WO2005052966A1 - Displacement element - Google Patents

Displacement element Download PDF

Info

Publication number
WO2005052966A1
WO2005052966A1 PCT/JP2004/013782 JP2004013782W WO2005052966A1 WO 2005052966 A1 WO2005052966 A1 WO 2005052966A1 JP 2004013782 W JP2004013782 W JP 2004013782W WO 2005052966 A1 WO2005052966 A1 WO 2005052966A1
Authority
WO
WIPO (PCT)
Prior art keywords
fulcrum
displacement element
effective radius
layer
radius portion
Prior art date
Application number
PCT/JP2004/013782
Other languages
French (fr)
Japanese (ja)
Inventor
Masanobu Nomura
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Priority to JP2005515737A priority Critical patent/JP4534988B2/en
Publication of WO2005052966A1 publication Critical patent/WO2005052966A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G5/00Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture
    • H01G5/01Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/204Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/204Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
    • H10N30/2041Beam type
    • H10N30/2042Cantilevers, i.e. having one fixed end
    • H10N30/2043Cantilevers, i.e. having one fixed end connected at their free ends, e.g. parallelogram type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/204Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
    • H10N30/2047Membrane type

Definitions

  • the present invention relates to a displacement element, and more particularly to a displacement element having a structure in which a plurality of functional material layers having different material forces are stacked in a thickness direction, and including a beam in a doubly supported state. .
  • Displacement elements of interest to the present invention include, for example, the one described in Japanese Patent Application Laid-Open No. 9-63890 (Patent Document 1).
  • Patent Document 1 describes a displacement element that constitutes a variable capacitance element.
  • Some of the displacement elements described in Patent Document 1 have a structure having a cantilevered beam, and others have, for example, a structure having a double-supported beam 1 as shown in FIG.
  • beam 1 includes an insulator layer 2 having an SiO force and one main surface of insulator layer 2 and
  • the beam 1 has a structure in which conductor layers 3 and 4 respectively formed on the main surface are laminated in the thickness direction.
  • the beam 1 is in a double-supported state in which first and second ends 5 and 6 in the longitudinal direction are supported by first and second support portions 7 and 8, respectively.
  • the beam 1 provides a variable-side electrode in the variable capacitance element.
  • the fixed-side electrode of the variable capacitance element is provided at a position facing the beam 1 via the support portions 7 and 8. Therefore, in order to accurately and accurately control the capacitance value of the variable capacitance element or to improve the temperature characteristics of the capacitance value, the shape of the beam 1 (radial state) in the initial state has good reproducibility. It is important that the beam 1 is stable, more specifically, that the beam 1 has excellent linearity.
  • the beam 1 since the beam 1 has a laminated structure that is symmetrical with respect to the insulating layer 2, the stresses generated on the front and back surfaces of the insulating layer 2 cancel each other out, and therefore, in the initial state. Therefore, the beam 1 does not easily warp.
  • the conductor layers 3 and 4 In order to completely prevent the warpage of the beam 1 by the above-described symmetrical structure, the conductor layers 3 and 4 must have at least a film thickness, an internal stress, an elastic constant, And the coefficients of thermal expansion must be perfectly matched, and in each of the insulator layer 2 and the conductor layers 3 and 4, the forces that need to be completely homogenous in the thickness direction of the layers. Meeting the conditions is very difficult.
  • FIG. 16 the beam 1 is warped upwardly, as indicated by the arrow 9, and the initial absolute position of the center of the beam 1 in the initial state is displaced upward.
  • FIG. 17 the beam 1 is warped in a downwardly curved shape as shown by the arrow 10, and the absolute position of the central portion of the beam 1 in the initial state is displaced downward.
  • warpage as described above may occur in the beam 1 due to a temperature change.
  • the front and back symmetrical structure given to the beam 1 has a problem that the degree of freedom in designing the beam 1 is reduced as described below.
  • the conductor layers 3 and 4 are formed on the front and back of the insulator layer 2, respectively, thereby realizing a total of three layers of front and back symmetric structures. If one functional material layer is to be added, this functional material layer must be added to each of the front and back surfaces, so that a total of five front and back symmetric structures must be used.
  • the plane pattern of the conductor layer 3 and the plane pattern of the conductor layer 4 are also symmetric. There must be. Depending on the functions required of the beam 1, the conductor layer 3 and the conductor layer 4 may not be able to be formed into a symmetrical shape while the beam 1 warps. May not be solved.
  • Patent Document 1 JP-A-9-63890 Disclosure of the invention
  • An object of the present invention is to provide a displacement element that can solve the above-described problems.
  • the present invention provides a beam having a structure in which a plurality of functional material layers having different material strengths are laminated in the thickness direction, and a first and a second beam in a longitudinal direction of the beam so that the beam is held at both ends.
  • First and second support portions respectively supporting the second end portion, and a first fulcrum and a second support portion of the beam by the first support portion to cause displacement of the beam in the thickness direction.
  • a driving means for electrically driving the effective radius portion between the second fulcrum and the second fulcrum.
  • a thickness-providing member for increasing the thickness of the central portion in the longitudinal direction of the effective radius portion to be greater than other portions is disposed.
  • the effective radius portion has a symmetrical structure with respect to a perpendicular bisector between the first fulcrum and the second fulcrum, and the first fulcrum and the first member of the thickness imparting member in the effective radius portion.
  • a first radial portion between the first inner end located at the end of the fulcrum side has a symmetrical structure with respect to a perpendicular bisector of the first fulcrum and the first inner end
  • the second one-side radius portion between the second fulcrum and the second inner end located at the second fulcrum-side end of the thickness imparting member is a second fulcrum and a second fulcrum. It has a symmetric structure with respect to a perpendicular bisector with the second inner end.
  • the effective radius portion may have a symmetric structure with respect to a perpendicular bisector of the first free end and the second free end, which are each end in the width direction. preferable.
  • the thickness imparting member is disposed so as to extend over the entire area between the first free end and the second free end which are each end in the width direction of the effective radius portion. .
  • the displacement element according to the present invention has several embodiments, particularly regarding the driving means.
  • the displacement element constitutes a piezoelectric drive type displacement element, at least one of the plurality of functional material layers is a piezoelectric layer made of a piezoelectric material, and the driving means is Means for distorting the piezoelectric layer based on the piezoelectric effect is provided.
  • the displacement element constitutes an electromagnetically driven displacement element, and at least one of the plurality of functional material layers is a conductor layer made of a conductor.
  • the displacement element constitutes an electrostatic drive type displacement element
  • at least one of the plurality of functional material layers is a conductive layer made of a conductive material.
  • the means comprises: a fixed conductor fixedly provided at a position separated from the conductor layer by an air layer; and means for applying a voltage between the conductor layer and the fixed conductor. By applying a voltage between the layer and the fixed conductor, an electrostatic attraction is generated between the conductor layer and the fixed conductor, whereby the effective radius is bent. .
  • the displacement element according to the present invention is advantageously used, for example, for forming a variable capacitance element.
  • the first electrode provided on the effective radius portion including the thickness imparting member and the first electrode are fixedly provided at a position separated by an air layer so as to form a capacitance with respect to the first electrode.
  • the thickness, internal stress, elastic constant, coefficient of thermal expansion, and the like of the plurality of functional material layers provided on the beam are controlled so as to have a symmetrical structure.
  • the warpage and the warpage in the longitudinal direction of the second one-sided radius portion between the second fulcrum and the second inner end located at the second fulcrum-side end of the thickness imparting member It can be made symmetrical. Therefore, the absolute position of the central portion of the effective radius in the initial state can be controlled stably and constantly.
  • the displacement element according to the present invention does not require a front-back symmetric structure, so that the degree of freedom in design can be increased.
  • the effective radius portion also has a symmetrical structure with respect to a perpendicular bisector of the first free end and the second free end, which are each end in the width direction.
  • the variation of the absolute position due to the warp of the effective radius portion in the width direction can be prevented, more accurate absolute position controllability can be obtained.
  • the thickness imparting member is arranged so as to extend over the entire area between the first free end and the second free end, which are each end in the width direction of the effective radius portion.
  • the effective radius portion can be warped in the width direction and can be made thicker.
  • FIG. 1 is for describing a first embodiment of a configuration of a displacement element according to the present invention except for driving means, and FIG. 1 (a) is a plan view of a displacement element 11; It is a figure, (b) is an end view of the cut part along cut surface BB of (a).
  • FIG. 2 is a view corresponding to FIG. 1 (b), showing a tendency of warpage occurring in an initial state of the beam 12 provided in the displacement element 11 shown in FIG.
  • FIG. 3 is a diagram corresponding to FIG. 2 and shows a tendency of warpage in another mode.
  • FIG. 4 is a diagram corresponding to FIG. 1 (b), showing a second embodiment of the configuration of the displacement element according to the present invention except for the driving means.
  • FIG. 5 is a view corresponding to FIG. 1 (a), showing a third embodiment of the configuration of the displacement element according to the present invention except for the driving means.
  • FIG. 6 is a diagram corresponding to FIG. 1 (a), showing a fourth embodiment of the configuration of the displacement element according to the present invention except for the driving means.
  • FIG. 7 is a view for explaining a first embodiment of a driving means of the displacement element according to the present invention.
  • A is a plan view of the displacement element 51,
  • () Is an end view of the cut portion along the cut surface BB of (a).
  • FIG. 8 is a diagram corresponding to FIG. 7 (b) for explaining the operation of the displacement element 51 shown in FIG. 7; It is.
  • FIG. 9 is a view corresponding to FIG. 7B for explaining another operation of the displacement element 51 shown in FIG. 7.
  • FIG. 10 is a view for explaining a second embodiment of the driving means of the displacement element according to the present invention, wherein (a) is a plan view of the displacement element 81 and (b) FIG. 3A is an end view of a cut section along a cut plane B-B in FIG.
  • FIG. 11 is a view for explaining a third embodiment of the driving means of the displacement element according to the present invention, wherein (a) is a plan view of the displacement element 111 and (b) (A) is an end view of the cut portion along the cut surface BB of (a).
  • FIG. 12 is a plan view of a displacement element 141 for explaining a variable capacitance element as a preferred application example of the displacement element according to the present invention.
  • FIG. 13 is a sectional end view taken along the section plane X—X in FIG.
  • FIG. 14 is an end view of a cut portion along a cut surface YY of FIG.
  • FIG. 15 is a cross-sectional view schematically showing a conventional displacement element provided with a doubly supported beam 1 of interest to the present invention.
  • FIG. 16 is a view corresponding to FIG. 15, showing warpage that may occur in the initial state of the beam 1 shown in FIG.
  • FIG. 17 is a view corresponding to FIG. 15 and showing another form of warpage that may occur in the initial state of the beam 1 shown in FIG.
  • FIGS. 1 to 3 illustrate a first embodiment of a displacement element according to the present invention except for a driving unit.
  • FIG. 1 (a) is a plan view of the displacement element 11
  • FIG. 1 (b) is an end view of a cut portion along a cut surface BB of FIG. 1 (a).
  • 2 and 3 are diagrams corresponding to FIG. 1 (b), showing the tendency of the beam 12 provided in the displacement element 11 shown in FIG. 1 to be warped in an initial state.
  • the displacement element 11 includes a beam 12, and the beam 12 has a structure in which a plurality of functional material layers 13, 14, 15, and 16 having different material forces are stacked in a thickness direction. have.
  • the beams 12 do not need to be particularly symmetrical.
  • the displacement element 11 includes first and second support members for supporting the first and second end portions 17 and 18 in the longitudinal direction of the beam 12 so as to hold the beam 12 in a double-supported state.
  • Parts 19 and 20 are provided.
  • each of the first and second support portions 19 and 20 is provided by a part of a substrate 22 provided with a through-hole 21 as well shown in FIG. Has been obtained.
  • the displacement element 11 is configured to cause the beam 12 to be displaced in the thickness direction, so that the first fulcrum 23 and the second fulcrum 23 of the beam 12 Drive means for electrically driving the effective radius portion 25 between the second fulcrum 24 of the support portion 20 and the second fulcrum 24.
  • the displacement element 11 has the following characteristic configuration.
  • a thickness imparting member 27 for increasing the thickness of the central portion 26 to be greater than other portions is disposed.
  • the effective radius portion 25 has a symmetrical structure with respect to a vertical bisector 28 between the first fulcrum 23 and the second fulcrum 24! / Puru.
  • a first one-side radius between the first fulcrum 23 and the first inner end 29 located at the first fulcrum 23-side end of the thickness imparting member 27 is set.
  • the only part 30 has a symmetrical structure with respect to a perpendicular bisector 31 between the first fulcrum 23 and the first inner end 29.
  • the effective radius portion 25 a second one-side radius between the second fulcrum 24 and the second inner end 32 located at the second fulcrum 24 side end of the thickness imparting member 27.
  • the only portion 33 also has a symmetrical structure with respect to the perpendicular bisector 34 between the second fulcrum 24 and the second inner end 32.
  • the effective radius portion 25 is formed by a first free end 35 and a second free end 36, which are respective ends in the width direction. It also has a symmetrical structure with respect to the perpendicular bisector 37 (corresponding to the cutting plane BB).
  • the thickness imparting member 27 is disposed so as to extend over the entire area between the first free end 35 and the second free end 36, which are each end in the width direction of the effective radius portion 25. I have.
  • the warpage of the beam 12 in the initial state or the warpage caused by a temperature change has a tendency as shown in FIG. 2 or FIG.
  • the degree of warpage that occurs as described above is determined by the thickness of the functional material layers 13 to 16 constituting the beam 12, the magnitude of the internal stress, the elastic constant, the coefficient of thermal expansion, and the like.
  • the warpage is the first piece in both the longitudinal direction and the width direction.
  • the lateral radius 30 and the second lateral radius 33 will occur substantially independently of each other.
  • the first and second one-side radius portions 30 and 33 become: Since each has a symmetrical structure with respect to the perpendicular bisectors 31 and 34, the direction and degree of warpage in the longitudinal direction are symmetric on both sides of each of the perpendicular bisectors 31 and 34.
  • the effective radius portion 25 also has a symmetrical structure with respect to a perpendicular bisector 28 between the first fulcrum 23 and the second fulcrum 24, so that the warp in the longitudinal direction Depending on the direction and the degree of, both sides of the perpendicular bisector 28 are also symmetric.
  • the direction and degree of warpage in the longitudinal direction of each of the first and second one-side radius portions 30 and 33 are determined by the respective vertical bisectors 31 and 34 Since it is symmetrical on both sides and also symmetrical on both sides of the perpendicular bisector 28, the absolute position of the central portion 26 in the initial state can always be constant.
  • the effective radius portion 25 is a perpendicular bisector of the first free end 35 and the second free end 36, which are each end in the width direction. If the surface 37 also has a symmetric structure, the symmetry can be further improved with respect to the above-described warpage in the longitudinal direction. can do.
  • the dimension in the thickness direction is a thicker force.
  • the dimension in the longitudinal direction (dimension in the longitudinal direction of the beam 12) is shorter, and the dimension in the width direction (beam As the dimension of the beam 12 in the width direction is greater than or equal to the dimension of the beam 12 in the width direction, the position controllability described above can be further improved.
  • FIG. 4 is a view, corresponding to FIG. 1 (b), showing a second embodiment of the configuration of the displacement element according to the present invention except for the driving means.
  • elements corresponding to the elements shown in FIG. 1 (b) are denoted by the same reference numerals, and redundant description will be omitted.
  • the displacement element 11a shown in FIG. 4 five functional materials, which are more than the four functional material layers 13-16 shown in FIG. It is characterized by having layers 41-45. As can be seen from this embodiment, the number of functional material layers that provide the laminated structure in the beam is not particularly limited.
  • FIG. 5 is a view, corresponding to FIG. 1 (a), showing a third embodiment of the configuration of the displacement element according to the present invention except for the driving means.
  • elements corresponding to the elements shown in FIG. 1 (a) are denoted by the same reference numerals, and redundant description will be omitted.
  • the displacement element l ib shown in FIG. 5 is different from the displacement element 11 shown in FIG. 1A, for example, in that the beam 12, the functional material layers 13 to 16 (for the functional material layers 15 and 16, It is not shown because it is hidden under the functional material layer 14.) It is significant to clarify that the planar shape of each of the through hole 21 and the thickness imparting member 27 can be arbitrarily changed.
  • FIG. 6 is a view, corresponding to FIG. 1 (a), showing a fourth embodiment of the configuration of the displacement element according to the present invention except for the driving means.
  • elements corresponding to the elements shown in FIG. 1 (a) are denoted by the same reference numerals, and redundant description will be omitted.
  • the displacement element 11c shown in FIG. 6 is characterized by having a cross-shaped beam 12.
  • the beam 12 in this way, by forming the beam 12 in a cross shape, the first and second ends 17 and 18 of the beam 12, the first and second support portions 19 and 20 supporting these, the first and second Two unilateral radii 30 and 33 and two perpendicular bisectors 28, 31 and 34 will each be provided.
  • FIGS. 7 to 9 show a first embodiment of the driving means of the displacement element according to the present invention. It is for explaining the state.
  • FIG. 7 (a) is a plan view of the displacement element 51
  • FIG. 7 (b) is a cross-sectional end view along the cut plane BB of FIG. 7 (a).
  • 8 and 9 are views corresponding to FIG. 7B for explaining the operation of the displacement element 51 shown in FIG.
  • the displacement element 51 constitutes a piezoelectric drive type displacement element, and has a basic configuration common to the displacement element 11 shown in FIG.
  • the displacement element 51 includes a beam 52.
  • the beam 52 is, for example, a buffer layer 53 that also has an Al 2 O force.
  • a lower electrode layer 54 made of Pt for example, a piezoelectric layer 55 made of PZT (lead zirconate titanate) and an upper electrode layer 56 made of, for example, A1 are laminated in the thickness direction.
  • the upper electrode layer 56 is formed by being divided into first, second and third upper electrode layers 56a, 56b and 56c.
  • the above-described buffer layer 53, electrode layers 54 and 56, and piezoelectric layer 55 may have a material strength other than the materials described above.
  • the material of the buffer layer 53 TiO
  • Au or Ag may be used as the material of Z or 56, and ZnO, LiTaO
  • LiNbO may be used.
  • the total thickness of the buffer layer 53 and the lower electrode layer 54 be substantially equal to the thickness of the piezoelectric layer 55.
  • the upper electrode layer 56 is desirably formed thin using a material having high elasticity.
  • the displacement element 51 also includes first and second ends 57 and 58, which support the longitudinal direction of the beam 52, respectively, so as to hold the beam 52 as described above.
  • Second supports 59 and 60 are provided.
  • each of the first and second support portions 59 and 60 is provided with a through-hole 61 provided on a substrate 62 made of, for example, S. Given by the department.
  • Such a displacement element 51 is formed by distorting the piezoelectric layer 55 based on the piezoelectric effect, so that the first support 63 and the second support 60 of the first support 59 in the beam 52 are provided.
  • the effective radius 65 between the second fulcrum 64 and the second fulcrum 64 is radiused, so that the beam 52 Displacement occurs in the thickness direction.
  • a thickness imparting member 67 made of, for example, Si is arranged to make the central portion 66 thicker than other portions.
  • the effective radius portion 65 has a symmetric structure with respect to a perpendicular bisector 68 between the first fulcrum 63 and the second fulcrum 64.
  • the first one-side radius portion 70 between the first inner end 69 located at the end on the third side is
  • the second one-sided radius 73 between the second inner end 72 located at the fourth end is also symmetric with respect to the perpendicular bisector 74 between the second fulcrum 64 and the second inner end 72. It has a structure.
  • the effective radius portion 65 is formed by a first free end 75 and a second free end 76 which are each end in the width direction. It also has a symmetric structure with respect to the perpendicular bisector 77 (corresponding to the cutting plane BB).
  • the thickness imparting member 67 is disposed so as to extend over the entire area between the first free end 75 and the second free end 76, which are each end in the width direction of the effective radius portion 65. I have.
  • an extraction electrode 78 is electrically connected to the lower electrode layer 54 provided on the beam 52, and the end of the extraction electrode 78 is formed on the substrate 62 as shown in FIG. It is formed so as to be exposed to.
  • an extraction electrode 79 is electrically connected to the first and second upper electrode layers 56a and 56b located at both ends of the upper electrode layer 56.
  • the extraction electrode 80 is electrically connected to the third upper electrode layer 56c located at the center.
  • the pattern of each of the extraction electrodes 79 and 80 is designed so that the symmetry of each of the vertical bisectors 68, 71, 74, and 77 described above is not impaired, and all are ensured. I have.
  • a substrate 62 that is also made of S is prepared. At this stage, the through hole 61 is not formed in the substrate 62.
  • an Al 2 O 3 film serving as the buffer layer 53 is formed on the substrate 62 by sputtering or vapor deposition. It is formed on the entire surface by a method.
  • a Pt film to be the lower electrode layer 54 and the extraction electrode 78 is formed on the entire surface by a method such as sputtering or vapor deposition. At this time, A1 of the Pt film
  • a PZT film to be the piezoelectric layer 55 is formed on the entire surface by a method such as MOCVD or sputtering.
  • a method such as MOCVD or sputtering.
  • MOCVD metal-organic chemical vapor deposition
  • sputtering it is desirable that the PZT be c-axis oriented in a direction perpendicular to the substrate surface.
  • an A1 film to be the upper electrode layer 56 and the extraction electrodes 79 and 80 is formed by a method such as lift-off.
  • processing is performed so that the piezoelectric layer 55, the lower electrode layer 54, and the buffer layer 53 are obtained.
  • a part of the extraction electrode 78 is exposed by curling the piezoelectric layer 55 using a method such as ion milling through a resist mask.
  • a through hole 61 is formed on the substrate 62 from the back side by applying a method such as RIE through a resist mask.
  • the thickness providing member 67 is provided by a part of the substrate 62.
  • the displacement element 51 can be obtained.
  • the effective radius portion 65 of the beam 52 provided in the displacement element 51 has a symmetric structure as described above, and thus is the same as that described with reference to Figs. For the reason, in the initial state immediately after the fabrication, even if warpage as shown in FIG. 2 or FIG. 3 occurs, the height positions of the first and second inner ends 69 and 72 are changed to the first and second fulcrum. It can be controlled to always be the same as the 63 and 64 height positions.
  • a voltage is applied between the extraction electrode 78 connected to the lower electrode layer 54 and the extraction electrode 79 connected to the first and second upper electrode layers 56a and 56b in the upper electrode layer 56.
  • voltage is applied, distortion occurs in the portion of the piezoelectric layer 55 located between the lower electrode layer 54 and the first and second upper electrodes 56a and 56b due to the inverse piezoelectric effect.
  • the effective radius portion 65 In the initial state, as shown in FIG. 2, it is curved as shown in FIG. 8, while when initially in the state shown in FIG. 3, it is as shown in FIG. 9. Bends to Thus, as shown in FIGS. 8 and 9, the central portion 66 of the effective radius portion 65 of the beam 52 is displaced upward.
  • the amount of displacement can be controlled by the height of the voltage applied between the extraction electrodes 78 and 79.
  • the absolute position of the central portion 66 of the effective radius portion 65 of the beam 52 in the initial state can be controlled to be constant, so that a voltage is applied to the piezoelectric layer 55.
  • the central portion 66 of the effective radius portion 65 can be displaced by a predetermined amount, and a piezoelectrically-driven displacement element having good absolute position controllability can be realized.
  • FIG. 10 is for describing a second embodiment of the driving means of the displacement element according to the present invention.
  • FIG. 10 (a) is a plan view of the displacement element 81
  • FIG. 10 (b) is an end view of a cut portion along the cut surface BB of FIG. 10 (a).
  • the displacement element 81 constitutes an electromagnetically driven displacement element, and has a basic configuration common to the displacement element 11 shown in FIG.
  • the displacement element 81 includes a beam 82.
  • the beam 82 includes, for example, an insulator layer 83 that also has a SiO force.
  • A1 conductive layers 84 are stacked in the thickness direction.
  • Leading electrodes 85 and 86 are connected to each end of the conductor layer 84.
  • the displacement element 81 also includes first and second ends 87 and 88 that support the longitudinal direction of the beam 82, respectively, so that the beam 82 is held in a double-supported state.
  • Second supports 89 and 90 are provided.
  • each of the first and second support portions 89 and 90 is provided with a through-hole 91, for example, a substrate 92 having a Si force. Given by the department.
  • Such a displacement element 81 is connected to the first support portion of the beam 82 by electromagnetic driving described later.
  • the effective radius 95 between the first fulcrum 93 by the 89 and the second fulcrum 94 by the second support 90 is deflected, whereby the beam 82 is displaced in the thickness direction. Occurs.
  • a thickness providing member 97 for example, S, for increasing the thickness of the central portion 96 than other portions is disposed.
  • the effective radius portion 95 has a symmetric structure with respect to a perpendicular bisector 98 between the first fulcrum 93 and the second fulcrum 94.
  • the conductor layer 84 is formed on the central portion 96 of the effective radius 95, and the extraction electrodes 85 and 86 are symmetrical with respect to the vertical bisector 98 in the longitudinal direction. It extends.
  • the effective radius portion 95 a second one-side radius between the second fulcrum 94 and the second inner end 102 located at the second fulcrum 94 side end of the thickness imparting member 97.
  • the only portion 103 also has a symmetrical structure with respect to the perpendicular bisector 104 between the second fulcrum 94 and the second inner end 102.
  • the effective radius portion 95 is formed by a first free end 105 and a second free end 106, which are each end in the width direction. It also has a symmetrical structure with respect to the perpendicular bisector 107 (corresponding to the cutting plane BB).
  • the thickness imparting member 97 is disposed so as to extend over the entire area between the first free end 105 and the second free end 106, which are each end in the width direction of the effective radius portion 95. I have.
  • a substrate 92 that also contains S is prepared. At this stage, the through hole 91 is not formed in the substrate 92.
  • an SiO film to be the insulator layer 83 is formed on the substrate 92 by thermal oxidation or sputtering.
  • the insulator layer 83 is formed by wet etching.
  • an A return to be the conductor layer 84 is formed by a method such as lift-off.
  • a through-hole 91 is formed on the substrate 92 from the back side by applying a method such as RIE through a resist mask.
  • the thickness applying member 97 is attached to a part of the substrate 92. To be given.
  • the displacement element 81 can be obtained.
  • a permanent magnet or an electromagnet is arranged on the side of the beam 82 so that a magnetic field is applied in the longitudinal direction of the effective radius portion 95 of the beam 82.
  • an electric current is applied to the conductor layer 84 through the extraction electrodes 85 and 86, magnetic lines of force are generated, and the conductor layer 84 on the central portion 96 of the effective radius portion 95 receives electromagnetic force and receives an effective radius.
  • the central part 96 is displaced, thereby displacing the absolute position of the central part 96 upward or downward.
  • the amount of displacement can be controlled by the magnitude of the current flowing through the conductor layer 84.
  • the absolute position of the central portion 96 of the effective radius portion 95 of the beam 82 in the initial state can be controlled to be constant, so that the conductive layer 84, Further, the central portion 96 of the effective radius portion 95 can be displaced by a predetermined amount, and an electromagnetically driven displacement element with good absolute position control can be realized.
  • FIG. 11 is for describing a third embodiment of the driving means of the displacement element according to the present invention.
  • FIG. 11 (a) is a plan view of the displacement element 111
  • FIG. 11 (b) is an end view of a cut portion along the cut surface BB of FIG. 11 (a).
  • the displacement element 111 constitutes an electrostatic drive type displacement element, and has a basic configuration common to the displacement element 11 shown in FIG.
  • the displacement element 111 includes a beam 112.
  • the beam 112 has a thickness of, for example, an insulator layer 113 made of SiO and a conductive layer 114 made of A1.
  • An extraction electrode 115 is connected to the conductor layer 114.
  • the displacement element 111 also includes first and second ends 116 and 117 in the longitudinal direction of the beam 112, respectively, so as to hold the beam 112 as described above.
  • Second supports 118 and 119 are provided. In this embodiment, this is better illustrated in FIG. As described above, each of first and second support portions 118 and 119 is provided by a part of substrate 121 made of, for example, Si provided with through-hole 120.
  • Such a displacement element 111 is provided between the first fulcrum 122 of the beam 112 and the second fulcrum 123 of the second support 119 by the electrostatic drive.
  • the bending of the radius portion 124 is performed, whereby the beam 112 is displaced in the thickness direction.
  • a thickness-providing member 126 for example, S, for increasing the thickness of the central portion 125 to be greater than other portions is disposed.
  • the effective radius portion 124 has a symmetric structure with respect to a perpendicular bisector 127 of the first fulcrum 122 and the second fulcrum 123! / Puru.
  • the portion 129 has a symmetrical structure with respect to a perpendicular bisector 130 between the first fulcrum 122 and the first inner end 128.
  • the effective radius portion 124 a second one-side radius between the second fulcrum 123 and the second inner end 131 located at the end of the thickness imparting member 126 on the second fulcrum 123 side.
  • the portion 132 also has a symmetric structure with respect to the perpendicular bisector 133 between the second fulcrum 123 and the second inner end 131.
  • the effective radius portion 124 is formed by a first free end 134 and a second free end 135, which are ends in the width direction. It also has a symmetrical structure with respect to the perpendicular bisector 136 (corresponding to the cutting plane BB).
  • the thickness imparting member 126 extends over the entire area between the first free end 134 and the second free end 135, which are each end in the width direction of the effective radius portion 124. It is located at
  • a fixing member 137 that also has a glass force is fixedly disposed above the central portion 125 of the effective radius portion 124 of the beam 112, for example.
  • a fixed conductor 139 is formed on the fixing member 137 with, for example, A1 so as to be positioned with the air layer 138 separated from the conductor layer 114 described above.
  • the fixed conductor 139 is electrically connected to the extraction electrode 140 formed on the substrate 121.
  • a substrate 121 which is also made of S, is prepared. At this stage, the through hole 120 is not formed in the substrate 121.
  • an SiO film serving as the insulator layer 113 is formed on the substrate 121 by thermal oxidation or sputtering.
  • an insulator layer 113 is formed by wet etching.
  • an A1 film serving as the conductor layer 114 and the extraction electrode 115 is formed by a method such as lift-off.
  • a Cu film serving as the extraction electrode 140 is formed by a method such as lift-off.
  • the thickness of the extraction electrode 140 is larger than the thickness of the extraction electrode 115.
  • a through-hole 120 is formed on the substrate 121 from the back side by applying a method such as RIE through a resist mask.
  • the thickness providing member 126 is provided by a part of the substrate 121.
  • a fixed conductor 139 made of A1 is formed on the fixing member 137. Then, thermocompression bonding is performed so that the fixed conductor 139 and the extraction electrode 140 on the substrate 120 are joined.
  • the displacement element 111 can be obtained.
  • the displacement element 111 also has a symmetrical structure with respect to the effective radius portion 124 of the beam 112 and the first and second one-side radius portions 129 and 132.
  • the absolute position in the state can always be controlled to be constant.
  • FIGS. 12 to 14 illustrate a variable capacitance element as a preferred application example of the displacement element according to the present invention.
  • FIG. 12 is a plan view of the displacement element 141
  • FIG. 13 is an end view of a cut section along the cut plane X--X of FIG. 12
  • FIG. 14 is a cut section along the cut plane YY of FIG. It is a partial end view.
  • the displacement element 141 constituting the variable capacitance element includes a first substrate 142 made of, for example, Si and a second substrate 143 made of, for example, glass.
  • the displacement element 141 includes first and second beams 144 and 145 on the first substrate 142 side. Since the first and second beams 144 and 145 have substantially the same configuration as each other, the first beam 144 will be mainly described below.
  • the beam 144 is formed of, for example, a buffer layer 146 that also has Al O force, for example, a lower electrode layer made of Pt.
  • the upper electrode layer 149 is formed by being divided into first, second and third upper electrode layers 149a, 149b and 149c.
  • first and second ends 150 and 151 in the longitudinal direction of beam 144 are supported by first and second support portions 152 and 153, respectively, so that beam 144 is held in both ends.
  • first and second support portions 152 and 153 are provided by a portion separated by providing a through hole 154 in the first substrate 142. .
  • the piezoelectric layer 148 provided on the beam 144 is distorted based on the piezoelectric effect, so that the first fulcrum 155 of the first support 152 and the second support 153 of the second support 153 on the beam 144 are provided.
  • the effective radius 157 between the fulcrum 156 and the fulcrum 156 is deflected, so that the beam 144 is displaced in the thickness direction.
  • a thickness imparting member 159 for example, S, for increasing the thickness of the central portion 158 more than other portions is disposed.
  • the thickness imparting member 159 is disposed so as to extend to the central portion 161 of the effective radius portion 160 of the second beam 145, and both the first and second beams 144 and 145 are provided. Fixed to.
  • the effective radius portion 157 is a vertical bisecting surface 162 of the first fulcrum 155 and the second fulcrum 156 (cut (Corresponding to the cross section Y-Y).
  • the only portion 164 has a symmetrical structure with respect to a perpendicular bisector 165 between the first fulcrum 155 and the first inner end 163.
  • the effective radius portion 157 a second one-side radius between the second fulcrum 156 and the second inner end 166 located at the end of the thickness imparting member 159 on the second fulcrum 156 side.
  • the portion 167 also has a symmetric structure with respect to a perpendicular bisector 168 between the second fulcrum 156 and the second inner end 166.
  • the effective radius portion 157 is formed by a vertical free end of a first free end 169 and a second free end 170, which are ends in the width direction. It also has a symmetric structure with respect to the dividing plane 171 (corresponding to the cutting plane X—X).
  • an extraction electrode 172 is electrically connected to a lower electrode layer 147 provided on the beam 144 and a lower electrode layer (not shown) provided on the other beam 145, and an end of the extraction electrode 172 is connected to the terminal shown in FIG. As shown in FIG. 8, the first substrate 142 is formed so as to be exposed to the outside.
  • Electrode 173 is electrically connected.
  • electrodes 174 and 175 that also generate A1 force are formed in a state where they are aligned with each other. Further, the first substrate 142 and the second substrate 143 are joined to each other via a gap adjusting member 176. In this joined state, an electrode 178 having, for example, an A1 force is formed at a position separated by the air layer 177 so as to form a capacitance with respect to the electrodes 174 and 175, that is, on the lower surface of the thickness applying member 159. You.
  • a first substrate 142 that also contains S is prepared.
  • the through holes 154 are formed in the first substrate 142.
  • an Al 2 O 3 film serving as the buffer layer 146 is formed on the first substrate 142 by sputtering or
  • a Pt film to be the lower electrode layer 147 is sputtered. It is formed on the entire surface by a method such as tarling or vapor deposition.
  • a PZT film to be the piezoelectric layer 148 is formed on the entire surface by a method such as MOCVD or sputtering.
  • an A1 film serving as the upper electrode layer 149 and the extraction electrode 173 is formed by a method such as lift-off.
  • processing is performed so that the corresponding elements in the piezoelectric layer 148, the lower electrode layer 147, the buffer layer 146, and the second beam 145 in the first beam 144 are obtained.
  • the piezoelectric layer 148 in the first beam 144 and the corresponding element in the second beam 145 are processed by a method such as ion milling, so that the extraction electrode 172 is formed.
  • a through-hole 154 is formed on the first substrate 142 from the back side thereof by a method such as RIE through a resist mask.
  • the thickness applying member 159 is provided by a part of the first substrate 142.
  • electrodes 174 and 175 are formed on second substrate 143 by a method such as lift-off. Then, a gap adjusting member 176 is formed on the second substrate 143 using, for example, a photosensitive polyimide or the like, and then the first substrate 142 is thermocompression-bonded thereto.
  • the displacement element 141 can be obtained.
  • each of the first and second beams 144 and 145 has a symmetric structure, the center portions 158 and 161 of the effective radius portions 157 and 160 are respectively formed.
  • the absolute position in the initial state can always be controlled to be constant.
  • the capacitance formed by the electrodes 174 and 175 and the electrode 178 can be taken out through the electrodes 174 and 175.
  • the displacement element 141 constituting the variable capacitance element As described above, according to the displacement element 141 constituting the variable capacitance element, the absolute positions in the initial state of the central portions 158 and 161 of the effective radius portions 157 and 160 of the beams 144 and 145 are fixed. Therefore, the amount of displacement generated when a voltage is applied can be controlled with high precision, and as a result, the capacitance can be controlled with high precision.
  • the displacement element according to the present invention can be applied as a variable capacitance element capable of controlling a capacitance value with high accuracy.

Abstract

A displacement element having a beam in a state of being supported at its opposite ends and having the excellent controllability of an absolute position in an initial state. In the beam (12) formed such that a plurality of functional material layers (13 to 16) are stacked on each other in the thickness direction, a thickness adding member (27) is disposed at the center part (26) of the effective deflection portion (25) thereof, and the effective deflection portion (25) is made symmetrical with respect to the perpendicular bisector face (28) of a length between first fulcrum (23) and a second fulcrum (24). The first one side deflection portion (30) is made symmetrical with respect to the perpendicular bisection face (31) of a length between the first fulcrum (23) and a first inner end (29) and the second one side deflection portion (33) is made symmetrical with respect to the perpendicular bisector face (34) of a length between the second fulcrum (24) and a second inner end (32).

Description

変位素子  Displacement element
技術分野  Technical field
[0001] この発明は、変位素子に関するもので、特に、互いに異なる材料力 それぞれなる 複数の機能材料層を厚み方向に積層した構造を有する、両持ち状態の梁を備える、 変位素子に関するものである。  The present invention relates to a displacement element, and more particularly to a displacement element having a structure in which a plurality of functional material layers having different material forces are stacked in a thickness direction, and including a beam in a doubly supported state. .
背景技術  Background art
[0002] この発明にとって興味ある変位素子として、たとえば特開平 9 63890号公報 (特許 文献 1)に記載されたものがある。この特許文献 1には、可変容量素子を構成する変 位素子が記載されている。特許文献 1に記載される変位素子には、片持ち状態の梁 を備える構造を有するものの他、たとえば、図 15に示すような両持ち状態の梁 1を備 える構造を有するものがある。  [0002] Displacement elements of interest to the present invention include, for example, the one described in Japanese Patent Application Laid-Open No. 9-63890 (Patent Document 1). Patent Document 1 describes a displacement element that constitutes a variable capacitance element. Some of the displacement elements described in Patent Document 1 have a structure having a cantilevered beam, and others have, for example, a structure having a double-supported beam 1 as shown in FIG.
[0003] 図 15を参照して、梁 1は、 SiO力もなる絶縁体層 2と絶縁体層 2の一方主面および  [0003] Referring to FIG. 15, beam 1 includes an insulator layer 2 having an SiO force and one main surface of insulator layer 2 and
2  2
他方主面上にそれぞれ形成された導電体層 3および 4とを厚み方向に積層した構造 を有している。梁 1は、その長手方向の第 1および第 2の端部 5および 6が、それぞれ 、第 1および第 2の支持部 7および 8によって支持された、両持ち状態とされている。  On the other hand, it has a structure in which conductor layers 3 and 4 respectively formed on the main surface are laminated in the thickness direction. The beam 1 is in a double-supported state in which first and second ends 5 and 6 in the longitudinal direction are supported by first and second support portions 7 and 8, respectively.
[0004] 梁 1は、可変容量素子における可変側の電極を与えるものである。可変容量素子 の固定側の電極は、図示しないが、支持部 7および 8を介して、梁 1に対向する位置 に設けられる。したがって、可変容量素子における静電容量値の正確かつ高精度な 制御のため、あるいは容量値の温度特性の向上のためには、初期状態において、梁 1の形状 (橈み状態)が再現性良く安定していること、より特定的には、梁 1が直線性 に優れて 、ることが重要である。  [0004] The beam 1 provides a variable-side electrode in the variable capacitance element. Although not shown, the fixed-side electrode of the variable capacitance element is provided at a position facing the beam 1 via the support portions 7 and 8. Therefore, in order to accurately and accurately control the capacitance value of the variable capacitance element or to improve the temperature characteristics of the capacitance value, the shape of the beam 1 (radial state) in the initial state has good reproducibility. It is important that the beam 1 is stable, more specifically, that the beam 1 has excellent linearity.
[0005] これに関して、梁 1は、絶縁体層 2に関して表裏対称な積層構造を有しているので、 絶縁体層 2の表裏面に発生する応力は相互に相殺され、したがって、初期状態にお いて、梁 1の反りが生じにくい構造となっている。  [0005] In this regard, since the beam 1 has a laminated structure that is symmetrical with respect to the insulating layer 2, the stresses generated on the front and back surfaces of the insulating layer 2 cancel each other out, and therefore, in the initial state. Therefore, the beam 1 does not easily warp.
[0006] し力しながら、梁 1における反りを、上述した表裏対称構造によって完全に防止する ためには、導電体層 3および 4について、少なくとも膜厚、内部応力、弾性定数およ び熱膨張係数を完全に一致させる必要があり、また、絶縁体層 2ならびに導電体層 3 および 4の各層において、層の厚み方向に完全に均質にする必要がある力 実際に は、これらの条件を満たすことは非常に困難である。 [0006] In order to completely prevent the warpage of the beam 1 by the above-described symmetrical structure, the conductor layers 3 and 4 must have at least a film thickness, an internal stress, an elastic constant, And the coefficients of thermal expansion must be perfectly matched, and in each of the insulator layer 2 and the conductor layers 3 and 4, the forces that need to be completely homogenous in the thickness direction of the layers. Meeting the conditions is very difficult.
[0007] そのため、初期状態すなわち作製直後の梁 1において、図 16または図 17に示すよ うな反りが生じることが避けられないのが現状である。図 16では、梁 1は、矢印 9で示 すように、上方へ湾曲した形状に反っており、梁 1の中央部の初期状態での絶対位 置は上方へ変位している。他方、図 17では、梁 1は、矢印 10で示すように、下方へ 湾曲した形状に反っており、梁 1の中央部の初期状態での絶対位置は下方へ変位し ている。また、温度変化によっても、上述したような反りが梁 1に生じることがある。  [0007] Therefore, at present, it is unavoidable that a warp as shown in FIG. 16 or FIG. 17 occurs in the initial state, that is, in the beam 1 immediately after fabrication. In FIG. 16, the beam 1 is warped upwardly, as indicated by the arrow 9, and the initial absolute position of the center of the beam 1 in the initial state is displaced upward. On the other hand, in FIG. 17, the beam 1 is warped in a downwardly curved shape as shown by the arrow 10, and the absolute position of the central portion of the beam 1 in the initial state is displaced downward. In addition, warpage as described above may occur in the beam 1 due to a temperature change.
[0008] また、梁 1に与えられる表裏対称構造は、以下のように、梁 1の設計の自由度を低 下させるという問題もある。  [0008] Further, the front and back symmetrical structure given to the beam 1 has a problem that the degree of freedom in designing the beam 1 is reduced as described below.
[0009] たとえば、図 15に示した梁 1では、絶縁体層 2の表裏にそれぞれ導電体層 3および 4を形成することによって、合計 3層の表裏対称構造を実現しているが、これに 1つの 機能材料層を追加したい場合には、表裏それぞれに、この機能材料層を追加するこ とによって、合計 5層の表裏対称構造としなければならない。  [0009] For example, in the beam 1 shown in Fig. 15, the conductor layers 3 and 4 are formed on the front and back of the insulator layer 2, respectively, thereby realizing a total of three layers of front and back symmetric structures. If one functional material layer is to be added, this functional material layer must be added to each of the front and back surfaces, so that a total of five front and back symmetric structures must be used.
[0010] し力しながら、上述のように追加される機能材料層のうち、表裏いずれかの側にある ものについては、単に表裏対称構造を実現するためだけに形成されるものである。し たがって、この機能材料層の形成のための作製工程数が増え、コストの上昇を招くと いう問題に遭遇する。  [0010] However, among the functional material layers added as described above, those on either side of the front and back sides are formed merely for realizing a front and back symmetric structure. Therefore, the number of manufacturing steps for forming the functional material layer is increased, which causes a problem that the cost is increased.
[0011] また、絶縁体層 2の表裏各々側において、前述したように、膜厚、内部応力、弾性 定数および熱膨張係数を完全に一致させることは、合計 3層の表裏対称構造の場合 に比べて、合計 5層の表裏対称構造の場合の方が格段に困難になる。  [0011] Further, as described above, making the film thickness, the internal stress, the elastic constant, and the coefficient of thermal expansion completely identical on each of the front and back sides of the insulator layer 2 requires a total of three layers of front and back symmetric structures. In comparison, it is much more difficult in the case of a five-layer symmetric structure.
[0012] また、たとえば、図 15に示した構造について言えば、表裏対称構造を実現するた めには、導電体層 3の平面パターンと導電体層 4の平面パターンとについても、対称 形状としなければならない。し力しながら、梁 1に求められる機能によっては、導電体 層 3と導電体層 4とを対称形状にできない場合があり、そのため、梁 1に反りが発生す ると ヽぅ問題を単純には解決できな ヽこともある。  [0012] For example, with respect to the structure shown in FIG. 15, in order to realize a symmetrical structure, the plane pattern of the conductor layer 3 and the plane pattern of the conductor layer 4 are also symmetric. There must be. Depending on the functions required of the beam 1, the conductor layer 3 and the conductor layer 4 may not be able to be formed into a symmetrical shape while the beam 1 warps. May not be solved.
特許文献 1:特開平 9— 63890号公報 発明の開示 Patent Document 1: JP-A-9-63890 Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0013] そこで、この発明の目的は、上述したような問題を解決し得る変位素子を提供しょう とすることである。  [0013] An object of the present invention is to provide a displacement element that can solve the above-described problems.
課題を解決するための手段  Means for solving the problem
[0014] この発明は、互いに異なる材料力もそれぞれなる複数の機能材料層を厚み方向に 積層した構造を有する梁と、梁を両持ち状態とするように、梁の長手方向の第 1およ び第 2の端部をそれぞれ支持する第 1および第 2の支持部と、梁に厚み方向への変 位を生じさせるため、梁における、第 1の支持部による第 1の支点と第 2の支持部によ る第 2の支点との間の有効橈み部分を橈ませるように電気的に駆動するための駆動 手段とを備える、変位素子に向けられるものであって、上述した技術的課題を解決す るため、次のような構成を備えることを特徴としている。  [0014] The present invention provides a beam having a structure in which a plurality of functional material layers having different material strengths are laminated in the thickness direction, and a first and a second beam in a longitudinal direction of the beam so that the beam is held at both ends. First and second support portions respectively supporting the second end portion, and a first fulcrum and a second support portion of the beam by the first support portion to cause displacement of the beam in the thickness direction. And a driving means for electrically driving the effective radius portion between the second fulcrum and the second fulcrum. In order to solve the problem, the following features are provided.
[0015] すなわち、有効橈み部分の長手方向の中央部には、当該中央部の厚みを他の部 分より厚くするための厚み付与部材が配置される。また、有効橈み部分は、第 1の支 点と第 2の支点との垂直二等分面に関して対称構造を有するとともに、有効橈み部 分における、第 1の支点と厚み付与部材の第 1の支点側の端に位置する第 1の内端 との間の第 1の片側橈み部分は、第 1の支点と第 1の内端との垂直二等分面に関して 対称構造を有し、かつ、有効橈み部分における、第 2の支点と厚み付与部材の第 2 の支点側の端に位置する第 2の内端との間の第 2の片側橈み部分は、第 2の支点と 第 2の内端との垂直二等分面に関して対称構造を有している。  [0015] That is, a thickness-providing member for increasing the thickness of the central portion in the longitudinal direction of the effective radius portion to be greater than other portions is disposed. Further, the effective radius portion has a symmetrical structure with respect to a perpendicular bisector between the first fulcrum and the second fulcrum, and the first fulcrum and the first member of the thickness imparting member in the effective radius portion. A first radial portion between the first inner end located at the end of the fulcrum side has a symmetrical structure with respect to a perpendicular bisector of the first fulcrum and the first inner end, And, in the effective radius portion, the second one-side radius portion between the second fulcrum and the second inner end located at the second fulcrum-side end of the thickness imparting member is a second fulcrum and a second fulcrum. It has a symmetric structure with respect to a perpendicular bisector with the second inner end.
[0016] この発明において、有効橈み部分は、その幅方向の各端部である第 1の自由端と第 2の自由端との垂直二等分面に関して対称構造を有していることが好ましい。  [0016] In the present invention, the effective radius portion may have a symmetric structure with respect to a perpendicular bisector of the first free end and the second free end, which are each end in the width direction. preferable.
[0017] また、厚み付与部材は、有効橈み部分の幅方向の各端部である第 1の自由端と第 2の自由端との間の全域にわたって延びるように配置されていることが好ましい。  [0017] Further, it is preferable that the thickness imparting member is disposed so as to extend over the entire area between the first free end and the second free end which are each end in the width direction of the effective radius portion. .
[0018] この発明に係る変位素子は、特に駆動手段に関して、いくつかの実施態様がある。  [0018] The displacement element according to the present invention has several embodiments, particularly regarding the driving means.
[0019] 第 1の実施態様では、変位素子は圧電駆動型変位素子を構成するもので、複数の 機能材料層のうちの少なくとも 1層は、圧電体からなる圧電体層であり、駆動手段は、 圧電体層を圧電効果に基づ 、て歪ませる手段を備えて 、る。 [0020] 第 2の実施態様では、変位素子は、電磁駆動型変位素子を構成するもので、複数 の機能材料層のうちの少なくとも 1層は、導電体からなる導電体層であり、駆動手段 は、導電体層に電流を流すことによって磁力線を発生させる手段と、導電体層に電 磁力を発生させて有効橈み部分を橈ませるように導電体層に外部より磁場を与える 手段とを備えている。 In the first embodiment, the displacement element constitutes a piezoelectric drive type displacement element, at least one of the plurality of functional material layers is a piezoelectric layer made of a piezoelectric material, and the driving means is Means for distorting the piezoelectric layer based on the piezoelectric effect is provided. [0020] In the second embodiment, the displacement element constitutes an electromagnetically driven displacement element, and at least one of the plurality of functional material layers is a conductor layer made of a conductor. Comprises means for generating lines of magnetic force by passing an electric current through the conductor layer, and means for generating an electromagnetic force in the conductor layer to externally apply a magnetic field to the conductor layer so that the effective radius is radiused. ing.
[0021] 第 3の実施態様では、変位素子は、静電駆動型変位素子を構成するもので、複数 の機能材料層のうちの少なくとも 1層は、導電体からなる導電体層であり、駆動手段 は、導電体層に対して空気層を隔てた位置に固定的に設けられた固定導電体と、導 電体層と固定導電体との間に電圧を印加する手段とを備え、導電体層と固定導電体 との間に電圧を印加することにより、導電体層と固定導電体との間に静電引力を発生 させ、それによつて、有効橈み部分を橈ませるように構成される。  In the third embodiment, the displacement element constitutes an electrostatic drive type displacement element, and at least one of the plurality of functional material layers is a conductive layer made of a conductive material. The means comprises: a fixed conductor fixedly provided at a position separated from the conductor layer by an air layer; and means for applying a voltage between the conductor layer and the fixed conductor. By applying a voltage between the layer and the fixed conductor, an electrostatic attraction is generated between the conductor layer and the fixed conductor, whereby the effective radius is bent. .
[0022] この発明に係る変位素子は、たとえば可変容量素子を構成するために有利に用い られる。この場合、厚み付与部材を含む有効橈み部分上に設けられた第 1の電極と、 第 1の電極に対して静電容量を形成するように空気層を隔てた位置に固定的に設け られた第 2の電極とをさらに備え、有効橈み部分の橈みによって静電容量が変更され るように構成される。  The displacement element according to the present invention is advantageously used, for example, for forming a variable capacitance element. In this case, the first electrode provided on the effective radius portion including the thickness imparting member and the first electrode are fixedly provided at a position separated by an air layer so as to form a capacitance with respect to the first electrode. And a second electrode, wherein the capacitance is changed by the radius of the effective radius.
発明の効果  The invention's effect
[0023] この発明に係る変位素子によれば、梁に備える複数の機能材料層について、表裏 対称構造となるように、膜厚、内部応力、弾性定数および熱膨張係数等を制御しなく ても、梁の、有効橈み部分における、第 1の支点と厚み付与部材の第 1の支点側の 端に位置する第 1の内端との間の第 1の片側橈み部分の長手方向での反りと、第 2の 支点と厚み付与部材の第 2の支点側の端に位置する第 2の内端との間の第 2の片側 橈み部分の長手方向での反りとを、中央部に関して対称に生じさせるようにすること ができる。したがって、有効橈み部分の中央部の初期状態での絶対位置を安定して 一定に制御することができる。  [0023] According to the displacement element of the present invention, the thickness, internal stress, elastic constant, coefficient of thermal expansion, and the like of the plurality of functional material layers provided on the beam are controlled so as to have a symmetrical structure. In the longitudinal direction of the first one-sided radius portion between the first fulcrum and the first inner end located at the first fulcrum-side end of the thickness imparting member in the effective radius portion of the beam. The warpage and the warpage in the longitudinal direction of the second one-sided radius portion between the second fulcrum and the second inner end located at the second fulcrum-side end of the thickness imparting member, It can be made symmetrical. Therefore, the absolute position of the central portion of the effective radius in the initial state can be controlled stably and constantly.
[0024] その結果、駆動手段によってもたらされる有効橈み部分の変位量を安定させること ができるので、絶対位置制御性に優れた変位素子を得ることができ、この変位素子 がたとえば可変容量素子に適用された場合には、正確かつ高精度な容量制御を行 なうことができる。 [0024] As a result, the amount of displacement of the effective radius portion caused by the driving means can be stabilized, so that a displacement element having excellent absolute position controllability can be obtained. When applied, accurate and highly accurate capacity control is performed. Can be.
[0025] また、この発明に係る変位素子では、表裏対称構造が要求されな 、ので、設計の 自由度を高めることができる。  [0025] Further, the displacement element according to the present invention does not require a front-back symmetric structure, so that the degree of freedom in design can be increased.
[0026] この発明において、有効橈み部分が、その幅方向の各端部である第 1の自由端と 第 2の自由端との垂直二等分面に関しても対称構造を有していると、有効橈み部分 の幅方向での反りによる絶対位置の変動を防止することができるので、より高精度な 絶対位置制御性を得ることができる。 [0026] In the present invention, the effective radius portion also has a symmetrical structure with respect to a perpendicular bisector of the first free end and the second free end, which are each end in the width direction. In addition, since the variation of the absolute position due to the warp of the effective radius portion in the width direction can be prevented, more accurate absolute position controllability can be obtained.
[0027] この発明において、厚み付与部材が、有効橈み部分の幅方向の各端部である第 1 の自由端と第 2の自由端との間の全域にわたって延びるように配置されていると、こ の厚み付与部材が与えるリブ効果によって、有効橈み部分の幅方向での反りを生じ させ〖こくくすることができる。 [0027] In the present invention, the thickness imparting member is arranged so as to extend over the entire area between the first free end and the second free end, which are each end in the width direction of the effective radius portion. By the rib effect provided by the thickness imparting member, the effective radius portion can be warped in the width direction and can be made thicker.
図面の簡単な説明  Brief Description of Drawings
[0028] [図 1]図 1は、この発明に係る変位素子の、駆動手段を除く構成についての第 1の実 施形態を説明するためのもので、(a)は、変位素子 11の平面図であり、(b)は、(a)の 切断面 B-Bに沿う切断部端面図である。  [FIG. 1] FIG. 1 is for describing a first embodiment of a configuration of a displacement element according to the present invention except for driving means, and FIG. 1 (a) is a plan view of a displacement element 11; It is a figure, (b) is an end view of the cut part along cut surface BB of (a).
[図 2]図 2は、図 1に示す変位素子 11に備える梁 12の初期状態において生じる反り の傾向を示す、図 1 (b)に対応する図である。  [FIG. 2] FIG. 2 is a view corresponding to FIG. 1 (b), showing a tendency of warpage occurring in an initial state of the beam 12 provided in the displacement element 11 shown in FIG.
[図 3]図 3は、図 2に相当する図であって、他の態様の反りの傾向を示す図である。  FIG. 3 is a diagram corresponding to FIG. 2 and shows a tendency of warpage in another mode.
[図 4]図 4は、この発明に係る変位素子の、駆動手段を除く構成についての第 2の実 施形態を示す、図 1 (b)に対応する図である。  FIG. 4 is a diagram corresponding to FIG. 1 (b), showing a second embodiment of the configuration of the displacement element according to the present invention except for the driving means.
[図 5]図 5は、この発明に係る変位素子の、駆動手段を除く構成についての第 3の実 施形態を示す、図 1 (a)に対応する図である。  FIG. 5 is a view corresponding to FIG. 1 (a), showing a third embodiment of the configuration of the displacement element according to the present invention except for the driving means.
[図 6]図 6は、この発明に係る変位素子の、駆動手段を除く構成についての第 4の実 施形態を示す、図 1 (a)に対応する図である。  FIG. 6 is a diagram corresponding to FIG. 1 (a), showing a fourth embodiment of the configuration of the displacement element according to the present invention except for the driving means.
[図 7]図 7は、この発明に係る変位素子の、駆動手段についての第 1の実施形態を説 明するためのもので、(a)は、変位素子 51の平面図であり、 (b)は、 (a)の切断面 B -Bに沿う切断部端面図である。  [FIG. 7] FIG. 7 is a view for explaining a first embodiment of a driving means of the displacement element according to the present invention. (A) is a plan view of the displacement element 51, () Is an end view of the cut portion along the cut surface BB of (a).
[図 8]図 8は、図 7に示す変位素子 51の動作を説明するための図 7 (b)に対応する図 である。 FIG. 8 is a diagram corresponding to FIG. 7 (b) for explaining the operation of the displacement element 51 shown in FIG. 7; It is.
[図 9]図 9は、図 7に示す変位素子 51の他の動作を説明するための図 7 (b)に対応す る図である。  FIG. 9 is a view corresponding to FIG. 7B for explaining another operation of the displacement element 51 shown in FIG. 7.
[図 10]図 10は、この発明に係る変位素子の、駆動手段についての第 2の実施形態を 説明するためのもので、(a)は、変位素子 81の平面図であり、(b)は、(a)の切断面 B -Bに沿う切断部端面図である。  FIG. 10 is a view for explaining a second embodiment of the driving means of the displacement element according to the present invention, wherein (a) is a plan view of the displacement element 81 and (b) FIG. 3A is an end view of a cut section along a cut plane B-B in FIG.
[図 11]図 11は、この発明に係る変位素子の、駆動手段についての第 3の実施形態を 説明するためのもので、(a)は、変位素子 111の平面図であり、(b)は、(a)の切断面 B-Bに沿う切断部端面図である。  FIG. 11 is a view for explaining a third embodiment of the driving means of the displacement element according to the present invention, wherein (a) is a plan view of the displacement element 111 and (b) (A) is an end view of the cut portion along the cut surface BB of (a).
[図 12]図 12は、この発明に係る変位素子の好ましい適用例としての容量可変素子を 説明するためのもので、変位素子 141の平面図である。  FIG. 12 is a plan view of a displacement element 141 for explaining a variable capacitance element as a preferred application example of the displacement element according to the present invention.
[図 13]図 13は、図 12の切断面 X— Xに沿う切断部端面図である。  [FIG. 13] FIG. 13 is a sectional end view taken along the section plane X—X in FIG.
[図 14]図 14は、図 12の切断面 Y— Yに沿う切断部端面図である。  [FIG. 14] FIG. 14 is an end view of a cut portion along a cut surface YY of FIG.
[図 15]図 15は、この発明にとって興味ある両持ち状態の梁 1を備える従来の変位素 子を図解的に示す断面図である。  FIG. 15 is a cross-sectional view schematically showing a conventional displacement element provided with a doubly supported beam 1 of interest to the present invention.
[図 16]図 16は、図 15に示した梁 1の初期状態において生じ得る反りを示す、図 15に 対応する図である。  [FIG. 16] FIG. 16 is a view corresponding to FIG. 15, showing warpage that may occur in the initial state of the beam 1 shown in FIG.
[図 17]図 17は、図 15に示した梁 1の初期状態において生じ得る他の態様の反りを示 す、図 15に対応する図である。  [FIG. 17] FIG. 17 is a view corresponding to FIG. 15 and showing another form of warpage that may occur in the initial state of the beam 1 shown in FIG.
符号の説明 Explanation of symbols
11, 11a, l ib, 11c, 51, 81, 111, 141 変位素子  11, 11a, lib, 11c, 51, 81, 111, 141 Displacement element
12, 52, 82, 112, 144, 145 梁  12, 52, 82, 112, 144, 145 beams
13— 16, 41— 45 機能材料層  13— 16, 41— 45 Functional material layer
17, 18, 57, 58, 87, 88, 116, 117, 150, 151 端部  17, 18, 57, 58, 87, 88, 116, 117, 150, 151 end
19, 20, 59, 60, 89, 90, 118, 119, 152, 153 支持部  19, 20, 59, 60, 89, 90, 118, 119, 152, 153 Support
23, 24, 63, 64, 93, 94, 122, 123, 155, 156 支点  23, 24, 63, 64, 93, 94, 122, 123, 155, 156
25, 65, 95, 124, 157, 160 有効橈み部分  25, 65, 95, 124, 157, 160 Effective radius
26, 66, 96, 125, 158, 161 中央部 27, 67, 97, 126, 159 厚み付与部材 26, 66, 96, 125, 158, 161 Central 27, 67, 97, 126, 159 Thickening member
28, 31, 34, 37, 68, 71, 74, 77, 98, 101, 104, 107, 127, 130, 133, 136 , 162, 165, 168, 171 垂直二等分面  28, 31, 34, 37, 68, 71, 74, 77, 98, 101, 104, 107, 127, 130, 133, 136, 162, 165, 168, 171 Vertical bisector
29, 32, 69, 72, 99, 102, 128, 131, 163, 166 内端  29, 32, 69, 72, 99, 102, 128, 131, 163, 166 Inner end
30, 33, 70, 73, 100, 103, 129, 132, 164, 167 片側橈み部分  30, 33, 70, 73, 100, 103, 129, 132, 164, 167 Unilateral radius
35, 36, 75, 76, 105, 106, 134, 135, 169, 170 白由端  35, 36, 75, 76, 105, 106, 134, 135, 169, 170
53, 146 バッファ層  53, 146 buffer layer
54, 147 下部電極層  54, 147 Lower electrode layer
55, 148 圧電体層  55, 148 Piezoelectric layer
56, 149 上部電極層  56, 149 Upper electrode layer
83, 113 絶縁体層  83, 113 Insulator layer
84, 114 導電体層  84, 114 conductor layer
138, 177 空気層  138, 177 Air layer
174, 175, 178 電極  174, 175, 178 electrodes
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0030] 図 1ないし図 3は、この発明に係る変位素子の、駆動手段を除く構成についての第 1の実施形態を説明するためのものである。ここで、図 1 (a)は、変位素子 11の平面 図であり、図 1 (b)は、図 1 (a)の切断面 B— Bに沿う切断部端面図である。図 2および 図 3は、図 1に示す変位素子 11に備える梁 12にお 、て初期状態で生じる反りの傾向 を示す、図 1 (b)に対応する図である。  FIGS. 1 to 3 illustrate a first embodiment of a displacement element according to the present invention except for a driving unit. Here, FIG. 1 (a) is a plan view of the displacement element 11, and FIG. 1 (b) is an end view of a cut portion along a cut surface BB of FIG. 1 (a). 2 and 3 are diagrams corresponding to FIG. 1 (b), showing the tendency of the beam 12 provided in the displacement element 11 shown in FIG. 1 to be warped in an initial state.
[0031] 図 1を参照して、変位素子 11は梁 12を備え、梁 12は、互いに異なる材料力もそれ ぞれなる複数の機能材料層 13、 14、 15および 16を厚み方向に積層した構造を有し ている。ここで、梁 12は、特に表裏対称構造にされる必要はないことに注目すべきで ある。  Referring to FIG. 1, the displacement element 11 includes a beam 12, and the beam 12 has a structure in which a plurality of functional material layers 13, 14, 15, and 16 having different material forces are stacked in a thickness direction. have. Here, it should be noted that the beams 12 do not need to be particularly symmetrical.
[0032] また、変位素子 11は、梁 12を両持ち状態とするように、梁 12の長手方向の第 1お よび第 2の端部 17および 18をそれぞれ支持する第 1および第 2の支持部 19および 2 0を備えている。この実施形態では、図 1 (a)によく示されているように、第 1および第 2 の支持部 19および 20の各々は、貫通孔 21が設けられた基板 22の一部によって与 えられている。 Further, the displacement element 11 includes first and second support members for supporting the first and second end portions 17 and 18 in the longitudinal direction of the beam 12 so as to hold the beam 12 in a double-supported state. Parts 19 and 20 are provided. In this embodiment, each of the first and second support portions 19 and 20 is provided by a part of a substrate 22 provided with a through-hole 21 as well shown in FIG. Has been obtained.
[0033] また、具体的には図示しないが、変位素子 11は、梁 12に厚み方向への変位を生じ させるため、梁 12における、第 1の支持部 19による第 1の支点 23と第 2の支持部 20 による第 2の支点 24との間の有効橈み部分 25を橈ませるように電気的に駆動するた めの駆動手段とを備えている。  Although not specifically shown, the displacement element 11 is configured to cause the beam 12 to be displaced in the thickness direction, so that the first fulcrum 23 and the second fulcrum 23 of the beam 12 Drive means for electrically driving the effective radius portion 25 between the second fulcrum 24 of the support portion 20 and the second fulcrum 24.
[0034] さらに、変位素子 11は、次のような特徴的構成を備えている。  Further, the displacement element 11 has the following characteristic configuration.
[0035] 有効橈み部分 25の長手方向の中央部 26には、当該中央部 26の厚みを他の部分 より厚くするための厚み付与部材 27が配置される。  [0035] At a central portion 26 in the longitudinal direction of the effective radius portion 25, a thickness imparting member 27 for increasing the thickness of the central portion 26 to be greater than other portions is disposed.
[0036] また、有効橈み部分 25は、第 1の支点 23と第 2の支点 24との垂直二等分面 28に 関して対称構造を有して!/ヽる。  The effective radius portion 25 has a symmetrical structure with respect to a vertical bisector 28 between the first fulcrum 23 and the second fulcrum 24! / Puru.
[0037] また、有効橈み部分 25における、第 1の支点 23と厚み付与部材 27の第 1の支点 2 3側の端に位置する第 1の内端 29との間の第 1の片側橈み部分 30は、第 1の支点 2 3と第 1の内端 29との垂直二等分面 31に関して対称構造を有している。  [0037] In the effective radius portion 25, a first one-side radius between the first fulcrum 23 and the first inner end 29 located at the first fulcrum 23-side end of the thickness imparting member 27 is set. The only part 30 has a symmetrical structure with respect to a perpendicular bisector 31 between the first fulcrum 23 and the first inner end 29.
[0038] 他方、有効橈み部分 25における、第 2の支点 24と厚み付与部材 27の第 2の支点 2 4側の端に位置する第 2の内端 32との間の第 2の片側橈み部分 33についても、第 2 の支点 24と第 2の内端 32との垂直二等分面 34に関して対称構造を有している。  [0038] On the other hand, in the effective radius portion 25, a second one-side radius between the second fulcrum 24 and the second inner end 32 located at the second fulcrum 24 side end of the thickness imparting member 27. The only portion 33 also has a symmetrical structure with respect to the perpendicular bisector 34 between the second fulcrum 24 and the second inner end 32.
[0039] また、図 1 (a)によく示されているように、有効橈み部分 25は、その幅方向の各端部で ある第 1の自由端 35と第 2の自由端 36との垂直二等分面 37 (切断面 B-Bに相当)に 関しても対称構造を有して ヽる。  [0039] Further, as is well shown in Fig. 1 (a), the effective radius portion 25 is formed by a first free end 35 and a second free end 36, which are respective ends in the width direction. It also has a symmetrical structure with respect to the perpendicular bisector 37 (corresponding to the cutting plane BB).
[0040] また、厚み付与部材 27は、有効橈み部分 25の幅方向の各端部である第 1の自由 端 35と第 2の自由端 36との間の全域にわたって延びるように配置されている。  [0040] The thickness imparting member 27 is disposed so as to extend over the entire area between the first free end 35 and the second free end 36, which are each end in the width direction of the effective radius portion 25. I have.
[0041] 以上のような構成を有する変位素子 11において、梁 12の初期状態での反りまたは 温度変化により発生する反りは、図 2または図 3に示すような傾向を持っている。  In the displacement element 11 having the above configuration, the warpage of the beam 12 in the initial state or the warpage caused by a temperature change has a tendency as shown in FIG. 2 or FIG.
[0042] 梁 12を構成する機能材料層 13— 16の作製条件等に起因して機能材料層 13— 1 6間で異なる内部応力が発生したり、温度変化のために機能材料層 13— 16を構成 する材料の熱膨張係数の差に起因して機能材料層 13— 16間に熱応力が発生した りすると、図 2または図 3に示すように、梁 12における、第 1および第 2の片側橈み部 分 30および 33 (図 1参照)にそれぞれ反りが発生する。なお、実際には、図 2または 図 3に示すような梁 12の長手方向での反りだけでなぐ梁 12の幅方向(図 2および図 3の紙面に垂直な方向)にも反りが発生する。 [0042] Different internal stresses occur between the functional material layers 13-16 due to the manufacturing conditions of the functional material layers 13-16 constituting the beam 12, and the functional material layers 13-16 due to temperature changes. When thermal stress is generated between the functional material layers 13-16 due to the difference in the thermal expansion coefficient of the materials constituting the first and second beams, as shown in FIG. 2 or FIG. Warpage occurs at the unilateral radius 30 and 33 (see Fig. 1). Actually, Figure 2 or Warpage also occurs in the width direction of the beam 12 (direction perpendicular to the paper surface in FIGS. 2 and 3), which is caused only by the warpage in the longitudinal direction of the beam 12 as shown in FIG.
[0043] 上述したように生じる反りの度合いは、梁 12を構成している機能材料層 13— 16の 厚み、内部応力の大きさ、弾性定数、および熱膨張係数等によって決まる。他方、こ の実施形態の場合、有効橈み部分 25の中央部 26に配置されている厚み付与部材 2 7が十分に厚いので、長手方向および幅方向のいずれについても、反りは第 1の片 側橈み部分 30と第 2の片側橈み部分 33とで実質的に互いに独立して生じることにな る。 The degree of warpage that occurs as described above is determined by the thickness of the functional material layers 13 to 16 constituting the beam 12, the magnitude of the internal stress, the elastic constant, the coefficient of thermal expansion, and the like. On the other hand, in the case of this embodiment, since the thickness imparting member 27 arranged at the central portion 26 of the effective radius portion 25 is sufficiently thick, the warpage is the first piece in both the longitudinal direction and the width direction. The lateral radius 30 and the second lateral radius 33 will occur substantially independently of each other.
[0044] 上述のように、第 1の片側橈み部分 30と第 2の片側橈み部分 33との各々で反りが 生じたとき、第 1および第 2の片側橈み部分 30および 33は、それぞれ、垂直二等分 面 31および 34に関して対称構造を有しているので、長手方向での反りの方向およ び度合いについては、垂直二等分面 31および 34の各々の両側において対称となる  [0044] As described above, when warpage occurs in each of the first one-side radius portion 30 and the second one-side radius portion 33, the first and second one-side radius portions 30 and 33 become: Since each has a symmetrical structure with respect to the perpendicular bisectors 31 and 34, the direction and degree of warpage in the longitudinal direction are symmetric on both sides of each of the perpendicular bisectors 31 and 34.
[0045] また、有効橈み部分 25は、第 1の支点 23と第 2の支点 24との垂直二等分面 28に 関しても対称構造を有して 、るので、長手方向での反りの方向および度合いにっ 、 ては、この垂直二等分面 28の両側においても対称となる。 The effective radius portion 25 also has a symmetrical structure with respect to a perpendicular bisector 28 between the first fulcrum 23 and the second fulcrum 24, so that the warp in the longitudinal direction Depending on the direction and the degree of, both sides of the perpendicular bisector 28 are also symmetric.
[0046] そして、上述のように、第 1および第 2の片側橈み部分 30および 33の各々での長 手方向での反りの方向および度合いが、垂直二等分面 31および 34の各々の両側に おいて対称となるとともに、垂直二等分面 28の両側においても対称となるので、中央 部 26の初期状態での絶対位置は、常に一定とすることができる。  Then, as described above, the direction and degree of warpage in the longitudinal direction of each of the first and second one-side radius portions 30 and 33 are determined by the respective vertical bisectors 31 and 34 Since it is symmetrical on both sides and also symmetrical on both sides of the perpendicular bisector 28, the absolute position of the central portion 26 in the initial state can always be constant.
[0047] 言い換えると、梁 12を構成している機能材料層 13— 16の厚み、内部応力の大きさ 、弾性定数、および熱膨張係数等を制御しなくても、図 2および図 3において示した 破線 38の位置との比較力もわ力るように、第 1および第 2の内端 29および 32の高さ 位置を、第 1および第 2の支点 23および 24の高さ位置と常に同じになるように制御す ることがでさる。  [0047] In other words, even if the thickness, the magnitude of the internal stress, the elastic constant, the coefficient of thermal expansion, and the like of the functional material layers 13 to 16 constituting the beam 12 are not controlled, they are shown in FIGS. The height position of the first and second inner ends 29 and 32 is always the same as the height position of the first and second fulcrums 23 and 24 so that the comparison force with the position of the broken line 38 can be understood. It can be controlled so that
[0048] 上記のことに関して、この実施形態のように、有効橈み部分 25が、その幅方向の各 端部である第 1の自由端 35と第 2の自由端 36との垂直二等分面 37に関しても対称 構造を有して 、ると、上述の長手方向での反りにつ 、ての対称性をより良好なものと することができる。 [0048] Regarding the above, as in this embodiment, the effective radius portion 25 is a perpendicular bisector of the first free end 35 and the second free end 36, which are each end in the width direction. If the surface 37 also has a symmetric structure, the symmetry can be further improved with respect to the above-described warpage in the longitudinal direction. can do.
[0049] なお、厚み付与部材 27の寸法に関して、その厚み方向寸法はより厚い方力 その 長手方向寸法 (梁 12の長手方向での寸法)はより短い方が、また、その幅方向寸法( 梁 12の幅方向での寸法)は梁 12の幅方向寸法以上であるほど、前述した位置制御 '性をより向上させることができる。  [0049] Regarding the dimension of the thickness imparting member 27, the dimension in the thickness direction is a thicker force. The dimension in the longitudinal direction (dimension in the longitudinal direction of the beam 12) is shorter, and the dimension in the width direction (beam As the dimension of the beam 12 in the width direction is greater than or equal to the dimension of the beam 12 in the width direction, the position controllability described above can be further improved.
[0050] 図 4は、この発明に係る変位素子の、駆動手段を除く構成についての第 2の実施形 態を示す、図 1 (b)に対応する図である。図 4において、図 1 (b)に示した要素に相当 する要素には同様の参照符号を付し、重複する説明は省略する。  FIG. 4 is a view, corresponding to FIG. 1 (b), showing a second embodiment of the configuration of the displacement element according to the present invention except for the driving means. In FIG. 4, elements corresponding to the elements shown in FIG. 1 (b) are denoted by the same reference numerals, and redundant description will be omitted.
[0051] 図 4に示した変位素子 11aでは、梁 12が有する積層構造を与える複数の機能材料 層として、図 1 (b)に示した 4つの機能材料層 13— 16より多い 5つの機能材料層 41 一 45を備えていることを特徴としている。この実施形態からわ力るように、梁において 積層構造を与える機能材料層の数は特に限定されるものではない。  In the displacement element 11a shown in FIG. 4, five functional materials, which are more than the four functional material layers 13-16 shown in FIG. It is characterized by having layers 41-45. As can be seen from this embodiment, the number of functional material layers that provide the laminated structure in the beam is not particularly limited.
[0052] 図 5は、この発明に係る変位素子の、駆動手段を除く構成についての第 3の実施形 態を示す、図 1 (a)に対応する図である。図 5において、図 1 (a)に示した要素に相当 する要素には同様の参照符号を付し、重複する説明は省略する。  FIG. 5 is a view, corresponding to FIG. 1 (a), showing a third embodiment of the configuration of the displacement element according to the present invention except for the driving means. In FIG. 5, elements corresponding to the elements shown in FIG. 1 (a) are denoted by the same reference numerals, and redundant description will be omitted.
[0053] 図 5に示した変位素子 l ibは、たとえば図 1 (a)に示した変位素子 11と比較して、梁 12、機能材料層 13— 16 (機能材料層 15および 16については、機能材料層 14の下 方に隠れるので図示しない。)、貫通孔 21および厚み付与部材 27の各々の平面形 状を任意に変更できることを明らかにすることに意義がある。  The displacement element l ib shown in FIG. 5 is different from the displacement element 11 shown in FIG. 1A, for example, in that the beam 12, the functional material layers 13 to 16 (for the functional material layers 15 and 16, It is not shown because it is hidden under the functional material layer 14.) It is significant to clarify that the planar shape of each of the through hole 21 and the thickness imparting member 27 can be arbitrarily changed.
[0054] 図 6は、この発明に係る変位素子の、駆動手段を除く構成についての第 4の実施形 態を示す、図 1 (a)に対応する図である。図 6において、図 1 (a)に示した要素に相当 する要素には同様の参照符号を付し、重複する説明は省略する。  FIG. 6 is a view, corresponding to FIG. 1 (a), showing a fourth embodiment of the configuration of the displacement element according to the present invention except for the driving means. In FIG. 6, elements corresponding to the elements shown in FIG. 1 (a) are denoted by the same reference numerals, and redundant description will be omitted.
[0055] 図 6に示した変位素子 11cは、十字状の梁 12を備えることを特徴としている。このよ うに、梁 12が十字状とされることにより、梁 12の第 1および第 2の端部 17および 18、 これらを支持する第 1および第 2の支持部 19および 20、第 1および第 2の片側橈み 部分 30および 33、ならびに垂直二等分面 28、 31および 34の各々については、 2箇 所ずつ設けられることになる。  The displacement element 11c shown in FIG. 6 is characterized by having a cross-shaped beam 12. In this way, by forming the beam 12 in a cross shape, the first and second ends 17 and 18 of the beam 12, the first and second support portions 19 and 20 supporting these, the first and second Two unilateral radii 30 and 33 and two perpendicular bisectors 28, 31 and 34 will each be provided.
[0056] 図 7ないし図 9は、この発明に係る変位素子の、駆動手段についての第 1の実施形 態を説明するためのものである。ここで、図 7 (a)は、変位素子 51の平面図であり、図 7 (b)は、図 7 (a)の切断面 B— Bに沿う切断部端面図である。図 8および図 9は、図 7 に示す変位素子 51の動作を説明するための図 7 (b)に対応する図である。 FIGS. 7 to 9 show a first embodiment of the driving means of the displacement element according to the present invention. It is for explaining the state. Here, FIG. 7 (a) is a plan view of the displacement element 51, and FIG. 7 (b) is a cross-sectional end view along the cut plane BB of FIG. 7 (a). 8 and 9 are views corresponding to FIG. 7B for explaining the operation of the displacement element 51 shown in FIG.
[0057] 変位素子 51は、圧電駆動型変位素子を構成するもので、図 1に示した変位素子 1 1と共通する基本的構成を備えている。  The displacement element 51 constitutes a piezoelectric drive type displacement element, and has a basic configuration common to the displacement element 11 shown in FIG.
[0058] 変位素子 51は梁 52を備え、梁 52は、たとえば Al O力もなるバッファ層 53、たとえ  [0058] The displacement element 51 includes a beam 52. The beam 52 is, for example, a buffer layer 53 that also has an Al 2 O force.
2 3  twenty three
ば Ptからなる下部電極層 54、たとえば PZT (チタン酸ジルコン酸鉛)からなる圧電体 層 55およびたとえば A1カゝらなる上部電極層 56を厚み方向に積層した構造を有して いる。上部電極層 56は、第 1、第 2および第 3の上部電極層 56a、 56bおよび 56cに 分割されて形成されている。  For example, it has a structure in which a lower electrode layer 54 made of Pt, for example, a piezoelectric layer 55 made of PZT (lead zirconate titanate) and an upper electrode layer 56 made of, for example, A1 are laminated in the thickness direction. The upper electrode layer 56 is formed by being divided into first, second and third upper electrode layers 56a, 56b and 56c.
[0059] なお、上述したバッファ層 53、電極層 54および 56ならびに圧電体層 55は、上で例 示した材料以外の材料力も構成されてもよい。たとえば、ノ ッファ層 53の材料として、 TiO [0059] The above-described buffer layer 53, electrode layers 54 and 56, and piezoelectric layer 55 may have a material strength other than the materials described above. For example, as the material of the buffer layer 53, TiO
2  2
または ZrOを用いてもよぐ電極層 54および  Or electrode layer 54 and ZrO
2 Zまたは 56の材料として、 Auまたは A gを用いてもよく、圧電体層 55の材料として、 ZnO、 LiTaO  2 Au or Ag may be used as the material of Z or 56, and ZnO, LiTaO
3  Three
または LiNbOを用いてもよい。  Alternatively, LiNbO may be used.
3  Three
[0060] また、後述する圧電効果に基づく変位量を大きくするためには、バッファ層 53と下 部電極層 54との合計厚みは、圧電体層 55の厚みと同程度にすることが望ましぐま た、上部電極層 56については、弾性に富む材料を用いて薄く形成することが望まし い。  Further, in order to increase the displacement amount based on the piezoelectric effect described later, it is desirable that the total thickness of the buffer layer 53 and the lower electrode layer 54 be substantially equal to the thickness of the piezoelectric layer 55. The upper electrode layer 56 is desirably formed thin using a material having high elasticity.
[0061] 変位素子 51は、また、上述のような梁 52を両持ち状態とするように、梁 52の長手方 向の第 1および第 2の端部 57および 58をそれぞれ支持する第 1および第 2の支持部 59および 60を備えている。この実施形態では、図 7 (a)によく示されているように、第 1および第 2の支持部 59および 60の各々は、貫通孔 61が設けられた、たとえば S らなる基板 62の一部によって与えられている。  [0061] The displacement element 51 also includes first and second ends 57 and 58, which support the longitudinal direction of the beam 52, respectively, so as to hold the beam 52 as described above. Second supports 59 and 60 are provided. In this embodiment, as shown in FIG. 7 (a), each of the first and second support portions 59 and 60 is provided with a through-hole 61 provided on a substrate 62 made of, for example, S. Given by the department.
[0062] このような変位素子 51は、圧電体層 55を圧電効果に基づいて歪ませることにより、 梁 52における、第 1の支持部 59による第 1の支点 63と第 2の支持部 60による第 2の 支点 64との間の有効橈み部分 65を橈ませることが行なわれ、それによつて、梁 52に 厚み方向への変位が生じる。有効橈み部分 65の長手方向の中央部 66には、当該 中央部 66の厚みを他の部分より厚くするための、たとえば Siからなる厚み付与部材 6 7が配置される。 [0062] Such a displacement element 51 is formed by distorting the piezoelectric layer 55 based on the piezoelectric effect, so that the first support 63 and the second support 60 of the first support 59 in the beam 52 are provided. The effective radius 65 between the second fulcrum 64 and the second fulcrum 64 is radiused, so that the beam 52 Displacement occurs in the thickness direction. At a central portion 66 in the longitudinal direction of the effective radius portion 65, a thickness imparting member 67 made of, for example, Si is arranged to make the central portion 66 thicker than other portions.
[0063] 有効橈み部分 65は、第 1の支点 63と第 2の支点 64との垂直二等分面 68に関して 対称構造を有している。  [0063] The effective radius portion 65 has a symmetric structure with respect to a perpendicular bisector 68 between the first fulcrum 63 and the second fulcrum 64.
[0064] また、有効橈み部分 65における、第 1の支点 63と厚み付与部材 67の第 1の支点 6Further, the first fulcrum 63 and the first fulcrum 6 of the thickness imparting member 67 in the effective radius portion 65
3側の端に位置する第 1の内端 69との間の第 1の片側橈み部分 70は、第 1の支点 6The first one-side radius portion 70 between the first inner end 69 located at the end on the third side is
3と第 1の内端 69との垂直二等分面 71に関して対称構造を有している。 It has a symmetrical structure with respect to a perpendicular bisector 71 between 3 and the first inner end 69.
[0065] 他方、有効橈み部分 65における、第 2の支点 64と厚み付与部材 67の第 2の支点 6On the other hand, the second fulcrum 64 and the second fulcrum 6 of the thickness imparting member 67 in the effective radius portion 65
4側の端に位置する第 2の内端 72との間の第 2の片側橈み部分 73についても、第 2 の支点 64と第 2の内端 72との垂直二等分面 74に関して対称構造を有している。 The second one-sided radius 73 between the second inner end 72 located at the fourth end is also symmetric with respect to the perpendicular bisector 74 between the second fulcrum 64 and the second inner end 72. It has a structure.
[0066] また、図 7 (a)によく示されているように、有効橈み部分 65は、その幅方向の各端部 である第 1の自由端 75と第 2の自由端 76との垂直二等分面 77 (切断面 B-Bに相当) に関しても対称構造を有して 、る。 [0066] Further, as is well shown in Fig. 7 (a), the effective radius portion 65 is formed by a first free end 75 and a second free end 76 which are each end in the width direction. It also has a symmetric structure with respect to the perpendicular bisector 77 (corresponding to the cutting plane BB).
[0067] また、厚み付与部材 67は、有効橈み部分 65の幅方向の各端部である第 1の自由 端 75と第 2の自由端 76との間の全域にわたって延びるように配置されている。 [0067] The thickness imparting member 67 is disposed so as to extend over the entire area between the first free end 75 and the second free end 76, which are each end in the width direction of the effective radius portion 65. I have.
[0068] また、梁 52に備える下部電極層 54には、引出電極 78が電気的に接続され、この 引出電極 78の端部は、図 7 (a)に示すように、基板 62上において外部に露出するよ うに形成される。 [0068] Further, an extraction electrode 78 is electrically connected to the lower electrode layer 54 provided on the beam 52, and the end of the extraction electrode 78 is formed on the substrate 62 as shown in FIG. It is formed so as to be exposed to.
[0069] また、上部電極層 56のうち、両端に位置する第 1および第 2の上部電極層 56aおよ び 56bには、引出電極 79が電気的に接続される。また、中央に位置する第 3の上部 電極層 56cには、引出電極 80が電気的に接続される。これら引出電極 79および 80 の各々が有するパターンは、前述した垂直二等分面 68、 71、 74および 77の各々に 関する対称性が、いずれも阻害されず、すべて確保されるように配慮されている。  [0069] Further, an extraction electrode 79 is electrically connected to the first and second upper electrode layers 56a and 56b located at both ends of the upper electrode layer 56. The extraction electrode 80 is electrically connected to the third upper electrode layer 56c located at the center. The pattern of each of the extraction electrodes 79 and 80 is designed so that the symmetry of each of the vertical bisectors 68, 71, 74, and 77 described above is not impaired, and all are ensured. I have.
[0070] 次に、変位素子 51の作製方法の一例について説明する。  Next, an example of a method for manufacturing the displacement element 51 will be described.
[0071] まず、 S もなる基板 62が用意される。この段階では、基板 62には貫通孔 61が形 成されていない。  First, a substrate 62 that is also made of S is prepared. At this stage, the through hole 61 is not formed in the substrate 62.
[0072] 次に、基板 62上に、ノ ッファ層 53となる Al O膜をスパッタリングまたは蒸着等の 方法によって全面に形成する。次に、下部電極層 54および引出電極 78となる Pt膜 をスパッタリングまたは蒸着等の方法によって全面に形成する。このとき、 Pt膜の A1 Next, an Al 2 O 3 film serving as the buffer layer 53 is formed on the substrate 62 by sputtering or vapor deposition. It is formed on the entire surface by a method. Next, a Pt film to be the lower electrode layer 54 and the extraction electrode 78 is formed on the entire surface by a method such as sputtering or vapor deposition. At this time, A1 of the Pt film
2 o膜に対する密着性を向上させるため、 Pt膜を形成する前に Ti等力 なる膜を形成 2 To improve adhesion to o film, form a film with Ti equivalent before forming Pt film
3 Three
してちよい。  You can do it.
[0073] 次に、圧電体層 55となる PZT膜を MOCVDまたはスパッタリング等の方法によって 全面に形成する。ここで、 PZTは、基板面と垂直な方向に c軸配向していることが望ま しい。  Next, a PZT film to be the piezoelectric layer 55 is formed on the entire surface by a method such as MOCVD or sputtering. Here, it is desirable that the PZT be c-axis oriented in a direction perpendicular to the substrate surface.
[0074] 次に、上部電極層 56ならびに引出電極 79および 80となる A1膜をリフトオフ等の方 法によって形成する。  Next, an A1 film to be the upper electrode layer 56 and the extraction electrodes 79 and 80 is formed by a method such as lift-off.
[0075] 次に、レジストマスクを介して、前述した PZT膜、 Pt膜および Al O膜に対して、ィ  Next, the above-described PZT film, Pt film, and AlO film are masked through a resist mask.
2 3  twenty three
オンミリング等の方法を適用して、圧電体層 55、下部電極層 54およびバッファ層 53 が得られるように加工する。次に、レジストマスクを介して、圧電体層 55を、イオンミリ ング等の方法を用いてカ卩ェすることによって、引出電極 78の一部を露出させる。  By applying a method such as on-milling, processing is performed so that the piezoelectric layer 55, the lower electrode layer 54, and the buffer layer 53 are obtained. Next, a part of the extraction electrode 78 is exposed by curling the piezoelectric layer 55 using a method such as ion milling through a resist mask.
[0076] 次に、基板 62に対して、その裏面側から、レジストマスクを介して RIE等の方法を適 用して、貫通孔 61を形成する。このとき、厚み付与部材 67が、基板 62の一部によつ て与えられるようにする。  Next, a through hole 61 is formed on the substrate 62 from the back side by applying a method such as RIE through a resist mask. At this time, the thickness providing member 67 is provided by a part of the substrate 62.
[0077] 以上のようにして、変位素子 51を得ることができる。  [0077] As described above, the displacement element 51 can be obtained.
[0078] 次に、変位素子 51の動作について説明する。  Next, the operation of the displacement element 51 will be described.
[0079] 変位素子 51に備える梁 52の有効橈み部分 65は、前述したような対称構造を有し ているため、変位素子 11に関して図 2および図 3を参照して説明したのと同様の理由 により、作製直後の初期状態においては、図 2または図 3に示すような反りが生じても 、第 1および第 2の内端 69および 72の高さ位置を、第 1および第 2の支点 63および 6 4の高さ位置と常に同じになるように制御することができる。  [0079] The effective radius portion 65 of the beam 52 provided in the displacement element 51 has a symmetric structure as described above, and thus is the same as that described with reference to Figs. For the reason, in the initial state immediately after the fabrication, even if warpage as shown in FIG. 2 or FIG. 3 occurs, the height positions of the first and second inner ends 69 and 72 are changed to the first and second fulcrum. It can be controlled to always be the same as the 63 and 64 height positions.
[0080] 上述の状態において、下部電極層 54に接続される引出電極 78と上部電極層 56に おける第 1および第 2の上部電極層 56aおよび 56bに接続される引出電極 79との間 に電圧を印加すると、圧電体層 55における下部電極層 54と第 1および第 2の上部電 極 56aおよび 56bとの間に位置している部分に、逆圧電効果により歪みが発生する。  In the above state, a voltage is applied between the extraction electrode 78 connected to the lower electrode layer 54 and the extraction electrode 79 connected to the first and second upper electrode layers 56a and 56b in the upper electrode layer 56. When voltage is applied, distortion occurs in the portion of the piezoelectric layer 55 located between the lower electrode layer 54 and the first and second upper electrodes 56a and 56b due to the inverse piezoelectric effect.
[0081] その結果、この発生した圧電応力が引っ張り方向に働くとすると、有効橈み部分 65 は、初期において図 2に示すような状態にあった場合には、図 8に示すように湾曲し、 他方、初期において図 3に示すような状態にあった場合には、図 9に示すように湾曲 する。このようにして、図 8および図 9に示すように、梁 52の有効橈み部分 65の中央 部 66は上方へ変位する。ここで、変位量は、引出電極 78および 79間に印加される 電圧の高さによって制御することができる。 As a result, assuming that the generated piezoelectric stress acts in the tensile direction, the effective radius portion 65 In the initial state, as shown in FIG. 2, it is curved as shown in FIG. 8, while when initially in the state shown in FIG. 3, it is as shown in FIG. 9. Bends to Thus, as shown in FIGS. 8 and 9, the central portion 66 of the effective radius portion 65 of the beam 52 is displaced upward. Here, the amount of displacement can be controlled by the height of the voltage applied between the extraction electrodes 78 and 79.
[0082] 他方、下部電極層 54に接続される引出電極 78と上部電極層 56における中央の第 3の上部電極層 56cに接続される I出電極 80との間に電圧を印加すると、圧電体層 55における下部電極層 54と第 3の上部電極層 56cとの間に位置している部分に、逆 圧電効果により歪みが発生する。その結果、梁 52の有効橈み部分 65の中央部 66は 、図 8または図 9に示した状態とは逆に下方へ変位する。  On the other hand, when a voltage is applied between the extraction electrode 78 connected to the lower electrode layer 54 and the I output electrode 80 connected to the central third upper electrode layer 56c in the upper electrode layer 56, the piezoelectric material Distortion occurs in the portion of the layer 55 located between the lower electrode layer 54 and the third upper electrode layer 56c due to the inverse piezoelectric effect. As a result, the central portion 66 of the effective radius portion 65 of the beam 52 is displaced downward contrary to the state shown in FIG. 8 or FIG.
[0083] 以上のように、変位素子 51によれば、梁 52の有効橈み部分 65の中央部 66の初期 状態での絶対位置を一定に制御できるので、圧電体層 55に電圧を印加して歪みを 生じさせることによって、有効橈み部分 65の中央部 66を所定の量だけ変位させるこ とができ、絶対位置制御性の良好な圧電駆動型変位素子を実現することができる。  As described above, according to the displacement element 51, the absolute position of the central portion 66 of the effective radius portion 65 of the beam 52 in the initial state can be controlled to be constant, so that a voltage is applied to the piezoelectric layer 55. As a result, the central portion 66 of the effective radius portion 65 can be displaced by a predetermined amount, and a piezoelectrically-driven displacement element having good absolute position controllability can be realized.
[0084] 図 10は、この発明に係る変位素子の、駆動手段についての第 2の実施形態を説明 するためのものである。ここで、図 10 (a)は、変位素子 81の平面図であり、図 10 (b) は、図 10 (a)の切断面 B— Bに沿う切断部端面図である。  FIG. 10 is for describing a second embodiment of the driving means of the displacement element according to the present invention. Here, FIG. 10 (a) is a plan view of the displacement element 81, and FIG. 10 (b) is an end view of a cut portion along the cut surface BB of FIG. 10 (a).
[0085] 変位素子 81は、電磁駆動型変位素子を構成するもので、図 1に示した変位素子 1 1と共通する基本的構成を備えている。  The displacement element 81 constitutes an electromagnetically driven displacement element, and has a basic configuration common to the displacement element 11 shown in FIG.
[0086] 変位素子 81は、梁 82を備え、梁 82は、たとえば SiO力もなる絶縁体層 83および  [0086] The displacement element 81 includes a beam 82. The beam 82 includes, for example, an insulator layer 83 that also has a SiO force.
2  2
たとえば A1カゝらなる導電体層 84を厚み方向に積層した構造を有して ヽる。導電体層 84の各端部には、引出電極 85および 86が接続されている。  For example, it has a structure in which A1 conductive layers 84 are stacked in the thickness direction. Leading electrodes 85 and 86 are connected to each end of the conductor layer 84.
[0087] 変位素子 81は、また、上述のような梁 82を両持ち状態とするように、梁 82の長手方 向の第 1および第 2の端部 87および 88をそれぞれ支持する第 1および第 2の支持部 89および 90を備えている。この実施形態では、図 10 (a)によく示されているように、 第 1および第 2の支持部 89および 90の各々は、貫通孔 91が設けられた、たとえば Si 力もなる基板 92の一部によって与えられている。  [0087] The displacement element 81 also includes first and second ends 87 and 88 that support the longitudinal direction of the beam 82, respectively, so that the beam 82 is held in a double-supported state. Second supports 89 and 90 are provided. In this embodiment, as is well shown in FIG. 10 (a), each of the first and second support portions 89 and 90 is provided with a through-hole 91, for example, a substrate 92 having a Si force. Given by the department.
[0088] このような変位素子 81は、後述する電磁駆動により、梁 82における、第 1の支持部 89による第 1の支点 93と第 2の支持部 90による第 2の支点 94との間の有効橈み部 分 95を橈ませることが行なわれ、それによつて、梁 82に厚み方向への変位が生じる 。有効橈み部分 95の長手方向の中央部 96には、当該中央部 96の厚みを他の部分 より厚くするための、たとえば S なる厚み付与部材 97が配置される。 [0088] Such a displacement element 81 is connected to the first support portion of the beam 82 by electromagnetic driving described later. The effective radius 95 between the first fulcrum 93 by the 89 and the second fulcrum 94 by the second support 90 is deflected, whereby the beam 82 is displaced in the thickness direction. Occurs. At a central portion 96 in the longitudinal direction of the effective radius portion 95, a thickness providing member 97, for example, S, for increasing the thickness of the central portion 96 than other portions is disposed.
[0089] 有効橈み部分 95は、第 1の支点 93と第 2の支点 94との垂直二等分面 98に関して 対称構造を有している。特に、導電体層 84について言えば、導電体層 84は、有効 橈み部分 95の中央部 96上に形成され、引出電極 85および 86は、垂直二等分面 98 に関して対称形状をもって長手方向に延びて 、る。  [0089] The effective radius portion 95 has a symmetric structure with respect to a perpendicular bisector 98 between the first fulcrum 93 and the second fulcrum 94. In particular, with respect to the conductor layer 84, the conductor layer 84 is formed on the central portion 96 of the effective radius 95, and the extraction electrodes 85 and 86 are symmetrical with respect to the vertical bisector 98 in the longitudinal direction. It extends.
[0090] 有効橈み部分 95における、第 1の支点 93と厚み付与部材 97の第 1の支点 93側の 端に位置する第 1の内端 99との間の第 1の片側橈み部分 100は、第 1の支点 93と第 1の内端 99との垂直二等分面 101に関して対称構造を有して 、る。  [0090] In the effective radius portion 95, a first unilateral radius portion 100 between the first fulcrum 93 and the first inner end 99 located at the end of the thickness imparting member 97 on the first fulcrum 93 side. Has a symmetrical structure with respect to a perpendicular bisector 101 between the first fulcrum 93 and the first inner end 99.
[0091] 他方、有効橈み部分 95における、第 2の支点 94と厚み付与部材 97の第 2の支点 9 4側の端に位置する第 2の内端 102との間の第 2の片側橈み部分 103についても、 第 2の支点 94と第 2の内端 102との垂直二等分面 104に関して対称構造を有してい る。  On the other hand, in the effective radius portion 95, a second one-side radius between the second fulcrum 94 and the second inner end 102 located at the second fulcrum 94 side end of the thickness imparting member 97. The only portion 103 also has a symmetrical structure with respect to the perpendicular bisector 104 between the second fulcrum 94 and the second inner end 102.
[0092] また、図 10 (a)によく示されているように、有効橈み部分 95は、その幅方向の各端 部である第 1の自由端 105と第 2の自由端 106との垂直二等分面 107 (切断面 B-B に相当)に関しても対称構造を有している。  [0092] Further, as is well shown in Fig. 10 (a), the effective radius portion 95 is formed by a first free end 105 and a second free end 106, which are each end in the width direction. It also has a symmetrical structure with respect to the perpendicular bisector 107 (corresponding to the cutting plane BB).
[0093] また、厚み付与部材 97は、有効橈み部分 95の幅方向の各端部である第 1の自由 端 105と第 2の自由端 106との間の全域にわたって延びるように配置されている。  [0093] Further, the thickness imparting member 97 is disposed so as to extend over the entire area between the first free end 105 and the second free end 106, which are each end in the width direction of the effective radius portion 95. I have.
[0094] 次に、変位素子 81の作製方法の一例について説明する。  Next, an example of a method for manufacturing the displacement element 81 will be described.
[0095] まず、 S もなる基板 92が用意される。この段階では、基板 92には貫通孔 91が形 成されていない。  [0095] First, a substrate 92 that also contains S is prepared. At this stage, the through hole 91 is not formed in the substrate 92.
[0096] 次に、基板 92上に、絶縁体層 83となる SiO膜を熱酸ィ匕またはスパッタリング等の  [0096] Next, an SiO film to be the insulator layer 83 is formed on the substrate 92 by thermal oxidation or sputtering.
2  2
方法によって全面に形成した後、ウエットエッチングにより、絶縁体層 83を形成する。 次に、導電体層 84となる Aレターンをリフトオフ等の方法によって形成する。  After being formed on the entire surface by the method, the insulator layer 83 is formed by wet etching. Next, an A return to be the conductor layer 84 is formed by a method such as lift-off.
[0097] 次に、基板 92に対して、その裏面側から、レジストマスクを介して RIE等の方法を適 用して、貫通孔 91を形成する。このとき、厚み付与部材 97が、基板 92の一部によつ て与えられるようにする。 Next, a through-hole 91 is formed on the substrate 92 from the back side by applying a method such as RIE through a resist mask. At this time, the thickness applying member 97 is attached to a part of the substrate 92. To be given.
[0098] 以上のようにして、変位素子 81を得ることができる。  [0098] As described above, the displacement element 81 can be obtained.
[0099] 次に、変位素子 81の動作について説明する。 Next, an operation of the displacement element 81 will be described.
[0100] まず、変位素子 81にあっても、梁 82の有効橈み部分についての対称構造、ならび に第 1および第 2の片側橈み部分 100および 103の各々についての対称構造が確 保されているので、有効橈み部分 95の中央部 96の初期状態での絶対位置を常に 一定とすることができる。  [0100] First, even in the displacement element 81, the symmetrical structure of the effective radius portion of the beam 82 and the symmetrical structure of each of the first and second one-side radius portions 100 and 103 are ensured. Therefore, the absolute position of the central portion 96 of the effective radius portion 95 in the initial state can always be kept constant.
[0101] このような状態にぉ 、て、まず、梁 82の有効橈み部分 95の長手方向に磁場が加わ るように、梁 82の側方に永久磁石または電磁石を配置する。ここで、引出電極 85お よび 86を通して導電体層 84に電流を流すと、磁力線が発生し、有効橈み部分 95の 中央部 96上の導電体層 84は、電磁力を受けて、有効橈み部分 95を橈ませ、それに よって、中央部 96の絶対位置は上方または下方へ変位する。ここで、変位量は、導 電体層 84に流す電流の大きさによって制御することができる。  In such a state, first, a permanent magnet or an electromagnet is arranged on the side of the beam 82 so that a magnetic field is applied in the longitudinal direction of the effective radius portion 95 of the beam 82. Here, when an electric current is applied to the conductor layer 84 through the extraction electrodes 85 and 86, magnetic lines of force are generated, and the conductor layer 84 on the central portion 96 of the effective radius portion 95 receives electromagnetic force and receives an effective radius. The central part 96 is displaced, thereby displacing the absolute position of the central part 96 upward or downward. Here, the amount of displacement can be controlled by the magnitude of the current flowing through the conductor layer 84.
[0102] 以上のように、変位素子 81によれば、梁 82の有効橈み部分 95の中央部 96の初期 状態での絶対位置を一定に制御できるので、電磁力によって、導電体層 84、さらに は有効橈み部分 95の中央部 96を所定の量だけ変位させることができ、絶対位置制 御性の良好な電磁駆動型変位素子を実現することができる。  [0102] As described above, according to the displacement element 81, the absolute position of the central portion 96 of the effective radius portion 95 of the beam 82 in the initial state can be controlled to be constant, so that the conductive layer 84, Further, the central portion 96 of the effective radius portion 95 can be displaced by a predetermined amount, and an electromagnetically driven displacement element with good absolute position control can be realized.
[0103] 図 11は、この発明に係る変位素子の、駆動手段についての第 3の実施形態を説明 するためのものである。ここで、図 11 (a)は、変位素子 111の平面図であり、図 11 (b) は、図 11 (a)の切断面 B— Bに沿う切断部端面図である。  FIG. 11 is for describing a third embodiment of the driving means of the displacement element according to the present invention. Here, FIG. 11 (a) is a plan view of the displacement element 111, and FIG. 11 (b) is an end view of a cut portion along the cut surface BB of FIG. 11 (a).
[0104] 変位素子 111は、静電駆動型変位素子を構成するもので、図 1に示した変位素子 11と共通する基本的構成を備えている。変位素子 111は梁 112を備え、梁 112は、 たとえば SiOカゝらなる絶縁体層 113およびたとえば A1カゝらなる導電体層 114を厚み  The displacement element 111 constitutes an electrostatic drive type displacement element, and has a basic configuration common to the displacement element 11 shown in FIG. The displacement element 111 includes a beam 112. The beam 112 has a thickness of, for example, an insulator layer 113 made of SiO and a conductive layer 114 made of A1.
2  2
方向に積層した構造を有している。導電体層 114には、引出電極 115が接続されて いる。  It has a structure laminated in the direction. An extraction electrode 115 is connected to the conductor layer 114.
[0105] 変位素子 111は、また、上述のような梁 112を両持ち状態とするように、梁 112の長 手方向の第 1および第 2の端部 116および 117をそれぞれ支持する第 1および第 2の 支持部 118および 119を備えている。この実施形態では、図 11 (a)によく示されてい るように、第 1および第 2の支持部 118および 119の各々は、貫通孔 120が設けられ た、たとえば Siからなる基板 121の一部によって与えられている。 [0105] The displacement element 111 also includes first and second ends 116 and 117 in the longitudinal direction of the beam 112, respectively, so as to hold the beam 112 as described above. Second supports 118 and 119 are provided. In this embodiment, this is better illustrated in FIG. As described above, each of first and second support portions 118 and 119 is provided by a part of substrate 121 made of, for example, Si provided with through-hole 120.
[0106] このような変位素子 111は、静電駆動によって、梁 112における、第 1の支持部 118 による第 1の支点 122と第 2の支持部 119による第 2の支点 123との間の有効橈み部 分 124を橈ませることが行なわれ、それによつて、梁 112に厚み方向への変位が生じ る。有効橈み部分 124の長手方向の中央部 125には、当該中央部 125の厚みを他 の部分より厚くするための、たとえば S もなる厚み付与部材 126が配置される。  [0106] Such a displacement element 111 is provided between the first fulcrum 122 of the beam 112 and the second fulcrum 123 of the second support 119 by the electrostatic drive. The bending of the radius portion 124 is performed, whereby the beam 112 is displaced in the thickness direction. At a central portion 125 in the longitudinal direction of the effective radius portion 124, a thickness-providing member 126, for example, S, for increasing the thickness of the central portion 125 to be greater than other portions is disposed.
[0107] 有効橈み部分 124は、第 1の支点 122と第 2の支点 123との垂直二等分面 127に 関して対称構造を有して!/ヽる。  [0107] The effective radius portion 124 has a symmetric structure with respect to a perpendicular bisector 127 of the first fulcrum 122 and the second fulcrum 123! / Puru.
[0108] また、有効橈み部分 124における、第 1の支点 122と厚み付与部材 126の第 1の支 点 122側の端に位置する第 1の内端 128との間の第 1の片側橈み部分 129は、第 1 の支点 122と第 1の内端 128との垂直二等分面 130に関して対称構造を有している  [0108] Also, in the effective radius portion 124, a first one-side radius between the first fulcrum 122 and the first inner end 128 located at the end of the thickness imparting member 126 on the first fulcrum 122 side. The portion 129 has a symmetrical structure with respect to a perpendicular bisector 130 between the first fulcrum 122 and the first inner end 128.
[0109] 他方、有効橈み部分 124における、第 2の支点 123と厚み付与部材 126の第 2の 支点 123側の端に位置する第 2の内端 131との間の第 2の片側橈み部分 132につい ても、第 2の支点 123と第 2の内端 131との垂直二等分面 133に関して対称構造を有 している。 On the other hand, in the effective radius portion 124, a second one-side radius between the second fulcrum 123 and the second inner end 131 located at the end of the thickness imparting member 126 on the second fulcrum 123 side. The portion 132 also has a symmetric structure with respect to the perpendicular bisector 133 between the second fulcrum 123 and the second inner end 131.
[0110] また、図 11 (a)によく示されているように、有効橈み部分 124は、その幅方向の各端 部である第 1の自由端 134と第 2の自由端 135との垂直二等分面 136 (切断面 B— B に相当)に関しても対称構造を有している。  [0110] Further, as is well shown in FIG. 11 (a), the effective radius portion 124 is formed by a first free end 134 and a second free end 135, which are ends in the width direction. It also has a symmetrical structure with respect to the perpendicular bisector 136 (corresponding to the cutting plane BB).
[0111] また、図示されないが、厚み付与部材 126は、有効橈み部分 124の幅方向の各端 部である第 1の自由端 134と第 2の自由端 135との間の全域にわたって延びるように 配置されている。 [0111] Although not shown, the thickness imparting member 126 extends over the entire area between the first free end 134 and the second free end 135, which are each end in the width direction of the effective radius portion 124. It is located at
[0112] 梁 112の有効橈み部分 124の中央部 125の上方には、たとえばガラス力もなる固 定部材 137が固定的に配置されている。固定部材 137には、前述した導電体層 114 に対して空気層 138を隔てて位置するように、固定導電体 139がたとえば A1をもって 形成されている。固定導電体 139は、基板 121上に形成された引出電極 140と電気 的に接続される。 [0113] 次に、変位素子 111の作製方法の一例について説明する。 [0112] Above the central portion 125 of the effective radius portion 124 of the beam 112, for example, a fixing member 137 that also has a glass force is fixedly disposed. A fixed conductor 139 is formed on the fixing member 137 with, for example, A1 so as to be positioned with the air layer 138 separated from the conductor layer 114 described above. The fixed conductor 139 is electrically connected to the extraction electrode 140 formed on the substrate 121. [0113] Next, an example of a method for manufacturing the displacement element 111 will be described.
[0114] まず、 S もなる基板 121が用意される。この段階では、基板 121には貫通孔 120 が形成されていない。 [0114] First, a substrate 121, which is also made of S, is prepared. At this stage, the through hole 120 is not formed in the substrate 121.
[0115] 次に、基板 121上に、絶縁体層 113となる SiO膜を熱酸ィ匕またはスパッタリング等  Next, an SiO film serving as the insulator layer 113 is formed on the substrate 121 by thermal oxidation or sputtering.
2  2
の方法によって全面に形成し、その後、ウエットエッチングにより絶縁体層 113を形成 する。次に、導電体層 114および引出電極 115となる A1膜をリフトオフ等の方法によ つて形成する。また、引出電極 140となる Cu膜をリフトオフ等の方法で形成する。ここ で、引出電極 140の厚みは、引出電極 115の厚みより厚くする。  Then, an insulator layer 113 is formed by wet etching. Next, an A1 film serving as the conductor layer 114 and the extraction electrode 115 is formed by a method such as lift-off. Further, a Cu film serving as the extraction electrode 140 is formed by a method such as lift-off. Here, the thickness of the extraction electrode 140 is larger than the thickness of the extraction electrode 115.
[0116] 次に、基板 121に対して、その裏面側から、レジストマスクを介して RIE等の方法を 適用して、貫通孔 120を形成する。このとき、厚み付与部材 126が、基板 121の一部 によって与えられるようにする。  Next, a through-hole 120 is formed on the substrate 121 from the back side by applying a method such as RIE through a resist mask. At this time, the thickness providing member 126 is provided by a part of the substrate 121.
[0117] 他方、固定部材 137上に、 A1からなる固定導電体 139を形成する。そして、この固 定導電体 139と前述の基板 120上の引出電極 140とが接合されるように熱圧着する  On the other hand, a fixed conductor 139 made of A1 is formed on the fixing member 137. Then, thermocompression bonding is performed so that the fixed conductor 139 and the extraction electrode 140 on the substrate 120 are joined.
[0118] 以上のようにして、変位素子 111を得ることができる。 [0118] As described above, the displacement element 111 can be obtained.
[0119] 次に、変位素子 111の動作について説明する。 Next, an operation of the displacement element 111 will be described.
[0120] まず、変位素子 111においても、梁 112の有効橈み部分 124ならびに第 1および第 2の片側橈み部分 129および 132の各々について対称構造を有しているので、中央 部 125の初期状態での絶対位置を常に一定に制御することができる。  First, the displacement element 111 also has a symmetrical structure with respect to the effective radius portion 124 of the beam 112 and the first and second one-side radius portions 129 and 132. The absolute position in the state can always be controlled to be constant.
[0121] この状態において、引出電極 115および 140の間に電圧を印加すると、導電体層 1 14と固定導電体 139との間に静電引力が働き、有効橈み部分 124の中央部 125は 上方へ変位する。そして、この変位量は、引出電極 115および 140間に印加される 電圧の高さによって制御することができる。  [0121] In this state, when a voltage is applied between the extraction electrodes 115 and 140, an electrostatic attraction acts between the conductor layer 114 and the fixed conductor 139, and the central portion 125 of the effective radius portion 124 becomes Displace upward. The amount of displacement can be controlled by the level of the voltage applied between the extraction electrodes 115 and 140.
[0122] 以上のように、変位素子 111によれば、梁 112の有効橈み部分 124の中央部 125 の初期状態での絶対位置を制御できるので、導電体層 114と固定導電体 139との間 に電圧を印加することにより、これら導電体層 114と固定導電体 139との間に静電引 力を発生させ、それによつて、有効橈み部分 124を所定の量だけ橈ませることができ 、絶対位置制御性の良好な静電駆動型変位素子を実現することができる。 [0123] 図 12ないし図 14は、この発明に係る変位素子の好ましい適用例としての可変容量 素子を説明するためのものである。ここで、図 12は、変位素子 141の平面図であり、 図 13は、図 12の切断面 X— Xに沿う切断部端面図であり、図 14は、図 12の切断面 Y Yに沿う切断部端面図である。 [0122] As described above, according to the displacement element 111, the absolute position of the central portion 125 of the effective radius portion 124 of the beam 112 in the initial state can be controlled, so that the conductor layer 114 and the fixed conductor 139 By applying a voltage between them, an electrostatic attraction is generated between the conductor layer 114 and the fixed conductor 139, whereby the effective radius portion 124 can be radiused by a predetermined amount. Thus, it is possible to realize an electrostatically driven displacement element having good absolute position controllability. FIGS. 12 to 14 illustrate a variable capacitance element as a preferred application example of the displacement element according to the present invention. Here, FIG. 12 is a plan view of the displacement element 141, FIG. 13 is an end view of a cut section along the cut plane X--X of FIG. 12, and FIG. 14 is a cut section along the cut plane YY of FIG. It is a partial end view.
[0124] 可変容量素子を構成する変位素子 141は、たとえば Siからなる第 1の基板 142とた とえばガラス力もなる第 2の基板 143とを備えている。また、変位素子 141は、第 1の 基板 142側において、第 1および第 2の梁 144および 145を備えている。第 1および 第 2の梁 144および 145は、実質的に互いに同じ構成を有しているので、以下には、 第 1の梁 144について主として説明する。  The displacement element 141 constituting the variable capacitance element includes a first substrate 142 made of, for example, Si and a second substrate 143 made of, for example, glass. In addition, the displacement element 141 includes first and second beams 144 and 145 on the first substrate 142 side. Since the first and second beams 144 and 145 have substantially the same configuration as each other, the first beam 144 will be mainly described below.
[0125] 梁 144は、たとえば Al O力もなるバッファ層 146、たとえば Ptからなる下部電極層  [0125] The beam 144 is formed of, for example, a buffer layer 146 that also has Al O force, for example, a lower electrode layer made of Pt.
2 3  twenty three
147、たとえば PZT力もなる圧電体層 148およびたとえば A1力もなる上部電極層 14 9を厚み方向に積層した構造を有している。上部電極層 149は、第 1、第 2および第 3 の上部電極層 149a、 149bおよび 149cに分割されて形成されている。  147, for example, a structure in which a piezoelectric layer 148 that also produces a PZT force and an upper electrode layer 149 that also produces an A1 force are laminated in the thickness direction. The upper electrode layer 149 is formed by being divided into first, second and third upper electrode layers 149a, 149b and 149c.
[0126] また、梁 144を両持ち状態とするように、梁 144の長手方向の第 1および第 2の端部 150および 151は、それぞれ、第 1および第 2の支持部 152および 153によって支持 されている。図 12によく示されているように、第 1および第 2の支持部 152および 153 の各々は、第 1の基板 142に貫通孔 154が設けられることによって分けられた各部分 によって与えられている。  [0126] Also, first and second ends 150 and 151 in the longitudinal direction of beam 144 are supported by first and second support portions 152 and 153, respectively, so that beam 144 is held in both ends. Have been. As best shown in FIG. 12, each of the first and second support portions 152 and 153 is provided by a portion separated by providing a through hole 154 in the first substrate 142. .
[0127] 梁 144に備える圧電体層 148を圧電効果に基づいて歪ませることにより、梁 144に おける、第 1の支持部 152による第 1の支点 155と第 2の支持部 153による第 2の支 点 156との間の有効橈み部分 157を橈ませることが行なわれ、それによつて、梁 144 に厚み方向への変位が生じる。有効橈み部分 157の長手方向の中央部 158には、 当該中央部 158の厚みを他の部分より厚くするための、たとえば S もなる厚み付与 部材 159が配置される。  [0127] The piezoelectric layer 148 provided on the beam 144 is distorted based on the piezoelectric effect, so that the first fulcrum 155 of the first support 152 and the second support 153 of the second support 153 on the beam 144 are provided. The effective radius 157 between the fulcrum 156 and the fulcrum 156 is deflected, so that the beam 144 is displaced in the thickness direction. At a central portion 158 in the longitudinal direction of the effective radius portion 157, a thickness imparting member 159, for example, S, for increasing the thickness of the central portion 158 more than other portions is disposed.
[0128] この実施形態では、厚み付与部材 159は、第 2の梁 145における有効橈み部分 16 0の中央部 161にまで延びるように配置され、第 1および第 2の梁 144および 145の 双方に固定されている。  In this embodiment, the thickness imparting member 159 is disposed so as to extend to the central portion 161 of the effective radius portion 160 of the second beam 145, and both the first and second beams 144 and 145 are provided. Fixed to.
[0129] 有効橈み部分 157は、第 1の支点 155と第 2の支点 156との垂直二等分面 162 (切 断面 Y— Yに相当)に関して対称構造を有している。 [0129] The effective radius portion 157 is a vertical bisecting surface 162 of the first fulcrum 155 and the second fulcrum 156 (cut (Corresponding to the cross section Y-Y).
[0130] また、有効橈み部分 157における、第 1の支点 155と厚み付与部材 159の第 1の支 点 155側の端に位置する第 1の内端 163との間の第 1の片側橈み部分 164は、第 1 の支点 155と第 1の内端 163との垂直二等分面 165に関して対称構造を有している [0130] Further, in the effective radius portion 157, a first one-side radius between the first fulcrum 155 and the first inner end 163 located on the first fulcrum 155 side end of the thickness imparting member 159. The only portion 164 has a symmetrical structure with respect to a perpendicular bisector 165 between the first fulcrum 155 and the first inner end 163.
[0131] 他方、有効橈み部分 157における、第 2の支点 156と厚み付与部材 159の第 2の 支点 156側の端に位置する第 2の内端 166との間の第 2の片側橈み部分 167につい ても、第 2の支点 156と第 2の内端 166との垂直二等分面 168に関して対称構造を有 している。 On the other hand, in the effective radius portion 157, a second one-side radius between the second fulcrum 156 and the second inner end 166 located at the end of the thickness imparting member 159 on the second fulcrum 156 side. The portion 167 also has a symmetric structure with respect to a perpendicular bisector 168 between the second fulcrum 156 and the second inner end 166.
[0132] また、図 12によく示されているように、有効橈み部分 157は、その幅方向の各端部 である第 1の自由端 169と第 2の自由端 170との垂直二等分面 171 (切断面 X— Xに 相当)に関しても対称構造を有している。  [0132] Further, as is well shown in Fig. 12, the effective radius portion 157 is formed by a vertical free end of a first free end 169 and a second free end 170, which are ends in the width direction. It also has a symmetric structure with respect to the dividing plane 171 (corresponding to the cutting plane X—X).
[0133] また、梁 144に備える下部電極層 147および他方の梁 145に備える図示しない下 部電極層には、引出電極 172が電気的に接続され、この引出電極 172の端部は、図 12に示すように、第 1の基板 142上において外部に露出するように形成される。  Further, an extraction electrode 172 is electrically connected to a lower electrode layer 147 provided on the beam 144 and a lower electrode layer (not shown) provided on the other beam 145, and an end of the extraction electrode 172 is connected to the terminal shown in FIG. As shown in FIG. 8, the first substrate 142 is formed so as to be exposed to the outside.
[0134] また、梁 144に備える上部電極層 149のうち、両端に位置する第 1および第 2の上 部電極層 149aおよび 149b、ならびに他方の梁 145に備える対応の上部電極層に は、引出電極 173が電気的に接続される。  In the upper electrode layer 149 provided on the beam 144, the first and second upper electrode layers 149 a and 149 b located at both ends and the corresponding upper electrode layer provided on the other beam 145 include Electrode 173 is electrically connected.
[0135] 他方、第 2の基板 143上には、たとえば A1力もなる電極 174および 175が互いに並 んだ状態で形成される。また、第 1の基板 142と第 2の基板 143とは、ギャップ調整部 材 176を介して互いに接合される。そして、この接合状態において、電極 174および 175に対して静電容量を形成するように空気層 177を隔てた位置、すなわち厚み付 与部材 159の下面上に、たとえば A1力もなる電極 178が形成される。  On the other hand, on the second substrate 143, for example, electrodes 174 and 175 that also generate A1 force are formed in a state where they are aligned with each other. Further, the first substrate 142 and the second substrate 143 are joined to each other via a gap adjusting member 176. In this joined state, an electrode 178 having, for example, an A1 force is formed at a position separated by the air layer 177 so as to form a capacitance with respect to the electrodes 174 and 175, that is, on the lower surface of the thickness applying member 159. You.
[0136] 次に、変位素子 141の作製方法の一例について説明する。  Next, an example of a method for manufacturing the displacement element 141 will be described.
[0137] まず、 S もなる第 1の基板 142が用意される。この段階では、第 1の基板 142には 貫通孔 154が形成されて 、な ヽ。  [0137] First, a first substrate 142 that also contains S is prepared. At this stage, the through holes 154 are formed in the first substrate 142.
[0138] 次に、第 1の基板 142上に、ノ ッファ層 146となる Al O膜をスパッタリングまたは Next, an Al 2 O 3 film serving as the buffer layer 146 is formed on the first substrate 142 by sputtering or
2 3  twenty three
蒸着等の方法によって全面に形成する。次に、下部電極層 147となる Pt膜をスパッ タリングまたは蒸着等の方法によって全面に形成する。 It is formed on the entire surface by a method such as vapor deposition. Next, a Pt film to be the lower electrode layer 147 is sputtered. It is formed on the entire surface by a method such as tarling or vapor deposition.
[0139] 次に、圧電体層 148となる PZT膜を MOCVDまたはスパッタリング等の方法によつ て全面に形成する。  [0139] Next, a PZT film to be the piezoelectric layer 148 is formed on the entire surface by a method such as MOCVD or sputtering.
[0140] 次に、上部電極層 149および引出電極 173となる A1膜をリフトオフ等の方法によつ て形成する。  Next, an A1 film serving as the upper electrode layer 149 and the extraction electrode 173 is formed by a method such as lift-off.
[0141] 次に、レジストマスクを介して、前述した PZT膜、 Pt膜および Al O膜に対して、ィ  Next, the above-described PZT film, Pt film, and AlO film are masked through a resist mask.
2 3  twenty three
オンミリング等の方法を適用して、第 1の梁 144における圧電体層 148、下部電極層 147およびバッファ層 146ならびに第 2の梁 145における対応の要素が得られるよう に加工する。次に、レジストマスクを介して、第 1の梁 144における圧電体層 148およ び第 2の梁 145における対応の要素を、イオンミリング等の方法を用いて加工するこ とによって、引出電極 172の一部を露出させる。  By applying a method such as on-milling, processing is performed so that the corresponding elements in the piezoelectric layer 148, the lower electrode layer 147, the buffer layer 146, and the second beam 145 in the first beam 144 are obtained. Next, through a resist mask, the piezoelectric layer 148 in the first beam 144 and the corresponding element in the second beam 145 are processed by a method such as ion milling, so that the extraction electrode 172 is formed. Expose part of the
[0142] 次に、第 1の基板 142に対して、その裏面側から、レジストマスクを介して RIE等の 方法を適用して、貫通孔 154を形成する。このとき、厚み付与部材 159が、第 1の基 板 142の一部によって与えられるようにする。  Next, a through-hole 154 is formed on the first substrate 142 from the back side thereof by a method such as RIE through a resist mask. At this time, the thickness applying member 159 is provided by a part of the first substrate 142.
[0143] 他方、第 2の基板 143上に、電極 174および 175をリフトオフ等の方法によって形 成する。そして、第 2の基板 143上に、ギャップ調整部材 176をたとえば感光性ポリイ ミド等を用いて形成し、次いで、第 1の基板 142をこれに熱圧着する。  On the other hand, electrodes 174 and 175 are formed on second substrate 143 by a method such as lift-off. Then, a gap adjusting member 176 is formed on the second substrate 143 using, for example, a photosensitive polyimide or the like, and then the first substrate 142 is thermocompression-bonded thereto.
[0144] 以上のようにして、変位素子 141を得ることができる。  [0144] As described above, the displacement element 141 can be obtained.
[0145] 次に、変位素子 141の動作について説明する。  [0145] Next, the operation of the displacement element 141 will be described.
[0146] まず、前述したように、第 1および第 2の梁 144および 145のそれぞれについて、対 称構造を有しているため、各々の有効橈み部分 157および 160の中央部 158および 161の初期状態での絶対位置は、常に一定に制御することができる。  First, as described above, since each of the first and second beams 144 and 145 has a symmetric structure, the center portions 158 and 161 of the effective radius portions 157 and 160 are respectively formed. The absolute position in the initial state can always be controlled to be constant.
[0147] この初期状態において、電極 174および 175と電極 178とによって形成される静電 容量は、電極 174および 175を通して取り出すことができる。  In this initial state, the capacitance formed by the electrodes 174 and 175 and the electrode 178 can be taken out through the electrodes 174 and 175.
[0148] 次に、引出電極 172と引出電極 173との間に電圧を印加すると、圧電体層 148が 歪み、有効橈み部分 157および 160の中央部 158および 161が上方または下方へ 変位し、それによつて、電極 174および 175と電極 178との間隔が変更され、静電容 量が変更される。この静電容量の変更度合いは、引出電極 172および 173間に印加 される電圧の高さによって制御することができる。 [0148] Next, when a voltage is applied between the extraction electrode 172 and the extraction electrode 173, the piezoelectric layer 148 is distorted, and the central portions 158 and 161 of the effective radius portions 157 and 160 are displaced upward or downward, As a result, the distance between the electrodes 174 and 175 and the electrode 178 is changed, and the capacitance is changed. The degree of change in the capacitance is applied between the extraction electrodes 172 and 173. It can be controlled by the height of the applied voltage.
[0149] 以上のように、可変容量素子を構成する変位素子 141によれば、梁 144および 14 5の有効橈み部分 157および 160の中央部 158および 161の初期状態での絶対位 置を一定に制御できるので、電圧を印加した際に生じる変位量を高精度に制御する ことができ、その結果、静電容量を高精度に制御することができる。  As described above, according to the displacement element 141 constituting the variable capacitance element, the absolute positions in the initial state of the central portions 158 and 161 of the effective radius portions 157 and 160 of the beams 144 and 145 are fixed. Therefore, the amount of displacement generated when a voltage is applied can be controlled with high precision, and as a result, the capacitance can be controlled with high precision.
産業上の利用可能性  Industrial applicability
[0150] この発明に係る変位素子は、静電容量値を高精度に制御できる可変容量素子とし て適用することができる。 The displacement element according to the present invention can be applied as a variable capacitance element capable of controlling a capacitance value with high accuracy.

Claims

請求の範囲 The scope of the claims
[1] 互いに異なる材料からそれぞれなる複数の機能材料層を厚み方向に積層した構造 を有する梁と、  [1] a beam having a structure in which a plurality of functional material layers made of different materials are stacked in the thickness direction,
前記梁を両持ち状態とするように、前記梁の長手方向の第 1および第 2の端部をそ れぞれ支持する第 1および第 2の支持部と、  First and second support portions for supporting first and second longitudinal ends of the beam, respectively, so as to hold the beam in a double-supported state;
前記梁に前記厚み方向への変位を生じさせるため、前記梁における、前記第 1の 支持部による第 1の支点と前記第 2の支持部による第 2の支点との間の有効橈み部 分を撓ませるように電気的に駆動するための駆動手段と  In order to cause the beam to be displaced in the thickness direction, an effective radius portion between the first fulcrum of the first support and the second fulcrum of the second support in the beam. Driving means for electrically driving so as to deflect
を備える、変位素子であって、  A displacement element comprising:
前記有効橈み部分の長手方向の中央部には、当該中央部の厚みを他の部分より 厚くするための厚み付与部材が配置され、  At the central portion in the longitudinal direction of the effective radius portion, a thickness imparting member for increasing the thickness of the central portion relative to other portions is arranged,
前記有効橈み部分は、前記第 1の支点と前記第 2の支点との垂直二等分面に関し て対称構造を有するとともに、  The effective radius portion has a symmetric structure with respect to a perpendicular bisector of the first fulcrum and the second fulcrum,
前記有効橈み部分における、前記第 1の支点と前記厚み付与部材の前記第 1の支 点側の端に位置する第 1の内端との間の第 1の片側橈み部分は、前記第 1の支点と 前記第 1の内端との垂直二等分面に関して対称構造を有し、かつ、  In the effective radius portion, a first unilateral radius portion between the first fulcrum and a first inner end located at an end of the thickness imparting member on the first fulcrum side is the first radius. 1 has a symmetric structure with respect to a perpendicular bisector of the fulcrum and the first inner end, and
前記有効橈み部分における、前記第 2の支点と前記厚み付与部材の前記第 2の支 点側の端に位置する第 2の内端との間の第 2の片側橈み部分は、前記第 2の支点と 前記第 2の内端との垂直二等分面に関して対称構造を有していることを特徴とする、 変位素子。  In the effective radius portion, a second one-side radius portion between the second fulcrum and a second inner end located at the second fulcrum-side end of the thickness providing member is the second radius. A displacement element having a symmetrical structure with respect to a perpendicular bisector of the second fulcrum and the second inner end.
[2] 前記有効橈み部分は、その幅方向の各端部である第 1の自由端と第 2の自由端と の垂直二等分面に関して対称構造を有して 、ることを特徴とする、請求項 1に記載の 変位素子。  [2] The effective radius portion has a symmetrical structure with respect to a perpendicular bisector of a first free end and a second free end which are each end in the width direction. The displacement element according to claim 1, wherein
[3] 前記厚み付与部材は、前記有効橈み部分の幅方向の各端部である第 1の自由端 と第 2の自由端との間の全域にわたって延びるように配置されていることを特徴とする 、請求項 1または 2に記載の変位素子。  [3] The thickness providing member is arranged so as to extend over the entire area between the first free end and the second free end, which are each end in the width direction of the effective radius portion. The displacement element according to claim 1 or 2.
[4] 複数の前記機能材料層のうちの少なくとも 1層は、圧電体力 なる圧電体層であり、 前記駆動手段は、前記圧電体層を圧電効果に基づいて歪ませる手段を備えることを 特徴とする、請求項 1な!、し 3の 、ずれかに記載の変位素子。 [4] At least one of the plurality of functional material layers is a piezoelectric layer having a piezoelectric force, and the driving means includes means for distorting the piezoelectric layer based on a piezoelectric effect. 4. The displacement element according to claim 1, wherein the displacement element is characterized by:
[5] 複数の前記機能材料層のうちの少なくとも 1層は、導電体力 なる導電体層であり、 前記駆動手段は、前記導電体層に電流を流すことによって磁力線を発生させる手段 と、前記導電体層に電磁力を発生させて前記有効橈み部分を橈ませるように前記導 電体層に外部より磁場を与える手段とを備えることを特徴とする、請求項 1な!、し 3の V、ずれかに記載の変位素子。 [5] At least one of the plurality of functional material layers is a conductor layer having a conductor force, and the driving unit is configured to generate a magnetic field line by passing a current through the conductor layer; Means for generating an electromagnetic force in the body layer to apply a magnetic field to the conductor layer from outside so as to cause the effective radius to be radiused, wherein , A displacement element according to any of the above.
[6] 複数の前記機能材料層のうちの少なくとも 1層は、導電体力 なる導電体層であり、 前記駆動手段は、前記導電体層に対して空気層を隔てた位置に固定的に設けられ た固定導電体と、前記導電体層と前記固定導電体との間に電圧を印加する手段とを 備え、前記導電体層と前記固定導電体との間に電圧を印加することにより、前記導 電体層と前記固定導電体との間に静電引力を発生させ、それによつて、前記有効橈 み部分を橈ませることを特徴とする、請求項 1ないし 3のいずれかに記載の変位素子 [6] At least one of the plurality of functional material layers is a conductive layer having a conductive property, and the driving unit is fixedly provided at a position separated from the conductive layer by an air layer. Fixed electric conductor, and means for applying a voltage between the electric conductor layer and the fixed electric conductor, and applying a voltage between the electric conductor layer and the fixed electric conductor, The displacement element according to any one of claims 1 to 3, wherein an electrostatic attraction is generated between an electric conductor layer and the fixed conductor, whereby the effective radius portion is radiused.
[7] 前記厚み付与部材を含む前記有効橈み部分上に設けられた第 1の電極と、前記 第 1の電極に対して静電容量を形成するように空気層を隔てた位置に固定的に設け られた第 2の電極とをさらに備え、前記有効橈み部分の橈みによって前記静電容量 が変更される可変容量素子を構成することを特徴とする、請求項 1な!ヽし 6の 、ずれ かに記載の変位素子。 [7] A first electrode provided on the effective radius portion including the thickness imparting member, and a first electrode fixed to a position separated by an air layer so as to form a capacitance with respect to the first electrode. And a second electrode provided in the variable capacitance element, wherein the capacitance is changed by the radius of the effective radius portion. The displacement element according to any one of the above.
PCT/JP2004/013782 2003-11-27 2004-09-22 Displacement element WO2005052966A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005515737A JP4534988B2 (en) 2003-11-27 2004-09-22 Displacement element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-396783 2003-11-27
JP2003396783 2003-11-27

Publications (1)

Publication Number Publication Date
WO2005052966A1 true WO2005052966A1 (en) 2005-06-09

Family

ID=34631521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/013782 WO2005052966A1 (en) 2003-11-27 2004-09-22 Displacement element

Country Status (2)

Country Link
JP (1) JP4534988B2 (en)
WO (1) WO2005052966A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012054486A (en) * 2010-09-03 2012-03-15 Seiko Epson Corp Piezoelectric device, liquid ejection head and liquid ejection apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60121713A (en) * 1983-12-06 1985-06-29 株式会社村田製作所 Variable capacity capacitor
JP2003059761A (en) * 2001-08-09 2003-02-28 Murata Mfg Co Ltd Variable-capacity capacitor and resonator
JP2003264123A (en) * 2002-03-11 2003-09-19 Murata Mfg Co Ltd Variable capacitance element
JP2003264122A (en) * 2002-03-08 2003-09-19 Murata Mfg Co Ltd Variable capacitance element

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10318758A (en) * 1997-05-21 1998-12-04 Murata Mfg Co Ltd Piezoelectric micro angular speed sensor and fabrication thereof
JPH11211748A (en) * 1998-01-20 1999-08-06 Matsushita Electric Ind Co Ltd Machine-electricity conversion element and its manufacture and acceleration sensor
JP3765961B2 (en) * 2000-03-28 2006-04-12 日本碍子株式会社 Vibration gyro sensor and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60121713A (en) * 1983-12-06 1985-06-29 株式会社村田製作所 Variable capacity capacitor
JP2003059761A (en) * 2001-08-09 2003-02-28 Murata Mfg Co Ltd Variable-capacity capacitor and resonator
JP2003264122A (en) * 2002-03-08 2003-09-19 Murata Mfg Co Ltd Variable capacitance element
JP2003264123A (en) * 2002-03-11 2003-09-19 Murata Mfg Co Ltd Variable capacitance element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012054486A (en) * 2010-09-03 2012-03-15 Seiko Epson Corp Piezoelectric device, liquid ejection head and liquid ejection apparatus

Also Published As

Publication number Publication date
JPWO2005052966A1 (en) 2007-06-21
JP4534988B2 (en) 2010-09-01

Similar Documents

Publication Publication Date Title
EP1538691B1 (en) Variable capacitance element
US7098577B2 (en) Piezoelectric switch for tunable electronic components
US7145284B2 (en) Actuator and micro-electromechanical system device
US20050168109A1 (en) Piezoelectric/electrostrictive device
JP4334581B2 (en) Electrostatic actuator
WO2009158141A1 (en) Piezoelectric aln rf mem switches monolithically integrated with aln contour-mode resonators
US20040124945A1 (en) Switch
US7782170B2 (en) Low consumption and low actuation voltage microswitch
US6512432B2 (en) Microswitch and method of fabricating a microswitch with a cantilevered arm
US20080142348A1 (en) Micro-switching device
CN100547723C (en) The manufacture method of micro movable device and use wet etching
EP1887412A1 (en) Optical deflection element
EP1091424B1 (en) Piezoelectric/electrostrictive device and method of manufacturing same
JP2004126503A (en) Micro-actuator and optical switch using the same
JP2007326204A (en) Actuator
JP2005536013A (en) Microfabricated double throw relay with multimorph actuator and electrostatic latch mechanism
WO2005059933A1 (en) Displacing element
WO2005052966A1 (en) Displacement element
JP2002100276A (en) Micro machine switch
JPH10149950A (en) Variable capacitance capacitor
US20040229440A1 (en) Micro-actuator, variable optical attenuator provided with micro-actuator and method for manufacturing the same
JP2005536014A (en) Microfabricated relay with multimorph actuator and electrostatic latch mechanism
WO2022153696A1 (en) Mems switch
JP3815405B2 (en) Matrix relay
JP2008517777A (en) Microsystem with deformable bridge

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005515737

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase