WO2005054759A1 - Condenseur a circulation verticale de fluide frigorigene, notamment pour vehicule automobile - Google Patents

Condenseur a circulation verticale de fluide frigorigene, notamment pour vehicule automobile Download PDF

Info

Publication number
WO2005054759A1
WO2005054759A1 PCT/FR2004/003045 FR2004003045W WO2005054759A1 WO 2005054759 A1 WO2005054759 A1 WO 2005054759A1 FR 2004003045 W FR2004003045 W FR 2004003045W WO 2005054759 A1 WO2005054759 A1 WO 2005054759A1
Authority
WO
WIPO (PCT)
Prior art keywords
pass
condenser
manifold
return duct
condenser according
Prior art date
Application number
PCT/FR2004/003045
Other languages
English (en)
Inventor
Paul Garret
Alain Bauerheim
Jens-Petter Arnesen
Original Assignee
Valeo Thermique Moteur
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Thermique Moteur filed Critical Valeo Thermique Moteur
Publication of WO2005054759A1 publication Critical patent/WO2005054759A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0219Arrangements for sealing end plates into casing or header box; Header box sub-elements
    • F28F9/0224Header boxes formed by sealing end plates into covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0243Header boxes having a circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/044Condensers with an integrated receiver
    • F25B2339/0441Condensers with an integrated receiver containing a drier or a filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/044Condensers with an integrated receiver
    • F25B2339/0443Condensers with an integrated receiver the receiver being positioned horizontally
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/044Condensers with an integrated receiver
    • F25B2339/0446Condensers with an integrated receiver characterised by the refrigerant tubes connecting the header of the condenser to the receiver; Inlet or outlet connections to receiver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0084Condensers

Definitions

  • the invention relates to a condenser capable of being part of a refrigeration circuit, for example of a motor vehicle air conditioning installation.
  • a condenser for a refrigeration circuit traversed by a refrigerant comprising a bundle of generally vertical tubes mounted between two . generally horizontal manifolds, in which the bundle consists of a condensing part, in which the refrigerant coming from the inlet of the condenser circulates successively in a first pass . to a last pass, and a sub-cooling part in which the condensed refrigerant coming from the last condensation pass circulates in at least one sub-cooling pass to gain the output of the condenser.
  • the refrigerant set in motion by a compressor is sent, in superheated vapor phase, to the condenser where it is successively cooled or "desuperheated”, condensed into a hot liquid phase, then "under- cooled "into a cold liquid phase.
  • the condensed and cooled refrigerant is then sent, via an expansion valve, to an evaporator where it exchanges heat with an air flow to be sent into the passenger compartment of the motor vehicle.
  • the refrigerant is transformed into the vapor phase, while the air flow is cooled to provide air conditioning.
  • the refrigerant in the vapor phase leaves the evaporator to reach the compressor, and so on.
  • the cooling and the condensation of the refrigerant are carried out in the condensing part, by passage of the fluid in several passes, while the sub-cooling of the condensed refrigerant takes place in the sub-cooling part, by passage in one or more sub-cooling passes.
  • the condenser further comprises a reservoir, which is also called “bottle”, which is crossed by the refrigerant and which is interposed between the last condensation pass and the sub-cooling pass.
  • the condenser tank has in particular a function of separation of the liquid and gaseous phases from the refrigerant and a filtration / dehydration function. It is crossed by the condensed refrigerant from the last condensation pass, the fluid then gaining the sub-cooling pass. This therefore requires interposing the tank between the last condensation pass and the sub-cooling pass.
  • the tubes of a condenser of this type are arranged in a substantially vertical direction and. the circulation of the fluid in the bundle takes place in a generally vertical direction according to a so-called “Down flow” (Anglo-Saxon term).
  • the object of the invention is in particular to overcome the aforementioned drawbacks.
  • This arrangement makes it possible to bring the inlet and the outlet of the condenser closer together and to facilitate the connection of the condenser to a refrigerant circuit.
  • the condenser further comprises a reservoir which is crossed by the refrigerant and which is interposed between the last condensation pass and the sub-cooling pass. Because the last condensation pass is no longer in the middle of the beam, but at the end, this facilitates its connection with the tank.
  • the inlet and the outlet of the condenser are grouped together on one of the manifolds. This grouping is facilitated by the proximity of the sub-cooling pass and the first condensation pass.
  • the inlet and outlet of the condenser can be grouped, for example, on the upper manifold.
  • the sub-cooling pass is connected to the last condensation pass by a return duct running along the other manifold.
  • the subcooling pass and the last condensation pass are located respectively at two ends of the bundle.
  • the manifold which groups the inlet and the outlet of the condenser is placed in the upper part of the bundle, while the other manifold, which is bordered by the return duct, is placed in the lower part of the bundle.
  • a simplified manufacturing condenser is thus produced, since only one of the manifolds is modified.
  • the manifold which groups the inlet and the outlet of the condenser is not modified, while the manifold which is bordered by the return duct is modified.
  • the reservoir is oriented parallel to the tubes. It is thus implanted in a generally vertical direction. It is located, for example, next to the last condensation pass and it is mounted on one of the manifolds.
  • the manifold, on which the tank is mounted comprises: a first end chamber which communicates on the one hand with the subcooling pass and on the other hand with a first end of the return duct; an intermediate chamber which communicates on the one hand with the last condensation pass and on the other hand, with an inlet to the tank; and a second end chamber which communicates on the one hand with an outlet from the tank and, on the other hand with a second end of the return duct.
  • the reservoir is advantageously mounted on an extension of a manifold, which extends beyond the last condensation pass and which comprises a part of the intermediate chamber as well as the second chamber. end.
  • the reservoir is located in a generally horizontal direction - and is incorporated in the return duct which runs along one of the manifolds.
  • the manifold which is bordered by the return duct, to comprise a first end chamber which communicates, on the one hand, with the sub-cooling pass and, on the other hand , with a first end of the return duct; and a second end chamber which communicates, on the one hand, with the last condensation pass and, on the other hand, with a second end of the return duct.
  • the reservoir is located in a direction that is both vertical and horizontal.
  • this manifold comprises a first end chamber which communicates with a first end of the return conduit via a first connector and a second end chamber which communicates with a second end of the return conduit via a second connector.
  • a convenient way is to make the first connection and the second connection in the form of two collars coming laterally from the manifold and introduced respectively into two lateral openings arranged in the return duct.
  • the manifold is formed by the assembly of two half-shells, namely a first half-shell ' comprising openings for receiving the tubes of the bundle and a second half-shell which carries the first fitting and the second connection.
  • the collars can be made in different ways
  • the two collars are formed beforehand and then introduced into the lateral openings of the return duct and then assembled by crimping. This ensures a temporary fixing of the manifold and the return duct, the latter can then be finally assembled by brazing.
  • Another more original process which constitutes a particular characteristic of the invention, consists in the fact that the two collars are simultaneously formed by punching, introduced into the lateral openings of the return duct and assembled by crimping.
  • the collars are formed in situ, introduced into the openings of the return duct and crimped. It This also results in a provisional assembly before final assembly by brazing.
  • FIG. 1 schematically shows a condenser according to a first embodiment of one invention, in which the reservoir is located in a generally vertical direction at one end of the bundle;
  • FIG. 2 is a partial sectional view of the upper manifold of the condenser of Figure 1;
  • Figure 3 is a partial sectional view of the lower manifold and the condenser return tube of Figure 1;
  • FIG. 4A, 4B and 4C schematically illustrate three successive operations for the provisional assembly of a collar of the lower manifold with the return tube;
  • Figures SA and 5B are views similar to Figures 4A and 4B for another embodiment in which the collar is formed in situ by punching;
  • Figures 6A and 6B are views similar to Figures 5A and 5B;
  • FIG. 7 is a sectional view of a manifold and a return conduit 'in another embodiment of one invention.
  • - Figure 8 is a sectional view of a manifold and a return duct in yet another embodiment of one invention
  • - Figure 9 is a schematic view of a condenser according to a second embodiment of the invention, in which the reservoir is located in a generally vertical direction by being incorporated in the return tube
  • FIG. 10 is a schematic view of a condenser according to a third embodiment of the invention, in which the reservoir is located in a direction both vertical and horizontal; and FIGS. 11 and 12 represent two alternative embodiments of the reservoir according to the embodiment of FIG. 10.
  • the condenser shown in FIG. 1 comprises a bundle 10 formed of a multiplicity of flat tubes 12 between which are placed spacers 14, of generally wavy shape, forming heat exchange fins.
  • the flat tubes 12 are generally vertical and mounted between two manifolds 16 and 18 of tubular shape and parallel axes.
  • the manifold 16 is generally horizontal and placed in the upper part of the bundle, while the manifold 18 is generally horizontal and placed in the lower part of the bundle.
  • the manifold 16 successively comprises (from left to right in FIG. 1) an end plug 20, a transverse partition 22, another transverse partition 24 and an end plug 26. This makes it possible to define, inside of the manifold 16, an end chamber 28 (or outlet chamber), an intermediate chamber 30 (inlet chamber) and an end chamber 32.
  • the manifold 18 includes an extension 34 which extends beyond the bundle 10, on the right side in FIG. 1, and on which a reservoir 35 (also called “bottle") which contains a filter and dehydrating cartridge (not shown).
  • the manifold 18 comprises (from left to right in FIG. 1) an end plug 36, transverse partitions ' 38, 40 and 42 and another end plug 44. This makes it possible to delimit, inside the manifold 18, successively an end chamber 46, two intermediate chambers 48 and 50 and an end chamber 52.
  • a return tube 54 having two ends 56 and 58, closed respectively by plugs 57 and 59, which communicate laterally, ' respectively with the end chambers 46 and 52 of the box manifold 18.
  • the communication takes place by respective connectors 60 and 62 shown diagrammatically in FIG. 1.
  • the return tube 54 is advantageously of cylindrical shape with circular section.
  • the manifold 16 is provided with an inlet 64 which communicates with the intermediate chamber 30 (or inlet chamber) and an outlet 66 which communicates with the end chamber 28 (or outlet chamber). Note that the inlet 64 and the outlet 66 are made in the form of a flange connected to the manifold 16.
  • the bundle 10 is essentially composed of two parts, namely a condensation part PC, the tubes of which open at the top in the chambers 30 and 32 of the manifold 16 and at the bottom in the chambers 48 and 50 of the manifold 18 , and a sub-cooling part PSR, the tubes of which open at the top in the end chamber 28 of the manifold 16 and at the bottom in the end chamber 46 of the manifold 18.
  • a condensation part PC the tubes of which open at the top in the chambers 30 and 32 of the manifold 16 and at the bottom in the chambers 48 and 50 of the manifold 18
  • PSR sub-cooling part
  • the condensation part PC is itself divided into several passes (three in number in the example considered. re), namely a first PCI pass which communicates with chambers 30 and 48, a second PC2 pass which communicates with chamber 48 and chamber 32, and a third and last PC3 pass which communicates with chamber 32 and chamber 50.
  • the condenser in Figure 1 operates as follows.
  • the refrigerant in the gas phase enters the inlet chamber 30 of the manifold 16 via the inlet 64. From there, it flows vertically from top to bottom (arrow FI) in the first PCI pass to reach the chamber 48. It then leaves the chamber 48 to reach the chamber 32 by a vertical circulation from bottom to top (arrow F2) following the pass PC2.
  • the refrigerant then leaves the chamber 32 to reach the chamber 50 by vertical circulation from top to bottom (arrow F3) following the pass PC3.
  • this circulation in alternating directions, the refrigerant is successively cooled and then condensed in the liquid phase.
  • the condensed fluid circulates in the reservoir 35 where it is filtered and dehydrated to reach the end chamber 52 of the manifold 18. Then the refrigerant flows in the return tube 54 for gain the end chamber 46 of the manifold 18 and flow vertically from bottom to top in the sub-cooling part PSR to be sub-cooled, as indicated by the arrow F4. The sub-cooled fluid then reaches the end chamber 28 and then the outlet 66.
  • the structure of the condenser of FIG. 1 is particularly advantageous because the first PCI condensation pass is located next to the PCR sub-cooling pass, and the circulation of the fluid in these two passes is carried out against the current. .
  • This makes it possible to group the inlet 64 and the outlet 66 of the condenser, close to one another, on the manifold 16.
  • this structure makes it possible to place the tank in the immediate vicinity of the last condensation pass PC3, owing to the fact that the extension 34 is located beyond the pass PC3.
  • the return of the fluid, from the reservoir to the sub-cooling part, is carried out by a simple return tube.
  • this structure simply requires modifying the manifold 18 by adding the return tube 54 to it.
  • Figure 2 shows a detail of the manifold 16. It is noted that the inlet 64 and the outlet 66 are made in the form of two pipes which open laterally into the manifold 16, respectively on either side of the partition 22.
  • Figure 3 shows a detail of the lower manifold 18 and the return tube 54.
  • the fittings 60 and 62 which, in example ' , are made in the form of collars from the side of the box manifold 18 and inserted into corresponding openings 68 and 70 of the return tube 54.
  • FIG. 3 it can also be seen that the reservoir 35 is mounted on the extension 34 of the manifold box via a base 72.
  • This base comprises an inlet 74 and an outlet 76 opening out respectively into the chambers 50 and 52 of the manifold 18.
  • the manifold 18 is formed by the assembly of two half-shells: a first half-shell 78 having openings 80 for receiving the tubes 12 of the bundle and a second half-shell 82 which carries the first connection 60 and the second connection 62. Only the first connection 60 is shown in FIGS. 4A to 4C. This first connector 60 is intended to engage in the corresponding opening 68 of the return tube 54.
  • the fittings 60 and 62 are produced beforehand in the form of collars. These two fittings are then introduced simultaneously into the corresponding openings 68 and 70 of the return tube 54.
  • the two collars are flared to effect crimping and ensure provisional assembly of the half-shell 82 with the return tube 54.
  • the half-shell 78 is assembled with the half-shell 82.
  • the assembly of the exchanger can then be definitively assembled by brazing, preferably by passing through the oven. in one operation.
  • the manifold 16, placed in the upper part, is advantageously also made from two half-shells according to the same general technology.
  • FIGS. 5A and 5B show another way of assembling the manifold 18 and the return tube 54.
  • the communication between these two elements is also effected by fittings 60 and 62 cooperating with openings 68 and 70.
  • the collars are not formed beforehand.
  • a punch 84 (FIG. 5A) is moved vertically. Its end 86 is shaped to deform and puncture the wall of the half-shell 82 and thus form a collar 60, respectively 62, which is at the same time crimped by radial deformation.
  • an intermediate section 88 is used having a substantially X-shaped section to delimit a groove 90 in U facing upwards and a groove 92, also in U, facing downwards. These two grooves are closed by two respective covers, namely a cover 94 which is provided with openings 95 for receiving the tubes 12 of the bundle and a cover 96. This makes it possible to delimit the manifold and the return tube.
  • the grooves 90 and 92 communicate in two places by passages 98 which ensure the passage of the fluid respectively at the two ends of the manifold / return tube assembly.
  • the manifold 18 is formed of a lower half-shell 100 and an upper half-shell 102, forming a cover, which fits on the lower half-shell 100.
  • This the latter comprises two fittings 60 and 62, similar to those described above, which are ' directed downwards and arranged to engage in respective openings 68 and 70 of the return tube 54.
  • the return tube 54 has a flat 104 at the location of the openings 68 and 70, which facilitates the fitting of the fittings 60 and 62 and therefore the communication between the manifold 18 and the return tube 54.
  • FIG. 9 schematically shows a condenser according to another embodiment of the invention.
  • the general structure of the condenser of FIG. 9 is similar to that of the condenser of FIG. 1 and the common parts are designated by the same references.
  • the main difference here lies in the fact that the reservoir 45 is located in a generally horizontal direction by being integrated into the return tube. 54 which, therefore, has a larger cross section than the return tube 44 of the previous embodiment.
  • the manifold 18, which is bordered by the return duct 54, comprises a first end chamber 46 which communicates on the one hand with the sub-cooling pass PSR and, on the other hand, with a first end 56 of the return duct 54 and a second end chamber 52 which communicates on the one hand with the last condensation pass PC3 and, on the other hand, with a second end 58 of the return tube 54.
  • the operation of the condenser of FIG. 9 is similar to that of the condenser of FIG. 1. It has the same advantages, namely being able to group the inlet and the outlet of the condenser and to facilitate the connection of the tank to the output of the last PC3 condensation pass.
  • FIG. 10 schematically shows a condenser according to yet another embodiment of the invention.
  • the general structure of the condenser of FIG. 10 is similar to that of the condensers of FIGS. 1 and 9, the common parts being designated by the same references.
  • the condensation part comprises a fourth condensation pass PC4 which is connected to the third condensation pass PC3 and in which the refrigerant circulates from bottom to top to reach an end chamber 106 of the manifold 16.
  • the condensation pass PC4 is the last condenser condensing pass here.
  • the reservoir 35 is interposed between the last condensation pass PC4 and the sub-cooling pass PSR and it is installed both in a vertical and horizontal direction in the return tube 54.
  • the tube 54 has a vertical part 108 which opens out into up in room end 106 of the manifold 16 and below in a horizontal part 110 which in turn opens into the end chamber 46 of the manifold 18.
  • the reservoir 35 includes a filter and dehydrating cartridge 112 which is arranged here in the vertical part 108.
  • the return tube 54 housing the reservoir 35 is made in one piece, its parts 108 and 110 being joined by an elbow 114. It advantageously comprises ( Figure 11) two fittings d end 116 and 118 arranged to be connected respectively to the manifolds 16 and 18.
  • the parts 108 and 110 are separate.
  • the vertical part 108 comprises at the top a fitting 116 similar to that of FIG. 11 and at the bottom a plug 120.
  • the horizontal part 110 comprises on the one hand a ' fitting 118 similar to that of Figure 11 and on the other hand a end 122 which is introduced laterally in the part 108, above the plug 120.
  • the condenser of the invention is susceptible of numerous variant embodiments, in particular as regards the manner of producing the return duct and the associated manifold, as well as their communication.
  • the condenser of the invention finds particular application in motor vehicles. It can be used either as a separate condenser or as a condenser integrated into a module comprising in particular a cooling radiator. In the latter case, an assembly, also called a "multi-exchanger", is formed which includes the air conditioning condenser and the engine cooling radiator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Le condenseur de l'invention comprend un faisceau (10) de tubes (12) généralement verticaux montés entre deux boîtes collectrices (16, 18) généralement horizontales, le faisceau se composant d'une partie de condensation (PC) formée de plusieurs passes de condensation (PC1, PC2, PC3) et d'une partie de sous-refroidissement comportant au moins une passe de sous-refroidissement (PSR) qui est située à côté de la première passe de condensation (PCi). Cette disposition permet de rapprocher l'entrée (64) et la sortie (66) du condenseur et de faciliter sa connexion à un circuit, de fluide frigorigène. Application notamment aux condenseurs de climatisation des véhicules automobiles.

Description

CONSENSEUR A CIRCULATION VERTICALE DE FLUIDE FRIGORIGENE , NOTAMMENT POUR VEHICULE AUTOMOBILE
L'invention concerne un condenseur propre à faire partie d'un circuit de réfrigération, par exemple d'une installation de - climatisation de véhicule automobile.
Elle concerne plus particulièrement un condenseur pour un circuit de réfrigération parcouru par un fluide frigorigène, comprenant un faisceau de tubes généralement verticaux montés entre deux .boîtes collectrices généralement horizontales, dans lequel le faisceau se compose d'une partie de condensation, dans laquelle le fluide frigorigëne provenant de l'entrée du condenseur circule successivement d'une première passe . à une dernière passe, et d'une partie de sous-refroidissement dans laquelle le fluide frigorigène condensé provenant de la dernière passe de condensation circule dans au moins une passe de sous-refroidissement pour gagner la sortie du condenseur.
Dans un circuit de réfrigération du type précité, le fluide frigorigène mis en mouvement par un compresseur est envoyé, en phase vapeur surchauffée, vers le condenseur où il est successivement refroidi ou "désurchauffé" , condensé en une phase liquide chaude, puis "sous-refroidi" en une phase liquide froide.
Le fluide frigorigène condensé et refroidi est ensuite envoyé, via un détendeur, vers un évaporâteur où il échange de la chaleur avec un flux d'air à envoyer dans l'habitacle du véhicule automobile. Dans 1 ' évaporâteur, le fluide frigorigène est transformé en phase vapeur, tandis que le flux d'air est refroidi pour fournir de l'air climatisé. Le fluide frigorigène en phase vapeur quitte 1 ' évaporateur pour gagner le compresseur, et ainsi de suite.
Dans un condenseur du type précité, le refroidissement et la condensation du fluide frigorigène sont effectués dans la partie de condensation, par passage du fluide en plusieurs passes, tandis que le sous-refroidissement du fluide frigorigène condensé s'effectue dans la partie de sous-refroidissement, par passage dans une ou plusieurs passes de sous- refroidissement .
Généralement, le condenseur comprend en outre un réservoir, que l'on appelle aussi "bouteille", qui est traversé par le fluide frigorigène et qui est interposé entre la dernière passe de condensation et la passe de sous-refroidissement. Le réservoir du condenseur a notamment une fonction de séparation des phases liquide et gazeuse du fluide frigorigène et une fonction de filtration/déshydratation. Il est traversé par le fluide frigorigène condensé issu de la dernière passe de condensation, le fluide gagnant ensuite la passe de sous-refroidissement . Ceci oblige par conséquent à interposer le réservoir entre la dernière passe de condensation et la passe de sous-refroidissement .
Les tubes d'un condenseur de ce type sont disposés dans une direction sensiblement verticale et. la circulation du fluide dans le faisceau s'effectue dans une direction généralement verticale selon un écoulement dit "Down flow" (terme anglo- saxon) .
Dans les condenseurs connus de ce type, (voir par exemple la publication JP 2001-174 103 au nom de Denso) , les tubes de la partie de condensation sont suivis par les tubes de la partie de sous-refroidissement , qui sont eux-même suivis par le réservoir, celui-ci étant implanté dans une direction générale verticale.
Cette architecture oblige à créer une dérivation pour connecter la dernière passe de condensation à 1 ' entrée du réservoir, ce qui complique la fabrication du condenseur. En outre, dans cette solution connue, l'entrée et la sortie du condenseur sont placées respectivement aux deux extrémités de l'une des boîtes collectrices, généralement la boîte collectrice placée en partie supérieure. Or, dans les véhicules automobiles, il est souhaitable que l'entrée et la sortie soient disposées aussi près que possible pour faciliter les connexions avec le circuit de climatisation.
Une autre solution connue (brevet JP 2000-274 881 au nom de Denso) consiste à intégrer le réservoir, dans une position généralement verticale, entre la dernière passe de condensation et la passe de sous-refroidissement.
Cette solution connue évite le recours à une dérivation, comme dans la solution connue évoquée précédemment, mais complique la fabrication du condenseur, du fait que le réservoir doit être intégré dans le faisceau entre les deux boîtes collectrices.
En outre, dans cette solution connue, l'entrée et la sortie du condenseur s'effectuent aux deux extrémités d'une boîte collectrice, ce qui présente les mêmes inconvénients que la solution connue évoquée précédemment .
L'invention a notamment pour but de surmonter les inconvénients précités.
Elle propose à cet effet un condenseur du type défini en introduction, dans lequel la passe de sous-refroidissement est située à côté de la première passe de condensation.
Cette disposition permet de rapprocher l'entrée et la sortie du condenseur et de faciliter la connexion du condenseur à un circuit de fluide frigorigène.
De préférence, le condenseur comprend en outre un réservoir qui est traversé par le fluide frigorigène et qui est interposé entre la dernière passe de condensation et la passe de sous-refroidissement. Du fait que la dernière passe de condensation ne se situe plus au milieu du faisceau, mais en extrémité, ceci facilite sa connexion avec le réservoir. Selon une autre caractéristique de l'invention, l'entrée et la sortie du condenseur sont regroupées sur l'une des boîtes collectrices. Ce regroupement est facilité par la proximité de la passe de sous-refroidissement et de la première passe de condensation. L'entrée et la sortie du condenseur peuvent être regroupées, par exemple, sur la boîte collectrice supérieure .
Selon encore une autre caractéristique de l'invention, la passe de sous-refroidissement est reliée à la dernière passe de condensation par un conduit de retour longeant l'autre boîte collectrice.
Dans une forme de réalisation préférée, la passe de sous- refroidissement et la dernière passe de condensation sont situées respectivement à deux extrémités du faisceau.
De façon avantageuse, la boîte collectrice qui regroupe l'entrée et la sortie du condenseur est placée en partie supérieure du faisceau, tandis que l'autre boîte collectrice, qui est longée par le conduit de retour, est placée en partie inférieure du faisceau.
On réalise ainsi un condenseur de fabrication simplifiée, du fait que seule une des boîtes collectrices est modifiée. La boîte collectrice qui regroupe l'entrée et la sortie du condenseur n'est pas modifiée, tandis que la boîte collectrice qui est longée par le conduit de retour est modifiée.
Dans une première forme générale de réalisation de 1 ' invention, le réservoir est orienté parallèlement aux tubes. Il est ainsi implanté dans une direction généralement verticale. Il est situé, par exemple, à côté de la dernière passe de condensation et il est monté sur une des boîtes collectrices . De manière avantageuse, la boîte collectrice, sur laquelle est monté le réservoir, comprend : une première chambre d'extrémité qui communique d'une part avec la passe de sous- refroidissement et d'autre part avec une première extrémité du conduit de retour ; une chambre intermédiaire qui communique d'une part avec la dernière passe de condensation et d'autre part, avec une entrée du réservoir ; et une deuxième chambre d'extrémité qui communique d'une part avec une sortie du réservoir et, d'autre part avec une deuxième extrémité du conduit de retour.
Dans cette première forme de réalisation, le réservoir est avantageusement monté sur un prolongement d'une boîte collectrice, qui s'étend au-delà de la dernière passe de condensation et qui comprend une partie de la chambre intermédiaire ainsi que la deuxième chambre d'extrémité.
Dans une deuxième forme générale de réalisation de 1 ' invention, le réservoir est implanté dans une direction généralement horizontale -et est incorporé dans le conduit de retour qui longe une des boîtes collectrices.
Il est avantageux, en ce cas, que la boîte collectrice, qui est longée par le conduit de retour, comprenne une première chambre d'extrémité qui communique, d'une part, avec la passe de sous-refroidissement et, d'autre part, avec une première extrémité du conduit de retour ; et une deuxième chambre d'extrémité qui communique, d'une part, avec la dernière passe de condensation et, d'autre part, avec une deuxième extrémité du conduit de retour.
Dans une troisième forme générale de réalisation de l'invention, le réservoir est implanté dans une direction à la fois verticale et horizontale.
Dans le cas où la boîte collectrice est longée par unconduit de retour, il est avantageux que cette boîte collectrice comprenne une première chambre d'extrémité qui communique -avec une première extrémité du conduit de retour par l'intermédiaire d'un premier raccord et une deuxième chambre d'extrémité qui communique avec une deuxième extrémité du conduit de retour par l'intermédiaire d'un deuxième raccord. Ces raccords peuvent être réalisés de différentes façons.
Une manière commode est de réaliser le premier raccord et le deuxième raccord sous la forme de deux collets issus latéra- lement de la boîte collectrice et introduits respectivement dans deux ouvertures latérales aménagées dans le conduit de retour .
De manière préférentielle, la boîte collectrice est formée par l'assemblage de deux demi-coquilles, à savoir une première demi-coquille ' comportant des ouvertures de réception des tubes du faisceau et une deuxième demi- coquille qui porte le premier raccord et le deuxième raccord.
Les collets peuvent être réalisés de différentes façons
Selon un procédé classique, les deux collets sont formés au préalable puis introduits dans les ouvertures latérales du conduit de retour et ensuite assemblés par sertissage. Ceci assure une fixation provisoire de la boîte collectrice et du conduit de retour, ces derniers pouvant être ensuite assemblés de façon définitive par brasage .
Un autre procédé plus original, qui constitue une caractéristique particulière de l'invention, consiste dans le fait que les deux collets sont simultanément formés par poinçonnage, introduits dans les ouvertures latérales du conduit de retour et assemblés par sertissage.
Autrement dit, au cours d'une seule opération de poinçonnage, les collets sont formés in situ, introduits dans les ouvertures du conduit de retour et sertis. Il en résulte là aussi un assemblage provisoire avant assemblage définitif par brasage .
Dans la description qui suit, faite seulement à titre d'exemples, on se réfère aux dessins annexés, sur lesquels :
- la figure 1 représente schématiquement un condenseur selon une première forme de réalisation de 1 ' invention, dans lequel le réservoir est implanté dans une direction généralement verticale à une extrémité du faisceau ;
- la figure 2 est une vue partielle en coupe de la boîte collectrice supérieure du condenseur de la figure 1 ;
- la" figure 3 est une vue partielle en coupe de la boîte collectrice inférieure et du tube de retour du condenseur de la figure 1 ;
- les figures 4A, 4B et 4C illustrent schématiquement trois opérations successives pour l'assemblage provisoire d'un collet de la boîte collectrice inférieure avec le tube de retour ;
- les figures SA et 5B sont des vues analogues aux figures 4A et 4B pour une autre forme de réalisation dans laquelle le collet est formé in situ par poinçonnage ;
- les figures 6A et 6B sont des vues analogues aux figures 5A et 5B ;
- la figure 7 est une vue en coupe d'une boîte collectrice et d'un conduit de retour' dans une autre forme de réalisation de 1 ' invention ;
- la figure 8 est une vue en coupe d'une boîte collectrice et d'un conduit de retour dans encore une autre forme de réalisation de 1 ' invention ; - la figure 9 est une vue schématique d'un condenseur selon une deuxième forme de réalisation de l'invention, dans lequel le réservoir est implanté dans une direction généralement verticale en étant incorporé au tube de retour
- la figure 10 est une vue schématique d'un condenseur selon une troisième forme de réalisation de l'invention, dans lequel le réservoir est implanté dans une direction à la fois verticale et horizontale ; et les figures 11 et 12 représentent deux variantes de réalisation du réservoir conforme au mode de réalisation de la figure 10.
Le condenseur représenté à la figure 1 comprend un faisceau 10 formé d'une multiplicité de tubes plats 12 entre lesquels sont placés des intercalaires 14, de forme générale ondulée, formant ailettes d'échange de chaleur. Les tubes plats 12 sont généralement verticaux et montés entre deux boîtes collectrices 16 et 18 de forme tubulaire et d'axes parallèles. La boîte collectrice 16 est généralement horizontale et placée en partie supérieure du faisceau, tandis que la boîte collectrice 18 est généralement horizontale et placée en partie inférieure du faisceau.
La boîte collectrice 16 comprend successivement (de gauche à droite sur la figure 1) un bouchon d'extrémité 20, une cloison transversale 22, une autre cloison transversale 24 et un bouchon d'extrémité 26. Cela permet de définir, à l'intérieur de la boîte collectrice 16, une chambre d'extrémité 28 (ou chambre de sortie), une chambre intermédiaire 30 (chambre d'entrée) et une chambre d'extrémité 32.
La boîte collectrice 18 comprend un prolongement 34 qui s'étend au-delà du faisceau 10, du côté droit sur la figure 1, et sur lequel est implanté un réservoir 35 (encore appelé "bouteille") qui contient une cartouche filtrante et déshydratante (non représentée) . La boîte collectrice 18 comprend (de gauche à droite sur la figure 1) un bouchon d'extrémité 36, des cloisons transversales '38, 40 et 42 et un autre bouchon d'extrémité 44. Ceci permet de délimiter, à l'intérieur de la boîte collectrice 18, successivement une chambre d'extrémité 46, deux chambres intermédiaires 48 et 50 et une chambre d'extrémité 52.
En dessous de la boîte collectrice 18, se trouve placé un tube de retour 54 comportant deux extrémités 56 et 58, fermées respectivement par des bouchons 57 et 59, qui communiquent latéralement, 'respectivement avec les chambres d'extrémité 46 et 52 de la boîte collectrice 18. La communi- cation s'effectue par des raccords respectifs 60 et 62 représentés schématiquement sur la figure 1. Le tube de retour- 54 est avantageusement de forme cylindrique à section circulaire .
La boîte collectrice 16 est munie d'une entrée 64 qui communique avec la chambre intermédiaire 30 (ou chambre d'entrée) et une sortie 66 qui communique avec la chambre d'extrémité 28 (ou chambre de sortie) . On remarque que l'entrée 64 et la sortie 66 sont réalisées sous la forme d'une bride connectée à la boîte collectrice 16.
Le faisceau 10 est composé essentiellement de deux parties, à savoir une partie de condensation PC dont les tubes débouchent en partie supérieure dans les chambres 30 et 32 de la boîte collectrice 16 et en partie inférieure dans les chambres 48 et 50 de la boîte collectrice 18, et une partie de sous-refroidissement PSR dont les tubes débouchent en partie supérieure dans la chambre d'extrémité 28 de la boîte collectrice 16 et en partie inférieure dans la chambre d'extrémité 46 de la boîte collectrice 18.
La partie de condensation PC est elle-même divisée en plusieurs passes (au nombre de trois dans l'exemple considé- ré) , à savoir une première passe PCI qui communique avec les chambres 30 et 48-, une deuxième passe PC2 qui communique avec la chambre 48 et la chambre 32, et une troisième et dernière passe PC3 qui communique avec la chambre 32 et la chambre 50.
Le condenseur de la figure 1 fonctionne de la manière suivante. Le fluide frigorigène en phase gazeuse pénètre dans la chambre d'entrée 30 de la boîte collectrice 16 via l'entrée 64. De là, il circule verticalement de haut en bas (flèche FI) dans la première passe PCI pour gagner la chambre 48. Il quitte ensuite la chambre 48 pour gagner la chambre 32 par une circulation verticale de bas en haut (flèche F2) suivant la passe PC2. Le fluide frigorigène quitte ensuite la chambre 32 pour gagner la chambre 50 par une circulation verticale de haut en bas (flèche F3) suivant la passe PC3. Au cours de cette circulation en sens alternés, le fluide frigorigène est successivement refroidi puis condensé en phase liquide.
A la sortie de la chambre 50, le fluide condensé circule dans le réservoir 35 où il est filtré et déshydraté pour gagner la chambre d'extrémité 52 de la boîte collectrice 18. Ensuite le fluide frigorigène s'écoule dans le tube de retour 54 pour gagner la chambre d'extrémité 46 de la boîte collectrice 18 et s'écouler verticalement de bas en haut dans la partie de sous-refroidissement PSR pour être sous- refroidi, comme indiqué par la flèche F4. Le fluide sous- refroidi gagne ensuite la chambre d'extrémité 28 puis la sortie 66 .
La structure du condenseur de la figure 1 est particulièrement avantageuse du fait que la première passe de condensation PCI se situe à côté de la passe de sous-refroidissement PCR, et que la circulation du fluide dans ces deux passes s'effectue à contre-courant . Cela permet de regrouper l'entrée 64 et la sortie 66 du condenseur, à proximité l'une de l'autre, sur la boîte collectrice 16. Par ailleurs, cette structure permet de disposer le réservoir à proximité immédiate de la dernière passe de condensation PC3 , du fait que le prolongement 34 se situe au delà de la passe PC3. Le retour du fluide, du réservoir à la partie de sous- refroidissement, s'effectue par un simple tube de retour.
On remarquera que, comparativement à un condenseur classique, cette structure nécessite simplement de modifier la boîte collectrice 18 en lui adjoignant le tube de retour 54.
La figure 2 représente un détail de la boîte collectrice 16. On remarque que l'entrée 64 et la sortie 66 sont réalisées sous la forme de deux tubulures qui débouchent latéralement dans la boîte collectrice 16, respectivement de part et d'autre de la cloison 22.
La figure 3 représente un détail de la boîte collectrice inférieure 18 et du tube de retour 54. On remarque en particulier la structure des raccords 60 et 62 qui, dans l'exemple', sont réalisés sous la forme de collets issus latéralement de la boîte collectrice 18 et introduit dans des ouvertures correspondantes 68 et 70 du tube de retour 54.
Sur la figure 3, on voit également que le réservoir 35 est monté sur le prolongement 34 de la boîte collectrice par l'intermédiaire d'une embase 72. Cette embase comprend une entrée 74 et une sortie 76 débouchant respectivement dans les chambres 50 et 52 de la boîte collectrice 18.
On se réfère maintenant aux figures 4A à 4C. Dans cette forme de réalisation, la boîte collectrice 18 est formée par l'assemblage de deux demi-coquilles : une première demi- coquille 78 comportant des ouvertures 80 de réception des tubes 12 du faisceau et une deuxième demi-coquille 82 qui porte le premier raccord 60 et le deuxième raccord 62. Seul le premier raccord 60 est montré sur les figures 4A à 4C. Ce premier raccord 60 est destiné à s'engager dans l'ouverture correspondante 68 du tube de retour 54.
Dans cette forme de réalisation, les raccords 60 et 62 sont réalisés au préalable sous la forme de collets. Ces deux raccords sont ensuite introduits simultanément dans les ouvertures correspondantes 68 et 70 du tube de retour 54. Dans une opération suivante (figure 4B) , les deux collets sont évasés pour réaliser un sertissage et assurer un assemblage provisoire de la demi-coquille 82 avec le tube de retour 54. Dans une opération suivante (figure 4C) , la demi- coquille 78 est assemblée avec la demi-coquille 82. L'ensemble de 1 ' échangeur peut être ensuite assemblé définitivement par brasage, de préférence par passage au four dans une seule opération. La boîte collectrice 16, placée en partie supérieure, est avantageusement réalisée aussi à partir de deux demi-coquilles selon la même technologie générale.
On se réfère maintenant aux figures 5A et 5B qui montrent une autre manière de réaliser l'assemblage de la boîte collectrice 18 et du tube de retour 54. La communication entre ces deux éléments s'effectue également par des raccords 60 et 62 coopérant avec des ouvertures 68 et 70. A la différence du mode de réalisation précédent, les collets ne sont pas formés au préalable. En une seule opération, un poinçon 84 (figure 5A) est déplacé verticalement. Son extrémité 86 est conformée pour déformer et crever la paroi de la demi-coquille 82 et former ainsi un collet 60, respectivement 62, qui vient en même temps se sertir par déformation radiale.
Par un choix approprié du poinçon, on peut réaliser, en une seule opération, le collet et le sertissage du collet dans les ouvertures correspondantes du tube de retour. Ensuite, l'assemblage de l'autre demi-coquille s'effectue de la même façon que dans le cas de la figure 4C. Les Figures 6A et 6B sont des vues analogues aux figures 5A et 5B qui illustrent aussi ce poinçonnage. On se réfère maintenant à la figure 7 qui montre une autre forme de réalisation de la boîte collectrice et du tube de retour .
Dans cette forme de réalisation, on utilise un profilé intermédiaire 88 ayant sensiblement une section en forme de X pour délimiter une gorge 90 en U tournée vers le haut et une gorge 92, également en U, tournée vers le bas. Ces deux gorges sont fermées par deux couvercles respectifs, à savoir un couvercle 94 qui est muni d'ouvertures 95 de réception des tubes 12 du faisceau et un couvercle 96. Ceci permet de délimiter la boîte collectrice et le tube de retour. Les gorges 90 et 92 communiquent en deux endroits par des passages 98 qui assurent le passage du fluide respectivement aux deux extrémités de l'ensemble collecteur/tube de retour.
Dans la forme de réalisation de la figure 8, la boîte collectrice 18 est formée d'une demi-coquille inférieure 100 et d'une demi-coquille supérieure 102, formant couvercle, qui s'emboîte sur la demi-coquille inférieure 100. Cette dernière comprend deux raccords 60 et 62, analogues à ceux décrits précédemment, qui sont ' dirigés vers le bas et agencés pour s'engager dans des ouvertures respectives 68 et 70 du tube de retour 54. Ici, le tube de retour 54 présente un méplat 104 à l'endroit des ouvertures 68 et 70, ce qui facilite l'emboîtement des raccords 60 et 62 et donc la communication entre la boîte collectrice 18 et le tube de retour 54.
On se réfère maintenant à la figure 9 qui montre schématiquement un condenseur selon une autre forme de réalisation de l'invention. La structure générale du condenseur de la figure 9 s ' apparente à celle du condenseur de la figure 1 et les parties communes sont désignées par les mêmes références. La différence principale réside ici dans le fait que le réservoir 45 est implanté dans une direction généralement horizontale en étant intégrée au tube de retour 54 qui, de ce fait, possède une section transversale plus importante que le tube de retour 44 du mode de réalisation précédent .
La boîte collectrice 18, qui est longée par le conduit de retour 54, comprend une première chambre d'extrémité 46 qui communique d'une part avec la passe de sous-refroidissement PSR et, d'autre part, avec une première extrémité 56 du conduit de retour 54 et une deuxième chambre d'extrémité 52 qui communique d'une part avec la dernière passe de condensation PC3 et, d'autre part, avec une deuxième extrémité 58 du tube de retour 54.
Sinon, le fonctionnement du condenseur de la figure 9 s'apparente à celui du condenseur de la figure 1. Il présente les mêmes avantages, à savoir de pouvoir regrouper l'entrée et la sortie du condenseur et de faciliter le raccordement du réservoir à la sortie de la dernière passe de condensation PC3.
On se réfère maintenant à la figure 10 qui montre schématiquement un condenseur selon encore une autre forme de réalisation de l'invention. La structure générale du condenseur de la figure 10 s ' apparente à celle des condenseurs des figures 1 et 9, les parties communes étant désignées par les mêmes références. La partie de condensation comporte une quatrième passe de condensation PC4 qui est reliée à la troisième passe de condensation PC3 et dans laquelle le fluide frigorigène circule de bas en haut pour gagner une chambre d'extrémité 106 de la boîte collectrice 16. La passe de condensation PC4 constitue ici la dernière passe de condensation du condenseur.
Le réservoir 35 est interposé entre la dernière passe de condensation PC4 et la passe de sous-refroidissement PSR et il est implanté à la fois dans une direction verticale ethorizontale dans le tube de retour 54. Le tube 54 comporte une partie verticale 108 qui débouche en haut dans chambre d'extrémité 106 de la boîte collectrice 16 et en bas dans une partie horizontale 110 qui débouche à son tour dans la chambre d'extrémité 46 de la boîte collectrice 18. Le réservoir 35 comporte une cartouche filtrant et déshydratante 112 qui est disposée ici dans la partie verticale 108.
Dans la forme de réalisation des figures 10 et 11, le tube de retour 54 logeant le réservoir 35 est réalisé d'une seule pièce, ses parties 108 et 110 étant réunies par un coude 114. Il comprend avantageusement (figure 11) deux raccords d'extrémité 116 et 118 agencés pour être reliés respectivement aux boîtes collectrices 16 et 18.
En revanche, dans la forme de réalisation de la figure 12, les parties 108 et 110 sont distinctes. La partie verticale 108 comporte en haut un raccord 116 analogue à celui de la figure 11 et en bas un bouchon 120. La partie horizontale 110 comporte d'une part un ' raccord 118 analogue à celui de la figure 11 et d'autre part une extrémité 122 qui est introduite latéralement dans la partie 108, au dessus du bouchon 120.
Bien entendu, le condenseur de l'invention est susceptible de nombreuses variantes de réalisation, notamment pour ce qui concerne la façon de réaliser le conduit de retour et la boîte collectrice associée, ainsi que leur communication.
Le condenseur de 1 ' invention trouve une application particu- lière aux véhicules automobiles. Il peut être utilisé soit comme condenseur séparé, soit comme condenseur intégré à un module comportant notamment ' un radiateur de refroidissement. Dans ce dernier cas, on constitue un ensemble, encore appelé "multi-échangeur" qui regroupe le condenseur de climatisation et le radiateur de refroidissement du moteur.

Claims

Revendications
1. Condenseur pour un circuit de réfrigération parcouru par un fluide frigorigène, comprenant un faisceau (10) de tubes (12) généralement verticaux monté entre deux boîtes collectrices (16, 18) généralement horizontales, dans lequel le faisceau se compose d'une partie de condensation (PC) , dans laquelle le fluide frigorigène provenant de l'entrée (64) du condenseur circule successivement d'une première passe (PCI) à une dernière passe (PC3 ; PC4) , et d'une partie de sous-refroidissement (PSR) dans laquelle le fluide frigorigène condensé provenant de la dernière passe de condensation (PC3 ; PC4) circule dans au moins une passe de sous-refroidissement (PSR) pour gagner la sortie (66) du condenseur,
caractérisé en ce que la passe de sous-refroidissement (PSR) est située à côté de la première passe de condensation (PCI) .
2. Condenseur selon la revendication 1, caractérisé en ce qu'un réservoir (35) traversé par le fluide frigorigène est interposé entre la dernière passe de condensation (PC3 ; PC4) et la passe de sous-refroidissement (PSR) .
3. Condenseur selon l'une des revendications 1 et 2, caractérisé en ce que l'entrée (64) et la sortie (66) du condenseur sont regroupées sur l'une (16) des boîtes collectrices .
4. Condenseur selon l'une des revendications 1 à 3, caractérisé en ce que la passe de sous-refroidissement (PSR) est reliée à la dernière passe de condensation (PC3 ; PC4) par un conduit de retour (54) longeant l'autre boîte collec- trice (18) .
5. Condenseur selon l'une des revendications 1 à 4, caractérisé en ce que la passe de sous-refroidissement (PSR) et la dernière passe de condensation (PC3 ; PC4) sont situées respectivement à deux extrémités du faisceau (10) .
6. Condenseur selon les revendications 3 et 4, prises en combinaison, caractérisé en ce que la boîte collectrice (16) qui regroupe l'entrée (64) et la sortie (66) du condenseur est placée en partie supérieure du faisceau (10) , tandis que l'autre boîte collectrice (18), qui est longée par le conduit de retour (54) , est placée en partie inférieure du faisceau (10) .
7. Condenseur selon l'une des revendications 2 à 6, caractérisé en ce que le réservoir (35) est implanté dans une direction généralement verticale à côté de la dernière passe de condensation (PC3) et est monté sur l'une (18) des boîtes collectrices.
8. Condenseur selon les revendications 4 et 7, prises en combinaison, caractérisé en ce que la boîte collectrice (18) , sur laquelle est monté le réservoir (35) , comprend : une première chambre d'extrémité (46) qui communique d'une part avec la passe de sous-refroidissement (PSR) et, d'autre part, avec une première extrémité (56) du conduit de retour (54) ; une chambre intermédiaire (50) qui communique, d'une part, avec la dernière passe de condensation (PC3) et, d'autre part, avec une entrée (74) du réservoir (35) ; et une deuxième chambre d'extrémité (52) qui communique, d'une part, avec une sortie (76) du réservoir (45) et, d'autre part, avec une deuxième extrémité (58) du conduit de retour (54) .
9. Condenseur selon la revendication 8, caractérisé en ce que le réservoir (35) est monté sur un prolongement (34) d'une boîte collectrice (18) qui s'étend au-delà de la dernière passe de condensation (PC3) et qui comprend une partie de la chambre intermédiaire (50) ainsi que la deuxième chambre d'extrémité (52).
10. Condenseur selon les revendications 2 et 4, prises en combinaison, caractérisé en ce que le réservoir (35) est implanté dans une direction généralement horizontale et est incorporé dans le conduit de retour (54) qui longe l'une (18) des boîtes collectrices.
11. Condenseur selon la revendication 10, caractérisé en ce que la boîte collectrice (18) , qui est longée par le conduit de retour (54), comprend : une première chambre d'extrémité (46) qui communique, d'une part, avec la passe de sous- refroidissement (PSR) et, d'autre part, avec une première extrémité (56) du conduit de retour (54) ; et une deuxième chambre d'extrémité (52) qui communique, d'une part, avec la dernière passe de condensation (PC3) et, d'autre part, avec une deuxième extrémité (58) du conduit de retour (54) .
12. Condenseur selon les revendications 2 et 4 , prises en combinaison, caractérisé en ce que le réservoir (35) est implanté dans une direction à la fois verticale et horizon- taie (108, 110) .
13. Condenseur selon l'une des revendications 4 à 12, caractérisé en ce que la boîte collectrice (18) , qui est longée par le conduit de retour (54) , comprend une première chambre d'extrémité (46) qui communique avec une première extrémité (56) du conduit de retour (54) par l'intermédiaire d'un premier raccord (60) et une deuxième chambre d'extrémité (52) qui communique avec une deuxième extrémité (58) du conduit de retour (54) par l'intermédiaire d'un deuxième raccord (62) .
14. Condenseur selon la revendication 13, caractérisé en ce que le premier raccord (60) et le deuxième raccord (62) sont réalisés sous la forme de deux collets issus latéralement de la boîte collectrice (18) et introduits respectivement dans deux ouvertures latérales (68, 70) aménagées dans le conduit de retour (54) .
15. Condenseur selon l'une des revendications 13 et 14, caractérisé en ce que la boîte collectrice (18) est formée par l'assemblage de deux demi-coquilles, à savoir une première demi-coquilles (78) comportant des ouvertures de réception des tubes du faisceau et une deuxième demi- coquille (82) qui porte le premier raccord (60) et le deuxième raccord (62) .
16. Condenseur selon l'une des revendications 14 et 15, caractérisé en ce que les deux collets (60, 62) sont formés au préalable puis introduits dans les ouvertures latérales (68, 70) du conduit de retour et ensuite assemblés par sertissage .
17. Condenseur selon l'une des revendications 14 et 15, caractérisé en ce que les deux collets (60, 62) sont simultanément formés par poinçonnage, introduits dans les ouvertures latérales (68, 70) du conduit de retour (54) et assemblés par sertissage.
PCT/FR2004/003045 2003-11-27 2004-11-26 Condenseur a circulation verticale de fluide frigorigene, notamment pour vehicule automobile WO2005054759A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0313940A FR2863041B1 (fr) 2003-11-27 2003-11-27 Condenseur a circulation verticale de fluide frigorigene, notamment pour vehicule autom0bile.
FR0313940 2003-11-27

Publications (1)

Publication Number Publication Date
WO2005054759A1 true WO2005054759A1 (fr) 2005-06-16

Family

ID=34566192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2004/003045 WO2005054759A1 (fr) 2003-11-27 2004-11-26 Condenseur a circulation verticale de fluide frigorigene, notamment pour vehicule automobile

Country Status (2)

Country Link
FR (1) FR2863041B1 (fr)
WO (1) WO2005054759A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3855095B1 (fr) * 2020-01-22 2023-08-23 Valeo Autosystemy SP. Z.O.O. Échangeur de chaleur comportant un dispositif de séchage de récepteur positionné horizontalement

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11211278A (ja) * 1998-01-22 1999-08-06 Showa Alum Corp サブクールシステムコンデンサ
JPH11304301A (ja) * 1998-04-17 1999-11-05 Sanden Corp 受液器およびその受液器組込凝縮器
EP0992378A2 (fr) * 1998-10-06 2000-04-12 MAGNETI MARELLI CLIMATIZZAZIONE S.p.A. Condenseur pour système de conditionnement d'air pour véhicules avec une section d'accumulateur et de sous-refroidissement intégrée
JP2001174103A (ja) * 1999-12-14 2001-06-29 Denso Corp 冷媒凝縮器
US6289585B1 (en) * 2000-03-10 2001-09-18 Adrian Staruszkiewicz Method of attaching pipes
US20020057941A1 (en) * 1999-06-15 2002-05-16 Ichio Nakajima Connection structure between a pipe and a tube for use in a heat exchanger
US6422302B1 (en) * 1998-05-25 2002-07-23 Valeo Thermique Moteur Heat exchanger, in particular motor vehicle condenser and method for making same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000274881A (ja) 1999-03-23 2000-10-06 Denso Corp 受液器一体型凝縮器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11211278A (ja) * 1998-01-22 1999-08-06 Showa Alum Corp サブクールシステムコンデンサ
JPH11304301A (ja) * 1998-04-17 1999-11-05 Sanden Corp 受液器およびその受液器組込凝縮器
US6422302B1 (en) * 1998-05-25 2002-07-23 Valeo Thermique Moteur Heat exchanger, in particular motor vehicle condenser and method for making same
EP0992378A2 (fr) * 1998-10-06 2000-04-12 MAGNETI MARELLI CLIMATIZZAZIONE S.p.A. Condenseur pour système de conditionnement d'air pour véhicules avec une section d'accumulateur et de sous-refroidissement intégrée
US20020057941A1 (en) * 1999-06-15 2002-05-16 Ichio Nakajima Connection structure between a pipe and a tube for use in a heat exchanger
JP2001174103A (ja) * 1999-12-14 2001-06-29 Denso Corp 冷媒凝縮器
US6289585B1 (en) * 2000-03-10 2001-09-18 Adrian Staruszkiewicz Method of attaching pipes

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1999, no. 13 30 November 1999 (1999-11-30) *
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 02 29 February 2000 (2000-02-29) *
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 23 10 February 2001 (2001-02-10) *

Also Published As

Publication number Publication date
FR2863041B1 (fr) 2006-08-25
FR2863041A1 (fr) 2005-06-03

Similar Documents

Publication Publication Date Title
EP0774102B1 (fr) Condenseur a reservoir integre pour installation de climatisation de vehicule automobile
FR2709344A1 (fr) Condenseur pour installation de climatisation de véhicule automobile.
EP2402694B1 (fr) Condenseur, notamment pour système de climatisation d'un vehicule automobile et échangeur de chaleur equipé d'un tel condenseur
FR2941040A1 (fr) Intercalaire d'echange de chaleur pour un dispositif d'echange de chaleur
WO2004042312A1 (fr) Module d'echange a plaque empilees, notamment pour un vehicule automobile
EP0764823A1 (fr) Tube d'échangeur de chaleur à canaux de circulation à contre-courant
FR2748317A1 (fr) Echangeur de chaleur a boite collectrice tubulaire et patte de fixation
FR2673275A1 (fr) Dispositif de raccordement d'un echangeur de chaleur, du type a serpentin, a une tubulure de circulation de fluide.
EP0990106B1 (fr) Condenseur de climatisation comprenant un reservoir monte sur une embase
FR2747768A1 (fr) Condenseur pour circuit de refrigeration, en particulier pour la climatisation d'un vehicule automobile
WO2005054759A1 (fr) Condenseur a circulation verticale de fluide frigorigene, notamment pour vehicule automobile
FR2781280A1 (fr) Ensemble boite a fluide-collecteur pour echangeur de chaleur, en particulier de vehicule automobile
EP1762803A1 (fr) Ensemble intégré pour circuit de climatisation fonctionnant avec un fluide réfrigérant supercritique
FR2780152A1 (fr) Echangeur de chaleur pour vehicule automobile, et son procede de fabrication
FR2755222A1 (fr) Echangeur de chaleur comportant une boite collectrice a deux compartiments adjacents
FR2766265A1 (fr) Echangeur de chaleur brase pour vehicule automobile, et son procede de fabrication
FR2825456A1 (fr) Echangeur de chaleur a boitier allonge, en particulier pour vehicule automobile
EP2072936B1 (fr) Echangeur de chaleur unitaire pour un circuit de climatisation
FR2755220A1 (fr) Boite collectrice a reservoir integre pour echangeur de chaleur, notamment de vehicule automobile
FR2728671A1 (fr) Echangeur de chaleur a assemblage d'elements tubulaires emboites, notamment pour vehicules automobiles, et procede pour sa fabrication
FR2849176A1 (fr) Echangeur de chaleur muni d'un reservoir, en particulier pour vehicule automobile, et procede pour sa fabrication.
EP2128548B1 (fr) Échangeur de chaleur à collecteur et boîte collectrice, notamment pour véhicule automobile
FR2871224A1 (fr) Boite collectrice munie de butees pour tubes d'echangeur de chaleur et son procede d'assemblage
FR2872261A1 (fr) Reservoir ameliore pour un echangeur de chaleur, par exemple un condenseur de climatisation
FR2753783A1 (fr) Boite collectrice pour echangeur de chaleur, en particulier pour circuit de climatisation de vehicule automobile

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase