JP2002100276A - Micro machine switch - Google Patents

Micro machine switch

Info

Publication number
JP2002100276A
JP2002100276A JP2000284721A JP2000284721A JP2002100276A JP 2002100276 A JP2002100276 A JP 2002100276A JP 2000284721 A JP2000284721 A JP 2000284721A JP 2000284721 A JP2000284721 A JP 2000284721A JP 2002100276 A JP2002100276 A JP 2002100276A
Authority
JP
Japan
Prior art keywords
contact
side holding
holding electrode
shape
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000284721A
Other languages
Japanese (ja)
Inventor
Kunihiko Nakamura
邦彦 中村
Masaki Yamamoto
正樹 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2000284721A priority Critical patent/JP2002100276A/en
Publication of JP2002100276A publication Critical patent/JP2002100276A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/12Contacts characterised by the manner in which co-operating contacts engage
    • H01H1/14Contacts characterised by the manner in which co-operating contacts engage by abutting
    • H01H1/20Bridging contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H59/00Electrostatic relays; Electro-adhesion relays
    • H01H59/0009Electrostatic relays; Electro-adhesion relays making use of micromechanics

Landscapes

  • Switches Operated By Changes In Physical Conditions (AREA)
  • Micromachines (AREA)
  • Thermally Actuated Switches (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a small machine type switch and a relay having a contact with high reliability. SOLUTION: A holding electrode having the same shape as the deflection shape of a beam is provided to keep the beam's deflection shape by an electrostatic force. The contact surfaces of the contacts are made to be contacted each other with a contact angle close to 0 as much as possible for a larger contact area. Since the contact is kept by the electrostatic force of a uniformly distributed load, high quality contacts in which a stiction problem is reduced, with a lower contact resistance can be provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、機械式のスイッチ
やリレーに関し、特に、高密度に集積化された回路内に
おいて、小型で信頼性の高い接点を実現する微小機械ス
イッチに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mechanical switch and a relay, and more particularly to a micromechanical switch capable of realizing a small and highly reliable contact in a highly integrated circuit.

【0002】[0002]

【従来の技術】従来の微小機械スイッチについて、図7
〜8を参照して説明する。図7はIEEE MTT−S
Digest 1999、pp.1923−1926
に紹介されているマイクロ波スイッチである。シリコン
片持ち梁1の先端下部に絶縁層を介して金の接点部2が
設けられ、接点部2に相対する面には、接点部との接触
により閉回路を形成する回路端子部3と、接点部2に静
電力を与えてシリコン片持ち梁1を撓ませる駆動電極4
が設けられている。接点部2と回路端子部3の隙間は1
0μm以下に設定されおり、駆動電極4に50V以上の
電圧を加えることで梁1が撓んで接点部2が回路端子部
3に接触し、接点が閉じられる。
2. Description of the Related Art FIG.
This will be described with reference to FIGS. FIG. 7 shows the IEEE MTT-S
Digest 1999, p. 1923-1926
Is a microwave switch introduced in. A gold contact portion 2 is provided below the tip of the silicon cantilever 1 via an insulating layer, and a circuit terminal portion 3 forming a closed circuit by contact with the contact portion is provided on a surface facing the contact portion 2; A drive electrode 4 for applying an electrostatic force to the contact portion 2 to bend the silicon cantilever 1
Is provided. The gap between the contact part 2 and the circuit terminal part 3 is 1
The voltage is set to 0 μm or less. When a voltage of 50 V or more is applied to the drive electrode 4, the beam 1 bends and the contact portion 2 comes into contact with the circuit terminal portion 3 to close the contact.

【0003】[0003]

【発明が解決しようとする課題】しかし、接点を閉じる
ために必要な電圧が50V以上と高いために、専用の昇
圧回路を搭載する必要があり、スイッチ素子の小型化を
阻害していた。また、マイクロ波は接点における導通が
なくても容量性結合や誘導性結合が生じ易く、接点が開
いた状態でのアイソレーションを向上させるには、接点
部と回路端子部の隙間をさらに広げる必要があるが、静
電力は対向電極間の距離の2乗に反比例するために、回
路を閉じるためにはさらなる高電圧が必要になるという
課題があった。
However, since the voltage required to close the contacts is as high as 50 V or more, it is necessary to mount a dedicated booster circuit, which hinders miniaturization of the switch element. In addition, microwaves are susceptible to capacitive coupling and inductive coupling even if there is no conduction at the contacts, and the gap between the contacts and the circuit terminals must be further expanded to improve isolation when the contacts are open. However, since the electrostatic force is inversely proportional to the square of the distance between the opposed electrodes, there has been a problem that a higher voltage is required to close the circuit.

【0004】また、図8(a)のように接点部の片あた
りが生じてしまうため、接触面積を広げて接点抵抗を下
げるためには、図8(b)のようにさらなる高電圧をか
けて梁を逆方向に撓ませて接点の隙間をなくす必要があ
った。その際には片あたりしていた近辺のみ接触圧が過
大になり、スティクション(stiction)と呼ば
れる付着現象が発生し、図8(c)に示すように駆動電
圧を除いても梁の撓みが戻らず回路が閉じたままになり
制御不能に陥る可能性があった。
[0004] Further, as shown in FIG. 8 (a), a contact portion may be partially contacted. In order to increase the contact area and reduce the contact resistance, an even higher voltage is applied as shown in FIG. 8 (b). It was necessary to flex the beam in the opposite direction to eliminate the gap between the contacts. At that time, the contact pressure becomes excessive only in the vicinity of the one-sided portion, and an adhesion phenomenon called stiction occurs. As shown in FIG. Without returning, the circuit could remain closed and lose control.

【0005】本発明は、このような微小機械スイッチに
おいて、簡易な構成で高品質の接点を有する微小機械ス
イッチを提供することを目的とする。
An object of the present invention is to provide a micromechanical switch having a simple structure and high-quality contacts in such a micromechanical switch.

【0006】[0006]

【課題を解決するための手段】この課題を解決するため
に本発明は、力が与えられて撓んだ梁の梁側保持電極の
形状に対して同等の形状を有する基板側保持電極を設け
て静電力を作用させることにより、低電圧で梁の撓み形
状を保持することを可能とした。また接点部と回路端子
部の形状も同一にして両者の接触角度を極力ゼロに近づ
けることで接触面積を広げるとともに、保持電極による
静電力により接点接触圧力を高めて接点抵抗を減少さ
せ、さらに接点圧力を一様に分布させることによりステ
ィクション問題を低減し、品質のよい接点を提供するこ
とを可能にした。また、梁に撓みを与える手段を静電力
とし、保持電極を駆動電極として併用することにより、
低電圧で小型の機械スイッチを提供することを可能にし
た。
SUMMARY OF THE INVENTION In order to solve this problem, the present invention provides a substrate-side holding electrode having a shape equivalent to the shape of a beam-side holding electrode of a beam bent by applying a force. By applying an electrostatic force, it is possible to maintain the bent shape of the beam at a low voltage. In addition, the contact area and the circuit terminal section have the same shape and the contact angle between them is made as close to zero as possible to increase the contact area.In addition, the contact force is increased by the electrostatic force of the holding electrode, and the contact resistance is reduced. By uniformly distributing the pressure, the stiction problem was reduced, and it was possible to provide a high quality contact. In addition, the means for bending the beam is an electrostatic force, and by using the holding electrode as a driving electrode together,
It is possible to provide a small mechanical switch at a low voltage.

【0007】[0007]

【発明の実施の形態】本発明の請求項1に記載の発明
は、梁を撓ませる力が作用する作用部と、静電力を作用
させて梁の撓み形状を保持する梁側保持電極部と、梁が
撓むことより接点として機能する接点部とを備えた梁
と、梁側保持電極部に静電力を作用させる基板側保持電
極と、梁が撓むことにより前記接点部と接触することに
よって回路を閉じる回路端子部とを備えた基板からなる
梁駆動構造において、回路が閉じた状態の梁側保持電極
部の形状と基板側保持電極の形状が同じ形状を有するこ
とで両者が密着することを特徴とした微小機械スイッチ
である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention according to claim 1 of the present invention is characterized in that a working portion on which a force for bending a beam acts, a beam-side holding electrode portion for holding a bent shape of the beam by applying an electrostatic force. A beam having a contact portion functioning as a contact by bending the beam, a substrate-side holding electrode for applying an electrostatic force to the beam-side holding electrode portion, and contacting the contact portion by bending the beam. In a beam drive structure comprising a substrate having a circuit terminal portion that closes the circuit, the shape of the beam-side holding electrode portion in a closed state and the shape of the substrate-side holding electrode have the same shape, so that both are in close contact with each other. This is a micro mechanical switch characterized by the above.

【0008】請求項2に記載の発明は、回路が閉じた状
態において、前記接点部と、前記回路端子部が隙間なく
密着することを特徴とした請求項1記載の微小機械スイ
ッチである。
According to a second aspect of the present invention, there is provided the micromechanical switch according to the first aspect, wherein the contact portion and the circuit terminal portion are in close contact with each other with no gap when the circuit is closed.

【0009】請求項3に記載の発明は、接点部は梁上の
作用部及び梁側保持電極部以外の箇所に設けられ、かつ
作用部に作用する力による撓みを受けないことを特徴と
した請求項2記載の微小機械スイッチである。
According to a third aspect of the present invention, the contact portion is provided at a portion other than the acting portion and the beam-side holding electrode portion on the beam, and is not subjected to bending due to a force acting on the acting portion. A micro mechanical switch according to claim 2.

【0010】請求項4に記載の発明は、梁側保持電極部
が作用部を兼ね、梁を撓ませる力は基板側保持電極部と
梁側保持電極部間の静電力であることを特徴とする請求
項1記載の微小機械スイッチである。
According to a fourth aspect of the present invention, the beam-side holding electrode portion also serves as an action portion, and the force for bending the beam is an electrostatic force between the substrate-side holding electrode portion and the beam-side holding electrode portion. The micro mechanical switch according to claim 1.

【0011】請求項5に記載の発明は、基板側保持電極
の形状が、梁側保持電極部に等分布荷重を与えたときの
撓み形状と同じ曲面形状を有することで、基板側保持電
極と梁側保持電極部が隙間なく密着することを特徴とし
た請求項4記載の微小機械スイッチである。
According to a fifth aspect of the present invention, the shape of the substrate-side holding electrode has the same curved shape as the bent shape when an evenly distributed load is applied to the beam-side holding electrode portion. 5. The micromechanical switch according to claim 4, wherein the beam-side holding electrode unit is in close contact with no gap.

【0012】請求項6に記載の発明は、駆動部の駆動手
段が圧電体であることを特徴とした請求項1記載の微小
機械スイッチである。
According to a sixth aspect of the present invention, there is provided the micromechanical switch according to the first aspect, wherein the driving means of the driving section is a piezoelectric body.

【0013】請求項7に記載の発明は、駆動部の駆動手
段がバイメタルであることを特徴とした請求項1記載の
微小機械スイッチである。
According to a seventh aspect of the present invention, there is provided the micromechanical switch according to the first aspect, wherein the driving means of the driving section is a bimetal.

【0014】請求項8に記載の発明は、駆動部の駆動手
段が形状記憶合金であることを特徴とした請求項1記載
の微小機械スイッチである。
According to an eighth aspect of the present invention, there is provided the micromechanical switch according to the first aspect, wherein the driving means of the driving section is a shape memory alloy.

【0015】請求項9に記載の発明は、駆動部の駆動手
段が磁歪素子であることを特徴とした請求項1記載の微
小機械スイッチである。
According to a ninth aspect of the present invention, there is provided the micromechanical switch according to the first aspect, wherein the driving means of the driving section is a magnetostrictive element.

【0016】請求項10に記載の発明は、駆動部の駆動
手段が光歪素子であることを特徴とした請求項1記載の
微小機械スイッチである。
According to a tenth aspect of the present invention, there is provided the micromechanical switch according to the first aspect, wherein the driving means of the driving section is an optical distortion element.

【0017】請求項11に記載の発明は、駆動部の駆動
手段が電歪ポリマであることを特徴とした請求項1記載
の微小機械スイッチである。
According to an eleventh aspect of the present invention, there is provided the micromechanical switch according to the first aspect, wherein the driving means of the driving section is an electrostrictive polymer.

【0018】以下、本発明の実施の形態について、図1
から図6を用いて説明する。
FIG. 1 shows an embodiment of the present invention.
This will be described with reference to FIG.

【0019】(実施の形態1)図1は、本発明の実施の
形態における微小機械スイッチの概要を示す斜視図であ
る。梁1はコの字型の梁であり、端点が固定部8にて支
持されている。梁1の材料は絶縁材料であるか、または
導電体材料の下面に絶縁膜を形成したものである。
(Embodiment 1) FIG. 1 is a perspective view showing an outline of a micromechanical switch according to an embodiment of the present invention. The beam 1 is a U-shaped beam, and the end point is supported by the fixed portion 8. The material of the beam 1 is an insulating material or an insulating film formed on the lower surface of a conductor material.

【0020】梁1の下面には、固定部8からの距離で0
〜L1までの間に静電力により梁の駆動と保持を行う梁
側電極9a、9bが設けられている。また距離L2〜L
3の間には静電力により梁の保持を行う梁側電極9c、
9dが設けられている。また梁側電極9c、9dに挟ま
れる位置に接点電極10が設けられている。
The lower surface of the beam 1 has a distance of 0 from the fixed portion 8.
Beam-side electrodes 9a and 9b for driving and holding the beam by electrostatic force are provided between L1 and L1. The distance L2 to L
Between 3, a beam-side electrode 9c for holding the beam by electrostatic force,
9d is provided. A contact electrode 10 is provided at a position sandwiched between the beam side electrodes 9c and 9d.

【0021】梁1の下に配し、固定部8を介して梁1を
支える絶縁体からなる基板11について、図1における
A−A’断面図である図2、およびB−B’断面図であ
る図3を用いて説明する。
FIG. 2 is a sectional view taken along the line AA ′ of FIG. 1 and FIG. 2 is a sectional view taken along the line BB ′ of the substrate 11 made of an insulator disposed below the beam 1 and supporting the beam 1 via the fixing portion 8. This will be described with reference to FIG.

【0022】図2において基板11上には梁の固定部8
からの距離で0〜L1までは、梁側電極9a、9bに静
電力を作用させて梁の駆動と保持を行う基板側電極12
a、12bが設けられ、その表面は絶縁膜13により覆
われている。距離L2〜L3の間は、梁側電極9c、9
dに静電力を作用させて梁の保持を行う基板側電極12
c、12dが設けられ、その表面は絶縁膜13により覆
われている。
In FIG. 2, a beam fixing portion 8 is provided on a substrate 11.
From 0 to L1 in the distance from the substrate side electrode 12 which drives and holds the beam by applying an electrostatic force to the beam side electrodes 9a and 9b.
a and 12 b are provided, and the surface thereof is covered with an insulating film 13. Between the distances L2 and L3, the beam-side electrodes 9c, 9
substrate-side electrode 12 for holding a beam by applying electrostatic force to d
c and 12 d are provided, and the surface thereof is covered with the insulating film 13.

【0023】図3において、基板11の上には信号線1
4が設けられ、梁の固定部8からの距離L2〜L3に対
応する箇所により回路端子部15を形成しており、梁1
の接点電極10とともに接点を構成する。基板11の形
状はL2〜L3の区間では、図2における基板側電極1
2c、12dを有する面と同一面であり、信号線14の
厚みは、図2の絶縁膜13の厚みと等しいか若干厚めに
作られている。
In FIG. 3, a signal line 1 is provided on a substrate 11.
4 are provided, and a circuit terminal portion 15 is formed by a portion corresponding to a distance L2 to L3 from the fixing portion 8 of the beam.
A contact is constituted with the contact electrode 10 of FIG. In the section between L2 and L3, the shape of the substrate 11 is the substrate-side electrode 1 in FIG.
The surface of the signal line 14 is the same as the surface having 2c and 12d, and the thickness of the signal line 14 is equal to or slightly larger than the thickness of the insulating film 13 in FIG.

【0024】以上の構成によると、梁1を撓ませる静電
力は梁1そのものにかかるため、従来例の図7のように
梁の先端に静電力を作用させる部位を設ける必要がない
ので小型化が図れる。
According to the above configuration, since the electrostatic force for bending the beam 1 is applied to the beam 1 itself, there is no need to provide a portion for applying the electrostatic force to the tip of the beam as shown in FIG. Can be achieved.

【0025】また基板側電極12a、12bの面は0〜
L1までは曲面になっている。通常、梁に静電力を加え
て撓ませる場合は、図4のように電圧を加えていくとプ
ルイン電圧Vpiまでは梁のばね力と静電力がつりあっ
た状態で梁の先端は徐々に変位していくが、Vpiで梁
は急激に静電力に引っ張られ最大変位近くまでに変位
し、梁は対向電極に接触する。例えば図1、図2におい
て、梁をシリコンとして梁のヤング率を150GPa、
梁の幅hを40μm、梁の厚みtを2.5μm、L1を
400μm、絶縁膜13の厚みdを0.3μm、比誘電
率を1、L1における隙間δmaxを6μm、とする。
The surfaces of the substrate-side electrodes 12a and 12b are 0 to
It is a curved surface up to L1. Normally, when an electrostatic force is applied to the beam to bend it, as shown in FIG. 4, when the voltage is applied, the tip of the beam gradually displaces with the spring force and the electrostatic force of the beam being balanced up to the pull-in voltage Vpi. At Vpi, the beam is suddenly pulled by the electrostatic force and displaced to near the maximum displacement, and the beam comes into contact with the counter electrode. For example, in FIGS. 1 and 2, the beam is made of silicon and the Young's modulus of the beam is 150 GPa.
The width h of the beam is 40 μm, the thickness t of the beam is 2.5 μm, L1 is 400 μm, the thickness d of the insulating film 13 is 0.3 μm, the relative permittivity is 1, and the gap δmax at L1 is 6 μm.

【0026】[0026]

【数1】 (Equation 1)

【0027】0〜L1の区間の絶縁膜13表面の形状を
図2のようなx−y座標で(数1)で表したとき、n=
0、すなわち、絶縁膜13表面は平らで梁と平行に構
え、基板側電極12a、12bと梁側電極9a、9bと
の間に電圧を加えていったときのVpiは110Vであ
るのに対して、n=2、すなわち絶縁膜13表面を曲面
形状にするとVpiは30Vとなり、さらにn=4近く
まで次数をあげるとVpiは10V以下となり低電圧で
梁を撓ませることが可能となる。
When the shape of the surface of the insulating film 13 in the section from 0 to L1 is represented by (Equation 1) by xy coordinates as shown in FIG.
0, that is, the surface of the insulating film 13 is flat and parallel to the beam, and Vpi is 110 V when a voltage is applied between the substrate-side electrodes 12a and 12b and the beam-side electrodes 9a and 9b. Therefore, when n = 2, that is, when the surface of the insulating film 13 is formed into a curved surface, Vpi becomes 30 V, and when the order is increased to near n = 4, Vpi becomes 10 V or less, and the beam can be bent at a low voltage.

【0028】[0028]

【数2】 (Equation 2)

【0029】梁1の固定部8からの距離0〜L1の範囲
に等分布荷重Fが加わったときの梁の撓み量wは、梁の
ヤング率をE、断面二次モーメントをIとし、同じx−
y座標を用いると(数2)であらわされる。なお、x>
L1では梁の撓みは発生しない。0〜L1までの間は梁
の撓み形状w(x)とほぼ同等の形状を梁側電極12
a、12b上の絶縁膜13表面が有するようにすれば、
両者を密着させることができる。例えば絶縁膜13の表
面形状s(x)がx=0〜L1の間において、Vpiを
10V以下まで低減できるn=4における(数1)の形
状であれば、ほぼ梁のw(x)の形状を近似的に表現で
きることが可能であるため絶縁膜13と梁1とを密着さ
せることができる。このときの等分布荷重は単位面積あ
たりの静電力Fであり、Fはεrを絶縁膜13の比誘電
率として(数3)で与えられる。
The amount of deflection w of the beam 1 when an equal distribution load F is applied to a range of 0 to L1 from the fixed portion 8 of the beam 1 is the same as the beam Young's modulus E and the secondary moment of area I. x-
If the y coordinate is used, it is represented by (Equation 2). Note that x>
No bending of the beam occurs at L1. Between 0 and L1, the beam-side electrode 12 has a shape substantially equivalent to the beam bending shape w (x).
If the surface of the insulating film 13 on a and 12b has
Both can be brought into close contact. For example, if the surface shape s (x) of the insulating film 13 is between (x = 0) and (L1) and the shape of (Equation 1) at n = 4 where Vpi can be reduced to 10 V or less, the w (x) of the beam is approximately Since the shape can be approximately expressed, the insulating film 13 and the beam 1 can be closely attached. The uniformly distributed load at this time is an electrostatic force F per unit area, and F is given by (Equation 3) using εr as a relative dielectric constant of the insulating film 13.

【0030】[0030]

【数3】 (Equation 3)

【0031】密着以後は電圧をあげても梁の変位はない
が上式に従って接触圧は一様に上昇することになる。従
って、0〜L1間の梁と基板の接触圧には大きな偏りが
ないため、スティクションの問題も低減できる。
After the contact, even if the voltage is increased, there is no displacement of the beam, but the contact pressure increases uniformly according to the above equation. Accordingly, there is no large deviation in the contact pressure between the beam between 0 and L1 and the substrate, and the problem of stiction can be reduced.

【0032】L1より先の基板形状を平面とし、かつL
1にて0〜L1の曲面と連続とすれば、基板側電極12
a、12bと梁側電極9a、9bとの間に電圧を加えて
0〜L1を密着させたとき、L1〜L3においても梁と
基板表面はゆるやかに接触している。接点電極10と回
路端子部15の接触を安定させるために、さらに基板側
電極12c、12dと梁側電極9c、9dとの間に電圧
を印加して静電力を作用させることで、接点電極10の
回路端子部15との接触面は均一な接触圧で接触し、接
触抵抗は低減され、かつスティクション問題も低減され
る。このときの図1のA−A’断面図を図5に示す。
The shape of the substrate before L1 is made flat, and
1, if it is continuous with the curved surface of 0 to L1,
When a voltage is applied between the electrodes a and 12b and the beam-side electrodes 9a and 9b to bring 0 to L1 into close contact with each other, the beams and the substrate surface are also in gentle contact with L1 to L3. In order to stabilize the contact between the contact electrode 10 and the circuit terminal 15, a voltage is further applied between the substrate-side electrodes 12 c and 12 d and the beam-side electrodes 9 c and 9 d to cause electrostatic force to act on the contact electrode 10. The contact surface with the circuit terminal portion 15 contacts with a uniform contact pressure, the contact resistance is reduced, and the stiction problem is also reduced. FIG. 5 is a sectional view taken along the line AA ′ of FIG. 1 at this time.

【0033】なお、基板11の曲面形状は、例えば基板
材料としてポリイミドなどの有機材料を用いる場合は、
ハーフトーンマスクを用いたエキシマレーザ加工により
形成が可能である。または基板平面の位置によってエキ
シマレーザの照射時間を調節することで同様な曲面形状
の生成が可能である。
The curved shape of the substrate 11 is, for example, when an organic material such as polyimide is used as the substrate material.
It can be formed by excimer laser processing using a halftone mask. Alternatively, a similar curved surface shape can be generated by adjusting the irradiation time of the excimer laser depending on the position of the substrate plane.

【0034】基板材料として感光性有機材料を用いる場
合は、基板平面の位置によって露光時間を制御すること
で曲面形状の生成が可能である。
When a photosensitive organic material is used as the substrate material, a curved surface shape can be generated by controlling the exposure time depending on the position of the substrate plane.

【0035】また酸化シリコン膜などの絶縁体をスパッ
タリングにより堆積する場合は、基板平面の位置によっ
て堆積時間が調節できるようにマスクの開口部を制御す
ることで曲面形状の生成が可能である。
When an insulator such as a silicon oxide film is deposited by sputtering, a curved surface can be formed by controlling the opening of the mask so that the deposition time can be adjusted depending on the position of the substrate plane.

【0036】また絶縁膜13として、例えばチタン酸ス
トロンチウム(SrTiO3)のように比誘電率が高い
材料を用いれば、より低電圧で梁の駆動と保持が可能で
あることは言うまでもない。
If a material having a high relative dielectric constant, such as strontium titanate (SrTiO3), is used as the insulating film 13, it goes without saying that the beam can be driven and held at a lower voltage.

【0037】(実施の形態2)図6は本発明の実施の形
態2における微小機械スイッチの概要を示す断面図であ
り、実施の形態1の説明図である図2において、梁1の
固定部8からの距離0〜L1の間に撓みを与える手段を
圧電薄膜16としたときの微小機械スイッチの断面を表
した図である。
(Embodiment 2) FIG. 6 is a sectional view showing an outline of a micromechanical switch according to Embodiment 2 of the present invention. In FIG. 2 which is an explanatory view of Embodiment 1, FIG. FIG. 9 is a diagram illustrating a cross section of a micromechanical switch when a piezoelectric thin film 16 is used as a means for giving a deflection between a distance 0 and a distance L1 from 8.

【0038】圧電薄膜16の材料としてはZnOやPZ
Tなどが利用でき、とくにI.Kanno, et a
l., ”Piezoelectric propert
ies of c−axis oriented Pb
(Zr,Ti)O3 thin films”, Ap
pl. Phys. Lett., 70(11),p
p.1378−1380, 1997.に示されるPZ
T薄膜はd定数がバルク材料なみに高く、本微小機械ス
イッチには最適である。
The material of the piezoelectric thin film 16 is ZnO or PZ
T. etc., especially I. Kanno, et a
l., "Piezoelectric property
ies of c-axis oriented Pb
(Zr, Ti) O3 thin films ", Ap
pl. Phys. Lett. , 70 (11), p
p. 1378-1380, 1997. PZ shown in
The T thin film has a d constant as high as that of a bulk material, and is optimal for the present micromechanical switch.

【0039】また、バルク材料に対するメリットとして
圧電薄膜16は厚みが薄いことにより電界強度を高める
ことができ、印加電圧を下げられることがあげられる。
Further, as an advantage over the bulk material, the piezoelectric thin film 16 has a small thickness, so that the electric field strength can be increased and the applied voltage can be reduced.

【0040】さて、圧電薄膜16に電圧を印加すること
により、圧電薄膜16が梁の長手方向に伸張し、梁1は
そのひずみを吸収するように絶縁膜13側に変形する。
この結果、梁側電極9c、9dと基板側電極12c、1
2dは接近あるいは絶縁膜13を介して部分的に接触状
態となる。さらに梁側電極9c、9dと基板側電極12
c、12dの間に静電吸着力が働くような電圧を付加す
ることにより、両者の密着をさらに高めることができ
る。
When a voltage is applied to the piezoelectric thin film 16, the piezoelectric thin film 16 extends in the longitudinal direction of the beam, and the beam 1 is deformed toward the insulating film 13 so as to absorb the distortion.
As a result, the beam side electrodes 9c and 9d and the substrate side electrodes 12c and
2d approaches or comes into contact partially with the insulating film 13 interposed therebetween. Further, the beam side electrodes 9c and 9d and the substrate side electrode 12
By applying a voltage at which an electrostatic attraction force acts between c and 12d, the adhesion between the two can be further enhanced.

【0041】ここで注目すべきことは、圧電薄膜16の
働きにより梁1が変形する前の状態で、梁側電極9c、
9dと基板側電極12c、12dを静電力で密着させる
のに必要な電圧に比較して、圧電薄膜16の変形を併用
したときの電圧ははるかに小さくできることである。こ
のことは、圧電薄膜16の駆動電圧が低いこととあいま
って、本微小機械スイッチの駆動電圧を低くする効果が
あり、本微小機械スイッチのモバイル機器への適用に好
都合となる。
It should be noted that, before the beam 1 is deformed by the action of the piezoelectric thin film 16, the beam-side electrode 9c,
The voltage when the deformation of the piezoelectric thin film 16 is used in combination can be much smaller than the voltage required for bringing the 9d and the substrate-side electrodes 12c and 12d into close contact with each other by electrostatic force. This has an effect of lowering the drive voltage of the present micromechanical switch, in combination with the lower drive voltage of the piezoelectric thin film 16, and is advantageous in applying the present micromechanical switch to mobile devices.

【0042】また、梁側電極9c、9dと基板側電極1
2c、12dが密着することにより、接点電極10(図
示せず)の回路端子部15(図示せず)との接触面が均
一な接触圧で接触し、接触抵抗が低減され、かつスティ
クション問題も低減される。
The beam-side electrodes 9c and 9d and the substrate-side electrode 1
Due to the close contact between 2c and 12d, the contact surface of the contact electrode 10 (not shown) with the circuit terminal portion 15 (not shown) comes into contact with a uniform contact pressure, the contact resistance is reduced, and the stiction problem occurs. Is also reduced.

【0043】なお、本発明の実施の形態1及び実施の形
態2において、梁を撓ませる手段は静電力や圧電薄膜と
したが、梁にひずみを与えて撓みを起こし接点の開閉を
行うことができれば静電力や圧電薄膜に限定されること
なく、例えば、バイメタル、形状記憶合金、磁歪素子、
光歪素子、電歪ポリマなどを用いてもよい。
In the first and second embodiments of the present invention, the means for bending the beam is an electrostatic force or a piezoelectric thin film. However, the beam may be bent to bend to open and close the contact. If possible, without being limited to electrostatic force or piezoelectric thin film, for example, bimetal, shape memory alloy, magnetostrictive element,
A photostrictive element, an electrostrictive polymer, or the like may be used.

【0044】なお、本発明の実施の形態1及び実施の形
態2において、接点は導電体同士の接触による開閉であ
ったが、電磁波のスイッチングを行うには、コンデンサ
やコイルを梁の撓みにより近接させることで容量性の結
合や誘導性の結合を行う構造としてもよい。
In the first and second embodiments of the present invention, the contacts are opened and closed by the contact between the conductors. However, in order to perform the switching of the electromagnetic wave, the capacitors and the coils are moved closer to each other by bending the beams. By doing so, a structure for performing capacitive coupling or inductive coupling may be adopted.

【0045】[0045]

【発明の効果】以上のように本発明によれば、力が与え
られて撓んだ梁の曲面形状に対して同等の形状を有する
保持電極を設けることで、低電圧で梁の撓み形状を保持
することができるという有利な効果が得られる。
As described above, according to the present invention, by providing a holding electrode having the same shape as the curved surface shape of a beam bent by applying a force, the bent shape of the beam can be reduced at a low voltage. The advantageous effect of being able to hold is obtained.

【0046】また、本発明によれば、接点部と回路端子
部の形状も同一にして両者の接触角度を極力ゼロに近づ
けることで、接触面積を広げるとともに、保持電極によ
る静電力により接点接触圧力を高めて接点抵抗を減少さ
せ、さらに接点圧力は一様に分布することにより、ステ
ィクション問題が低減され、品質のよい接点を提供する
ことができるという有利な効果が得られる。
According to the present invention, the contact area is enlarged by making the shape of the contact portion and the circuit terminal portion the same and making the contact angle between them as close to zero as possible. In addition, the contact resistance is reduced by increasing the contact pressure, and the contact pressure is evenly distributed, so that the stiction problem is reduced and the advantageous effect that a high quality contact can be provided can be obtained.

【0047】また、本発明によれば、梁に撓みを与える
手段を静電力とし、梁の撓みの曲面形状と同一の形状を
有する保持電極を駆動電極として併用することにより、
低電圧で小型の機械スイッチを提供することができると
いう有利な効果が得られる。
Further, according to the present invention, the means for imparting bending to the beam is an electrostatic force, and the holding electrode having the same shape as the curved shape of the bending of the beam is used in combination as a driving electrode.
An advantageous effect is obtained that a small mechanical switch can be provided at a low voltage.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態による微小機械スイッチ
の概要を示す斜視図
FIG. 1 is a perspective view showing an outline of a micromechanical switch according to an embodiment of the present invention.

【図2】図1におけるA−A’部の断面図FIG. 2 is a sectional view taken along the line A-A 'in FIG.

【図3】図1におけるB−B’部の断面図FIG. 3 is a cross-sectional view taken along a line B-B 'in FIG.

【図4】本発明の一実施の形態による梁の静電力駆動の
動作を示す特性図
FIG. 4 is a characteristic diagram illustrating an operation of driving a beam by electrostatic force according to an embodiment of the present invention;

【図5】図1の微小機械スイッチが閉じた状態における
A−A’部の断面図
FIG. 5 is a cross-sectional view taken along the line AA ′ in a state where the micromechanical switch of FIG. 1 is closed.

【図6】本発明の一実施の形態による微小機械スイッチ
の概要を示す断面図
FIG. 6 is a sectional view showing an outline of a micromechanical switch according to an embodiment of the present invention.

【図7】従来の微小機械スイッチの概要を示す上面図及
び断面図
FIG. 7 is a top view and a cross-sectional view schematically showing a conventional micromechanical switch.

【図8】従来の微小機械スイッチにおける接点接触を示
す断面図
FIG. 8 is a cross-sectional view showing contact contact in a conventional micromechanical switch.

【符号の説明】[Explanation of symbols]

1 梁 2 接点部 3 回路端子部 4 駆動電極 5 基板 6 信号線 7 絶縁膜 8 固定部 9 梁側電極 10 接点電極 11 基板 12 基板側電極 13 絶縁膜 14 信号線 15 回路端子部 16 圧電薄膜 DESCRIPTION OF SYMBOLS 1 Beam 2 Contact part 3 Circuit terminal part 4 Drive electrode 5 Substrate 6 Signal line 7 Insulating film 8 Fixed part 9 Beam side electrode 10 Contact electrode 11 Substrate 12 Substrate side electrode 13 Insulating film 14 Signal line 15 Circuit terminal part 16 Piezoelectric thin film

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01H 55/00 H01H 55/00 57/00 57/00 D A H01L 41/09 H01L 41/12 41/12 41/08 U ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01H 55/00 H01H 55/00 57/00 57/00 DA H01L 41/09 H01L 41/12 41/12 41/08 U

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 梁を撓ませる力が作用する作用部と、静
電力を作用させて梁の撓み形状を保持する梁側保持電極
部と、梁が撓むことより接点として機能する接点部とを
備えた梁と、梁側保持電極部に静電力を作用させる基板
側保持電極と、梁が撓むことにより前記接点部と接触す
ることによって回路を閉じる回路端子部とを備えた基板
からなる梁駆動構造において、回路が閉じた状態の梁側
保持電極部の形状と基板側保持電極の形状が同じ形状を
有することで両者が密着することを特徴とした微小機械
スイッチ。
1. A working portion on which a force for bending a beam acts, a beam-side holding electrode portion for holding a bent shape of a beam by applying electrostatic force, and a contact portion functioning as a contact by bending the beam. And a substrate having a circuit-side holding electrode for applying an electrostatic force to the beam-side holding electrode portion, and a circuit terminal portion for closing the circuit by making contact with the contact portion by bending the beam. A micromechanical switch characterized in that in a beam driving structure, the shape of a beam-side holding electrode portion in a state where a circuit is closed and the shape of a substrate-side holding electrode have the same shape, so that both are in close contact with each other.
【請求項2】 回路が閉じた状態において、前記接点部
と、前記回路端子部が隙間なく密着することを特徴とし
た請求項1記載の微小機械スイッチ。
2. The micromechanical switch according to claim 1, wherein the contact portion and the circuit terminal portion are in close contact with each other with no gap when the circuit is closed.
【請求項3】 接点部は梁上の作用部及び梁側保持電極
部以外の箇所に設けられ、かつ作用部に作用する力によ
る撓みを受けないことを特徴とした請求項2記載の微小
機械スイッチ。
3. The micromachine according to claim 2, wherein the contact portion is provided at a portion other than the acting portion and the beam-side holding electrode portion on the beam, and does not bend by a force acting on the acting portion. switch.
【請求項4】 梁側保持電極部が作用部を兼ね、梁を撓
ませる力は基板側保持電極部と梁側保持電極部間の静電
力であることを特徴とする請求項1記載の微小機械スイ
ッチ。
4. The micro-electrode according to claim 1, wherein the beam-side holding electrode portion also functions as an action portion, and the force for bending the beam is an electrostatic force between the substrate-side holding electrode portion and the beam-side holding electrode portion. Mechanical switch.
【請求項5】 基板側保持電極の形状が、梁側保持電極
部に等分布荷重を与えたときの撓み形状と同じ曲面形状
を有することで、基板側保持電極と梁側保持電極部が隙
間なく密着することを特徴とした請求項4記載の微小機
械スイッチ。
5. The substrate-side holding electrode has the same curved shape as the bending shape when an evenly distributed load is applied to the beam-side holding electrode, so that there is a gap between the substrate-side holding electrode and the beam-side holding electrode. The micromechanical switch according to claim 4, wherein the switch is in close contact with the micromechanical switch.
【請求項6】 駆動部の駆動手段が圧電体であることを
特徴とした請求項1記載の微小機械スイッチ。
6. The micromechanical switch according to claim 1, wherein the driving means of the driving section is a piezoelectric body.
【請求項7】 駆動部の駆動手段がバイメタルであるこ
とを特徴とした請求項1記載の微小機械スイッチ。
7. The micromechanical switch according to claim 1, wherein the driving means of the driving section is a bimetal.
【請求項8】 駆動部の駆動手段が形状記憶合金である
ことを特徴とした請求項1記載の微小機械スイッチ。
8. The micromechanical switch according to claim 1, wherein the drive means of the drive section is a shape memory alloy.
【請求項9】 駆動部の駆動手段が磁歪素子であること
を特徴とした請求項1記載の微小機械スイッチ。
9. The micromechanical switch according to claim 1, wherein the driving means of the driving section is a magnetostrictive element.
【請求項10】 駆動部の駆動手段が光歪素子であるこ
とを特徴とした請求項1記載の微小機械スイッチ。
10. The micromechanical switch according to claim 1, wherein the driving means of the driving section is a photostrictive element.
【請求項11】 駆動部の駆動手段が電歪ポリマである
ことを特徴とした請求項1記載の微小機械スイッチ。
11. The micromechanical switch according to claim 1, wherein the driving means of the driving section is an electrostrictive polymer.
JP2000284721A 2000-09-20 2000-09-20 Micro machine switch Pending JP2002100276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000284721A JP2002100276A (en) 2000-09-20 2000-09-20 Micro machine switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000284721A JP2002100276A (en) 2000-09-20 2000-09-20 Micro machine switch

Publications (1)

Publication Number Publication Date
JP2002100276A true JP2002100276A (en) 2002-04-05

Family

ID=18768897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000284721A Pending JP2002100276A (en) 2000-09-20 2000-09-20 Micro machine switch

Country Status (1)

Country Link
JP (1) JP2002100276A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002061781A1 (en) * 2001-01-30 2002-08-08 Advantest Corporation Switch and integrated circuit device
WO2005083734A1 (en) * 2004-02-27 2005-09-09 Eads Deutschland Gmbh High-frequency mems switch comprising a curved switching element and method for producing said switch
JP2006254359A (en) * 2005-03-14 2006-09-21 Ricoh Co Ltd Microstrip antenna and wireless system using same
JP2006310052A (en) * 2005-04-27 2006-11-09 Sanyo Electric Co Ltd Micro-machine switch
JP2006351295A (en) * 2005-06-14 2006-12-28 Sony Corp Movable element, semiconductor device with the same incorporated therein, module and electronic apparatus
JP2006351296A (en) * 2005-06-14 2006-12-28 Sony Corp Movable element, semiconductor device with the same incorporated therein, module and electronic apparatus
JP2007012558A (en) * 2005-07-04 2007-01-18 Sony Corp Movable element, and semiconductor device, module and electronic device incorporating movable element
JP2007504608A (en) * 2003-08-30 2007-03-01 キネテイツク・リミテツド Switches for microelectromechanical systems
JP2008059865A (en) * 2006-08-30 2008-03-13 Kagoshima Univ Mems switch and portable wireless terminal equipment
JP2008288426A (en) * 2007-05-18 2008-11-27 Nippon Telegr & Teleph Corp <Ntt> Memory element
US8038890B2 (en) 2004-04-28 2011-10-18 Kabushiki Kaisha Toshiba Piezoelectric-driven MEMS device and method for manufacturing the same
JP2013107205A (en) * 2013-03-14 2013-06-06 Seiko Epson Corp Robot arm, and robot arm device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6813133B2 (en) 2001-01-30 2004-11-02 Advantest Corporation Switch, integrated circuit device, and method of manufacturing switch
WO2002061781A1 (en) * 2001-01-30 2002-08-08 Advantest Corporation Switch and integrated circuit device
JP2007504608A (en) * 2003-08-30 2007-03-01 キネテイツク・リミテツド Switches for microelectromechanical systems
US7786829B2 (en) 2004-02-27 2010-08-31 Eads Deutschland Gmbh High frequency MEMS switch having a bent switching element and method for its production
WO2005083734A1 (en) * 2004-02-27 2005-09-09 Eads Deutschland Gmbh High-frequency mems switch comprising a curved switching element and method for producing said switch
DE102004010150B9 (en) * 2004-02-27 2012-01-26 Eads Deutschland Gmbh High-frequency MEMS switch with bent switching element and method for its production
DE102004010150B4 (en) * 2004-02-27 2011-12-29 Eads Deutschland Gmbh High-frequency MEMS switch with bent switching element and method for its production
JP2007525805A (en) * 2004-02-27 2007-09-06 エーアーデーエス・ドイッチュラント・ゲーエムベーハー High frequency MEMS switch with curved switching element and method of manufacturing the switch
US8038890B2 (en) 2004-04-28 2011-10-18 Kabushiki Kaisha Toshiba Piezoelectric-driven MEMS device and method for manufacturing the same
JP2006254359A (en) * 2005-03-14 2006-09-21 Ricoh Co Ltd Microstrip antenna and wireless system using same
JP2006310052A (en) * 2005-04-27 2006-11-09 Sanyo Electric Co Ltd Micro-machine switch
JP4573695B2 (en) * 2005-04-27 2010-11-04 三洋電機株式会社 Micromachine switch
JP4586642B2 (en) * 2005-06-14 2010-11-24 ソニー株式会社 Movable element, and semiconductor device, module and electronic equipment incorporating the movable element
JP4552768B2 (en) * 2005-06-14 2010-09-29 ソニー株式会社 Movable element, and semiconductor device, module and electronic equipment incorporating the movable element
JP2006351296A (en) * 2005-06-14 2006-12-28 Sony Corp Movable element, semiconductor device with the same incorporated therein, module and electronic apparatus
JP2006351295A (en) * 2005-06-14 2006-12-28 Sony Corp Movable element, semiconductor device with the same incorporated therein, module and electronic apparatus
JP2007012558A (en) * 2005-07-04 2007-01-18 Sony Corp Movable element, and semiconductor device, module and electronic device incorporating movable element
JP2008059865A (en) * 2006-08-30 2008-03-13 Kagoshima Univ Mems switch and portable wireless terminal equipment
JP2008288426A (en) * 2007-05-18 2008-11-27 Nippon Telegr & Teleph Corp <Ntt> Memory element
JP2013107205A (en) * 2013-03-14 2013-06-06 Seiko Epson Corp Robot arm, and robot arm device

Similar Documents

Publication Publication Date Title
US7242273B2 (en) RF-MEMS switch and its fabrication method
US7209019B2 (en) Switch
US8604670B2 (en) Piezoelectric ALN RF MEM switches monolithically integrated with ALN contour-mode resonators
US7728703B2 (en) RF MEMS switch and method for fabricating the same
US7098577B2 (en) Piezoelectric switch for tunable electronic components
US8847466B2 (en) Piezoelectric bimorph switch
JP2002100276A (en) Micro machine switch
JP2003503816A (en) Micromachined electrostatic switch for high pressure
JP2001143595A (en) Folded spring based on micro electro-mechanical rf switch and method of manufacturing the same
US7830068B2 (en) Actuator and electronic hardware using the same
US20080061916A1 (en) Lateral Piezoelectric Driven Highly Tunable Micro-electromechanical System (MEMS) Inductor
JP2007535797A (en) Beam for micromachine technology (MEMS) switches
KR20080052455A (en) Microswitching device
JP3714624B2 (en) Electromechanical switch
US6813135B2 (en) Variable capacitor and method for manufacturing same
JP2007515306A (en) Electronic equipment
JP2005536013A (en) Microfabricated double throw relay with multimorph actuator and electrostatic latch mechanism
WO1999067853A2 (en) Phased array antenna using piezoelectric actuators
JPH10149950A (en) Variable capacitance capacitor
JP2013051297A (en) Variable capacitance device
WO2000041200A1 (en) Micromachine switch
JP2007522609A (en) Electronic device with microelectromechanical switch made of piezoelectric material
Raman et al. Design and analysis of RF MEMS switch with π-shaped cantilever beam for wireless applications
JPH11204013A (en) Electrostatic moving contact element and logical operation device
KR100977917B1 (en) Microswitch with a micro-electromechanical system