WO2005053078A1 - Battery and power generating method - Google Patents

Battery and power generating method Download PDF

Info

Publication number
WO2005053078A1
WO2005053078A1 PCT/JP2004/006336 JP2004006336W WO2005053078A1 WO 2005053078 A1 WO2005053078 A1 WO 2005053078A1 JP 2004006336 W JP2004006336 W JP 2004006336W WO 2005053078 A1 WO2005053078 A1 WO 2005053078A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
battery
electrode
medium
acidic
Prior art date
Application number
PCT/JP2004/006336
Other languages
French (fr)
Japanese (ja)
Inventor
Shinji Hasegawa
Hiroyuki Watanabe
Original Assignee
Fuji Xerox Co. Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co. Ltd. filed Critical Fuji Xerox Co. Ltd.
Priority to US10/580,435 priority Critical patent/US20070181418A1/en
Publication of WO2005053078A1 publication Critical patent/WO2005053078A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1097Fuel cells applied on a support, e.g. miniature fuel cells deposited on silica supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/22Fuel cells in which the fuel is based on materials comprising carbon or oxygen or hydrogen and other elements; Fuel cells in which the fuel is based on materials comprising only elements other than carbon, oxygen or hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a battery and a power generation method using the battery, and particularly to a battery and a power generation method using an acidic medium and a basic medium (a bipolar type reaction field) in contact with the acidic medium.
  • a battery is a device that directly converts the chemical energy of a substance into electric energy.
  • primary batteries that provide power until the chemical energy is used up
  • secondary batteries that can store and reuse chemical energy by recharging after being used up, and continuously supply substances with chemical energy from outside By doing so, it can be classified as a fuel cell that can obtain electric energy.
  • various types of batteries are being developed.Each battery has advantages in terms of environmental safety, economy, amount of electric energy that can be supplied, portability and storage, compatibility with use environment, recyclability, etc. The disadvantages are different, so batteries are selected according to the purpose of use and are put to practical use.
  • the important technical elements common to all batteries are: what kind of chemical reaction is used, how to accelerate the reaction, and how the chemical is stored and supplied ⁇ The point is to collect.
  • a reducing agent that causes a reduction reaction (provides electrons or withdraws oxygen to the other party) and an oxidizing agent that causes an oxidation reaction (withdraws electrons or provides oxygen to the other party)
  • an oxidizing agent that causes an oxidation reaction (withdraws electrons or provides oxygen to the other party)
  • Use different chemicals By inducing the chemical reaction separately at the two opposing electrodes, the energy of the generated electrons is extracted to the outside (the ions generated at both electrodes as the electrons are generated are neutralized inside the battery).
  • the reaction efficiency depends on the type and reaction mode of the chemical substance used, the electrode material and activity, and the environment of the reaction field including the electrolyte.
  • what kind of material is selected to compose a battery depends not only on the above-mentioned use, but also on manufacture and disposal. This is a point related to the quality of the entire battery system, including the battery.
  • a manganese or mercury-based primary battery is excellent in economics and storage of chemical substances, but if harmful heavy metals are left after use, it will adversely affect the environment, so strict recovery is necessary. Become. Also, since it cannot be reused by charging, it costs a lot to dispose of and recycle batteries after use.
  • lithium ion secondary batteries have excellent electric energy and can be reused by charging.However, since lithium is a very unstable ignition substance against moisture and oxygen in the air, However, in order to avoid the danger, sufficient safety measures must be taken in the packaging and use environment of the battery. Furthermore, recovery and recycling after the life of the battery is essential, which raises the overall cost from battery manufacture to use and disposal. This problem is the same in the case of lead-based storage batteries, but from the viewpoint of manufacturing price and supply electric energy, it is currently used in large quantities only in applications such as automotive batteries.
  • a fuel cell a cell using hydrogen, methanol, or the like as a reducing agent (fuel) and oxygen, hydrogen peroxide, or the like as an oxidizing agent is known.
  • a so-called direct methanol battery using methanol as a reducing agent (fuel) and an aqueous solution of hydrogen peroxide as an oxidizing agent has been proposed (see, for example, US Pat. No. 6,485,851). ).
  • This battery has advantages in portability and storability since methanol and aqueous hydrogen peroxide are liquid at normal temperature and normal pressure.
  • carbon dioxide which is a causative substance of global warming
  • the leakage is extremely dangerous because the fuel methanol is flammable.
  • the methanol fuel on the negative electrode side passes through the solid electrolyte membrane and reaches the positive electrode side, thereby reducing the reaction efficiency. There still remains the problem of methanol crossover, which leads to a decline.
  • a hydrogen-oxygen fuel cell is very excellent in terms of environmental safety because a large amount of electric energy can be supplied and the reaction product is only water. However, because the fuel hydrogen is flammable, its leakage can be very dangerous.
  • a strongly acidic, power source positive electrode
  • a structure having a bipolar structure in which a strongly basic polymer film is disposed on the side is disclosed.
  • this fuel cell has a relatively good oxidation reaction, which is a rate-determining reaction with a power source, a high selectivity for an electrode catalyst, and that water produced by the reaction affects the electrodes. It has advantages such as difficult points.
  • the electromotive characteristics of this type of bipolar battery largely depend on the neutralization of water generated near the boundary between acidic and basic polymer films.
  • the region where the hydrogen ion H + and the hydroxide ion ⁇ H- actually meet is not exactly at the boundary of the polymer film, but is dispersed over a wide area around the boundary.
  • water generated by the neutralization reaction makes it difficult to transfer these hydrogen ions H + and hydroxide ions OH ⁇ . Therefore, since the region where hydrogen ions H + and hydroxide ions OH- are actually neutralized fluctuates, it is difficult to generate a stable electromotive force in this type of bipolar battery. Has properties.
  • generated water may accumulate at the interface between both polymer films, and a water layer may be formed.
  • the presence of this water layer suppresses the neutralization reaction of hydrogen ions H + and hydroxide ions OH- generated at both electrodes, and as a result, the formation and increase of the water layer over time
  • it has a property that makes it difficult to supply electric energy.
  • an object of the present invention is to provide a battery having a novel configuration, which is a bipolar battery and capable of stably generating power, and a power generation method using the battery. Also, in some aspects of the present invention, there are various problems with conventional batteries, such as the use of flammable and ignitable fuels, the elimination of carbon dioxide, the ease of storage, and the structure. Part of the objective is to provide a new battery that meets various needs by solving the simplicity and other issues. Disclosure of the invention
  • the battery of the present invention comprises: an acidic medium; a first electrode disposed in the acidic medium; a basic medium in contact with the acidic medium; and a second electrode disposed in the basic medium.
  • a first substance that causes a reaction of depriving the first electrode of electrons with hydrogen ions contained in the acidic medium is contained, and in the basic medium, It is characterized by containing a second substance which causes a reaction of donating electrons to the second electrode together with hydroxide ions contained in the basic medium.
  • the reaction at the electrode involves hydroxide ion H + and hydroxide ion OH-
  • the first substance is combined with hydrogen ions H + in the acidic medium to form the first electrode.
  • An oxidation reaction takes away electrons from the poles, and in a basic medium, a second substance causes a reduction reaction to donate electrons to the electrodes with hydroxide ions OH-.
  • the electromotive force due to the oxidation reaction in the acidic medium is larger in principle than the oxidation reaction in the basic medium. This is because the chemical equilibrium in the acidic medium with a high concentration of hydrogen ions tends to the production system because the hydrogen ion H + is a substance in the reaction system, and as a result, the oxidation potential is increased.
  • the electromotive force due to the reduction reaction in a basic medium is larger in principle than the reduction reaction in an acidic medium. This is because the chemical equilibrium in the basic medium with a high hydroxide ion concentration tends to the production system because the hydroxide ion O H- is a substance in the reaction system, and as a result, the oxidation potential is lowered.
  • the electromotive force generated by the oxidation-reduction reaction at the electrode is the main source of the voltage obtained from the battery, and as described in Non-Patent Document 2, Power is generated more stably than bipolar batteries, where electromotive force is dominant in areas where the location of the internal neutralization reaction varies. Can be made.
  • the power generation method of the present invention includes: an acidic medium, a first electrode disposed in the acidic medium, a basic medium in contact with the acidic medium, and a second electrode disposed in the basic medium.
  • An electrode, and a power generation method using a battery including:
  • the first substance contained in the acidic medium causes a reaction to take away electrons from the first electrode together with hydrogen ions
  • the second substance contained in the basic medium is a hydroxide ion With this, a reaction of donating electrons to the second electrode is caused to generate power.
  • the electromotive force generated by the oxidation / reduction reactions at the electrodes becomes the main source of the voltage obtained from the battery, and as a result, power can be generated stably.
  • FIG. 1 is a diagram showing a power generation mechanism (power generation method) using the battery of the present invention.
  • FIG. 2A is a schematic top perspective view of a chip type fluid fuel cell which is one embodiment of the battery of the present invention. '
  • FIG. 2B is a cross-sectional view of the chip-type fluid fuel cell of FIG. 2A taken along line AA ′, as viewed from the direction of flow of both media.
  • FIG. 3A is a schematic cross-sectional perspective view of a paper fuel cell which is one embodiment of the cell of the present invention.
  • FIG. 3B is a schematic cross-sectional perspective view of a paper fuel cell which is one embodiment of the battery of the present invention.
  • FIG. 4 is a schematic cross-sectional perspective view of a gel-type primary battery which is one embodiment of the battery of the present invention.
  • FIG. 5 is a diagram showing current-voltage characteristics in an example using a chip-type fluid fuel cell.
  • FIG. 6 is a diagram showing current-voltage characteristics in an example using a paper-type fuel cell. BEST MODE FOR CARRYING OUT THE INVENTION
  • the battery of the present invention comprises: an acidic medium; a first electrode disposed in the acidic medium; a basic medium in contact with the acidic medium; and a second electrode disposed in the basic medium.
  • the battery of the present invention is a bipolar battery having a configuration including the above-described members, and can be applied to any type of primary battery, secondary battery, and fuel cell.
  • the bipolar battery has a structure in which an acidic medium and a basic medium are adjacent to each other, and a substance for extracting electric energy and an electrode are included therein.
  • the bipolar battery according to the present invention is characterized in that (1) the first substance and the hydrogen ion coexist in the above-mentioned acidic medium or in the vicinity of the electrode in contact with the acidic medium, and both take away electrons from the first electrode as a reaction system substance. (2) The second substance and the hydroxide ion coexist in the basic medium or in the vicinity of the electrode in contact with the basic medium, and both give electrons to the electrode as a reaction substance (reduce) ) Initiate a reaction. The above (1) and (2) proceed simultaneously to generate electrical energy that drives an external circuit.
  • the acidic medium refers to a medium having a pH of less than pH 7, and is preferably capable of forming an acidic reaction field in which hydrogen ions are present. It is preferable that a basic reaction field in which a substance ion exists can be formed.
  • the acidic medium and the basic medium may each independently be in any of a liquid state, a gel state, and a solid state, but it is preferable that both mediums have the same form.
  • the acidic medium and the basic medium can be used irrespective of the type of the organic compound or the inorganic compound.
  • a preferred combination of an acidic medium and a basic medium is, for example, a combination of an aqueous solution of an acidic aqueous solution such as sulfuric acid, hydrochloric acid, or phosphoric acid, and a basic aqueous solution such as sodium hydroxide, potassium hydroxide, ammonia, or an ammonium compound.
  • a combination of an ion-conductive gel obtained by gelling those aqueous solutions with a gelling agent; an acidic ion exchange member having a sulfonic acid group and a phosphate group, and a basic ion exchange member having a quaternary ammonium group.
  • ion exchange members including forms such as membranes and filter papers using ion exchange resin
  • sulfuric acid-treated zirconia oxide including forms such as membranes and filter papers using ion exchange resin
  • solid superacids and solid acids such as noble metal-containing zirconium oxide
  • barium oxide and the like A combination of a solid super base and a solid base;
  • the acidic aqueous solution includes sulfuric acid, methanesulfonic acid, trifluoromethanesulfonic acid, hydrochloric acid, hydroiodic acid, hydrobromic acid, perchloric acid, periodic acid, orthophosphoric acid, Polyphosphoric acid, nitric acid, tetrafluoroboronic acid, hexafluorosilicic acid, hexafluorophosphoric acid, hexafluorofluoroarsenic acid, hexachloroarsenic platinum acid, acetic acid, trifluoroacetic acid, citric acid, oxalic acid, salicylic acid, tartaric acid, maleic acid, malonic acid, phthalic acid It is preferable to use an aqueous solution containing at least one acid selected from the group consisting of acid, fumaric acid, and picric acid, and it is more preferable to use a strong acid such as sulfuric acid, hydrochloric acid, nitric acid, and
  • the basic aqueous solution includes sodium hydroxide, potassium hydroxide, and hydroxyl.
  • one or more bases selected from the group containing sodium or sodium carbonate, sodium hydrogen carbonate, potassium carbonate, potassium hydrogen carbonate, sodium borate, potassium borate, sodium silicate, potassium silicate, sodium tripolyphosphate
  • An aqueous solution containing at least one metal salt of a weak acid selected from the group including potassium tripolyphosphate, sodium aluminate, and potassium aluminate can be used.
  • sodium hydroxide which is a strong base, can be used. It is better to contain potassium hydroxide Not to.
  • the acidic ion-conductive gel as an acidic medium was gelled from the above acidic aqueous solution using a gelling agent such as water glass, anhydrous silicon dioxide, crosslinked polyacrylic acid, or salts thereof. Are preferred.
  • a basic ion-conductive gel as a basic medium is formed by gelling a basic aqueous solution as described above using, for example, carboxymethylcellulose, cross-linked polyacrylic acid or a salt thereof as a gelling agent.
  • carboxymethylcellulose cross-linked polyacrylic acid or a salt thereof as a gelling agent.
  • carboxymethylcellulose cross-linked polyacrylic acid or a salt thereof as a gelling agent.
  • acids and bases described above may be used alone or in a combination of two or more. The same applies to the method of using the gelling agent.
  • Examples of the acidic ion exchange member and the basic ion exchange member include forms such as an ion exchange membrane, a solid polymer electrolyte membrane, and a filter paper using an ion exchange resin.
  • Preferable examples are ionizing resins using a strongly acidic ion exchange resin having a strongly acidic group such as a sulfonic acid group or a phosphoric acid group, or a strongly basic ion exchange resin having a strongly basic group such as a quaternary ammonium group. It is a replacement member.
  • polyvinyl styrene-based products represented by the product names Dowex (manufactured by Dow), the product names Dyaion (manufactured by Mitsubishi Chemical Corporation), and the product names Amberlite (manufactured by Rohmand Hass) Ion-exchange resin, polyfluorohydrocarbon polymer represented by Nafion (DuPont), Flemion (Asahi Glass), and Asiplex (Asahi Kasei) Solid polymer electrolyte membrane, product name Neosep (Tokuyama), product name Neosep Polyvinylstyrene-based ion-exchange membranes such as BP-1 (manufactured by Tokuyama), and ion-exchange filter paper made of polystyrene fibrous ionex ion exchangers.
  • Product name RX-1 manufactured by Toray
  • the solid superacid include sulfuric acid-treated zirconium oxide and noble metal-containing zirconia oxide.
  • a solid acid viscous minerals such as force orite and montmorillonite, zeolites, composite oxides, hydrated oxides, and activated carbon impregnated with an acidic substance can also be used.
  • solid super base examples include barium oxide, strontium oxide, and calcium oxide.
  • Other solid bases include metal oxides such as magnesium oxide and composite oxides containing them, hydroxides having low solubility in water such as calcium hydroxide, alkali metal and alkaline earth metal ion exchange zeolites, and bases.
  • Activated carbon impregnated with a toxic substance can also be used.
  • the acidic medium and the basic medium are required to be in contact with each other.
  • the acidic medium and the basic medium are formed by releasing a hydrogen ion in the acidic medium and the basic medium in the basic medium.
  • any substance may be used as long as the substance (oxidizing agent) generates an oxidation reaction that takes off electrons from the first electrode together with hydrogen ions in an acidic medium.
  • a substance that promotes the reaction when the hydrogen ion concentration is high is preferable.
  • hydrogen peroxide, oxygen, hypochlorous acid, hypobromous acid, hypohalous acid such as hypoiodic acid, and the like can be used.
  • the first substance may be supplied using a liquid or a solid containing these substances, or a liquid or a solid releasing these substances by a chemical change.
  • electrons are supplied to the second electrode with hydroxide ions.
  • Any substance can be used as long as it is a substance (reducing agent) that generates the reduction reaction to be applied, but is preferably a substance that promotes the reaction when the hydrogen ion concentration is high.
  • reducing agent a substance that generates the reduction reaction to be applied
  • the second substance may be supplied using a liquid or a solid containing these substances, or a liquid or a solid releasing these substances by a chemical change.
  • first substance or the second substance metal ions such as iron, manganese, chromium, and vanadium whose valence can be changed by oxidation and reduction reactions, and metal complexes thereof can be used.
  • the substance can also be supplied using a liquid or a solid containing the same.
  • the first substance and the second substance are composed of the same component.
  • an acidic medium such a substance generates an oxidation reaction that removes electrons from the first electrode with hydrogen ions, and in a basic medium, the electrons are transferred to the second electrode with hydroxide ions.
  • a separation membrane is not necessarily required if it can be kept unmixed.
  • Hydrogen peroxide is particularly preferred as a substance that can be used for both the oxidizing agent and the reducing agent. The reason will be described later in detail. It is preferable to supply hydrogen peroxide using a liquid or a solid containing hydrogen peroxide or a liquid or a solid that releases hydrogen peroxide due to a chemical change, because handling is easier. .
  • the “liquid” ′ which is one of the means for supplying the first substance and the second substance, may be in the form of a solution (including water, an organic solvent, or the like as a solvent), a dispersion, or a gel. Is also good. In addition, it is desirable that these use forms are selected by a preferable combination with the above-described forms of the acidic medium and the basic medium.
  • both of these substances are mixed or dispersed in a medium before the start of the reaction.
  • a fuel cell it is mixed or dispersed in a liquid medium from the beginning, or through a flow path installed near the electrode, or to a capillary tube. It is also possible to use a method in which the dye is added to the medium by utilizing infiltration or directly.
  • the first electrode functions as a positive electrode
  • the second electrode functions as a negative electrode
  • the same material as the electrode in the conventional battery can be used.
  • the first electrode (positive electrode) include platinum, platinum black, platinum oxide-coated platinum, silver, and gold.
  • titanium, stainless steel, nickel, aluminum and the like having a surface immobilized can be used.
  • carbon structures such as graphite and carbon nanotubes, amorphous carbon, glassy carbon, and the like.
  • platinum, platinum black, and platinum oxide-coated platinum are more preferable.
  • Examples of the second electrode (negative electrode) include platinum, platinum black, platinum oxide-coated platinum, silver, and gold.
  • titanium, stainless steel, nickel, aluminum and the like having a passivated surface may be used.
  • carbon structures such as graphite and carbon nanotubes, amorphous carbon, glassy carbon and the like can be mentioned.
  • platinum, platinum black, and platinum oxide-coated platinum are more preferable.
  • both the first electrode and the second electrode are in the form of a plate, a thin film, a mesh, or a fiber.
  • the mesh may be formed so as to be a discharge passage for gas generated in the cell.
  • the term "mesh-like" means at least a perforated chamber state in which there is a through passage through which the gas to be discharged passes.
  • the above-described electrode material may be attached to a metal mesh, a punched metal plate, or a foamed metal sheet by an electroless plating method, a vapor deposition method, or a sputtering method.
  • the above-described electrode material may be attached to cellulose or synthetic polymer paper by using the same method or a combination thereof.
  • the surface of the ion exchange resin or the ion conductive gel has It is also a preferable embodiment to arrange a desired electrode material by using an electroless plating method, an evaporation method, or a sputtering method. Power generation method>
  • the power generation method (power generation mechanism) of the present invention will be described in detail.
  • the power generation method of the present invention comprises: an acidic medium; a first electrode disposed in the acidic medium; a basic medium in contact with the acidic medium; and a second electrode disposed in the basic medium.
  • a power generation method using a battery comprising:
  • the first substance contained in the acidic medium causes a reaction to take away electrons from the first electrode together with hydrogen ions
  • the second substance contained in the basic medium is a hydroxide ion With this, a reaction of donating electrons to the second electrode is caused to generate power.
  • the first substance and the second substance are chemically changed into a plurality of substances having low internal energies, and the corresponding energy can be released to the outside as electric energy to obtain electric power.
  • the acidic medium is an acidic aqueous solution
  • the basic medium is a basic aqueous solution
  • the first substance and the second substance are both hydrogen peroxide.
  • the present invention is shown as the most preferable embodiment of the present invention, and the present invention is not limited thereto.
  • Hydrogen peroxide produces water and oxygen by a decomposition reaction.
  • this chemical reaction is carried out by separate electrodes into an oxidation reaction and a reduction reaction as in the battery of the present invention, an electromotive force is generated. That is, hydrogen peroxide has an oxidizing action in an acidic reaction field, and has a reducing action in a basic reaction field, so that an electromotive force is generated.
  • the power generation method of the present invention is realized by using such an acid-base bipolar reaction field.
  • pairs Anion hydrogen ions present in the acidic medium in FIG. 1, sulfate ions so 4 2 - corresponds to) a pair of hydroxide-ion present in the basic medium cation (Sodium ion Na + in Fig. 1) and form a salt at the interface of both media, so that the charge can be balanced.
  • the salt formed is usually more stable in the aqueous solution when ionized, the effect of the salt formation on the electromotive force is far greater than the electromotive force in the oxidation or reduction reaction at the electrode. small.
  • the bipolar battery of the present invention in which the electrode reaction is dominant, has the property of generating more stable power than the bipolar battery in which the neutralization reaction is mainly at the interface between the acidic and basic media.
  • Equation (3) shows an ionic reaction equation that summarizes the half-reaction equations (Equation 1) and (Equation 2).
  • — 96. 7 kJ / mo1
  • ⁇ S 18.9 J / Kmo1
  • the output voltage is not determined only by the theoretical electromotive force of the ion reaction formula, but the voltage is reduced due to overvoltage or the like, and heat is generated at the same time.
  • this heat poses a major problem when integrating unit batteries by scanning or integrating batteries inside products.
  • the heat can be theoretically reused for power generation, and there is a possibility that the overall heat generation is reduced.
  • the theoretical electromotive force is almost the same.
  • Hydrogen peroxide does not release carbon dioxide due to the conversion of chemical energy into electrical energy, but instead releases oxygen. In addition, it does not use ignitable materials, combustible materials, harmful heavy metals, etc. as structural elements inside the battery, so it has excellent environmental safety throughout the product cycle of manufacturing, use, and disposal.
  • Hydrogen peroxide is a liquid at normal temperature and pressure, so it does not require heavy metal cylinders for storage.It can be freely mixed with water, so it is easy to gel and has a good storage property. It is possible to take a fuel supply method with excellent characteristics.
  • Hydrogen peroxide is produced industrially as an organic method (a method of synthesizing anthraquinone by catalytic reduction of hydrogen with a catalyst and air oxidation as an intermediate (it is not reused because it is reused many times)), etc. Has already been established, and it is still supplied at a stable price at present.
  • the battery can be configured with a simple structure with few peripheral components, the weight and volume of the entire battery system can be reduced, and cost reduction and high durability can be achieved.
  • the power generation method using hydrogen peroxide as the first substance and the second substance has been described. However, when other substances (compounds) are used for both substances, oxidation and reduction are performed on the electrode side. It is substantially the same in that a reaction takes place.
  • the power generation mechanism enables stable power generation.
  • products generated by the electrode reaction are generated not in the vicinity of the electrodes but in the vicinity of the electrodes. Therefore, when it is necessary to remove them, the battery structure is included. It can be easily removed from the outside of the housing.
  • the product generated by the electrode reaction is water and the acidic medium or the basic medium is an aqueous solution, or the first substance and the second substance are mixed, dissolved, and dispersed in the aqueous solution for use. In this case, the generated water can be easily removed from the vicinity of the electrode by diffusing the generated water into both media and discharging the water out of the battery.
  • Preferred embodiments of the battery of the present invention include, for example, (1) a chip-type fluid fuel cell, (2) a paper-type fuel cell, and (3) a gel-type primary battery shown below.
  • This chip-type fluid fuel cell has an acid-basic bipolar reaction field using a liquid such as an aqueous solution of sulfuric acid as an acidic medium and a liquid such as an aqueous solution of sodium hydroxide as a basic medium.
  • a liquid such as an aqueous solution of sulfuric acid as an acidic medium
  • a liquid such as an aqueous solution of sodium hydroxide as a basic medium.
  • FIG. 2A is a schematic top perspective view of the chip-type fluid fuel cell. As shown here, the chip-type fluid fuel cell is constructed between a slide glass 11 and a cover glass 10.
  • the capillary channel 1 has an inlet 2 and an inlet 3 for supplying a liquid acidic medium and a liquid basic medium, and an outlet 4 and an outlet 5 for discharging.
  • an acidic aqueous solution a flows from the inlet 2 and a basic aqueous solution b flows from the inlet 3 to the capillary channel 1, if the viscosity of the two liquids and their flow rates are appropriate, at the junction of the capillary channel 1 A laminar flow (Reynolds flow) is formed.
  • FIG. 3 is a cross-sectional view of the fluid fuel cell taken along line A-A ', as viewed from the direction of flow of both media.
  • the acidic aqueous solution a and the basic aqueous solution b form the laminar flow a and the laminar flow b, respectively, even at the merging portion of the capillary channel 1, and while they are in contact with each other, They flow in the capillary channel 1 without intermingling.
  • Two platinum electrodes 6 and 8 are provided at the bottom of the merging portion of the capillary channel 1 forming such a laminar flow, and electric power is taken out to the outside through the respective connection terminals 7 and 9. be able to.
  • the chip-type fluid fuel cell is one unit cell
  • an increase in current and voltage can be achieved by arranging a plurality of unit cells in parallel or in series.
  • the complicated structure of such a capillary channel is based on ultrasonic grinding and semiconductor photolithography for substrates (chips) such as glass, quartz, silicon, polymer film, plastic resin, ceramic, graphite, and metal. Also, it can be easily manufactured by applying existing processing technologies such as sand blasting, injection molding, and silicone resin molding. Therefore, by integrating the unit cells and stacking multiple chips, a battery system with the desired performance (current and voltage) can be constructed.
  • Paper-type fuel cell This paper-type fuel cell has an acid-base bipolar reaction field in which solid media are used as an acidic medium and a basic medium, and they are arranged in contact with each other. The specific configuration will be described with reference to a schematic cross-sectional perspective view of the paper fuel cell shown in FIGS. 3A and 3B.
  • the paper fuel cell shown in FIG. 3A has an acidic reaction field composed of a first electrode 22 and an acidic medium 20 and a basic reaction field composed of a second electrode 32 and a basic medium 30. ,, And are in contact with each other, and the first substance and the second substance are supplied thereto to generate power.
  • the first substance and the second substance are hydrogen peroxide
  • the aqueous solution L of hydrogen peroxide is supplied by being dropped or permeated as shown by the arrow in FIG. 3A.
  • an oxidation reaction in an acidic reaction field and a reduction reaction in a basic reaction field occur, and an electromotive force is developed.
  • the shape of the electrode is a mesh so as to be a discharge channel for gas generated in the battery.
  • the paper fuel cell shown in FIG. 3A is an embodiment in which the method of supplying the aqueous hydrogen peroxide solution in FIG. 3B is changed. As described above, by providing a supply member 40 including a fiber or a capillary member capable of permeating and absorbing an aqueous hydrogen peroxide solution at a part of the interface between the acidic medium 20 and the basic medium 30, Through this member 40, the aqueous hydrogen peroxide solution is supplied to the acidic medium 20 and the basic medium 30.
  • the electrode shape is a mesh shape so as to be a discharge channel for gas generated in the battery.
  • the acidic medium 20 and the basic medium 30 include a matrix containing a strongly acidic substituent (such as a sulfonate group or a phosphate group) and a strongly basic substituent (such as a quaternary ammonium group).
  • a strongly acidic substituent such as a sulfonate group or a phosphate group
  • a strongly basic substituent such as a quaternary ammonium group.
  • paper-type fuel cell As described above, water is decomposed into hydrogen ions and hydroxide ions at the contact interface between the acid-basic bipolar reaction field and supplied. Then, by supplying an aqueous hydrogen peroxide solution to this reaction field from the outside, power is continuously generated. You can live.
  • the paper-type fuel cell has the advantage that an external pump is not required because a dropping or permeating means is used when supplying the aqueous solution of hydrogen peroxide. Paper-type fuel cells can also utilize the phenomenon that reaction product water evaporates into the atmosphere from the cell surface.
  • This gel-type primary battery is formed by contacting and disposing an ion conductive gel obtained by gelling an acidic aqueous solution as an acidic medium and an ion conductive gel obtained by gelling a basic aqueous solution as a basic medium. It has a base bipolar reaction field.
  • a specific configuration will be described with reference to a schematic cross-sectional perspective view of the gel type primary battery shown in FIG.
  • the gel-type primary battery shown in FIG. 4 has an acidic reaction field composed of a first electrode 22 and an acidic medium 20 and a basic reaction field composed of a second electrode 32 and a basic medium 30. They are in contact with each other, and have a structure in which the acidic medium 20 contains the first substance and the basic medium 30 contains the second substance.
  • the first substance and the second substance are hydrogen peroxide
  • an aqueous solution of hydrogen peroxide is allowed to coexist in the acidic medium 20 and / or the basic medium 30 or both.
  • an oxidation reaction occurs in an acidic reaction field and a reduction reaction occurs in a basic reaction field, and an electromotive force is generated.
  • the electrode only needs to be in contact with the medium from one side or both sides, and the shape thereof is preferably a mesh so as to be a discharge passage for gas generated in the battery.
  • the hydrogen ion and hydroxide ions contained in the conductive gel and the aqueous hydrogen peroxide solution are consumed along with the power generation (salt is generated at the same time), and these are lost.
  • these consumed substances cannot be re-supplied from the outside, so they become primary batteries.
  • the gel uses a highly self-holding gel state as both reaction fields. Since the reaction field can be maintained stably, it is possible to adopt a sealed battery configuration that is excellent in portability and economy.
  • the configuration of the present invention is not limited to this application.
  • the battery of the above configuration is combined with a conventional battery using hydrogen fuel or methanol fuel. Can be used as a combined generator Example
  • Sample solution A hydrogen peroxide was prepared by mixing a commercially available 3% by weight aqueous hydrogen peroxide solution (Oxidol of the Japanese Pharmacopoeia, Kenei Pharmaceutical Co., Ltd.) with sulfuric acid (96% grade, Kanto Chemical Co., Ltd.) and distilled water. 0.75 mol Zulfuric acid (0.75N (1.5 mol / l)) was prepared.
  • sodium hydroxide special grade 97%, Kanto Kagaku Co., Ltd.
  • sample solution B (0.75 mol / l hydrogen peroxide, 75N sodium hydroxide 75mo 1/1)
  • a sample liquid A was injected from the inlet 2 of the chip-type fluid fuel cell, and a sample liquid B was injected from the inlet 3 by the external pump.
  • the flow rate of the sample solution was 241 Zsec (Reynolds number Re: about 670) at the center of the flow channel, and the experimental temperature was room temperature.
  • Electrode on the bottom of the flow channel in contact with sample solution A (Platinum thin film, area: 0.026 cm 2 ) No gas was generated on the surface of the electrode, whereas the electrode on the bottom of the flow channel in contact with sample solution B ( Platinum thin film, area: 0.026 cm 2 ) Oxygen gas generation was observed on the 6 surfaces. This is because the electrode 8 acts as a positive electrode by producing water by the reaction of the above (Equation 1), and the electrode 6 acts as a negative electrode by producing oxygen and water by the reaction of the above (Equation 2). It is.
  • Fig. 5 shows the current-voltage characteristics obtained using the fuel cell under the above experimental conditions.
  • an open circuit voltage of 700 mV and a maximum output of 23 mWZcm 2 at an electromotive voltage of 300 mV and a current of 77 mA / cm 2 ) were obtained.
  • Example 2 The same evaluation as in Example 1 was performed using the same chip-type fluid fuel cell as in Example 1 above, but changing the concentration of hydrogen peroxide contained in the sample solution.
  • the hydrogen peroxide concentration of sample liquids A and B injected from inlet 2 and inlet 3 of the chip-type fluid fuel cell was 0 It was 45mo 1 1.
  • the flow rate and experimental temperature are the same as in Example 1.
  • FIG. 5 shows current-voltage characteristics obtained using the fuel cell under such experimental conditions. In the case of this example, an open-circuit voltage of 675 mV and a maximum output of 9 mW / cm 2 were obtained.
  • Example 2 The same evaluation as in Example 1 was performed using the same chip-type fluid fuel cell as in Example 1 above, but changing the concentration of hydrogen peroxide contained in the sample solution.
  • the hydrogen peroxide concentrations of the sample liquids A and B injected from the inlet 2 and the inlet 3 of the chip-type fluid fuel cell were both 0.22 mol 1/1.
  • the flow rate and experimental temperature are the same as in Example 1.
  • FIG. 5 shows current-voltage characteristics obtained using the fuel cell under such experimental conditions. In the case of the present example, an open circuit voltage of 620 mV and a maximum output of 3 mWZ cm 2 were obtained.
  • Example 1 The same evaluation as in Example 1 was performed using the same chip-type fluid fuel cell as in Example 1 above, but changing the concentration of hydrogen peroxide contained in the sample solution.
  • the hydrogen peroxide concentrations of the sample liquids A and B injected from the inlet 2 and the inlet 3 of the chip-type fluid fuel cell were both 0.1 l Omol Zl.
  • the flow rate and experimental temperature are the same as in Example 1.
  • FIG. 5 shows current-voltage characteristics obtained using the fuel cell under such experimental conditions. In the case of this embodiment, an open circuit voltage of 611 mV and a maximum output of lmWZcm 2 were obtained.
  • Example 2 Using the same chip-type fluid fuel cell as in Example 1 above, the materials of the first electrode and the second electrode were changed as follows, and further, the concentration of hydrogen peroxide contained in the sample liquid was changed. The same evaluation as in Example 1 was performed.
  • the electrode material was silver for electrode 6 and platinum for electrode 8.
  • the hydrogen peroxide concentrations of the sample liquids A and B injected from the inlet 2 and the inlet 3 of the chip-type fluid fuel cell were both 0.45 mol Zl.
  • the flow rate and experimental temperature are the same as in Example 1.
  • a small piece (1.5 ⁇ 01 ⁇ 1.5 cm) of strongly acidic ion exchange filter paper (Toray Chemical, RX-1 Series CP-1) is used for the acidic medium 20, and a strong basic ion exchange filter is used for the basic medium 30.
  • a small piece of filter paper (Toray Chemical, RX-1 series AP-1) (length 1.5 (; 111 cm width 1.5 cm)) was used as the first electrode 22 and the second electrode 32.
  • a platinum black mesh having the same area as the acidic medium and the basic medium (a nickel mesh surface of 100 mesh blackened with platinum) was used, and was brought into close contact with the acidic medium and the basic medium, respectively.
  • Fig. 6 shows the current-voltage characteristics obtained using the fuel cell under the above experimental conditions.
  • an open circuit voltage of 120 mV and a maximum output of 0.35 AWZcm 2 at an electromotive voltage of 80 mV and a current of 01 mA / cm 2 ) were obtained.
  • Acidic medium 20 (0.25 mol / l sulfuric acid, 0.5 mo 1/1 hydrogen peroxide, gelled with 10% by weight of anhydrous silicon dioxide) and basic medium 30 (0.5 mo 1/1 sodium hydroxide, 0.5 mo 1/1 hydrogen peroxide, gelled with 8% by weight of cross-linked sodium polyacrylate) using the first electrode 22 and the second electrode
  • basic medium 30 0.5 mo 1/1 sodium hydroxide, 0.5 mo 1/1 hydrogen peroxide, gelled with 8% by weight of cross-linked sodium polyacrylate
  • Example 2 Using the same chip-type fluid fuel cell as in Example 1 above, the same evaluation as in Example 1 was performed, except that the sample solution did not contain hydrogen peroxide and the concentrations of sulfuric acid and sodium hydroxide were changed.
  • the concentrations of sulfuric acid and sodium hydroxide of the sample liquids A and B injected from the inlet 2 and the inlet 3 of the chip-type fluid fuel cell were both 0.45 mO 1/1.
  • the flow rate and experimental temperature are the same as in Example 1.
  • FIG. 5 shows current-voltage characteristics obtained using the fuel cell under such experimental conditions.
  • Comparative Example 1 although the open power (300 mV) due to the liquid junction voltage was measured, a significant current was not obtained.
  • a voltage and a current are obtained, and in the fifth and seventh embodiments, a voltage and a current are obtained. It has been found that power can be generated and electric energy can be supplied by the battery having the novel configuration and the power generation method using the battery. Industrial applicability
  • the bipolar battery of the present invention is a battery having a novel configuration, and the electromotive force generated by the oxidation / reduction reaction at the solid electrode is a main source obtained from the battery, so that stable power generation can be achieved. It is possible.
  • the battery of the present invention and the power generation method using the battery solve the problems of conventional batteries, for example, the use of combustible and ignitable fuels, no emission of carbon dioxide, and easy storage. It offers advantages such as simplicity of the structure, etc., and its industrial utility is extremely large.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Cells (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

A bipolar battery capable of generating power stably, and a power generating method employing such a battery. The battery comprises an acid medium, a first electrode arranged in the acid medium, a basic medium, and a second electrode arranged in the basic medium. The acid medium contains a first substance which causes a reaction where an electron is taken from the first electrode while involving a hydrogen ion contained in the acid medium, and the basic medium contains a second substance which causes a reaction where an electron is given to the second electrode while involving a hydroxide ion contained in the basic medium. A power generating method employing such a battery is also provided.

Description

. 明細書 . 電池及び発電方法 技術分野  Specification. Battery and power generation method
本発明は、 電池及び該電池を用いた発電方法に関し、 特に、 酸性媒体とそれに 接した塩基性媒体 (バイポーラ一型反応場) を利用した電池及び発電方法に関す る。 背景技術  The present invention relates to a battery and a power generation method using the battery, and particularly to a battery and a power generation method using an acidic medium and a basic medium (a bipolar type reaction field) in contact with the acidic medium. Background art
電池は、 物質が持つ化学エネルギーを直接電気エネルギーに変換する装置であ る。 また、 その化学エネルギーを使い切るまで電力を提供する一次電池、 使い切 つた後に充電操作によって化学エネルギーを再び蓄えて再使用が可能な二次電池 、 更に、 外部から化学エネルギーを有する物質を継続的に供給することで電気工 ネルギーを得る燃料電池に分類できる。 現在、 多種類の電池が開発されているが 、 各電池はそれぞれ、 環境安全性、 経済性、 供給できる電気エネルギー量、 携帯 性や貯蔵性、 使用環境対応性、 リサイクル性等の各項目について長所と短所が異 なるので、 使用目的に合わせて電池が選択され、 実用に供されている。 いずれの 電池においても共通の重要な技術要素は、 どのような化学物質の反応を利用する のか、 その反応をどのようにして促進するのか、 また、 その化学物質をどのよう な形態で貯蔵 ·供給 ·回収するのかという点にある。  A battery is a device that directly converts the chemical energy of a substance into electric energy. In addition, primary batteries that provide power until the chemical energy is used up, secondary batteries that can store and reuse chemical energy by recharging after being used up, and continuously supply substances with chemical energy from outside By doing so, it can be classified as a fuel cell that can obtain electric energy. At present, various types of batteries are being developed.Each battery has advantages in terms of environmental safety, economy, amount of electric energy that can be supplied, portability and storage, compatibility with use environment, recyclability, etc. The disadvantages are different, so batteries are selected according to the purpose of use and are put to practical use. The important technical elements common to all batteries are: what kind of chemical reaction is used, how to accelerate the reaction, and how the chemical is stored and supplied · The point is to collect.
電池では、 還元反応 (相手に電子を与えるか、 若しくは酸素を引き抜く) を引 き起こす還元剤と、 酸化反応 (相手から電子を引き抜くか、 若しくは酸素を与え る) を引き起こす酸化剤と、 の 2種の化学物質を使用する。 その化学反応を、 相 対する 2つの電極で別々に引き起こすことによって、 発生した電子のエネルギー を外部に取り出す (電子の発生に伴って両極で生成したイオンは電池内部で中和 される) 。 それらの反応効率は、 使用する化学物質の種類と反応様式、 電極材質 や活性度、 また、 電解質を含めた反応場の環境に依存する。 更に、 どのような物 質を選択して電池を構成するかは、 前述した使用時のみならず、 製造時 ·廃棄時 も含めた電池システム全体の良否に関わるボイントである。 In a battery, a reducing agent that causes a reduction reaction (provides electrons or withdraws oxygen to the other party) and an oxidizing agent that causes an oxidation reaction (withdraws electrons or provides oxygen to the other party) Use different chemicals. By inducing the chemical reaction separately at the two opposing electrodes, the energy of the generated electrons is extracted to the outside (the ions generated at both electrodes as the electrons are generated are neutralized inside the battery). The reaction efficiency depends on the type and reaction mode of the chemical substance used, the electrode material and activity, and the environment of the reaction field including the electrolyte. Furthermore, what kind of material is selected to compose a battery depends not only on the above-mentioned use, but also on manufacture and disposal. This is a point related to the quality of the entire battery system, including the battery.
例えば、 マンガン系や水銀系の一次電池の場合、 経済性や化学物質の貯蔵性に 優れるが、 使用後に有害性の重金属類を放置すると環境に悪影響を与えてしまう ため、 厳密な回収が必要になる。 また、 充電による再利用ができないため、 使用 後の電池廃棄や再資源化に多くのコストがかかってしまう。  For example, a manganese or mercury-based primary battery is excellent in economics and storage of chemical substances, but if harmful heavy metals are left after use, it will adversely affect the environment, so strict recovery is necessary. Become. Also, since it cannot be reused by charging, it costs a lot to dispose of and recycle batteries after use.
また、 例えば、 リチウムイオン二次電池は、 電気エネルギー量に優れ、 また、 充電による再利用が可能であるが、 リチウムが空気中の水分や酸素に対して非常 に不安定な発火物であるため、 その危険性を回避するためには電池のパッケージ ングゃ使用環境に十分な安全対策を払わねばならない。 更に、 電池寿命後の回収 や再資源化は必須であり、 電池の製造から使用 ·廃棄までの全体コストを引き上 げてしまう。 この問題は鉛系蓄電池の場合でも同様であるが、 製造価格や供給電 気エネルギーの観点から、 自動車用バッテリ一等の用途でのみ大量に使用されて いるのが現状である。  Also, for example, lithium ion secondary batteries have excellent electric energy and can be reused by charging.However, since lithium is a very unstable ignition substance against moisture and oxygen in the air, However, in order to avoid the danger, sufficient safety measures must be taken in the packaging and use environment of the battery. Furthermore, recovery and recycling after the life of the battery is essential, which raises the overall cost from battery manufacture to use and disposal. This problem is the same in the case of lead-based storage batteries, but from the viewpoint of manufacturing price and supply electric energy, it is currently used in large quantities only in applications such as automotive batteries.
一方、 燃料電池としては、 主に、 還元剤 (燃料) として水素やメタノール等を 、 また、 酸化剤として酸素や過酸化水素等を用いる電池が知られている。 例えば 、 メタノールを還元剤 (燃料) 、 過酸化水素水溶液を酸化剤とした、 所謂、 ダイ レクトメタノール電池が提案されている (例えば、 米国特許 6, 4 8 5 , 8 5 1 号公報を参照。 ) 。  On the other hand, as a fuel cell, a cell using hydrogen, methanol, or the like as a reducing agent (fuel) and oxygen, hydrogen peroxide, or the like as an oxidizing agent is known. For example, a so-called direct methanol battery using methanol as a reducing agent (fuel) and an aqueous solution of hydrogen peroxide as an oxidizing agent has been proposed (see, for example, US Pat. No. 6,485,851). ).
この電池の場合、 メタノール及び過酸化水素水溶液が常温常圧下で液体である ため、 携帯性や貯蔵性に優位点がある。 しかし、 反応に伴って地球温暖化の原因 物質である二酸化炭素を排出して環境に負荷をかけてしまう本質的な問題がある 。 また、 燃料のメタノールが可燃性であるため、 その漏洩は非常に危険である。 更に、 反応に必要な貴金属反応触媒の使用量が多く高コストであることに加えて 、 負極側のメタノール燃料が固体電解質膜を通過して正極側へ達してしまい、 そ のため、 反応効率の低下を招くメタノールクロスオーバーという問題等も残って いる。  This battery has advantages in portability and storability since methanol and aqueous hydrogen peroxide are liquid at normal temperature and normal pressure. However, there is an inherent problem that carbon dioxide, which is a causative substance of global warming, is emitted due to the reaction, and the environmental load is reduced. Also, the leakage is extremely dangerous because the fuel methanol is flammable. Further, in addition to the high cost of the precious metal reaction catalyst required for the reaction, in addition to the high cost, the methanol fuel on the negative electrode side passes through the solid electrolyte membrane and reaches the positive electrode side, thereby reducing the reaction efficiency. There still remains the problem of methanol crossover, which leads to a decline.
また、 水素一酸素系の燃料電池は、 供給できる電気エネルギー量が多く、 かつ 、 反応生成物が水のみであるため、 環境安全性の面で非常に優れている。 しかし 、 燃料の水素が可燃性であるため、 その漏洩は非常に危険な状態を招く。 更に、 文献 (E l e c t r o c h em i s t r y 7 1, No. 5 (2003 ) 、 31 3 - 3 1 7) には、 水素一酸素系の燃料電池として、 アノード (負極) 側に強酸性、 力ソード (正極) 側に強塩基性の高分子膜を配するパイポーラ型の 構成をとるものが開示されている。 また、 該文献は、 この燃料電池が、 力ソード での律速反応である酸化反応が比較的良好に行なわれる点、 電極触媒の選択性が 高い点、 反応で生成した水が電極に影響を及ぼし難い点、 などの長所を有すると 述べている。 Further, a hydrogen-oxygen fuel cell is very excellent in terms of environmental safety because a large amount of electric energy can be supplied and the reaction product is only water. However, because the fuel hydrogen is flammable, its leakage can be very dangerous. In addition, in the literature (Electroch em istry 71, No. 5 (2003), 313-317), as a hydrogen-oxygen fuel cell, a strongly acidic, power source (positive electrode) A structure having a bipolar structure in which a strongly basic polymer film is disposed on the side is disclosed. In addition, the document states that this fuel cell has a relatively good oxidation reaction, which is a rate-determining reaction with a power source, a high selectivity for an electrode catalyst, and that water produced by the reaction affects the electrodes. It has advantages such as difficult points.
ところで、 このバイポーラ型電池では、 強酸性高分子膜側の電極で還元反応が 生じ、 強塩基性の高分子膜側で酸化反応を生ずるが、 これらの酸化,還元反応に よる起電力よりも、 電池の中心部における水素イオン H+と水酸化物イオン OH- の中和による電位が起電力の大部分を占める構成となっている。 これは、 水素ィ オン H+と水酸化物ィオン〇 H—の中和により生ずる電位が、 他のィォンの場合に 比べて一般的に高いためである。  By the way, in this bipolar battery, a reduction reaction occurs at the electrode on the strongly acidic polymer membrane side, and an oxidation reaction occurs on the strongly basic polymer membrane side. The potential generated by the neutralization of hydrogen ions H + and hydroxide ions OH- in the center of the battery accounts for most of the electromotive force. This is because the potential generated by the neutralization of hydrogen ion H + and hydroxide ion 〇H— is generally higher than in the case of other ions.
このため、 このタイプのバイポーラ型電池の起電特性は、 酸性と塩基性の高分 子膜の境界近辺で発生する水の中和反応に大きく依存する。 ところが、 水素ィォ ン H+と水酸化物イオン〇H-が実際に出会う領域は厳密に高分子膜の境界部には ならず、 境界を中心とした広範囲に分散する。 また、 中和反応に伴い生じた水が 、 これら水素イオン H+と水酸化物イオン OH-の移動を困難にする。 したがって 、 水素イオン H+と水酸化物イオン OH-の実際に中和する領域が変動するため、 このタイプのバイポーラ型電池の起電力は、 安定的に起電力を生じさせるのが困 難であるという性質を有している。  For this reason, the electromotive characteristics of this type of bipolar battery largely depend on the neutralization of water generated near the boundary between acidic and basic polymer films. However, the region where the hydrogen ion H + and the hydroxide ion 〇H- actually meet is not exactly at the boundary of the polymer film, but is dispersed over a wide area around the boundary. In addition, water generated by the neutralization reaction makes it difficult to transfer these hydrogen ions H + and hydroxide ions OH−. Therefore, since the region where hydrogen ions H + and hydroxide ions OH- are actually neutralized fluctuates, it is difficult to generate a stable electromotive force in this type of bipolar battery. Has properties.
また、 このバイポーラ型電池においては、 生成する水が両高分子膜の界面に蓄 積して、 水の層が形成される恐れがある。 この水の層の存在は、 両電極で生成さ れた水素イオン H+及び水酸化物イオン OH-の中和反応を抑制してしまい、 結果 的に、 経時による水の層の形成、 増加に伴い、 電気エネルギーの供給が困難とな る性質を有している。  In addition, in this bipolar battery, generated water may accumulate at the interface between both polymer films, and a water layer may be formed. The presence of this water layer suppresses the neutralization reaction of hydrogen ions H + and hydroxide ions OH- generated at both electrodes, and as a result, the formation and increase of the water layer over time However, it has a property that makes it difficult to supply electric energy.
そこで、 本発明は、 バイポーラ型の電池であって、 安定に発電することが可能 である、 新規な構成の電池、 及び該電池を用いた発電方法を提供することを目的 とする。 また、 本発明のいくつかの形態においては、 従来電池が抱える多様な問題点、 例えば、 可燃性 '発火性の燃料の使用、 二酸化炭素を排出しないこと、 貯蔵が簡 便であること、 構造が簡単であること、 などを解決し、 多様なニーズに適合した 新たな電池を提供することも目的の一部とする。 発明の開示 Therefore, an object of the present invention is to provide a battery having a novel configuration, which is a bipolar battery and capable of stably generating power, and a power generation method using the battery. Also, in some aspects of the present invention, there are various problems with conventional batteries, such as the use of flammable and ignitable fuels, the elimination of carbon dioxide, the ease of storage, and the structure. Part of the objective is to provide a new battery that meets various needs by solving the simplicity and other issues. Disclosure of the invention
上記課題は、 以下の本発明により達成される。  The above object is achieved by the present invention described below.
即ち、 本発明の電池は、 酸性媒体と、 該酸性媒体中に配置された第 1の電極と 、 前記酸性媒体と接する塩基性媒体と、 該塩基性媒体中に配置された第 2の電極 と、 を備え、  That is, the battery of the present invention comprises: an acidic medium; a first electrode disposed in the acidic medium; a basic medium in contact with the acidic medium; and a second electrode disposed in the basic medium. , And
前記酸性媒体中に、 前記酸性媒体中に含まれる水素イオンを伴って前記第 1の 電極から電子を奪う反応を生じさせる第 1の物質を含有し、 かつ、 前記塩基性媒 体中に、 前記塩基性媒体中に含まれる水酸化物イオンを伴って前記第 2の電極へ と電子を供与する反応を生じさせる第 2の物質を含有することを特徴とする。 本発明の電池によれば、 電極での反応に水酸化ィオン H+と水酸化物ィオン O H-が関与する場合、 酸性媒体中で第 1の物質が水素イオン H+を伴って第 1の電 極から電子を奪う酸化反応を生じさせ、 塩基性媒体中で第 2の物質が水酸化物ィ オン O H-を伴って電極へと電子を供与する還元反応を生じさせる。 この時、 酸 性媒体中での酸化反応による起電力は、 塩基性媒体中で酸化反応させるよりも、 原理的に大きくなる。 これは、 水素イオン H+が反応系の物質であるため、 水素 イオン濃度の高い酸性媒体中では化学平衡が生成系に傾き、 結果として酸化電位 を高くするためである。 また、 塩基性媒体中での還元反応による起電力は、 酸性 媒体中で還元反応させるよりも、 原理的に大きくなる。 これは、 水酸化物イオン O H-が反応系の物質であるため、 水酸化物イオン濃度の高い塩基性媒体中では 化学平衡が生成系に傾き、 結果として酸化電位を低くするためである。 In the acidic medium, a first substance that causes a reaction of depriving the first electrode of electrons with hydrogen ions contained in the acidic medium is contained, and in the basic medium, It is characterized by containing a second substance which causes a reaction of donating electrons to the second electrode together with hydroxide ions contained in the basic medium. According to the battery of the present invention, when the reaction at the electrode involves hydroxide ion H + and hydroxide ion OH-, the first substance is combined with hydrogen ions H + in the acidic medium to form the first electrode. An oxidation reaction takes away electrons from the poles, and in a basic medium, a second substance causes a reduction reaction to donate electrons to the electrodes with hydroxide ions OH-. At this time, the electromotive force due to the oxidation reaction in the acidic medium is larger in principle than the oxidation reaction in the basic medium. This is because the chemical equilibrium in the acidic medium with a high concentration of hydrogen ions tends to the production system because the hydrogen ion H + is a substance in the reaction system, and as a result, the oxidation potential is increased. In addition, the electromotive force due to the reduction reaction in a basic medium is larger in principle than the reduction reaction in an acidic medium. This is because the chemical equilibrium in the basic medium with a high hydroxide ion concentration tends to the production system because the hydroxide ion O H- is a substance in the reaction system, and as a result, the oxidation potential is lowered.
このため、 本発明のバイポーラ型電池の構成では、 電極における酸化 ·還元反 応により生ずる起電力が、 電池から得られる電圧の主体的な源であり、 上述の非 特許文献 2のように、 電池内部の中和反応の発生箇所が変動する性質を有する領 域での起電力が主体的となるバイポーラ型の電池と比べて、 安定に電力を発生さ せることができる。 For this reason, in the configuration of the bipolar battery of the present invention, the electromotive force generated by the oxidation-reduction reaction at the electrode is the main source of the voltage obtained from the battery, and as described in Non-Patent Document 2, Power is generated more stably than bipolar batteries, where electromotive force is dominant in areas where the location of the internal neutralization reaction varies. Can be made.
また、 本発明の発電方法は、 酸性媒体と、 該酸性媒体中に配置された第 1の電 極と、 前記酸性媒体と接する塩基性媒体と、 該塩基性媒体中に配置された第 2の 電極と、 を備える電池を用いた発電方法であって、  In addition, the power generation method of the present invention includes: an acidic medium, a first electrode disposed in the acidic medium, a basic medium in contact with the acidic medium, and a second electrode disposed in the basic medium. An electrode, and a power generation method using a battery including:
前記酸性媒体に含有される第 1の物質が水素イオンを伴って前記第 1の電極か ら電子を奪う反応を生じさせ、 かつ、 前記塩基性媒体に含有される第 2の物質が 水酸化イオンを伴って前記第 2の電極へと電子を供与する反応を生じさせて発電 することを特徴とする。  The first substance contained in the acidic medium causes a reaction to take away electrons from the first electrode together with hydrogen ions, and the second substance contained in the basic medium is a hydroxide ion With this, a reaction of donating electrons to the second electrode is caused to generate power.
本発明の発電方法によれば、 上述の如く、 電極における酸化 ·還元反応により 生ずる起電力が、 電池から得られる電圧の主体的な源となり、 その結果、 安定に 電力を発生させることができる。 図面の簡単な説明  According to the power generation method of the present invention, as described above, the electromotive force generated by the oxidation / reduction reactions at the electrodes becomes the main source of the voltage obtained from the battery, and as a result, power can be generated stably. Brief Description of Drawings
図 1は、 本発明の電池を用いた発電機構 (発電方法) を示す図である。  FIG. 1 is a diagram showing a power generation mechanism (power generation method) using the battery of the present invention.
図 2 Aは、 本発明の電池の 1実施態様であるチップ型流体燃料電池の概略上面 透視図である。 '  FIG. 2A is a schematic top perspective view of a chip type fluid fuel cell which is one embodiment of the battery of the present invention. '
図 2 Bは、 図 2 Aのチップ型流体燃料電池を A— A ' で切断した際に、 両媒体 の流れの方向からみた断面図である。  FIG. 2B is a cross-sectional view of the chip-type fluid fuel cell of FIG. 2A taken along line AA ′, as viewed from the direction of flow of both media.
図 3 Aは、 本発明の電池の 1実施態様であるペーパー型燃料電池の概略断面透 視図である。  FIG. 3A is a schematic cross-sectional perspective view of a paper fuel cell which is one embodiment of the cell of the present invention.
図 3 Bは、 本発明の電池の 1実施態様であるペーパー型燃料電池の概略断面透 視図である。  FIG. 3B is a schematic cross-sectional perspective view of a paper fuel cell which is one embodiment of the battery of the present invention.
図 4は、 本発明の電池の 1実施態様であるゲル型一次電池の概略断面透視図で ある。  FIG. 4 is a schematic cross-sectional perspective view of a gel-type primary battery which is one embodiment of the battery of the present invention.
図 5は、 チップ型流体燃料電池を用いた実施例における電流一電圧特性を示す 図である。  FIG. 5 is a diagram showing current-voltage characteristics in an example using a chip-type fluid fuel cell.
図 6は、 ペーパー型燃料電池を用いた実施例における電流一電圧特性を示す図 である。 発明を実施するための最良の形態 FIG. 6 is a diagram showing current-voltage characteristics in an example using a paper-type fuel cell. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明について詳細に説明する。  Hereinafter, the present invention will be described in detail.
<電池> <Battery>
本発明の電池は、 酸性媒体と、 該酸性媒体中に配置された第 1の電極と、 前記 酸性媒体と接する塩基性媒体と、 該塩基性媒体中に配置された第 2の電極と、 を 備え、  The battery of the present invention comprises: an acidic medium; a first electrode disposed in the acidic medium; a basic medium in contact with the acidic medium; and a second electrode disposed in the basic medium. Prepare
前記酸性媒体中に、 前記酸性媒体中に含まれる水素イオンを伴って前記第 1の 電極から電子を奪う反応を生じさせる第 1の物質を含有し、 かつ、 前記塩基性媒 体中に、 前記塩基性媒体中に含まれる水酸化物イオンを伴って前記第 2の電極へ と電子を供与する反応を生じさせる第 2の物質を含有することを特徴とする。 本発明の電池は、 上述の各部材を備える構成を有するバイポーラ型の電池であ り、 一次電池、 二次電池、 燃料電池の種類を問わず適用することができる。 なお、 本発明において、 バイポーラ型の電池とは、 酸性媒体と塩基性媒体が隣 接し、 この中に電気エネルギーを取り出すための物質と電極が含まれる構成を有 するものである。  In the acidic medium, a first substance that causes a reaction of depriving the first electrode of electrons with hydrogen ions contained in the acidic medium is contained, and in the basic medium, It is characterized by containing a second substance which causes a reaction of donating electrons to the second electrode together with hydroxide ions contained in the basic medium. The battery of the present invention is a bipolar battery having a configuration including the above-described members, and can be applied to any type of primary battery, secondary battery, and fuel cell. In the present invention, the bipolar battery has a structure in which an acidic medium and a basic medium are adjacent to each other, and a substance for extracting electric energy and an electrode are included therein.
特に本発明におけるバイポーラ型電池は、 (1 ) 上記の酸性媒体中或いはこれ に接触する電極近傍で第 1の物質及び水素イオンが共存し、 共に反応系物質とし て第 1の電極から電子を奪う (酸化する) 反応を引き起こす、 (2 ) 上記塩基性 媒体中或いはこれに接触する電極近傍で第 2の物質及び水酸化物イオンが共存し 、 共に反応系物質として電極に電子を与える (還元する) 反応を引き起こす、 以 上 (1 ) 及び (2 ) が同時に進行して、 外部回路を駆動する電気エネルギーを発 生する。  In particular, the bipolar battery according to the present invention is characterized in that (1) the first substance and the hydrogen ion coexist in the above-mentioned acidic medium or in the vicinity of the electrode in contact with the acidic medium, and both take away electrons from the first electrode as a reaction system substance. (2) The second substance and the hydroxide ion coexist in the basic medium or in the vicinity of the electrode in contact with the basic medium, and both give electrons to the electrode as a reaction substance (reduce) ) Initiate a reaction. The above (1) and (2) proceed simultaneously to generate electrical energy that drives an external circuit.
なお、 本発明の電池は、 バイポーラ一型反応場において、 酸性媒体中の水素ィ オンは第 1の物質による第 1の電極から電子を奪う反応に加わり、 また、 その濃 度増加は反応を促進する (化学平衡を生成系方向にずらす) 作用を有する。 また 、 塩基性媒体を構成する水酸化物イオンは第 2の物質による第 2の電極へと電子 を供与する反応に加わり、 また、 その濃度増加は反応を促進する作用を有する。 このため、 水素イオン或いは水酸化物イオンを高くする、 即ち、 酸性媒体中では p Hを低くし、 塩基性媒体では p Hを高くすることで反応を増強させることが可 能となり、 出力が高めることが可能な構成を有している点でも有効である。 このような、 本発明の電池を構成する各部材について、 詳細に説明する。 〔酸性媒体及び塩基性媒体〕 In the battery of the present invention, in a bipolar type reaction field, hydrogen ions in an acidic medium participate in a reaction of the first substance to remove electrons from the first electrode, and an increase in the concentration accelerates the reaction. (Shifts the chemical equilibrium toward the production system). Also, hydroxide ions constituting the basic medium participate in the reaction of the second substance to donate electrons to the second electrode, and the increase in the concentration has the effect of accelerating the reaction. Therefore, the reaction can be enhanced by increasing the hydrogen ion or hydroxide ion, that is, by lowering the pH in an acidic medium and by increasing the pH in a basic medium. It is also effective in having a configuration that can increase the output. Each of the members constituting the battery of the present invention will be described in detail. (Acid medium and basic medium)
本発明において、 酸性媒体は p H 7未満である媒体を指し、 水素イオンが存在 する酸性反応場を形成し得ることが好ましく、 また、 塩基性媒体は P H 7を超え る媒体を指し、 水酸化物イオンが存在する塩基性反応場を形成し得ることが好ま しい。  In the present invention, the acidic medium refers to a medium having a pH of less than pH 7, and is preferably capable of forming an acidic reaction field in which hydrogen ions are present. It is preferable that a basic reaction field in which a substance ion exists can be formed.
これらの酸性媒体及び塩基性媒体としては、 それぞれが独立に、 液体状態、 ゲ ル状態、 固体状態のいずれの態様であってもよいが、 両媒体が同じ態様であるこ とが好ましい。 また、 酸性媒体及び塩基性媒体としては、 有機化合物、 無機化合 物の種類に関らず用いることができる。  The acidic medium and the basic medium may each independently be in any of a liquid state, a gel state, and a solid state, but it is preferable that both mediums have the same form. In addition, the acidic medium and the basic medium can be used irrespective of the type of the organic compound or the inorganic compound.
酸性媒体と塩基性媒体との好ましい組み合わせは、 例えば、 硫酸や塩酸、 リン 酸等の酸性水溶液と、 水酸化ナトリウム、 水酸化カリウム、 アンモニア、 アンモ ニゥム化合物等の塩基性水溶液と、 の水溶液の組み合わせ;それらの水溶液をゲ ル化剤によってゲル化したイオン伝導性ゲルの組み合わせ;スルホン酸基ゃリン 酸基を有する酸性のイオン交換部材と、 4級アンモニゥム基を有する塩基性のィ オン交換部材と、 のイオン交換部材 (イオン交換樹脂を用いた膜、 濾紙などの形 態を含む) の組み合わせ;硫酸処理した酸化ジルコニァゃ貴金属含有酸化ジルコ ニァ等の固体超強酸及び固体酸と、 酸化バリウム等の固体超強塩基及び固体塩基 と、 の固体物の組み合わせ;などが挙げられる。  A preferred combination of an acidic medium and a basic medium is, for example, a combination of an aqueous solution of an acidic aqueous solution such as sulfuric acid, hydrochloric acid, or phosphoric acid, and a basic aqueous solution such as sodium hydroxide, potassium hydroxide, ammonia, or an ammonium compound. A combination of an ion-conductive gel obtained by gelling those aqueous solutions with a gelling agent; an acidic ion exchange member having a sulfonic acid group and a phosphate group, and a basic ion exchange member having a quaternary ammonium group. Combination of ion exchange members (including forms such as membranes and filter papers using ion exchange resin); sulfuric acid-treated zirconia oxide; solid superacids and solid acids such as noble metal-containing zirconium oxide; and barium oxide and the like. A combination of a solid super base and a solid base;
より具体的には、 前記酸性水溶液としては、 硫酸、 メタンスルホン酸、 卜リフ ルォロメタンスルホン酸、 塩化水素酸、 ヨウ化水素酸、 臭化水素酸、 過塩素酸、 過ヨウ素酸、 オルトリン酸、 ポリリン酸、 硝酸、 テ卜ラフルォロホウ酸、 へキサ フルォロ珪酸、 へキサフルォロリン酸、 へキサフルォロ砒酸、 へキサクロ口白金 酸、 酢酸、 トリフルォロ酢酸、 クェン酸、 蓚酸、 サリチル酸、 酒石酸、 マレイン 酸、 マロン酸、 フタル酸、 フマル酸、 及びピクリン酸からなる群より選択される 酸を 1以上含む水溶液を用いることが好ましく、 中でも、 強酸である、 硫酸、 塩 酸、 硝酸、 リン酸を含むことがより好ましい。  More specifically, the acidic aqueous solution includes sulfuric acid, methanesulfonic acid, trifluoromethanesulfonic acid, hydrochloric acid, hydroiodic acid, hydrobromic acid, perchloric acid, periodic acid, orthophosphoric acid, Polyphosphoric acid, nitric acid, tetrafluoroboronic acid, hexafluorosilicic acid, hexafluorophosphoric acid, hexafluorofluoroarsenic acid, hexachloroarsenic platinum acid, acetic acid, trifluoroacetic acid, citric acid, oxalic acid, salicylic acid, tartaric acid, maleic acid, malonic acid, phthalic acid It is preferable to use an aqueous solution containing at least one acid selected from the group consisting of acid, fumaric acid, and picric acid, and it is more preferable to use a strong acid such as sulfuric acid, hydrochloric acid, nitric acid, and phosphoric acid.
また、 前記塩基性水溶液としては、 水酸化ナトリウム、 水酸化カリウム、 水酸 化リチウム、 水酸化カルシウム、 水酸化バリウム、 水酸化マグネシウム、 水酸化 アンモニゥム、 水酸化テトラメチルアンモニゥム、 水酸化テトラエチルアンモニ ゥム、 水酸化テトラプロピルアンモニゥム、 及び、 水酸化テトラプチルアンモニ ゥムを含む群から選択される塩基を 1以上含む、 又は、 炭酸ナトリウム、 炭酸水 素ナトリウム、 炭酸カリウム、 炭酸水素カリウム、 ホウ酸ナトリウム、 ホウ酸力 リウム、 珪酸ナトリウム、 珪酸カリウム、 トリポリリン酸ナトリウム、 トリポリ リン酸カリウム、 アルミン酸ナトリウム、 及びアルミン酸カリウムを含む群から 選択される弱酸のアル力リ金属塩を 1以上含む水溶液を用いることができ、 中で も、 強塩基である、 水酸化ナトリウム、 水酸化カリウムを含むことがより好まし い。 The basic aqueous solution includes sodium hydroxide, potassium hydroxide, and hydroxyl. Lithium chloride, calcium hydroxide, barium hydroxide, magnesium hydroxide, ammonium hydroxide, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, and tetrabutylammonium hydroxide Or one or more bases selected from the group containing sodium or sodium carbonate, sodium hydrogen carbonate, potassium carbonate, potassium hydrogen carbonate, sodium borate, potassium borate, sodium silicate, potassium silicate, sodium tripolyphosphate, An aqueous solution containing at least one metal salt of a weak acid selected from the group including potassium tripolyphosphate, sodium aluminate, and potassium aluminate can be used. Among them, sodium hydroxide, which is a strong base, can be used. It is better to contain potassium hydroxide Not to.
更に、 酸性媒体としての酸性のイオン伝導性ゲルは、 上記のような酸性水溶液 を、 水ガラス、 無水二酸化ケイ素、 架橋ポリアクリル酸、 又はその塩類などのゲ ル化剤を用いて、 ゲル化したものが好ましい。  Further, the acidic ion-conductive gel as an acidic medium was gelled from the above acidic aqueous solution using a gelling agent such as water glass, anhydrous silicon dioxide, crosslinked polyacrylic acid, or salts thereof. Are preferred.
一方、 塩基性媒体としての塩基性のイオン伝導性ゲルは、 上記のような塩基性 水溶液を、 例えば、 カルポキシメチルセルロース、 架橋ポリアクリル酸やその塩 類、 をゲル化剤として用いて、 ゲル化したものが好ましい。  On the other hand, a basic ion-conductive gel as a basic medium is formed by gelling a basic aqueous solution as described above using, for example, carboxymethylcellulose, cross-linked polyacrylic acid or a salt thereof as a gelling agent. Are preferred.
なお、 上記の酸や塩基は、 1種のみを用いてもよいし、 2種以上を混合して用 いてもよい。 また、 ゲル化剤の使用方法も同様である。  The acids and bases described above may be used alone or in a combination of two or more. The same applies to the method of using the gelling agent.
また、 前記の酸性のイオン交換部材及び塩基性のイオン交換部材としては、 ィ オン交換樹脂を用いた、 イオン交換膜、 固体高分子電解質膜、 濾紙などの形態を 含む。 好適なものとしては、 スルホン酸基やリン酸基などの強酸性基を有する強 酸性イオン交換樹脂や、 4級アンモニゥム基などの強塩基性基を有する強塩基性 ィォン交換樹脂を用いた各ィォン交換部材である。  Examples of the acidic ion exchange member and the basic ion exchange member include forms such as an ion exchange membrane, a solid polymer electrolyte membrane, and a filter paper using an ion exchange resin. Preferable examples are ionizing resins using a strongly acidic ion exchange resin having a strongly acidic group such as a sulfonic acid group or a phosphoric acid group, or a strongly basic ion exchange resin having a strongly basic group such as a quaternary ammonium group. It is a replacement member.
より具体的には、 例えば、 製品名ダウエックス (D o w社製) や、 製品名ダイ ャイオン (三菱化学社製) 、 製品名アンバーライト (R o h m a n d H a s s 社製) に代表されるポリビニルスチレン系のイオン交換樹脂や、 製品名ナフィォ ン (D u P o n t社製) 、 製品名フレミオン (旭ガラス社製) 、 製品名ァシプレ ックス (旭化成工業社製) に代表されるポリフルォロヒドロカーボンポリマー系 の固体高分子電解質膜、 製品名ネオセプ夕 (トクャマ社製) 、 製品名ネオセプ夕 B P - 1 (トクャマ社製) に代表されるポリビニルスチレン系のイオン交換膜、 ポリスチレン系の繊維状ィォネックスイオン交換体で形成されたイオン交換濾紙 製品名 R X— 1 (東レ社製) 等が挙げられる。 More specifically, for example, polyvinyl styrene-based products represented by the product names Dowex (manufactured by Dow), the product names Dyaion (manufactured by Mitsubishi Chemical Corporation), and the product names Amberlite (manufactured by Rohmand Hass) Ion-exchange resin, polyfluorohydrocarbon polymer represented by Nafion (DuPont), Flemion (Asahi Glass), and Asiplex (Asahi Kasei) Solid polymer electrolyte membrane, product name Neosep (Tokuyama), product name Neosep Polyvinylstyrene-based ion-exchange membranes such as BP-1 (manufactured by Tokuyama), and ion-exchange filter paper made of polystyrene fibrous ionex ion exchangers. Product name RX-1 (manufactured by Toray) No.
更に、 固体超強酸として好適なものとしては、 硫酸処理した酸化ジルコニァゃ 貴金属含有酸化ジルコニァ等が挙げられる。 その他、 固体酸として、 力オリナイ 卜やモンモリナイト等の粘度鉱物、 ゼォライト、 複合酸化物、 水和酸化物、 また 酸性物質を添着した活性炭を用いることもできる。  Further, preferable examples of the solid superacid include sulfuric acid-treated zirconium oxide and noble metal-containing zirconia oxide. In addition, as a solid acid, viscous minerals such as force orite and montmorillonite, zeolites, composite oxides, hydrated oxides, and activated carbon impregnated with an acidic substance can also be used.
固体超強塩基として好適なものとしては、 酸化バリウム、 酸化ストロンチウム 、 酸化カルシウム等が挙げられる。 その他、 固体塩基として、 酸化マグネシウム 等の金属酸化物及びそれらを含む複合酸化物、 水酸化カルシウムのように水への 溶解度の低い水酸化物、 アルカリ金属やアルカリ土類金属イオン交換ゼォライト 、 また塩基性物質を添着した活性炭を用いることもできる。  Preferred examples of the solid super base include barium oxide, strontium oxide, and calcium oxide. Other solid bases include metal oxides such as magnesium oxide and composite oxides containing them, hydroxides having low solubility in water such as calcium hydroxide, alkali metal and alkaline earth metal ion exchange zeolites, and bases. Activated carbon impregnated with a toxic substance can also be used.
本発明の電池において、 酸性媒体及び塩基性媒体は、 互いに接することを必須 とするが、 これは、 酸性媒体中で、 水素イオンを放出することにより生成した対 陰イオンと、 塩基性媒体中で、 水酸化物イオンを放出したことにより生成した対 陽イオンと、 で塩を形成させて電荷のバランスをとることを可能とするためであ る。 そのため、 例えば、 上述のように、 両媒体が、 酸性水溶液と塩基性水溶液と からなる場合、 生成した陽イオン及び Z又は陰イオンを透過可能な特性を有して いる膜を用いれば、 酸性媒体と塩基性媒体との間が分離される態様であってもか まわない。  In the battery of the present invention, the acidic medium and the basic medium are required to be in contact with each other. This is because the acidic medium and the basic medium are formed by releasing a hydrogen ion in the acidic medium and the basic medium in the basic medium. This is because it is possible to balance the charge by forming a salt with the counter cation generated by releasing the hydroxide ion and the counter cation. Therefore, for example, as described above, in the case where both media are composed of an acidic aqueous solution and a basic aqueous solution, if a membrane having the property of transmitting generated cations and Z or anions is used, an acidic medium can be used. And the basic medium may be separated.
〔第 1の物質及び第 2の物質〕  [First substance and second substance]
本発明において、 第 1の物質としては、 酸性媒体中で、 水素イオンを伴って第 1の電極から電子を奪う酸化反応を生成させる物質 (酸化剤) であれば、 如何な るものをも用いることができるが、 水素イオン濃度が高い場合に反応が促進され る物質であることが好ましい。 具体的には、 過酸化水素、 酸素、 次亜塩素酸、 次 亜臭素酸、 次亜ヨウ素酸等の次亜ハロゲン酸等をもちいることができる。 また、 これらの物質を含有する液体或いは固体、 また化学変化によってこれらの物質を 放出する液体或いは固体を用いて、 第 1の物質を供給するようにしてもよい。 また、 第 2の物質としては、 水酸化物イオンを伴って第 2の電極へと電子を供 与する還元反応を生成させる物質 (還元剤) であれば、 如何なるものをも用いる ことができるが、 水素イオン濃度が高い場合に反応が促進される物質であること が好ましい。 具体的には、 過酸化水素、 水素、 ヒドラジン等を用いることができ る。 また、 これらの物質を含有する液体或いは固体、 また化学変化によってこれ らの物質を放出する液体或いは固体を用いて第 2の物質を供給するようにしても よい。 In the present invention, as the first substance, any substance (oxidizing agent) may be used as long as the substance (oxidizing agent) generates an oxidation reaction that takes off electrons from the first electrode together with hydrogen ions in an acidic medium. However, a substance that promotes the reaction when the hydrogen ion concentration is high is preferable. Specifically, hydrogen peroxide, oxygen, hypochlorous acid, hypobromous acid, hypohalous acid such as hypoiodic acid, and the like can be used. Further, the first substance may be supplied using a liquid or a solid containing these substances, or a liquid or a solid releasing these substances by a chemical change. Also, as the second substance, electrons are supplied to the second electrode with hydroxide ions. Any substance can be used as long as it is a substance (reducing agent) that generates the reduction reaction to be applied, but is preferably a substance that promotes the reaction when the hydrogen ion concentration is high. Specifically, hydrogen peroxide, hydrogen, hydrazine and the like can be used. Further, the second substance may be supplied using a liquid or a solid containing these substances, or a liquid or a solid releasing these substances by a chemical change.
また、 第 1の物質或いは第 2の物質としては、 鉄、 マンガン、 クロム、 バナジ ゥムといった酸化 ·還元反応によって価数を変化できる金属イオンや、 それらの 金属錯体を用いることができ、 やはりこれらを含有する液体や固体等を用いてこ の物質を供給することもできる。  In addition, as the first substance or the second substance, metal ions such as iron, manganese, chromium, and vanadium whose valence can be changed by oxidation and reduction reactions, and metal complexes thereof can be used. The substance can also be supplied using a liquid or a solid containing the same.
上記の中でも、 第 1の物質及び第 2の物質が、 同一成分からなることが好まし い。 このような物質は、 酸性媒体中で、 水素イオンを伴って第 1の電極から電子 を奪う酸化反応を生成させ、 塩基性媒体中では、 水酸化物イオンを伴って第 2の 電極へと電子を供与する還元反応を生成させる性質を有する。 この場合には、 電 池の構成が容易になり、 従来の電池で大きな課題であった正極側と負極側の化学 物質の分離膜の選択の自由度が拡がるとともに、 酸性媒体と塩基性媒体が混合さ れない状態に保てる場合には必ずしも分離膜を必要としない。  Among the above, it is preferable that the first substance and the second substance are composed of the same component. In an acidic medium, such a substance generates an oxidation reaction that removes electrons from the first electrode with hydrogen ions, and in a basic medium, the electrons are transferred to the second electrode with hydroxide ions. Has the property of generating a reduction reaction that provides In this case, the configuration of the battery becomes easy, and the degree of freedom in selecting a separation membrane for chemical substances on the positive electrode side and the negative electrode side, which has been a major problem with conventional batteries, is expanded, and an acidic medium and a basic medium are used. A separation membrane is not necessarily required if it can be kept unmixed.
酸化剤及び還元剤のどちらにも使用できる物質としては、 特に過酸化水素が好 ましい。 この理由については後で詳細に説明する。 なお、 過酸化水素を含有する 液体或いは固体、 また、 化学変化によって過酸化水素を放出する液体或いは固体 を用いて、 過酸化水素を供給することが、 取り扱いがより簡易になる点で好まし い。  Hydrogen peroxide is particularly preferred as a substance that can be used for both the oxidizing agent and the reducing agent. The reason will be described later in detail. It is preferable to supply hydrogen peroxide using a liquid or a solid containing hydrogen peroxide or a liquid or a solid that releases hydrogen peroxide due to a chemical change, because handling is easier. .
第 1の物質及び第 2の物質の供給手段の 1つである 「液体」' は、 溶液 (溶媒と して、 水、 有機溶媒等を含む) 、 分散液、 ゲルの形態のいずれであってもよい。 また、 これらの使用形態は、 上述した酸性媒体及び塩基性媒体の形態との好まし い組み合わせにより選択されることが望ましい。  The “liquid” ′, which is one of the means for supplying the first substance and the second substance, may be in the form of a solution (including water, an organic solvent, or the like as a solvent), a dispersion, or a gel. Is also good. In addition, it is desirable that these use forms are selected by a preferable combination with the above-described forms of the acidic medium and the basic medium.
また、 これらの両物質は、 一次電池の場合、 反応開始以前から媒体中に混合若 しくは分散される。 また、 燃料電池の場合は、 液体状の媒体中に始めから混合若 しくは分散されるか、 電極の近傍に設置された流路を通して、 或いは、 毛細管へ の染込みを利用して、 或いは直接的に媒体へ添加される方式としてもよい。In the case of a primary battery, both of these substances are mixed or dispersed in a medium before the start of the reaction. In the case of a fuel cell, it is mixed or dispersed in a liquid medium from the beginning, or through a flow path installed near the electrode, or to a capillary tube. It is also possible to use a method in which the dye is added to the medium by utilizing infiltration or directly.
〔第 1の電極及び第 2の電極〕 (First electrode and second electrode)
本発明において、 第 1の電極は正極であり、 第 2の電極は負極として機能する 。 これら第 1の電極及び第 2の電極の材質としては、 従来の電池における電極と 同様のものを用いることができる。 より具体的には、 第 1の電極 (正極) として 、 白金、 白金黒、 酸化白金被覆白金、 銀、 金等が挙げられる。 また、 表面を不動 態化したチタン、 ステンレス、 ニッケル、 アルミニウム等が挙げられる。 また、 グラフアイトゃカーボンナノチューブ等の炭素構造体、 アモルファス力一ボン、 グラッシ一カーボン等が挙げられる。 ただし、 耐久性の点から、 白金、 白金黒、 酸化白金被覆白金がより好ましい。  In the present invention, the first electrode functions as a positive electrode, and the second electrode functions as a negative electrode. As the material of the first electrode and the second electrode, the same material as the electrode in the conventional battery can be used. More specifically, examples of the first electrode (positive electrode) include platinum, platinum black, platinum oxide-coated platinum, silver, and gold. In addition, titanium, stainless steel, nickel, aluminum and the like having a surface immobilized can be used. In addition, there are carbon structures such as graphite and carbon nanotubes, amorphous carbon, glassy carbon, and the like. However, from the viewpoint of durability, platinum, platinum black, and platinum oxide-coated platinum are more preferable.
また、 第 2の電極 (負極) としては、 白金、 白金黒、 酸化白金被覆白金、 銀、 金等が挙げられる。 また、 表面を不動態化したチタン、 ステンレス、 ニッケル、 アルミニウム等が挙げられる。 また、 グラフアイトやカーボンナノチューブ等の 炭素構造体、 アモルファスカーボン、 グラッシ一カーボン等が挙げられる。 ただ し、 耐久性の点から、 白金、 白金黒、 酸化白金被覆白金がより好ましい。  Examples of the second electrode (negative electrode) include platinum, platinum black, platinum oxide-coated platinum, silver, and gold. In addition, titanium, stainless steel, nickel, aluminum and the like having a passivated surface may be used. In addition, carbon structures such as graphite and carbon nanotubes, amorphous carbon, glassy carbon and the like can be mentioned. However, from the viewpoint of durability, platinum, platinum black, and platinum oxide-coated platinum are more preferable.
更に、 本発明において、 第 1の電極及び第 2の電極のいずれもが、 板状、 薄膜 状、 網目状、 又は繊維状であることが好ましい。 特に、 本発明の実施形態 〔 (2 ) ペーパー型燃料電池〕 と 〔 (3 ) ゲル型一次電池〕 の場合は、 電池内で発生し た気体の排出流路となるべく、 網目状であることが好ましい。 ここで、 「網目状 」 とは、 少なくとも、 排出しょうとする気体が通り抜けられる貫通路が存在する 多孔室状態であることを指す。  Further, in the present invention, it is preferable that both the first electrode and the second electrode are in the form of a plate, a thin film, a mesh, or a fiber. In particular, in the case of the embodiments of the present invention [(2) paper-type fuel cell] and [(3) gel-type primary battery], the mesh may be formed so as to be a discharge passage for gas generated in the cell. preferable. Here, the term "mesh-like" means at least a perforated chamber state in which there is a through passage through which the gas to be discharged passes.
網目状の電極として、 具体的には、 金属製のメッシュやパンチングメタル板、 発泡金属シートに、 上記の電極用材料を、 無電解メツキ法、 蒸着法、 又はスパッ 夕法によって付着させてもよいし、 また、 セルロースや合成高分子製の紙類に、 同様の方法或いはその組合せを用いて上記の電極用材質を付着させてもよい。 また、 第 1の電極及び第 2の電極が、 イオン交換樹脂やイオン伝導性ゲルのよ うな形状保持性の高い両媒体に配置される場合、 かかるイオン交換樹脂やイオン 伝導性ゲルの表面に、 所望の電極用材料を、 無電解メツキ法、 蒸着法、 又はスパ ッ夕法を用いて配置することも好ましい態様である。 ぐ発電方法 > As a mesh-like electrode, specifically, the above-described electrode material may be attached to a metal mesh, a punched metal plate, or a foamed metal sheet by an electroless plating method, a vapor deposition method, or a sputtering method. Alternatively, the above-described electrode material may be attached to cellulose or synthetic polymer paper by using the same method or a combination thereof. Further, when the first electrode and the second electrode are arranged on both media having a high shape retention such as an ion exchange resin or an ion conductive gel, the surface of the ion exchange resin or the ion conductive gel has It is also a preferable embodiment to arrange a desired electrode material by using an electroless plating method, an evaporation method, or a sputtering method. Power generation method>
本発明の発電方法 (発電機構) について、 詳細に説明する。  The power generation method (power generation mechanism) of the present invention will be described in detail.
本発明の発電方法は、 酸性媒体と、 該酸性媒体中に配置された第 1の電極と、 前記酸性媒体と接する塩基性媒体と、 該塩基性媒体中に配置された第 2の電極と 、 を備える電池を用いた発電方法であって、  The power generation method of the present invention comprises: an acidic medium; a first electrode disposed in the acidic medium; a basic medium in contact with the acidic medium; and a second electrode disposed in the basic medium. A power generation method using a battery comprising:
前記酸性媒体に含有される第 1の物質が水素イオンを伴って前記第 1の電極か ら電子を奪う反応を生じさせ、 かつ、 前記塩基性媒体に含有される第 2の物質が 水酸化イオンを伴って前記第 2の電極へと電子を供与する反応を生じさせて発電 することを特徴とする。  The first substance contained in the acidic medium causes a reaction to take away electrons from the first electrode together with hydrogen ions, and the second substance contained in the basic medium is a hydroxide ion With this, a reaction of donating electrons to the second electrode is caused to generate power.
この反応により、 第 1物質及び第 2の物質が内部エネルギーの低い複数の物質 に化学変化することによって、 その分のエネルギーを外部に電気エネルギーとし て放出して電力を得ることができる。  By this reaction, the first substance and the second substance are chemically changed into a plurality of substances having low internal energies, and the corresponding energy can be released to the outside as electric energy to obtain electric power.
なお、 ここでは、 酸性媒体が酸性水溶液、 塩基性媒体が塩基性水溶液からなり 、 第 1の物質及び第 2の物質が、 いずれも過酸化水素である態様について説明す るが、 これは本発明の最も好ましい態様として示すものであって、 本発明をこれ に限定するものではない。  Here, an embodiment will be described in which the acidic medium is an acidic aqueous solution, the basic medium is a basic aqueous solution, and the first substance and the second substance are both hydrogen peroxide. The present invention is shown as the most preferable embodiment of the present invention, and the present invention is not limited thereto.
過酸化水素は、 分解反応によって水と酸素を生成する。 この化学反応を、 本発 明の電池のように、 別々の電極で酸化反応と還元反応に分離して行うと、 起電力 を生じる。 即ち、 過酸化水素は、 酸性反応場では酸化作用を有し、 一方で、 塩基 性反応場では還元作用を有するため、 起電力が発生する。 このような、 酸一塩基 バイポーラ一反応場を利用することで、 本発明の発電方法が実現される。  Hydrogen peroxide produces water and oxygen by a decomposition reaction. When this chemical reaction is carried out by separate electrodes into an oxidation reaction and a reduction reaction as in the battery of the present invention, an electromotive force is generated. That is, hydrogen peroxide has an oxidizing action in an acidic reaction field, and has a reducing action in a basic reaction field, so that an electromotive force is generated. The power generation method of the present invention is realized by using such an acid-base bipolar reaction field.
より具体的に、 本発明の発電方法について、 図 1を参照して説明する。 図 1に 示されるように、 正極 (第 1の電極) が配置されている酸性反応場 (酸性媒体) では、 過酸化水素が酸化剤として働き、 下記 (式 1 ) に示されるように、 過酸化 水素の酸素原子が電極から電子を受け取り、 水を生成する。 また、 負極 (第 2の 電極) が配置されている塩基性反応場 (塩基性媒体) では、 過酸化水素が還元剤 として働き、 下記 (式 2 ) に示されるように、 過酸化水素の酸素原子が電極に電 子を供与して、 酸素と水を生成する。 これら反応により、 起電力が発生し、 発電 が行なわれる。 H202+ 2 H++ 2 e" → 2 H20 (式 1 ) More specifically, the power generation method of the present invention will be described with reference to FIG. As shown in Fig. 1, in the acidic reaction field (acidic medium) where the positive electrode (first electrode) is located, hydrogen peroxide acts as an oxidizing agent, and as shown in (Equation 1) below, The oxygen atoms of the hydrogen oxide receive electrons from the electrodes and produce water. In the basic reaction field (basic medium) where the negative electrode (second electrode) is located, hydrogen peroxide acts as a reducing agent, and as shown in the following (Equation 2), the oxygen of hydrogen peroxide Atoms donate electrons to the electrodes to produce oxygen and water. These reactions generate electromotive force and generate power. H 2 0 2 + 2 H + + 2 e "→ 2 H 2 0 (Equation 1)
H202+ 2 OH" → 02+ 2 H20+ 2 e" (式 2 ) H 2 0 2 + 2 OH "→ 0 2 + 2 H 2 0 + 2 e" (Equation 2)
なお、 反応場内においては、 酸性媒体中に存在する水素イオンの対ァニオン ( 図 1中では、 硫酸イオン so4 2—に相当する) と、 塩基性媒体中に存在する水酸化 物イオンの対カチオン (図 1中では、 ナトリウムイオン Na+) と、 が両媒体の 界面で塩を形成することで、 電荷のバランスを取ることができる。 このとき、 形 成される塩は、 水溶液中では通常イオン化する方が安定であるため、 塩の形成に よる起電力への効果は、 電極における酸化或いは還元反応における起電力と比べ るとはるかに小さい。 この結果、 電極反応が主体的となる本発明のバイポーラ型 電池は、 酸性 ·塩基性媒体界面における中和反応を主体としたバイポーラ型電池 と比べ、 安定した発電を行える性質を有することとなる。 In the reaction venue, pairs Anion hydrogen ions present in the acidic medium (in FIG. 1, sulfate ions so 4 2 - corresponds to) a pair of hydroxide-ion present in the basic medium cation (Sodium ion Na + in Fig. 1) and form a salt at the interface of both media, so that the charge can be balanced. At this time, since the salt formed is usually more stable in the aqueous solution when ionized, the effect of the salt formation on the electromotive force is far greater than the electromotive force in the oxidation or reduction reaction at the electrode. small. As a result, the bipolar battery of the present invention, in which the electrode reaction is dominant, has the property of generating more stable power than the bipolar battery in which the neutralization reaction is mainly at the interface between the acidic and basic media.
上記 (式 1) と (式 2) の半反応式をまとめたイオン反応式を下記 (式 3) に 示す。  The following equation (3) shows an ionic reaction equation that summarizes the half-reaction equations (Equation 1) and (Equation 2).
H202→H20+ 1ノ 202 (式 3) H 2 0 2 → H 2 0+ 1 Roh 20 2 (Equation 3)
熱力学計算によると、 この反応のェンタルピ一変化 (ΔΗ) 、 エントロピ一変 化 (AS) 、 ギプスの自由エネルギー変化 (AG、 温度 T :単位はケルビン (K ) ) は、 それぞれ、 ΔΗ =— 96. 7 k J /mo 1、 Δ S = 1 8. 9 J /Kmo 1、 AG = AH— ΤΔ S=— 1 1 5. 5 k J/mo l となる。  According to thermodynamic calculations, the enthalpy change (ΔΗ), the entropy change (AS), and the free energy change of the cast (AG, temperature T: Kelvin (K)) of this reaction are ΔΗ = — 96. 7 kJ / mo1, ΔS = 18.9 J / Kmo1, AG = AH—ΤΔS = —1 15.5 kJ / mol.
また、 理論起電力 (nは反応に関る電子数、 Fはファラデー定数) と理論最大 効率 ( 71) は、 それぞれ、 E =— AG/nF= l. 2V、 τ? =ΔΘ/ΔΗΧ 10 0 = 1 20%と計算される。 この反応の理論的特徴は、 過酸化水素分解反応でェ ントロピーが増加して△ Sの符号が正になることである。 そのため、 AGの絶対 値が ΔΗより大きくなり、 理論最大効率が 100 %を超える。 これとは異なり、 水素一酸素系やダイレク卜メタノール系等、 他の燃料電池反応では、 ASの符号 は負である。  The theoretical electromotive force (n is the number of electrons involved in the reaction, F is the Faraday constant) and the theoretical maximum efficiency (71) are E = — AG / nF = l. 2V and τ? = ΔΘ / ΔΗΧ 100 = 1 calculated as 20%. The theoretical feature of this reaction is that entropy increases in the hydrogen peroxide decomposition reaction and the sign of ΔS becomes positive. Therefore, the absolute value of AG becomes larger than ΔΗ, and the theoretical maximum efficiency exceeds 100%. In contrast, the AS sign is negative for other fuel cell reactions, such as hydrogen-oxygen and direct methanol.
これらのことから、 本発明の発電方法において、 第 1の物質及び第 2の物質に 過酸化水素を用いた場合の理論的特徴を以下に挙げる。  From these facts, in the power generation method of the present invention, theoretical characteristics when hydrogen peroxide is used as the first substance and the second substance are described below.
従来より知られている他の燃料電池では、 原理的に、 エントロピー変化量 ΤΔ Sを発電に利用できず熱として放出する。 一方、 本機構では、 外界から熱を吸収 して得たエントロピーの増加分を発電に利用することができる。 そして、 反応温 度 Tが高い場合の方が、 A Gの絶対値が大きくなり起電力が高くなる。 In other known fuel cells, the amount of change in entropy ΤΔS cannot be used for power generation in principle and is released as heat. On the other hand, this mechanism absorbs heat from the outside world The increase in entropy obtained in this way can be used for power generation. When the reaction temperature T is higher, the absolute value of AG becomes larger and the electromotive force becomes higher.
実用電池では、 イオン反応式の理論起電力だけで出力電圧が決まるのではなく 、 過電圧等によって電圧が低下し同時に熱を発生する。 例えば、 単位電池をス夕 ックして集積化する場合、 或いは、 電池を製品内部に組み込む場合に、 この熱が 大きな問題になる。 しかし、 上述のように、'本発明の発電方法によれば、 理論的 にはその熱を発電に再利用することができ、 全体的な熱発生が少なくなる可能性 がある。 また、 発電に利用できるエネルギー総量に相当する A Gは水素 ·酸素燃 料電池に比較して半分程度であるが、 n = l (水素一酸素系の燃料電池の場合は n = 2 ) であるために理論起電力は同程度となる。  In a practical battery, the output voltage is not determined only by the theoretical electromotive force of the ion reaction formula, but the voltage is reduced due to overvoltage or the like, and heat is generated at the same time. For example, this heat poses a major problem when integrating unit batteries by scanning or integrating batteries inside products. However, as described above, according to the power generation method of the present invention, the heat can be theoretically reused for power generation, and there is a possibility that the overall heat generation is reduced. AG, which is equivalent to the total amount of energy that can be used for power generation, is about half that of hydrogen-oxygen fuel cells, but n = l (n = 2 for hydrogen-oxygen fuel cells). The theoretical electromotive force is almost the same.
また、 上記のことから、 本発明の電池及び本発明の発電方法において、 第 1の 物質及び第 2の物質に過酸化水素を用いた場合には、 下記に示すような効果が得 られる。  From the above, in the battery of the present invention and the power generation method of the present invention, when hydrogen peroxide is used as the first substance and the second substance, the following effects can be obtained.
( 1 ) 過酸化水素は、 化学エネルギーを電気エネルギーに変換する反応に伴って 二酸化炭素を放出せず、 その代わりに酸素を放出する。 また、 電池内の構造要素 に、 発火物 ·可燃物や有害な重金属類等を使用しないため、 製造 ·使用 ·廃棄の 製品サイクル全体に渡って環境安全性に優れる。  (1) Hydrogen peroxide does not release carbon dioxide due to the conversion of chemical energy into electrical energy, but instead releases oxygen. In addition, it does not use ignitable materials, combustible materials, harmful heavy metals, etc. as structural elements inside the battery, so it has excellent environmental safety throughout the product cycle of manufacturing, use, and disposal.
( 2 ) 過酸化水素は、 常温常圧で液体であるため貯蔵のために重い金属ボンべ等 を必要としないし、 水と自由に混合できるためゲル化が容易であり、 貯蔵性 '携 帯性の優れた燃料供給方法を取ることができる。  (2) Hydrogen peroxide is a liquid at normal temperature and pressure, so it does not require heavy metal cylinders for storage.It can be freely mixed with water, so it is easy to gel and has a good storage property. It is possible to take a fuel supply method with excellent characteristics.
( 3 ) 酸化剤として酸素を使用する必要が無いため、 空気量の限られた閉鎖環境 下、 また空気中に塵ゃゴミ等が多く含まれる過酷環境下でも、 その使用に支障が ない。  (3) Since it is not necessary to use oxygen as an oxidizing agent, its use is not hindered even in a closed environment with a limited amount of air or in a harsh environment where air contains a lot of dust and dirt.
( 4 ) 過酸化水素は、 その工業的製造方法として有機法 (アントラキノンを中間 体 (何度も再利用するので消費しない) として、 触媒による水素の接触還元と空 気酸化によって合成する方法) 等がすでに確立されており、 現状でも安定的に安 価で供給されている。 これに加え、 周辺部品が少なくシンプルな構造で電池を構 成しうるため、 電池システム全体の重量及び体積を小さくでき、 かつ低コスト化 や高耐久性を図れる。 上記においては、 第 1の物質及び第 2の物質として過酸化水素を用いた発電方 法について述べたが、 両物質に他の物質 (化合物) を用いた場合にも、 電極側で 酸化 ·還元反応を生じさせる点では実質的に同じである。 (4) Hydrogen peroxide is produced industrially as an organic method (a method of synthesizing anthraquinone by catalytic reduction of hydrogen with a catalyst and air oxidation as an intermediate (it is not reused because it is reused many times)), etc. Has already been established, and it is still supplied at a stable price at present. In addition, since the battery can be configured with a simple structure with few peripheral components, the weight and volume of the entire battery system can be reduced, and cost reduction and high durability can be achieved. In the above, the power generation method using hydrogen peroxide as the first substance and the second substance has been described. However, when other substances (compounds) are used for both substances, oxidation and reduction are performed on the electrode side. It is substantially the same in that a reaction takes place.
そのため、 本発明の電池及び本発明の発電方法によれば、 その発電機構により 、 安定した発電が可能となる。  Therefore, according to the battery of the present invention and the power generation method of the present invention, the power generation mechanism enables stable power generation.
また、 本発明の電池及び本発明の発電方法において、 電極反応で生成した生成 物は、 電極間ではなく電極近傍に生成されるため、 これらを除去する必要がある 場合には、 電池構造を内包する筐体の外側から容易に除去することが可能となる 。 また、 電極反応で生成した生成物が水であって、 酸性媒体或いは塩基性媒体が 水溶液である場合、 若しくは、 第 1の物質及び第 2の物質を水溶液に混合、 溶解 、 分散させて用いる塲合には、 生成された水を両媒体中に拡散させることや、 電 池外に排出することで、 容易に電極近傍から除去することができる。  Further, in the battery of the present invention and the power generation method of the present invention, products generated by the electrode reaction are generated not in the vicinity of the electrodes but in the vicinity of the electrodes. Therefore, when it is necessary to remove them, the battery structure is included. It can be easily removed from the outside of the housing. Further, when the product generated by the electrode reaction is water and the acidic medium or the basic medium is an aqueous solution, or the first substance and the second substance are mixed, dissolved, and dispersed in the aqueous solution for use. In this case, the generated water can be easily removed from the vicinity of the electrode by diffusing the generated water into both media and discharging the water out of the battery.
以下、 本発明の電池の好ましい実施形態について説明するが、 本発明はこれら の限定されるものではない。 本発明の電池としては、 例えば、 下記に示す、 (1 ) チップ型流体燃料電池、 (2 ) ペーパー型燃料電池、 及び (3 ) ゲル型一次電 池が、 好ましい実施態様として挙げられる。  Hereinafter, preferred embodiments of the battery of the present invention will be described, but the present invention is not limited thereto. Preferred embodiments of the battery of the present invention include, for example, (1) a chip-type fluid fuel cell, (2) a paper-type fuel cell, and (3) a gel-type primary battery shown below.
〔 (1 ) チップ型流体燃料電池〕  [(1) Chip type fluid fuel cell]
このチップ型流体燃料電池は、 酸性媒体として、 硫酸水溶液などの液体を、 塩 基性媒体として水酸化ナトリウム水溶液などの液体を用いた、 酸一塩基バイポー ラー反応場を有する。 具体的な構成に関して、 図 2を用いて説明する。  This chip-type fluid fuel cell has an acid-basic bipolar reaction field using a liquid such as an aqueous solution of sulfuric acid as an acidic medium and a liquid such as an aqueous solution of sodium hydroxide as a basic medium. A specific configuration will be described with reference to FIG.
図 2 Aは、 チップ型流体燃料電池の概略上面透視図である。 ここに示されるよ うに、 チップ型流体燃料電池は、 スライドガラス 1 1とカバーガラス 1 0との間 FIG. 2A is a schematic top perspective view of the chip-type fluid fuel cell. As shown here, the chip-type fluid fuel cell is constructed between a slide glass 11 and a cover glass 10.
:スぺ一サ (図 2 Bにおける部材 1 2 ) を介し、 毛管流路 1 (深さ 5 0 m、 Ψί: Capillary channel 1 (50 m deep, 50 m deep) through a spacer (member 12 in FIG. 2B)
1 0 0 0 u rn) が形成されている。 この毛管流路 1は、 液体の酸性媒体と、 液体 の塩基性媒体と、 を供給するための入口 2及び入口 3と、 排出するための出口 4 及び出口 5とを有する。 例えば、 入口 2から酸性水溶液 aを、 入口 3から塩基性 水溶液 bを、 毛管流路 1に流した時、 両液体の粘度やその流速が適当である場合 には毛管流路 1の合流部分において層流 (レイノルズ流) が形成される。 1 0 0 0 u rn) is formed. The capillary channel 1 has an inlet 2 and an inlet 3 for supplying a liquid acidic medium and a liquid basic medium, and an outlet 4 and an outlet 5 for discharging. For example, when an acidic aqueous solution a flows from the inlet 2 and a basic aqueous solution b flows from the inlet 3 to the capillary channel 1, if the viscosity of the two liquids and their flow rates are appropriate, at the junction of the capillary channel 1 A laminar flow (Reynolds flow) is formed.
この層流について、 図 2 Bを参照して説明する。 図 2 Bは、 図 2 Aのチップ型 流体燃料電池を A— A ' で切断した際に、 両媒体の流れの方向からみた断面図で ある。 これに示すように、 酸性水溶液 a及び塩基性水溶液 bは、 毛管流路 1の合 流部分であっても、 それぞれ、 層流 a及び層流 bを形成し、 各々が互いに接しな がらも、 交じり合うことなく、 毛管流路 1内を流れることになる。 そして、 層流 a及び層流 bを形成したまま、 合流部分を通過して、 分岐部分で再び分離し、 出 口 4から酸性水溶液 aが、 出口 5から塩基性水溶液 bが排出され、 それぞれが独 立して回収される。 This laminar flow will be described with reference to FIG. 2B. Figure 2B shows the chip type of Figure 2A FIG. 3 is a cross-sectional view of the fluid fuel cell taken along line A-A ', as viewed from the direction of flow of both media. As shown in the figure, the acidic aqueous solution a and the basic aqueous solution b form the laminar flow a and the laminar flow b, respectively, even at the merging portion of the capillary channel 1, and while they are in contact with each other, They flow in the capillary channel 1 without intermingling. Then, while forming the laminar flow a and the laminar flow b, they pass through the merging portion and separate again at the branch portion, and the acidic aqueous solution a is discharged from the outlet 4 and the basic aqueous solution b is discharged from the outlet 5. Collected independently.
このような層流を形成している毛管流路 1の合流部分の底部には、 2つの白金 電極 6及び 8が設けられており、 それぞれの接続端子 7及び 9を通じて、 外部へ と電力を取り出すことができる。  Two platinum electrodes 6 and 8 are provided at the bottom of the merging portion of the capillary channel 1 forming such a laminar flow, and electric power is taken out to the outside through the respective connection terminals 7 and 9. be able to.
このように、 層流を形成し、 2つの液体が接触しているにも関らず、 混合しな い状態を形成するためには、 毛細管流路における粘性流体の特性を応用すること で実現できる。 これは、 液体の粘性、 流速、 また、 流路形状 (管径或いは流路幅 や深さ) に依存した定数のレイノルズ数 (R e ) が約 2 0 0 0以下の場合に起き る現象 (レイノルズ流現象) である。 この現象を用いると、 毛細管中で、 適当な 粘度と移動速度とを有する 2液は、 層流となって、 非常に混合し難くなる特性が 付与される。 そのため、 両層流に、 第 1の物質と第 2の物質とをそれぞれ共存さ せた状態で、 それぞれの層流中に電極を置くと、 酸性媒体中における酸化反応と 、 塩基性媒体中における還元反応が生じ、 起電力が発現して、 電池となる。 このチップ型流体燃料電池を 1つの単位セルとすると、 複数の単位セルを並列 若しくは直列に配列することで、 それぞれ電流量及び電圧の増加が達成される。 このような毛細管流路の複雑な構造は、 ガラス、 石英、 シリコン、 高分子フィル ム、 プラスチック樹脂、 セラミック、 グラフアイト、 金属等の基板 (チップ) に 対して、 超音波研削や半導体フォトリソグライ一、 また、 サンドブラストや射出 形成、 シリコン樹脂モ一ルディング等の既存加工技術を適用することで容易に作 製できる。 したがって、 単位セルの集積化及び複数のチップを重ねる積層化を行 うことで、 所望の性能 (電流及び、電圧) を有する電池システムが構築可能になる  In this way, the formation of a laminar flow and a state in which the two liquids do not mix despite contact are realized by applying the characteristics of the viscous fluid in the capillary channel. it can. This is a phenomenon that occurs when the Reynolds number (R e), which is a constant that depends on the viscosity of the liquid, the flow velocity, and the flow path shape (tube diameter or flow path width and depth), is about 2000 or less. (Reynolds flow phenomenon). When this phenomenon is used, the two liquids having an appropriate viscosity and a moving speed in a capillary form a laminar flow, and have a characteristic of being very difficult to mix. Therefore, if electrodes are placed in each laminar flow with the first substance and the second substance coexisting in both laminar flows, the oxidation reaction in the acidic medium and the A reduction reaction occurs, and an electromotive force is generated to form a battery. Assuming that the chip-type fluid fuel cell is one unit cell, an increase in current and voltage can be achieved by arranging a plurality of unit cells in parallel or in series. The complicated structure of such a capillary channel is based on ultrasonic grinding and semiconductor photolithography for substrates (chips) such as glass, quartz, silicon, polymer film, plastic resin, ceramic, graphite, and metal. Also, it can be easily manufactured by applying existing processing technologies such as sand blasting, injection molding, and silicone resin molding. Therefore, by integrating the unit cells and stacking multiple chips, a battery system with the desired performance (current and voltage) can be constructed.
〔 (2 ) ペーパー型燃料電池〕 このペーパー型燃料電池は、 酸性媒体及び塩基性媒体として固体状であるもの を用い、 それらを接触配置してなる、 酸一塩基バイポーラ一反応場を有する。 具 体的な構成に関して、 図 3 A及び図 3 Bに示されるペーパー型燃料電池の概略断 面透視図を用いて説明する。 [(2) Paper-type fuel cell] This paper-type fuel cell has an acid-base bipolar reaction field in which solid media are used as an acidic medium and a basic medium, and they are arranged in contact with each other. The specific configuration will be described with reference to a schematic cross-sectional perspective view of the paper fuel cell shown in FIGS. 3A and 3B.
図 3 Aに示されるペーパー型燃料電池は、 第 1の電極 2 2及び酸性媒体 2 0か らなる酸性反応場と、 第 2の電極 3 2及び塩基性媒体 3 0からなる塩基性反応場 と、 が接触している状態の構成を有し、 そこに、 第 1の物質及び第 2の物質を供 給して、 発電を行うものである。 例えば、 第 1の物質及び第 2の物質が過酸化水 素である場合、 過酸化水素の水溶液 Lを、 図 3 Aの矢印のように、 滴下若しくは 浸透させることで供給する。 これにより、 酸性反応場における酸化反応と、 塩基 性反応場における還元反応が生じ、 起電力を発現する。 また、 ここで電極形状は 、 電池内で発生した気体の排出流路となるべく、 網目状であることが好ましい。 また、 図 3 Aに示されるペーパー型燃料電池は、 図 3 Bの過酸化水素水溶液の 供給方法を変えた態様である。 このように、 酸性媒体 2 0と塩基性媒体 3 0との 界面の一部分に、 過酸化水素水溶液を浸透 ·吸収することの可能な繊維若しくは 毛管部材を含む供給部材 4 0を設置することで、 この部材 4 0を介して、 過酸化 水素水溶液が、 酸性媒体 2 0及び塩基性媒体 3 0に供給されることになる。 これ により、 酸性反応場における酸化反応と、 塩基性反応場における還元反応が生じ 、 起電力を発現する。 また、 ここでも、 電極形状は、 電池内で発生した気体の排 出流路となるべく、 網目状であることが好ましい。  The paper fuel cell shown in FIG. 3A has an acidic reaction field composed of a first electrode 22 and an acidic medium 20 and a basic reaction field composed of a second electrode 32 and a basic medium 30. ,, And are in contact with each other, and the first substance and the second substance are supplied thereto to generate power. For example, when the first substance and the second substance are hydrogen peroxide, the aqueous solution L of hydrogen peroxide is supplied by being dropped or permeated as shown by the arrow in FIG. 3A. As a result, an oxidation reaction in an acidic reaction field and a reduction reaction in a basic reaction field occur, and an electromotive force is developed. Here, it is preferable that the shape of the electrode is a mesh so as to be a discharge channel for gas generated in the battery. The paper fuel cell shown in FIG. 3A is an embodiment in which the method of supplying the aqueous hydrogen peroxide solution in FIG. 3B is changed. As described above, by providing a supply member 40 including a fiber or a capillary member capable of permeating and absorbing an aqueous hydrogen peroxide solution at a part of the interface between the acidic medium 20 and the basic medium 30, Through this member 40, the aqueous hydrogen peroxide solution is supplied to the acidic medium 20 and the basic medium 30. As a result, an oxidation reaction in an acidic reaction field and a reduction reaction in a basic reaction field occur, and an electromotive force is developed. Also, here, it is preferable that the electrode shape is a mesh shape so as to be a discharge channel for gas generated in the battery.
上記のように、 酸性媒体 2 0及び塩基性媒体 3 0としては、 強酸性置換基 (ス ルホン酸基やリン酸基など) を含有するマトリックスと、 強塩基性置換基 (4級 アンモニゥム基など) を含有するマトリックスと、 の組み合わせ、 強酸性イオン 交換樹脂と強塩基性ィォン交換樹脂との組み合わせ、 強酸性ィォン交換濾紙と強 塩基性ィォン交換濾紙との組み合わせ、 固体超強酸と固体超強塩基との組み合わ せが好ましい。  As described above, the acidic medium 20 and the basic medium 30 include a matrix containing a strongly acidic substituent (such as a sulfonate group or a phosphate group) and a strongly basic substituent (such as a quaternary ammonium group). ) A matrix containing, a combination of, a combination of a strongly acidic ion exchange resin and a strongly basic ion exchange resin, a combination of a strongly acidic ion exchange filter paper and a strongly basic ion exchange filter paper, solid super strong acid and solid super strong base The combination with is preferred.
上記のような、 ペーパー型燃料電池において、 酸一塩基バイポーラ一反応場の 接触界面では、 水が水素イオンと水酸化イオンに分解して供給される。 そして、 この反応場に外部から過酸化水素水溶液が供給されることで、 電力を継続的に発 生させることができる。 なお、 ペーパー型燃料電池においては、 過酸化水素水溶 液の供給時に、 滴下や浸透の手段をとるため、 外部ポンプは必要ないという利点 がある。 また、 ペーパー型燃料電池は、 電池表面から反応生成物の水が大気中に 蒸散する現象を利用することもできる。 In the paper-type fuel cell as described above, water is decomposed into hydrogen ions and hydroxide ions at the contact interface between the acid-basic bipolar reaction field and supplied. Then, by supplying an aqueous hydrogen peroxide solution to this reaction field from the outside, power is continuously generated. You can live. The paper-type fuel cell has the advantage that an external pump is not required because a dropping or permeating means is used when supplying the aqueous solution of hydrogen peroxide. Paper-type fuel cells can also utilize the phenomenon that reaction product water evaporates into the atmosphere from the cell surface.
〔 (3 ) ゲル型一次電池〕  [(3) Gel type primary battery]
このゲル型一次電池は、 酸性媒体として、 酸性水溶液をゲル化したイオン伝導 性ゲルと、 塩基性媒体として、 塩基性水溶液をゲル化したイオン伝導性ゲルと、 を接触配置してなる、 酸一塩基バイポーラ一反応場を有する。 具体的な構成に関 して、 図 4に示されるゲル型一次電池の概略断面透視図を用いて説明する。 図 4に示されるゲル型一次電池は、 第 1の電極 2 2及び酸性媒体 2 0からなる 酸性反応場と、 第 2の電極 3 2及び塩基性媒体 3 0からなる塩基性反応場と、 が 接触しており、 酸性媒体 2 0に第 1の物質を、 塩基性媒体 3 0に第 2の物質を含 有させた構成を有する。 例えば、 第 1の物質及び第 2の物質が過酸化水素である 場合、 過酸化水素水溶液を、 酸性媒体 2 0又は塩基性媒体 3 0、 若しくはその両 方に、 共存させておく。 これにより、 酸性反応場における酸化反応と、 塩基性反 応場における還元反応が生じ、 起電力を発現する。 また電極は、 媒体に対して片 面から若しくは両面から接触していればよく、 その形状は、 電池内で発生した気 体の排出流路となるべく、 網目状であることが好ましい。  This gel-type primary battery is formed by contacting and disposing an ion conductive gel obtained by gelling an acidic aqueous solution as an acidic medium and an ion conductive gel obtained by gelling a basic aqueous solution as a basic medium. It has a base bipolar reaction field. A specific configuration will be described with reference to a schematic cross-sectional perspective view of the gel type primary battery shown in FIG. The gel-type primary battery shown in FIG. 4 has an acidic reaction field composed of a first electrode 22 and an acidic medium 20 and a basic reaction field composed of a second electrode 32 and a basic medium 30. They are in contact with each other, and have a structure in which the acidic medium 20 contains the first substance and the basic medium 30 contains the second substance. For example, when the first substance and the second substance are hydrogen peroxide, an aqueous solution of hydrogen peroxide is allowed to coexist in the acidic medium 20 and / or the basic medium 30 or both. As a result, an oxidation reaction occurs in an acidic reaction field and a reduction reaction occurs in a basic reaction field, and an electromotive force is generated. The electrode only needs to be in contact with the medium from one side or both sides, and the shape thereof is preferably a mesh so as to be a discharge passage for gas generated in the battery.
このようなゲル型一次電池は、 発電に伴って、 導電性ゲルに含まれる水素ィォ ンゃ水酸化物イオン、 また、 過酸化水素水溶液が消費され (同時に塩が生成する ) 、 それらが無くなった時点で電力の供給は止まる。 また、 これらの消費される 物質は、 外部から再供給できないため、 一次電池となるが、 構成が単純であるこ とに加え、 両反応場として、 自己保持性の高いゲル状態を利用するため、 その反 応場を安定に維持することができるため、 携帯性 ·経済性に優れたシール状の電 池形態をとることが可能である。  In such a gel-type primary battery, the hydrogen ion and hydroxide ions contained in the conductive gel and the aqueous hydrogen peroxide solution are consumed along with the power generation (salt is generated at the same time), and these are lost. The power supply stops at that point. In addition, these consumed substances cannot be re-supplied from the outside, so they become primary batteries.However, in addition to the simplicity of the structure, the gel uses a highly self-holding gel state as both reaction fields. Since the reaction field can be maintained stably, it is possible to adopt a sealed battery configuration that is excellent in portability and economy.
以上、 本発明の電池の実施態様について説明したが、 本発明の構成はこの用途 に限定されるものではなく、 例えば、 上記構成の電池と、 従来の水素燃料やメタ ノール燃料による電池を組み合せて複合発電機として使用することも可能である 実施例 Although the embodiment of the battery of the present invention has been described above, the configuration of the present invention is not limited to this application. For example, the battery of the above configuration is combined with a conventional battery using hydrogen fuel or methanol fuel. Can be used as a combined generator Example
以下に本発明の効果を実施例及び比較例により具体的に説明するが、 本発明は これら実施例に限定されるものではない。  Hereinafter, the effects of the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
[実施例 1 ]  [Example 1]
図 2で表されるチップ型流体燃料電池において、 下記条件にて発電実験を行い 、 電流一電圧特性を求め、 電池の評価を行った。  In the chip type fluid fuel cell shown in FIG. 2, a power generation experiment was performed under the following conditions, current-voltage characteristics were obtained, and the battery was evaluated.
市販の 3重量%過酸化水素水溶液 (日本薬局方ォキシドール、 健栄製薬株式会 社) に、 硫酸 (特級 96 %、 関東化学株式会社) 及び蒸留水を混合して、 試料液 A (過酸化水素 0. 75mo l Zし 硫酸 0. 75N (1. 5mo l / l ) ) を 調製した。 また、 同過酸化水素水溶液に水酸化ナトリウム (特級 97 %、 関東化 学株式会社) 及び蒸留水を混合して、 試料液 B (過酸化水素 0. 75mo l / l 、 水酸化ナトリウム 75N (0. 75mo 1 / 1 ) ) を調製した。  Sample solution A (hydrogen peroxide) was prepared by mixing a commercially available 3% by weight aqueous hydrogen peroxide solution (Oxidol of the Japanese Pharmacopoeia, Kenei Pharmaceutical Co., Ltd.) with sulfuric acid (96% grade, Kanto Chemical Co., Ltd.) and distilled water. 0.75 mol Zulfuric acid (0.75N (1.5 mol / l)) was prepared. In addition, sodium hydroxide (special grade 97%, Kanto Kagaku Co., Ltd.) and distilled water were mixed with the aqueous hydrogen peroxide solution, and sample solution B (0.75 mol / l hydrogen peroxide, 75N sodium hydroxide 75mo 1/1)) was prepared.
そして、 チップ型流体燃料電池の入口 2から試料液 Aを、 入口 3から試料液 B をそれぞれ外部ポンプにより注入した。 試料液の流速は、 いずれも、 流路中央部 分で 24 1 Zs e c (レイノルズ数 Re :約 670) 、 実験温度は室温であつ た。 試料液 Aと接触する流路底面の電極 (白金薄膜、 面積: 0. 026 cm2) 8表面ではガス発生が見られなかったのに対して、 試料液 Bと接触する流路底面 の電極 (白金薄膜、 面積: 0. 026 cm2) 6表面で酸素ガスの発生が観測さ れた。 これは、 電極 8は、 上記 (式 1) の反応によって水が生成して正極の働き をし、 電極 6は、 上記 (式 2) の反応によって酸素と水が生成して負極の働きを したためである。 Then, a sample liquid A was injected from the inlet 2 of the chip-type fluid fuel cell, and a sample liquid B was injected from the inlet 3 by the external pump. The flow rate of the sample solution was 241 Zsec (Reynolds number Re: about 670) at the center of the flow channel, and the experimental temperature was room temperature. Electrode on the bottom of the flow channel in contact with sample solution A (Platinum thin film, area: 0.026 cm 2 ) No gas was generated on the surface of the electrode, whereas the electrode on the bottom of the flow channel in contact with sample solution B ( Platinum thin film, area: 0.026 cm 2 ) Oxygen gas generation was observed on the 6 surfaces. This is because the electrode 8 acts as a positive electrode by producing water by the reaction of the above (Equation 1), and the electrode 6 acts as a negative electrode by producing oxygen and water by the reaction of the above (Equation 2). It is.
上記の実験条件の燃料電池を用いて得られた、 電流一電圧特性を図 5に示す。 本実施例の場合、 開放電圧 700mV、 また、 最大出力 23mWZcm2 (起電 圧: 300mV、 電流 77 mA/ cm2の時) が得られた。 Fig. 5 shows the current-voltage characteristics obtained using the fuel cell under the above experimental conditions. In the case of this example, an open circuit voltage of 700 mV and a maximum output of 23 mWZcm 2 (at an electromotive voltage of 300 mV and a current of 77 mA / cm 2 ) were obtained.
[実施例 2 ]  [Example 2]
上記の実施例 1と同じチップ型流体燃料電池を使用して、 試料液に含まれる過 酸化水素濃度を変え、 実施例 1と同様の評価を行った。 チップ型流体燃料電池の 入口 2及び入口 3から注入した試料液 A及び Bの過酸化水素濃度は、 いずれも 0 . 45mo 1 1であった。 なお、 流速及び実験温度は実施例 1と同一である。 かかる実験条件の燃料電池を用いて得られた、 電流一電圧特性を図 5に示す。 本実施例の場合、 開放電圧 675mV、 また、 最大出力 9 mW/ cm2が得られ た。 The same evaluation as in Example 1 was performed using the same chip-type fluid fuel cell as in Example 1 above, but changing the concentration of hydrogen peroxide contained in the sample solution. The hydrogen peroxide concentration of sample liquids A and B injected from inlet 2 and inlet 3 of the chip-type fluid fuel cell was 0 It was 45mo 1 1. The flow rate and experimental temperature are the same as in Example 1. FIG. 5 shows current-voltage characteristics obtained using the fuel cell under such experimental conditions. In the case of this example, an open-circuit voltage of 675 mV and a maximum output of 9 mW / cm 2 were obtained.
[実施例 3 ]  [Example 3]
上記の実施例 1と同じチップ型流体燃料電池を使用して、 試料液に含まれる過 酸化水素濃度を変え、 実施例 1と同様の評価を行った。 チップ型流体燃料電池の 入口 2及び入口 3から注入した試料液 A及び Bの過酸化水素濃度は、 いずれも 0 . 22mo 1 / 1であった。 なお、 流速及び実験温度は実施例 1と同一である。 かかる実験条件の燃料電池を用いて得られた、 電流一電圧特性を図 5に示す。 本実施例の場合、 開放電圧 620mV、 また、 最大出力 3 mWZ cm2が得られ た。 The same evaluation as in Example 1 was performed using the same chip-type fluid fuel cell as in Example 1 above, but changing the concentration of hydrogen peroxide contained in the sample solution. The hydrogen peroxide concentrations of the sample liquids A and B injected from the inlet 2 and the inlet 3 of the chip-type fluid fuel cell were both 0.22 mol 1/1. The flow rate and experimental temperature are the same as in Example 1. FIG. 5 shows current-voltage characteristics obtained using the fuel cell under such experimental conditions. In the case of the present example, an open circuit voltage of 620 mV and a maximum output of 3 mWZ cm 2 were obtained.
[実施例 4]  [Example 4]
上記の実施例 1と同じチップ型流体燃料電池を使用して、 試料液に含まれる過 酸化水素濃度を変え、 実施例 1と同様の評価を行った。 チップ型流体燃料電池の 入口 2及び入口 3から注入した試料液 A及び Bの過酸化水素濃度は、 いずれも 0 . l Omo l Z lであった。 なお、 流速及び実験温度は実施例 1と同一である。 かかる実験条件の燃料電池を用いて得られた、 電流一電圧特性を図 5に示す。 本実施例の場合、 開放電圧 61 1mV、 また、 最大出力 lmWZcm2が得られ た。 The same evaluation as in Example 1 was performed using the same chip-type fluid fuel cell as in Example 1 above, but changing the concentration of hydrogen peroxide contained in the sample solution. The hydrogen peroxide concentrations of the sample liquids A and B injected from the inlet 2 and the inlet 3 of the chip-type fluid fuel cell were both 0.1 l Omol Zl. The flow rate and experimental temperature are the same as in Example 1. FIG. 5 shows current-voltage characteristics obtained using the fuel cell under such experimental conditions. In the case of this embodiment, an open circuit voltage of 611 mV and a maximum output of lmWZcm 2 were obtained.
[実施例 5 ]  [Example 5]
上記の実施例 1と同じチップ型流体燃料電池を使用して、 第 1の電極及び第 2 の電極の材質をそれぞれ次のように変え、 更に、 試料液に含まれる過酸化水素濃 度を変えて実施例 1と同様の評価を行った。 電極の材質を電極 6は銀に、 また、 電極 8は白金とした。 また、 チップ型流体燃料電池の入口 2及び入口 3から注入 した試料液 A及び Bの過酸化水素濃度は、 いずれも 0. 45mo l Z lであった 。 なお、 流速及び実験温度は実施例 1と同一である。  Using the same chip-type fluid fuel cell as in Example 1 above, the materials of the first electrode and the second electrode were changed as follows, and further, the concentration of hydrogen peroxide contained in the sample liquid was changed. The same evaluation as in Example 1 was performed. The electrode material was silver for electrode 6 and platinum for electrode 8. The hydrogen peroxide concentrations of the sample liquids A and B injected from the inlet 2 and the inlet 3 of the chip-type fluid fuel cell were both 0.45 mol Zl. The flow rate and experimental temperature are the same as in Example 1.
かかる実験条件の燃料電池を用いて得られた電流—電圧特性から、 本実施例の 場合、 開放電圧 540mV、 また、 最大出力 6 mW/ cm2が得られた。 [実施例 6 ] · 図 3 Aに示されるペーパー型燃料電池において、 下記条件にて発電実験を行い 、 電流一電圧特性を求め、 電池の評価を行った。 From the current-voltage characteristics obtained using the fuel cell under such experimental conditions, an open-circuit voltage of 540 mV and a maximum output of 6 mW / cm 2 were obtained in this example. [Example 6] · In the paper-type fuel cell shown in Fig. 3A, a power generation experiment was performed under the following conditions, current-voltage characteristics were obtained, and the battery was evaluated.
酸性媒体 20には強酸性イオン交換濾紙 (東レケミカル、 RX— 1シリーズ C P— 1) の小片 (縦 1. 5じ01 横1. 5 cm) を、 塩基性媒体 30には強塩基 性イオン 換濾紙 (東レケミカル、 RX— 1シリーズ AP— 1) の小片 (縦 1. 5 (;111ズ横1. 5 cm) を用いた。 また、 第 1の電極 22及び第 2の電極 32と しては、 酸性媒体及び塩基性媒体と同面積の白金黒メッシュ (1 00メッシュの ニッケルメッシュ表面を白金黒化したもの) を用い、 これを酸性媒体と塩基性媒 体とにそれぞれ密着させた。  A small piece (1.5 × 01 × 1.5 cm) of strongly acidic ion exchange filter paper (Toray Chemical, RX-1 Series CP-1) is used for the acidic medium 20, and a strong basic ion exchange filter is used for the basic medium 30. A small piece of filter paper (Toray Chemical, RX-1 series AP-1) (length 1.5 (; 111 cm width 1.5 cm)) was used as the first electrode 22 and the second electrode 32. A platinum black mesh having the same area as the acidic medium and the basic medium (a nickel mesh surface of 100 mesh blackened with platinum) was used, and was brought into close contact with the acidic medium and the basic medium, respectively.
そして、 図 3Aの矢印のように、 3重量%過酸化水素水溶液 (日本薬局方ォキ シドール、 健栄製薬株式会社) Lを、 滴下することで、 第 1の物質及び第 2の物 質を供給した。 これにより、 酸性反応場における酸化反応と、 塩基性反応場にお ける還元反応が生じ、 起電力が発現した。  Then, as shown by the arrow in FIG. 3A, a 3% by weight aqueous solution of hydrogen peroxide (Oxidol of the Japanese Pharmacopoeia, Kenei Pharmaceutical Co., Ltd.) L is added dropwise to the first substance and the second substance. Supplied. As a result, an oxidation reaction in an acidic reaction field and a reduction reaction in a basic reaction field occurred, and an electromotive force was developed.
上記の実験条件の燃料電池を用いて得られた、 電流一電圧特性を図 6に示す。 本実施例の場合、 開放電圧 1 20mV、 また、 最大出力 0. 35 AWZcm2 ( 起電圧: 80mV、 電流 01mA/ cm2の時) が得られた。 Fig. 6 shows the current-voltage characteristics obtained using the fuel cell under the above experimental conditions. In the case of this embodiment, an open circuit voltage of 120 mV and a maximum output of 0.35 AWZcm 2 (at an electromotive voltage of 80 mV and a current of 01 mA / cm 2 ) were obtained.
[実施例 7 ]  [Example 7]
図 4に示されるゲル型一次電池において、 下記条件にて発電実験を行い、 電流 一電圧特性を求め、 電池の評価を行った。  In the gel-type primary battery shown in Fig. 4, a power generation experiment was performed under the following conditions, current-voltage characteristics were obtained, and the battery was evaluated.
酸性媒体 20 (0. 25mo l / lの硫酸、 0. 5 m o 1 / 1の過酸化水素を 、 10重量%の無水二酸化ケイ素でゲル化したもの) と、 塩基性媒体 30 (0. 5 mo 1 / 1の水酸化ナトリウム、 0. 5 mo 1 / 1の過酸化水素を、 8重量% の架橋ポリアクリル酸ナトリウムでゲル化したもの) を用い、 第 1の電極 22及 び第 2の電極 32としては、 2. 6 cm2の白金黒メッシュ ( 100メッシュの ニッケルメッシュ表面を白金黒化したもの) をそれぞれの媒体に密着させた。 上記の実験条件の一次電池を用いて得られた電流一電圧特性から、 本実施例の 場合、 開放電圧 570mV、 また、 最大出力 0. 2mWZcm2 (起電圧: 30 0mV、 電流 1. 7mA/ cm2の時) が得られた。 [比較例 1 ] Acidic medium 20 (0.25 mol / l sulfuric acid, 0.5 mo 1/1 hydrogen peroxide, gelled with 10% by weight of anhydrous silicon dioxide) and basic medium 30 (0.5 mo 1/1 sodium hydroxide, 0.5 mo 1/1 hydrogen peroxide, gelled with 8% by weight of cross-linked sodium polyacrylate) using the first electrode 22 and the second electrode As for No. 32, a platinum black mesh of 2.6 cm 2 (100 mesh nickel mesh surface blackened with platinum) was adhered to each medium. From the current-voltage characteristics obtained using the primary battery under the above experimental conditions, the open-circuit voltage was 570 mV and the maximum output was 0.2 mWZcm 2 (electromotive force: 300 mV, current 1.7 mA / cm) in this example. 2 ) was obtained. [Comparative Example 1]
上記の実施例 1と同じチップ型流体燃料電池を使用して、 試料液に過酸化水素 を含有させず、 硫酸及び水酸化ナトリウム濃度を変えて、 実施例 1と同様の評価 を行った。 チップ型流体燃料電池の入口 2及び入口 3から注入した試料液 A及び Bの硫酸及び水酸化ナトリウム濃度は、 いずれも 0 . 4 5 m o 1 / 1であった。 なお、 流速及び実験温度は実施例 1と同一である。  Using the same chip-type fluid fuel cell as in Example 1 above, the same evaluation as in Example 1 was performed, except that the sample solution did not contain hydrogen peroxide and the concentrations of sulfuric acid and sodium hydroxide were changed. The concentrations of sulfuric acid and sodium hydroxide of the sample liquids A and B injected from the inlet 2 and the inlet 3 of the chip-type fluid fuel cell were both 0.45 mO 1/1. The flow rate and experimental temperature are the same as in Example 1.
かかる実験条件の燃料電池を用いて得られた、 電流一電圧特性を図 5に示す。 比較例 1では、 液間電圧による開放電力 (3 0 0 mV) は測定されたものの、 有 意な電流は得られなかった。  FIG. 5 shows current-voltage characteristics obtained using the fuel cell under such experimental conditions. In Comparative Example 1, although the open power (300 mV) due to the liquid junction voltage was measured, a significant current was not obtained.
以上、 本実施例によれば、 図 5及び図 6に示すように、 電圧及び電流が得られ ており、 また、 実施例 5及び実施例 7においても電圧及び電流が得られており、 本発明の新規な構成の電池、 及び該電池を用いた発電方法により、 発電が行なわ れて、 電気エネルギーを供給できることが判明した。 産業上の利用可能性  As described above, according to the present embodiment, as shown in FIGS. 5 and 6, a voltage and a current are obtained, and in the fifth and seventh embodiments, a voltage and a current are obtained. It has been found that power can be generated and electric energy can be supplied by the battery having the novel configuration and the power generation method using the battery. Industrial applicability
本発明のバイポーラ型電池は、 新規な構成の電池であり、 固体物である電極に おける酸化 ·還元反応により生ずる起電力が電池から得られる主体的な源である ため、 安定に発電することが可能である。 本発明の電池及び該電池を用いた発電 方法により、 従来の電池が抱える問題点、 例えば、 可燃性 ·発火性の燃料の使用 が解決され、 二酸化炭素を排出しないこと、 貯蔵が簡便であること、 構造が簡単 であること、 などの利点が提供されて、 産業上の有用性は極めて大きいといえよ ラ。  The bipolar battery of the present invention is a battery having a novel configuration, and the electromotive force generated by the oxidation / reduction reaction at the solid electrode is a main source obtained from the battery, so that stable power generation can be achieved. It is possible. The battery of the present invention and the power generation method using the battery solve the problems of conventional batteries, for example, the use of combustible and ignitable fuels, no emission of carbon dioxide, and easy storage. It offers advantages such as simplicity of the structure, etc., and its industrial utility is extremely large.

Claims

請求の範囲 The scope of the claims
1 . 酸性媒体と、 該酸性媒体中に配置された第 1の電極と、 前記酸性媒体と接 する塩基性媒体と、 該塩基性媒体中に配置された第 2の電極と、 を備え、 前記酸性媒体中に、 前記酸性媒体中に含まれる水素イオンを伴って前記第 1の 電極から電子を奪う反応を生じさせる第 1の物質を含有し、 かつ、 前記塩基性媒 体中に、 前記塩基性媒体中に含まれる水酸化物イオンを伴って前記第 2の電極へ と電子を供与する反応を生じさせる第 2の物質を含有することを特徴とする電池 1. An acidic medium, comprising: a first electrode arranged in the acidic medium; a basic medium in contact with the acidic medium; and a second electrode arranged in the basic medium. The acidic medium contains a first substance that causes a reaction to take away electrons from the first electrode together with hydrogen ions contained in the acidic medium, and the base in the basic medium A battery comprising: a second substance that causes a reaction of donating electrons to the second electrode together with hydroxide ions contained in a conductive medium.
2 . 前記第 1の物質及び前記第 2の物質が同一の物質であることを特徴とする 請求項 1に記載の電池。 2. The battery according to claim 1, wherein the first substance and the second substance are the same substance.
3 . 前記第 1の物質及び前記第 2の物質が、 いずれも過酸化水素であることを 特徴とする請求項 2に記載の電池。 3. The battery according to claim 2, wherein the first substance and the second substance are both hydrogen peroxide.
4 . 過酸化水素を含有する、 又は、 化学変化によって過酸化水素を放出する、 液体或いは固体により前記過酸化水素を供給することを特徴とする請求項 3に記 載の電池。 4. The battery according to claim 3, wherein the hydrogen peroxide is supplied as a liquid or a solid containing hydrogen peroxide or releasing hydrogen peroxide by a chemical change.
5 . 前記酸性媒体が酸性水溶液からなり、 かつ、 前記塩基性媒体が塩基性水溶 液からなることを特徴とする請求項 1に記載の電池。 5. The battery according to claim 1, wherein the acidic medium comprises an acidic aqueous solution, and the basic medium comprises a basic aqueous solution.
6 . 前記酸性水溶液と前記塩基性水溶液とがその内部で層流を形成する流路構 造を備えることを特徴とする請求項 5に記載の電池。 6. The battery according to claim 5, further comprising a channel structure in which the acidic aqueous solution and the basic aqueous solution form a laminar flow therein.
7 . 前記酸性水溶液が、 硫酸、 メタンスルホン酸、 トリフルォロメタンスルホ ン酸、 塩化水素酸、 ヨウ化水素酸、 臭化水素酸、 過塩素酸、 過ヨウ素酸、 オルト リン酸、 ポリリン酸、 硝酸、 テトラフルォロホウ酸、 へキサフルォロ珪酸、 へキ サフルォロリン酸、 へキサフルォロ砒酸、 へキサクロ口白金酸、 酢酸、 トリフル ォロ酢酸、 クェン酸、 蓚酸、 サリチル酸、 酒石酸、 マレイン酸、 マロン酸、 フタ ル酸、 フマル酸、 及びピクリン酸からなる群より選択される酸を 1以上含むこと を特徴とする請求項 5に記載の電池。 7. The acidic aqueous solution is sulfuric acid, methanesulfonic acid, trifluoromethanesulfonic acid, hydrochloric acid, hydroiodic acid, hydrobromic acid, perchloric acid, periodic acid, orthophosphoric acid, polyphosphoric acid, nitric acid , Tetrafluoroboric acid, hexafluorosilicic acid, Select from the group consisting of safluorinic acid, hexafluoroarsenic acid, hexacloplatinic acid, acetic acid, trifluoroacetic acid, citric acid, oxalic acid, salicylic acid, tartaric acid, maleic acid, malonic acid, phthalic acid, fumaric acid, and picric acid 6. The battery according to claim 5, wherein the battery contains one or more acids.
8 . 前記塩基性水溶液が、 水酸化ナトリウム、 水酸化カリウム、 水酸化リチウ ム、 水酸化カルシウム、 水酸化バリウム、 水酸化マグネシウム、 水酸化アンモニ ゥム、 水酸化テトラメチルアンモニゥム、 水酸化テトラエチルアンモニゥム、 水 酸化テトラプロピルアンモニゥム、 及び水酸化テトラプチルアンモニゥムを含む 群から選択される塩基を 1以上含む、 又は、 炭酸ナトリウム、 炭酸水素ナトリウ ム、 炭酸カリウム、 炭酸水素カリウム、 ホウ酸ナトリウム、 ホウ酸カリウム、 珪 酸ナトリウム、 珪酸カリウム、 トリポリリン酸ナトリウム、 トリポリリン酸カリ ゥム、 アルミン酸ナトリウム、 及びアルミン酸カリウムを含む群から選択される 弱酸のアルカリ金属塩を 1以上含むことを特徴とする請求項 5に記載の電池。 8. The basic aqueous solution is sodium hydroxide, potassium hydroxide, lithium hydroxide, calcium hydroxide, barium hydroxide, magnesium hydroxide, ammonium hydroxide, tetramethylammonium hydroxide, tetraethyl hydroxide. One or more bases selected from the group comprising ammonium, tetrapropylammonium hydroxide, and tetrabutylammonium hydroxide, or sodium carbonate, sodium hydrogencarbonate, potassium carbonate, potassium hydrogencarbonate, Contains at least one alkali metal salt of a weak acid selected from the group including sodium borate, potassium borate, sodium silicate, potassium silicate, sodium tripolyphosphate, potassium tripolyphosphate, sodium aluminate, and potassium aluminate 6. The battery according to claim 5, wherein:
9 . 前記酸性媒体が酸性のイオン交換部材から構成され、 かつ、 前記塩基性媒 体が塩基性のイオン交換部材から構成されることを特徴とする請求項 1に記載の 電池。 9. The battery according to claim 1, wherein the acidic medium is composed of an acidic ion exchange member, and the basic medium is composed of a basic ion exchange member.
1 0 . 前記イオン交換部材が、 ポリビニルスチレン系のイオン交換樹脂、 ポリ フルォロヒドロ力一ボンポリマー系の高分子電解質膜、 ポリビニルスチレン系の ィォン交換膜、 及び繊維状ポリスチレン系のィォン交換濾紙からなる群より選択 されることを特徴とする請求項 9に記載の電池。 10. The ion exchange member is a group consisting of a polyvinylstyrene-based ion exchange resin, a polyfluorohydrocarbon polymer-based polymer electrolyte membrane, a polyvinylstyrene-based ion-exchange membrane, and a fibrous polystyrene-based ion-exchange filter paper. 10. The battery according to claim 9, wherein the battery is selected from the group consisting of:
1 1 . 前記酸性媒体が酸性のイオン伝導性ゲルから構成され、 かつ、 前記塩基 性媒体が塩基性のイオン伝導性ゲルから構成されることを特徴とする請求項 1に 記載の電池。 11. The battery according to claim 1, wherein the acidic medium is composed of an acidic ion-conductive gel, and the basic medium is composed of a basic ion-conductive gel.
1 2 . 前記酸性のイオン伝導性ゲルが、 酸性水溶液を水ガラス、 無水二酸化ケ ィ素、 架橋ポリアクリル酸、 又はその塩類によりゲル化してなることを特徴とす る請求項 1 1に記載の電池。 1 2. The acidic ion-conductive gel is used to convert acidic aqueous solution into water glass and anhydrous 12. The battery according to claim 11, wherein the battery is gelled with silicon, cross-linked polyacrylic acid, or a salt thereof.
1 3 . 前記塩基性のイオン伝導性ゲルが、 塩基性水溶液をカルポキシメチルセ ルロース、 架橋ポリアクリル酸、 又はその塩類によりゲル化してなることを特徴 とする請求項 1 1に記載の電池。 13. The battery according to claim 11, wherein the basic ion-conductive gel is obtained by gelling a basic aqueous solution with carboxymethyl cellulose, cross-linked polyacrylic acid, or a salt thereof.
1 4 . 前記第 1の電極が、 白金、 白金黒、 酸化白金被覆白金、 銀、 金、 表面を 不動態化したチタン、 表面を不動態化したステンレス、 表面を不動態化したニッ ケル、 表面を不動態化したアルミニウム、 炭素構造体、 アモルファス力一ボン、 及びグラッシ一カーボンからなる群より選択される 1以上の材料から構成される ことを特徴とする請求項 1に記載の電池。 14. The first electrode is made of platinum, platinum black, platinum oxide coated platinum, silver, gold, surface passivated titanium, surface passivated stainless steel, surface passivated nickel, surface 2. The battery according to claim 1, wherein the battery is made of one or more materials selected from the group consisting of aluminum, a carbon structure, an amorphous carbon, and glassy carbon having passivated. 3.
1 5 . 前記第 2の電極が、 白金、 白金黒、 酸化白金被覆白金、 銀、 金、 表面を 不動態化したチタン、 表面を不動態化したステンレス、 表面を不動態化したニッ ケル、 表面を不動態化したアルミニウム、 炭素構造体、 アモルファスカーボン、 及びグラッシ一カーボンからなる群より選択される 1以上の材料から構成される ことを特徵とする請求項 1に記載の電池。 15. The second electrode is made of platinum, platinum black, platinum oxide-coated platinum, silver, gold, surface passivated titanium, surface passivated stainless steel, surface passivated nickel, surface 2. The battery according to claim 1, wherein the battery is made of at least one material selected from the group consisting of aluminum, a carbon structure, amorphous carbon, and glassy carbon, which is passivated.
1 6 . 前記第 1の電極及び第 2の電極のいずれもが、 板状、 薄膜状、 網目状、 又は繊維状であることを特徴とする請求項 1に記載の電池。 16. The battery according to claim 1, wherein each of the first electrode and the second electrode has a plate shape, a thin film shape, a mesh shape, or a fiber shape.
1 7 . 前記第 1の電極及び前記第 2の電極が、 無電解メツキ法、 蒸着法、 又は スパッ夕法により、 酸性媒体及び塩基性媒体にそれぞれ配置されることを特徴と する請求項 1に記載の電池。 17. The method according to claim 1, wherein the first electrode and the second electrode are disposed on an acidic medium and a basic medium, respectively, by an electroless plating method, a vapor deposition method, or a sputtering method. The battery as described.
1 8 . 酸性媒体と、 該酸性媒体中に配置された第 1の電極と、 前記酸性媒体と 接する塩基性媒体と、 該塩基性媒体中に配置された第 2の電極と、 を備える電池 を用いた発電方法であつて、 前記酸性媒体に含有される第 1の物質が水素イオンを伴って前記第 1の電極か ら電子を奪う反応を生じさせ、 かつ、 前記塩基性媒体に含有される第 2の物質が 水酸化イオンを伴って前記第 2の電極へと電子を供与する反応を生じさせて発電 することを特徴とする発電方法。 18. A battery comprising: an acidic medium, a first electrode arranged in the acidic medium, a basic medium in contact with the acidic medium, and a second electrode arranged in the basic medium. The power generation method used, The first substance contained in the acidic medium causes a reaction to take away electrons from the first electrode together with hydrogen ions, and the second substance contained in the basic medium is a hydroxide ion Generating a reaction by causing a reaction of donating electrons to the second electrode in conjunction with the power generation.
PCT/JP2004/006336 2003-11-25 2004-04-30 Battery and power generating method WO2005053078A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/580,435 US20070181418A1 (en) 2003-11-25 2004-04-30 Cell and power generation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003393714A JP4747492B2 (en) 2003-11-25 2003-11-25 Battery and power generation method
JP2003-393714 2003-11-25

Publications (1)

Publication Number Publication Date
WO2005053078A1 true WO2005053078A1 (en) 2005-06-09

Family

ID=34631438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/006336 WO2005053078A1 (en) 2003-11-25 2004-04-30 Battery and power generating method

Country Status (3)

Country Link
US (1) US20070181418A1 (en)
JP (1) JP4747492B2 (en)
WO (1) WO2005053078A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008077391A1 (en) * 2006-12-22 2008-07-03 White Fox Technologies Ltd Fuel cell

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4843908B2 (en) * 2004-05-18 2011-12-21 富士ゼロックス株式会社 Secondary battery and power generation method
JP4496160B2 (en) * 2005-12-13 2010-07-07 株式会社東芝 Proton conductive inorganic material, electrolyte membrane, electrode, membrane electrode composite, and fuel cell
JP4719015B2 (en) * 2006-01-20 2011-07-06 株式会社東芝 Electrolyte membrane, membrane electrode assembly and fuel cell
JP5071933B2 (en) * 2007-07-31 2012-11-14 独立行政法人産業技術総合研究所 Fuel cell
CN101234865A (en) * 2007-08-22 2008-08-06 陈国忠 Method for preparing concrete high efficiency water reducing agent by using paper pulp thin black liquor to modify and graft carbonyl aliphatic compound
US8389165B2 (en) 2008-11-29 2013-03-05 Palo Alto Research Center Incorporated Printed fuel cell with integrated gas channels
PL2544582T3 (en) * 2010-03-11 2017-08-31 F.Hoffmann-La Roche Ag Method for the electrochemical measurement of an analyte concentration in vivo, and fuel cell for this purpose
US20120070766A1 (en) 2010-09-21 2012-03-22 Massachusetts Institute Of Technology Laminar flow fuel cell incorporating concentrated liquid oxidant
JP2013114973A (en) * 2011-11-30 2013-06-10 Toyota Motor Corp Fuel cell

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6380480A (en) * 1986-07-09 1988-04-11 アンテロツクス (ソシエテ アノニム) Fuel battery and generation therewith
JPH06318470A (en) * 1993-02-22 1994-11-15 Hughes Aircraft Co Concentration cell of acid and base for generating electric power
JPH07335233A (en) * 1994-06-02 1995-12-22 Toyota Central Res & Dev Lab Inc Fuel cell
JP2000251906A (en) * 1999-03-01 2000-09-14 Agency Of Ind Science & Technol Solid polymer electrolyte membrane and bipolar membrane fuel cell using it
JP2001176530A (en) * 1999-12-17 2001-06-29 Toyota Motor Corp Solid high molecular film-type fuel cell system
WO2002015299A1 (en) * 2000-08-12 2002-02-21 Lg Chemical Co., Ltd. Multi-component composite film method for preparing the same
JP2003502829A (en) * 1999-06-18 2003-01-21 ゴア エンタープライズ ホールディングス,インコーポレイティド Fuel cell membrane electrode assembly with improved power and poisoning resistance

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4311771A (en) * 1978-12-21 1982-01-19 Allied Chemical Corporation Process for production of electrical energy from the neutralization of acid and base in a bipolar membrane cell
US6713206B2 (en) * 2002-01-14 2004-03-30 Board Of Trustees Of University Of Illinois Electrochemical cells comprising laminar flow induced dynamic conducting interfaces, electronic devices comprising such cells, and methods employing same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6380480A (en) * 1986-07-09 1988-04-11 アンテロツクス (ソシエテ アノニム) Fuel battery and generation therewith
JPH06318470A (en) * 1993-02-22 1994-11-15 Hughes Aircraft Co Concentration cell of acid and base for generating electric power
JPH07335233A (en) * 1994-06-02 1995-12-22 Toyota Central Res & Dev Lab Inc Fuel cell
JP2000251906A (en) * 1999-03-01 2000-09-14 Agency Of Ind Science & Technol Solid polymer electrolyte membrane and bipolar membrane fuel cell using it
JP2003502829A (en) * 1999-06-18 2003-01-21 ゴア エンタープライズ ホールディングス,インコーポレイティド Fuel cell membrane electrode assembly with improved power and poisoning resistance
JP2001176530A (en) * 1999-12-17 2001-06-29 Toyota Motor Corp Solid high molecular film-type fuel cell system
WO2002015299A1 (en) * 2000-08-12 2002-02-21 Lg Chemical Co., Ltd. Multi-component composite film method for preparing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008077391A1 (en) * 2006-12-22 2008-07-03 White Fox Technologies Ltd Fuel cell

Also Published As

Publication number Publication date
US20070181418A1 (en) 2007-08-09
JP4747492B2 (en) 2011-08-17
JP2005158398A (en) 2005-06-16

Similar Documents

Publication Publication Date Title
JP4843908B2 (en) Secondary battery and power generation method
RU2186442C2 (en) Electrical conversion cell
Sun et al. Recent advances in rechargeable Li–CO2 batteries
ES2261653T3 (en) PROCEDURE AND DEVICE FOR THE DEIONIZATION OF REFRIGERATION MEANS FOR FUEL BATTERIES.
WO2011087089A1 (en) Air battery and air battery stack
WO2013134114A2 (en) Method and apparatus for extracting energy and metal from seawater electrodes
JP2006019302A (en) Hydrogen storage-based rechargeable fuel cell system and method
US8658319B2 (en) Metal oxygen battery containing oxygen storage materials
WO2015150784A1 (en) Hybrid electrochemical energy device
WO2005053078A1 (en) Battery and power generating method
JP2006298670A (en) Method and apparatus for generating hydrogen and method and system for generating electrochemical energy
US4427747A (en) Bronze suppression in an alkali metal/sulfur ammonia battery
CN105593051A (en) Metal/oxygen battery with multistage oxygen compression
JP4661097B2 (en) Water injection battery and power generation method
JP2005332591A (en) Flexible battery and power generation method
JP2006004816A (en) Ic card
JP2006004797A (en) Battery for teaching material
JP2006004832A (en) Power supply circuit
JP2005347196A (en) Battery and power generation method
US3657015A (en) Hydrazine fuel cell and process of operating said fuel cell
JP2005347197A (en) Battery and power generation method
JP2006004893A (en) Fuel cell
JP2006004889A (en) Battery
JP2006004892A (en) Fuel cell and power generation method
JP2006004818A (en) Power supply circuit

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10580435

Country of ref document: US

Ref document number: 2007181418

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10580435

Country of ref document: US