WO2005056379A1 - Structure modulaire de stockage et/ou de traitement d'hydrocarbures au large - Google Patents

Structure modulaire de stockage et/ou de traitement d'hydrocarbures au large Download PDF

Info

Publication number
WO2005056379A1
WO2005056379A1 PCT/NL2004/000872 NL2004000872W WO2005056379A1 WO 2005056379 A1 WO2005056379 A1 WO 2005056379A1 NL 2004000872 W NL2004000872 W NL 2004000872W WO 2005056379 A1 WO2005056379 A1 WO 2005056379A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
vessel
unit
support
processing
Prior art date
Application number
PCT/NL2004/000872
Other languages
English (en)
Inventor
Willem Cornelis Van Wijngaarden
Theodorus Johannes Bernardus Brinkel
Original Assignee
Single Buoy Moorings Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Single Buoy Moorings Inc. filed Critical Single Buoy Moorings Inc.
Publication of WO2005056379A1 publication Critical patent/WO2005056379A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B3/00Hulls characterised by their structure or component parts
    • B63B3/02Hulls assembled from prefabricated sub-units
    • B63B3/08Hulls assembled from prefabricated sub-units with detachably-connected sub-units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices

Definitions

  • the present invention relates to a floating storage and/or processing structure for hydrocarbons, such as cryogenic fluids, comprising a vessel moored to the sea bed, a tank member for containment of the hydrocarbons, a processing unit and an interconnecting fluid duct connecting the processing unit and the tank member.
  • hydrocarbons such as cryogenic fluids
  • the invention also relates to a method of constructing such a storage and/or processing structure and to a tank unit for use in such a structure.
  • Floating Liquid Natural Gas (FLNG) and Floating Oil and Natural Gas (FONG) production structures comprising a turret-moored barge equipped with oil and gas swivels, oil tanks and isolated LNG storage tanks, and a Nitrogen refrigerant-based LNG liquefaction plant including water and CO2 separation units.
  • FLNG Floating Liquid Natural Gas
  • FONG Floating Oil and Natural Gas
  • the known storage and/or production structures require a relatively large capital expenditure when assembled on shore and are laid out for a capacity which may not be completely utilised off-shore, or at least during the early stages of a project.
  • the integrated construction of the vessel and the cryogenic storage structures require a relatively complex building process, placing special demands on building skills required from the shipyard, and a relatively long construction time.
  • repair of the vessel may need to be carried out while the production process is interrupted, resulting in a loss of useful operating hours.
  • the tank member comprises at least a first and a second tank unit, the first tank unit being attached to the vessel via a first support at a first support position and being connected to the processing unit via an interconnecting fluid duct, the vessel comprising at least a second support position and support for receiving the second tank unit fastenable to said support and interconnectable to the processing unit via a fluid interconnection member, the second tank unit not being connected at the second support position to the second support and not being connected to the processing unit.
  • the storage and/or processing structure according to the present invention can be built at low initial costs, within a relatively short time by installing a smaller number of tank units on the vessel on shore, and subsequently mooring the assembly of vessel and tank unit at an offshore production site and starting operation.
  • the operator of the production and/or processing structure can decide to start out the project on a small scale at low initial costs within a short time. When more capacity is required, a gradual expansion to more capacity can be achieved when demand increases.
  • Additional tank units can be constructed while operation continues, and can be transported to the offshore location, be installed on the vessel and be interconnected to the processing equipment.
  • tank units can be built at a separate yard, in a reduced overall building time as complex integration of tanks and floating structures is not required.
  • the barge or vessel may be of conventional shape, such as for instance a simple rectangular barge, which may be built on regular shipyards. Repair or change/out of tank units can be carried out without interruption of operations. New or additional tank units may be connected to the vessel while the removed tank unit may be transported to shore for repair, dock inspection or redeployment.
  • the vessel according to the present invention may for instance be a floating LNG import terminal (FRSU) with a regasification unit or can be a floating export terminal (LNG FSO), or an FLNG or FONG production system.
  • FRSU floating LNG import terminal
  • LNG FSO floating export terminal
  • FLNG or FONG production system The vessel may be turret moored in a weathervaning manner or may be spread moored to the sea bed.
  • a modular cargo vessel is known from US 2,406,084.
  • a vessel is shown having a hull devoid of cargo space.
  • the cargo compartments are formed by tank members of rectangular cross section, which can be floated above the cargo deck of the vessel.
  • the cargo deck is ballasted such that it is submerged.
  • the vessel is deballasted such that the containers come to rest on the deck of the vessel, and are attached by rigid fasteners to secure the tanks against relative movements.
  • the known publication fails to disclose to place each tank unit individually in fluid connection with a processing unit, such as a cryogenic fluid processing unit and to allow for optional incremental increase in storage and processing capacity.
  • each tank unit comprises attached thereto a processing unit for processing hydrocarbons, in particular cryogenic fluids.
  • a processing unit for processing hydrocarbons, in particular cryogenic fluids In this way tank/processing modules are formed.
  • the vessel or barge for receiving the tank/processing modules does not comprise any complicated systems other than regular marine systems, which implies building times can be short and the construction process can be straight forward and can be carried out on a regular ship yard.
  • the floating structure allows for construction in sizable blocks which may be sub-contracted and constructed at different locations to shorten dock time.
  • the modular construction of the processing equipment allows the capacity of this equipment to match the storage capacity on the vessel.
  • a further advantage of integration of the processing equipment in the tank units or modules is that downtime of the whole system upon exchange or repair of the processing equipment of one tank unit is avoided.
  • the processing unit forming with the tank unit a storage/processing module can comprise a regasification/ boil off handling system, CO2 separators, water separators, compressors and cooling/refriger
  • the tank units may be substantially rectangular and placed side by side on the vessel, each tank unit comprising at a side the fluid interconnection member connectable to the interconnecting fluid duct, the interconnecting fluid duct extending along the sides of the tank units.
  • the tank units may for instance be containerized LNG tanks, which in themselves may be of spherical shape and may comprise regular LNG containment systems such as Moss-Rosenberg's storage systems, GTT, IHI-SPB, or, depending on the product, be formed by regular steel tanks.
  • the additional containers are transported to the offshore location of the production and/or storage structure and are connected to the deck of the vessel.
  • the containers may be sailed to location on a barge, and lifted to their deck position by a crane, upon which they are fastened on their supports which are situated at reinforced deck positions on the vessel.
  • the containers may be floated and towed to location, and may be placed on the vessel by ballasting the vessel such that deck level is submerged by several meters below water level, after which the containers are floated over their proper position and the vessel is raised by deballasting.
  • connections can be made to the interconnection members to attach product piping and interconnecting ducts to the processing equipment.
  • the interconnecting ducts and product piping extend along the side of the containers for easy access.
  • the ducts and product piping extend along the top surface of the containers, such that easy access is provided and the piping does not interfere with mooring of vessels alongside the production and/or storage vessel.
  • working decks may be provided for access to the product piping, valves and interconnection members.
  • the interconnection members of the tank units comprise a flexible joint for accommodating thermal expansion and contraction.
  • the flexible joints such as for instance steel bellows or jumper hoses allow thermally induced expansion and contraction of the product piping.
  • the tank units are connected to the vessel via the supports, which may comprise stools placed at the strong positions of the vessel, such as over the bulk heads, the stools having a degree of flexibility to allow for flexing of the tank unit due to wave actions.
  • the supports furthermore comprise positioning means for allowing movement of the tank units relative to the vessel prior to being connected to the supports.
  • the positioning means may be formed by rollers on the tank unit and/or on deck, by slide bearings and hydraulic actuators, drive motors and the like. After placing a tank unit on deck in a first, global positioning step, the displacement means are operated to move the tank unit relative to the vessel to assume its proper position on the supports, after which the tank unit can be fastened on its supports.
  • Figure 1 discloses a side view of a cryogenic storage and/or production vessel according to the present invention
  • Figure 2 shows a top view of the vessel of figure 1
  • FIGS 3-5 show different embodiments of interconnection of the tank units to the processing unit
  • Figure 6 shows a cryogenic tank unit comprised in a rectangular container
  • FIG. 7 shows a cryogenic tank unit which together with a modular processing unit forms a tank-processing module
  • Figure 8 and 9 show a side view and a top view respectively of a cryogenic and/or production vessel with a midship offloading facility.
  • Figure 1 shows a floating energy import or export terrninal 1 with a barge 2 which is anchored to the sea bed 3 via anchor lines 4 and 5.
  • the vessel 1 comprises a processing unit 6 such as a regasification unit, refrigerating equipment, gas and water separators and compressors.
  • the vessel comprises a tank member 7 comprised of tank units 8, 9, 10, 11, 12 and 13.
  • the tank units 8-13 are generally rectangular in cross section and comprise a cryogenic fluid such as liquefied LNG gas.
  • the tank units 8-13 are connected to the deck of the vessel via supports or stools 15.
  • the tank units 8-13 are each connected to the processing unit 6 via an interconnecting fluid duct 16 (see fig. 2).
  • the interconnecting fluid duct 16 extends along a top side of the tank units 8-13, and is connected to fluid interconnection members 17, 18 at the top of each tank unit 8- 13.
  • a deck structure 24 for supporting equipment may be supported on the top side of the tank units 8-13.
  • the processing unit 6 is connected to a cryogenic swivel 20 of a turret 21.
  • the turret 21 is moored to the sea bed 3 via the anchor lines 4, 5 that are attached to a chain table near keel level 22 of the vessel 2 (such that the vessel 2 can weathervane around the turret 21).
  • the processing unit 6 may comprise a (modular) boil-off handling and regasification plant, or e.g. a refrigeration or liquefaction facility.
  • the vessel 2 carries at the stern a crane 25 with a cryogenic fluid transfer arm 26 which is in fluid connection with the tank units 8-13 via hard piping or flexible ducts which have been schematically indicated at reference numeral 27. Its is also possible to have a configuration with midship placed LNG stations 25', 25" for offloading on one or both sides of the FSRU for midships fluid transfer, such as shown in Figs. 8 and 9. Via the transfer arm 26, cryogenic fluid might be transferred to shuttle tankers or may be loaded from the shuttle tankers into the tank units for processing in the processing unit 6.
  • interconnecting fluid duct 16 extends along the top side of the tank units 8- 13, free access to fluid interconnection members 17, 18 which may comprise mechanical and fluid coupling valves and the like, at the top of the tank units 8-13 is possible for inspection and for maintenance or installation and free access to the sides of the vessel 2 for mooring a vessel 28 alongside is possible.
  • fluid interconnection members 17, 18 which may comprise mechanical and fluid coupling valves and the like
  • At the front of the vessel 2 personnel quarters 29 and a helideck 30 are provided.
  • FIG 3 an embodiment is shown in which the vessel 2 is moored in a spread moored configuration and is connected to the sea bed 3 in a non-weamervaning manner via anchor lines 4, 5.
  • the interconnecting fluid ducts 16, 16' form a series interconnections between the tank units 12, 13 and the processing units 6.
  • the fluid connection members are in this case formed by couplings and valves 31, 31', 32, 33 and 34 located at the vertical sides of the tank units 12, 13.
  • Flexible joints 35 such as steel bellows or jumper hoses (not shown) may be comprised in the duct 16 to allow for flexing and bending due to movements of the vessel and due to thermal expansion and contraction
  • the entire duct 16 could be a jumper hose as well.
  • the tank units 12, 13 are situated at a first support position 37 on the vessel 2 and may be installed on shore prior to sailing the vessel to its offshore production site.
  • a second support position 38 on deck of the vessel on which one or more tank units may be placed, is not occupied by any tank unit and can receive a tank unit when the production capacity needs to be increased.
  • the tank units 8-13 are supported on supports 40, 41 which are situated on deck of the vessel 2 at a strong position, for instance at the position of the vertical bulk heads 42, 43.
  • an additional tank unit may be placed on the supports 40 for instance via a crane on a lifting barge on which tank unit is sailed to the production site.
  • the tank units 12, 13 or the support stools 40, 41 may be provided with displacement means such as rollers or slide bearings.
  • a displacement actuator may be installed such a drive motor45 and an actuator 46.
  • the actuator 46 may be formed by a rack and pinion construction, or may be formed by a hydraulic displacement cylinder and the like.
  • an interconnecting fluid duct 16 to the processing unit 6 is provided in this case extending to the interconnection member 31' of the adjacent tank unit 12. Operations of the processing unit 6 may be continued at increased capacity. After installation of the tank units, the motor drive 45 and actuator 46 may be removed.
  • the interconnecting fluid duct 16 extends along the top of tank units 12, 13, each tank unit at the top being provided with a connector and valve 31", 32. After placing an additional tank unit on the second support position 38, interconnecting fluid duct parts may be connected to termination coupling 49 on the interconnecting fluid duct 16.
  • the motor drive 45 and hydraulic actuator 46 are shown for a positional adjustment of the container unit 12 in the length direction of the vessel 2.
  • the tank units 11, 12 or 13 are connected to the processing unit 6 via a respective interconnecting fluid duct 16, 16', 16" and a respective coupling 34, 34', 34" on the processing unit 6.
  • the number of couplings 34- 34" corresponds to the number of tank units that can be placed on the deck of the vessel
  • FIG. 6 shows a tank unit 50 for use in the present invention comprising a rectangular container 51 which has a rectangular cross-sectional shape and which is provided at the bottom thereof with positioning means such as rollers or slide bearings 52 and which comprises at its upper surface lifting members 53 for lifting of the container to a support position on deck of the vessel via a crane.
  • a cryogenic tank 54 is placed inside the container 51 for containing for instance LNG.
  • the space between the tank 54 and the walls of container 51 is filled with a temperature-insulating material 55 which also may provide extra buoyancy and/or stability to the container 51.
  • the container may be towed to the offshore production location prior to installation on the vessel 2.
  • the fluid interconnection member 57 is placed for interconnecting the tank 54 to a processing unit.
  • the interconnection member 57 may comprise one or more valves and a flange for receiving interconnecting bolts for attachment to an interconnecting fluid duct 16.
  • a tank unit 50 is combined with a processing unit 60 to form a tank-processing module.
  • the processing unit 60 may for instance comprise a compressor 61, a refrigerating unit 62 and a gas and water separating unit 63.
  • the tank/processing module can be connected to the interconnecting fluid duct 16, 16', 16" via interconnecting flange/valve units 65', 65". Via a supply duct 65, the gas may be introduced into the processing unit 60 for liquefaction and be stored in the cryogenic tank 54.
  • the LNG might be transported to a regasification unit 67, which forms part of the processing unit 60 and from thereon to an outlet duct 68 for supplying the gas to for instance an offshore power plant or to other parts of the processing unit on the vessel 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

L'invention concerne une structure flottante de stockage et/ou de traitement (1) d'hydrocarbures, tels que des fluides cryogéniques, qui comprend un navire (2) amarré au plancher océanique, un réservoir (7) pour contenir les hydrocarbures, une unité de traitement (6), et un conduit de raccordement de transfert des fluides reliant l'unité de traitement (6) et le réservoir (7). La structure se caractérise en ce que le réservoir comprend au moins un premier jaugeur et un second jaugeur (12,13), le premier jaugeur étant fixé au navire (2) par un premier support (41) et raccordé à l'unité de traitement par les conduits de raccordement de transfert des fluides (16, 16', 16'). Le navire comprend au moins une seconde position de support (38) et un support (40) pour recevoir le second jaugeur (11) rattachable audit support (40) et raccordable à l'unité de traitement (6) par un élément de raccordement de transfert des fluides (31', 33, 49, 34'), le second jaugeur (11) n'étant ni raccordé au niveau de la seconde position de support (38) au second support (40), ni raccordé à l'unité de traitement (6).
PCT/NL2004/000872 2003-12-15 2004-12-15 Structure modulaire de stockage et/ou de traitement d'hydrocarbures au large WO2005056379A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP03079081.0 2003-12-15
EP03079081 2003-12-15

Publications (1)

Publication Number Publication Date
WO2005056379A1 true WO2005056379A1 (fr) 2005-06-23

Family

ID=34673585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/NL2004/000872 WO2005056379A1 (fr) 2003-12-15 2004-12-15 Structure modulaire de stockage et/ou de traitement d'hydrocarbures au large

Country Status (1)

Country Link
WO (1) WO2005056379A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005110016A2 (fr) 2004-04-30 2005-11-24 Sbm-Imodco, Inc. Dechargement rapide de gaz naturel liquefie
WO2008073152A2 (fr) 2006-09-11 2008-06-19 Exxonmobil Upstream Research Company Terminal d'importation de gnl pour accostage en mer
WO2014175742A1 (fr) 2013-04-23 2014-10-30 Rolls-Royce Marine As Navire d'approvisionnement en mer
EP3081475A1 (fr) * 2015-04-13 2016-10-19 National Oilwell Varco Norway AS Améliorations relatives au stockage dans des réservoirs
WO2017056972A1 (fr) * 2015-09-28 2017-04-06 三井造船株式会社 Structure de corps marin flottant
WO2019208548A1 (fr) * 2018-04-24 2019-10-31 三井E&S造船株式会社 Structure flottante en mer

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2406084A (en) * 1945-03-24 1946-08-20 Abraham J Levin Ship or vessel
GB800008A (en) * 1957-05-07 1958-08-20 Constock Liquid Methane Corp Apparatus for storing liquefied gases
US3071094A (en) * 1959-06-02 1963-01-01 Anciens Chantiers Dubigeon Sa Vessel for transporting liquefied hydrocarbons
WO1997012118A1 (fr) * 1995-09-25 1997-04-03 Den Norske Stats Oljeselskap A/S Procede et dispositif de traitement d'un courant issu d'un puits d'un champ de petrole marin
US6345672B1 (en) * 1994-02-17 2002-02-12 Gary Dietzen Method and apparatus for handling and disposal of oil and gas well drill cuttings
US6390733B1 (en) * 1999-07-02 2002-05-21 Imodco, Inc. Simplified storage barge and method of operation
WO2003051711A1 (fr) * 2001-12-14 2003-06-26 Shell Internationale Research Maatschappij B.V. Usine flottante de traitement d'hydrocarbures

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2406084A (en) * 1945-03-24 1946-08-20 Abraham J Levin Ship or vessel
GB800008A (en) * 1957-05-07 1958-08-20 Constock Liquid Methane Corp Apparatus for storing liquefied gases
US3071094A (en) * 1959-06-02 1963-01-01 Anciens Chantiers Dubigeon Sa Vessel for transporting liquefied hydrocarbons
US6345672B1 (en) * 1994-02-17 2002-02-12 Gary Dietzen Method and apparatus for handling and disposal of oil and gas well drill cuttings
WO1997012118A1 (fr) * 1995-09-25 1997-04-03 Den Norske Stats Oljeselskap A/S Procede et dispositif de traitement d'un courant issu d'un puits d'un champ de petrole marin
US6390733B1 (en) * 1999-07-02 2002-05-21 Imodco, Inc. Simplified storage barge and method of operation
WO2003051711A1 (fr) * 2001-12-14 2003-06-26 Shell Internationale Research Maatschappij B.V. Usine flottante de traitement d'hydrocarbures

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005110016A2 (fr) 2004-04-30 2005-11-24 Sbm-Imodco, Inc. Dechargement rapide de gaz naturel liquefie
EP1751465A2 (fr) * 2004-04-30 2007-02-14 SBM-IMODCO, Inc. Dechargement rapide de gaz naturel liquefie
EP1751465A4 (fr) * 2004-04-30 2012-05-23 Sbm Imodco Inc Dechargement rapide de gaz naturel liquefie
WO2008073152A2 (fr) 2006-09-11 2008-06-19 Exxonmobil Upstream Research Company Terminal d'importation de gnl pour accostage en mer
WO2014175742A1 (fr) 2013-04-23 2014-10-30 Rolls-Royce Marine As Navire d'approvisionnement en mer
NO335937B1 (no) * 2013-04-23 2015-03-30 Rolls Royce Marine Dept Ship Tech Offshore Offshore forsyningsskip med langsgående cargo rail og ventilasjonslinjer
EP3081475A1 (fr) * 2015-04-13 2016-10-19 National Oilwell Varco Norway AS Améliorations relatives au stockage dans des réservoirs
WO2016167665A1 (fr) * 2015-04-13 2016-10-20 National Oilwell Varco Norway As Améliorations relatives au stockage dans des réservoirs
WO2017056972A1 (fr) * 2015-09-28 2017-04-06 三井造船株式会社 Structure de corps marin flottant
JP2017065291A (ja) * 2015-09-28 2017-04-06 三井造船株式会社 洋上浮体構造物
WO2019208548A1 (fr) * 2018-04-24 2019-10-31 三井E&S造船株式会社 Structure flottante en mer
JP2019188977A (ja) * 2018-04-24 2019-10-31 三井E&S造船株式会社 洋上浮体構造物

Similar Documents

Publication Publication Date Title
US6546739B2 (en) Method and apparatus for offshore LNG regasification
EP2539222B1 (fr) Navire de traitement d'hydrocarbures et procédé
CN103237728B (zh) 漂浮lng设备及用于把lng运载器船舶改装为漂浮lng设备的方法
US7179144B2 (en) Off-shore mooring and fluid transfer system
US8286678B2 (en) Process, apparatus and vessel for transferring fluids between two structures
EP2808242A1 (fr) Transfert côté quai de GNL
US6805598B2 (en) Liquid natural gas transfer station
US10183730B2 (en) Twin-hull offshore structure comprising an interconnecting central deck
KR20040064299A (ko) 단일 지점 계류용 재가스화 해양 설비
EP2951083B1 (fr) Procédé de construction de porteur de gaz naturel liquéfié
BRPI0716515A2 (pt) Terminal de ancoradouro de mar aberto, terminal receptor de gás natural liquefeito de ancoradouro de mar aberto, e, método para importar gás natural liquefeito
AU2012207059B2 (en) Linked LNG production facility
WO2005056379A1 (fr) Structure modulaire de stockage et/ou de traitement d'hydrocarbures au large
AU2007233572B2 (en) LNG production facility
AU2008219347B2 (en) Linked LNG production facility
GB2399320A (en) Semi-submersible jetty for transferring LNG from a production vessel to a transport vessel
AU2008219346B2 (en) Sheltered LNG production facility
AU2012207058A1 (en) Sheltered LNG production facility
CN114954800A (zh) 一种小水线面非对称双体型的lng转接驳
ZA200403825B (en) Single point mooring regastification tower.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase