionneur de soupape d'injection Download PDF

Info

Publication number
WO2005059339A1
WO2005059339A1 PCT/EP2004/053220 EP2004053220W WO2005059339A1 WO 2005059339 A1 WO2005059339 A1 WO 2005059339A1 EP 2004053220 W EP2004053220 W EP 2004053220W WO 2005059339 A1 WO2005059339 A1 WO 2005059339A1
Authority
WO
WIPO (PCT)
Prior art keywords
actuator
operating method
injection
current
voltage
Prior art date
Application number
PCT/EP2004/053220
Other languages
German (de)
English (en)
Inventor
Christian Hauser
Heinz Lixl
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to DE502004011885T priority Critical patent/DE502004011885D1/de
Priority to EP04804645A priority patent/EP1692383B1/fr
Publication of WO2005059339A1 publication Critical patent/WO2005059339A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D41/2096Output circuits, e.g. for controlling currents in command coils for controlling piezoelectric injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2055Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit with means for determining actual opening or closing time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2058Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using information of the actual current value

Definitions

  • the invention relates to an operating method for an actuator of an injection valve of an internal combustion engine, in particular for a piezo actuator according to the preamble of claim 1.
  • An operating method for a piezo actuator of an injection valve of an internal combustion engine is known from WO 01/63121, in which the piezo actuator is electrically charged to initiate an injection process and discharged again to end the injection process.
  • the actuator does not only become a mechanical one
  • Control of the injection valve used but also serves as a sensor for determining the valve position of the injection valve.
  • the physical knowledge is used that the actuator voltage not only depends on the electrical charge of the actuator, but is also influenced by the force acting on the actuator, which in turn depends on the valve position.
  • the piezo actuator When an injection process is ended, however, the piezo actuator is not completely discharged, but is kept at a minimum voltage which is sufficient to prevent the valve body of the injection valve from sitting on the associated valve seat. This is important in the known operating method, since the valve body on the Injection valve acting hydraulic forces are absorbed by the valve seat and consequently no longer be forwarded to the piezo actuator when the valve body is seated on the valve seat. To detect the valve position by the piezo actuator, the piezo actuator must therefore always push the valve body out of the valve seat so that the hydraulic forces acting on the valve body can be detected by the piezo actuator in order to determine the valve position of the injection valve.
  • a disadvantage of the known operating method for a piezo actuator is therefore the fact that the piezo actuator cannot be fully discharged when an injection process is ended, so that the piezo actuator can still serve as a sensor for determining the valve position.
  • the invention is therefore based on the object of specifying an operating method for an actuator of an injection valve of an internal combustion engine which allows the piezo actuator to be completely discharged at the end of an injection process and which nevertheless enables the valve position of the injection valve to be determined.
  • the invention frees itself from the technical prejudice that a piezo actuator in an injector of an injection system can only serve as a sensor for determining the valve position if the piezo actuator remains at least partially charged so that the piezo actuator can always give the valve body the injection valve out of its valve seat.
  • the operating method according to the invention provides that the actuator is short-circuited to terminate an injection process, which can lead to a complete discharge of the piezo actuator, although it is still possible to determine the valve position, as will be described in detail below.
  • the invention therefore further provides that the actuator current is detected in the short-circuited state in order to draw conclusions about the valve position.
  • the end of injection is preferably determined as a function of the actuator flow detected in the short-circuited state.
  • the piezo actuator is discharged very quickly during short-circuiting and is therefore shortened quickly.
  • the end face of the piezo actuator that acts on the valve body of the injection valve during normal operation is accelerated more than the valve body itself, which influences the frictional connection between the actuator and the valve body and can even lead to an interruption of the frictional connection.
  • the valve body strikes the valve seat, the valve body then presses elastically into the valve seat and again hits the advanced piezo actuator, so that the piezo actuator emits a current pulse due to the pulse-like action of pressure by the valve body.
  • the temporal position of a current pulse is therefore preferably detected after the short-circuiting, and the end of injection is determined as a function of the temporal position of the current pulse.
  • the time of the injection can be read out from a characteristic diagram depending on the temporal position of the current pulse, but other types of determination of the end of injection are also possible depending on the temporal position of the current pulse.
  • the actuator current for detecting the current pulse is preferably measured within a predetermined time window after the actuator has been short-circuited. This is advantageous since the temporal position of the current pulse is roughly known after the actuator has been short-circuited, so that an accurate and thus complex current measurement is only required within the time window of interest.
  • the actuator When an injection process ends, the actuator is preferably discharged in a defined manner before the short-circuiting, in order to prevent overloads.
  • a defined discharge can take place, for example, with a predetermined time constant, which can be set, for example, by a resistor in the discharge circuit of the actuator.
  • the defined discharge of the actuator before the short-circuiting preferably takes place up to a fraction of the maximum voltage or maximum charge of the actuator, so that only a relatively small amount of energy has to be dissipated during the subsequent short-circuiting of the actuator.
  • the respective actuator voltage when charging or after charging the Actuator is measured in order to be able to derive the start of injection from the measured actuator voltage.
  • the actuator voltage initially rises continuously due to the charging until the piezo actuator lifts the valve body of the injection valve out of its valve seat.
  • the injector nozzle needle moves upward in the direction of the control room and thereby increases the fuel pressure in the control chamber of the injector, which acts on the valve body and then also on the piezo actuator, which results in a renewed increase in the Actuator voltage expresses.
  • nozzle needle only contributes to the increase in the actuator voltage until it has reached its end position.
  • the actuator voltage then drops again to a stationary value in which there is a balance between the inlet and outlet in the control chamber of the injector.
  • a turning point in the voltage curve is determined at the beginning of an injection process in order to derive the start of injection therefrom. The determination of an inflection point instead of a local maximum or a local minimum is more reliable in terms of measurement technology, since local minima or maxima can also be generated by superimposed interference signals.
  • a further turning point of the current profile is preferably also determined in order to determine the start of injection as a function of the temporal position of both turning points.
  • the two turning points for determining the injection process are preferably the two turning points, between which the second local maximum of the actuator voltage lies, which is caused by the nozzle needle condition.
  • the actuator flow is also evaluated to determine the start of injection.
  • the actuator flow generates vibrations between the charging and the discharging of the actuator, the beginning of these vibrations and their phase position allowing a conclusion to be made about the start of injection.
  • FIG. 1 shows a cross-sectional view of a control unit of an injector for an injection system of an internal combustion engine
  • the control unit of an injector of an injection system for an internal combustion engine shown in FIG. 1 is largely conventional and is used to control a nozzle needle 1, which is linearly displaceably mounted in the control unit and releases or blocks the power flow injection depending on its position.
  • the control unit consists of three modules 2.1-2.3 arranged one above the other, a high-pressure channel 4 running through the modules 2.1-2.3, through which the fuel to be injected is supplied.
  • the high-pressure channel 4 opens in the lower module 2.3 into a cylindrical channel 5, via which the fuel to be injected reaches the nozzle opening.
  • annular channel 6 is arranged in the lower module 2.3, which surrounds the nozzle needle 1 in an annular manner, with another channel branching off from the annular channel 6 on the side opposite the high-pressure channel 4 and opening into a control chamber 8 via an inlet throttle 7.
  • the middle module 2.2 there is a valve seat 9 and a displaceably mounted valve body 10, the valve body 10 releasing or blocking the valve seat 9 depending on its position.
  • valve body 10 is preloaded in the direction of the valve seat by a spring 11, so that the valve body 10 seals the valve seat 9 without external forces being applied, so that no fuel can escape upward from the control chamber 8.
  • a piezo actuator 12 For the mechanical drive of the valve body 10, a piezo actuator 12 is provided which presses via a base plate 13 and a crank pin 14 onto a valve mushroom 15 formed on the upper side of the valve body 10. The piezo actuator 12 can therefore push the valve body 10 out of the valve seat 9 as a function of the electrical voltage applied to the piezo actuator 12, so that fuel can escape from the control chamber 8 through the valve seat 9 and via a discharge throttle (not shown).
  • the piezo actuator 12 When the control signal arrives, the piezo actuator 12 is then charged with a predetermined voltage pulse, the actuator voltage being between the times t1 and t2 in FIG Figure 3a increases the time diagram shown.
  • the piezo actuator 12 is elongated until the piezo actuator 12 then lifts the valve body 10 out of the valve seat 9 at the time t2. From this point in time, fuel can then escape from the control chamber 8 upwards through the valve seat 9 and be discharged via an outlet throttle. This initially leads to a pressure drop in the control chamber 8, which manifests itself in a corresponding voltage drop from the time t2.
  • the pressure drop in the control chamber 8 also causes the nozzle needle 1 to move upward, displacing fuel in the control chamber 8, which leads to an increase in pressure in the control chamber.
  • the pressure increase in the control chamber 8 caused by the nozzle needle 1 then leads to an increase in the actuator voltage again until the time t3, until the nozzle needle 1 has finally reached its upper stop and then no more fuel is displaced in the control chamber 8.
  • the actuator voltage no longer increases, but instead falls again from time t3 to a stationary value, which is characterized by a balance between the inflow to the control chamber 8 and the outflow from the control chamber 8.
  • the actuator voltage is measured, the voltage profile being evaluated in order to determine the start of injection.
  • a first turning point G 1 is determined, which occurs between the first local minimum and the second local maximum of the actuator voltage at the beginning of the injection process.
  • a second turning point G2 is determined, which occurs after the absolute maximum of the actuator voltage. be- see these two turning points Gl, G2 is the time at which the nozzle needle 1 reaches its upper stop and thereby releases the injection nozzle.
  • the times t G ⁇ and t G2 are measured at which the two turning points Gl, G2 occur.
  • the actuator current shown in FIG. 3c executes an oscillation 16, the beginning t s and the phase position likewise allowing a conclusion to be drawn about the actual start of injection.
  • the two variables t s and ⁇ s are therefore also measured in the context of the operating method according to the invention.
  • the start of injection is then t as a function of the temporal position G ⁇ , t G2 of the two turning points Gl, G2, as well as in response to the start ts of the vibrations 16 and the phase position ⁇ s of the vibration is calculated 16, wherein the time t Be beginning of the Injection process can also be read from a map depending on these variables.
  • the piezo actuator 12 is then discharged in a controlled manner until time t5, until the piezo actuator 12 is then short-circuited at time t5.
  • the injection valve does not close at the same time as the piezo actuator 12 is short-circuited, since the nozzle needle 1 must first assume its lower stop point. To determine the actual end of injection, therefore, after
  • Time t5 of the short-circuiting of the piezo actuator 12 of the actuator current I is measured.
  • the piezo actuator 12 moves very quickly when short-circuited shortens, which influences the frictional connection between the valve body 10 and the piezo actuator 12 and in extreme cases can even lead to a separation of the piezo actuator 12 from the valve body 10, since the movement of the piezo actuator 12 leads the movement of the valve body 10.
  • the valve body 10 presses elastically in the direction of the piezo actuator 12, which leads to a current pulse 17 when the valve body 10 strikes the piezo actuator 12.
  • the temporal position t Pu ⁇ s of the current pulse 17 enables a conclusion to be drawn about the actual end of the injection process.
  • is a function of the temporal position t Pu is the current pulse 17, the actual end of t En de calculated net of the injection process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

L'invention concerne un mode de fonctionnement pour un actionneur de soupape d'injection d'un moteur à combustion interne, notamment pour un actionneur piézo-électrique, ce mode de fonctionnement consistant à décharger l'actionneur pour mettre fin au processus d'injection et à saisir le courant de l'actionneur. Selon l'invention, l'actionneur est court-circuité pour être déchargé et le courant de l'actionneur est saisi à l'état court-circuité.
PCT/EP2004/053220 2003-12-09 2004-12-02 Mode de fonctionnement d'un actionneur de soupape d'injection WO2005059339A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE502004011885T DE502004011885D1 (de) 2003-12-09 2004-12-02 Betriebsverfahren für einen aktor eines einspritzventils
EP04804645A EP1692383B1 (fr) 2003-12-09 2004-12-02 Mode de fonctionnement d'un actionneur de soupape d'injection

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10357480 2003-12-09
DE10357480.8 2003-12-09

Publications (1)

Publication Number Publication Date
WO2005059339A1 true WO2005059339A1 (fr) 2005-06-30

Family

ID=34683288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/053220 WO2005059339A1 (fr) 2003-12-09 2004-12-02 Mode de fonctionnement d'un actionneur de soupape d'injection

Country Status (3)

Country Link
EP (1) EP1692383B1 (fr)
DE (1) DE502004011885D1 (fr)
WO (1) WO2005059339A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010066575A1 (fr) * 2008-12-11 2010-06-17 Continental Automotive Gmbh Procédé et dispositif de commande d'un actionneur à corps solide
WO2015173039A1 (fr) * 2014-05-16 2015-11-19 Robert Bosch Gmbh Procédé de détermination de l'instant de fermeture d'un injecteur de carburant

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017008950A1 (de) 2017-09-25 2019-03-28 Daimler Ag Verfahren zum Betreiben eines Injektors einer Verbrennungskraftmaschine, insbesondere für ein Kraftfahrzeug

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3609599A1 (de) 1986-03-21 1987-09-24 Bosch Gmbh Robert Verfahren zur steuerung der entregungszeit von elektromagnetischen einrichtungen, insbesondere von elektromagnetischen ventilen bei brennkraftmaschinen
DE19843621A1 (de) 1998-09-23 2000-04-06 Siemens Ag Entladeschaltung für ein kapazitives Stellglied
DE19930309A1 (de) * 1999-07-01 2001-01-11 Siemens Ag Verfahren und Vorrichtung zur Regelung der Einspritzmenge bei einem Kraftstoffeinspritzventil mit Piezoelement-Aktor
EP1172541A1 (fr) * 2000-07-01 2002-01-16 Robert Bosch GmbH Actionneur piézo-électrique pour système d'injection
WO2003081007A1 (fr) 2002-03-27 2003-10-02 Siemens Aktiengesellschaft Procede et dispositif de detection du moment d'impact du pointeau d'une soupape de commande piezoelectrique

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3609599A1 (de) 1986-03-21 1987-09-24 Bosch Gmbh Robert Verfahren zur steuerung der entregungszeit von elektromagnetischen einrichtungen, insbesondere von elektromagnetischen ventilen bei brennkraftmaschinen
DE19843621A1 (de) 1998-09-23 2000-04-06 Siemens Ag Entladeschaltung für ein kapazitives Stellglied
DE19930309A1 (de) * 1999-07-01 2001-01-11 Siemens Ag Verfahren und Vorrichtung zur Regelung der Einspritzmenge bei einem Kraftstoffeinspritzventil mit Piezoelement-Aktor
EP1172541A1 (fr) * 2000-07-01 2002-01-16 Robert Bosch GmbH Actionneur piézo-électrique pour système d'injection
WO2003081007A1 (fr) 2002-03-27 2003-10-02 Siemens Aktiengesellschaft Procede et dispositif de detection du moment d'impact du pointeau d'une soupape de commande piezoelectrique

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010066575A1 (fr) * 2008-12-11 2010-06-17 Continental Automotive Gmbh Procédé et dispositif de commande d'un actionneur à corps solide
CN102318099A (zh) * 2008-12-11 2012-01-11 欧陆汽车有限责任公司 控制固体致动器的方法和设备
US8766509B2 (en) 2008-12-11 2014-07-01 Continental Automotive Gmbh Method and device for controlling a solid body actuator
DE102008061586B4 (de) * 2008-12-11 2015-08-20 Continental Automotive Gmbh Verfahren und Vorrichtung zur Ansteuerung eines Festkörperaktuators
WO2015173039A1 (fr) * 2014-05-16 2015-11-19 Robert Bosch Gmbh Procédé de détermination de l'instant de fermeture d'un injecteur de carburant

Also Published As

Publication number Publication date
EP1692383A1 (fr) 2006-08-23
DE502004011885D1 (de) 2010-12-23
EP1692383B1 (fr) 2010-11-10

Similar Documents

Publication Publication Date Title
DE10024662B4 (de) Verfahren zum Betreiben eines Einspritzventils
DE102014204098A1 (de) Verfahren zur Regelung eines Common-Rail-Injektors
DE112019001830T5 (de) Kraftstoffeinspritzsteuervorrichtung
EP1488088A1 (fr) Procede et dispositif de detection du moment d'impact du pointeau d'une soupape de commande piezoelectrique
EP2694795A1 (fr) Injecteur de carburant
EP1108120A1 (fr) Dispositif pour commander un appareil de reglage
DE19954023A1 (de) Hochdruckkraftstoffeinspritzvorrichtung
DE10356858B4 (de) Betriebsverfahren für einen Aktor eines Einspritzventils und zugehörige Vorrichtung
DE10151421A1 (de) Piezobetätigungsgliedantriebsschaltung und Kraftstoffeinspritzgerät
EP1613851B1 (fr) Procede pour determiner la tension d'amorcage individuelle d'un element piezo-electrique
DE102005046933B4 (de) Verfahren zum Ansteuern eines piezobetätigten Einspritzventils
EP1692383A1 (fr) Mode de fonctionnement d'un actionneur de soupape d'injection
WO2005059338A1 (fr) Mode de fonctionnement d'un actionneur d'une soupape d'injection
DE102011075947B4 (de) Verfahren zum Bestimmen eines Kraftstoffdrucks in einem Hochdruckspeicher und Einspritzsystem
DE10357872A1 (de) Verfahren und Vorrichtung zur Bestimmung der Ansteuerspannung für einen piezoelektrischen Aktor eines Einspritzventils
DE10349307B3 (de) Diagnoseverfahren für einen elektromechanischen Aktor
DE10140550A1 (de) Verfahren zur Funktionsüberwachung schnellschaltender Einspritzventile
DE19728840A1 (de) Verfahren und Vorrichtung zur Erfassung eines Schaltzeitpunktes eines Magnetventils
DE102004029906B4 (de) Verfahren und Vorrichtung zum Steuern eines Einspritzventils und Computerprogramm
DE102015217776A1 (de) Verfahren zur Erkennung einer Schädigung einer Düsennadel eines Kraftstoffinjektors oder des Düsennadelsitzes
DE102005059176A1 (de) Verfahren zum Erkennen eines Ankerprellens in einem Magnetventil
EP1286034A1 (fr) Procédé et dispositif de commande d'une électrovanne
DE102018205540A1 (de) Verfahren zur Ermittlung eines Ankerhubs eines Steuerventils und zum Betreiben des Steuerventils
DE102017219568A1 (de) Verfahren zum Steuern eines Kraftstoffinjektors
DE102017130901B4 (de) Kraftstoffeinspritz-Controller

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2004804645

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2004804645

Country of ref document: EP