WO2005056655A1 - Expandierbare styrolpolymergranulate mit bi- oder multimodaler molekulargewichtsverteilung - Google Patents

Expandierbare styrolpolymergranulate mit bi- oder multimodaler molekulargewichtsverteilung Download PDF

Info

Publication number
WO2005056655A1
WO2005056655A1 PCT/EP2004/014071 EP2004014071W WO2005056655A1 WO 2005056655 A1 WO2005056655 A1 WO 2005056655A1 EP 2004014071 W EP2004014071 W EP 2004014071W WO 2005056655 A1 WO2005056655 A1 WO 2005056655A1
Authority
WO
WIPO (PCT)
Prior art keywords
styrene
range
molecular weight
styrene polymer
weight
Prior art date
Application number
PCT/EP2004/014071
Other languages
English (en)
French (fr)
Inventor
Klaus Hahn
Gerd Ehrmann
Joachim Ruch
Markus Allmendinger
Bernhard Schmied
Jan Holoch
Franz-Josef Dietzen
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to AT04803719T priority Critical patent/ATE460453T1/de
Priority to MXPA06006498A priority patent/MXPA06006498A/es
Priority to DE502004010886T priority patent/DE502004010886D1/de
Priority to BRPI0417386-4A priority patent/BRPI0417386A/pt
Priority to US10/596,262 priority patent/US7868053B2/en
Priority to EP04803719A priority patent/EP1694755B1/de
Priority to KR1020067013970A priority patent/KR101095236B1/ko
Priority to PL04803719T priority patent/PL1694755T3/pl
Publication of WO2005056655A1 publication Critical patent/WO2005056655A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3461Making or treating expandable particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/03Extrusion of the foamable blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group

Definitions

  • the invention relates to expandable styrene polymer granules having at least bi- or multi-modal molecular weight distribution, processes for their preparation and use for producing particle foam moldings.
  • expanded and expandable styrene polymers can be prepared by means of extrusion processes.
  • the propellant is e.g. via an extruder mixed into the polymer melt, conveyed through a nozzle plate and granulated into particles or strands (US 3,817,669, GB 1, 062,307, EP-B 0 126459, US 5,000,891).
  • EP-A 668 139 describes a process for the economic production of expandable polystyrene granules (EPS) wherein the blowing agent-containing melt is produced by means of static mixing elements in a dispersing, holding and cooling step and subsequently granulated. Due to the cooling of the melt to a few degrees above the solidification temperature, the removal of high amounts of heat is necessary.
  • EPS expandable polystyrene granules
  • WO 98/51735 describes graphite particle-containing expandable styrene polymers having reduced thermal conductivity, obtainable by suspension polymerization or by extrusion in a twin-screw extruder. Due to the high shear forces in a twin-screw extruder, a significant reduction in the molecular weight of the polymer used and / or partial decomposition of added additives, such as flame retardants, is generally observed.
  • the object of the present invention was to provide expandable styrene polymer granules with improved expandability.
  • the foam particles obtainable therefrom by prefoaming should also have an improved weldability and lead to particle foam moldings with a non-wrap foam surface.
  • the bimodal or multimodal molecular weight distribution can be adjusted, for example, by mixing and melting of styrene polymers of different average molecular weights. Preference is given to mixtures of a low molecular weight styrene polymer having a weight-average molecular weight M w in the range from 1000 to 20,000 g / mol, in particular in the range from 2,000 to 10,000 g / mol, and a high molecular weight styrene polymer having a weight-average molecular weight M w in the range from 160,000 to 400,000 g / mol, preferably used in the range of 220,000 to 300,000 g / mol.
  • the low molecular weight styrene polymer is generally used in amounts ranging from 0.1 to 30 wt .-%, preferably in the range of 1 to 10 wt .-%, based on the styrene polymer mixture. Up to a proportion of 2 wt .-% of the low molecular weight styrene polymers, based on the styrene polymer, observed no significant lowering of the glass transition temperature of the expandable Styrolpoly- mergranulates and thus the heat resistance of the foam molding produced therefrom.
  • a significantly improved expandability is achieved in proportions of the low molecular weight styrene polymer in the range of 3 to 8 wt .-%.
  • a styrene copolymer for.
  • a copolymer of styrene, acrylic acid and / or ⁇ -methylstyrene having a weight average molecular weight M w in the range of 1,000 to 20,000 g / mol, in particular in the range of 2,000 to 10,000 g / mol, and ii) 99.9 to 70 wt .-% of standard polystyrene (GPPS) or impact polystyrene (Hl PS) having a weight average molecular weight M w in the range of 160,000 to 400,000 g / mol, preferably in the range of 220,000 to 300,000 g / mol.
  • GPPS standard polystyrene
  • Hl PS impact polystyrene
  • styrene polymers preference is given to glassy polystyrene (GPPS), toughened polystyrene (HIPS), anionically polymerized polystyrene or toughened polystyrene (A-IPS), styrene-a-methstyrene copolymers, acrylonitrile-butadiene-styrene polymers (ABS), styrene-acrylonitrile (SAN ) Acrylonitrile-styrene-acrylic ester (ASA), Met yacrylate-butadiene-styrene (MBS), methyl methacrylate-acrylonitrile-butadiene-styrene (MABS) - polymers or mixtures thereof or with polyphenylene ether (PPE) used.
  • GPPS glassy polystyrene
  • HIPS toughened polystyrene
  • A-IPS anionically polymerized polystyrene or toughened polys
  • thermoplastic polymers such as polyamides (PA), polyolefins, such as polypropylene (PP) or polyethylene (PE), polyacrylates, such as polymethyl methacrylate (PMMA), Polycarbonate (PC), polyesters, such as polyethylene terephthalate (PET) or polybutylene terephthalate (PBT), polyether sulfones (PES), polyether ketones or polyether sulfides (PES) or mixtures thereof, generally in proportions of up to a maximum of 30% by weight.
  • PA polyamides
  • PE polyolefins
  • PE polypropylene
  • PE polyethylene
  • PMMA polymethyl methacrylate
  • PC Polycarbonate
  • polyesters such as polyethylene terephthalate (PET) or polybutylene terephthalate (PBT), polyether sulfones (PES), polyether ketones or polyether sulfides (PES) or mixtures thereof, generally in proportions of up to a maximum of 30% by
  • Suitable compatibilizers are e.g. Maleic anhydride-modified styrene copolymers, polymers or organosilanes containing epoxide groups.
  • the styrene polymer melt may also be admixed with polymer recyclates of the above-mentioned thermoplastic polymers, in particular styrene polymers and expandable styrene polymers (EPS) in amounts which do not substantially impair their properties, generally in quantities of not more than 50% by weight, in particular in amounts of from 1 to 20 wt .-%.
  • EPS expandable styrene polymers
  • the propellant-containing styrene polymer melt generally contains one or more propellants in a homogeneous distribution in a proportion of 2 to 10 wt .-%, preferably 3 to 7 wt .-%, based on the propellant-containing styrene polymer melt.
  • Suitable blowing agents are the physical blowing agents commonly used in EPS, such as aliphatic hydrocarbons having 2 to 7 carbon atoms, alcohols, ketones, ethers or halogenated hydrocarbons. Preference is given to using isobutane, n-butane, isopentane, n-pentane.
  • finely divided internal water droplets can be introduced into the styrene polymer matrix. This can be done for example by the addition of water in the molten styrene polymer matrix. The addition of the water can be done locally before, with or after the propellant dosing. A Homogeneous distribution of the water can be achieved by means of dynamic or static mixers.
  • Expandable styrene polymers with at least 90% of the internal water in the form of inner water droplets with a diameter in the range of 0.5 to 15 microns form when foaming foams with sufficient cell count and homogeneous foam structure.
  • the added amount of blowing agent and water is chosen so that the expandable styrene polymers (EPS) have an expansion capacity, defined as bulk density before foaming / bulk density after foaming at most 125, preferably 25 to 100.
  • EPS expandable styrene polymers
  • the expandable styrene polymer pellets (EPS) according to the invention generally have a bulk density of at most 700 g / l, preferably in the range from 590 to 660 g / l.
  • bulk densities in the range of 590 to 1200 g / l may occur.
  • the styrenic polymer melt may contain additives, nucleating agents, fillers, plasticizers, flame retardants, soluble and insoluble inorganic and / or organic dyes and pigments, e.g. IR absorbers such as carbon black, graphite or aluminum powder together or spatially separated, e.g. be added via mixer or side extruder.
  • the dyes and pigments are added in amounts ranging from 0.01 to 30, preferably in the range of 1 to 5 wt .-%.
  • a dispersing aid for example organosilanes, polymers containing epoxy groups or maleic anhydride-grafted styrene polymers.
  • Preferred plasticizers are mineral oils, phthalates, which can be used in amounts of 0.05 to 10 wt .-%, based on the styrene polymer.
  • the blowing agent is mixed into the polymer melt.
  • the process comprises the stages a) melt production, b) mixing c) cooling d) conveying and e) granulation.
  • stages can be carried out by the apparatuses or apparatus combinations known in plastics processing.
  • static or dynamic mixers are suitable, for example extruders.
  • the polymer melt can be taken directly from a polymerization reactor or directly in the mixing extruder or a separate melt extruder by melting polymer granules be generated.
  • the cooling of the melt can be done in the mixing units or in separate coolers.
  • pressurized underwater granulation, granulation with rotating knives and cooling by spray misting of tempering liquids or sputtering granulation may be considered for the granulation.
  • Apparatus arrangements suitable for carrying out the method are, for example:
  • the arrangement may include side extruders for incorporation of additives, e.g. of solids or thermally sensitive additives.
  • the propellant-containing styrene polymer melt is usually conveyed through the nozzle plate at a temperature in the range from 140 to 300.degree. C., preferably in the range from 160 to 240.degree. Cooling down to the range of the glass transition temperature is not necessary.
  • the nozzle plate is heated at least to the temperature of the blowing agent-containing polystyrene melt.
  • the temperature of the nozzle plate is in the range of 20 to 100 ° C above the temperature of the blowing agent-containing polystyrene melt. This prevents polymer deposits in the nozzles and ensures trouble-free granulation.
  • the diameter (D) of the nozzle bores at the nozzle exit should be in the range from 0.2 to 1.5 mm, preferably in the range from 0.3 to 1.2 mm, particularly preferably in the range from 0.3 to 0 , 8 mm lie. In this way granule sizes below 2 mm, in particular in the range from 0.4 to 1.4 mm, can be set precisely even after strand expansion.
  • the strand expansion can be influenced by the geometry of the die, apart from the molecular weight distribution.
  • the nozzle plate preferably has bores with a ratio LJD of at least 2, wherein the length (L) designates the nozzle region whose diameter corresponds at most to the diameter (D) at the nozzle exit.
  • the ratio L / D is in the range of 3 to 20.
  • the diameter (E) of the holes at the nozzle inlet of the nozzle plate should be at least twice as large as the diameter (D) at the nozzle outlet.
  • An embodiment of the nozzle plate has holes with conical inlet and an inlet angle ⁇ less than 180 °, preferably in the range of 30 to 120 °.
  • the nozzle plate has bores with conical outlet and an outlet angle ß smaller than 90 °, preferably in the range of 15 to 45 °.
  • the nozzle plate can be equipped with bores of different exit diameters (D). The various embodiments of the nozzle geometry can also be combined.
  • a particularly preferred method of making expandable styrenic polymers having a bimodal molecular weight distribution comprises the steps
  • step g) the granulation can take place directly behind the nozzle plate under water at a pressure in the range of 1 to 25 bar, preferably 5 to 15 bar.
  • Shear rates below 50 / sec, preferably 5 to 30 / sec, and temperatures below 260 ° C. and short residence times in the range from 1 to 20, preferably 2 to 10 minutes in stages d) to f) are therefore particularly preferred. Particular preference is given to using only static mixers and static coolers in the entire process.
  • the Polymerschmeize can by pressure pumps, z. B. gear pumps funded and discharged.
  • a further possibility for reducing the styrene monomer content and / or residual solvents, such as ethylbenzene, is to provide high degassing by means of entrainers, for example water, nitrogen or carbon dioxide, in step b) or to carry out the polymerization step a) anionically.
  • entrainers for example water, nitrogen or carbon dioxide
  • the anionic polymerization of styrene not only leads to styrene polymers with a low styrene monomer content, but at the same time to low styrene oligomer contents.
  • the final expandable styrenic polymer granules may be coated by glycerol esters, antistatic agents or anticaking agents.
  • the expandable styropolymer granules according to the invention have lower adhesion to granules containing low molecular weight plasticizers and are distinguished by a low pentane loss during storage.
  • the expandable styrene polymer granules according to the invention can be prefoamed in a first step by means of hot air or steam to foam particles having a density in the range of 8 to 100 g / l and welded in a second step in a closed mold to particle moldings.
  • a polystyrene melt of polystyrene PS 158 K and SC was prepared with the weight proportions shown in Table 1 and in addition 6 wt .-% n-pentane, based on the polymer melt mixed.
  • the blowing agent-containing melt mixture was cooled from originally 260 to 190 ° C and at a throughput of 60 kg / h through a nozzle plate with 32 holes (diameter of the nozzle 0.75 mm) promoted. With the help of pressurized underwater granulation, compact granules with a narrow size distribution were produced.
  • Table 1 The measured pentane contents in the granules after granulation and after storage for 14 days are summarized in Table 1.
  • Table 2 shows the expandability of the granules. At higher content of SC, the minimum bulk density is significantly reduced and achieved in a shorter time.
  • Table 2 Expandability of the granules from Examples 1 to 4 (potting density [g / l]
  • the blowing agent-containing Polystyolmelize (6 wt .-% n-pentane) was extruded at 100 kg / h throughput through a nozzle plate with 300 holes (diameter at the nozzle exit (D) 0.4 mm).
  • the melt temperature was 160 ° C.
  • the resulting expandable polystyrene granules had a uniform granule diameter of 1.0 mm.
  • the resulting granules were then expanded with flowing steam and the expansion capacity determined.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Expandierbare Styrolpolymergranulate mit mindestens bi- oder multi-modale Molekulargewichtsverteilung, Verfahren zu deren Herstellung und Verwendung zur Herstellung von Partikelschaumformteilen.

Description

Expandierbare Styrolpolymergranulate mit bi- oder multimodaler Molekulargewichstverteilung
Beschreibung
Die Erfindung betrifft expandierbare Styrolpolymergranulate mit mindestens bi- oder multi-modale Molekulargewichtsverteilung, Verfahren zu deren Herstellung und Verwendung zur Herstellung von Partikelschaumformteilen.
Verfahren zur Herstellung von expandierbaren Styrolpolymeren, wie expandierbarem Polystyrol (EPS) durch Suspensionspolymerisation ist seit langem bekannt. Diese Verfahren haben den Nachteil, dass große Mengen Abwasser anfallen und entsorgt werden müssen. Die Polymerisate müssen getrocknet werden um Innenwasser zu entfernen. Außerdem führt die Suspensionspolymerisation in der Regel zu breiten Perlgrö- ßenverteilungen, die aufwändig in verschiedene Perlfraktionen gesiebt werden müssen.
Weiterhin können expandierte und expandierbare Styrolpolymerisate mittels Extrusi- onsverfahren hergestellt werden. Hierbei wird das Treibmittel z.B. über einen Extruder in die Polymerschmelze eingemischt, durch eine Düsenplatte gefördert und zu Partikeln oder Strängen granuliert (US 3,817,669, GB 1 ,062,307, EP-B 0 126459, US 5,000,891).
Die EP-A 668 139 beschreibt ein Verfahren zur wirtschaftlichen Herstellung von ex- pandierbarem Polystyrolgranulat (EPS) wobei die treibmittelhaltige Schmelze mittels statischer Mischelemente in einer Dispergier-, Halte- und Abkühlstufe hergestellt und anschließend granuliert wird. Aufgrund der Abkühlung der Schmelze auf wenige Grad über der Erstarrungstemperatur ist die Abführung hoher Wärmemengen notwendig.
Um das Aufschäumen nach der Extrusion weitgehend zu verhindern, wurden verschiedene Verfahren für die Granulierung, wie Unterwassergranulierung (EP-A 305 862), Sprühnebel (WO 03/053651) oder Zerstäubung (US 6,093,750) vorgeschlagen.
Die WO 98/51735 beschreibt Graphitpartikel enthaltende expandierbare Styrolpolyme- re mit verringerter Wärmeleitfähigkeit, die durch Suspensionspolymerisation oder durch Extrusion in einem Zweischneckentextruder erhältlich sind. Aufgrund der hohen Scherkräfte in einem Zweischneckentextruder beobachtet man in der Regel einen signifikanten Molekulargewichtsabbau des eingesetzten Polymeren und/oder teilweise Zersetzung von zugegebenen Additiven, wie Flammschutzmittel.
Zur Erzielung optimaler Dämmeigenschaften und guter Oberflächen der Schaumstoffkörper ist die Zellzahl und Schaumstruktur, die sich beim Verschäumen der expandierbaren Styrolpolymeren (EPS) einstellt, von entscheidender Bedeutung. Die durch Z
Extrusion hergestellten EPS-Granulaten lassen sich häufig nicht zu Schaumstoffen mit optimaler Schaumstruktur verschäumen.
Aufgabe der vorliegenden Erfindung war es, expandierbare Styrolpolymergranulate mit verbessertem Expansionsvermögen bereitzustellen. Die daraus durch Vorschäumen erhältlichen Schaumstoffpartikel sollten zudem eine verbesserte Verschweisbarkeit aufweisen und zu Partikelschaumformkörpern mit einer zwickelfreien Schaumstoffoberfläche führen.
Demgemäß wurden expandierbare Styrolpolymergranulate mit mindestens bi- oder multi-modaler Molekulargewichtsverteilung gefunden.
Die bi- oder multimodale Molekulargewichstverteilung kann beispielsweise gezielt durch Mischen und Aufschmelzen von Styrolpolymeren unterschiedlicher mittlerer Mo- lekulargewichte eingestellt werden. Bevorzugt werden Mischungen aus einem niedermolekularen Styrolpolymeren mit einem gewichtsmittleren Molekuargewicht Mw im Bereich von 1.000 bis 20.000 g/mol, insbesondere im Bereich von 2.000 bis 10.000 g/mol und einem hochmolekularen Styrolpolymeren mit einem gewichtsmittleren Molekulargewicht Mw im Bereich von 160.000 bis 400.000 g/mol, bevorzugt im Bereich von 220.000 bis 300.000 g/mol eingesetzt.
Das niedermolekulare Styrolpolymer wird in der Regel in Mengen im Bereich von 0,1 bis 30 Gew.-%, bevorzugt im Bereich von 1 bis 10 Gew.-%, bezogen auf die Styrolpolymermischung, eingesetzt. Bis zu einem Anteil von 2 Gew.-% des niedermolekularen Styrolpolymeren, bezogen auf die Styrolpolymermischung, beobachtet man keine nennenswerte Absenkung der Glasübergangstemperatur des expandierbaren Styrolpoly- mergranulates und damit der Wärmeformbeständigkeit des daraus hergestellten Schaumstoffformteiles.
Eine deutlich verbesserte Expandierbarkeit erreicht man bei Anteilen des niedermolekularen Styrolpolymeren im Bereich von 3 bis 8 Gew.-%.
Besonders bevorzugt werden Mischungen aus
i) 0,1 bis 30 Gew.-% eines Styrolcopolymeren, z. B. ein Copolymer aus Styrol, Ac- rylsäure und/oder α-Methylstyrol, mit einem gewichtsmittleren Molekuargewicht Mw im Bereich von 1.000 bis 20.000 g/mol, insbesondere im Bereich von 2.000 bis 10.000 g/mol, und ii) 99,9 bis 70 Gew.-% Standardpolystyrol (GPPS) oder Schlagzähpolystyrol (Hl PS) mit einem gewichtsmittleren Molekulargewicht Mw im Bereich von 160.000 bis 400.000 g/mol bevorzugt im Bereich von 220.000 bis 300.000 g/mol eingesetzt. Bevorzugt werden als Styrolpolymere glasklares Polystyrol (GPPS), Schlagzähpolystyrol (HIPS), anionisch polymerisiertes Polystyrol oder Schlagzähpolystyrol (A-IPS), Sty- rol-a-Methstyrol-copolymere, Acrylnitril-Butadien-Styrolpolymerisate (ABS), Styrol- Acrylnitril (SAN) Acrylnitril-Styrol-Acrylester (ASA), Met yacrylat-Butadien-Styrol (MBS), Methylmethacrylat-Acrylnitril-Butadien-Styrol (MABS)- polymerisate oder Mischungen davon oder mit Polyphenylenether (PPE) eingesetzt.
Die genannten Styrolpolymeren können zur Verbesserung der mechanischen Eigenschaften oder der Temperaturbeständigkeit gegebenenfalls unter Verwendung von Verträglichkeitsvermittlern mit thermoplastischen Polymeren, wie Polyamiden (PA), Polyolefinen, wie Polypropylen (PP) oder Polyethylen (PE), Polyacrylaten, wie Poly- methylmethacrylat (PMMA), Polycarbonat (PC), Polyestem, wie Polyethylentherephta- lat (PET) oder Polybutylenterephtalat (PBT), Polyethersulfonen (PES), Polyetherketo- nen oder Polyethersulfiden (PES) oder Mischungen davon in der Regel in Anteilen von insgesamt bis maximal 30 Gew.-%, bevorzugt im Bereich von 1 bis 10 Gew.-%, bezogen auf die Polymerschmelze, abgemischt werden. Desweiteren sind Mischungen in den genannten Mengenbereichen auch mit z. B hydrophob modifizierten oder funktio- nalisierten Polymeren oder Oligomeren, Kautschuken, wie Polyacrylaten oder Polydie- I nen, z. B. Styrol-Butadien-Blockcopolymeren oder biologisch abbaubaren aliphatischen oder aliphatisch/aromatischen Copolyestern möglich.
Als Verträglichkeitsvermittler eignen sich z.B. Maleinsäureanhydrid-modifizierte Styrol- copolymere, Epoxidgruppenhaltige Polymere oder Organosilane.
Der Styrolpolymerschmelze können auch Polymerrecyklate der genannten thermoplastischen Polymeren, insbesondere Styrolpolymere und expandierbare Styrolpolymerer (EPS) in Mengen zugemischt werden, die deren Eigenschaften nicht wesentlich verschlechtern, in der Regel in Mengen von maximal 50 Gew.-%, insbesondere in Mengen von 1 bis 20 Gew.-%.
Die treibmittelhaltige Styrolpolymerschmelze enthält in der Regel eine oder mehrere Treibmittel in homogener Verteilung in einem Anteil von insgesamt 2 bis 10 Gew.-% bevorzugt 3 bis 7 Gew.-%, bezogen auf die treibmittelhaltige Styrolpolymerschmelze. Als Treibmittel, eigenen sich die üblicherweise in EPS eingesetzten physikalische Treibmittel, wie aliphatischen Kohlenwasserstoffe mit 2 bis 7 Kohlenstoffatomen, Alkohole, Ketone, Ether oder halogenierte Kohlenwasserstoffe. Bevorzugt wird iso-Butan, n-Butan, iso-Pentan, n-Pentan eingesetzt.
Zur Verbesserung der Verschäumbarkeit können feinverteilte Innenwassertröpfchen in die Styrolpolymermatirx eingebracht werden. Dies kann beispielsweise durch die Zugabe von Wasser in die aufgeschmolzene Styrolpolymermatrix erfolgen. Die Zugabe des Wassers kann örtlich vor, mit oder nach der Treibmitteldosierung erfolgen. Eine homogene Verteilung des Wassers kann mittels dynamischen oder statischen Mischern erreicht werden.
In der Regel sind 0 bis 2, bevorzugt 0,05 bis 1 ,5 Gew.-% Wasser, bezogen auf das Styrolpolymer, ausreichend.
Expandierbare Styrolpolymere (EPS) mit mindestens 90% des Innenwassers in Form von Innenwassertröpfchen mit einem Durchmesser im Bereich von 0,5 bis 15 μm bilden beim Verschäumen Schaumstoffe mit ausreichender Zellzahl und homogener Schaumstruktur.
Die zugesetzte Treibmittel- und Wassermenge wird so gewählt, dass die expandierbaren Styrolpolymeren (EPS) ein Expansionsvermögen , definiert als Schüttdichte vor dem Verschäumen/Schüttdichte nach dem Verschäumen höchstens 125 bevorzugt 25 bis 100 aufweisen.
Die erfindungsgemäßen expandierbaren Styrolpolymergranulate (EPS) weisen in der Regel eine Schüttdichte von höchstens 700 g/l bevorzugt im Bereich von 590 bis 660 g/l auf. Bei Verwendung von Füllstoffen können in Abhängigkeit von der Art und Menge des Füllstoffes Schüttdichten im Bereich von 590 bis 1200 g/l auftreten.
Des weiteren können der Styrolpolymerschmelze Additive, Keimbildner, Füllstoffe, Weichmacher, Flammschutzmittel, lösliche und unlösliche anorganische und/oder organische Farbstoffe und Pigmente, z.B. IR-Absorber, wie Ruß, Graphit oder Alumini- umpulver gemeinsam oder räumlich getrennt, z.B. über Mischer oder Seitenextruder zugegeben werden. In der Regel werden die Farbstoffe und Pigmente in Mengen im Bereich von 0,01 bis 30, bevorzugt im Bereich von 1 bis 5 Gew.-% zugesetzt. Zur homogenen und mikrodispersen Verteilung der Pigmente in dem Styrolpolymer kann es insbesondere bei polaren Pigmenten zweckmäßig sein ein Dispergierhilfsmittel, z.B Organosilane, epoxygruppenhaltige Polymere oder Maleinsäureanhydrid-gepfropfte Styrolpolymere, einzusetzen. Bevorzugte Weichmacher sind Mineralöle, Phtalate, die in Mengen von 0,05 bis 10 Gew.-%, bezogen auf das Styrolpolymerisat, eingesetzt werden können.
Zur Herstellung der erfindungsgemäßen expandierbaren Styrolpolymerisate wird das Treibmittel in die Polymerschmelze eingemischt. Das Verfahren umfasst die Stufen a) Schmelzerzeugung, b) Mischen c) Kühlen d) Fördern und e) Granulieren. Jede dieser Stufen kann durch die in der Kunststoffverarbeitung bekannten Apparate oder Apparatekombinationen ausgeführt werden. Zur Einmischung eignen sich statische oder dy- namische Mischer, beispielsweise Extruder. Die Polymerschmelze kann direkt aus einem Polymerisationsreaktor entnommen werden oder direkt in dem Mischextruder oder einem separaten Aufschmelzextruder durch Aufschmelzen von Polymergranulaten erzeugt werden. Die Kühlung der Schmelze kann in den Mischaggregaten oder in separaten Kühlern erfolgen. Für die Granulierung kommen beispielsweise die druckbeaufschlagte Unterwassergranulierung, Granulierung mit rotierenden Messern und Kühlung durch Sprühvemebelung von Temperierflüssigkeiten oder Zerstäubungsgranulati- on in Betracht. Zur Durchführung des Verfahrens geeignete Apparateanordnungen sind z.B.:
a) Polymerisationsreaktor - statischer Mischer/Kühler - Granulator b) Polymerisationsreaktor - Extruder - Granulator c) Extruder - statischer Mischer - Granulator d) Extruder - Granulator
Weiterhin kann die Anordnung Seitenextruder zur Einbringung von Additiven, z.B. von Feststoffen oder thermisch empfindlichen Zusatzstoffen aufweisen.
Die treibmittelhaltige Styrolpolymerschmelze wird in der Regel mit einer Temperatur im Bereich von 140 bis 300°C, bevorzugt im Bereich von 160 bis 240°C durch die Düsenplatte gefördert. Eine Abkühlung bis in den Bereich der Glasübergangstemperatur ist nicht notwendig.
Die Düsenplatte wird mindestens auf die Temperatur der treibmittelhaltigen Polystyrolschmelze beheizt. Bevorzugt liegt die Temperatur der Düsenplatte im Bereich von 20 bis 100°C über der Temperatur der treibmittelhaltigen Polystyrolschmelze. Dadurch werden Polymerablagerungen in den Düsen verhindert und eine störungsfreie Granu- lierung gewährleistet.
Um marktfähige Granulatgrößen zu erhalten sollte der Durchmesser (D) der Düsenbohrungen am Düsenaustritt im Bereich von 0,2 bis 1 ,5 mm, bevorzugt im Bereich von 0,3 bis 1,2 mm, besonders bevorzugt im Bereich von 0,3 bis 0,8 mm liegen. Damit las- sen sich auch nach Strangaufweitung Granulatgrößen unter 2 mm, insbesondere im Bereich 0,4 bis 1 ,4 mm gezielt einstellen.
Die Strangaufweitung kann außer über die Molekulargewichtsverteilung durch die Düsengeometrie beeinflusst werden. Die Düsenplatte weist bevorzugt Bohrungen mit ei- nem Verhältnis LJD von mindestens 2 auf, wobei die Länge (L) den Düsenbereich, dessen Durchmesser höchstens dem Durchmesser (D) am Düsenaustritt entspricht, bezeichnet. Bevorzugt liegt das Verhältnis L/D im Bereich von 3 - 20.
Im allgemeinen sollte der Durchmesser (E) der Bohrungen am Düseneintritt der Dü- senplatte mindestens doppelt so groß wie der Durchmesser (D) am Düsenaustritt sein. O Eine Ausführungsform der Düsenplatte weist Bohrungen mit konischem Einlauf und einem Einlaufwinkel α kleiner 180°, bevorzugt im Bereich von 30 bis 120° auf. In einer weiteren Ausführungsform besitzt die Düsenplatte Bohrungen mit konischem Auslauf und einen Auslaufwinkel ß kleiner 90°, bevorzugt im Bereich von 15 bis 45°. Um geziel- te Granulatgrößenverteilungen der Styrolpolymeren zu erzeugen kann die Düsenplatte mit Bohrungen unterschiedlicher Austrittsdurchmesser (D) ausgerüstet werden. Die verschiedenen Ausführungsformen der Düsengeometrie können auch miteinander kombiniert werden.
Ein besonders bevorzugtes Verfahren zur Herstellung von expandierbaren Styrolpolymeren mit bimodaler Molekulargewichtsverteilung, umfasst die Schritte
a) Polymerisation von Styrolmonomer und gegebenenfalls copolymersierbaren Monomeren zu einem Styrolpolymer mit einem mittleren Molekulargewicht im Be- reich von 160.000 bis 400.000 g/mol,
b) Entgasungung der erhaltenen Styrolpolymerschmelze,
c) Einmischen eines niedermolekularen Styrolpolymeren mit einem mittleren Mole- kulargewicht Mw im Bereich von 1000 bis 20.000 g/mol,
d) Einmischen des Treibmittels und gegebenenfalls Additiven, in die Styrolpolymerschmelze mittels statischen oder dynamischen Mischer bei einer Temperatur von mindestens 150°C, bevorzugt 180 - 260°C,
e) Kühlen der treibmittelhaltigen Styrolpolymerschmelze auf eine Temperatur, die mindestens 120°C, bevorzugt 150 - 200°C beträgt,
f) Austrag durch eine Düsenplatte mit Bohrungen, deren Durchmesser am Düsen- austritt höchstens 1 ,5 mm beträgt und
g) Granulieren der treibmittelhaltigen Schmelze.
In Schritt g) kann die Granulierung direkt hinter der Düsenplatte unter Wasser bei ei- nem Druck im Bereich von 1 bis 25 bar, bevorzugt 5 bis 15 bar erfolgen.
Aufgrund der Polymerisation in Stufe a) und Entgasung in Stufe b) steht für die Treib- mittelimpägnierung in Stufe d) direkt eine Polymerschmelze zur Verfügung und ein Aufschmelzen von Styrolpolymeren ist nicht notwendig. Dies ist nicht nur wirtschaftli- eher, sondern führt auch zu expandierbaren Styrolpolymeren (EPS) mit niedrigen Sty- rolmonomergehalten, da die mechanischen Schereinwirkung im Aufschmelzbereich eines Extruders, die in der Regel zu einer Rückspaltung von Monomeren führt, vermie- den wird. Um den Styrolmonomerengehalt niedrig zu halten, insbesondere unter 500 ppm mit Styrolmomomergehalten, ist es ferner zweckmäßig, den mechanischen und thermischen Energieeintrag in allen folgenden Verfahrensstufen so gering wie möglich zu halten. Besonders bevorzugt werden daher Scherraten unter 50/sec, bevorzugt 5 bis 30/sec, und Temperaturen unter 260°C sowie kurze Verweilzeiten im Bereich von 1 bis 20, bevorzugt 2 bis 10 Minuten in den Stufen d) bis f) eingehalten. Besonders bevorzugt werden ausschließlich statische Mischer und statische Kühler im gesamten Verfahren eingesetzt. Die Polymerschmeize kann durch Druckpumpen, z. B. Zahnrad- pumpen gefördert und ausgetragen werden.
Eine weitere Möglichkeit zur Verringerung des Styrolmonomerengehaltes und/oder Restlösungsmittel wie Ethylbenzol besteht darin, in Stufe b) eine Hochentgasung mittels Schleppmitteln, beispielsweise Wasser, Stickstoff oder Kohlendioxid, vorzusehen oder die Polymerisationsstufe a) anionisch durchzuführen. Die anionische Polymerisa- tion von Styrol führt nicht nur zu Styrolpolymeren mit niedrigem Styrolmonomeranteil, sondern gleichzeitig zur geringen Styrololigomerenanteilen.
Zur Verbesserung der Verarbeitbarkeit können die fertigen expandierbaren Styrolpolymergranulate durch Glycerinester, Antistatika oder Antiverklebungsmittel beschichten werden.
Die erfindungsgemäßen expandierbaren Styropolymergranulate weisen eine geringere Verklebung gegenüber Granulaten, die niedermolekulare Weichmacher enthalten, auf und zeichnen sich durch einen geringen Pentanverlust während der Lagerung auf. Die erfindungsgemäßen expandierdierbaren Styrolpolymergranulate können in einem ersten Schritt mittels Heißluft oder Wasserdampf zu Schaumpartikeln mit einer Dichte im Bereich von 8 bis 100 g/l vorgeschäumt und in einem 2. Schritt in einer geschlossenen Form zu Partikelformteilen verschweißt werden.
Beispiele:
Einsatzstoffe:
Polystyrol PS 158 K der BASF Aktiengesellschaft mit einer Viskositätszahl VZ von 98 ml/g (Mw = 280.000 g/mol, Uneinheitlichkeit Mw/Mn = 2,8), Polystyrol PS 138 F der BASF Aktiengesellschaft mit einer Viskositätszahl VZ von 75 ml/g ( Mw= 195000, Mw/Mn = 2,7)
Styrolcopolymer (SC) aus Styrol, Acrylsäure und oc-Methylstyrol mit einem gewichtsmittleren Molekulargweicht Mw = 3.000 g/mol, Glasübergangstemperatur Tg von 56°C (Joncryl® ADF 1300 der Fa. Johnson Polymers) Beispiele 1 - 4:
Für die Beispiele wurde eine Polystyrolschmelze aus Polystyrol PS 158 K und SC mit den Gewichtsanteilen gemäß Tabelle 1 hergestellt und zusätzlich 6 Gew.-% n-Pentan, bezogen auf die Polymerschmelze eingemischt. Die treibmittelhaltige Schmelzemischung wurde von ursprünglich 260 auf 190 °C abgekühlt und bei einem Durchsatz von 60 kg/h durch eine Düsenplatte mit 32 Bohrungen (Durchmesser der Düse 0,75 mm) gefördert. Mit Hilfe einer druckbeaufschlagten Unterwassergranulierung wurden kompakte Granulate mit enger Größenverteilung hergestellt. Die im gemessenen Pentangehalte im Granulat nach der Granulierung und nach 14 Tagen Lagerung sind in Tabelle 1 zusammengestellt.
Diese Granulate wurden in strömendem Wasserdampf zu Schaumstoffperlen (30 g/l) vorgeschäumt, 12 Stunden zwischengelagert und anschließend in gasdichten Formen mit Wasserdampf zu Schaumstoffkörpern verschweißt.
Zur Beurteilung der Verschweißung der Schaumpartikel wurde ein 4 cm dicker Schaumstoff-Probekörper zerbrochen und der der Anteil von zerstörten Schaumperlen und nichtzerstörten Perlen an der Bruchoberfläche ermittelt. Die Bruchverschweißung charakterisiert den Zusammenhalt der Perlen und ist damit ein Maß für die mechanischen Eigenschaften , wie Biegeverhalten. Die Oberflächengüte wurden wie in Tabelle 1 zusammengestellt beurteilt.
Tabelle 2 zeigt die Expandierbarkeit der Granulate. Bei höherem Gehalt an SC wir die minimale Schüttdichte deutlich verringert und in kürzerer Zeit erreicht.
Tabelle 1 : Charakterisierung und Eigenschaften der Beispiele 1 bis 4:
Figure imgf000009_0001
Tabelle 2: Expandierbarkeit der Granulate aus den Beispielen 1 bis 4 (Schüttdiche [g/l]
Figure imgf000010_0001
Beispiele 5 - 7:
Die treibmittelhaltigen Polystyolschmeize (6 Gew.-% n-Pentan) wurde mit 100 kg/h Durchsatz durch eine Düsenplatte mit 300 Bohrungen (Durchmesser am Düsenaustritt (D) 0,4 mm) extrudiert. Die Schmelzetemperatur betrug 160°C. Die erhaltenen expandierbaren Polystyrolgranulate besaßen einen einheitlichen Granulatdurchmesser von 1 ,0 mm. Die erhaltenen Granulate wurden anschließend mit strömendem Wasserdampf expandiert und das Expansionsvermögen bestimmt.
Figure imgf000010_0002

Claims

Patentansprüche:
1. Expandierbare Styrolpolymergranulate, dadurch gekennzeichnet, dass das Styrolpolymer mindestens eine bi- oder multi-modale Molekulargewichtsverteilung aufweist.
2. Expandierbare Styrolpolymergranulate nach Anspruch 1 , dadurch gekennzeichnet, das sie, jeweils bezogen auf den gesamten Styrolpolymeranteil i) 0,1 bis 30 Gew.-% eines Styrolcopolymeren mit einem gewichtsmittleren Molekuargewicht Mw im Bereich von 1.000 bis 20.000 g/mol, und ii) 99,9 bis 70 Gew.-% Standardpolystyrol (GPPS) mit einem gewichtsmittleren Molekulargewicht Mw im Bereich von 160.000 bis 400.000 g/mol enthalten.
3. Expandierbare Styrolpolymerisate nach Anspruch 2, dadurch gekennzeichnet, dass als Styrolcopolymer ein Copolymer aus Styrol, Acrylsäure und/oder α- Methylstyrol eingesetzt wird.
4. Expandierbare, Styrolpolymergranulate nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass sie 3 bis 7 Gew.-% eines organischen Treibmittels enthalten.
5. Verfahren zur Herstellung von expandierbaren Styrolpolymergranulaten, umfas- send die Schritte a) Herstellen einer Mischung von Styrolpolymeren, die einem Unterschied des gewichtsmittleren Molekulargewichtes Mwvon mindestens 50.000 g/mol aufweisen, b) Einmischen eines organischen Treibmittels in die Polymerschmelze mittels statischen oder dynamischen Mischer bei einer Temperatur von mindestens 150°C, c) Kühlen der treibmittelhaltigen Polymerschmelze auf eine Temperatur von mindestens 120°C d) Austrag durch eine Düsenplatte mit Bohrungen, deren Durchmesser am Düsenaustritt höchstens 1 ,5 mm beträgt und e) Granulieren der treibmittelhaltigen Schmelze direkt hinter der Düsenplatte unter Wasser bei einem Druck im Bereich von 1 bis 25 bar.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, das als Styrolpolymer in Stufe a) eine Mischung aus i) 0,1 bis 70 Gew.-% eines Styrolpolymeren mit einem gewichtsmittleren Molekulargewicht im Bereich von 1.000 bis 200.000 g/mol und ii) 99,9 bis 30 Gew.-% eines Styrolpolymeren mit einem gewichtsmittleren Molekulargewicht im Bereich von 160.000 bis 400.000 g/mol hergestellt wird.
7. Verfahren zur Herstellung von Partikelschaumformteilen, dadurch gekennzeichnet, dass man expandierdierbare Styrolpolymergranulate gemäß Anspruch 1 in einem ersten Schritt mittels Heißluft oder Wasserdampf zu Schaumpartikeln mit einer Dichte im Bereich von 8 bis 100 g/l vorschäumt und in einem 2. Schritt in einer geschlossenen Form verschweißt.
PCT/EP2004/014071 2003-12-12 2004-12-10 Expandierbare styrolpolymergranulate mit bi- oder multimodaler molekulargewichtsverteilung WO2005056655A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
AT04803719T ATE460453T1 (de) 2003-12-12 2004-12-10 Expandierbare styrolpolymergranulate mit bi- oder multimodaler molekulargewichtsverteilung
MXPA06006498A MXPA06006498A (es) 2003-12-12 2004-12-10 Granulados de poliestireno expansibles, con una distribucion de peso molecular bi o multimodal.
DE502004010886T DE502004010886D1 (de) 2003-12-12 2004-12-10 Expandierbare styrolpolymergranulate mit bi- oder multimodaler molekulargewichtsverteilung
BRPI0417386-4A BRPI0417386A (pt) 2003-12-12 2004-12-10 granulado de polìmero de estireno expansìvel, e, processos para preparar o mesmo, e para produzir peças moldadas em espuma em partìculas
US10/596,262 US7868053B2 (en) 2003-12-12 2004-12-10 Expandable polystyrene granulates with a bi- or multi-modal molecular-weight distribution
EP04803719A EP1694755B1 (de) 2003-12-12 2004-12-10 Expandierbare styrolpolymergranulate mit bi- oder multimodaler molekulargewichtsverteilung
KR1020067013970A KR101095236B1 (ko) 2003-12-12 2004-12-10 이모드 또는 다모드의 분자량 분포를 갖는 팽창성의펠릿화된 스티렌 폴리머 물질
PL04803719T PL1694755T3 (pl) 2003-12-12 2004-12-10 Spienialne granulaty polimerów styrenowych o dwu- lub wielomodalnym rozkładzie masy cząsteczkowej

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10358804.3 2003-12-12
DE10358804A DE10358804A1 (de) 2003-12-12 2003-12-12 Expandierbare Styrolpolymergranulate mit bi- oder multimodaler Molekulargewichtsverteilung

Publications (1)

Publication Number Publication Date
WO2005056655A1 true WO2005056655A1 (de) 2005-06-23

Family

ID=34672791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/014071 WO2005056655A1 (de) 2003-12-12 2004-12-10 Expandierbare styrolpolymergranulate mit bi- oder multimodaler molekulargewichtsverteilung

Country Status (11)

Country Link
US (1) US7868053B2 (de)
EP (1) EP1694755B1 (de)
KR (1) KR101095236B1 (de)
CN (1) CN100469823C (de)
AT (1) ATE460453T1 (de)
BR (1) BRPI0417386A (de)
DE (2) DE10358804A1 (de)
ES (1) ES2341109T3 (de)
MX (1) MXPA06006498A (de)
PL (1) PL1694755T3 (de)
WO (1) WO2005056655A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009058455A1 (en) * 2007-10-31 2009-05-07 Dow Global Technologies, Inc. Polymer bead foam having improved properties and process of forming and using the same
WO2013150456A1 (en) 2012-04-06 2013-10-10 Versalis Spa Process for the insertion and conveying of labile additives in streams of molten material

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2241590B1 (de) * 2008-01-30 2017-03-08 Sekisui Plastics Co., Ltd. Dehnbare polystyrolharzkügelchen, herstellungsverfahren dafür und gedehnte formen
JP2012201688A (ja) * 2011-03-23 2012-10-22 Sekisui Plastics Co Ltd 発泡性ポリスチレン系樹脂粒子とその製造方法、ポリスチレン系樹脂予備発泡粒子及びポリスチレン系樹脂発泡成形体
EP2565224A1 (de) * 2011-08-31 2013-03-06 Basf Se Expandierbare temperaturbeständige Styrol-Copolymere
CN103121549A (zh) * 2013-01-28 2013-05-29 熊建珍 一种eps材质的包装盒及其制作方法
US10175575B2 (en) * 2016-06-01 2019-01-08 Jsr Corporation Pattern-forming method and composition
KR20210106536A (ko) * 2018-12-22 2021-08-30 디에스엠 아이피 어셋츠 비.브이. 발포체
US20230407038A1 (en) * 2020-10-30 2023-12-21 Ineos Styrolution Group Gmbh Expandable, thermoplastic polymer particles based on styrene polymers and process for the preparation thereof
WO2024008914A1 (de) 2022-07-08 2024-01-11 Ineos Styrolution Group Gmbh Expandierte, thermoplastische polymerpartikel mit rezyklat-anteil und verfahren zu deren herstellung
WO2024008911A1 (de) 2022-07-08 2024-01-11 Ineos Styrolution Group Gmbh Expandierbare, thermoplastische polymerpartikel mit rezyklat-anteil und verfahren zu deren herstellung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0909782A2 (de) * 1997-10-21 1999-04-21 Basf Aktiengesellschaft Unter Verwendung halogenfreier Treibmittel hergestellte Styrolschaumstoffplatten
EP0915126A2 (de) * 1997-11-10 1999-05-12 Basf Aktiengesellschaft Verfahren zur Herstellung von perlformigen expandierbaren Styrolpolymerisaten
WO2000043442A1 (de) * 1999-01-25 2000-07-27 Sunpor Kunststoff Ges.Mbh Teilchenförmige, expandierbare styrolpolymerisate und verfahren zu ihrer herstellung
JP2002226622A (ja) * 2001-02-01 2002-08-14 Hitachi Chem Co Ltd 発泡性ゴム変性アクリロニトリル・スチレン系樹脂粒子、その製造法及び発泡成形体
US20030162852A1 (en) * 1998-12-04 2003-08-28 Chaudhary Bharat I. Acoustical insulation foams

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1062307A (en) 1965-03-17 1967-03-22 Shell Int Research Improvements in and relating to the manufacture of particulate expandable polymers and to the manufacture of expanded polymers therefrom
US3817669A (en) * 1971-08-19 1974-06-18 Dow Chemical Co Apparatus for the preparation of plastic foam
IT1163386B (it) 1983-05-19 1987-04-08 Montedison Spa Procedimento per la produzione di granuli espandibili di polimeri termoplastici e relativa apparecchiatura
US4665103A (en) * 1985-11-29 1987-05-12 Atlantic Richfield Company Process for producing modified styrenic polymer beads for high strength foamed articles
US4663357A (en) * 1986-05-12 1987-05-05 Atlantic Richfield Company Higher molecular weight thermoplastics having multimodal molecular weight distribution
US4673694A (en) * 1986-05-12 1987-06-16 Atlantic Richfield Company Higher molecular weight thermoplastics having multimodal molecular weight distribution
US5000891A (en) * 1986-09-29 1991-03-19 Green James R Expandable polystyrene pellets
EP0305862A1 (de) 1987-09-04 1989-03-08 General Electric Company Einstufenverfahren für die Herstellung von expandierbaren Schaumperlen
DE3901329A1 (de) * 1989-01-18 1990-07-19 Basf Ag Expandierbare styrolpolymerisate mit hoher oelbestaendigkeit und verfahren zu ihrer herstellung
DE3921148A1 (de) * 1989-06-28 1991-01-10 Basf Ag Perlfoermige expandierbare styrolpolymerisate mit hohem expandiervermoegen
DE3928284A1 (de) * 1989-08-26 1991-02-28 Basf Ag Schwerentflammbare expandierbare styrolpolymerisate und schaumstoffe sowie flammschutzmittel
KR100262832B1 (ko) * 1991-12-20 2000-08-01 그레이스 스티븐 에스. 열성형가능한내화학성중합체블렌드
ES2157245T3 (es) 1994-02-21 2001-08-16 Sulzer Chemtech Ag Procedimiento para la preparacion de granulados plasticos expandibles.
US6783710B1 (en) * 1994-02-21 2004-08-31 Sulzer Chemtech Ag Method for the production of expandable plastics granulate
DE4416861A1 (de) * 1994-05-13 1995-11-16 Basf Ag Expandierbare Styrolpolymerisate
DE4416852A1 (de) * 1994-05-13 1995-11-16 Basf Ag Expandierbare Styrolpolymerisate
DE19530765A1 (de) * 1995-08-22 1997-02-27 Basf Ag Kontinuierliches Verfahren zur Herstellung von expandierbaren Styrolpolymerisaten
US6340713B1 (en) * 1997-05-14 2002-01-22 Basf Aktiengesellschaft Expandable styrene polymers containing graphite particles
US5977195A (en) * 1997-08-01 1999-11-02 Huntsman Corporation Expandable thermoplastic polymer particles and method for making same
ITMI20012706A1 (it) 2001-12-20 2003-06-20 Enichem Spa Procedimento per la produzione di granuli di polimeri termoplastici espandibili ed apparecchiatura adatta allo scopo
DE10226749B4 (de) * 2002-06-14 2014-09-04 Basf Se Verfahren zur Herstellung von expandierbarem Polystyrol
DE10241298A1 (de) * 2002-09-04 2004-03-18 Basf Ag Verfahren zur Herstellung von Polystyrolschaumpartikeln mit niedriger Schüttdichte
US7282552B1 (en) * 2006-05-16 2007-10-16 Fina Technology, Inc. Styrene copolymers with a bimodal molecular weight distribution

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0909782A2 (de) * 1997-10-21 1999-04-21 Basf Aktiengesellschaft Unter Verwendung halogenfreier Treibmittel hergestellte Styrolschaumstoffplatten
EP0915126A2 (de) * 1997-11-10 1999-05-12 Basf Aktiengesellschaft Verfahren zur Herstellung von perlformigen expandierbaren Styrolpolymerisaten
US20030162852A1 (en) * 1998-12-04 2003-08-28 Chaudhary Bharat I. Acoustical insulation foams
WO2000043442A1 (de) * 1999-01-25 2000-07-27 Sunpor Kunststoff Ges.Mbh Teilchenförmige, expandierbare styrolpolymerisate und verfahren zu ihrer herstellung
JP2002226622A (ja) * 2001-02-01 2002-08-14 Hitachi Chem Co Ltd 発泡性ゴム変性アクリロニトリル・スチレン系樹脂粒子、その製造法及び発泡成形体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 2002, no. 12 12 December 2002 (2002-12-12) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009058455A1 (en) * 2007-10-31 2009-05-07 Dow Global Technologies, Inc. Polymer bead foam having improved properties and process of forming and using the same
WO2013150456A1 (en) 2012-04-06 2013-10-10 Versalis Spa Process for the insertion and conveying of labile additives in streams of molten material
US10183264B2 (en) 2012-04-06 2019-01-22 Versalis S.P.A. Process for the insertion and conveying of labile additives in streams of molten material

Also Published As

Publication number Publication date
ATE460453T1 (de) 2010-03-15
BRPI0417386A (pt) 2007-04-10
DE502004010886D1 (de) 2010-04-22
CN1890308A (zh) 2007-01-03
US20080281004A1 (en) 2008-11-13
KR20060135705A (ko) 2006-12-29
CN100469823C (zh) 2009-03-18
EP1694755A1 (de) 2006-08-30
ES2341109T3 (es) 2010-06-15
DE10358804A1 (de) 2005-07-14
PL1694755T3 (pl) 2010-08-31
EP1694755B1 (de) 2010-03-10
MXPA06006498A (es) 2006-08-23
US7868053B2 (en) 2011-01-11
KR101095236B1 (ko) 2011-12-20

Similar Documents

Publication Publication Date Title
EP1517947B1 (de) Verfahren zur herstellung von expandierbarem polystyrol
EP1694753B1 (de) Verfahren zur herstellung von expandierbaren styrolpolymermischungen
EP2162269B1 (de) Expandierbare Polymergranulate aus Acrylnitrilcopolymeren
DE10358786A1 (de) Partikelschaumformteile aus expandierbaren, Füllstoff enthaltenden Polymergranulaten
WO2006007995A2 (de) Verfahren zur herstellung von flammgeschütztem, expandierbarem polystyrol
WO2011073141A1 (de) Flammgeschützte polymerschaumstoffe
WO2006058733A1 (de) Expandierbare styrolpolymergranulate und partikelschaumstoffe mit verringerter wärmeleitfähigkeit
WO2009065880A2 (de) Flammgeschützte expandierbare styrolpolymere und verfahren zu ihrer herstellung
EP1771505B1 (de) Synergistische flammschutzmischungen für polystyrolschaumstoffe
WO2006007994A1 (de) Verfahren zur herstellung von expandierbaren styrolpolymeren mit verbesserter expandierbarkeit
EP1694755B1 (de) Expandierbare styrolpolymergranulate mit bi- oder multimodaler molekulargewichtsverteilung
EP1694487B1 (de) Verfahren zur Herstellung von expandierbare Styrolpolymergranulate
EP1616902B1 (de) Selbstverlöschender Styrolpolymer-Partikelschaumstoff
EP1541621B1 (de) Verfahren zur Herstellung von expandierbaren, schlagzäh-modifizierten, thermoplastischen Polymergranulaten
DE112004002167B4 (de) Expandierbare Styrolpolymergranulate
EP2062935B1 (de) Verfahren zur Einbringung von Feststoffpartikeln in Polymerschmelzen

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480036944.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2004803719

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10596262

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: PA/a/2006/006498

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 1020067013970

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004803719

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067013970

Country of ref document: KR

ENP Entry into the national phase

Ref document number: PI0417386

Country of ref document: BR